初中九年级数学上册因式分解法解一元二次方程综合练习题45

合集下载

人教版数学九年级上册解一元二次方程因式分解法同步练习题含答案与解析

人教版数学九年级上册解一元二次方程因式分解法同步练习题含答案与解析

21.2 解一元二次方程 21.2.3 因式分解法一、单项选择题1. 一元二次方程x 2-x +=0的根是( ) A ., B .x 1=2,x 2=-2 C .x 1=x 2= D .x 1=x 2=2. 方程3x 2=0与方程3x 2=3x 的解( )A .都是x=0B .有一个相同的解x=0C .都不相同D .无法确定3.解方程(x +5)2-3(x +5)=0,较为简便的方法是( )A .直接开平方法B .因式分解法C .配方法D .公式法4.方程x(x -4)=32-8x 的解是( )A .x =-8B .x 1=4,x 2=-8C .x 1=-4,x 2=8D .x 1=2,x 2=-85. 一个三角形的两边长为3和6,第三边的边长是方程(x-3)(x-4)=0的根,则这个三角形的周长( )A .13B .11或13C .11D .11和136、要使4452-+-x x x 的值为0,x 的值为( )A .4或1B .4C .1D .-4或-114112x =21=2x -12-127、已知x2-5xy+6y2=0,那么x与y的关系是()A.2x=y或3x=y B.2x=y或3y=xC.x=2y或x=3y D.x=2y或y=3x8、已知(a2+b2)2-2(a2+b2)+1=0,则a2+b2的值为()A.0 B.-1 C.1 D.±1二、填空题9.方程(x-1)(x+2)=2(x+2)的根是__________.10.如果代数式3x2-6的值为21,那么x的值为__________.11.已知x=2是一元二次方程(m-2)x2+4x-m2=0的一个根,则m的值是______.12. 一元二次方程x(x-1)=0的解是__________.13. 一元二次方程x2-3x=0的根是__________.14. 方程(x+1)(3x-2)=0的根是15. 请写出一个根为x=1,另一个根满足-1<x<1的一元二次方程:16. 已知一元二次方程(m-1)x2+7mx+m2+3m-4=0有一根为0,则m=y=17. 若2x2+9xy-5y2=0,则x三、解答题18. 用因式分解法解下列一元二次方程:(1)(x-1)(x+3)=-3;(2)(3x-1)2=4(2x+3)2.19. 如果方程x2+mx-2m=0的一个根为-1,求方程x2-6mx =0的根.20. 用因式分解法解方程x2-mx-7=0时,将左边分解后有一个因式为x+1,求m的值.21. 若m是关于x的方程x2+nx+m=0的根,切m≠0,则m+n的值是多少?22. 有一大一小两个正方形,小正方形的边长比大正方形边长的一半多4cm,大正方形的面积比小正方形面积的2倍少32cm2,求这两个正方形的边长.23. 阅读材料:为解方程(x 2-1)2-5(x 2-1)+4=0,我们可以将x 2-1看作一个整体,然后设x 2-1=y ①,那么原方程可化为y 2-5y+4=0,解得y 1=1,y 2=4,当y=1时,x 2-1=1,∴x 2=2,∴x=±2;当y=4时,x 2-1=4,∴x 2=5,∴x=±5,故原 方程的解为x 1=2,x 2= -2,x 3=5,x 4= -5解答问题:(1)上述解题过程,在由原方程得到方程①的过程中,利用 法达到了解方程的目的,体现了转化的数学思想。

九年级数学解一元二次方程专项练习题(带答案)【40道】

九年级数学解一元二次方程专项练习题(带答案)【40道】

解一元二次方程专项练习题(带答案)1、用配方法解下列方程:(1) 025122=++x x (2) 1042=+x x(3) 1162=-x x (4)0422=--x x2、用配方法解下列方程:(1) 01762=+-x x (2) x x 91852=-(3) 52342=-x x (4)x x 2452-=3、用公式法解下列方程:(1) 08922=+-x x (2) 01692=++x x(3) 38162=+x x (4)01422=--x x4、运用公式法解下列方程:(1) 01252=-+x x (2) 7962=++x x(3) 2325x x =+ (4) 1)53)(2(=--x x5、用分解因式法解下列方程:(1)01692=++x x (2) x x x 22)1(3-=-(3))32(4)32(2+=+x x (4)9)3(222-=-x x6、用适当方法解下列方程:(1) 22(3)5x x -+= (2) 230x ++=(3) 2)2)(113(=--x x ; (4) 4)2)(1(13)1(+-=-+x x x x7、 解下列关于x 的方程:(1) x 2+2x -2=0 (2) 3x 2+4x -7=(3) (x +3)(x -1)=5 (4) (x -2)2+42x =08、解下列方程(12分)(1)用开平方法解方程:4)1(2=-x (2)用配方法解方程:x 2 —4x +1=0(3)用公式法解方程:3x 2+5(2x+1)=0 (4)用因式分解法解方程:3(x -5)2=2(5-x )9、用适当方法解下列方程:(1)0)14(=-x x (2)027122=++x x(3)562+=x x (4)45)45(+=+x x x(5)x x 314542=- (6)0242232=-+-x x(7)12)1)(8(=-++x x (8)14)3)(23(+=++x x x解一元二次方程专项练习题 答案1、【答案】(1)116±-; (2) 142±-; (3) 523±; (4) 51± 2、【答案】(1)11=x ,612=x (2)31=x ,562=-x(3)41=x ,4132=-x (4)5211±-=x3、【答案】 (1) 4179±=x (2) 3121=-=x x (3) 411=x ,432=-x (4)262±=x4、【答案】 (1) x 1=561,5612--=+-x (2). x 1=-3+7,x 2=-3-7(3)21=x ,312=-x (4)61311±=x 5、【答案】(1)3121=-=x x (2)11=x ,322=-x(3)231=-x ,212=x (4)31=x ,92=x6、【答案】(1)11=x ,22=x (2)321=-=x x (3)4,3521==x x ; (4)3,221-==x x7、【答案】(1)x =-1±3; (2)x 1=1,x 2=-37(3)x 1=2,x 2=-4; (4)25.x 1=x 2=-2 8、【答案】解:(1) 1,321-==x x (2)32,3221-=+=x x(3)3105,310521--=+-=x x (4)313,521==x x 。

人教版九年级数学上册《21.2解一元二次方程》练习题-附参考答案

人教版九年级数学上册《21.2解一元二次方程》练习题-附参考答案

人教版九年级数学上册《21.2解一元二次方程》练习题-附参考答案一、选择题1.用配方法解一元二次方程2x 2−3x −1=0,配方正确的是( ) A .(x −34)2=1716 B .(x −34)2=12 C .(x −34)2=134D .(x −34)2=1142.一元二次方程(x −22)2=0的根为( ). A .x 1=x 2=22B .x 1=x 2=−22C .x 1=0,x 2=22D .x 1=−223.关于一元二次方程x 2+kx −9=0(k 为常数)的根的情况,下列说法正确的是( ) A .有两个不相等的实数根 B .有两个相等的实数根 C .没有实数根D .不能确定根的情况4.若关于 的一元二次方程 有两个不相等的实数根,则实数 的取值范围是( )A . 且B .C .且D .5.若关于 的一元二次方程 有一根为0,则的的值为( )A .2B .-1C .2或-1D .1或-26.已知a ,b 是一元二次方程x 2+3x −2=0的两根,则a 2+5a +2b 的值是( ) A .-5B .-4C .1D .07.三角形两边长分别是8和6,第三边长是一元二次方程x 2−16x +60=0一个实数根,则该三角形的面积是( ) A .24B .48C .24或8√5D .8√5 8.已知一元二次方程x 2+2x +6=10x +2的两实数根分别为x 1,x 2,则x 1+x 2x 1x 2的值为( ) A .-2 B .2C .12D .−12二、填空题9.若用配方法解方程x 2+4x +1=0时,将其配方为(x +b)2=c 的形式,则c = . 10.若实数a ,b 满足a −2ab +2ab 2+4=0,则a 的取值范围是 . 11.已知(a 2+b 2)2−a 2−b 2−6=0,求a 2+b 2的值为 .12.关于x 的一元二次方程x 2+2x-a =0的一个根是2,则另一个根是 .13.设x1,x2是方程2x2+6x−1=0的两根,则x1+x2+x1x2的值是.三、解答题14.解方程:(1)x2−4x+3=0;(2)3x2−5x+1=0.15.已知x=√5−1,求代数式x2+2x−3的值.16.关于的一元二次方程有两个实数根,求实数的取值范围.17.已知关于的一元二次方程(1)若方程的一个根为,求的值及另一个根;(2)若该方程根的判别式的值等于,求的值.18.若关于x的方程有两个不相等的实数根.(1)求k的取值范围;(2)设方程的两根分别是、且满足,求的值.参考答案1.A2.A3.A4.A5.A6.B7.C8.B9.310.−8≤a<011.312.-413.−7214.(1)解:∵x2−4x+3=0∴(x−3)(x−1)=0∴x−3=0或x−1=0∴x1=3,x2=1.(2)解:∵3x2−5x+1=0∴a=3,b=−5,c=1∴Δ=25−12=13>0∴x=5±√136∴x1=5+√136,x2=5−√136.15.解:当x=√5−1时x2+2x−3=x2+2x+1−1−3=(x+1)2−4=(√5−1+1)2−4=5-4=1.16.解:∵∴且,即.解得:且.17.(1)解:设方程的另一根是x2.∵一元二次方程mx2﹣(m+2)x+2=0的一个根为3∴x=3是原方程的解∴9m﹣(m+2)×3+2=0解得m= ;又由韦达定理,得3×x2=∴x2=1,即原方程的另一根是1(2)解:∵△=(m+2)2﹣4×m×2=1∴m=1,m=3.18.(1)解:∵关于x的方程有两个不相等的实数根∴即解得:;(2)解:设方程的两根分别是∴又∵∴∴∴解得:. 经检验,都符合原分式方程的根∵,∴。

九年级数学上册《解一元二次方程(因式分解法)》练习题

九年级数学上册《解一元二次方程(因式分解法)》练习题

九年级数学上册《解一元二次方程(因式分解法)》练习题(含答案解析)学校:___________姓名:___________班级:______________一、单选题1.方程x 2﹣x =0的解是( )A .x =0B .x =1C .x 1=0,x 2=﹣1D .x 1=0,x 2=12.关于x 的方程x (x ﹣5)=3(x ﹣5)的根是( )A .x =5B .x =﹣5C .x 1=﹣5;x 2=3D .x 1=5;x 2=33.如图,在Rt △ABC 中,∠C =90°,放置边长分别为3,4,x 的三个正方形,则x 的值为( )A .12B .7C .6D .54.若m ,n 是方程x 2-x -2 022=0的两个根,则代数式(m 2-2m -2 022)(-n 2+2n +2 022)的值为()A .2 023B .2 022C .2 021D .2 0205.下列关于x 的一元二次方程()200++=≠ax bx c a 的命题中,真命题有( )∠若0a b c -+=,则240b ac -≥;∠若方程()200++=≠ax bx c a 两根为1和-2,则0a b -=;∠若方程()200++=≠ax bx c a 有一个根是()0c c -≠,则1b ac =+A .∠∠∠B .∠∠C .∠∠D .∠∠6.若函数y =m 22m m x +++4是二次函数,则m 的值为( )A .0或﹣1B .0或1C .﹣1D .17.一个等腰三角形的两条边长分别是方程x 2﹣9x +18=0的两根,则该等腰三角形的周长是( )A .12B .9C .15D .12或158.下列式子运算正确的是( )A .(2a+b )(2a ﹣b )=2a 2﹣b 2B .(a+2)(b ﹣1)=ab ﹣2C .(a+1)2=a 2+1D .(x ﹣1)(x ﹣2)=x 2﹣3x+29.已知方程x 2+2x ﹣3=0的解是x 1=1,x 2=﹣3,则另一个方程(x +3)2+2(x +3)﹣3=0的解是( )A .x 1=﹣1,x 2=3B .x 1=1,x 2=﹣3C .x 1=2,x 2=6D .x 1=﹣2,x 2=﹣6 10.下列解方程变形:∠由3x +4=4x -5,得3x +4x =4-5;∠由1132x x +-=,去分母得2x -3x +3=6; ∠由()()221331x x ---=,去括号得4x -2-3x +9=1;∠由344x =,得x =3.其中正确的有( ) A .0个 B .1个 C .2个 D .3个二、填空题11.一元二次方程()()120x x --=可化为两个一次方程为______________,方程的根是_________.12.方程2x 2+1=3x 的解为________.13.已知()()212x kx x a x b ++=++,()()215x kx x c x d ++=++,其中a b c d ,,,均为整数,则k =____________ 14.已知()()2222142x y x y ++-=,则22x y +的值是___________.15.若a ,b 是一元二次方程2220220x x +-=的两个实数根,则242a a b ++的值是_________.三、解答题16.已知关于x 的方程()()2222130k k x k x +-++-=(k 为常数).(1)该方程一定是一元二次方程吗?如果一定是,请说明理由;如果不一定是,请求出当方程不是一元二次方程时k 的值;(2)求1k =时方程的解;(3)求出一个()1k k ≠的值,使这个k 的值代人原方程后,所得的方程中有一个解与(2)中方程的一个解相同.(本小题只需求一个k 的值即可)17.为解方程(x 2﹣1)2﹣5(x 2﹣1)+4=0,我们可以将x 2﹣1视为一个整体,然后设x 2﹣1=y ,则原方程可化为y 2﹣5y +4=0,解此方程得y 1=1,y 2=4.当y =1时,x 2﹣1=1,所以x =当y =4时,x 2﹣1=4,所以x =所以原方程的根为1x =,2x =3x =4x =.以上解方程的方法叫做换元法,利用换元法达到了降次的目的,体现了数学的转化思想.运用上述方法解下列方程:(1)(x 2﹣x )(x 2﹣x ﹣4)=﹣4;(2)x 4+x 2﹣12=0.参考答案与解析:1.D【分析】因式分解后求解即可.【详解】x 2﹣x =0,x (x -1)=0,x =0,或x -1=0,解得x 1=0,x 2=1,故选:D【点睛】此题考查因式分解法解一元二次方程,因式分解法解一元二次方程的一般步骤:∠移项,使方程的右边化为零;∠将方程的左边分解为两个一次因式的乘积;∠令每个因式分别为零,得到两个一元一次方程;∠解这两个一元一次方程,它们的解就都是原方程的解.2.D【分析】利用因式分解法求解可得.【详解】解:∠x (x ﹣5)﹣3(x ﹣5)=0,∠(x ﹣5)(x ﹣3)=0,则x ﹣5=0或x ﹣3=0,解得x =5或x =3,故选:D .【点睛】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.3.B【分析】根据已知条件可以推出△CEF∠∠OME∠∠PFN然后把它们的直角边用含x的表达式表示出来,利用对应边的比相等,即可推出x的值.【详解】解:∠在Rt△ABC中(∠C=90°),放置边长分别3,4,x的三个正方形,∠OM∠AB∠PN∠EF,EO∠FP,∠C=∠EOM=∠NPF=90°,∠∠CEF∠∠OME∠∠PFN,∠OE:PN=OM:PF,∠EF=x,MO=3,PN=4,∠OE=x-3,PF=x-4,∠(x-3):4=3:(x-4),∠(x-3)(x-4)=12,即x2-4x-3x+12=12,∠x=0(不符合题意,舍去)或x=7.故选:B.【点睛】本题主要考查相似三角形的判定和性质、正方形的性质,解题的关键在于找到相似三角形,用x 的表达式表示出对应边.4.B【详解】解:∠m、n是方程x2-x-2022=0的两个根,∠m2-m-2022=0,n2-n-2022=0,mn=-2022,∠m2-m=2022,n2-n=2022,∠(m2-2m-2 022)(-n2+2n+2 022)=(m2-m-m-2022)(-(n2-n)+n+2022)=(2022-m-2022)((-2022+n+2022)=-mn=2022,故选:B.【点睛】本题考查了一元二次方程的解的定义和一元二次方程根与系数的关系,能根据已知条件得出m 2-m -2022=0,n 2-n -2022=0,mn =-2022是解此题的关键.5.A【分析】把b =a +c 代入判别式中得到24b ac -=(a -c )2≥0,则可对∠进行判断;利用根与系数的关系得到2c a=-,根据根的定义可得0a b c ++=,于是可对∠进行判断;由方程的根的定义可得20ac bc c -+=,即可对∠进行判断.【详解】解:a -b +c =0,则b =a +c ,24b ac -=(a +c )2-4ac =(a -c )2≥0,所以∠正确;∠方程ax 2+bx +c =0两根为1和-2, ∠2c a=-,则2c a =-,0a b c ++= 20a b a ∴+-=∠0a b -=,所以∠正确;∠方程()200++=≠ax bx c a 有一个根是()0c c -≠,∠20ac bc c -+=0c ≠∠10ac b -+=∠1b ac =+所以∠正确.故选:A .【点睛】本题考查了一元二次方程根的判别式,根与系数的关系,掌握以上知识是解题的关键.6.C【分析】利用二次函数定义可得m 2+m +2=2,且m ≠0,再解即可.【详解】解:由题意得:m 2+m +2=2,且m ≠0,解得:m =﹣1,故C 正确.故选:C .【点睛】本题主要考查了二次函数定义,关键是掌握形如y =ax 2+bx +c (a 、b 、c 是常数,a ≠0)的函数,叫做二次函数.7.C【分析】利用因式分解法求出x 的值,再根据等腰三角形的性质分情况讨论求解【详解】解:∠ x 2﹣9x +18=0,∠(x﹣3)(x﹣6)=0,则x﹣3=0或x﹣6=0,解得x=3或x=6,当3是腰时,三角形的三边分别为3、3、6,不能组成三角形;当6是腰时,三角形的三边分别为3、6、6,能组成三角形,周长为3+6+6=15.故选:C.【点睛】本题考查了因式分解法解一元二次方程,三角形的三边关系,等腰三角形的性质,要注意分情况讨论.8.D【分析】A、原式利用平方差公式计算即可得到结果;B、原式利用多项式乘以多项式法则计算得到结果,即可做出判断;C、原式利用完全平方公式计算得到结果,即可做出判断;D、原式利用多项式乘以多项式法则计算得到结果,即可做出判断.【详解】解:A、原式=4a2-b2,错误;B、原式=ab-a+2b-2,错误;C、原式=a2+2a+1,错误;D、原式=x2-3x+2,正确.故选D.【点睛】此题考查了平方差公式,多项式乘多项式,以及完全平方公式,熟练掌握公式及法则是解本题的关键.9.D【分析】根据已知方程的解得出x+3=1,x+3=﹣3,求出两个方程的解即可.【详解】解:∠方程x2+2x﹣3=0的解是x1=1,x2=﹣3,∠方程(x+3)2+2(x+3)﹣3=0中x+3=1或﹣3,解得:x=﹣2或﹣6,即x1=﹣2,x2=﹣6,故选:D.【点睛】本题考查了解一元二次方程,换元法解一元二次方程,能根据方程的解得出x+3=1,x+3=﹣3,是解此题的关键.10.B【分析】根据解一元一次方程的步骤进行逐一求解判断即可.【详解】解:∠由3x +4=4x -5,得3x -4x =-5-4;方程变形错误,不符合题意;∠由1132x x +-=,去分母得2x -3x -3=6;方程变形错误,不符合题意; ∠由()()221331x x ---=,去括号得4x -2-3x +9=1;正确,符合题意;∠由344x =,得x =163.方程变形错误,不符合题意; 综上,正确的是∠,只1个,故选:B .【点睛】本题主要考查了解一元一次方程,解题的关键在于能够熟练掌握解一元一次方程的方法. 11. x ﹣1=0,x ﹣2=0 11x =,22x =【分析】两个因式的积为0,这两个因式都可以为0,得到两个一次方程,然后求出方程的根.【详解】解:(x ﹣1)(x ﹣2)=0∠x ﹣1=0或x ﹣2=0∠11x =,22x =.故答案分别是:x ﹣1=0,x ﹣2=0;11x =,22x =. 【点睛】本题考查的是用因式分解法解一元二次方程,因式分解得到两个因式的积为0,这两个因式分别为0,得到两个一次方程,然后求出方程的根.12.1211,2x x == 【分析】先移项,再利用因式分解法解答,即可求解.【详解】解:移项得:22310x x -+=,∠()()2110x x --=,∠210x -=或10x -=, 解得:1211,2x x ==, 故答案为:1211,2x x ==. 【点睛】此题主要考查了解一元二次方程,熟练掌握一元二次方程的解法,并灵活选用合适的方法解答是解题的关键.13.8±.【分析】根据等式两边对应相等的关系,可得到ab 和cd 的值,以及a+b 和c+d 的关系,再根据a 、b 、c 、d 是整数,即可得到结果.【详解】解:由题可得()()()2x a x b x a b x ab ++=+++,()()()2x c x d x c d x cd ++=+++12ab ∴=,15cd =,a b c d k +=+=又a b c d ,,,均为整数,∠2a =,6b =,3c =,5d =或2a =-,6b =-,3c =-,5d =-即8k =±.故答案为:±8.【点睛】本题考查多项式乘多项式,属基础知识.14.7【分析】换元法,令22x y t +=,将原方程化为t (t -1)=42(t 0≥), 求解一次方程即可.【详解】令22x y t +=(t 0≥),∠原方程化为t (t -1)=42,解得t =7,或t =-6(舍),∠227x y +=,故答案为:7.【点睛】本题考查用换元法求解方程.解题关键是要注意换元之后一定要考虑新未知数的取值范围,换元法的实际应用,是解题关键.15.2018【分析】先根据一元二次方程的解的定义得到222022a a +=,再根据根与系数的关系得到2a b +=-,然后利用整体代入的方法计算.【详解】解:∠a ,b 是一元二次方程2220220x x +-=的两个实数根,∠2220220a a +-=∠222022a a +=∠a ,b 是一元二次方程2220220x x +-=的两个实数根,∠2a b +=-,∠242a a b ++2222a a a b =+++()222a a a b=+++()202222=+⨯-2018=故答案为:2018.【点睛】本题考查的是一元二次方程的解的定义和根与系数的关系,还有整体的思想,熟练掌握一元二次方程的解的定义和根与系数的关系是解本题的关键.16.(1)不一定是,1k=-(2)x1=1,x2=-3;(3)4-或8 3 -【分析】(1)不一定,当2220k k+-=时该方程为一元一次方程,解得k的值即可;(2)把k=1代入方程计算即可;(3)把(2)中解得的x的值代入原方程解得k的值即可.(1)解:不一定是.当2220k k+-=时该方程为一元一次方程,解得:1k=-±答:方程不一定是一元二次方程,当方程不是一元二次方程时k的值为1-(2)解:当k=1代入得:2230x x+-=解得:x1=1,x2=-3;(3)解:x=1代入得k=-4,或x=-3代入得k=83 -,答:k的值为4-或83 -.【点睛】本题考查了一元二次方程的定义、一元二次方程的解以及解一元二次方程,掌握定义与解法是解题的关键.17.(1)x 1=2,x 2=﹣1;(2)12x x ==【分析】(1)设x 2﹣x =a ,原方程可化为a 2﹣4a +4=0,求出a 的值,再代入x 2﹣x =a 求出x 即可;(2)设x 2=y ,原方程化为y 2+y ﹣12=0,求出y ,再把y 的值代入x 2=y 求出x 即可.【详解】解:(1)(x 2﹣x )(x 2﹣x ﹣4)=﹣4,设x 2﹣x =a ,则原方程可化为a 2﹣4a +4=0,解此方程得:a 1=a 2=2,当a =2时,x 2﹣x =2,即x 2﹣x ﹣2=0,因式分解得:(x ﹣2)(x +1)=0,解得:x 1=2,x 2=﹣1,所以原方程的解是x 1=2,x 2=﹣1;(2)x 4+x 2﹣12=0,设x 2=y ,则原方程化为y 2+y ﹣12=0,因式分解,得(y ﹣3)(y +4)=0,解得:y 1=3,y 2=﹣4,当y =3时,x 2=3,解得:x =当y =﹣4时,x 2=﹣4,无实数根,所以原方程的解是1x 2x =【点睛】本题考查了用换元法解一元二次方程和用因式分解法解一元二次方程,能正确换元是解此题的关键.。

北师大版九年级数学上册2.4 用因式分解法求解一元二次方程 同步练习(含参考答案)

北师大版九年级数学上册2.4 用因式分解法求解一元二次方程 同步练习(含参考答案)

2.4 用因式分解法求解一元二次方程一、选择题1.方程(x-2)(x+3)=0的解是( )A.x=2 B.x=-3C.x1=-2,x2=3 D.x1=2,x2=-32.方程x2-5x=0的解是( )A.x1=0,x2=-5 B.x=5C.x1=0,x2=5 D.x=03.方程(x+1)(x-2)=x+1的解是( )A.x=2 B.x=3C.x1=-1,x2=2 D.x1=-1,x2=34.在解方程(x+2)(x-2)=5时,甲同学说:由于5=1×5,可令x+2=1,x-2=5,解得x1=-1,x2=7;乙同学说:应把方程右边化为0,得x2-9=0,再分解因式,得(x+3)(x-3)=0,解得x1=-3,x2=3.对于甲、乙两名同学的做法,下列判断正确的是( )A.甲的错误,乙的正确B.甲的正确,乙的错误C.两人的都正确D.两人的都错误二、填空题5.一元二次方程7x2=2x的解为____________.6.一元二次方程x(x-1)=x的解是__________.7.若关于x的一元二次方程x2+bx+c=0的两根分别为-2和6,则x2+bx+c分解因式的结果是______________.8.已知一等腰三角形的底边长和腰长分别是方程x2-3x=4(x-3)的两个实数根,则该等腰三角形的周长是__________.9.已知(x2+4x-5)0=x2-4x+5,则x=________.三、解答题10.解下列方程:(1)4x2-225=0;(2)5x2+20x+20=0;(3)(2x-1)2=3x(2x-1);(4)4(x-3)2-25(x-2)2=0;(5)2(t-1)2+t=1;(6)2(x-3)2=x2-9;(7)(2x+1)2+4(2x+1)=-4.11.请选择适当的方法解下列方程:(1)(2x+3)2-25=0;(2)x2+2x-224=0;(3)2x(x-3)=x-3;(4)2x2+4x=-1.12.已知一个等腰三角形的三边长都满足方程(x-3)(x+3)=10(x-3),求这个等腰三角形的周长.13.阅读下列材料:(1)将x2+2x-35分解因式,我们可以按下面的方法解答:解:步骤:①竖分二次项与常数项:x2=x·x,-35=(-5)×(+7).②交叉相乘,验中项:7x-5x=2x.③横向写出两因式:x2+2x-35=(x+7)(x-5).我们将这种用十字交叉相乘分解因式的方法叫做十字相乘法.(2)根据乘法原理:若ab=0,则a=0或b=0.试用上述方法和原理解下列方程:①x2-10x+21=0;②x2+2x=8;③x2-5x-6=0.14 阅读例题,解答问题.例:解方程x2-|x|-2=0.解:当x≥0时,原方程变形得x2-x-2=0,解得x=-1(不合题意,舍去)或x=2;当x<0时,原方程变形得x2+x-2=0,解得x=1(不合题意,舍去)或x=-2. 综上所述,原方程的解是x1=2,x2=-2.依照上述解法解方程:x2-|x-1|-1=0.1.[答案] D 2.[答案] C3.[解析] D 由原方程移项,得 (x +1)(x -2)-(x +1)=0, ∴(x +1)(x -2-1)=0, ∴x +1=0或x -3=0, 解得x 1=-1,x 2=3. 故选D .4.[解析] A (x +2)(x -2)=5.整理,得x 2-9=0.分解因式,得(x +3)(x -3)=0,则x +3=0或x -3=0,解得x 1=-3,x 2=3.所以甲的错误,乙的正确.故选A .5.[答案] x 1=0,x 2=27[解析] 移项,得7x 2-2x =0, 左边分解因式,得x(7x -2)=0, ∴x =0或7x -2=0, ∴x 1=0,x 2=27.故答案为:x 1=0,x 2=27.6.[答案] x 1=0,x 2=2[解析] 原方程变形,得x(x -1)-x =0,x(x -2)=0,∴x 1=0,x 2=2. 7.[答案] (x -6)(x +2) 8.[答案] 10或11 9.[答案] 2[解析] 依题意知x 2-4x +5=1,x 2-4x +4=0,(x -2)2=0,解得x 1=x 2=2.当x =2时,x 2+4x -5≠0,所以x =2符合题意.10.解:(1)利用平方差公式分解因式,得(2x +15)(2x -15)=0, ∴2x +15=0或2x -15=0, ∴x 1=-7.5,x 2=7.5.(2)方程两边同除以5,得x 2+4x +4=0,写成平方形式,得(x +2)2=0,∴x +2=0, ∴x 1=x 2=-2.(3)(2x -1)(-x -1)=0, ∴x 1=12,x 2=-1.(4)[2(x -3)+5(x -2)][2(x -3)-5(x -2)]=0, (7x -16)(4-3x)=0,∴x 1=167,x 2=43.(5)2(t -1)2+(t -1)=0, (t -1)(2t -1)=0, ∴t -1=0或2t -1=0, ∴t 1=1,t 2=12.(6)右边分解因式,得2(x -3)2=(x +3)(x -3).移项,得2(x -3)2-(x +3)(x -3)=0.提公因式,得(x -3)[2(x -3)-(x +3)]=0.∴x -3=0或2(x -3)-(x +3)=0. 解得x 1=3,x 2=9.(7)(2x +1)2+4(2x +1)+4=0, (2x +1+2)2=0,∴x 1=x 2=-32.11.解:(1)(2x +3)2-25=0, 2x +3=±5, 解得x 1=1,x 2=-4. (2)x 2+2x -224=0, x +1=±15,解得x 1=14,x 2=-16. (3)2x(x -3)=x -3, 2x(x -3)-(x -3)=0, (x -3)(2x -1)=0, 解得x 1=3,x 2=12.(4)2x 2+4x =-1,即2x 2+4x +1=0, a =2,b =4,c =1,b 2-4ac =42-4×2×1=8>0,则x =-4±82×2,∴x 1=-1+22,x 2=-1-22.12.解:由(x -3)(x +3)=10(x -3), 得(x -3)(x -7)=0,∴x 1=3,x 2=7.(1)当腰长为3,底边长为7时,3+3<7,不能构成三角形; (2)当腰长为7,底边长为3时,周长l =7+7+3=17; (3)当三角形为边长为3的等边三角形时,周长l =3×3=9; (4)当三角形为边长为7的等边三角形时,周长l =7×3=21. 所以这个等腰三角形的周长为9,17或21. 13.解:①分解因式,得(x -3)(x -7)=0, ∴x -3=0或x -7=0,∴x 1=3,x 2=7. ②整理,得x 2+2x -8=0, 分解因式,得(x -2)(x +4)=0, ∴x -2=0或x +4=0, ∴x 1=2,x 2=-4.③分解因式,得(x -6)(x +1)=0, ∴x -6=0或x +1=0,∴x 1=6,x 2=-1.14 解:当x -1≥0,即x ≥1时,原方程变形得x 2-x =0,即x(x -1)=0, 解得x =0(不合题意,舍去)或x =1;当x -1<0,即x <1时,原方程变形得x 2+x -2=0,即(x -1)(x +2)=0, 解得x =1(不合题意,舍去)或x =-2. 综上所述,原方程的解是x 1=1,x 2=-2.。

专题复习】九年级数学上册 一元二次方程解法练习100题(含答案)

专题复习】九年级数学上册 一元二次方程解法练习100题(含答案)

专题复习】九年级数学上册一元二次方程解法练习100题(含答案)1.解方程:$2x^2-8x+3=0$,使用公式法。

2.解方程:$(2x-1)(x+3)=43$。

3.解方程:$4y^2+4y-1=-10-8y$。

4.解方程:$(x-1)(x-3)=8$。

5.解方程:$5x^2-8x+2=0$。

6.解方程:$x(x-3)=10$。

7.解方程:$x^2-2=-2x$。

8.解方程:$3x(7-x)=18-x(3x-15)$。

9.解方程:$4x(3x-2)=6x-4$。

10.解方程:$x^2+12x+27=0$。

11.解方程:$2x^2-4x+1=0$,使用配方法。

12.解方程:$4(x-1)^2=9(x-5)$。

13.解方程:$x^2-6=-2(x+1)$。

14.解方程:$x^2+4x-5=0$。

15.解方程:$2x^2+5x-1=0$。

16.解方程:$3(x-2)^2=x(x-2)$。

17.解方程:$2x^2-3x-2=0$。

18.解方程:$2x^2-7x+1=0$。

19.解方程:$x^2-6x-4=0$,使用配方法。

20.解方程:$x^2-4x-3=0$。

21.解方程:$x^2-5x+2=0$。

22.解方程:$x^2-4x+8=0$。

23.解方程:$3x^2-6x+4=0$。

24.解方程:$(x-2)(x-3)=12$。

25.解方程:$(x-3)(x+7)=-9$。

26.解方程:$3x^2+5(2x+1)=0$,使用公式法。

27.解方程:$x^2-12x-4=0$。

28.解方程:$(x-5)(x-6)=x-5$。

29.解方程:$x^2-8x-10=0$。

30.解方程:$x(x-3)=15-5x$。

31.解方程:$5x(x-3)=(x+1)(x-3)$。

32.解方程:$x^2+8x+15=0$。

33.解方程:$25x^2+10x+1=0$。

34.解方程:$x^2+6x-7=0$,使用配方法。

35.解方程:$x^2+4x-5=0$,使用配方法。

九年级数学: 因式分解法解一元二次方程典型例题

九年级数学: 因式分解法解一元二次方程典型例题

例 用因式分解法解下列方程: (1)y 2+7y +6=0; (2)t (2t -1)=3(2t -1); (3)(2x -1)(x -1)=1. 解:(1)方程可变形为(y +1)(y +6)=0 y +1=0或y +6=0 ∴y 1=-1,y 2=-6(2)方程可变形为t (2t -1)-3(2t -1)=0 (2t -1)(t -3)=0,2t -1=0或t -3=0 ∴t 1=21,t 2=3.(3)方程可变形为2x 2-3x =0 x (2x -3)=0,x =0或2x -3=0 ∴x 1=0,x 2=23说明:(1)在用因式分解法解一元二次方程时,一般地要把方程整理为一般式,如果左边的代数式能够分解为两个一次因式的乘积,而右边为零时,则可令每一个一次因式为零,得到两个一元一次方程,解出这两个一元一次方程的解就是原方程的两个解了.(2)应用因式分解法解形如(x -a )(x -b )=c 的方程,其左边是两个一次因式之积,但右边不是零,所以应转化为形如(x -e )(x -f )=0的形式,这时才有x 1=e ,x 2=f ,否则会产生错误,如(3)可能产生如下的错解:原方程变形为:2x -1=1或x -1=1.∴x 1=1,x 2=2.(3)在方程(2)中,为什么方程两边不能同除以(2t -1),请同学们思考典型例题二例 用因式分解法解下列方程6223362+=+x x x解:把方程左边因式分解为:0)23)(32(=-+x x∴032=+x 或023=-x ∴ 32,2321=-=x x 说明: 对于无理数系数的一元二次方程,若左边可分解为一次因式积的形式,均可用因式分解法求出方程的解。

例 用因式分解法解下列方程。

1522+=y y解: 移项得:01522=--y y 把方程左边因式分解 得:0)3)(52(=-+y y ∴052=+y 或03=-y∴.3,2521=-=y y说明: 在用因式分解法解一元二次方程时,一定要注意,把方程整理为一般式,如果左边的代数式能够分解为两个一次因式的乘积,而右边为零时,则可令每一个一次因式都为零,得到两个一元一次方程,解出这两个一元一次方程的解就是原方程的两个解了。

初中数学:《因式分解法解一元二次方程》练习(含答案)

初中数学:《因式分解法解一元二次方程》练习(含答案)

初中数学:《因式分解法解一元二次方程》练习(含答案)一、选择题1.方程x2﹣2x=0的解为()A.x1=1,x2=2 B.x1=0,x2=1 C.x1=0,x2=2 D.x1=,x2=22.一元二次方程x(x﹣2)=2﹣x的根是()A.﹣1 B.2 C.1和2 D.﹣1和23.若实数x,y满足(x2+y2+2)(x2+y2﹣2)=0.则x2+y2的值为()A.1 B.2 C.2 或﹣1 D.﹣2或﹣14.已知x2﹣5xy﹣6y2=0(y≠0且x≠0),则的值为()A.6 B.﹣1 C.1或﹣6 D.﹣1或65.已知实数(x2﹣x)2﹣4(x2﹣x)﹣12=0,则代数式x2﹣x+1的值为()A.﹣1 B.7 C.﹣1或7 D.以上全不正确6.已知关于x的方程x2+px+q=0的两个根为x1=3,x2=﹣4,则二次三项式x2﹣px+q可分解为()A.(x+3)(x﹣4)B.(x﹣3)(x+4)C.(x+3)(x+4)D.(x﹣3)(x﹣4)二、填空题7.方程x(x﹣2)=0的解为______.8.方程(x﹣2)2=3(x﹣2)的解是______.9.一元二次方程x(x﹣6)=0的两个实数根中较大的根是______.10.若方程x2﹣x=0的两根为x1,x2(x1<x2),则x2﹣x1=______.11.若x2﹣mx﹣15=(x+3)(x+n),则n m的值为______.12.方程(x﹣2)2﹣25x2=0用______法较简便,方程的根为x1=______,x2=______.13.用因式分解法解方程x2﹣kx﹣16=0时,得到的两根均整数,则k的值可以是______ (只写出一个即可)14.a※b是新规定的一种运算法则:a※b=a2﹣b2,则方程(x+2)※5=0的解为______.15.三角形的每条边的长都是方程x2﹣6x+8=0的根,则三角形的周长是______.三、解答题:16.用因式分解法解下列方程;①(x+2)2﹣9=0②(2x﹣3)2=3(2x﹣3)③x2﹣6x+9=0④(x+5)(x﹣1)=7.17.用适当方法解下列方程:①x2﹣2x=99②x2+8x=﹣16③x2+3x+1=0④5x(x+2)=4x+8.18.已知下列n(n为正整数)个关于x的一元二次方程:①x2﹣1=0,②x2+x﹣2=0,③x2+2x﹣3=0,…(n)x2+(n﹣1)x﹣n=0.(1)请解上述一元二次方程①、②、③、(n);(2)请你指出这n个方程的根具有什么共同特点,写出一条即可.《因式分解法解一元二次方程》参考答案与试题解析一、选择题1.方程x2﹣2x=0的解为()A.x1=1,x2=2 B.x1=0,x2=1 C.x1=0,x2=2 D.x1=,x2=2【解答】解:x2﹣2x=0, x(x﹣2)=0,x=0,x﹣2=0,x 1=0,x2=2,故选C.2.一元二次方程x(x﹣2)=2﹣x的根是()A.﹣1 B.2 C.1和2 D.﹣1和2【解答】解:x(x﹣2)+(x﹣2)=0,∴(x﹣2)(x+1)=0,∴x﹣2=0或x+1=0,∴x1=2,x2=﹣1.故选D.3.若实数x,y满足(x2+y2+2)(x2+y2﹣2)=0.则x2+y2的值为()A.1 B.2 C.2 或﹣1 D.﹣2或﹣1【解答】解:∵(x2+y2+2)(x2+y2﹣2)=0,∴x2+y2+2=0或x2+y2﹣2=0,∴x2+y2=﹣2(舍去)或x2+y2=2,∴x2+y2的值为2.故选B.4.已知x2﹣5xy﹣6y2=0(y≠0且x≠0),则的值为()A.6 B.﹣1 C.1或﹣6 D.﹣1或6【解答】解:x2﹣5xy﹣6y2=0(x﹣6y)(x+y)=0x﹣6y=0,x+y=0x=6y,x=﹣y所以的值为6或﹣1.故选:D.5.已知实数(x2﹣x)2﹣4(x2﹣x)﹣12=0,则代数式x2﹣x+1的值为()A.﹣1 B.7 C.﹣1或7 D.以上全不正确【解答】解:∵(x2﹣x)2﹣4(x2﹣x)﹣12=0,∴(x2﹣x+2)(x2﹣x﹣6)=0,∴x2﹣x+2=0或x2﹣x﹣6=0,∴x2﹣x=﹣2或x2﹣x=6.当x2﹣x=﹣2时,x2﹣x+2=0,b2﹣4ac=1﹣4×1×2=﹣7<0,∴此方程无实数解.当x2﹣x=6时,x2﹣x+1=7故选B.6.已知关于x的方程x2+px+q=0的两个根为x1=3,x2=﹣4,则二次三项式x2﹣px+q可分解为()A.(x+3)(x﹣4)B.(x﹣3)(x+4)C.(x+3)(x+4)D.(x﹣3)(x﹣4)【解答】解:∵方程x2+px+q=0的两个根为x1=3,x2=﹣4,∴二次三项式x2+px+q=(x﹣3)(x+4)=x2+x﹣12, ∴p=1,q=﹣12,则x2﹣x﹣12=(x+3)(x﹣4).故选A二、填空题7.方程x(x﹣2)=0的解为0或2 .【解答】解:由x(x﹣2)=0,得x=0,x﹣2=0解得x1=0,x2=2.8.方程(x﹣2)2=3(x﹣2)的解是x1=2,x2=5 .【解答】解:据题移项得, (x﹣2)2﹣3(x﹣2)=0, ∴(x﹣2)(x﹣2﹣3)=0,解得x1=2,x2=5.9.一元二次方程x(x﹣6)=0的两个实数根中较大的根是 6 .【解答】解:∵x=0或x﹣6=0,∴x1=0,x2=6,∴原方程较大的根为6.故答案为6.10.若方程x2﹣x=0的两根为x1,x2(x1<x2),则x2﹣x1= 1 .【解答】解:∵x2﹣x=0, ∴x(x﹣1)=0,∵x1<x2,∴解得:x1=0,x2=1,则x2﹣x1=1﹣0=1.故答案为:1.11.若x2﹣mx﹣15=(x+3)(x+n),则n m的值为25 .【解答】解:原式可化为x2﹣mx﹣15=x2+(3+n)x+3n,∴,解得,∴n m=(﹣5)2=25.故填25.12.方程(x﹣2)2﹣25x2=0用因式分解法较简便,方程的根为x1= ,x2= ﹣.【解答】解:分解因式得:(x﹣2+5x)(x﹣2﹣5x)=0, x﹣2+5x=0,x﹣2﹣5x=0,x 1=,x2=﹣,即解此方程用因式分解法比较简便,故答案为:因式分解,;﹣.13.用因式分解法解方程x2﹣kx﹣16=0时,得到的两根均整数,则k的值可以是6(答案不唯一)(只写出一个即可)【解答】解:由题意,得∵x2﹣kx﹣16=0,∴(x﹣2)(x+8)=0时,x2﹣kx﹣16=(x﹣2)(x+8),x2﹣kx﹣16=x2+6x﹣16,∴k=6.故答案为:6.14.a※b是新规定的一种运算法则:a※b=a2﹣b2,则方程(x+2)※5=0的解为x1=﹣7,x2=3 .【解答】解:由题中的新定义得:(x+2)※5=(x+2)2﹣52=0, 可得(x+7)(x﹣3)=0,即x+7=0或x﹣3=0,解得:x1=﹣7,x2=3.故答案为:x1=﹣7,x2=315.三角形的每条边的长都是方程x2﹣6x+8=0的根,则三角形的周长是6或12或10 .【解答】解:由方程x2﹣6x+8=0,得x=2或4.当三角形的三边是2,2,2时,则周长是6;当三角形的三边是4,4,4时,则周长是12;当三角形的三边长是2,2,4时,2+2=4,不符合三角形的三边关系,应舍去;当三角形的三边是4,4,2时,则三角形的周长是4+4+2=10.综上所述此三角形的周长是6或12或10.三、解答题:16.用因式分解法解下列方程;①(x+2)2﹣9=0②(2x﹣3)2=3(2x﹣3)③x2﹣6x+9=0④(x+5)(x﹣1)=7.【解答】解:①分解因式,得(x+2+3)(x+2﹣3)=0,∴x+5=0或x﹣1=0∴x1=﹣5,x2=1;②移项,得(2x﹣3)2﹣3(2x﹣3)=0 提公因式,得(2x﹣3)(2x﹣3﹣3)=0, ∴2x﹣3=0或2x﹣6=0∴x1=,x2=3;③由公式法,得(x﹣3)2=0, ∴x﹣3=0∴x1=x2=3(4)变形为:x2+4x﹣5=7,移项,得x2+4x﹣5﹣7=0,x2+4x﹣12=0∴(x+6)(x﹣2)=0, ∴x+6=0或x﹣2=0∴x1=﹣6,x2=2.17.用适当方法解下列方程:①x2﹣2x=99②x2+8x=﹣16③x2+3x+1=0④5x(x+2)=4x+8.【解答】解:①x2﹣2x=99,x2﹣2x﹣99=0,(x﹣11)(x+9)=0,x﹣11=0,x+9=0,x 1=11,x2=﹣9;②x2+8x=﹣16, x2+8x+16=0, (x+4)2=0, x+4=0,x=﹣4,即x1=x2=﹣4;③x2+3x+1=0,b2﹣4ac=32﹣4×1×1=5, x=,x 1=,x2=;④5x(x+2)=4x+85x(x+2)﹣4(x+2)=0, (x+2)(5x﹣4)=0,x+2=0,5x﹣4=0,x 1=﹣2,x2=.18.已知下列n(n为正整数)个关于x的一元二次方程:①x2﹣1=0,②x2+x﹣2=0,③x2+2x﹣3=0,…(n)x2+(n﹣1)x﹣n=0.(1)请解上述一元二次方程①、②、③、(n);(2)请你指出这n个方程的根具有什么共同特点,写出一条即可.【解答】解:(1)①(x+1)(x﹣1)=0,所以x1=﹣1,x2=1②(x+2)(x﹣1)=0,所以x1=﹣2,x2=1;③(x+3)(x﹣1)=0,所以x1=﹣3,x2=1;(n)(x+n)(x﹣1)=0,所以x1=﹣n,x2=1(2)共同特点是:都有一个根为1;都有一个根为负整数;两个根都是整数根等等.。

(完整版)初中数学用因式分解法解一元二次方程及答案

(完整版)初中数学用因式分解法解一元二次方程及答案

初中数学用因式分解法解一元二次方程一.选择题(共7小题)1.(2013秋?广州校级期中)用因式分解法解一元二次方程x (x- 1) -2 (1-x) =0,正确的步骤是()A .(x+1 )(x+2) =0 B. (x+1 )(x-2) =0C. (x-1)(x- 2)=0D. (x-1)(x+2)=02.(2012春?萧山区校级期中)解一元二次方程2x2+5x=0的最佳解法是()A.因式分解法B.开平方法C.配方法D.公式法3,解一元二次方程(y+2) 2-2 (y+2) - 3=0时,最简单的方法是()A.直接开平方法B.因式分解法C.配方法D.公式法4.(2015?东西湖区校级模拟)一元二次方A. 0B. 25.(2014?平顶山二模)一元二次方程一A . 3 B. - 36.(2011春?招远市期中)一元二次方程A. c4B. cv0 W x2 - 2x=0 的解是()C. 0, - 2D. 0, 2x2=3x的解是()C. 3, 0 D, - 3, 0x2+c=0实数解的条件是()C. c> 0D. c用7.(2011?北京模^若x= - 1是一元二次方程x2- ax=0的一个解,则a的值()A . - 1 B. 1 C. 0 D. 土二.填空题(共3小题)8.(2012秋?开县校级月考)一元二次方程3x2 -4x-2=0的解是.9.(2012?铜仁地区)一元二次方程x2-2x-3=0的解是.10.(2014秋?禹州市期中)一元二次方程(4-2x) 2—36=0的解是三.解答题(共10小题)11.(2006秋?阜宁县校级月考)用指定的方法解下列一元二次方程:(1)2x2- 4x+1=0 (配方法);(2)3x (x-1) =2-2x (因式分解法);(3)x2-x-3=0 (公式法).12.用因式分解法解下列关于x的一元二次方程.11) x2+x - k2x=0(2) x2-2mx+m 2-n2=0 .13. (2008?温州)(1)计算:曲-(b-1)(2)我们已经学习了一元二次方程的四种解法:因式分解法,开平方法,配方法和公式法.请从以下一元二次方程中任选一个,并选择你认为适当的方法解这个方程.① x2—3x+1=0;②(x-1) 2=3;③ x2— 3x=0;④ x2-2x=4.14.用因式分解法解下列一元二次方程:(1)5x2=\/2x(2) 4 (2x+3) - ( 2x+3) 2=0(3)(x-2) 2= (2x+3) 2(4)一(x+1 ) 2=A (x- 1) 2.4 g15.因式分解法解方程:3x2-12x=-12.16.用因式分解法解方程:x2-9x+18=0 .17.用因式分解法解方程:12x2+x-6=0.18. (2013秋?黄陂区校级月考)用因式分解法解方程: 3 (x-5)2=2 (5-x)19. (2013秋?富顺县校级期中)用因式分解法解方程(x+3)2=5 (x+3)(3t-1 ) 2t C21-3) 20.因式分解法解一元二次方程. +1 —初中数学用因式分解法解一元二次方程参考答案与试题解析一.选择题(共7 小题)1.(2013秋?广州校级期中)用因式分解法解一元二次方程x (x- 1) -2 (1-x) =0,正确的步骤是( )A. (x+1 ) (x+2) =0B. (x+1 ) (x-2) =0C. (x-1)(x- 2)=0D. (x-1)(x+2)=0考点:解一元二次方程-因式分解法.专题:计算题.分析:将方程左边第二项提取-1变形后,提取公因式化为积的形式,即可得到结果.解答:解:方程x (x — 1) — 2 (1 — x) =0,变形得:x (x-1) +2 (x- 1) =0,分解因式得:(x- 1) (x+2) =0, 故选D点评:此题考查了解一元二次方程-因式分解法,熟练掌握此解法是解本题的关键.2.( 2012 春?萧山区校级期中)解一元二次方程2x2+5x=0 的最佳解法是( )A.因式分解法B.开平方法C.配方法D.公式法考点:解一元二次方程-因式分解法.专题:计算题.分析:方程左边缺少常数项,右边为0,左边可以提公因式x,运用因式分解法解方程.解答:解:方程2x2+5x=0左边可提公因式x,分解为两个一次因式的积,而右边为0,运用因式分解法.故选A.点评:本题考查了解一元二次方程的解法的运用.解方程时,要根据方程左右两边的特点,合理地选择解法,可使运算简便.3,解一元二次方程(y+2) 2-2 (y+2) - 3=0时,最简单的方法是( )A.直接开平方法B.因式分解法C.配方法D.公式法考点:解一元二次方程-因式分解法.分析:此题考查了数学思想中白^整体思想,把( y+2)看做一个整体,设(y+2)为x,则原方程可变为x2-2x-3=0 ,可以发现采用因式分解法最简单.解答:解:设( y+2) =x原方程可变为x2 - 2x - 3=0,(x - 3) (x+1 ) =0 采用因式分解法最简单.故选B点评:此题考查了数学思想中的整体思想,也就是换元思想,解题的关键是要充分理解一元二次方程各种解法的应用条件.4.(2015?东西湖区校级模拟)一元二次方程x2-2x=0的解是()A . 0 B. 2 C. 0, - 2 D. 0, 2考点:解一元二次方程-因式分解法.分析:先提公因式x,然后根据两式相乘值为0,这两式中至少有一式值为0 .”进行求解. 解答:解:原方程化为:x(X-2) =0,解得x i=0, x2=2.故选D.点评:本题考查了解一元二次方程的方法,当把方程通过移项把等式的右边化为0 后方程的左边能因式分解时,一般情况下是把左边的式子因式分解,再利用积为0 的特点解出方程的根.因式分解法是解一元二次方程的一种简便方法,要会灵活运用.5.(2014?平顶山二模)一元二次方程- x2=3x的解是()A. 3B. -3C. 3, 0 D, - 3, 0考点:解一元二次方程-因式分解法.专题:计算题.分析:方程移项后,右边化为0,左边化为积的形式,然后利用两数相乘积为0,两因式中至少有一个为0 转化为两个一元一次方程来求解.解答:解:方程变形得:x2+3x=0,即x (x+3) =0,解得:x=0或x= - 3,故选D点评:此题考查了解一元二次方程-因式分解法,熟练掌握因式分解的方法是解本题的关键.6.(2011 春?招远市期中)一元二次方程x2+c=0 实数解的条件是()A. c 码B. cv 0C. c> 0D. c 不考点:根的判别式.专题:计算题.分析:由一元二次方程有实数根,得到根的判别式大于等于0,列出关于c的不等式,求出不等式的解集即可得到 c 的范围.解答:解:: 一元二次方程x2+c=0有实数解,2△ =b - 4ac= - 4c刃,解得:c旬.故选A点评:此题考查了一元二次方程根的判别式,根的判别式的值大于0,方程有两个不相等的实数根;根的判别式等于0,方程有两个相等的实数根;根的判别式小于0,方程没有实数根.7.(2011?北京模^若x= - 1是一元二次方程x2- ax=0的一个解,则a的值()A.TB. 1C. 0D. 土考点:一元二次方程的解.分析:由方程的解的定义,将 x=- 1代入方程,即可求得 a 的值解答:解:- 1是关于x 的方程:x 2-ax=0的一个解,,1+a=0,解得a= - 1,故选A.点评:本题主要考查了方程的解的定义,把求未知系数的问题转化为方程求解的问题. 二.填空题(共3小题)8. (2012秋?开县校级月考)一元二次方程考点:解一元二次方程-公式法.分析:利用公式法解此一元二次方程的知识,即可求得答案. 解答:解:--- a=3, b=—4, c= - 2,△ =b 2-4ac=(- 4) 2-4X3X ( -2) =40,.|4±y40j2±Vi0x=2a2X3 3故答案为:士屈. 3点评:此题考查了公式法解一元二次方程的知识.此题难度不大,注意熟记公式是关键.9. ( 2012?铜仁地区)一元二次方程 x2-2x - 3=0的解是 x 』=3. xg= - 1考点:解一元二次方程-因式分解法. 专题:计算题;压轴题.分析:根据方程的解x 1x 2=-3,x 1+x 2=2可将方程进行分解,得出两式相乘的形式,再根据 两 式相乘值为0,这两式中至少有一式值为 0”来解题.解答:解:原方程可化为:(x-3) (x+1) =0,x — 3=0 或 x+1=0 , x 1=3, x 2= — 1 .点评:本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方 法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.本题运用的是因 式分解法.10. (2014秋?禹州市期中)一元二次方程( 4-2x ) 2 — 36=0的解是 x j = — 1 : x 2=5 .考点:解一元二次方程-直接开平方法.分析:先移项,写成(x+a ) 2=b 的形式,然后利用数的开方解答. 解答:解:移项得,(4- 2x ) 2=36,开方得,4 - 2x= =6, 解得 x 1= - 1, x 2=5. 故答案为x 1= - 1, x 2=5.点评:本题考查了解一元二次方程-直接开平方法,注意:(1)用直接开方法求一元二次方程的解的类型有: x 2=a (a 涮);ax 2=b (a, b 同号且a^0); (x+a ) 2=b (b 用);a (x+b ) 2=c (a, c 同号且a 加).法则:要把方程化为 左3x2 - 4x- 2=0 的解是 2 土 力°一3平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解(2)运用整体思想,会把被开方数看成整体.(3)用直接开方法求一元二次方程的解,要仔细观察方程的特点.三.解答题(共10小题)11. (2006秋?阜宁县校级月考)用指定的方法解下列一元二次方程:(1) 2x 2-4x+1=0 (配方法);(2) 3x (x-1) =2-2x (因式分解法);(3) x 2-x-3=0 (公式法).考点:解一元二次方程-配方法;解一元二次方程-公式法;解一元二次方程 -因式分解法. 专题:计算题.分析:(1)用配方法,用配方法解方程,首先二次项系数化为1,移项,把常数项移到等号的右边,然后在方程的左右两边同时加上一次项系数的一半,即可使左边是完全平方 式,右边是常数,直接开方即可求解;(2)用因式分解法,用提公因式法解方程,方程左边可以提取公因式x-1,即可分解,转化为两个式子的积是0的形式,从而转化为两个一元一次方程求解;(3)利用公式法即可求解.解答:解:(1) 2x2 - 4x+1=0x2- 2x+—=0 2 (x T) 2=_!.…也■ - x1=1+——, x2=1 ---;2 2(2) 3x ( x T ) =2 - 2x 3x (x - 1) +2 (x- 1) =0 (x- 1) (3x+2) =0-2• - x 1=1 , x 2=—;J 本题考查了解一元二次方程的方法,因式分解法是解一元二次方程的一种简便方法, 要会灵活运用.当化简后不能用分解因式的方法即可考虑求根公式法,此法适用于任 何一元二次方程.12.用因式分解法解下列关于 x 的一元二次方程.(1) x 2+x - k 2x=0(2) x 2-2mx+m 2-n 2=0 .考点:解一元二次方程-因式分解法.专题:计算题.x=(3) x 2-x- 3=01 ±、氐 x 1 = 2----- ,x2= --- --2 2 点评:分析:两方程左边分解因式后,利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.解答:解:(1)分解因式得:x (x+1 - k2) =0,解得:X1=0, x2=k2_ 1;(2)分解因式得:(x-m+n)(x-m-n) =0,解得:x i=m-n, x2=m+n .点评:此题考查了解一元二次方程-因式分解法,熟练掌握因式分解的方法是解本题的关键.13. (2008?温州)(1)计算:展-(例-1)口+|-1|;(2)我们已经学习了一元二次方程的四种解法:因式分解法,开平方法,配方法和公式法.请从以下一元二次方程中任选一个,并选择你认为适当的方法解这个方程.① x2—3x+1=0;②(x-1)2=3;③ x2— 3x=0 ;④ x2-2x=4.考点:实数的运算;解一元二次方程 -直接开平方法;解一元二次方程 -配方法;解一元二次方程-公式法;解一元二次方程-因式分解法.专题:计算题.分析:(1)本题涉及零指数哥还有绝对值,解答时要注意它们的性质.(2)①x2- 3x+1=0采用公式法;②(x-1) 2=3采用直接开平方法;③x2- 3x=0采用因式分解法;④x2- 2x=4采用配方法.解答:解:(1)场-[炳-1)(2)① x2- 3x+1=0 ,刎/日抖而Vs解得町二丁厂,¥.2二一^;②(xT) 2=3,x - 1=V^或x -1= - Vs解得x1 = 1 + \!, 3,x2=1 h/s③ x2-3x=0,x (x - 3) =0解得x1=0, x2=3;④ x2-2x=4,即x2 - 2x - 4=02- 2x=4x即x2- 2x+1=5(x T) 2=5解得x1=l-V^0二计听.点评:本题考查实数的综合运算能力,解决此类题目的关键熟记零指数哥和绝对值的运 算.解一元二次方程时要注意选择适宜的解题方法.14.用因式分解法解下列一元二次方程: (1) 5x 2=V2x(2) 4 (2x+3) - ( 2x+3) 2=0 (3) (x- 2) 2= (2x+3) 2(4)一(x+1 ) 2=1 (x- 1) 2.4 9考点:解一元二次方程-因式分解法. 分析:(1)移项后提公因式即可;(1) 移项后因式分解即可; (2) 移项后因式分解即可; (3) 直接开平方即可解答.解答:解:(1) 5x 2=/2x ,移项得 5x 2 - J^x=0 ,提公因式得x (5x-=0, 解得 x 1=0 x 2=Y2.5(4) 4 (2x+3) - ( 2x+3) 2=0,提公因式得,(2x+3) [4- (2x+3) ]=0, 解得,2x+3=0 , 1 - 2x=0 ,(5) (x — 2) 2= (2x+3) 2,移项得,(x-2) 2- ( 2x+3) 2=0,因式分解得,(x- 2 - 2x - 3) (x-2+2x+3) =0 , 则—x — 5=0, 3x+1=0 , 解得,x 1= - 5, x 2=- ';(6) — (x+1) 2」(x- 1) 2,4 9直接开平方得 J (x+1) =W(x-1), £ J解得x 1= - 5,点评:本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方 法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.15.因式分解法解方程: 3x 2-12x=-12.则[(x+1) 2=4 (xT),(x+1)考点:解一元二次方程-因式分解法.分析:先移项,再两边都除以3,分解因式,即可得出两个一元一次方程,求出方程的解即可. 解答:解:3x2- 12x= -12,移项得:3x2- 12x+12=0 ,2- 4x+4=0 ,x(x-2) (x-2) =0,x-2=0, x-2=0, x i=x2=2.点评:本题考查了解一元二次方程的应用,解此题的关键是能把一元二次方程转化成一元- 次方程,题目比较好,难度适中.16.用因式分解法解方程:x2-9x+18=0 .考点:解一元二次方程-因式分解法.分析:分解因式,即可得出两个一元一次方程,求出方程的解即可.解答:解:x2 - 9x+18=0 ,(x - 3) (x - 6) =0,x — 3=0 , x — 6=0, x1=3, x2=6.点评:本题考查了解一元二次方程的应用,解此题的关键是能把一元二次方程转化成一元- 次方程.17.用因式分解法解方程:12x2+x-6=0.考点:解一元二次方程-因式分解法.分析:分解因式,即得出两个一元一次方程,求出方程的解即可.解答:解:分解因式得:(3x-2) (4x+3) =0,3x - 2=0, 4x+3=0 ,点评:本题考查了解一元二次方程的应用, 解此题的关键是能把一元二次方程转化成一元次方程.18.(2013秋?黄陂区校级月考)用因式分解法解方程: 3 (x-5) 2=2 (5-x)考点:解一元二次方程-因式分解法.专题:因式分解.分析:先移项,然后提公因式,这样转化为两个一元一次方程,解一元一次方程即可.解答:解:移项,得3 (x-5) 2+2 (x-5) =0,(x-5) (3x-13) =0,•• x - 5=0 或3x - 13=0 ,所以x1=5, x2=-^y.第11页(共11页)点评:本题考查了利用因式分解法把一元二次方程转化为两个一元一次方程求解的能力.要熟练掌握因式分解的方法. 19. (2013秋?富顺县校级期中)用因式分解法解方程(x+3) 2=5 (x+3)考点:实数范围内分解因式.分析:利用因式分解法进行解方程得出即可.解答:解:(x+3) 2-5 (x+3) =0, (x+3) [ (x+3) — 5]=0,(x+3) =0 或(x+3) - 5=0,解得:x i = - 3, x 2=2.点评:此题主要考查了因式分解法解一元二次方程,正确分解因式是解题关键.考点:解一元二次方程-因式分解法.分析:首先移项,然后利用平方差公式使方程的左边进行因式分解,再进行去分母,最后解 两个一元一次方程即可."解:「『—况”、t (2L3) 5 52 .(t+3)2 (3fl ) 2 2?-3t-2 .. ------- = , 5 5 2(t+3- (t+3+3t-l) (2t+lJ (t-2)-4 (t-2) C2t11)(2t+D (t-2? - 8 (t-2) (2t+1) =5 (t —2) (2t+1), 13 (t —2) (2t+1) =0,. . t — 2=0 或 2t+1=0,t 1=2 , t 2=一点评:本题主要考查了因式分解法解一元二次方程的知识,解答本题的关键是熟练掌握平方差公式的应用,此题难度不大. 20.因式分解法解一元二次方程.32+1—(孕-1)二9” 5 52。

九年级上册数学同步练习:解一元二次方程(简答题:较易)

九年级上册数学同步练习:解一元二次方程(简答题:较易)

解一元二次方程(简答题:较易)1、解方程:(1).x2﹣5=4x(2).2、解方程:.3、计算:(1)求4x2-100=0中x的值(2)() -1 +(-1) 0 +2×(-3)4、(1)解方程:x (x-2)=3;(2)解不等式组5、我们已经学习了一元二次方程的多种解法:如因式分解法,开平方法,配方法和公式法,还可以运用十字相乘法,请从以下一元二次方程中任选一个,并选择你认为适当的方法解这个方程.我选择第______个方程.6、解方程:(1)(x+3)2=2x+6;(2)x2﹣2x=8.7、解方程:x2-5 = 4x.8、解方程:(1)x22x4=0;(2)(3x+1)2=9x+3.9、解方程:(1)x2+4x﹣1=0;(2)3(x-2)2=x(x-2).10、解方程(1)x2+x-12=0(2) 2x2-3x+2=011、解方程:(1).x2-4x+3=0; (2).(3). (4).12、解下列方程(1) (2)13、已知关于x的一元二次方程x2+(2m+1)x+m2-m-1=0有两个实数根.(1)求实数m的取值范围;(2)若该方程的两个实数根为x1和x2,且 x1+x2=x1x2,求实数m的值.14、解下列方程:(1)9(x+1) 2-4=0 ;(2)2y2-6y+1=0(用配方法).15、(1)解方程9x2﹣49=0;(2)计算:.16、解方程:x2-3x-1=0.17、解下列方程:(1)x2+4x-5=0; (2)x(x-4)=8-2x;18、解方程:(1)(2).19、计算:(1)2x2﹣5x+1=0;(2)3x(x﹣2)=2(x﹣2).20、小明在解方程出现了错误,解答过程如下:(第一步)(第二步)(第三步)(第四步)(第五步)(1)小明解答过程从第步开始出错的,其错误原因是;(2)请写出此题正确的解答过程.21、解下列方程:(1)x2﹣9=0 (2)x2﹣3x﹣4=022、已知关于x的一元二次方程的一个根是1,求方程的另一根和k的值。

人教版初中九年级数学上册第二十一章《一元二次方程》经典练习卷(含答案解析)

人教版初中九年级数学上册第二十一章《一元二次方程》经典练习卷(含答案解析)

一、选择题1.欧几里得在《几何原本》中,记载了用图解法解方程22x ax b +=的方法,类似地可以用折纸的方法求方程210x x +-=的一个正根,如图,裁一张边长为1的正方形的纸片ABCD ,先折出BC 的中点E ,再折出线段AE ,然后通过折叠使EB 落在线段EA 上,折出点B 的新位置F ,因而EF EB =,类似地,在AB 上折出点M 使AMAF =,表示方程210x x +-=的一个正根的线段是( )A .线段BMB .线段AMC .线段AED .线段EM B解析:B【分析】 设正方形的边长为1,AF =AM =x ,根据勾股定理即可求出答案.【详解】解:设正方形的边长为1,AF =AM =x ,则BE =EF =12,AE =x+12, 在Rt △ABE 中,∴AE 2=AB 2+BE 2,∴(x +12)2=1+(12)2, ∴x 2+x -1=0,∴AM 的长为x 2+x -1=0的一个正根,故选:B .【点睛】本题考查一元二次方程,解题的关键是根据勾股定理列出方程,本题属于中等题型. 2.用配方法转化方程2210xx +-=时,结果正确的是( ) A .2(1)2x += B .2(1)2x -= C .2(2)3x += D .2(1)3x +=A 解析:A【分析】方程两边都加上一次项系数的一半,利用完全平方公式进行转化,即可得到答案.【详解】解:2210x x +-=2212x x ++=∴2(1)2x +=,故选:A .【点睛】此题考查一元二次方程的配方法,掌握配方法是计算方法是解题的关键.3.已知三角形的两边长分别为4和6,第三边是方程217700x x -+=的根,则此三角形的周长是( )A .10B .17C .20D .17或20B 解析:B【分析】根据第三边是方程x 2﹣17x +70=0的根,首先求出方程的根,再利用三角形三边关系求出即可.【详解】解:∵217700x x -+=,∴(10)(7)0x x --=,∴110x =,27x =,∵4610+=,无法构成三角形,∴此三角形的周长是:46717++=.故选B .【点睛】此题主要考查了因式分解法解一元二次方程以及三角形的三边关系,正确利用因式分解法解一元二次方程可以大大降低计算量.4.一元二次方程2610x x +-=配方后可变形为( )A .()2310x +=B .()238x +=C .()2310x -=D .()238x -=A 解析:A【分析】方程常数项移到右边,两边加上一次项系数一半的平方即可得到结果.【详解】解:∵x 2+6x-1=0,∴x 2+6x=1,∴x 2+6x+9=10,∴(x+3)²=10,故选:A .【点睛】本题考查了解一元二次方程-配方法,熟练掌握完全平方公式是解题的关键.5.关于x 的一元二次方程2210kx x +-=有两个不相等的实数根,则k 的取值范围是( )A .1k >-B .1k ≥-C .0k ≠D .1k >-且0k ≠D【分析】根据一元二次方程根的判别式得到关于k 的不等式,然后求解不等式即可.【详解】是一元二次方程,0k ∴≠.有两个不相等的实数根,则Δ0>,2Δ24(1)0k =-⨯-⨯>,解得1k >-.1k ∴>-且0k ≠.故选D【点睛】本题考查一元二次方程ax 2+bx +c =0(a ≠0)根的判别式:(1)当△=b 2﹣4ac >0时,方程有两个不相等的实数根;(2)当△=b 2﹣4ac =0时,方程有有两个相等的实数根;(3)当△=b 2﹣4ac <0时,方程没有实数根.6.等腰三角形的底边长为6,腰长是方程28150x x -+=的一个根,则该等腰三角形的周长为( )A .12B .16C .l2或16D .15B解析:B【分析】利用因式分解法解方程求出x 的值,再根据等腰三角形的概念和三角形三边关系确定出三角形三边长度,继而得出答案.【详解】解:∵x 2-8x+15=0,∴(x-3)(x-5)=0,则x-3=0或x-5=0,解得x 1=3,x 2=5,①若腰长为3,此时三角形三边长度为3、3、6,显然不能构成三角形,舍去; ②若腰长为5,此时三角形三边长度为5、5、6,可以构成三角形,所以该等腰三角形的周长为5+5+6=16,故选:B .【点睛】本题主要考查等腰三角形的概念、三角形三边的关系、解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.7.方程(2)2x x x -=-的解是( )A .2B .2-,1C .1-D .2,1-D【分析】先移项得到x(2﹣x)+(2﹣x)=0,然后利用因式分解法解方程.【详解】解:x(2﹣x)+(2﹣x)=0,(2﹣x)(x+1)=0,2﹣x=0或x+1=0,所以x1=2,x2=﹣1.故选:D.【点睛】本题考查了解一元二次方程﹣因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).8.一元二次方程x2=4x的解是()A.x=4 B.x=0 C.x=0或-4 D.x=0或4第II卷(非选择题)请点击修改第II卷的文字说明参考答案D解析:D【分析】先移项,利用因式分解法解一元二次方程.【详解】解:x2=4xx2-4x=0x(x-4)=0x=0或x=4,故选:D.【点睛】此题考查解一元二次方程,直接开平方法,配方法,公式法,因式分解法,根据一元二次方程的特点选择恰当的解法是解题的关键.9.下列方程中,有两个不相等的实数根的是()A.x2=0 B.x﹣3=0 C.x2﹣5=0 D.x2+2=0C解析:C【分析】利用直接开平方法分别求解可得.解:A .由x 2=0得x 1=x 2=0,不符合题意;B .由x ﹣3=0得x =3,不符合题意;C .由x 2﹣5=0得x 1=x 2=,符合题意; D .x 2+2=0无实数根,不符合题意;故选:C .【点睛】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.10.已知方程2202030x x +-=的根分别为a 和b ,则代数式2a a 2020a b ++的值为( )A .0B .2020C .1D .-2020A 解析:A【分析】将a 代入方程,可得2202030a a +-=,即220302a a =-,代入要求的式子,即可得到3+ab ,而a 、b 是方程的两个根,根据韦达定理,可求出ab 的值,即可求出答案.【详解】解:∵方程2202030x x +-=的根分别为a 和b∴2202030a a +-=,即220302a a =-∴2a a 2020a b ++=32020a -+ab+2020a=3+ab∵ab=-3∴2a a 2020a b ++=32020a -+ab+2020a=3+ab=3-3=0故选:A .【点睛】本题主要考查一元二次方程的解以及韦达定理,熟练解代入方程以及观察式子特点,抵消部分式子是解决本题的关键. 二、填空题11.已知x a =是方程2350x x --=的根,则代数式234a a -++的值为________.-1【分析】利用x=a 是方程x2-3x-5=0的根得到a2-3a=5然后利用整体代入的方法计算代数式的值【详解】解:∵x=a 是方程x2-3x-5=0的根∴a2-3a-5=0∴a2-3a=5∴故答案为解析:-1【分析】利用x=a 是方程x 2-3x-5=0的根得到a 2-3a=5,然后利用整体代入的方法计算代数式的值.【详解】解:∵x=a 是方程x 2-3x-5=0的根,∴a 2-3a-5=0,∴a 2-3a=5,∴()223434541a a a a -++=--+=-+=-.故答案为-1.【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.12.解方程:268x x +=-解:两边同时加_________,得26x x ++________8=-+________则方程可化为(_______)2=________两边直接开平方得_____________即_________或_____________所以1x =__________,2x =___________.999x+31x+3=±1x+3=1x+3=-1-2-4【分析】根据配方法求解即可【详解】解:两边同时加9得99则方程可化为1两边直接开平方得x+3=±1即x+3=1或x+3=-1所以-2-4故答案解析:9 9 9 x+3 1 x+3=±1 x+3=1 x+3=-1 -2 -4【分析】根据配方法求解即可.【详解】解:两边同时加9,得26x x ++98=-+9,则方程可化为()23x +=1,两边直接开平方得x+3=±1,即x+3=1或x+3=-1,所以1x =-2,2x =-4.故答案为:9;9;9;x+3;1;x+3=±1;x+3=1;x+3=-1;-2;-4.【点睛】本题考查了配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.13.将方程2630x x +-=化为()2x h k +=的形式是______.【分析】将方程常数项移到方程右边左右两边都加上9左边化为完全平方式右边合并即可得到所求的结果【详解】∵∴∴∴故答案为:【点睛】考查了解一元二次方程-配方法利用此方法解方程时首先将二次项系数化为1常数解析:()2312x +=【分析】将方程常数项移到方程右边,左右两边都加上9,左边化为完全平方式,右边合并即可得到所求的结果.【详解】∵2630x x +-=∴263x x +=∴26939x x+++=∴()2312x+= 故答案为:()2312x+=【点睛】考查了解一元二次方程-配方法,利用此方法解方程时,首先将二次项系数化为1,常数项移到方程右边,然后方程两边都加上一次项系数一半的平方,左边化为完全平方式,右边合并为一个常数,开方即可求出解.14.将一元二次方程(32)(1)83x x x -+=-化成一般形式是_____.【分析】先计算多项式乘以多项式并移项再合并同类项即可【详解】故答案为:【点睛】此题考查一元二次方程的一般形式掌握多项式乘以多项式合并同类项计算法则是解题的关键解析:23710x x -+=【分析】先计算多项式乘以多项式,并移项,再合并同类项即可.【详解】(32)(1)83x x x -+=-23322830x x x x +---+=23710x x -+=故答案为:23710x x -+=.【点睛】此题考查一元二次方程的一般形式,掌握多项式乘以多项式,合并同类项计算法则是解题的关键.15.若一元二次方程ax 2﹣bx ﹣2016=0有一根为x =﹣1,则a +b =_____.2016【分析】将x=-1代入ax2﹣bx ﹣2016=0得到a+b ﹣2016=0然后将a+b 当作一个整体解答即可【详解】解:把x =﹣1代入一元二次方程ax2﹣bx ﹣2016=0得:a+b ﹣2016=解析:2016.【分析】将x=-1代入ax 2﹣bx ﹣2016=0得到a +b ﹣2016=0,然后将a+b 当作一个整体解答即可.【详解】解:把x =﹣1代入一元二次方程ax 2﹣bx ﹣2016=0得:a +b ﹣2016=0,即a +b =2016.故答案是2016.【点睛】本题主要考查了一元二次方程的解,理解一元二次方程的解的概念是解答本题的关键. 16.如图,要设计一幅宽20cm ,长30cm 的图案,其中有两横彩条、一竖彩条,横、竖彩条的宽度比为1:3,如果要使彩条所占面积是图案面积的19%,竖彩条的宽度为________.3cm 【分析】设横彩条的宽度是xcm 竖彩条的宽度是3xcm 根据如果要使彩条所占面积是图案面积的19可列方程求解【详解】解:设横彩条的宽度是xcm 竖彩条的宽度是3xcm 则(30-3x )(20-2x )=解析:3cm【分析】设横彩条的宽度是xcm ,竖彩条的宽度是3xcm ,根据“如果要使彩条所占面积是图案面积的19%”,可列方程求解.【详解】解:设横彩条的宽度是xcm ,竖彩条的宽度是3xcm ,则(30-3x )(20-2x )=20×30×(1-19%),解得x 1=1,x 2=19(舍去).所以3x=3.答:竖彩条的宽度是3cm .故答案为:3cm【点睛】本题考查一元二次方程的应用,解题的关键是理解题意,学会正确寻找等量关系,构建方程解决问题.17.若a 是方程210x x ++=的根,则代数式22020a a --的值是________.2021【分析】把x=a 代入已知方程并求得a2+a=-1然后将其整体代入所求的代数式进行求值即可【详解】解:把x=a 代入x2+x+1=0得a2+a+1=0解得a2+a=-1所以2020-a2-a=2解析:2021【分析】把x=a 代入已知方程,并求得a 2+a=-1,然后将其整体代入所求的代数式进行求值即可【详解】解:把x=a 代入x 2+x+1=0,得a 2+a+1=0,解得a 2+a=-1,所以2020-a 2-a=2020+1=2021.故答案是:2021.【点睛】本题考查了一元二次方程的解的定义.能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.18.已知x 1和x 2是方程2x 2-5x+1=0的两个根,则1212x x x x +的值为_____.5【分析】直接根据根与系数的关系求出再代入求值即可【详解】解:∵x1x2是方程2x2-5x+1=0的两个根∴x1+x2=-∴故答案为:5【点睛】本题考查了根与系数的关系:若x1x2是一元二次方程ax解析:5【分析】直接根据根与系数的关系,求出12x x +,12x x 再代入求值即可.【详解】解:∵x 1,x 2是方程2x 2-5x+1=0的两个根,∴x 1+x 2=--55-=22,121=2x x . ∴121252==512x x x x + 故答案为:5.【点睛】本题考查了根与系数的关系:若x 1,x 2是一元二次方程ax 2+bx+c=0(a≠0)的两根时,x 1+x 2=b a -,x 1x 2=c a. 19.已知a ,b 是一元二次方程22310x x +-=的两实数根,则11a b+=________.3【分析】根据方程的系数结合根与系数的关系可得出a+b=-ab=-将其代入中即可求出结论【详解】解:∵是方程的两根故答案为:3【点睛】本题考查了根与系数的关系牢记两根之和等于-两根之积等于是解题的关键解析:3【分析】根据方程的系数结合根与系数的关系,可得出a+b=-32,ab=-12,将其代入11a b a b ab ++=中即可求出结论.【详解】解:∵a ,b 是方程22310x x +-=的两根, 32a b ∴+=-,12ab =-, 3112312a b a b ab -+∴+===-. 故答案为:3.【点睛】 本题考查了根与系数的关系,牢记“两根之和等于-b a ,两根之积等于c a”是解题的关键. 20.如图,世纪广场有一块长方形绿地,AB =18m ,AD =15m ,在绿地中开辟三条宽为xm 的道路后,剩余绿地的面积为144m 2,则x =_____.【分析】由在绿地中开辟三条宽为xm 的道路后剩余绿地的面积为144m2即可得出关于x 的一元二次方程此题得解【详解】解:设道路的宽为xm 根据题意得:(18﹣2x )(15﹣x )=144解得:或(舍去)答: 解析:3【分析】由在绿地中开辟三条宽为xm 的道路后,剩余绿地的面积为144m 2,即可得出关于x 的一元二次方程,此题得解.【详解】解:设道路的宽为xm ,根据题意得:(18﹣2x )(15﹣x )=144,解得:13x =或221x =(舍去),答:道路的宽为3m .故答案为:3.【点睛】此题考查一元二次方程的应用,根据题意找出等量关系,正确列方程是解题的关键.三、解答题21.解方程:2250x x +-=.解析:1216,16x x =-=-【分析】利用配方法解方程.【详解】2250x x +-=225x x +=2(1)6x +=1x =-±∴1211x x =-=-【点睛】此题考查解一元二次方程的方法—配方法,将等式变形为平方形式是解题的关键. 22.(1)用配方法解:221470x x --=;(2)用因式分解法解:()()222332x x -=-.解析:(1)1x =,2x =2)x 1=1,x 2=-1. 【分析】(1)先移项,把二次项系数化为1,再把方程两边同时加上一次项系数一半的平方,进而开平方解方程即可得答案;(2)先根据完全平方公式把方程两边展开,再移项整理成一元二次方程的一般形式,再利用因式分解法解方程即可得答案.【详解】(1)221470x x --=移项得:2x 2-14x=7,二次项系数化为1得:x 2-7x=72, 配方得:x 2-7x+27()2=72+27()2,即(x-72)2=634,开平方得:x-72=,解得:1x =272x -=. (2)()()222332x x -=-展开得:4x 2-12x+9=9x 2-12x+4移项、合并得:5x 2-5=0,分解因式得(x+1)(x-1)=0,解得:x 1=1,x 2=-1.【点睛】本题考查配方法及因式分解法解一元二次方程,熟练掌握解方程的步骤是解题关键. 23.解方程:(1)23620x x -+=(2)222(3)9x x -=-解析:(1)13x =,233x =;(2)x=3或x=9. 【分析】(1)根据公式法即可求出答案;(2)根据因式分解法即可求出答案.【详解】解:(1)∵3x 2-6x+2=0,∴a=3,b=-6,c=2,∴△=36-24=12,∴6363x ±±==∴1x =2x = (2)∵2(x-3)2=x 2-9,∴2(x-3)2=(x-3)(x+3),∴(x-3)[(2(x-3)-(x+3)]=0,∴(x-3)(x-9)=0∴x-3=0,x-9=0∴x=3或x=9.【点睛】本题考查解一元二次方程,解题的关键是熟练运用一元二次方程的解法,本题属于基础题型.24.小丽为校合唱队购买某种服装时,商店经理给出了如下优惠条件:如果一次性购买不超过10件,单价为80元:如果一次性购买多于10件,那么每增加1件,购买的所有服装的单价降低2元,但单价不得低于50元.按此优惠条件,小丽一次性购买了这种服装x 件.(1)填空:解析:(1)①80;②74;③25x ≥(2)20件【分析】(1)①如果一次性购买不超过10件,单价为80元;②用单价80元减去(13-10)×2,得出答案即可;③求出单价恰好是50元时的购买件数,即可分析得到;(2)根据一次性购买多于10件,那么每增加1件,购买的所有服装的单价降低2元,表示出每件服装的单价,进而得出等式方程求出即可.【详解】解:(1)①∵如果一次性购买不超过10件,单价为80元,故填:80;②80-(13-10)×2=74,故填:74;③设购买a 件时,单价恰好是50元,80-(a -10)×2=50,解得:a =25,而题目中“单价不得低于50元”,∴25x ≥时,单价是50元,故填:25x ≥;(2)因为1200>800,所以一定超过了10件,设购买了x 件这种服装且多于10件,根据题意得出:[80-2(x -10)]x =1200,解得:x 1=20,x 2=30,当x =20时,80-2(20-10)=60元>50元,符合题意;当x =30时,80-2(30-10)=40元<50元,不合题意,舍去;答:购买了20件这种服装.【点睛】此题主要考查了一元二次方程的应用,根据已知得出每件服装的单价是解题关键. 25.计算题(1)解方程:2690x x ++= (2)解不等式组:3152(2)7x x x ->⎧⎨+<+⎩解析:(1)123x x ==-; (2)23x <<【分析】(1)利用因式分解法求解即可.(2)分别求出两个不等式的解集,最后找出公共部分即可.【详解】解:(1)2690x x ++=因式分解得:()230x +=解得:123x x ==-. (2)()31512272x x x ->⎧⎨+<+⎩ 解不等式1得:2x >解不等式2得:3x <∴不等式组的解集是23x <<.【点睛】本题考察解一元二次方程和一元一次不等式组,解题的关键是:(1)用因式分解法求解一元二次方程(2)不等式组解集的确定,原则是“同大取大,同小取小,大小小大中间找,大大小小找不到”.26.解方程:212270x x -+=解析:13x =,29x =.【分析】利用因式分解法解此一元二次方程,即可求解.【详解】解:212270x x -+=分解因式,得(3)(9)0x x --=,则30x -=或90x -=,∴13x =,29x =.【点睛】本题考查了解一元二次方程,熟练掌握一元二次方程的解法并能结合方程特点选择适当的解法是解题的关键.27.解方程(1)2420x x -+=(2)()255210x x ++= (3)2560x x -+=(4)()3133x x x +=+解析:(1)1222x x ==2)121x x ==-;(3)1232x x ==,;(4)1211x x =-=, 【分析】(1)直接利用配方法解方程得出答案即可;(2)方程整理后,利用利用配方法解方程得出答案即可;(3)利用分解因式法解方程即可;(4)方程整理后,利用提取公因式法分解因式进而解方程即可.【详解】(1)2420x x -+=,移项得:242x x -=-,配方得:24424x x -+=-+,即2(2)2x -=,开方得:2x -=,解得:1222x x ==(2)()255210x x ++=,整理得:2210x x ++=,即2(1)0x +=,∴121x x ==-;(3)2560x x -+=,因式分解得:()()320x x --=,∴30x -=,20x -=,∴1232x x ==,;(4)()3133x x x +=+,整理得:()()110x x x +-+=,因式分解得:()()110x x +-=,∴10x +=,10x -=, ∴1211x x =-=,. 【点睛】本题主要考查了解一元二次方程,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.28.阅读下列材料:对于任意的正实数a ,b ,总有2a b ab +≥成立(当且仅当a b =时,等号成立),这个不等式称为“基本不等式”利用“基本不等式”可求一些代数式的最小值.例如:若0x >,求式子1x x +的最小值. 解:∵0x >,∴112212x x x x+≥⋅==,∴1x x +的最小值为2.(1)若0x >,求9x x+的最小值; (2)已知1x >,求2251x x x -+-的最小值. (3)如图,四边形ABCD 的对角线AC ,BD 相交于点O ,AOB 、COD △的面积分别为4和9,求四边形ABCD 面积的最小值.解析:(1)6;(2)4;(3)25.【分析】(1)将原式变形为9x x +≥ (2)结合阅读材料将原式变形为()411x x -+-后即可确定最小值; (3)设S △BOC =x ,已知S △AOB =4,S △COD =9,则由等高三角形可知:BOC AOB COD AOD S S S S =△△△△,用含x 的式子表示出36AOD S x =△,再按照题中所给公式求得最小值,加上常数即可. 【详解】解:(1)∵0x >,∴9x x +≥又∵6=, ∴96x x+≥ ∴9x x+的最小值为6; (2)∵1x >∴10x ->, ∴222521411x x x x x x -+-++=--()2141x x -+=-()411x x =-+-≥∵∴22541x x x -+≥- ∴2251x x x -+-的最小值为4. (3)设(0)BOC S x x =>△,则由等高三角形可知:BOC AOB COD AODS S S S =△△△△ ∴49AOD x S =△,即36AOD S x=△, ∴四边形ABCD 面积364913x x =+++≥,∵13=25,当且仅当x=6时,取等号,∴四边形ABCD面积的最小值为25.【点睛】本题考查了配方法在最值问题中的应用,同时本题还考查了等高三角形的在面积计算中的应用.对不能直接应用公式的,需要正确变形才可以应用,本题中等难度略大.。

人教版九年级数学上册 一元二次方程解法专题练习题

人教版九年级数学上册 一元二次方程解法专题练习题

人教版九年级数学上册一元二次方程解法专题练习题1.解一元二次方程1、x(x+4)=5(x+4)将5(x+4)移到等式左边,得到x(x+4)-5(x+4)=0,化简得到(x-1)(x-5)=0,因此x=1或x=5.2、(x-2)=3(x-2)将3(x-2)移到等式左边,得到(x-2)-3(x-2)=0,化简得到-2x+4=0,因此x=2.3、x(x-1)=2(x+1)(1-x)将2(x+1)(1-x)移到等式左边,得到x(x-1)-2(x+1)(1-x)=0,化简得到3x^2-3x-2=0,根据求根公式,得到x=(3+√17)/6或x=(3-√17)/6.4、2(x-3)=-x(3-x)将-x(3-x)移到等式左边,得到2(x-3)+x(3-x)=0,化简得到-x^2+x-6=0,根据求根公式,得到x=(√29-1)/2或x=(-√29-1)/2.5、(2x-1)=(3-x)将3-x移到等式左边,得到2x+x-3=0,化简得到x=1.6、3(x-1)=x(x-1)将x(x-1)移到等式左边,得到3(x-1)-x(x-1)=0,化简得到x^2-2x-3=0,根据求根公式,得到x=-(√13+1)/2或x=(√13-1)/2.7、x-6x-9=0(配方法)将x-6x-9化简为(x-3)^2-18=0,再将18移到等式左边,得到(x-3)^2=18,根据求根公式,得到x=3+√18或x=3-√18.8、3x=2-5x(公式法)将2-5x移到等式左边,得到3x+5x-2=0,化简得到8x-2=0,因此x=1/4.9、x+2x-1=0将x+2x-1化简为3x-1=0,因此x=1/3.10、x-4x+1=0将x-4x+1化简为-3x+1=0,因此x=1/3.11、(x-1)-2(x-1)=15将2(x-1)移到等式左边,得到(x-1)-2(x-1)-15=0,化简得到-3x-14=0,因此x=(-14)/(-3)=14/3.12、-3x+4x+1=0将-3x+4x化简为x,因此x=-1.13、2x^2+3=7x将7x移到等式左边,得到2x^2-7x+3=0,根据求根公式,得到x=(7+√13)/4或x=(7-√13)/4.14、(1-2x)^2=x^2-6x+9将右边的x^2-6x+9移到等式左边,得到(1-2x)^2-x^2+6x-9=0,化简得到3x^2-10x-8=0,根据求根公式,得到x=(5+√73)/3或x=(5-√73)/3.15、3x^2-6x+1=0(用配方法)将3x^2-6x+1化简为(√3x-1)^2=0,因此x=1/√3.16、x(x+4)=8x+12将8x+12移到等式左边,得到x^2-4x-3=0,根据求根公式,得到x=(4+√28)/2或x=(4-√28)/2.17、x^2-2x=2x+1将2x+1移到等式左边,得到x^2-4x-1=0,根据求根公式,得到x=(2+√6)或x=(2-√6)。

九年级数学: 因式分解法解一元二次方程练习题及答案

九年级数学: 因式分解法解一元二次方程练习题及答案

因式分解法解一元二次方程练习题1.选择题(1)方程(x -16)(x +8)=0的根是( )A .x 1=-16,x 2=8B .x 1=16,x 2=-8C .x 1=16,x 2=8D .x 1=-16,x 2=-8(2)下列方程4x 2-3x -1=0,5x 2-7x +2=0,13x 2-15x +2=0中,有一个公共解是( )A .x =21 B .x =2 C .x =1 D .x =-1 (3)方程5x (x +3)=3(x +3)解为( )A .x 1=53,x 2=3B .x =53C .x 1=-53,x 2=-3D .x 1=53,x 2=-3 (4)方程(y -5)(y +2)=1的根为( )A .y 1=5,y 2=-2B .y =5C .y =-2D .以上答案都不对(5)方程(x -1)2-4(x +2)2=0的根为( )A .x 1=1,x 2=-5B .x 1=-1,x 2=-5C .x 1=1,x 2=5D .x 1=-1,x 2=5(6)一元二次方程x 2+5x =0的较大的一个根设为m ,x 2-3x +2=0较小的根设为n ,则m +n 的值为( ) A .1 B .2 C .-4 D .4(7)已知三角形两边长为4和7,第三边的长是方程x 2-16x +55=0的一个根,则第三边长是( )A .5B .5或11C .6D .112.填空题(1)方程t (t +3)=28的解为_______.(2)方程(2x +1)2+3(2x +1)=0的解为__________.(3)方程(2y +1)2+3(2y +1)+2=0的解为__________.(4)关于x 的方程x 2+(m +n )x +mn =0的解为__________.(5)方程x (x -5)=5 -x 的解为__________.3.用因式分解法解下列方程:(1)x 2+12x =0; (2)4x 2-1=0; (3) x 2=7x ;(4)x 2-4x -21=0; (5)(x -1)(x +3)=12; (6)3x 2+2x -1=0;(7)10x 2-x -3=0; (8)(x -1)2-4(x -1)-21=0.4.用适当方法解下列方程:(1)x 2-4x +3=0; (2)(x -2)2=256; (3)x 2-3x +1=0;(4)x 2-2x -3=0; (5)(2t +3)2=3(2t +3); (6)(3-y )2+y 2=9;(7)2x2-8x=7; (8)(x+5)2-2(x+5)-8=0.5.解关于x的方程:(1)x2-4ax+3a2=1-2a; (2)x2+5x+k2=2kx+5k+6;(3)x2-2mx-8m2=0; (4)x2+(2m+1)x+m2+m=0.6.已知(x2+y2)(x2-1+y2)-12=0.求x2+y2的值.7.解方程:x(x+12)=864.8.已知x2+3x+5的值为9,试求3x2+9x-2的值.9.一跳水运动员从10米高台上跳水,他跳下的高度h(单位:米)与所用的时间t(单位:秒)的关系式h =-5(t-2)(t+1).求运动员起跳到入水所用的时间.10.解方程(x2-1)2-5(x2-1)+4=0 x4-3x2-4=0.。

九年级数学:因式分解法解一元二次方程典型例题

九年级数学:因式分解法解一元二次方程典型例题

典型例题一例用因式分解法解下列方程:(1)y2+7y+6=0;(2) t(2t-1)=3(2t-1);(3)(2 x-1)( x -1)=1.解:(1)方程可变形为( y+1)( y+6)=0 y+1=0 或y+6=0∴y1=-1,y2=-6(2)方程可变形为t (2t -1)-3(2t-1)=0 (2 t -1)( t-3)=0,2t-1=0或t-3=0 ∴t 1=1,t 2=3.2(3)方程可变形为2x2-3x=0 x(2x-3)=0,x=0或2x-3=0 3∴x1=0,x2=2说明:(1)在用因式分解法解一元二次方程时,一般地要把方程整理为一般式,如果左边的代数式能够分解为两个一次因式的乘积,而右边为零时,则可令每一个一次因式为零,得到两个一元一次方程,解出这两个一元一次方程的解就是原方程的两个解了.(2)应用因式分解法解形如( x-a)( x-b)=c 的方程,其左边是两个一次因式之积,但右边不是零,所以应转化为形如( x-e)( x-f)=0 的形式,这时才有x1=e,x2=f,否则会产生错误,如(3)可能产生如下的错解:原方程变形为:2x-1=1或x-1=1.∴x1=1,x2=2.(3)在方程(2)中,为什么方程两边不能同除以(2t-1),请同学们思考典型例题二例用因式分解法解下列方程6x2 3 3x 2 2x 6 解:把方程左边因式分解为:(2x 3)(3x 2) 0∴ 2x 3 0或3x 2 032∴x1 ,x223说明: 对于无理数系数的一元二次方程,若左边可分解为一次因式积的形式,均可用因式分解法求出方程的解。

典型例题三例用因式分解法解下列方程。

2y2 y 15解: 移项得:2y2 y 15 0 把方程左边因式分解得:(2y 5)(y 3) 0∴2y 5 0或y 3 0∴y1,y2 3.2说明: 在用因式分解法解一元二次方程时,一定要注意,把方程整理为一般式,如果左边的代数式能够分解为两个一次因式的乘积,而右边为零时,则可令每一个一次因式都为零,得到两个一元一次方程,解出这两个一元一次方程的解就是原方程的两个解了。

九年级数学上册第2章一元二次方程4用因式分解法求解一元二次方程习题

九年级数学上册第2章一元二次方程4用因式分解法求解一元二次方程习题
【答案】B
11.一元二次方程的四种解法:(1)_直__接__开__平__方__法___; (2)_配__方__法___;(3)__公__式__法______;(4)_因__式__分__解__法___.
12.已知下列方程,请把它们的序号填在最适当的解法后的 横线上.
①2(x-1)2=6; ②(x-2)2+x2=5; ③(x-2)(x-4)=4; ④x2-3x-1=0; ⑤x2- 2x+14=0; ⑥x2+3x=0. (1)直接开平方法:__①________;(2)配方法:__②__③_______; (3)公式法:_④__⑤_________;(4)因式分解法:__⑥_________.
答案显示
1.因式分解法解一元二次方程的一般步骤: (1)右化0:整理方程,使其右边为___0_____; (2)左分解:将方程左边分解为__两__个__一__次__因__式_____的乘积; (3)两因式:两个因式的值分别为0,降次得到两个
_一__元__一__次__方__程_____; (4)各求解:分别解这两个一元一次方程,得到原方程的解.
(3)(2x+1)2-3(2x+1)-28=0.
解:(2x+1)2-3(2x+1)-28=0, [(2x+1)-7][(2x+1)+4]=0, (2x-6)(2x+5)=0, 2x-6=0或2x+5=0. ∴x1=3,x2= -52.
16.(中考·玉林)已知关于x的一元二次方程x2-2x-k-2=0 有两个不相等的实数根.
3, 与
xx-+yb=y=2,15的解相同.
(1)求a,b的值;
解:由题意得,关于 x,y 的方程组的相同解,就是方程组 xx+ -yy= =42,的解,解得xy==13., 把 x=3,y=1 代入 ax+2 3y=-10 3,得 3a+2 3=-10 3, 解得 a=-4 3; 把 x=3,y=1 代入 x+by=15,得 3+b=15,解得 b=12.

九年级数学上册 用因式分解法求解一元二次方程练习题北师大版 试题

九年级数学上册  用因式分解法求解一元二次方程练习题北师大版 试题

轧东卡州北占业市传业学校用因式分解法求解一元二次方程一、选择题1. 以下多项式不能在实数范围内分解的是A. x23- B. x x 21+- C. x x 21-+ D. x x 231++2. 两个连续正整数的和的平方比它们的平方和大112,那么这两个正整数是A. 5,6B. 7,8C. 8,9D. 6,73. 某印刷厂一月印50万册,二,三月共印132万册,问二、三月平均每月增长的百分数是A. 20%B. -165 C. 10% D. 15%4. 某工厂方案在长24米,宽20米的空地中间划出一块32平方米的长方形建一住房,并且四周剩余地一样宽,那么这宽度应是A. 14米B. 8米C. 14米或8米D. 以上都不对 二、填空题5. 因式分解①3222mmn n +-= ②4452a a --=③x xy y22223--=④x xy y x y 2222--+-=⑤m n n 22222-+-=6. 一个两位数等于它个位数的平方,且个位数比十位数大3,那么这个两位数是_________。

7. 某药品经两次降价,从原来每箱60元降为每箱4元,平均每次降价率为_________。

8. 有两个数不等,和17,积比小点数的平方大30,用方程求这两数,设_________,根据题意,列方程得_________。

9. 一矩形面积132cm2,周长46cm,那么矩形长是_________,宽是_________。

10. 连续两个正奇数的平方和等于202,这两个奇数中较小的是_________。

三、解答题:11. 二次三项式9622x m x m-++-()是一个完全平方式,求m的值。

12. 面积为150m2的矩形鸡场,长边靠墙〔墙长18m〕,另三边用竹篱笆围成,假设篱笆长35m,求鸡场的长和宽。

13. 一批上衣原来每件500元,第一次降价,销售甚慢,第二次大幅降价的百分率是第一次的2倍,结果以每件240元价格迅速售出,求每次降价的百分率。

2022年初中数学精品《因式分解法解一元二次方程》同步练习(附答案)

2022年初中数学精品《因式分解法解一元二次方程》同步练习(附答案)

2.2 一元二次方程的解法第1课时因式分解法解一元二次方程双基演练1.分解因式:〔1〕x2-4x=_________;〔2〕x-2-x〔x-2〕=________〔3〕m2-9=________;〔4〕〔x+1〕2-16=________2.方程〔2x+1〕〔x-5〕=0的解是_________3.方程2x〔x-2〕=3〔x-2〕的解是___________4.方程〔x-1〕〔x-2〕=0的两根为x1·x2,且x1>x2,那么x1-2x2的值等于_______ 5.y=x2+x-6,当x=________时,y的值为0;当x=________时,y的值等于24.6.方程x2+2ax-b2+a2=0的解为__________.7.假设〔2x+3y〕2+3〔2x+3y〕-4=0,那么2x+3y的值为_________.8.方程x〔x+1〕〔x-2〕=0的根是〔〕A.-1,2 B.1,-2 C.0,-1,2 D.0,1,29.假设关于x的一元二次方程的根分别为-5,7,那么该方程可以为〔〕A.〔x+5〕〔x-7〕=0 B.〔x-5〕〔x+7〕=0C.〔x+5〕〔x+7〕=0 D.〔x-5〕〔x-7〕=010.方程4x2-3x=0,以下说法正确的选项是〔〕A.只有一个根x=34B.只有一个根x=0C.有两个根x1=0,x2=34D.有两个根x1=0,x2=-3411.解方程2〔5x-1〕2=3〔5x-1〕的最适当的方法是〔〕A.直接开平方法B.配方法C.公式法D.分解因式法12.方程〔x+4〕〔x-5〕=1的根为〔〕A.x=-4 B.x=5 C.x1=-4,x2=5 D.以上结论都不对13.用适当的方法解以下方程.〔1〕x2-2x-2=0 〔2〕〔y-5〕(y+7〕=0〔3〕x〔2x-3〕=〔3x+2〕〔2x-3〕〔4〕〔x-1〕2-2〔x2-1〕=0〔5〕2x2x 〔6〕2〔t-1〕2+t=1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档