用有限元法对悬臂梁分析的算例

合集下载

悬臂梁分析报告

悬臂梁分析报告

悬臂梁受力分析报告高一博2016.11.13西安理工大学机械与精密仪器工程学院摘要利用ANSYS对悬臂梁进行有限元静力学分析,得到悬臂梁的最大应力和挠度位移。

从而校验结构强度和尺寸定义,从而对结构进行最优化设计修正。

关键词:悬臂梁,变形分析,应力分析目录一.问题描述: (4)二.分析的目的和内容: (4)三.分析方案和有限元建模方法: (4)四.几何模型 (4)五.有限元模型 (4)六.计算结果: (5)七.结果合理性的讨论、分析 (8)八.结论 (8)参考文献 (8)一.问题描述:现有一悬臂梁,长500MM,一端固定,另外一端施加一个竖直向下的集中力200N。

其截面20MMX20MM的矩形,现在要分析该梁的在集中力作用下产生的位移,应力和局部应力。

二.分析的目的和内容:1.观察悬臂梁的变形情况;2.观察分析悬臂梁的应力变化;3.找出其最大变形和最大应力点,分析形成原因;三.分析方案和有限元建模方法:1.使用ANSYS-modeling-create-volumes-block建模,2.对梁进行材料定义,网格划分。

3.一端固定,另外一端施加一个向下的200N的力。

4.后处理中查看梁的应力和变形情况。

四.几何模型500X20X20的梁在在ANSYS中进行绘制.由于结构简单规则,无需简化。

五.有限元模型单元类型:solid brick8node45材料参数:弹性模量2e+11pa,泊松比0.3边界条件:一端固定,一端施加载荷载荷:F=200N划分网格后的悬臂梁模型六.计算结果:变形位移图等效应力图局部应力图七.结果合理性的讨论、分析1.位移分析:在变形位移图上,在约束端位移最小为零,受压端位移最大。

与实际结果一致。

2.应力分析:在应力图上,应力最大处在约束端,而最小的位于受压端,与变形图相对应。

通过材料力学计算可知约束端的所受弯矩最大。

两个结果印证无误。

3.局部应力分析:在局部应力图上,可以看出在固定端上表面存有较大的应力,且为拉应力,受压端直角尖处有最大应力,从形成原因上分析属于尖角处应力集中。

FreeCad有限元悬臂梁应力计算

FreeCad有限元悬臂梁应力计算

FreeCAD有限元悬臂梁应力计算简介本文档主要介绍:1.FreeCad有限元悬臂梁示例的详细解读。

2.以悬臂梁为例,对比有限元FEM悬臂梁示例计算结果和材料力学计算结果。

FreeCAD有限元悬臂梁示例解读打开FreeCAD,在其起始页有3个有限元的例子,都是悬臂梁的。

从左向右,第1个是2D板壳单元的例子,第2个是3D实体单元的例子,第3个也是3D实体单元的例子,只是采用了新的求解器。

双击打开第2个例子。

可以看到软件界面里红框内的按钮大部分是灰色的。

双击Analysis可以启动分析,此时刚才用红框标注的按钮变成彩色,如下图。

在结构树浏览器里,可以看到Cube特征,即长方体特征,鼠标点击Cube后,可以在组合浏览器里修改长宽高等属性。

比如下图,我把长宽高属性更改为了150mm、10mm、15mm。

双击SolidMaterial,可以更换材料。

FemConstraintFixed为固定约束。

双击FemConstrainForce,更改力值为10。

双击Box_Mesh,更改网格的最大尺寸。

双击CalculiXccxTools,点击“...”更改工作路径(路径不能有汉字)。

点击Write.inp file。

点击Run CalculiXccx。

点击Close。

双击结构树浏览器里的CalculiX static_results,点选感兴趣的结果类型,这里选择的是最大主应力。

可以看到最大值为7022.97kpa=7.02Mpa。

在结构树浏览器中删除原有的Pipeline 和WarpVector 。

材料力学最大主应力的计算根据材料力学,相对于Y 轴的抗弯截面系数公式为: 6212z W 23max bh h bh I YY ===使用wxMaxima 对悬臂梁进行数值计算: /*设置软件输出结果为数值*/if numer#false then numer:false else numer:true; /*梁宽b ,单位mm*/b:10;/*梁高h,单位mm*/h:15;Wy:1/6*b*h^2;/*作用在截面上的力,单位N*/F:10;/*力臂,单位mm*/L:150;/*作用在截面上的弯矩*/M:F*L;/*弯矩在截面上产生的最大正应力,单位MPa*/ σ:M/Wy;计算结果对比通过对比可以发现,计算结果差异非常大,原因是有限元分析固定约束处存在应力奇异,即使细化网格也没有办法使有限元结果收敛。

用有限元法对悬臂梁分析的算例算例

用有限元法对悬臂梁分析的算例算例

用有限元法对悬臂梁分析的算例算例:如下图所示的悬臂梁,受均布载荷q =1N /mm 2作用。

E =2.1×105N /mm 2,μ=0.3厚度h =10mm 。

现用有限元法分析其位移及应力。

梁可视为平面应力状态,先按图示尺寸划分为均匀的三角形网格,共有8×10=80个单元,5×ll =55个节点,坐标轴以及单元与节点的编号如图。

将均布载荷分配到各相应节点上,把有约束的节点5l 、52、53、54、55视作固定铰链,建立如图所示的离散化计算模型。

程序计算框图:(续左)程序中的函数功能介绍及源代码1.LinearTriangleElementStiffness(E,NU,t,xi,yi,xj,yj,xm,ym)――该函数用于计算平面应力情况下弹性模量为E、泊松比为NU、厚度为t、第一个节点坐标为(xi,yi)、第二个节点坐标为(xj,yj)、第三个节点坐标为(xm,ym)时的线性三角形元的单元刚度矩阵.该函数返回6×6的单位刚度矩阵k.2.LinearTriangleAssemble(K,k,i,j,m)――该函数将连接节点i,j,m的线性三角形元的单元刚度矩阵k集成到整体刚度矩阵K。

每集成一个单元,该函数都将返回2N×2N的整体刚度矩阵K.3.LinearTriangleElementStresses(E,NU,t,xi,yi,xj,yj,xm,ym,u)-- 该函数计算在平面应力情况下弹性模量为E、泊松比为NU、厚度为t、第一个节点坐标为(xi, yi)第二个节点坐标为(xj,yj)、第三个节点坐标为(xm,ym)以及单元位移矢量为u时的单元应力。

该函数返回单元应力矢量。

函数源代码:function y = LinearTriangleElementStiffness(E,NU,t,xi,yi,xj,yj,xm,ym)A = (xi*(yj-ym) + xj*(ym-yi) + xm*(yi-yj))/2;%三角形单元面积,单元节点应该按逆时针排序,保证每个三角形单元的面积都为正值(也可作为一个小函数:LinearTriangleElementArea)betai = yj-ym;betaj = ym-yi;betam = yi-yj;gammai = xm-xj;gammaj = xi-xm;gammam = xj-xi;B = [betai 0 betaj 0 betam 0 ;0 gammai 0 gammaj 0 gammam ;gammai betai gammaj betaj gammam betam]/(2*A);%B为应变矩阵,其中betai=yi-ym,betaj=ym-yi,betam=yi-yj.gammai=xm-xj, gammaj=xi-xm, gammam=xj-xi.D = (E/(1-NU*NU))*[1 NU 0 ; NU 1 0 ; 0 0 (1-NU)/2];%D为弹性矩阵,分为平面应力问题和平面应变问题对于平面应力问题D = (E/(1-NU*NU))*[1 NU 0 ; NU 1 0 ; 0 0 (1-NU)/2];对于平面应变问题E1=E/(1-NU*NU),NU1=NU/(1-NU)y = t*A*B'*D*B;%单元刚度矩阵function y = LinearTriangleAssemble(K,k,i,j,m)K(2*i-1,2*i-1) = K(2*i-1,2*i-1) + k(1,1); K(2*i-1,2*i) = K(2*i-1,2*i) + k(1,2);K(2*i-1,2*j-1) = K(2*i-1,2*j-1) + k(1,3); K(2*i-1,2*j) = K(2*i-1,2*j) + k(1,4);K(2*i-1,2*m-1) = K(2*i-1,2*m-1) + k(1,5); K(2*i-1,2*m) = K(2*i-1,2*m) + k(1,6);K(2*i,2*i-1) = K(2*i,2*i-1) + k(2,1); K(2*i,2*i) = K(2*i,2*i) + k(2,2);K(2*i,2*j-1) = K(2*i,2*j-1) + k(2,3); K(2*i,2*j) = K(2*i,2*j) + k(2,4);K(2*i,2*m-1) = K(2*i,2*m-1) + k(2,5); K(2*i,2*m) = K(2*i,2*m) + k(2,6);K(2*j-1,2*i-1) = K(2*j-1,2*i-1) + k(3,1); K(2*j-1,2*i) = K(2*j-1,2*i) + k(3,2);K(2*j-1,2*j-1) = K(2*j-1,2*j-1) + k(3,3); K(2*j-1,2*j) = K(2*j-1,2*j) + k(3,4);K(2*j-1,2*m-1) = K(2*j-1,2*m-1) + k(3,5); K(2*j-1,2*m) = K(2*j-1,2*m) + k(3,6);K(2*j,2*i-1) = K(2*j,2*i-1) + k(4,1); K(2*j,2*i) = K(2*j,2*i) + k(4,2);K(2*j,2*j-1) = K(2*j,2*j-1) + k(4,3); K(2*j,2*j) = K(2*j,2*j) + k(4,4);K(2*j,2*m-1) = K(2*j,2*m-1) + k(4,5); K(2*j,2*m) = K(2*j,2*m) + k(4,6);K(2*m-1,2*i-1) = K(2*m-1,2*i-1) + k(5,1); K(2*m-1,2*i) = K(2*m-1,2*i) + k(5,2);K(2*m-1,2*j-1) = K(2*m-1,2*j-1) + k(5,3); K(2*m-1,2*j) = K(2*m-1,2*j) + k(5,4);K(2*m-1,2*m-1) = K(2*m-1,2*m-1) + k(5,5); K(2*m-1,2*m) = K(2*m-1,2*m) + k(5,6);K(2*m,2*i-1) = K(2*m,2*i-1) + k(6,1); K(2*m,2*i) = K(2*m,2*i) + k(6,2);K(2*m,2*j-1) = K(2*m,2*j-1) + k(6,3); K(2*m,2*j) = K(2*m,2*j) + k(6,4);K(2*m,2*m-1) = K(2*m,2*m-1) + k(6,5); K(2*m,2*m) = K(2*m,2*m) + k(6,6);K;%对号入座,如前所述,每集成一次都将返回2N×2N的整体刚度矩阵K.此题为110×110 function y = LinearTriangleElementStresses(E,NU,t,xi,yi,xj,yj,xm,ym,u)A = (xi*(yj-ym) + xj*(ym-yi) + xm*(yi-yj))/2;betai = yj-ym;betaj = ym-yi;betam = yi-yj;gammai = xm-xj;gammaj = xi-xm;gammam = xj-xi;B = [betai 0 betaj 0 betam 0 ;0 gammai 0 gammaj 0 gammam ;gammai betai gammaj betaj gammam betam]/(2*A);D = (E/(1-NU*NU))*[1 NU 0 ; NU 1 0 ; 0 0 (1-NU)/2];%平面应力和平面应变问题两种情况y = D*B*u;%单元应力计算主程序源代码E=21e7;NU=0.3;t=0.01;stifflike5=LinearTriangleElementStiffness(E,NU,t,0.4,0.08,0.36,0.08,0.36,0.06,1) %选取2个基本单元,调用M文件stifflike1=LinearTriangleElementStiffness(E,NU,t,0.4,0.08,0.36,0.06,0.4,0.06,1) K=sparse(110,110); %creat a xishu matrix for total stiff创建一个稀疏矩阵for i=1:49if rem(i,5)%模取余,bool型变量,非零即为真j=i;K=LinearTriangleAssemble(K,stifflike5,j,j+5,j+6);%节点编号K=LinearTriangleAssemble(K,stifflike1,j,j+6,j+1);endend%将每个单元刚度矩阵集成到总刚中K=full(K);%转化稀疏矩阵 k=K(1:100,1:100);k=[K,zeros(100,10);zeros(10,100),eye(10)];k=sparse(k);%利用边界条件简化基本方程Q=sparse(2:10:92,1,[-200,-400,-400,-400,-400,-400,-400,-400,-400,-400,],110,1);%外部荷载,此处不包括约束条件,通过形函数确定,是不是可以理解为梁的两端为中间的一半呢?d=k\Q;%高斯消元法,比克莱姆法则在计算速度上有绝对的优势!x=0:0.04:0.4;plot(x,d(106:-10:6))%基本绘图命令grid%带网格y=zeros(80,3);q=0;for i=1:49switch rem(i,5)case 1j=2*i;u=[d(j-1) d(j) d(j+11) d(j+12) d(j+1) d(j+2)];u=u';xl=0.4;yl=0.08;xm=0.36;ym=0.06;xn=0.4;yn=0.06;y(i+q,:)=LinearTriangleElementStresses(E,NU,t,xl,yl,xm,ym,xn,yn,u)';xl=xl-0.04;xm=xm-0.04;xn=xn-0.04;case 2j=2*i;u=[d(j-1) d(j) d(j+11) d(j+12) d(j+1) d(j+2)];xl=0.4;yl=0.06;xm=0.36;ym=0.04;xn=0.4;yn=0.04;y(i+q,:)=LinearTriangleElementStresses(E,NU,t,xl,yl,xm,ym,xn,yn,u)'; xl=xl-0.04;xm=xm-0.04;xn=xn-0.04;case 3j=2*i;u=[d(j-1) d(j) d(j+11) d(j+12) d(j+1) d(j+2)];u=u';xl=0.4;yl=0.04;xm=0.36;ym=0.02;xn=0.4;yn=0.02;y(i+q,:)=LinearTriangleElementStresses(E,NU,t,xl,yl,xm,ym,xn,yn,u)'; xl=xl-0.04;xm=xm-0.04;xn=xn-0.04;case 4j=2*i;u=[d(j-1) d(j) d(j+11) d(j+12) d(j+1) d(j+2)];u=u';xl=0.4;yl=0.02;xm=0.36;ym=0;xn=0.4;yn=0;y(i+q,:)=LinearTriangleElementStresses(E,NU,t,xl,yl,xm,ym,xn,yn,u)'; xl=xl-0.04;xm=xm-0.04;xn=xn-0.04;otherwiseq=q+3;endendq=4;for i=1:49switch rem(i,5)case 1j=2*i;u=[d(j-1) d(j) d(j+9) d(j+10) d(j+11) d(j+12)];u=u';xl=0.4;yl=0.08;xm=0.36;ym=0.08;xn=0.36;yn=0.06;y(i+q,:)=LinearTriangleElementStresses(E,NU,t,xl,yl,xm,ym,xn,yn,u)'; xl=xl-0.04;xm=xm-0.04;xn=xn-0.04;case 2j=2*i;u=[d(j-1) d(j) d(j+9) d(j+10) d(j+11) d(j+12)];u=u';xl=0.4;yl=0.06;xm=0.36;ym=0.06;xn=0.36;yn=0.04;y(i+q,:)=LinearTriangleElementStresses(E,NU,t,xl,yl,xm,ym,xn,yn,u)'; xl=xl-0.04;xm=xm-0.04;xn=xn-0.04;case 3j=2*i;u=[d(j-1) d(j) d(j+9) d(j+10) d(j+11) d(j+12)];u=u';xl=0.4;yl=0.04;xm=0.36;ym=0.04;xn=0.36;yn=0.02;y(i+q,:)=LinearTriangleElementStresses(E,NU,t,xl,yl,xm,ym,xn,yn,u)'; xl=xl-0.04;xm=xm-0.04;xn=xn-0.04;case 4j=2*i;u=[d(j-1) d(j) d(j+9) d(j+10) d(j+11) d(j+12)];u=u';xl=0.4;yl=0.02;xm=0.36;ym=0.02;xn=0.36;yn=0;y(i+q,:)=LinearTriangleElementStresses(E,NU,t,xl,yl,xm,ym,xn,yn,u)';xl=xl-0.04;xm=xm-0.04;xn=xn-0.04;otherwiseq=q+3;endend %y(i+q,:)这是实现什么的?没见过这种用法,算法上应该就是通过节点位移实现指定单元的内力,这部分本人看的也晕晕的,望高人指点N=y(73:80,1)结果图及数据输出悬臂梁轴线挠度图:一单元的单元刚阵1.0e+006 *0.8077 0 0 -0.4038 -0.8077 0.40380 2.3077 -0.3462 0 0.3462 -2.30770 -0.3462 0.5769 0 -0.5769 0.3462-0.4038 0 0 0.2019 0.4038 -0.2019-0.8077 0.3462 -0.5769 0.4038 1.3846 -0.75000.4038 -2.3077 0.3462 -0.2019 -0.7500 2.5096五单元的单元刚阵1.0e+006 *00.050.10.150.20.250.30.350.4x/m w /m0.5769 0 -0.5769 0.3462 0 -0.34620 0.2019 0.4038 -0.2019 -0.4038 0-0.5769 0.4038 1.3846 -0.7500 -0.8077 0.34620.3462 -0.2019 -0.7500 2.5096 0.4038 -2.30770 -0.4038 -0.8077 0.4038 0.8077 0-0.3462 0 0.3462 -2.3077 0 2.3077根部73-80各单元应力计算结果如下(n/m2):1.0e+007 *2.1119 -0.0621 -2.2816 -4.8824 5.0479 2.4065 0.0352 -2.3753。

悬臂梁的受力分析

悬臂梁的受力分析

悬臂梁的受力分析实验目的:学会使用有限元软件做简单的力学分析,加深对材料力学相关内容的理解,了解如何将理论与实践相结合。

实验原理:运用材料力学有关悬臂梁的的理论知识,求出在自由端部受力时,其挠度的大小,并与有限元软件计算相同模型的结果比较 实验步骤: 1,理论分析如下图所示悬臂梁,其端部的抗弯刚度为33EIl ,在其端部施加力F ,可得到其端部挠度为:33Fl EI ,设其是半径为0.05米,长为1米,弹性模量11210E =⨯圆截面钢梁,则其可求出理论挠度值3443Fl ERωπ=,先分别给F 赋值为100kN ,200kN ,300kN ,400kN ,500kN .计算结果如下表:F 100000 200000 300000 400000 500000 ω(m )0. 033950. 0679060. 1018590. 13581230. 16976542有限元软件(ansys )计算: (1)有限元模型如下图:模型说明,本模型采用beam188单元,共用11个节点分为10个单元,在最有段施加力为F计算得到端部的挠度如下表所示,F 100000 200000 300000 400000 500000S(端部位移)-0.34079E-01-0.680158E-01-1.020237E-01-1.360136E-01-1.700395E-01得到梁端部在收到力为100kN时Y方向的位移云图:将理论计算结果与ansys分析结果比较如下表:力F(N)100000 200000 300000 400000 500000 理论值0. 03395 0. 067906 0. 101859 0. 1358123 0. 1697654 实验值-0.34079E-01-0.680158E-01-1.020237E-01-1.360136E-01-1.700395E-01相对误差0.37% 0.16% 0.16% 0.15% 0.16%通过比较可得,理论值与软件模拟结果非常接近,在力学的学习中只要能熟练的掌握理论知识,在软件模拟过程中便可做到心中有数,在本实验中理论值是通过材料力学中得一些假设得到的一个解析解,而实验也是用了相同的假设,并将梁离散为十个单元,得到数值解,因此和理论值的误差是不可避免的,通过增加离散单元的个数可以有效的减少误差,但是增大了计算量,因此在实践中,只要选取合适的离散单元数,能够满足实践要求即可,这就需要有更加扎实有限元知识作为指导。

基于有限元软件ANSYS分析简单悬臂梁的模型

基于有限元软件ANSYS分析简单悬臂梁的模型

2.2有 限元 网格 处理 速度 的提升
Cntrls—}ManualSize_ Lines—}AU Lines
有 限元分 析 过程 主要 包含 了三 个 步骤 :对 分 析对 象进 行 离 ANSYS Ma in Menu: Preprocessor _+ Meshing-+MeshrI l
2018.26科 学技 术创新 一123一
基 于有 限元软 件 ANSYS分析 简单悬臂 梁 的模 型
郭安 江 (安徽理工大学 土木建筑学院,安徽 淮南 232001)
摘 要:作为 目前世界上发展最快的计算机辅助工程(cAE)工具 ,NSYS软件的接 口可 以与大多数计算机辅助 工程(cAE)工具
关键 词 :ANSYS软件 ;有 限元 ;线 性 ;悬臂 梁
中 图 分 类 号 :TU375.1
文 献 标 识 码 :A
文章 编号 :2096-4390(2018)26-0123—02
1 ANSYS软 件简 介
于应用线性理论来解决破坏 、裂纹扩展等问题 ,还需要解决材料
为了验证某机械结构系统是否满足安全性等设计需求 ,我 的塑形和蠕变效应 ,此时必须求解材料的非线性问题 ,例如对塑
连接。计算机辅助设计软件相对应 ,为数据的共享和交流提供 了便利 ,例如 Creo,NASTRAN,I-DEAS,AutoCAD等软件 。ANSYS
软件 。包含 了多种有限元分析软件的功能 ,从 简单的线性静 力分析到非常复杂的非线性动 力分析 ,再到电磁 分析、流体分析 、热分
析等。在每一个不同的工程领域 ,ANSYS软件分析方法有所差别 ,步骤也不一样。本文主要分析简单悬臂梁的有限元模型。
散化 处理 、有 限元求 解 、对计 算 结果 进行 后处 理 。过 去 由于计 算 Mesh:lines

悬臂梁—有限元ABAQUS线性静力学分析实例

悬臂梁—有限元ABAQUS线性静力学分析实例

线性静力学分析实例—-以悬臂梁为例线性静力学问题是简单且常见的有限元分析类型,不涉及任何非线性(材料非线性、几何非线性、接触等),也不考虑惯性及时间相关的材料属性。

在ABAQUS 中,该类问题通常采用静态通用(Sta ti c,Gen er al)分析步或静态线性摄动(Sta ti c,Li near p erturbation )分析步进行分析。

线性静力学问题很容易求解,往往用户更关系的是计算效率和求解效率,希望在获得较高精度的前提下尽量缩短计算时间,特别是大型模型。

这主要取决于网格的划分,包括种子的设置、网格控制和单元类型的选取。

在一般的分析中,应尽量选用精度和效率都较高的二次四边形/六面体单元,在主要的分析部位设置较密的种子;若主要分析部位的网格没有大的扭曲,使用非协调单元(如CPS4I 、C3D8I)的性价比很高.对于复杂模型,可以采用分割模型的方法划分二次四边形/六面体单元;有时分割过程过于繁琐,用户可以采用精度较高的二次三角形/四面体单元进行网格划分。

悬臂梁的线性静力学分析1。

1 问题的描述一悬臂梁左端受固定约束,右端自由,结构尺寸如图1—1所示,求梁受载后的Mises 应力、位移分布。

材料性质:弹性模量32e E =,泊松比3.0=ν均布载荷:F=103N图1—1 悬臂梁受均布载荷图1.2 启动AB AQU S启动AB AQUS 有两种方法,用户可以任选一种.(1)在Win dow s操作系统中单击“开始”—-“程序"——A BAQU S 6.10-—ABAQUS/CAE。

(2)在操作系统的DOS窗口中输入命令:abaqus cae。

启动ABAQUS/CAE后,在出现的Start Section(开始任务)对话框中选择Create ModelDatabase。

1。

3创建部件在ABAQUS/CAE顶部的环境栏中,可以看到模块列表:Module:Part,这表示当前处在Part(部件)模块,在这个模块中可以定义模型各部分的几何形体。

悬臂梁变形及应力分析

悬臂梁变形及应力分析

基于ANSYS 10.0对悬臂梁的强度及变形分析姓名:刘吉龙班级:机制0803班学号:200802070516对悬臂梁的受力及变形分析摘要:本研究分析在ANSYS10.0平台上,采用有限元法对悬臂梁进行强度与变形分析、验证此悬臂梁设计的合理性。

一、问题描述长度L=254 mm的方形截面的铝合金锥形杆,上端固定,下端作用有均布拉力P=68.9 Mpa,上截面的尺寸50.8×50.8 mm,下截面尺寸25.4×25.4 mm(见右图),弹性模量E=7.071×104 Mpa,泊松比μ=0.3,试用确定下端最大轴向位移δ和最大轴向应力。

试将分析结果与理论解进行比较,说明有限元分析的误差。

(理论解:最大轴向位移δ=0.1238 mm)。

二、建立有限元模型:定义模型单元类型为:solid(实体)95号单元,材料常数为:弹性模量E=7.071×104 Mpa,泊松比μ=0.3。

三、有限元模型图:建立有限元模型时,观察模型的形状可知,我们可以先建立模型的上下底面,再根据有上下底面形成的八个关键点(keypoints)生成线,接着生成面,生成体。

最后生成该悬臂梁的模型图,示图如下:整个模型建立好之后即可对其划分网格,划分网格时,若选择自由划分则生成的网格比较混乱,不能比较准确的模拟该梁真实的受力变形情况。

故我们选择智能划分模式,并且分别对模型的各个棱边(lines)进行均匀分割,这样可以划分出比较理想的网格,更利于我们的研究和分析。

网格划分之后的模型图为:四、加载并求解:根据该悬臂梁的受力特点,我们在其下底面(比较大的底面)上进行六个自由度的位移约束,而在其上地面上施加大小为P=68.9 Mpa均布拉力,将载荷加载好之后便可进行运算求解,求解完成之后,我们得到其位移变形图如下:Z向位移云图为:Z向应力云图为:五、结果分析及结论:由以上两张云图和一张变形图中我们可以读出,悬臂梁的最大轴向(Z向)位移和轴向(Z向)最大应力分别为:最大轴向位移为:δ=0.123746 mm 最大轴向应力为:σ=68.224 Mpa 但是,我们知道,如果所划分的网格有差异时,计算结果将会产生一定的误差,由于设计要求的最大轴向位移不能超过0.1238mm,而我们的建模计算结果已经小于此设计要求值。

高耀东编著《ANSYS 18.2有限元分析与应用实例 》用SOLID185单元分析悬臂梁的剪切闭锁

高耀东编著《ANSYS 18.2有限元分析与应用实例 》用SOLID185单元分析悬臂梁的剪切闭锁

SOLVE
!求解
FINISH
/POST1 PLNSOL, U,Y
!显示变形云图
FINISH
50
4
4
92

2
50
50
4
4
25
缩减积分
0.2
0.217

3
10
50
4
4
25
全积分
25
9.782

4
10
50
4
20
200
全积分
25
24.658

5
10
50
4
4
25
缩减积分
25
26.402

分析结果表明,梁最大挠度的有限元全积分解小于理论解,全积分解小于缩减积分解, 梁高度较小时,采用全积分和较大的单元尺寸时会发生剪切闭锁,计算误差较大。
!定义材料模型
BLOCK,0,L,0,H,0,B
!创建六面体
LESIZE, 1,,,4 $ LESIZE, 9,,,4 $ LESIZE, 2,,,25
!指定直线划分单元段数
VMESH, 1
!对体划分单元
FINISH
/SOLU DA,5,ALL
!在面上施加全约束,模拟固定端
KSEL,S,LOC,X,L $ FK,ALL,FY,-P/4 $ ALLS !在关键点上加集中力
实例 E6-1 用 SOLID185 单元分析悬臂梁的剪切闭锁
已知如图 6-9 所示的悬臂梁的长度 L=0.5m,矩形截面,材料为钢,作用在梁上的集中 力 P=500N。下面用 ANSYS 对梁的变形进行研究,分析剪切闭锁的影响。分析使用的单元 类型为 SOLID185,采用的参数和分析结果见表 6-3。其中,梁最大挠度的理论解采用以下 公式

悬臂梁的有限元分析

悬臂梁的有限元分析

工程地质数值模拟成绩考核——昆明理工大学本科生课程*****学院:国土资源工程学院科系:地科系专业:勘查111学号:************2014年11 月8 日悬臂梁的有限元分析1.问题概述。

悬臂梁为矩形截面的钢梁,长10m宽1m、高2m,不计梁的自重,弹性模量为220GPa,泊松比为0.2,在悬臂端作用一集中荷载P=1200kN。

试分析该悬臂梁的内力和变形情况。

2.启动ANSYS程序。

(1)在【开始】菜单中依次选取【所有程序】/【ANSYS8.0】/【ConfigureANSYSProducts】选项,打开【ANSYS8.0Launcher】对话框。

(2)选中【FileManagement】选项卡,输入目录名:“D:\ANSYSFX\zhang1\Exam01\ANSYSjs”,输入项目名:“Z101Beam”。

(3)单击按钮运行程序,进入ANSYS使用界面。

3.定义材料、实常数和单元类型。

(1)在【ANSYSMainMenu】菜单中依次选取【Preprocessor】(前处理)/【ElementType】/【Add/Edit/Delete】选项,打开单元类型对话框。

单击按钮,打开单元类型库对话框,在右侧两个列表框中分别选取【Beam】选项和【2Delastic3】选项(简称为Beam3单元,以后叙述中记为【Beam】-【2Delastic3】单元,类似的情况记法相同),如图1-16所示。

单击按钮,再单击【ElementType】对话框中的按钮。

图1-16【LibraryofElementTypes】对话框(2)在【ANSYSMainMenu】菜单中依次选取【Preprocessor】/【RealConstants】/【Add/Edit/Delete】选项,打开实常数对话框,如图1-17所示。

单击按钮,打开Beam3实常数对话框,按照提示输入相应的面积、惯性矩和梁高参数,如图1-18所示。

悬臂梁的有限元分析

悬臂梁的有限元分析

悬臂梁的有限元分析I. 内容综述悬臂梁的有限元分析是结构工程领域中的一个重要课题,它是一种数值计算方法,通过将连续的结构分解成许多小单元,然后对每个单元进行分析,最终得到整个结构的性能指标。

这种方法可以有效地模拟结构的变形和应力分布情况,为设计和优化提供可靠的依据。

在实际应用中,悬臂梁的有限元分析需要考虑多种因素,如材料属性、几何形状、载荷条件等。

因此在进行分析时,需要选择合适的模型和网格尺寸,并对边界条件进行合理设定。

此外由于悬臂梁的结构特点,其在不同位置的受力情况也有所不同,因此需要对各个部位进行分别分析。

悬臂梁的有限元分析是一项复杂而重要的工作,只有通过合理的建模和分析方法,才能得到准确的结果,并为实际工程提供有效的指导。

A. 研究背景和意义悬臂梁作为一种常见的结构形式,广泛应用于建筑、桥梁、机械等领域。

然而在实际应用过程中,由于各种因素的影响,悬臂梁的结构性能可能会发生退化,导致结构的安全性受到威胁。

因此对悬臂梁的有限元分析具有重要的研究意义。

有限元分析是一种基于数学模型的工程分析方法,通过将复杂的结构分解为若干个简单的单元,利用计算机模拟这些单元在受力作用下的变形和应力分布,从而预测结构的响应。

近年来随着计算机技术和数学方法的不断发展,有限元分析在工程领域中的应用越来越广泛,已经成为工程设计和施工的重要工具。

对于悬臂梁这种特殊结构,有限元分析不仅可以帮助我们了解其在不同工况下的性能表现,还可以为优化结构设计、提高结构强度和刚度提供理论依据。

此外通过对悬臂梁的有限元分析,我们还可以更好地了解其在使用过程中可能出现的缺陷和损伤,从而为预防事故、保障人员安全提供技术支持。

悬臂梁的有限元分析研究具有很高的实用价值和理论意义,对于推动工程技术的发展、提高人类生活质量具有重要作用。

B. 研究目的和方法本研究旨在通过有限元分析方法,对悬臂梁进行分析,以探究其在不同荷载下的应力分布情况。

我们将采用ANSYS软件进行模拟计算,并通过对计算结果的分析,得出悬臂梁的最大应力、最小应力以及平均应力等关键指标。

悬臂梁模态分析范文

悬臂梁模态分析范文

悬臂梁模态分析范文悬臂梁是一种常见的结构形式,广泛应用于建筑、机械、航空航天等领域。

悬臂梁的模态分析是对其自由振动特性进行研究的一种方法。

通过模态分析,可以确定悬臂梁的固有频率和模态形态,为设计和优化悬臂梁结构提供依据。

悬臂梁的自由振动方程可以表示为:$$(EI \frac{d^4u(x)}{dx^4} + \rho A \frac{d^2u(x)}{dt^2}) =0$$其中,u(x)是悬臂梁的振动位移,x是悬臂梁上的坐标,E是弹性模量,I是惯性矩,$\rho$是材料密度,A是悬臂梁的截面面积。

为了求解悬臂梁的自由振动方程,需要确定边界条件。

通常情况下,悬臂梁一端固定,另一端自由。

边界条件可以表示为:$$u(0)=0$$$$M(0)=0$$$$\frac{d^2u(x)}{dx^2},_{x=0} = 0$$其中,u(0)表示悬臂梁一端的振动位移,M(0)表示悬臂梁一端的弯矩。

对于悬臂梁的模态分析,通常采用有限元分析的方法。

有限元分析将悬臂梁离散为多个小单元,每个单元的振动位移可以近似为一个简单的函数。

通过将每个小单元的振动位移组合起来,可以得到整个悬臂梁的振动位移。

然后,通过将振动位移代入自由振动方程,可以得到一个特征值问题,即求解固有频率和模态形态。

在实际应用中,可以使用计算软件进行悬臂梁的模态分析。

常用的计算软件包括ANSYS、ABAQUS等。

这些软件提供了丰富的模态分析功能,可以快速、准确地求解悬臂梁的固有频率和模态形态。

模态分析结果可以用于评估悬臂梁结构的稳定性和安全性。

通过分析不同模态的振动形态,可以判断悬臂梁的潜在共振点和结构弱点。

在设计和优化悬臂梁结构时,可以根据模态分析结果进行结构改进,以提高悬臂梁的抗风、抗震能力。

总之,悬臂梁模态分析是对悬臂梁自由振动特性进行研究的重要方法。

通过模态分析,可以确定悬臂梁的固有频率和模态形态,为结构设计和优化提供依据。

利用计算软件进行模态分析可以提高分析效率和精确度,为工程实践提供技术支持。

《有限元教程》20例ANSYS经典实例

《有限元教程》20例ANSYS经典实例

《有限元教程》20例ANSYS经典实例有限元方法在工程领域中有着广泛的应用,能够对各种结构进行高效精确的分析和设计。

其中,ANSYS作为一种强大的有限元分析软件,被广泛应用于各个工程领域。

下面将介绍《有限元教程》中的20个ANSYS经典实例。

1.悬臂梁的静力分析:通过加载和边界条件,研究悬臂梁的变形和应力分布。

2.弯曲梁的非线性分析:通过加载和边界条件,研究受弯曲梁的非线性变形和破坏。

3.柱体的压缩分析:研究柱体在压缩载荷作用下的变形和应力分布。

4.钢筋混凝土梁的受弯分析:通过添加混凝土和钢筋材料属性,研究梁的受弯变形和应力分布。

5.圆盘的热传导分析:根据热传导方程,研究圆盘内部的温度分布。

6.输电线杆的静力分析:研究输电线杆在风载荷和重力作用下的变形和应力分布。

7.轮胎的动力学分析:通过加载和边界条件,研究轮胎在不同路面条件下的变形和应力分布。

8.支架的模态分析:通过模态分析,研究支架的固有频率和振型。

9.汽车车身的碰撞分析:通过加载和边界条件,研究汽车车身在碰撞中的变形和应力分布。

10.飞机翼的气动分析:根据飞机翼的气动特性,研究翼面上的气压分布和升力。

11.汽车车身的优化设计:通过参数化建模和优化算法,寻找最佳的车身结构设计。

12.轮毂的疲劳分析:根据材料疲劳寿命曲线,研究轮毂在不同载荷下的寿命。

13.薄膜材料的热应力分析:根据热应力理论,研究薄膜材料在不同温度下的应变和应力。

14.壳体结构的模态分析:通过模态分析,研究壳体结构的固有频率和振型。

15.地基基础的承载力分析:通过加载和边界条件,研究地基基础的变形和应力分布。

16.水坝的稳定性分析:根据水力和结构力学,研究水坝的稳定性和安全性。

17.风机叶片的动态分析:通过加载和边界条件,研究风机叶片在不同风速下的变形和应力分布。

18.圆筒容器的蠕变分析:根据蠕变理论,研究圆筒容器在持续加载下的变形和应力。

19.桥梁结构的振动分析:通过模态分析,研究桥梁结构的固有频率和振型。

有限元分析

有限元分析

题三:工字梁截面悬臂梁
通过有限元分析,梁的最大位移为0.38095;理论上梁的端点位移最大,为0.380952381。


者误差为0.000625%,基本可以忽略,认为两者相同。

题四:Plate
通过图像分析,最大应力值发生在开洞洞口的周边位置,即应力集中在洞口位置处。

网格划分对位移影响较小,对应力影响较大。

平板开孔后,洞口周边的应力分布发生很大变化。

因此在设计时,洞口周边必须进行加强措施。

开孔后在孔周边会出现应力集中,但应力集中的范围不大。

板中最大位移在底边最左,为0.780×8
10 ,最小应力也出现在底边最左,为1.23,最大应力出现在左边最下,大小为3611。

有限元分析得出的计算结果和理论值基本相同。

土木122 韩东辰 1209070219。

四节点八节点四边形单元悬臂梁的matlab有限元编程-概述说明以及解释

四节点八节点四边形单元悬臂梁的matlab有限元编程-概述说明以及解释

四节点八节点四边形单元悬臂梁的matlab有限元编程-概述说明以及解释1.引言1.1 概述有限元方法是工程领域中常用的数值计算方法,它将一个连续的物理问题通过有限个节点和元素进行离散化,将问题转化为一个由代数方程组组成的离散问题。

悬臂梁是结构工程中常见的一种结构形式,而四节点、八节点以及四边形单元则是悬臂梁有限元分析中常用的元素类型。

本文将介绍四节点、八节点和四边形单元在悬臂梁有限元分析中的应用,以及如何利用Matlab编程实现这些元素的有限元分析。

通过对这些元素的理论分析和编程实现,读者将能够深入了解悬臂梁有限元分析的原理和方法,从而在工程实践中应用这些知识,提高结构设计的准确性和效率。

1.2 文章结构本文主要分为引言、正文和结论三个部分。

在引言部分中,将对四节点八节点四边形单元悬臂梁的matlab有限元编程进行简要概述,介绍文章的结构和目的。

正文部分将详细介绍四节点悬臂梁单元、八节点悬臂梁单元和四边形单元的理论基础和matlab有限元编程步骤。

最后,在结论部分将对整个文章进行总结,分析编程结果,并展望未来的研究方向。

通过以上结构,读者能够全面了解有限元悬臂梁单元的理论知识和编程实现方法,为相关研究提供参考。

1.3 目的本文旨在通过对四节点悬臂梁单元、八节点悬臂梁单元和四边形单元进行有限元分析,探讨不同单元在悬臂梁结构中的应用及性能表现。

具体目的包括:1. 深入了解四节点悬臂梁单元、八节点悬臂梁单元和四边形单元的原理和计算方法;2. 利用Matlab编程实现这些有限元分析模型,探讨其编程实现过程和计算结果;3. 对比不同单元在悬臂梁结构中的应用效果,分析其计算结果的准确性和计算效率;4. 对于有限元分析在工程实践中的应用提供参考和指导,为悬臂梁结构设计和分析提供理论支持。

2.正文2.1 四节点悬臂梁单元四节点悬臂梁单元是有限元方法中常用的元素之一,用于模拟悬臂梁结构的力学行为。

在本节中,我们将介绍四节点悬臂梁单元的基本原理和相关的matlab有限元编程。

悬臂梁—有限元ABAQUS线性静力学分析实例分解

悬臂梁—有限元ABAQUS线性静力学分析实例分解

线性静力学分析实例——以悬臂梁为例线性静力学问题是简单且常见的有限元分析类型,不涉及任何非线性(材料非线性、几何非线性、接触等),也不考虑惯性及时间相关的材料属性。

在ABAQUS中,该类问题通常采用静态通用(Static,General)分析步或静态线性摄动(Static,Linear perturbation)分析步进行分析。

线性静力学问题很容易求解,往往用户更关系的是计算效率和求解效率,希望在获得较高精度的前提下尽量缩短计算时间,特别是大型模型。

这主要取决于网格的划分,包括种子的设置、网格控制和单元类型的选取。

在一般的分析中,应尽量选用精度和效率都较高的二次四边形/六面体单元,在主要的分析部位设置较密的种子;若主要分析部位的网格没有大的扭曲,使用非协调单元(如CPS4I、C3D8I)的性价比很高。

对于复杂模型,可以采用分割模型的方法划分二次四边形/六面体单元;有时分割过程过于繁琐,用户可以采用精度较高的二次三角形/四面体单元进行网格划分。

悬臂梁的线性静力学分析1.1 问题的描述一悬臂梁左端受固定约束,右端自由,结构尺寸如图1-1所示,求梁受载后的Mises应力、位移分布。

ν材料性质:弹性模量3=E=,泊松比3.02e均布载荷:F=103N图1-1 悬臂梁受均布载荷图1.2 启动ABAQUS启动ABAQUS有两种方法,用户可以任选一种。

(1)在Windows操作系统中单击“开始”--“程序”--ABAQUS 6.10 --ABAQUS/CAE。

(2)在操作系统的DOS窗口中输入命令:abaqus cae。

启动ABAQUS/CAE后,在出现的Start Section(开始任务)对话框中选择Create Model Database。

1.3 创建部件在ABAQUS/CAE顶部的环境栏中,可以看到模块列表:Module:Part,这表示当前处在Part(部件)模块,在这个模块中可以定义模型各部分的几何形体。

ANSYS有限元分析实例

ANSYS有限元分析实例

ANSYS有限元分析实例1.悬臂梁的结构分析悬臂梁是一种常见的结构,其呈直线形式,一端固定于支撑点,另一端自由悬挂。

在这个分析中,我们将使用ANSYS来确定悬臂梁的最大弯曲应力和挠度。

首先,我们需要创建悬臂梁的几何模型,并给出其材料属性和加载条件。

然后,在ANSYS中创建有限元模型,并进行网格划分。

接下来,进行力学分析,求解材料在给定加载下的应力和位移。

最后,通过对结果的后处理,得出最大弯曲应力和挠度。

2.螺旋桨的流体力学分析螺旋桨是一种能够产生推力的旋转装置,广泛应用于船舶、飞机等交通工具中。

螺旋桨的流体力学分析可以帮助我们确定其叶片的受力情况和推力性能。

在这个分析中,我们需要建立螺旋桨的几何模型,并给出流体的流速和压力条件。

然后,我们在ANSYS中创建螺旋桨的有限元模型,并进行网格划分。

通过求解流体场方程,计算叶片上的压力分布和受力情况。

最后,通过对结果的后处理,得出叶片的受力情况和推力性能。

3.散热片的热传导分析散热片是一种用于散热的装置,广泛应用于电子设备、电脑等领域。

散热片的热传导分析可以帮助我们确定散热片在给定热源条件下的温度分布和散热性能。

在这个分析中,我们需要建立散热片的几何模型,并给出材料的热导率和热源条件。

然后,我们在ANSYS中创建散热片的有限元模型,并进行网格划分。

通过求解热传导方程,计算散热片上各点的温度分布。

最后,通过对结果的后处理,得出散热片的温度分布和散热性能。

以上是三个ANSYS有限元分析的实例,分别涉及结构分析、流体力学分析和热传导分析。

通过这些实例,我们可以充分展示ANSYS在不同领域的应用,并帮助工程师和科研人员解决工程问题,提高设计效率和产品性能。

悬臂梁大变形的向量式有限元分析

悬臂梁大变形的向量式有限元分析
f r e a d x e a fr e a e b ane o c s n e tr l o c s r o t i d, a t e a t e e b a n nd h c n i v r e m d fr to a e c mo n i l e omai n t a h me t s r p e e t d y a il s se e r s n e b p r c e y t m mo in a p n n smu t n o sy. Th ie ai e o mu a f a tce t to h p e i g i la e u l e tr tv fr l o p ril
d s a e n s o t i d a c r i o i tr a o a o c n q i ae tma so a lm e t a d t e iplc me ti b ane c o d ngt n e ln d fr ea d e u v n s ff me e e n s n h n l l r
a c mp t t n p o e u e whih i r g a o u ai r c d r c sp o r mme ORTRAN.Th o o d by F e c mpu ain r s t e c n itn t tto e ul a o sse twi sr h t e t e r tc ou in.T e meho a s d t e f r t esmulto d a a y i fl g a t e e h h o eia s l to h t d c n beu e o p ro m h i l ain a n sso a e c n i v r n l r l
ee n meh d s s d o l me t to i u e t dic eie tu t r s nt p ril s se a d ik g ee n s mo g s r t sr cu e i o a t e y t ms n l a e l me t a n z c n

有限元法手算求解悬臂梁内力

有限元法手算求解悬臂梁内力

题目信息:已知一悬臂梁,其受荷情况及尺寸如右图所示,72210/,0.25E kN m ν=⨯=,厚度100t mm =,试用有限单元法计算其应力分布,并将有限元结果与材料力学结果进行对比。

解析:手算八节点六单元模型1 结构离散化将悬臂梁划分成六个三角形单元,单元节点以铰接的方式互相连接,节点和单元编号如图1.1所示。

图1.1 节点和单元编号2 位移模式图1.1中单元①在局部坐标下的坐标如图1.2所示。

图1.2 单元①在局部坐标三节点单元索取的多项式位移模式为:123456............(1)u x yv x yαααααα=++⎧⎨=++⎩ 将3、2、1节点的坐标代入位移方程中,可解得:33312222211110101111101,11,10222001010u u u u u u u u u ααα===∆∆∆将1α、2α、3α代入式(1)中,可解得:()()()()()()3333222211113333222211111212u a b x c y u a b x c y u a b x c y u v a b x c y v a b x c y v a b x c y v ⎧=++++++++⎡⎤⎣⎦⎪⎪∆⎨⎪=++++++++⎡⎤⎣⎦⎪⎩∆ 其中23122131232111,,,(3,2,1),1122a x y x yb y yc x x m =-=-=-∆=⨯⨯= .因此,解得:3211232131200010101000a x y x yb y yc x x =-=⨯-⨯=⎧⎪=-=-=⎨⎪=-=-=⎩ 2133121323100100000101a x y x y b y y c x x =-=⨯-⨯=⎧⎪=-=-=⎨⎪=-=-=⎩ 1322313212311001011011a x y x yb y yc x x =-=⨯-⨯=⎧⎪=-=-=-⎨⎪=-=-=-⎩ 3 单元刚度矩阵单元的形函数为:()()()33332222111110021002112N a b x c y x x N a b x c y y y N a b x c y x y ⎧=++=++=⎪∆⎪⎪=++=++=⎨∆⎪⎪=++=--⎪∆⎩则应变矩阵为:[]333333333001010000201N x b N B c y c b N N yx ⎡⎤∂⎢⎥∂⎢⎥⎡⎤⎡⎤⎢⎥∂⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥∂∆⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥∂∂⎢⎥∂∂⎣⎦[]222222222000010001210N x b N B c y c b N N y x ⎡⎤∂⎢⎥∂⎢⎥⎡⎤⎡⎤⎢⎥∂⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥∂∆⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥∂∂⎢⎥∂∂⎣⎦[]111111*********001211N x b N B c y c b N N yx ⎡⎤∂⎢⎥∂⎢⎥-⎡⎤⎡⎤⎢⎥∂⎢⎥⎢⎥===-⎢⎥⎢⎥⎢⎥∂∆⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎢⎥∂∂⎢⎥∂∂⎣⎦弹性矩阵为:[]72110410321101010115413000028E D νννν⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥==⨯⎢⎥⎢⎥-⎢⎥-⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦应力矩阵为:[][][]()2,(1,2,3)211122i i i i i i i i b c ES D B b c i c b ννννν⎡⎤⎢⎥⎢⎥===⎢⎥-∆⎢⎥--⎢⎥⎣⎦即[]7731080321410010201541503308S ⎡⎤⎢⎥⎡⎤⎢⎥⎢⎥⎢⎥=⨯=⨯⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦[]7721002432410011008151533008S ⎡⎤⎢⎥⎡⎤⎢⎥⎢⎥=⨯=⨯⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦[]771114823214101102815415333388S ⎡⎤--⎢⎥--⎡⎤⎢⎥⎢⎥⎢⎥=⨯--=⨯--⎢⎥⎢⎥⎢⎥--⎢⎥⎣⎦⎢⎥--⎢⎥⎣⎦求单元刚度矩阵:[][][]iiij im eT jijj jm mi mjmm k k k K B S t k k k k k k ⎡⎤⎢⎥=∆=⎢⎥⎢⎥⎣⎦其中:[][][]()21122,(,3,2,1)114122r s r s r s r s T rs r r r s r s r s r s b b c c b c c b Et k B S t r s c b b c c c b b ννννννν--⎡⎤++⎢⎥=∆==⎢⎥---∆⎢⎥++⎢⎥⎣⎦代入数据求得单元刚度矩阵为:[](1)68002820330330330332102008281583321152338511K --⎡⎤⎢⎥--⎢⎥⎢⎥--=⨯⎢⎥--⎢⎥⎢⎥----⎢⎥----⎣⎦同理可求得其他各单元的刚度矩阵均为:[]()6800282033033033033210(2,3,4,5,6)2008281583321152338511i K i --⎡⎤⎢⎥--⎢⎥⎢⎥--=⨯=⎢⎥--⎢⎥⎢⎥----⎢⎥----⎣⎦4 整体刚度矩阵将单元刚度矩阵(6阶方阵)扩大成16阶方阵,除原有9个子矩阵外,其它子矩阵各元素均为零。

abaqus有限元动力学标准算例

abaqus有限元动力学标准算例

abaqus有限元动力学标准算例
ABQUS有限元动力学标准算例有很多,以下是其中几个常见的:
1. Cantilever Beam(悬臂梁):这个算例用于模拟一个悬臂梁
在受到外部荷载作用时的振动响应。

它可以用来研究悬臂梁的固有频率和模态形态。

2. Free Vibration of a Mass-Spring System(质量弹簧系统自由
振动):这个算例模拟了一个质量和弹簧相连接的系统在没有外部激励下的自由振动情况。

它可以用来研究系统的固有频率和振动模态。

3. Transient Analysis of a Simply Supported Beam(简支梁的瞬
态分析):这个算例模拟了一个简支梁在受到一定冲击荷载后的动态响应。

它可以用来研究梁在冲击荷载下的振动行为。

4. Modal Analysis of a Plate(平板的模态分析):这个算例模
拟了一个平板结构的模态响应。

它可以用来研究平板的固有频率和振动模态。

这些算例都可以在ABQUS官方网站上找到详细的教程和步骤。

此外,ABQUS还提供了更多的动力学分析算例,涵盖了不同
类型的结构和加载条件。

可以根据具体的需求选择适合的算例进行研究和分析。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

用有限元法对悬臂梁分析的算例算例:如下图所示的悬臂梁,受均布载荷q=1N/mm2作用。

E=2.1×105N/mm2, μ=0.3厚度h=10mm。

现用有限元法分析其位移及应力。

梁可视为平面应力状态,先按图示尺寸划分为均匀的三角形网格,共有8×10=80个单元,5×ll=55个节点,坐标轴以及单元与节点的编号如图。

将均布载荷分配到各相应节点上,把有约束的节点5l、52、53、54、55视作固定铰链,建立如图所示的离散化计算模型。

程序计算框图:(续左)程序中的函数功能介绍及源代码1. LinearTriangleElementStiffness(E,NU,t,xi,yi,xj,yj,xm,ym)――该函数用于计算平面应力情况下弹性模量为E、泊松比为NU、厚度为t、第一个节点坐标为(xi,yi)、第二个节点坐标为(xj,yj)、第三个节点坐标为(xm,ym)时的线性三角形元的单元刚度矩阵.该函数返回6×6的单位刚度矩阵k.2. LinearTriangleAssemble(K,k,i,j,m)――该函数将连接节点i,j,m的线性三角形元的单元刚度矩阵k集成到整体刚度矩阵K。

每集成一个单元,该函数都将返回2N×2N的整体刚度矩阵K.3. LinearTriangleElementStresses(E,NU,t,xi,yi,xj,yj,xm,ym,u)-- 该函数计算在平面应力情况下弹性模量为E、泊松比为NU、厚度为t、第一个节点坐标为(xi,yi)第二个节点坐标为(xj,yj)、第三个节点坐标为(xm,ym)以及单元位移矢量为u时的单元应力。

该函数返回单元应力矢量。

函数源代码:function y = LinearTriangleElementStiffness(E,NU,t,xi,yi,xj,yj,xm,ym)A = (xi*(yj-ym) + xj*(ym-yi) + xm*(yi-yj))/2;%三角形单元面积,单元节点应该按逆时针排序,保证每个三角形单元的面积都为正值(也可作为一个小函数:LinearTriangleElementArea)betai = yj-ym;betaj = ym-yi;betam = yi-yj;gammai = xm-xj;gammaj = xi-xm;gammam = xj-xi;B = [betai 0 betaj 0 betam 0 ;0 gammai 0 gammaj 0 gammam ;gammai betai gammaj betaj gammam betam]/(2*A);%B为应变矩阵,其中betai=yi-ym,betaj=ym-yi,betam=yi-yj.gammai=xm-xj, gammaj=xi-xm, gammam=xj-xi.D = (E/(1-NU*NU))*[1 NU 0 ; NU 1 0 ; 0 0 (1-NU)/2];%D为弹性矩阵,分为平面应力问题和平面应变问题对于平面应力问题D = (E/(1-NU*NU))*[1 NU 0 ; NU 1 0 ; 0 0 (1-NU)/2];对于平面应变问题E1=E/(1-NU*NU),NU1=NU/(1-NU)y = t*A*B'*D*B;%单元刚度矩阵function y = LinearTriangleAssemble(K,k,i,j,m)K(2*i-1,2*i-1) = K(2*i-1,2*i-1) + k(1,1); K(2*i-1,2*i) = K(2*i-1,2*i) + k(1,2);K(2*i-1,2*j-1) = K(2*i-1,2*j-1) + k(1,3); K(2*i-1,2*j) = K(2*i-1,2*j) + k(1,4);K(2*i-1,2*m-1) = K(2*i-1,2*m-1) + k(1,5); K(2*i-1,2*m) = K(2*i-1,2*m) + k(1,6);K(2*i,2*i-1) = K(2*i,2*i-1) + k(2,1); K(2*i,2*i) = K(2*i,2*i) + k(2,2);K(2*i,2*j-1) = K(2*i,2*j-1) + k(2,3); K(2*i,2*j) = K(2*i,2*j) + k(2,4);K(2*i,2*m-1) = K(2*i,2*m-1) + k(2,5); K(2*i,2*m) = K(2*i,2*m) + k(2,6);K(2*j-1,2*i-1) = K(2*j-1,2*i-1) + k(3,1); K(2*j-1,2*i) = K(2*j-1,2*i) + k(3,2);K(2*j-1,2*j-1) = K(2*j-1,2*j-1) + k(3,3); K(2*j-1,2*j) = K(2*j-1,2*j) + k(3,4);K(2*j-1,2*m-1) = K(2*j-1,2*m-1) + k(3,5); K(2*j-1,2*m) = K(2*j-1,2*m) + k(3,6);K(2*j,2*i-1) = K(2*j,2*i-1) + k(4,1); K(2*j,2*i) = K(2*j,2*i) + k(4,2);K(2*j,2*j-1) = K(2*j,2*j-1) + k(4,3); K(2*j,2*j) = K(2*j,2*j) + k(4,4);K(2*j,2*m-1) = K(2*j,2*m-1) + k(4,5); K(2*j,2*m) = K(2*j,2*m) + k(4,6);K(2*m-1,2*i-1) = K(2*m-1,2*i-1) + k(5,1); K(2*m-1,2*i) = K(2*m-1,2*i) + k(5,2);K(2*m-1,2*j-1) = K(2*m-1,2*j-1) + k(5,3); K(2*m-1,2*j) = K(2*m-1,2*j) + k(5,4);K(2*m-1,2*m-1) = K(2*m-1,2*m-1) + k(5,5); K(2*m-1,2*m) = K(2*m-1,2*m) + k(5,6);K(2*m,2*i-1) = K(2*m,2*i-1) + k(6,1); K(2*m,2*i) = K(2*m,2*i) + k(6,2);K(2*m,2*j-1) = K(2*m,2*j-1) + k(6,3); K(2*m,2*j) = K(2*m,2*j) + k(6,4);K(2*m,2*m-1) = K(2*m,2*m-1) + k(6,5); K(2*m,2*m) = K(2*m,2*m) + k(6,6);y = K;%对号入座,如前所述,每集成一次都将返回2N×2N的整体刚度矩阵K.此题为110×110function y = LinearTriangleElementStresses(E,NU,t,xi,yi,xj,yj,xm,ym,u)A = (xi*(yj-ym) + xj*(ym-yi) + xm*(yi-yj))/2;betai = yj-ym;betaj = ym-yi;betam = yi-yj;gammai = xm-xj;gammaj = xi-xm;gammam = xj-xi;B = [betai 0 betaj 0 betam 0 ;0 gammai 0 gammaj 0 gammam ;gammai betai gammaj betaj gammam betam]/(2*A);D = (E/(1-NU*NU))*[1 NU 0 ; NU 1 0 ; 0 0 (1-NU)/2];%平面应力和平面应变问题两种情况y = D*B*u;%单元应力计算主程序源代码E=21e7;NU=0.3;t=0.01;stifflike5=LinearTriangleElementStiffness(E,NU,t,0.4,0.08,0.36,0.08,0.36,0.06,1)%选取2个基本单元,调用M文件stifflike1=LinearTriangleElementStiffness(E,NU,t,0.4,0.08,0.36,0.06,0.4,0.06,1)K=sparse(110,110); %creat a xishu matrix for total stiff创建一个稀疏矩阵for i=1:49if rem(i,5)%模取余, bool型变量,非零即为真j=i;K=LinearTriangleAssemble(K,stifflike5,j,j+5,j+6);%节点编号K=LinearTriangleAssemble(K,stifflike1,j,j+6,j+1);endend%将每个单元刚度矩阵集成到总刚中K=full(K);%转化稀疏矩阵 k=K(1:100,1:100);k=[K,zeros(100,10);zeros(10,100),eye(10)];k=sparse(k);%利用边界条件简化基本方程Q=sparse(2:10:92,1,[-200,-400,-400,-400,-400,-400,-400,-400,-400,-400,],110,1);%外部荷载,此处不包括约束条件,通过形函数确定,是不是可以理解为梁的两端为中间的一半呢?d=k\Q;%高斯消元法,比克莱姆法则在计算速度上有绝对的优势!x=0:0.04:0.4;plot(x,d(106:-10:6))%基本绘图命令grid%带网格y=zeros(80,3);q=0;for i=1:49switch rem(i,5)case 1j=2*i;u=[d(j-1) d(j) d(j+11) d(j+12) d(j+1) d(j+2)];u=u';xl=0.4;yl=0.08;xm=0.36;ym=0.06;xn=0.4;yn=0.06;y(i+q,:)=LinearTriangleElementStresses(E,NU,t,xl,yl,xm,ym,xn,yn,u)';xl=xl-0.04;xm=xm-0.04;xn=xn-0.04;case 2j=2*i;u=[d(j-1) d(j) d(j+11) d(j+12) d(j+1) d(j+2)];u=u';xl=0.4;yl=0.06;xm=0.36;ym=0.04;xn=0.4;yn=0.04;y(i+q,:)=LinearTriangleElementStresses(E,NU,t,xl,yl,xm,ym,xn,yn,u)';xl=xl-0.04;xm=xm-0.04;xn=xn-0.04;case 3j=2*i;u=[d(j-1) d(j) d(j+11) d(j+12) d(j+1) d(j+2)];u=u';xl=0.4;yl=0.04;xm=0.36;ym=0.02;xn=0.4;yn=0.02;y(i+q,:)=LinearTriangleElementStresses(E,NU,t,xl,yl,xm,ym,xn,yn,u)';xl=xl-0.04;xm=xm-0.04;xn=xn-0.04;case 4j=2*i;u=[d(j-1) d(j) d(j+11) d(j+12) d(j+1) d(j+2)];u=u';xl=0.4;yl=0.02;xm=0.36;ym=0;xn=0.4;yn=0;y(i+q,:)=LinearTriangleElementStresses(E,NU,t,xl,yl,xm,ym,xn,yn,u)';xl=xl-0.04;xm=xm-0.04;xn=xn-0.04;otherwiseq=q+3;endendq=4;for i=1:49switch rem(i,5)case 1j=2*i;u=[d(j-1) d(j) d(j+9) d(j+10) d(j+11) d(j+12)];u=u';xl=0.4;yl=0.08;xm=0.36;ym=0.08;xn=0.36;yn=0.06;y(i+q,:)=LinearTriangleElementStresses(E,NU,t,xl,yl,xm,ym,xn,yn,u)';xl=xl-0.04;xm=xm-0.04;xn=xn-0.04;case 2j=2*i;u=[d(j-1) d(j) d(j+9) d(j+10) d(j+11) d(j+12)];u=u';xl=0.4;yl=0.06;xm=0.36;ym=0.06;xn=0.36;yn=0.04;y(i+q,:)=LinearTriangleElementStresses(E,NU,t,xl,yl,xm,ym,xn,yn,u)';xl=xl-0.04;xm=xm-0.04;xn=xn-0.04;case 3j=2*i;u=[d(j-1) d(j) d(j+9) d(j+10) d(j+11) d(j+12)];u=u';xl=0.4;yl=0.04;xm=0.36;ym=0.04;xn=0.36;yn=0.02;y(i+q,:)=LinearTriangleElementStresses(E,NU,t,xl,yl,xm,ym,xn,yn,u)';xl=xl-0.04;xm=xm-0.04;xn=xn-0.04;case 4j=2*i;u=[d(j-1) d(j) d(j+9) d(j+10) d(j+11) d(j+12)];u=u';xl=0.4;yl=0.02;xm=0.36;ym=0.02;xn=0.36;yn=0;y(i+q,:)=LinearTriangleElementStresses(E,NU,t,xl,yl,xm,ym,xn,yn,u)';xl=xl-0.04;xm=xm-0.04;xn=xn-0.04;otherwiseq=q+3;endend% y(i+q,:)这是实现什么的?没见过这种用法,算法上应该就是通过节点位移实现指定单元的内力,这部分本人看的也晕晕的,望高人指点N=y(73:80,1)结果图及数据输出悬臂梁轴线挠度图:一单元的单元刚阵1.0e+006 *0.8077 0 0 -0.4038 -0.8077 0.4038 0 2.3077 -0.3462 0 0.3462 -2.3077 0 -0.3462 0.5769 0 -0.5769 0.3462 -0.4038 0 0 0.2019 0.4038 -0.2019 -0.8077 0.3462 -0.5769 0.4038 1.3846 -0.75000.4038 -2.3077 0.3462 -0.2019 -0.7500 2.5096 五单元的单元刚阵1.0e+006 *0.5769 0 -0.5769 0.3462 0 -0.3462 0 0.2019 0.4038 -0.2019 -0.4038 0 -0.5769 0.4038 1.3846 -0.7500 -0.8077 0.3462 0.3462 -0.2019 -0.7500 2.5096 0.4038 -2.3077 0 -0.4038 -0.8077 0.4038 0.8077 0 00.050.10.150.20.250.30.350.4-0.35-0.3-0.25-0.2-0.15-0.1-0.05x/mw /m-0.3462 0 0.3462 -2.3077 0 2.3077根部73-80各单元应力计算结果如下(n/m2):1.0e+007 *2.1119 -0.0621 -2.2816 -4.8824 5.0479 2.4065 0.0352 -2.3753。

相关文档
最新文档