V23832-T2531-M101中文资料
ABB马达保护器
X2
X2:1…6
MD2 或 MD3 接口
X3:1…5
与外部的通讯接口
X3
X3:6,7
零序电流输入
X3:8…13
电压输入(M102-M)
X4:1…9
继电器输出
X4
X4:10,11
24VDC 电源输入
X4:12
接地端子
L1-T1;L2-T2;L3-T3 穿孔
3 安装及尺寸 ................................................................ 4
4 M101-M/M102-M 的接口 ...................................................... 4 4.1 端子定义 ................................................................ 5 4.2 典型应用图 ............................................................. 10
6 M101-M/M102-M 的通讯 ..................................................... 45 6.1 概述 ................................................................... 45 6.2 RS485 通讯电缆 ......................................................... 45 6.3 功能描述 ............................................................... 45
E+H CPM253资料中文说明书
Pressure
Flow
Temperature Liquid Analysis
Registration System
Services
Components
Solutions
技术资料
pH/ORP氧化还原测量变送器Liquisys M CPM223/253
与模拟/数字电极和ISFET传感器配合使用
组态 不 同 的 应 用 场 合 和 不 同 的 仪 表 操 作 者 需 要 有 不 同 的 仪 表 报 警 模 式 。 因 此 , Liquisys M CPM223/253变 送器提 供允 许用 户对 每一 故障 进行单 独报 警触 点和 故障 电流组 态的 功能 ,以 减少用户认为不需 要的报警 信号 。最 多可 选择4个触点 用作 限位 触点(也可用于温度测量), 以实现P(ID)控制或完成清洗 功能。 菜单引导的直接手动触点操作可帮助用户快速进行仪表的限位控制和清洗功能的设置,及完 成快速偏差校正。
完 整 的Li quisys M CPM223/253测 量 系 统
CPA250 流通式支架
Liquisys M CPM253 VB A接 线 盒
测量电缆 ( 如 C PK 9)
CPA111 浸入式支架
测量 电极 (如Orbisin t CPS11)
测量 电缆 ( 如 CPK 9)
延伸 电缆
CleanfitWC P A4 50 可伸缩 过程支架
辅助电压输出
输出电压: 输出电流:
触点输出
阻 性 负载 时 的 开 关 电流 (cosφ=1) : 感 性 负载 的 开 关 电 流(coφ=1 ): 感 性 负载 时 的 开 关 功率(cosφ=0 .4):
日本和泉电气端子台选型手册
BN1U-40W
40A
5.5
35A
注 :对应电线为 1.25mm2,但构造上也可连接 2mm2 的电线。
18-10AWG
CSA 标准
额定绝缘电压 通电电流
对应电线
15A
22-14AWG
15A
22-14AWG
35A
18-10AWG
EN 标准 额定绝缘电压 对应电线
通电电流 (mm2)
接线 螺丝
22A
2 (22-14AWG)
端子台
BN1U 型 BN/BNH 系列 BA 系列
2010-09-10
导轨安装式端子台选型指南
分类 系列名称
軌导轨安装式端子台
BN1U 型
具有螺丝弹升及暂时固定功能,且 UL、CSA 认证产品(600V 额定值)
可对应 FW 的端子台
符合 JIS 标准工业用端子台
符合 EN 规格(TÜV)
BN-W/BNH-W 系列
• 请务必在额定值范围内,或遵守规格使用,以免引起触电或火 灾发生。
• 接线螺丝的尺寸以及推荐扭矩如下表所示。
螺丝尺寸
M3 M3.5 M4 M5
扭矩 (N · m)
0.6 ~ 1.0 1.0 ~ 1.3 1.4 ~ 2.0 2.6 ~ 3.7
螺丝尺寸
M6 M8 M10 M12 M16
扭矩 (N · m)
② 使 用 螺 丝 刀 垂 直 下 压 螺 丝 , ③ 延续第二步骤,用螺丝刀拧
将接线螺丝压入导电体。
紧螺丝。
无 需 暂 时 固 定
④ 松开螺丝时,螺丝会笔直弹 升。
②’把螺丝端子压往导电体之后, ③’拧紧螺丝时,请将接线螺丝 接线螺丝会往箭头方向倾斜。 恢复到垂直状态。
常用电子元器件型号命名法与主要技术参数
第二节常用电子元器件型号命名法及主要技术参数一.电阻器和电位器1.电阻器和电位器的型号命名方法(1)精密金属膜电阻器R J7 3第四局部:序号第三局部:类别〔精密〕第二局部:材料〔金属膜〕第一局部:主称〔电阻器〕(2) 多圈线绕电位器W X D 3第四局部:序号第三局部:类别〔多圈〕第二局部:材料〔线绕〕第一局部:主称〔电位器〕2.电阻器的主要技术指标(1) 额定功率电阻器在电路中长时间连续工作不损坏,或不显著改变其性能所允许消耗的最大功率称为电阻器的额定功率。
电阻器的额定功率并不是电阻器在电路中工作时一定要消耗的功率,而是电阻器在电路工作中所允许消耗的最大功率。
不同类型的电阻具有不同系列的额定功率,如表2所示。
(2) 标称阻值阻值是电阻的主要参数之一,不同类型的电阻,阻值范围不同,不同精度的电阻其阻值系列亦不同。
根据国家标准,常用的标称电阻值系列如表3所示。
E24、E12和E6系列也适用于电位器和电容器。
(3) 允许误差等级3.电阻器的标志内容及方法(1)文字符号直标法:用阿拉伯数字和文字符号两者有规律的组合来表示标称阻值,额定功率、允许误差等级等。
符号前面的数字表示整数阻值,后面的数字依次表示第一位小数阻值和第二位小数阻值,其文字符号所表示的单位如表5所示。
如1R5表示Ω,2K7表示Ω,RJ71--5k1-II允许误差±10%标称阻值Ω)额定功率1/8W型号由标号可知,它是精密金属膜电阻器,额定功率为1/8W,标称阻值为Ω,允许误差为±10%。
(2)色标法:色标法是将电阻器的类别及主要技术参数的数值用颜色〔色环或色点〕标注在它的外外表上。
色标电阻〔色环电阻〕器可分为三环、四环、五环三种标法。
其含义如图1和图2所示。
标称值第一位有效数字标称值第二位有效数字标称值有效数字后0的个数三色环电阻器的色环表示标称电阻值〔允许误差均为±20%〕。
例如,色环为棕黑红,表示10⨯102=Ω±20%的电阻器。
压敏电阻的型号及选用方法
压敏电阻的型号及选用方法来源:互联网作者:佚名时间:07-25 15:28:34浏览:132Tag:压敏电阻【大中小】SJ1152-82部颁标准中压敏电阻器的型号命名分为四部分,各部分的含义见表1。
表1 压敏电阻器的型号命名及含义第一部分用字母“M” 表示主称为敏感电阻器。
第二部分用字母“Y” 表示敏感电阻器为压敏电阻器。
第三部分用字母表示压敏电阻器的用途的特征。
第四部分用数字表示序号,有的在序号的后面还标有标称电压、通流容量或电阻体直径、电压误差、标称电压等。
例如:MYL1-1(防雷用压敏电阻器)MY31-270/3(270V/3kA普通压敏电阻器)>M——敏感电阻器M——敏感电阻器Y——压敏电阻器Y——压敏电阻器L——防雷用31——序号1-1——序号270——标称电压为270V3——通流容量为3kA压敏电阻是一种以氧化锌为主要成份的金属氧化物半导体非线性电阻元件;电阻对电压较敏感,当电压达到一定数值时,电阻迅速导通。
由于压敏电阻具有良好的非线特性、通流量大、残压水平低、动作快和无续流等特点。
被广泛应用于电子设备防雷。
主要参数1、残压:压敏电阻在通过规定波形的大电流时其两端出现的最高峰值电压。
2、通流容量:按规定时间间隔与次数在压敏电阻上施加规定波形电流后,压敏电阻参考电压的变化率仍在规定范围内所能通过的最大电流幅值。
3、泄漏电流:在参考电压的作用下,压敏电阻中流过的电流。
4、额定工作电压:允许长期连续施加在压敏电阻两端的工频电压的有效值。
而压敏电阻在吸收暂态过电压能量后自身温度升高,在此电压下能正常冷却,不会发热损坏。
压敏电阻的不足:(1)寄生电容大压敏电阻具有较大的寄生电容,一般在几百至几千微微法的范围。
在高频信号系统中会引起高频信号传输畸变,从而引起系统正常运行。
(2)泄漏电流的存在压敏电阻的泄漏电流指标既关系到被保护电子系统的正常运行,又关系到压敏电阻自身的老化和使用寿命。
压敏电阻的损坏形式:(1)当压敏电阻在抑制暂态过电压时能量超过其额定容量时,压敏电阻会因过热而损坏,主要表现为短路、开路。
报警装置 BG2 TM388 第 1 期 September 2020 技术手册说明书
报警装置 BG2ii 报警装置 BG2 TM388 第 1 期 September 2020 免责声明和责任限制本文档中的信息、建议、说明和安全符号基于伊顿公司(以下简称“伊顿”)的经验和判断,可能无法包括所有意外情况。
如果需要更多信息,应咨询伊顿销售办事处。
本文献中所示产品的销售受相应的伊顿销售政策或伊顿与买方之间的其他合约协议所规定的条款和条件的约束。
除双方之间的任何现有合同中明确规定的内容外,不存在任何明示或暗示的谅解、协议或担保,包括对特定用途适用性或适销性的担保。
任何此类合同都规定了伊顿的全部义务。
本文档的内容不应成为双方之间任何合同的一部分,也不应对这些合同进行修改。
在任何情况下,对于任何特殊、间接、附带或从属损害或损失,包括但不限于设备、工厂或电力系统的损坏或丧失使用价值、资本成本、电力丧失、使用现有电力设施的额外费用、或客户因使用此处所含信息、建议和说明而向买方或用户提出的索赔,伊顿都不对买方或用户承担合同责任、侵权责任(包括过失)、严格责任或其他责任。
本手册中包含的信息如有更改,恕不另行通知。
报警装置 BG2简体中文iii报警装置 BG2简体中文报警装置 BG2 TM388 第 1 期 September 2020 目录1.0 简介................................................................................12.0 一般安全信息和警告...................................................................13.0 安装 .. (1)概述 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1接触端子 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1操作 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2更换玻璃 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2测试装置 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24.0 维护 ................................................................................25.0 认证/批准...........................................................................36.0 电气额定值..........................................................................37.0 特殊条件 .. (3)报警装置 BG2简体中文iv报警装置 BG2TM388 第 1 期 September 2020 1报警装置 BG2简体中文报警装置 BG2 TM388 第 1 期 September 2020 1.0 简介这些手动火警报警装置设计用于易燃气氛和恶劣环境条件。
Pro Xp静电空气喷枪零件说明说明书
零件说明Pro Xp™静电空气喷枪332055S ZH 用于I类I区危险场所,使用D组材料。
用于II型1区爆炸性环境场所,使用IIA组材料。
仅限专业用途。
重要安全说明若不按照本手册中的信息操作,本设备可能会造成危险。
在使用此设备前,请阅读本手册中的所有警告及说明。
请妥善保存这些说明。
最大流体工作压力为100磅/平方英寸(0.7兆帕,7巴)最大气体工作压力为100磅/平方英寸(0.7兆帕,7巴)有关各型号的零配件号和认证信息,请参见第3页。
PROVEN QUALITY.LEADING TECHNOLOGY.Contents型号 (3)认证 (7)相关手册 (7)警告 (8)喷枪概述 (11)静电空气喷枪如何工作 (11)控制器、指示器和组件 (12)智能喷枪 (13)安装 (18)警告标示 (18)喷涂柜要通风 (18)供气管路 (19)流体供应管路 (19)接地 (21)喷枪设置 (25)喷枪设置过程 (25)柔性喷涂喷枪设置过程 (29)HVLP喷枪设置过程 (30)圆形喷涂喷枪设置过程 (32)腐蚀材料喷枪设置过程 (34)检查喷枪电气接地 (35)检查流体的电阻率 (36)检查流体的粘度 (36)使用前冲洗设备 (36)操作 (37)泄压流程 (37)启动 (38)关机 (38)维护 (39)日常维护和清洗检查清单 (39)冲洗 (39)每天清洗喷枪 (41)每天的系统保养 (42)电气测试 (43)测试喷枪的电阻 (43)测试供电电源的电阻 (44)测试电极电阻 (44)故障排除 (45)喷型故障排除 (45)喷枪操作故障排除 (46)电气故障排除 (47)维修 (48)准备要维修的喷枪 (48)空气帽和喷嘴更换 (49)电极更换 (50)流体密封杆拆卸 (51)密封杆修理 (51)枪筒拆卸 (53)枪筒安装 (53)电源拆卸与更换 (54)交流发电机拆卸及更换 (55)流体管拆卸与更换 (57)扇形空气调节阀修理 (58)雾化空气限流阀的修理 (59)ES开合和流体调节阀的修理 (60)空气阀修理 (61)智能模块更换 (62)空气旋转接头和排气阀更换 (63)零件 (64)带标准显示屏的喷枪型号 (64)带智能显示屏的喷枪型号 (67)密封杆组件 (70)交流发电机组件 (71)ES开合和流体调节阀 (72)扇形空气调节阀的修理 (73)快速调节风扇阀组件 (73)雾化空气限流阀的组装 (74)智能模块组件 (75)圆形喷涂组件 (76)高导电率流体管组件:40kV (78)高导电率流体管组件:60和85千伏 (79)液体喷嘴 (80)流体喷嘴选择表 (80)流体喷嘴性能表 (81)空气帽 (83)空气帽选择指南 (83)耗气量表 (88)电极选择图 (89)维修套件和附件 (90)喷枪附件 (90)管路流体过滤器配件包附件 (91)操作员附件 (91)系统附件 (91)标示 (91)测试设备 (92)软管 (93)尺寸 (94)技术参数 (95)美国加州第65号提案 (95)2332055S型号型号常规喷枪型号配备标准电极、喷嘴、空气帽和流体管。
JASO M 101中文版
铜及铜 合金无 缝管
0.8
0.8
0.8 1.0
1.0
1.0 1.0
1.0
1.0
1.0
1.0
公差 ± 0.08
± 0.01
5.2 管末端形状
管子末端的成形应与表 1~8 相符。
6、试验方法
试验方法应与表 10 相符。
项目 拉延试验
表 10 试验方法 种类
双层镀铜低碳钢管 焊接低碳钢管 机械结构用碳钢管
外部直径
标准 尺寸
公差
3.17 4
4.76 6
6.35 8 9 10 11 12
12.7 14 15 16 17 18 19 20 21 22 22.2
± 0.08
± 0.1
表 9 正常直径和尺寸
单位:mm
双层镀 铜低碳 钢管
0.7 0.7 0.7 0.7 0.7 0.7
0.7
—
厚度 标注尺寸
焊接低碳钢 机械结构用
JASO M101-94 汽车金属管
1、 范围: 此标准规定了汽车制动、燃油或润滑用的金属管(此后称“管子”)。
注:本标准的参考应用标准如下(省略)。
2、 分类 2、1 管子种类 管子的种类划分为以下四类:
表一:汽车用管子
种类 双层镀黄铜低碳钢管 焊接低碳钢管 机械结构用碳钢管(1) 铜及铜合金无缝钢管(2)
材料认识01
ACME MIL þ ¡ þ ¡ þ ¡ þ ¡ þ ¡ A07 þ ¡ þ ¡ þ ¡ þ ¡ A10 A12 þ ¡
TDK MIL þ ¡ þ ¡ HS52 þ ¡ þ ¡ þ ¡ HS72 þ ¡ þ ¡ þ ¡ HS10 þ ¡ þ ¡
PHILIPS MIL þ ¡ þ ¡ þ ¡ 3E25 3E27 þ ¡ 3E26 þ ¡ þ ¡ þ ¡ þ ¡ 3E5 3E6 3E7
¡ þ
F9Q
¡ þ
BH2
2400
¡ þ
PC44
¡ þ
SM-19C PL-7 PL-5 ¡ þ ¡ þ ¡ þ ¡ þ SM-19D PL-9
M3C
¡ þ
TP40 SB-7C
SB-7C GQ-3F SB-3M SB-9M SB-9C ¡ þ ¡ þ ¡ þ
2E7
6H40 6H10 2H03 6H41 ¡ þ ¡ þ ¡ þ ¡ þ
訓練課程
罗新生
鐵芯類(1)—鐵粉芯
鐵粉芯是將极細的鐵粉和有機材料粘合 劑混合在一起,通過模壓、固化,一般形 成環狀的鐵粉芯(IRON CORE),其磁導率 在10~75之間,是一种低成本,材質相對較 軟,磁芯損耗高的一种材料,由於其獨特 的性能,在開關電源、UPS電源、電子節 能燈、調光器、空調、電冰箱、自動控 制等領域中獲得廣泛的運用. 在無集中氣隙條件下,直流儲能是鐵粉芯 极為重要的功能.
SIEMENS MIL T65 þ ¡ þ ¡ T35 T37 þ ¡ þ ¡ þ ¡ þ ¡ þ ¡ T38 T42 ) 3 T46 )
3
SAMWHA ~ ¦ { µ MIL þ ¡ þ ¡ þ ¡ þ ¡ þ ¡ þ ¡ SM70S þ ¡ þ ¡ þ ¡ SM100 þ ¡ SM150 MIL þ ¡ þ ¡ þ ¡ þ ¡ þ ¡ M7C þ ¡ þ ¡ M10C þ ¡ þ ¡ M12C þ ¡
V23832-R321-M101中文资料
Parallel Optical Link Transmitter:PAROLI ® 2 Tx AC, 2.7 Gbit/s Parallel Optical Link Receiver:PAROLI ® 2 Rx AC, 2.7 Gbit/sFile: 3104Fiber OpticsV23832-T2431-M101 V23832-R421-M101Design Benefits •Relieve system bandwidth bottle necks •Simplifies system design•Enables system upgrades in field•Low power consumption at increased board density •Flat package for height critical applicationFeatures •Infineon’s highly reliable 850 nm VCSEL technology •Power supply 3.3V•Transmitter with multistandard electrical interface •Receiver with LVDS electrical interface •12 electrical data channels•Asynchronous, AC-coupled optical link •12 optical data channels•Internal power monitoring for constant power budget•Transmission data rate of up to 2700Mbit/s per channel, total link data rate up to 32.4Gbit/s •PIN diode array technology•Optimized for 62.5 µm multimode graded index fiber •MT based optical port (MPO connector)•Plug-in module with ultra low profile•IEC Class 1M laser eye safety compliant •EMI-shielding for front panel access •Standard link length compliant•Unused transmitter channels can be switched off •DC or AC coupling of input data •Telcordia compliantApplicationsOptical Port•Designed for the industry standard 12 fiber MT Connector (MPO)•Alignment pins fixed in module port•Integrated mechanical keying•Module is provided with a dust coverFeatures of MT Connector (MPO)(as part of optional PAROLI fiber optic cables)•Uses standardized MT ferrule•MT compatible fiber spacing (250µm) and alignment pin spacing (4600µm)•Push-pull mechanism•Ferrule bearing spring loadedFeatures of the PAROLI 2 Electrical Connector•Pluggable version using BGA socket•100 pin positions (10x10)•4mm stack height in mated conditions•Plug and receptacle are provided with protective cap•Standard BGA process for socket assembly•Contact area plating made out of gold over nickel•Module side: FCI-MEG-Array® -Plug (part no. 84512-202)•PCB side: FCI-MEG-Array® -Receptacle (part no. 84513-201)Applications•Switches, routers, transport equipment•Mass storage devices•Access network•Rack-to-rack/board-to-board interconnect•Optical backplane interconnect•Infiniband™ connectionsPin ConfigurationFigure 1Pin Information TransmitterNumbering Conventions Transmitter (bottom view)J IHGFEDCBA1V EEDI05NDI05PDI06NDI06PDI07NDI07PDI08NDI08PV EE2DI04P VEE V EE V EE V EE V EEV EE V EE V EEDI09N 3DI04N V EE Reserved Reserved t.b.l.o.t.b.l.o.Reserved Reserved V EE DI09P 4DI01P V EE Reserved Reserved t.b.l.o.t.b.l.o.Reserved Reserved V EEDI12N 5DI01N V EE V EE V EE t.b.l.o.t.b.l.o.V EE V EE V EE DI12P 6DI02P V EE V EE V EE t.b.l.o.–LE V EE V EE V EE DI11N 7DI02N V EE V EE V EE LCULEV EEV EE V EE DI11P 8DI03P V EE V EE V EE V IN –RESET V EEV EE V EE DI10N 9DI03NV EE V EE V EE V CC V CC V EE V EE V EE DI10P10V EE V EEV EEV EEV CCV CCV EEV EEV EEV EEThis edge towards MPO connectorPin Description TransmitterSymbol Level/Logic DescriptionVCCPower supply voltage of laser driverV IN CML: V IN = Reference supply (e.g. V CC) LVDS, LVPECL: V IN = V EEVEEGroundLCU LVCMOSOut Laser Controller Up.High = normal operation.Low = laser fault or RESETlow.DIxxN Signal In Data Input #xx, invertedDIxxP Signal In Data Input #xx, non-inverted–RESET LVCMOS In High = laser diode array is active.Low = switches laser diode array off.This input has an internal pull-down to ensure laser eyesafety switch off in case of unconnected RESETinput.LE LVCMOS In Laser ENABLE. High active.High = laser array is on if LE is also active.Low = laser array is off. This input has an internal pull-up,therefore can be left open.–LE LVCMOS In Laser ENABLE. Low active.Low = laser array is on if LE is also active. This input hasan internal pull-down, therefore can be left open.t.b.l.o.to be left openReserved Reserved for future useFigure 2Pin Information ReceiverNumbering Conventions Receiver (bottom view)J IHGFEDCBA1V EEDO05PDO05NDO06PDO06NDO07PDO07NDO08PDO08NV EE2DO04NV EE V EE V EE V EE V EEV EE V EE V EEDO09P 3DO04P V EE Reserved Reserved t.b.l.o.t.b.l.o.Reserved Reserved V EE DO09N 4DO01N V EE Reserved Reserved OENENSD Reserved Reserved V EEDO12P 5DO01P V EE V EE V EE SD01–SD12V EE V EE V EE DO12N 6DO02N V EE V EE V EE Reserved REFRV EE V EE V EE DO11P 7DO02P V EE V EE V EE V CCO V CCO V EE V EE V EE DO11N 8DO03N V EE V EE V EE V CCO V CCO V EE V EE V EE DO10P 9DO03PV EE V EE V EE V CC V CC V EE V EE V EE DO10N10V EE V EEV EEV EEV CCV CCV EEV EEV EEV EEThis edge towards MPO connectorPin Description ReceiverSymbol Level/Logic DescriptionVCCPower supply voltage of pre amplifier and analog circuitryVCCOPower supply voltage of output stagesREFR LVDS = to be left open (t.b.l.o.)VEEGroundOEN LVCMOS In Output Enable High = normal operation.Low = sets all Data Outputs to low.This input has an internal pull-up which pulls to high levelwhen this input is left open.ENSD LVCMOS In High = SD1 and –SD12 function enabled.Low = SD1 and –SD12 are set to permanent active.This input has an internal pull-up which pulls to high levelwhen this input is left open.SD1LVCMOSOut Signal Detect on fiber #1.High = signal of sufficient AC power is present on fiber #1. Low = signal on fiber #1 is insufficient.–SD12LVCMOSOutlow active Signal Detect on fiber #12.Low = signal of sufficient AC power is present on fiber #12. High = signal on fiber #12 is insufficient.DOxxP LVDS Out Data Output #xx, non-inverted DOxxN LVDS Out Data Output #xx, invertedt.b.l.o.to be left openReserved Reserved for future useDescriptionPAROLI is a parallel optical link for high-speed data transmission. A complete PAROLI link consists of a transmitter module, a 12-channel fiber optic cable, and a receiver module. The transmitter supports LVDS, CML and LVPECL differential signals. This specification describes the LVDS electrical output only. A specification for Infineon’s adjustable CML output can be provided separately.Figure3Example of a PAROLI LinkTransmitter V23832-T2431-M101The transmitter module converts parallel electrical input signals via a laser driver and a Vertical Cavity Surface Emitting Laser (VCSEL) diode array into parallel optical output signals. All input data signals are Multistandard Differential Signals (LVDS compatible; LVPECL and CML is also supported because of the wide common input range). The electrical interface (LVDS, LVPECL or CML) is selected by the supply inputs V IN. The data rate is up to 2700Mbit/s for each channel. The transmitter module’s min. data rate of 500Mbit/s is specified for the CID1) worst case pattern (disparity 72) or any pattern with a lower disparity. The transmitter features active feedback of optical output power and extinction ratio, which guarantees a constant power budget.Unused channels can be forced to a quiescent state by applying e.g. a constant high level to the input stage of these channels. The integrated alerter circuit (see “Laser Eye Safety Design Considerations” on Page12) will switch off the corresponding transmitter output, which results also in a reduced power consumption. Unused transmitter input channels can also be left open. The integrated swing detection circuit will assure a quiescent output state for these channels.A logic low level at –RESET switches all laser outputs off. During power-up –RESET must be used as a power-on reset which disables the laser driver and laser control until the power supply has reached a 3.135V level.The Laser Controller Up (LCU) output is low if a laser fault is detected or –RESET is forced to low.All non data signals have LVCMOS levels.Transmission delay of the PAROLI system is ≤1ns for the transmitter, ≤1ns for the receiver and approximately 5ns per meter for the fiber optic cable.Figure4Transmitter Block Diagram1)Consecutive Identical Digit (CID) immunity test pattern for STM-N signals,Receiver V23832-R421-M101The PAROLI receiver module converts parallel optical input signals into parallel electrical output signals. The optical signals received are converted into voltage signals by PIN diodes, trans impedance amplifiers, and gain amplifiers. There are two different modules available, one for LVDS and one for CML output. This description only refers to a module with LVDS output. A module description for Infineon’s adjustable CML output can be provided separately.The data rate is up to 2700 Mbit/s for each channel. The receiver module’s min. data rate of 500 Mbit/s is specified for the CID1) worst case pattern (disparity 72) or any pattern with a lower disparity.Additional Signal Detect outputs (SD1 active high / –SD12 active low) show whether an optical AC input signal is present at data input 1 and/or 12. The signal detect circuit can be disabled with a logic low at ENSD. The disabled signal detect circuit will permanently generate an active level at Signal Detect outputs, even if there is insufficient signal input. This could be used for test purposes.A logic low at LVDS Output Enable (OEN) sets all data outputs to logic low. SD outputs will not be effected.All non data signals have LVCMOS levels. Transmission delay of the PAROLI system is at a maximum 1ns for the transmitter, 1ns for the receiver and approximately 5ns per meter for the fiber optic cable.Figure5Receiver Block Diagram1)Consecutive Identical Digit (CID) immunity test pattern for STM-N signals,Regulatory ComplianceThe following table shows industry standard test methods and results obtained from the indicated test methods. (The overall system design will affect the electromagnetic interference (EMI), electrostatic discharge (ESD) and immunity).EMI RecommendationsEMI behavior of each PAROLI module revision is evaluated and measured - in order to ensure a good and sufficient EMI performance of all PAROLI modules. As the total EMI performance will also depend on system design and to avoid electromagnetic radiation exceeding the required limits set by the standards, please take note of the following recommendations.FeatureStandardComments ESD:Electrostatic Discharge to the Electrical Pins (HBM)JEDEC Human Body Model (HBM) Test MethodEIA/JESD22-A114-B (MIL-STD 883D method 3015.7)Class 1CImmunity:Against Electrostatic Discharge (ESD) to the Module Receptacle EN 61000-4-2IEC 61000-4-2Discharges ranging from ±2kV to±15kV on the front end/face-plate/receptacle cause no damage to module (under recommended mounting conditions).Immunity:Against Radio FrequencyElectromagnetic Field EN 61000-4-3IEC 61000-4-3With a field strength of 3V/m, noise frequency ranges from 10MHz to 2GHz 1). No effect on module performance between the specification limits.1)This test covers high frequency bands of mobile phones.Emission:Electromagnetic Interference (EMI)FCC 47 CFR Part 15,Class BEN 55022 Class B CISPR 22Noise frequency range:30MHz to 18GHz;Radiated Emission does not exceed specified limits when measured inside a shielding enclosure with recommended cutout dimensions. Typically pass with >11dB margin to the limit (under recommended mounting conditions).Description When Gigabit switching components are found on a PCB (e.g. multiplexer, serializer-deserializer, clock data recovery, etc.), any opening of the chassis may leak radiation; this may also occur at chassis slots other than that of the device itself. Thus every mechanical opening or aperture should be as small as feasible and its length carefully considered.On the board itself, every data connection should be an impedance matched line (e.g. micro strip, strip line or coplanar strip line). Data (D) and Data-not (Dn) should be routed symmetrically. Vias should be avoided. Where internal termination inside an IC or a PAROLI module is not present, a line terminating resistor must be provided.The decision of how best to establish a ground depends on many boundary conditions. This decision may turn out to be critical for achieving lowest EMI performance. At RF frequencies the ground plane will always carry some amount of RF noise. Thus the ground and V CC planes are often major radiators inside an enclosure.As a general rule, for small systems such as PCI cards placed inside poorly shielded enclosures, the common ground scheme has often proven to be most effective in reducing RF emissions. In a common ground scheme, the PCI card becomes more equipotential with the chassis ground. As a result, the overall radiation will decrease. In a common ground scheme, it is strongly recommended to provide a proper contact between signal ground and chassis ground at every location where possible. This concept is designed to avoid hotspots which are places of highest radiation, caused when only a few connections between chassis and signal grounds exist. Compensation currents would concentrate at these connections, causing radiation.However, as signal ground may be the main cause for parasitic radiation, connecting chassis ground and signal ground at the wrong place may result in enhanced RF emissions. For example, connecting chassis ground and signal ground at a front panel/ bezel/chassis by means of a fiber optic module may result in a large amount of radiation especially where combined with an inadequate number of grounding points between signal ground and chassis ground. Thus the fiber optic module becomes a single contact point increasing radiation emissions. Even a capacitive coupling between signal ground and chassis ground may be harmful if it is too close to an opening or an aperture. For a number of systems, enforcing a strict separation of signal ground from chassis ground may be advantageous, providing the housing does not present any slots or other discontinuities. This separate ground concept seems to be more suitable in huge systems.The return path of RF current must also be considered. Thus a split ground plane between Tx and Rx paths may result in severe EMI problems.The bezel opening for a transceiver should be sized so that all contact springs of the transceiver cage make good electrical contact with the face plate.Please consider that the PCB may behave like a dielectric waveguide. With a dielectric constant of 4, the wavelength of the harmonics inside the PCB will be half of that in free space. Thus even the smallest PCBs may have unexpected resonances.Laser Eye SafetyThe transmitter of the AC coupled Parallel Optical Link (PAROLI) is an IEC 60825-1 Amend. 2 Class 1M laser product. It complies with FDA performance standards (21 CFR 1040.10 and 1040.11) for laser products except for deviations pursuant to Laser Notice No. 50, dated July 26, 2001. To avoid possible exposure to hazardous levels of invisible laser radiation, do not exceed maximum ratings.The PAROLI module must be operated under the specified operating conditions (supply voltage can be adjusted between 3.0V and 3.6V) under any circumstances to ensure laser eye safety.Class 1M Laser ProductAttention:Invisible laser radiation. Do not view directly with optical instruments. Note:Any modification of the module will be considered an act of “manufacturing”, and will require, under law, recertification of the product under FDA (21 CFR 1040.10 (i)).Figure6Laser EmissionLaser Eye Safety Design ConsiderationsTo ensure laser eye safety for all input data patterns each channel is controlled internally and will be switched off if the laser eye safety limits are exceeded. A channel alerter switches the respective data channel output off if the input duty cycle permanently exceeds 57% (switching range 57 % min. - 65 % max.). The alerter will not disable the channel below an input duty cycle of 57% under all circumstances.The minimum alerter response time is 1 µs with a constant high input, i.e. in the input pattern the time interval of excessive high input (e.g. ’1’s in excess of a 57% duty cycle, consecutive or non-consecutive) must not exceed 1 µs, otherwise the respective channel will be switched off. The alerter switches the respective channel from off to on without the need of resetting the module if the input duty cycle is no longer violated.All of the channel alerters operate independently, i.e. an alert within a channel does not affect the other channels. To decrease the power consumption of the module unused channel inputs can be tied to high input level. In this way a portion of the supply current in this channel is triggered to shut down by the corresponding alerter.Laser Eye Safety Measurement ConditionsLaser Data Symbol Values Unit Conditionmin.typ.max.Center wavelengthλC 830850860nm Tcase0...80°CArray size12channelsDivergence angle/ Numerical Aperture Θ/NA44/0.22°/radΘ full /NA half angleIEC class 1M Accessible Emission Limit AEL 6.36dBm7mm aperture@ 100mmdistanceApplying penalties(safety margin)∆P opt 4.2dB Test limit 2.16dBmTechnical DataAbsolute Maximum RatingsStress beyond the values stated below may cause permanent damage to the device.Exposure to absolute maximum rating conditions for extended periods of time may affect device reliability. Performance between absolute maximum ratings and recommended operating conditions is not guaranteed.Parameter Symbol Limit Values Unit min.max.Supply VoltageV CC –V EE –0.3 4.5V Data/Control Input Levels 1)1)At Data and LVCMOS inputs.V IN –0.5V CC +0.5V Data Input Differential Voltage 2)2)|V ID | = |(input voltage of non-inverted input minus input voltage of inverted input)|.|V ID | 2.0V Operating Case Temperature 3)3)Measured at case temperature reference point (see Figure 15 on Page 28).T case 090°C Storage Ambient Temperature T stg–40100°C Relative Humidity (non condensing)595%ESD Resistance(all pins to V EE , human body model)4)(see table “Regulatory Compliance” on Page 10)4)To avoid electrostatic damage, handling cautions similar to those used for MOS devices must be observed.1kVRecommended Operating Conditions 1)Parameter SymbolValues Unitmin.typ.max.TransmitterOperating Case Temperature T case 04580°C Power Supply Voltage V CC 3.1353.33.6V Noise on Power Supply 2)N PS 200mV Data Input Voltage Range (DC-coupled)3), 4)V DATAI500V CCmV Data Input Differential Voltage (DC- or AC-coupled)4), 5)|V ID |801000mVData Input Skew 6)t SPN0.5 x t R-DI , t F-DIpsData Input Rise/Fall Time 7)t R-DI , t F-DI 50170ps LVCMOS Input High Voltage V LVCMOSIH 2.0V CCV LVCMOS Input Low Voltage V LVCMOSIL V EE 0.8V LVCMOS Input Rise/Fall Time 8)t R-LVCMOSI , t F-LVCMOSI 20nsReceiverPower Supply Voltages V CC , V CCO 3.0 3.33.6V Noise on Power Supply 2)N PS 200mV Differential LVDS Termination ImpedanceR t 80120ΩLVCMOS Input High Voltage V LVCMOSIH 2.0V CCV LVCMOS Input Low Voltage V LVCMOSIL V EE 0.8V LVCMOS Input Rise/Fall Time 8)t R-LVCMOSI , t F-LVCMOSI 20ns Optical Input Rise/Fall Time 9)t R-OI , t F-OI185ps Input Extinction Ratio ER 6.0dB Input Center WavelengthλC830860nmVoltages refer to V EE = 0 V.1)Recommended range of input parameters for specified module functional performance.2)Noise frequency is 1 kHz to f max , where f max is equal to the maximum data rate in units of MHz. E.g. for a maximum data rate of 2700 Mbit/s, f max = 2700 MHz. Power supply noise is defined with the recommended filter in place at the supply side of the filtering circuit (see Figure 9 on Page 17).3)The input stage can also be AC-coupled.4)Input level diagram: see Figure 7 on Page 16.5)|V ID | = |(input voltage of non-inverted input minus input voltage of inverted input)|.6)Skew between positive and negative inputs measured at 50% level.7)20% - 80% level.8)Measured between 0.8 V and 2.0 V.9)20% - 80% level. Non filtered values.Recommended Operating Conditions 1) (cont’d)Parameter SymbolValues Unitmin.typ.max.Figure7Input Level Diagram, DC-couplingFigure8Output Level Diagram, DC-couplingRecommended Power Supply FilteringA power supply filtering is recommended for the transmitter and the receiver module. A possible filtering scheme is shown in Figure9. The module signal and chassis ground refer to a common ground plane, which can be contacted to the PCB ground by the mounting screws (see Figure14 “PCB Layout” on Page25).Figure9Filtering SchemeFigure10Transmitter - Input StageThe electro-optical characteristics described in the following tables are valid only for use under the recommended operating conditions.Transmitter Electrical Characteristics Parameter SymbolValues Unitmin.typ.max.Supply Current 1)1)Measured at the recommended case temperature of T case =45°C.For T case =0°C a decrease of approximately10% and for T case =80°C an increase of approximately 15% can be expected.I CC 400450mA Power Consumption 1)P1.31.6W Data Rate per Channel DR5002)2)Specified for CID worst case pattern (disparity 72) or any pattern with a smaller disparity. The minimum data rate depends on the disparity of the used data pattern. For example, a regular clock signal (1-0 sequence) can be transmitted down to a data rate as low as 1 Mbit/s.2700Mbit/s LVCMOS Output Voltage Low V LVCMOSOL0.4V LVCMOS Output Voltage High V LVCMOSOH 2.5V LVCMOS Input Current High/LowI LVCMOSI –100100µA LVCMOS Output Current High 3)3)Source current.I LVCMOSOH0.5mA LVCMOS Output Current Low 4)4)Sink current.I LVCMOSOL 4.0mA Data Differential Input Impedance 5)5)Data input stage.R IN 80100120ΩTransmitter Electro-Optical CharacteristicsParameter Symbol Values Unitmin.typ.max.Optical Rise Time1)t R125ps Optical Fall Time1)t F125ps Total Jitter2), 3)TJ0.29UI Deterministic Jitter3),4)DJ0.15UI Channel-to-channel skew5)t CSK100ps Launched Average Power6)P AVG–8.0–5.0–3.0dBm Launched Power Shutdown P SD–30.0dBm Center Wavelength7)λC830850860nm Spectral Width (rms)8)∆λ0.350.65nm Relative Intensity Noise9)RIN–117 dB/Hz Extinction Ratio (dynamic)ER 6.0dB Optical ModulationAmplitude10), 11)OMA0.1912)0.4613)mW Eye mask compliance SONET14)Electro-optical parameters valid for each channel and measured at the highest specified data rate.All optical parameters are measured with a 62.5 µm multimode fiber.1)20% - 80% level, non filtered values.2)The Total Jitter (TJ) is composed of Random Jitter (RJ) and Deterministic Jitter (DJ) according to:TJ = RJ (14 Sigma value) + DJ.The TJ is specified at a BER of 10–12 from TP1 to TP2 according to IEEE 802.3, sec. 38.5.The RJ is measured at the 50% level of the optical signal as the mean of the rising and falling edge measurement value.3)UI (Unit Interval) is equal to the length of one bit. For example, 2.72 Gbit/s corresponds to 368 ps.4)The DJ consists of Duty Cycle Distortion and Data Dependent Jitter and is measured according to IEEE 802.3using a K28.5 pattern.5)With input channel-to-channel skew 0ps and a maximum data channel-to-channel average deviation andswing deviation of 5%.6)The specified output power is compliant with IEC 60825-1, Amendment 2, Class 1M Accessible EmissionLimits (AEL).7)Wavelength is measured according to IEEE 802.3, sec. 38.6.1.8)Spectral width is measured according to IEEE 802.3, sec. 38.6.1.9)RIN is measured according to IEEE 802.3, sec. 38.6.4.10)Peak to peak values.11)OMA is defined as the difference of the optical high state (’1’) and the optical low state (’0’):OMA = Popt (’1’) – Popt(’0’).12)Corresponds to a minimum extinction ratio of 6dB.13)Corresponds to a typical extinction ratio of 8dB.14)Telcordia GR-253-CORE, Issue 3, Sept. 2000, sec. 4.2.4.4.Figure 11Timing DiagramParameterSymbolValues Unitmin.typ.max.–RESET on delay time t 11550ms –RESET off delay time t 2100500ns –RESET low duration 1)1)Only when not used as power on reset. At any failure recovery, –RESET must be brought to low level for at least t 3.t 310µsReceiver Electrical CharacteristicsParameter Symbol Values Unitmin.typ.max.Supply Current1)I CC280340mA Power Consumption1)P0.9 1.2W LVDS Output Low Voltage2), 3)V LVDSOL925mV LVDS Output High Voltage2), 3)VLVDSOH1475mV LVDS Output DifferentialVoltage2), 3), 4), 5)|V OD|250400mVLVDS Output Offset Voltage2), 3), 6)VOS11251275mV LVDS Rise/Fall Time7)t R-LVDS,tF-LVDS230ps LVCMOS Output Voltage Low V LVCMOSOL400mV LVCMOS Output Voltage High V LVCMOSOH2500mVLVCMOS Input Current High/Low ILVCMOSI–100100µALVCMOS Output Current High8)I LVCMOSOH0.5mA LVCMOS Output Current Low9)I LVCMOSOL 4.0mA Total Jitter10),11),12),13),14)TJ0.33UI Deterministic Jitter10), 13), 15)DJ0.12UI Channel-to-channel skew16)t CSK100ps1)Typical value is measured at T case=45°C and 3.3 V, maximum value is measured at T case=80°C and 3.6 V.2)Output level diagram: see Figure8 on Page16.3)LVDS output must be terminated differentially with R t.4)|V OD| = |(output voltage of non-inverted output minus output voltage of inverted output)|.5)Unused channels must be terminated by 50 Ω.6)V OS = 1/2 (output voltage of inverted output + output voltage of non-inverted output).7)Measured between 20% and 80% level with a maximum capacitive load of 3 pF.8)Source current.9)Sink current.10)With no optical input jitter.11)Measured with an optical input power of 3 dB above minimum receiver sensitivity.12)Unused channels can be terminated by 50 Ω or left open.13)UI (Unit Interval) is equal to the length of one bit. For example, 2.72 Gbit/s corresponds to 368 ps.14)The Total Jitter (TJ) is the sum from Random Jitter (RJ) and Deterministic Jitter (DJ) according to:TJ = RJ (14 Sigma value) + DJ.The TJ is specified at a BER of 10–12 from TP3 to TP4 according to IEEE 802.3, sec. 38.5.The RJ is measured at the 50% level of the optical signal as the mean of the rising and falling edge RJ measurement value.15)The DJ consists of Duty Cycle Distortion and Data Dependent Jitter and is measured according to IEEE 802.3using a K28.5 pattern.16)With input channel-to-channel skew 0 ps.Receiver Electro-Optical Characteristics ParameterSymbolValuesUnitmin.max.Data Rate Per Channel DR5001)1)Specified for CID worst case pattern (disparity 72) or any pattern with a smaller disparity. The minimum data rate depends on the disparity of the used data pattern. For example, a regular clock signal (1-0 sequence) can be received down to a data rate as low as 6Mbit/s.2700Mbit/s Sensitivity (Average Power)2)2)Sensitivity is measured for BER = 10–12 with a Pseudo Random Bit sequence of length 223–1 (PRBS23) and a test pattern source with RIN of –117 dB/Hz or better. Sensitivity is specified for the worst case extinction ratio and maximum cross talk possibility. The maximum crosstalk possibility is defined as the “victim” receiver channel operating at its sensitivity limit and the neighboring channels operating at 6 dB higher incident optical power.P IN–16.0dBm Optical Modulation Amplitude 3)3)Peak to peak value.OMA0.0304)4)Corresponds to a maximum sensitivity (average power) of –16.0dBm at an extinction ratio of 6dB.mW Saturation (Average Power)5)5)Saturation is specified with a Pseudo Random Bit sequence of length 223–1 (PRBS23) and ER ≥ 6dB.P SAT –2.0dBm Signal Detect Assert Level 6)6)P SDA : Average optical power when SD switches from inactive to active.P SDD : Average optical power when SD switches from active to inactive.P SDA –17.0dBm Signal Detect Deassert Level 6)P SDD –27.0dBm Signal Detect Hysteresis 6)P SDA –P SDD1.0 4.0dB Return Loss of Receiver 7)7)Return loss is specified as the ration of the received optical power to the reflected optical power back into the link fiber.ORL12dB Electro-optical parameters valid for each channel and measured at the highest specified data rate. All optical parameters are measured with a 62.5 µm multimode fiber.。
两遥说明书
对于用户在使用或不能使用该产品而造成的损失(包括,但不限于,直接的、间 接的或附带的) ,科汇公司不承担任何责任。科汇公司的责任是经过科汇公司的技术 部门的检测和判断,对损坏的 PZK1000HG 配电自动化装置进行修理或更换损坏的 部分。
1.1 二遥终端的功能.................................................................................................................... 1-2 1.2 故障探头的工作原理 ............................................................................................................ 1-3
2.2.1 故障指示器技术指标 ................................................................................................... 2-3 2.2.2 PZK1000HG 技术指标 .................................................................................................... 2-3
有限担保:山东科汇电力自动化有限公司保证您所定购的每台 PZK1000HG 配电自动 化装置在正常使用和维护的情况下,自收到之日起一年内不会出现故障。在担保时间 内,科汇公司有选择的采用快捷的方式免费为用户维修或更换损坏的单元;如果设备 出现故障,用户可以将损坏的单元以任何方式运送至科汇公司,或者由科汇公司安排 维修人员到现场维修。科汇公司的联系地址:
Raytek MI3操作手册
技术文档 ABB电机保护器M101M102
4 技术数据 .................................................................................4/1-1
5 产品标准及认证 ...................................................................... 5/1-1
产品概述
1
1/1
M101 / M102 马达管理中心
产品概述
M101 / M102 马达管理中心是基于微处理器 技术开发研制的电动机智能管理系统。通过 M101 / M102 电动机控制装置 MCU,以及先 进的现场总线通讯技术,M101 / M102 马达 管理中心为低压电动机提供了一整套专业化 的集控制、保护与监测于一体的智能化管理 方案,是过程控制系统电动机智能化管理的 理想选择。
M101 / M102
M101 / M102
M101 / M102 马达管理中心
产品概述
M101 / M102 马达保护的特点 :
● 各种保护功能已内置在装置中,可根据实际需要进行配置
● 通过设置软件可轻松选择所需的保护功能
● 可根据保护功能的特点设置为报警并延时脱扣,只报警不脱扣或直接进入延时脱扣保护
M101-M
■ ■ ■ ■
M101-P
■ ■ ■ ■
M102-M
■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■
M102-P
■
1
■
■
■
产品概述
■
■
■
■
■
■
■
丰富的马达运行监测功能
M101 / M102 提供丰富的马达运行监测功能,监测数据经现场总线上传到上位机集中管理, 同时通过安装在开关柜面板上的操作面板 MD 直接显示。
金属氧化物压敏电阻器:TVB 系列 浪涌保护用注塑封装型
特点1. 满足RoHS 要求2. 适用于表面安装技术回流焊及波峰焊3. 结构小巧﹑节省空间4. 强大的抑制高浪涌电流能力5. 快速反应的小电感量结构6. 包装材料满足UL94-V07. 工作温度范围:-40 ~ +85°C8. Agency recognition: UL /cUL用途1. 电源供应器2. 家用电器3. 工业设备4. 通信设备5.汽车电子编码规则K R9 10 11 12 13V1mA公差K ±10%包装B 散装R 轴装可选后辍001~ZZZV=18VV=240VV=1000V尺寸&焊盘尺焊盘尺寸寸尺寸(单位﹕mm)尺寸 压敏电压范围 l w h V 1mA =180 ~ 271 3.2+/- 0.3 3225V 1mA =361 ~ 561 8.0+/- 0.36.3+/- 0.34.5+/- 0.3 V 1mA =180 ~ 271 3.2+/- 0.3 4032 V 1mA =361 ~ 75110.2+/- 0.3 8.0+/- 0.34.5+/- 0.3焊盘尺寸(单位﹕ mm)项目A B C L 3225 3.5 2.8 4.5 10.1 尺寸 (EIA)40323.52.86.512.1■电气电气特性特性安规认证压敏电压(@1mADC) 最大连续工作电压最大限制电压(8/20µs)最大冲击电流(8/20µs)最大能量(10/1000µS)额定功率参考电容@1KHzUL cUL型号V1mA (V) V AC(rms)(V)V DC(V)V P(V)I P(A)I max(A)W max(J)P(W)C(pF)UL 1449E173642TVB7S180 18 11 14 36 1.0 150 0.6 0.01 1750 √√TVB7S220 22 14 18 43 1.0 150 0.7 0.01 1450 √√TVB7S270 27 17 22 53 1.0 150 0.9 0.01 1200 √√TVB7S330 33 20 26 65 1.0 150 1.1 0.01 980 √√TVB7S390 39 25 31 77 1.0 150 1.2 0.01 850 √√TVB7S470 47 30 38 93 1.0 150 1.5 0.01 720 √√TVB7S560 56 35 45 110 1.0 150 1.8 0.01 620 √√TVB7S680 68 40 56 135 1.0 150 2.2 0.01 520 √√TVB7S820 82 50 65 135 5.0 400 2.5 0.1 300 √√TVB7S101 100 60 85 165 5.0 400 3.0 0.1 250 √√TVB7S121 120 75 100 200 5.0 400 4.0 0.1 210 √√TVB7S151 150 95 125 250 5.0 400 6.0 0.1 135 √√TVB7S181 180 115 150 300 5.0 400 6.5 0.1 110 √√TVB7S201 205 130 170 340 5.0 400 7.0 0.1 100 √√TVB7S221 220 140 180 360 5.0 400 7.5 0.1 95 √√TVB7S241 240 150 200 395 5.0 400 9.0 0.1 90 √√TVB7S271 270 175 225 455 5.0 400 9.5 0.1 75 √√TVB7S361 360 230 300 595 5.0 400 10.0 0.1 60 √√TVB7S391 390 250 320 650 5.0 400 11.0 0.1 55 √√TVB7S431 430 275 350 710 5.0 400 13.0 0.1 50 √√TVB7S471 470 300 385 775 5.0 400 15.0 0.1 45 √√TVB7S511 510 320 410 845 5.0 400 16.5 0.1 40 √√TVB7S561 560 350 450 930 5.0 400 18.0 0.1 35 √√安规认证压敏电压(@1mADC) 最大连续工作电压最大限制电压(8/20µs)最大冲击电流(8/20µs)最大能量(10/1000µS)额定功率参考电容@1KHzUL cUL型号V1mA (V) V AC(rms)(V)V DC(V)V P(V)I P(A)I max(A)W max(J)P(W)C(pF)UL 1449E173642TVB9S180 18 11 14 36 2.5 300 1.1 0.02 2750 √√TVB9S220 22 14 18 43 2.5 300 1.3 0.02 2300 √√TVB9S270 27 17 22 53 2.5 300 1.6 0.02 1900 √√TVB9S330 33 20 26 65 2.5 300 2.0 0.02 1600 √√TVB9S390 39 25 31 77 2.5 300 2.4 0.02 1400 √√TVB9S470 47 30 38 93 2.5 300 2.8 0.02 1200 √√TVB9S560 56 35 45 110 2.5 300 3.4 0.02 1050 √√TVB9S680 68 40 56 135 2.5 300 4.1 0.02 900 √√TVB9S820 82 50 65 135 10 1200 6.5 0.25 530 √√TVB9S101 100 60 85 165 10 1200 7.0 0.25 480 √√TVB9S121 120 75 100 200 10 1200 9.0 0.25 430 √√TVB9S151 150 95 125 250 10 1200 11.0 0.25 260 √√TVB9S181 180 115 150 300 10 1200 13.0 0.25 220 √√TVB9S201 205 130 170 340 10 1200 15.0 0.25 200 √√TVB9S221 220 140 180 360 10 1200 18.0 0.25 180 √√TVB9S241 240 150 200 395 10 1200 18.5 0.25 170 √√TVB9S271 270 175 225 455 10 1200 21.0 0.25 150 √√TVB9S361 360 230 300 595 10 1200 23.0 0.25 115 √√TVB9S391 390 250 320 650 10 1200 25.0 0.25 105 √√TVB9S431 430 275 350 710 10 1200 29.0 0.25 95 √√TVB9S471 470 300 385 775 10 1200 30.0 0.25 90 √√TVB9S511 510 320 410 845 10 1200 33.0 0.25 85 √√TVB9S561 560 350 450 930 10 1200 33.0 0.25 80 √√TVB9S751 750 460 615 1235 10 1200 50.5 0.25 55 √√■ 功率减额曲线 ■ 冲击电流标准波形最大冲击电流减额曲线LUT=85 环境温度 (℃) 最大额定功率(%)100 电流 (%)时间■最大冲击电流减额曲线最大漏电流与最大限制电压曲线最大漏电流与最大限制电压曲线(TVB 7S 180 ~ TVB 7S 680)推荐焊接条件波峰焊曲线回流焊曲线推荐烙铁重工焊接条件项目条件 烙铁头部温度 360℃ (max.) 焊接时间 3 sec (max.) 烙铁头直径Φ3 mm (max.)温度130±20260℃环境温)/sec℃/sec t■可靠性试验项目测试标准试验条件/ 方法性能要求振荡试验IEC 1051-1 频率范围﹕10 ~ 55 Hz振幅﹕0.75mm 或98 m/s2持续时间﹕6小时(3 x 2小时)无外观损伤∣△V/V1mA∣≦ 5 %可焊性试验IEC 60068-2-20 235±5℃,2±0.5 sec 着锡面积≧95%耐焊接热试验IEC 60068-2-20 260±5℃,10±1 sec无外观损伤∣△V/V1mA∣≦ 5 %高温存储试验IEC 60068-2-2 125±5℃,1000 ±24小时∣△V/V1mA∣≦ 5 %稳态湿热试验IEC 60068-2-3 试验分a、b两组:a. 40±2℃,90 ~ 95 % RH,1344小时b. 40±2℃,90 ~ 95 % RH,10%V DC,1344小时无外观损伤∣△V/V1mA∣≦ 5 %绝缘阻抗≧100MΩ温度急变试验IEC 60068-2-14 温度急变按下表条件循环五个周期。
M101-P_M102参数设置手册中文
3.20 外部 CT 的安装 ......................................................... 16 3.21 外部 CT1 一次电流 ...................................................... 16 3.22 外部 CT2 一次电流(仅对 M102-P) ......................................... 17 4 4.1 4.2 4.3 5 5.1 6 6.1 6.2 6.3 6.4 7 7.1 7.2 8 8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8 PROFIBUS DP 通讯 ........................................................ 17 设备地址 .............................................................. 17 操作模式 .............................................................. 18 DP 块(Block DP) ........................................................ 18 控制权限(CONTROL AUTHORITY) ........................................... 18 电机控制权限 .......................................................... 19 开关量输入 .............................................................. 19 功能定义 .............................................................. 20 触点类型 .............................................................. 22 操作延时 .............................................................. 23 执行模式 .............................................................. 23 可编程输出 .............................................................. 23 功能定义 .............................................................. 23 起动/停机 延时 ........................................................ 24 热过载保护 (TOL) ........................................................ 25 功能 开启, 关闭 ....................................................... 26 热模式 ................................................................ 26 脱扣时间(T6) .......................................................... 27 脱扣时间(Te) .......................................................... 29 Ia/In ................................................................. 30 热过载保护告警值 ...................................................... 31 热过载保护脱扣值 ...................................................... 31 热过载保护复位值 ...................................................... 31
防静电相关国家标准及其它标准
防静电相关国家标准及其它标准GB1410-89《固体电工绝缘材料绝缘电阻、体积电阻系数和表面电阻试验方法》GB1692-81《硫化橡胶绝缘电阻率的测定方法》西北橡胶工业制品研究所GB2439-81《导电和抗静电橡胶电阻率(系数)的测定方法》沈阳第四橡胶厂GB3684-83《运输带导电性规范和试验方法》青岛橡胶工业研究所GB4386-84《防静电胶底鞋、导电胶底鞋电阻值测量方法》GB4385-84《防静电胶底鞋、导电胶底鞋安全技术条件》北京市劳保所GB4655-84《橡胶工业静电安全规程》GB6950-86《轻质油品安全静止电导率》GB6539-86《轻质石油产品电导率测定法》石化研究院,GB6951-86《轻质油品装油安全油面电位值》GB6650-86《计算机房用活动地板技术条件》GB6833.3-87《电子测量仪器电磁兼容性试验规范静电放电敏感度试验》GB9572-88《橡胶、塑料软管和软管组合件电阻的测定》沈阳橡胶所GB10715-89《抗静电环形V带导性规定值和试验方法》GB12014-89《防静电工作服》GB11210-89《硫化橡胶抗静电和导电制品电阻的测定》GB12158-90《防止静电事故通用导则》GB/T 12582-90 《液态烃类电导率测定方法》石化研究院GB 12367-90 《涂装作业安全规程静电喷漆工艺安全GB/T12582-90 《液态烃类电导率测定方法(精密静电计法)》GB/T12703-91《纺织品静电性能测试方法》北京理工大学GB 13348-92 液体石油产品静电安全规程江苏省劳动保护科学技术研究所GB/T14288-93《可燃气体与易燃液体蒸汽最小静电点火能测定方法》GB 14773-93 涂装作业安全规程静电喷枪及其辅助装置安全技术条件GB/T 1447-93《塑料薄膜静电性能测试方法半衰期法》GB/T 50174-93《电子计算机房设计规范》GB/T14342-93《合成短纤维试验方法比电阻》GB/T 15463-1995 《静电安全术语》劳动部劳保所GB 15607-1995 《涂装作业安全规程粉末静电喷涂工艺安全》GB 15599-1995 《石油与石油设施雷电安全规范》GB/T15662-1995 《导电、防静电塑料体积电阻率测试方法》GB/T 15738-1995 《导电和抗静电纤维增强塑料电阻率试验方法》GB/T 16801-1997 《织物调理剂抗静电性能的测定》中国日用化学工业研究所GB/T 16906-1997 《石油罐导静电涂料电阻率测定法》中国石油化工科技装备中心GB/T 17626.2-1998 《电磁兼容试验和测量技术静电放电抗扰度试验》GJB/z 25-91《电子设备和设施的接地、搭接和屏蔽设计指南》GJB/z 736.11-90《火工品试验方法电火工品静电敏感度试验》GJB/z 86-97 《静电放电防护包装手册》GJB1649-93《电子产品防静电放电控制大纲》GJB 2527-95《弹药防静电要求》GJB 2605-96 《柔性热密封防静电阻隔材料规范》GJB 3007-97 《防静电工作区技术要求》GJB/Z 105-98《电子产品防静电放电控制手册》GJB 3136-97 飞机加油用导静电橡胶软管规范GJB 2747-96 防静电缓冲包装材料通用规范GJB 108A-93 航空轮胎试验方法静负荷性能、动态模拟和导静电性能试验SJ 20154-92 《信息技术设备静电放电敏感度试验》SJ/T 10533-94《电子设备制造防静电技术要求》SJ/T 10630-95 《电子元器件制造防静电技术要求》SJ/T 11090-96 《电子工业用合成纤维防静电绸性能及试验方法》SJ/T 10147-91 《集成电路防静电包装管》SJ/T 11159《地板覆盖层和装配地板静电性能试验方法》SJ/T 10694-96《电子产品制造防静电系统测试方法》。
药芯焊丝牌号对照表 ()
药芯焊丝牌号对照表药芯焊丝牌号对照表序符合号GB结构钢用药芯焊丝相当标准AWSJIS1 GB/T 10045-2001 E500T-1A5.20 E70T-1 Z3313 YFW-C50DR2 GB/T 10045-2001 E501T-1A5.20 E71T-1 Z3313 YFW-C50DR3 GB/T 10045-2001 E500T-5A5.20 E70T-5 Z3313 YFW-C503B4 ------------A5.29 E81T1-Ni1Z3313 YFW-C603R5 GB/T 10045-2001 E500T-1A5.20 E70T-1 Z3313 YFW-C50DR6 ---------------------Z3313 YFL-C504R7 ---------------------Z3320 YFA-50W8 GB/T 17493-1998 E550T1-W 耐热钢用药芯焊丝9 GB/T 17493-1998 E551T1-A1 10 GB/T 17493-1998 E551T1-B1 11 GB/T 17493-1998 E551T1-B2 12 -----------13 GB/T 17493-1998 E601T1-B3气保焊不锈钢药芯焊丝A5.29 E80T1-W Z3320 YFA-58WA5.29 E81T1-A1 A5.29 E81T1-B1 A5.29 E81T1-B2----------A5.29 E91T1-B3Z3318 YFM-C Z3318 YFCM-C Z3318 YF1CM-C ---------Z3318 YF2CM-C14 GB/T 17853-1999 E308T1-1 15 GB/T 17853-1999 E308LT1-1 16 GB/T 17853-1999 E309T0-1 17 GB/T 17853-1999 E309LT0-1 18 GB/T 17493-1999 E309MoT0-1A5.22 E308T-1A5.22 E308LT-1Z3323 YF308C Z3323 YF308LCA5.22 E309T-1 Z3323 YF309CA5.22 E309LT-1Z3323 YF309LC----------Z3323 YF309MoC19 GB/T 17853-1999 E316T0-1 20 GB/T 17853-1999 E316LT0-1 21 GB/T 17853-1999 E347T1-1A5.22 E316T-1 Z3323 YF316CA5.22 E316LT-1Z3323 YF316LCA5.22 E347T-1 Z3323 YF347C22 GB/T 17853-1999 E410T0-1A5.22 E410T-1 Z3323 YF410C23 GB/T 17853-1999 E430T0-1A5.22 E430T-1 Z3323 YF430C不锈钢 TIG 焊用药芯焊丝24 (相当)GB/T 17853-1999 E308T1-5 A5.22 E308T-2 Z3323 YF308C25 GB/T 17853-1999 R308LT1-5A5.22 E308LT-2Z3323 YF308LC26 (相当)GB/T 17853-1999 E309T1-5 A5.22 E309T-2 Z3323 YF309C27 GB/T 17853-1999 R309LT1-5A5.22 E309LT-2Z3323 YF309LC28 ----------------------Z3323 YF309MoC29 (相当)GB/T 17853-1999 E316T1-5 A5.22 E316T-2 Z3323 YF316C30 GB/T 17853-1999 R316LT1-5A5.22 E316LT-2Z3323 YF316LC31 GB/T 17853-1999 R347T1-5A5.22 E347T-2 Z3323 YF347CMAG 焊用耐磨堆焊药芯焊丝32 -----------33 -----------34 -----------35 -----------36 -----------37 ------------埋弧焊用耐磨堆焊药芯焊丝 38 -----------39 -----------40 -----------41 -----------42 -----------序中国钢廉 号----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------日本神户韩国现代1 -----------2 GL-YJ502(Q) 3 GL-YJ507(Q) 4 GL-YJ602(Q) 5 -----------6 GL-YJ502Ni(Q)DW-100F DW-100 -----------DW-60 MX-100 -----------------------SF-71 ----------------------SF-70MX ------------7 GL-YJ502CrNiCu(Q)DW-50W8 GL-YJ602CrNiCu(Q)DW-588耐热钢用药芯焊丝9 ------------------------10 ------------------------11 GL-YR302(Q) 12 ------------DW-1CMA ------------13 GL-YR402(Q)DW-2CMA气保焊不锈钢药芯焊丝14 GL-YA102(Q)DW-30815 GL-YA002(Q)DW-308L16 GL-YA302(Q)DW-30917 GL-YA062(Q)DW-309L18 -----------19 GL-YA202(Q)-----------DW-31620 GL-YA022(Q)DW-316L21 GL-YA132(Q)DW-347SF-70W SF-80W-------------------------------------------------------------------SW-308L Cored -----------SW-309L Cored ----------------------SW-316L Cored SW-347 Cored22 ------------DW-410Nb23 ------------DW-430Nb不锈钢 TIG 焊用药芯焊丝24 ------------------------25 ------------------------26 ------------------------27 ------------------------28 ------------------------29 ------------------------30 ------------------------31 ------------------------MAG 焊用耐磨堆焊药芯焊丝32 ------------DWH-25033 GL-YD350(Q)DWH-35034 GL-YD450(Q)DWH-45035 ------------DWH-60036 ------------DWH-80037 ------------------------埋弧焊用耐磨堆焊药芯焊丝-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------38 ------------G-50/USH-250N------------39 ------------G-50/USH-350N------------40 ------------G-50/USH-450N------------41 ------------G-50/USH-500N------------42 ------------MF-30/USH-600N ------------气保护药芯焊丝简明表牌号GB 标准AWS 标准焊接电源主要用途JQ.YD132-1DC+JQ.YD172-1DC+JQ.YD212-1DC+JQ.YJ501-1E501T-1E71T-1DC+JQ.YJ501Ni-1 E501T1-GE71T1-GDC+JQ.YJ501NiCrCu-1DC+JQ.YJ502-1E500T-1E70T-1DC+JQ.YJ502Ni-1 E550T1-Ni1E80T1-Ni1DC+JQ.YJ507-1E500T-5E70T-5DC+JQ.YJ551Ni-1 E551T1-Ni1E81T1-Ni1DC+JQ.YJ551Ni2-1 E551T1-Ni2E81T1-Ni2DC+堆焊用 CO2 气保护钛型药芯焊丝。
物料命名原则
XXX公司物料命名原那么(V5.0)公司目录第一章物料命名总那么…………………………………………………………………………………第二章元器件命名原那么………………………………………………………………………………一、电阻…………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………1.1.2插件〔默认〕………………………………………………………………………………………………………………………………………………………………………….………………………………………………………………………………………….……………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………二、电容……………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………三、电感……………………………………………………………………………………………………………………………………………………………………………………………….…………………………………………………………………………………………3.3 磁芯、磁环、磁管……………………………………………………………………………….3.4 其它电感…………………………………………………………………………………………四、变压器…………………………………………………………………………………………………五、二三级管……………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………二三级管……………………………………………………………………………………六、集成电路……………………………………………………………………………………………七、滤波器………………………………………………………………………………………………八、继电器………………………………………………………………………………………………九、传感器、计数器……………………………………………………………………………………十、保险丝、保险管、保险管座………………………………………………………………………十一、放电器件………………………………………………………………………………………11.1气体放电管……………………………………………………………………………………11.2 其它放电器件……………………………………………………………………………………十二、开关…………………………………………………………………………………………………………………………………………………………………………………………….……………………………………………………………………………………….十三、接线端子及附件…………………………………………………………………………….. ………………………………………………………………………………………………………………………………………………………………………………十四、接插件………………………………………………………………………………………………14.1同轴连接器〔N、SL16、L16、L29、TNC、BNC、SMB、SMA〕…………………………………14.2 D型连接器(9针、25针)………………………………………………………………………14.3 RJ型连接器〔RJ11、RJ45〕……………………………………………………………………14.4 端头………………………………………………………………………………………………14.5插头、插座………………………………………………………………………………………………………………………………………………………………………………十五、防水接头…………………………………………………………………………………………十六、印制板类………………………………………………………………………………………………………………………………………………………………………………. ……………………………………………………………………………………………………………………………………………………………………. …………………………………………………………………………………………十七、其它元器件…………………………………………………………………………………………第三章紧固件命名原那么…………………………………………………………………………………一、螺钉……………………………………………………………………………………………………二、螺母……………………………………………………………………………………………………三、垫圈……………………………………………………………………………………………………四、螺栓……………………………………………………………………………………………………五、组合螺钉………………………………………………………………………………………………六、铆钉……………………………………………………………………………………………………七、过线圈…………………………………………………………………………………………………八、其它紧固件件……………………………………………………………………………………….第四章、线材命名原那么…………………………………………………………………………………一、绝缘电缆………………………………………………………………………………………………二、排线……………………………………………………………………………………………………三、同轴线…………………………………………………………………………………………………四、网络线…………………………………………………………………………………………………五、漆包线…………………………………………………………………………………………………六、镀锡线…………………………………………………………………………………………………七、其它线…………………………………………………………………………………………………八、辅料………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………8.5焊锡、焊剂……………………………………………………………………………………………………………………………………………………………………………………8.7其它辅料……………………………………………………………………………………………第五章零部件〔机构件〕………………………………………………………………………………一、外壳/外盒………………………………………………………………1、天馈产品外壳/外盒………………………………………………………………………………型材件……………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………2、电源产品外壳/外盒………………………………………………………………………………型材件……………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………3、信号产品外壳/外盒………………………………………………………………………………型材件………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………….二、安装板……………………………………………………………………………………………….三、盖板类/面板类……………………………………………………………………………………… 3.1金属类盖板类/面板类………………………………………………………………………… 3.2 非金属类盖板类/面板类………………………………………………………………………四、挡板/端板……………………………………………………………………………………………五、扣片/插片/极片………………………………………………………………………………………六、支撑柱、支架、垫板、垫块…………………………………………………………………………..七、连接件类、汇流排类、接地件类……………………………………………………………………八、衬套、轴套、连杆…………………………………………………………………………………….九、窗盖、堵盖…………………………………………………………………………………………十、导轨…………………………………………………………………………………………………十一、卡脚………………………………………………………………………………………………第五章、辅料……………………………………………………………………………………………….一、热缩管……………………………………………………………………………………………….二、缠绕管………………………………………………………………………………………………三、扎线带………………………………………………………………………………………………四、焊锡、焊剂…………………………………………………………………………………………五、清洗剂………………………………………………………………………………………………六、其它辅料……………………………………………………………………………………………第六章、包装材料………………………………………………………………………………………一、说明书类………………………………………………………………………………………………………………………………………………………………………………. ……………………………………………………………………………………………………………………………………………………………………1.4 避雷针产品说明书………………………………………………………………………………1.5 其它产品说明书…………………………………………………………………………………二、标签类………………………………………………………………………………………………………………………………………………………………………………. ……………………………………………………………………………………………………………………………………………………………….2.4 避雷针产品型号标签……………………………………………………………………………2.5 其它产品型号标签………………………………………………………………………………三、装箱单类……………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………3.4 避雷针产品装箱单………………………………………………………………………………3.5 其它产品装箱单…………………………………………………………………………………四、合格证类…………………………………………………………………………………………………………………………………………………………………………………. ……………………………………………………………………………………………………………………………………………………………………4.4 避雷针产品合格证………………………………………………………………………………4.5 其它产品合格证…………………………………………………………………………………五、通用包装物…………………………………………………………………………………………六、纸箱/纸盒………………………………………………………………………………………….第一章物料命名总那么一、目的和范围为保证物料命名标准化,便于物料识别、管理,特制定本原那么。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Parallel Optical Link Transmitter:PAROLI ® 2 Tx AC, 1.25 Gbit/s Parallel Optical Link Receiver:PAROLI ® 2 Rx AC, 1.25 Gbit/sFile: 3104Fiber OpticsV23832-T2531-M101 V23832-R511-M101Design Benefits •Relieve system bandwidth bottle necks •Simplifies system design•Enables system upgrades in field•Low power consumption at increased board density •Flat package for height critical applicationFeatures •Infineon’s highly reliable 850 nm VCSEL technology •Power supply 3.3V•Transmitter with multistandard electrical interface •Receiver with Infineon’s adjustable CML output •12 electrical data channels•Asynchronous, AC-coupled optical link •12 optical data channels•Internal power monitoring for constant power budget•Transmission data rate of up to 1250Mbit/s per channel, total link data rate up to 15Gbit/s •PIN diode array technology•Optimized for 62.5 µm multimode graded index fiber •MT based optical port (MPO connector)•Plug-in module with ultra low profile•IEC Class 1M laser eye safety compliant •OIF 1) compliant•GBE mask compliant modules available •EMI-shielding for front panel access •Standard link length compliant•Unused transmitter channels can be switched off •DC or AC coupling of input data •Telcordia compliant1)OIF-VSR4-01.0 Implementation Agreement (VSR OC-192/STM-64).ApplicationsOptical Port•Designed for the industry standard 12 fiber MT Connector (MPO)•Alignment pins fixed in module port•Integrated mechanical keying•Module is provided with a dust coverFeatures of MT Connector (MPO)(as part of optional PAROLI fiber optic cables)•Uses standardized MT ferrule•MT compatible fiber spacing (250µm) and alignment pin spacing (4600µm)•Push-pull mechanism•Ferrule bearing spring loadedFeatures of the PAROLI 2 Electrical Connector•Pluggable version using BGA socket•100 pin positions (10x10)•4mm stack height in mated conditions•Plug and receptacle are provided with protective cap•Standard BGA process for socket assembly•Contact area plating made out of gold over nickel•Module side: FCI-MEG-Array® -Plug (part no. 84512-202)•PCB side: FCI-MEG-Array® -Receptacle (part no. 84513-201)Applications•Switches, routers, transport equipment•Mass storage devices•Access network•Rack-to-rack/board-to-board interconnect•Optical backplane interconnectPin ConfigurationFigure 1Pin Information TransmitterNumbering Conventions Transmitter (bottom view)J IHGFEDCBA1V EEDI05NDI05PDI06NDI06PDI07NDI07PDI08NDI08PV EE2DI04P VEE V EE V EE V EE V EEV EE V EE V EEDI09N 3DI04N V EE Reserved Reserved t.b.l.o.t.b.l.o.Reserved Reserved V EE DI09P 4DI01P V EE Reserved Reserved t.b.l.o.t.b.l.o.Reserved Reserved V EEDI12N 5DI01N V EE V EE V EE t.b.l.o.t.b.l.o.V EE V EE V EE DI12P 6DI02P V EE V EE V EE t.b.l.o.–LE V EE V EE V EE DI11N 7DI02N V EE V EE V EE LCULEV EEV EE V EE DI11P 8DI03P V EE V EE V EE V IN –RESET V EEV EE V EE DI10N 9DI03NV EE V EE V EE V CC V CC V EE V EE V EE DI10P10V EE V EEV EEV EEV CCV CCV EEV EEV EEV EEThis edge towards MPO connectorPin Description TransmitterSymbol Level/Logic DescriptionVCCPower supply voltage of laser driverV IN CML: V IN = Reference supply (e.g. V CC) LVDS, LVPECL: V IN = V EEVEEGroundLCU LVCMOSOut Laser Controller Up.High = normal operation.Low = laser fault or RESETlow.DIxxN Signal In Data Input #xx, invertedDIxxP Signal In Data Input #xx, non-inverted–RESET LVCMOS In High = laser diode array is active.Low = switches laser diode array off.This input has an internal pull-down to ensure laser eyesafety switch off in case of unconnected RESETinput.LE LVCMOS In Laser ENABLE. High active.High = laser array is on if LE is also active.Low = laser array is off. This input has an internal pull-up,therefore can be left open.–LE LVCMOS In Laser ENABLE. Low active.Low = laser array is on if LE is also active. This input hasan internal pull-down, therefore can be left open.t.b.l.o.to be left openReserved Reserved for future useFigure 2Pin Information ReceiverNumbering Conventions Receiver (bottom view)J IHGFEDCBA1V EEDO05PDO05NDO06PDO06NDO07PDO07NDO08PDO08NV EE2DO04NV EE V EE V EE V EE V EEV EE V EE V EEDO09P 3DO04P V EE Reserved Reserved t.b.l.o.t.b.l.o.Reserved Reserved V EE DO09N 4DO01N V EE Reserved Reserved OENENSD Reserved Reserved V EEDO12P 5DO01P V EE V EE V EE SD01–SD12V EE V EE V EE DO12N 6DO02N V EE V EE V EE Reserved REFRV EE V EE V EE DO11P 7DO02P V EE V EE V EE V CCO V CCO V EE V EE V EE DO11N 8DO03N V EE V EE V EE V CCO V CCO V EE V EE V EE DO10P 9DO03PV EE V EE V EE V CC V CC V EE V EE V EE DO10N10V EE V EEV EEV EEV CCV CCV EEV EEV EEV EEThis edge towards MPO connectorPin Description ReceiverSymbol Level/Logic DescriptionVCCPower supply voltage of pre amplifier and analog circuitryVCCOPower supply voltage of output stagesREFR Adjustment of output current by connecting externalresistor to V EEVEEGroundOEN LVCMOS In Output Enable High = normal operation.Low = sets all Data Outputs to low.This input has an internal pull-up which pulls to high levelwhen this input is left open.ENSD LVCMOS In High = SD1 and –SD12 function enabled.Low = SD1 and –SD12 are set to permanent active.This input has an internal pull-up which pulls to high levelwhen this input is left open.SD1LVCMOSOut Signal Detect on fiber #1.High = signal of sufficient AC power is present on fiber #1. Low = signal on fiber #1 is insufficient.–SD12LVCMOSOutlow active Signal Detect on fiber #12.Low = signal of sufficient AC power is present on fiber #12. High = signal on fiber #12 is insufficient.DOxxP CML Out Data Output #xx, non-inverted DOxxN CML Out Data Output #xx, invertedt.b.l.o.to be left openReserved Reserved for future useDescriptionPAROLI is a parallel optical link for high-speed data transmission. A complete PAROLI link consists of a transmitter module, a 12-channel fiber optic cable, and a receiver module. The transmitter supports LVDS, CML and LVPECL differential signals. Two different receiver modules are available. Module V23832-R521-M101 is for LVDS electrical output only. This specification (V23832-R511-M101) describes a receiver for Infineon’s adjustable CML output.Figure3Example of a PAROLI LinkTransmitter V23832-T2531-M101The transmitter module converts parallel electrical input signals via a laser driver and a Vertical Cavity Surface Emitting Laser (VCSEL) diode array into parallel optical output signals. All input data signals are Multistandard Differential Signals (LVDS compatible; LVPECL and CML is also supported because of the wide common input range). The electrical interface (LVDS, LVPECL or CML) is selected by the supply inputs V IN. The data rate is up to 1250Mbit/s for each channel. The transmitter module’s min. data rate of 500Mbit/s is specified for the CID1) worst case pattern (disparity 72) or any pattern with a lower disparity. The transmitter features active feedback of optical output power and extinction ratio, which guarantees a constant power budget.Unused channels can be forced to a quiescent state by applying e.g. a constant high level to the input stage of these channels. The integrated alerter circuit (see “Laser Eye Safety Design Considerations” on Page12) will switch off the corresponding transmitter output, which results also in a reduced power consumption. Unused transmitter input channels can also be left open. The integrated swing detection circuit will assure a quiescent output state for these channels.A logic low level at –RESET switches all laser outputs off. During power-up –RESET must be used as a power-on reset which disables the laser driver and laser control until the power supply has reached a 3.135V level.The Laser Controller Up (LCU) output is low if a laser fault is detected or –RESET is forced to low.All non data signals have LVCMOS levels.Transmission delay of the PAROLI system is ≤1ns for the transmitter, ≤1ns for the receiver and approximately 5ns per meter for the fiber optic cable.Figure4Transmitter Block Diagram1)Consecutive Identical Digit (CID) immunity test pattern for STM-N signals,Receiver V23832-R511-M101The PAROLI receiver module converts parallel optical input signals into parallel electrical output signals. The optical signals received are converted into voltage signals by PIN diodes, trans impedance amplifiers, and gain amplifiers. The differential data outputs are Infineon’s adjustable CML signals. A separate module (V23832-R521-M101) with LVDS output is also available. The output differential voltage (swing) is adjusted by an external resistor connected to the REFR module input, the output average is adjustable by external pull-up resistors.The data rate is up to 1250 Mbit/s for each channel. The receiver module’s min. data rate of 500 Mbit/s is specified for the CID1) worst case pattern (disparity 72) or any pattern with a lower disparity.Additional Signal Detect outputs (SD1 active high / –SD12 active low) show whether an optical AC input signal is present at data input 1 and/or 12. The signal detect circuit can be disabled with a logic low at ENSD. The disabled signal detect circuit will permanently generate an active level at Signal Detect outputs, even if there is insufficient signal input. This could be used for test purposes.A logic low at Output Enable sets all data outputs to logic low. SD outputs will not be effected.All non data signals have LVCMOS levels. Transmission delay of the PAROLI system is ≤1ns for the transmitter, ≤1ns for the receiver and approximately 5ns per meter for the fiber optic cable.Figure5Receiver Block Diagram1)Consecutive Identical Digit (CID) immunity test pattern for STM-N signals,Regulatory ComplianceThe following table shows industry standard test methods and results obtained from the indicated test methods. (The overall system design will affect the electromagnetic interference (EMI), electrostatic discharge (ESD) and immunity).EMI RecommendationsEMI behavior of each PAROLI module revision is evaluated and measured - in order to ensure a good and sufficient EMI performance of all PAROLI modules. As the total EMI performance will also depend on system design and to avoid electromagnetic radiation exceeding the required limits set by the standards, please take note of the following recommendations.FeatureStandardComments ESD:Electrostatic Discharge to the Electrical Pins (HBM)JEDEC Human Body Model (HBM) Test MethodEIA/JESD22-A114-B (MIL-STD 883D method 3015.7)Class 1CImmunity:Against Electrostatic Discharge (ESD) to the Module Receptacle EN 61000-4-2IEC 61000-4-2Discharges ranging from ±2kV to±15kV on the front end/face-plate/receptacle cause no damage to module (under recommended mounting conditions).Immunity:Against Radio FrequencyElectromagnetic Field EN 61000-4-3IEC 61000-4-3With a field strength of 3V/m, noise frequency ranges from 10MHz to 2GHz 1). No effect on module performance between the specification limits.1)This test covers high frequency bands of mobile phones.Emission:Electromagnetic Interference (EMI)FCC 47 CFR Part 15,Class BEN 55022 Class B CISPR 22Noise frequency range:30MHz to 18GHz;Radiated Emission does not exceed specified limits when measured inside a shielding enclosure with recommended cutout dimensions. Typically pass with >11dB margin to the limit (under recommended mounting conditions).Description When Gigabit switching components are found on a PCB (e.g. multiplexer, serializer-deserializer, clock data recovery, etc.), any opening of the chassis may leak radiation; this may also occur at chassis slots other than that of the device itself. Thus every mechanical opening or aperture should be as small as feasible and its length carefully considered.On the board itself, every data connection should be an impedance matched line (e.g. micro strip, strip line or coplanar strip line). Data (D) and Data-not (Dn) should be routed symmetrically. Vias should be avoided. Where internal termination inside an IC or a PAROLI module is not present, a line terminating resistor must be provided.The decision of how best to establish a ground depends on many boundary conditions. This decision may turn out to be critical for achieving lowest EMI performance. At RF frequencies the ground plane will always carry some amount of RF noise. Thus the ground and V CC planes are often major radiators inside an enclosure.As a general rule, for small systems such as PCI cards placed inside poorly shielded enclosures, the common ground scheme has often proven to be most effective in reducing RF emissions. In a common ground scheme, the PCI card becomes more equipotential with the chassis ground. As a result, the overall radiation will decrease. In a common ground scheme, it is strongly recommended to provide a proper contact between signal ground and chassis ground at every location where possible. This concept is designed to avoid hotspots which are places of highest radiation, caused when only a few connections between chassis and signal grounds exist. Compensation currents would concentrate at these connections, causing radiation.However, as signal ground may be the main cause for parasitic radiation, connecting chassis ground and signal ground at the wrong place may result in enhanced RF emissions. For example, connecting chassis ground and signal ground at a front panel/ bezel/chassis by means of a fiber optic module may result in a large amount of radiation especially where combined with an inadequate number of grounding points between signal ground and chassis ground. Thus the fiber optic module becomes a single contact point increasing radiation emissions. Even a capacitive coupling between signal ground and chassis ground may be harmful if it is too close to an opening or an aperture. For a number of systems, enforcing a strict separation of signal ground from chassis ground may be advantageous, providing the housing does not present any slots or other discontinuities. This separate ground concept seems to be more suitable in huge systems.The return path of RF current must also be considered. Thus a split ground plane between Tx and Rx paths may result in severe EMI problems.The bezel opening for a transceiver should be sized so that all contact springs of the transceiver cage make good electrical contact with the face plate.Please consider that the PCB may behave like a dielectric waveguide. With a dielectric constant of 4, the wavelength of the harmonics inside the PCB will be half of that in free space. Thus even the smallest PCBs may have unexpected resonances.Laser Eye SafetyThe transmitter of the AC coupled Parallel Optical Link (PAROLI) is an IEC 60825-1 Amend. 2 Class 1M laser product. It complies with FDA performance standards (21 CFR 1040.10 and 1040.11) for laser products except for deviations pursuant to Laser Notice No. 50, dated July 26, 2001. To avoid possible exposure to hazardous levels of invisible laser radiation, do not exceed maximum ratings.The PAROLI module must be operated under the specified operating conditions (supply voltage can be adjusted between 3.0V and 3.6V) under any circumstances to ensure laser eye safety.Class 1M Laser ProductAttention:Invisible laser radiation. Do not view directly with optical instruments. Note:Any modification of the module will be considered an act of “manufacturing”, and will require, under law, recertification of the product under FDA (21 CFR 1040.10 (i)).Figure6Laser EmissionLaser Eye Safety Design ConsiderationsTo ensure laser eye safety for all input data patterns each channel is controlled internally and will be switched off if the laser eye safety limits are exceeded. A channel alerter switches the respective data channel output off if the input duty cycle permanently exceeds 57% (switching range 57 % min. - 65 % max.). The alerter will not disable the channel below an input duty cycle of 57% under all circumstances.The minimum alerter response time is 1 µs with a constant high input, i.e. in the input pattern the time interval of excessive high input (e.g. ’1’s in excess of a 57% duty cycle, consecutive or non-consecutive) must not exceed 1 µs, otherwise the respective channel will be switched off. The alerter switches the respective channel from off to on without the need of resetting the module if the input duty cycle is no longer violated.All of the channel alerters operate independently, i.e. an alert within a channel does not affect the other channels. To decrease the power consumption of the module unused channel inputs can be tied to high input level. In this way a portion of the supply current in this channel is triggered to shut down by the corresponding alerter.Laser Eye Safety Measurement ConditionsLaser Data Symbol Values Unit Conditionmin.typ.max.Center wavelengthλC 830850860nm Tcase0...80°CArray size12channelsDivergence angle/ Numerical Aperture Θ/NA44/0.22°/radΘ full /NA half angleIEC class 1M Accessible Emission Limit AEL 6.36dBm7mm aperture@ 100mmdistanceApplying penalties(safety margin)∆P opt 4.2dB Test limit 2.16dBmTechnical DataAbsolute Maximum RatingsStress beyond the values stated below may cause permanent damage to the device.Exposure to absolute maximum rating conditions for extended periods of time may affect device reliability. Performance between absolute maximum ratings and recommended operating conditions is not guaranteed.Parameter Symbol Limit Values Unit min.max.Supply VoltageV CC –V EE –0.3 4.5V Data/Control Input Levels 1)1)At Data and LVCMOS inputs.V IN –0.5V CC +0.5V Data Input Differential Voltage 2)2)|V ID | = |(input voltage of non-inverted input minus input voltage of inverted input)|.|V ID | 2.0V Operating Case Temperature 3)3)Measured at case temperature reference point (see Figure 18 on Page 31).T case 090°C Storage Ambient Temperature T stg–40100°C Relative Humidity (non condensing)595%ESD Resistance(all pins to V EE , human body model)4)(see table “Regulatory Compliance” on Page 10)4)To avoid electrostatic damage, handling cautions similar to those used for MOS devices must be observed.1kVRecommended Operating Conditions1)Parameter Symbol Values Unitmin.typ.max. TransmitterOperating Case Temperature T case04580°C Power Supply Voltage V CC 3.135 3.3 3.6V Noise on Power Supply2)N PS200mVData Input Voltage Range (DC-coupled)3), 4)VDATAI500V CC mVData Input Differential Voltage(DC- or AC-coupled)4), 5)|V ID|801000mVData Input Skew6)t SPN0.5 x t R-DI,tF-DIps Data Input Rise/Fall Time7)t R-DI, t F-DI50360ps LVCMOS Input High Voltage V LVCMOSIH 2.0V CC V LVCMOS Input Low Voltage V LVCMOSIL V EE0.8V LVCMOS Input Rise/Fall Time8)t R-LVCMOSI,tF-LVCMOSI20ns ReceiverPower Supply Voltages V CC, V CCO 3.0 3.3 3.6V Noise on Power Supply2)N PS200mV Output Current9)I out39mA Output Voltage (DC-coupled)10)V out V CCO–1.8V CCO+0.5V Output Differential Voltage(DC- or AC-coupled)10), 11)|V OD|80800mV Output Load RC Time Constant t RC150ps LVCMOS Input High Voltage V LVCMOSIH 2.0V CC V LVCMOS Input Low Voltage V LVCMOSIL V EE0.8V LVCMOS Input Rise/Fall Time8)t R-LVCMOSI,tF-LVCMOSI20ns Optical Input Rise/Fall Time12)t R-OI, t F-OI400ps Input Extinction Ratio ER 6.0dBInput Center WavelengthλC830860nm Voltages refer to V EE = 0 V.Figure 7Input Level Diagram, DC-couplingFigure 8Output Level Diagram, DC-coupling1)Recommended range of input parameters for specified module functional performance.2)Noise frequency is 1 kHz to f max , where f max is equal to the maximum data rate in units of MHz. E.g. for a maximum data rate of 2700 Mbit/s, f max = 2700 MHz. Power supply noise is defined with the recommended filter in place at the supply side of the filtering circuit (see Figure 9 on Page 17).3)The input stage can also be AC-coupled.4)Input level diagram: see Figure 7 on Page 16.5)|V ID | = |(input voltage of non-inverted input minus input voltage of inverted input)|.6)Skew between positive and negative inputs measured at 50% level.7)20% - 80% level.8)Measured between 0.8 V and 2.0 V.9)I out ≈ 10*1.15 V/R external . Resistor R external to be connected externally between REFR and V EE .10)Output level diagram: see Figure 8 on Page 16.11)|V OD | = I out *(300 Ω || R LOAD ). The output current range of 3mA to 9mA corresponds to |V OD | = 130mV to 385mV for R LOAD = 50Ω.|V OD | = |(output voltage of non-inverted output minus output voltage of inverted output)|.12)20% - 80% level. Non filtered values.Recommended Power Supply FilteringA power supply filtering is recommended for the transmitter and the receiver module. A possible filtering scheme is shown in Figure9. The module signal and chassis ground refer to a common ground plane, which can be contacted to the PCB ground by the mounting screws (see Figure17 “PCB Layout” on Page28).Figure9Filtering SchemeFigure10Transmitter - Input StageFigure11Receiver - CML Output StageThe electro-optical characteristics described in the following tables are valid only for use under the recommended operating conditions.Transmitter Electrical Characteristics Parameter SymbolValues Unitmin.typ.max.Supply Current 1)1)Measured at the recommended case temperature of T case =45°C.For T case =0°C a decrease of approximately10% and for T case =80°C an increase of approximately 15% can be expected.I CC 400450mA Power Consumption 1)P1.31.6W Data Rate per Channel DR5002)2)Specified for CID worst case pattern (disparity 72) or any pattern with a smaller disparity. The minimum data rate depends on the disparity of the used data pattern. For example, a regular clock signal (1-0 sequence) can be transmitted down to a data rate as low as 1 Mbit/s.1250Mbit/s LVCMOS Output Voltage Low V LVCMOSOL0.4V LVCMOS Output Voltage High V LVCMOSOH 2.5V LVCMOS Input Current High/LowI LVCMOSI –100100µA LVCMOS Output Current High 3)3)Source current.I LVCMOSOH0.5mA LVCMOS Output Current Low 4)4)Sink current.I LVCMOSOL 4.0mA Data Differential Input Impedance 5)5)Data input stage.R IN 80100120ΩTransmitter Electro-Optical CharacteristicsParameter Symbol Values Unitmin.typ.max.Optical Rise Time1)t R200ps Optical Fall Time1)t F200ps Total Jitter2), 3)TJ0.284UI Deterministic Jitter3),4)DJ0.1UI Channel-to-channel skew5)t CSK100ps Launched Average Power6)P AVG–8.0–5.0–3.0dBm Launched Power Shutdown P SD–30.0dBm Center Wavelength7)λC830850860nm Spectral Width (rms)8)∆λ0.350.65nm Relative Intensity Noise9)RIN–117 dB/Hz Extinction Ratio (dynamic)ER 6.0dB Optical ModulationAmplitude10), 11)OMA0.1912)0.4613)mW Eye mask compliance GBEElectro-optical parameters valid for each channel and measured at the highest specified data rate.All optical parameters are measured with a 62.5 µm multimode fiber.1)20% - 80% level, non filtered values.2)The Total Jitter (TJ) is composed of Random Jitter (RJ) and Deterministic Jitter (DJ) according to:TJ = RJ (14 Sigma value) + DJ.The TJ is specified at a BER of 10–12 from TP1 to TP2 according to IEEE 802.3, sec. 38.5.The RJ is measured at the 50% level of the optical signal as the mean of the rising and falling edge measurement value.3)UI (Unit Interval) is equal to the length of one bit. For example, 2.72 Gbit/s corresponds to 368 ps.4)The DJ consists of Duty Cycle Distortion and Data Dependent Jitter and is measured according to IEEE 802.3using a K28.5 pattern.5)With input channel-to-channel skew 0ps and a maximum data channel-to-channel average deviation andswing deviation of 5%.6)The specified output power is compliant with IEC 60825-1, Amendment 2, Class 1M Accessible EmissionLimits (AEL).7)Wavelength is measured according to IEEE 802.3, sec. 38.6.1.8)Spectral width is measured according to IEEE 802.3, sec. 38.6.1.9)RIN is measured according to IEEE 802.3, sec. 38.6.4.10)Peak to peak values.11)OMA is defined as the difference of the optical high state (’1’) and the optical low state (’0’):OMA = Popt (’1’) – Popt(’0’).12)Corresponds to a minimum extinction ratio of 6dB.13)Corresponds to a typical extinction ratio of 8dB.Figure 12Timing DiagramParameterSymbolValues Unitmin.typ.max.–RESET on delay time t 11550ms –RESET off delay time t 2100500ns –RESET low duration 1)1)Only when not used as power on reset. At any failure recovery, –RESET must be brought to low level for at least t 3.t 310µsReceiver Electrical CharacteristicsParameter Symbol Values Unitmin.typ.max.Supply Current1)I CC170+15 I out 200+15 I outmAPower Consumption1),2)P0.70.9W Data Output Rise/Fall Time3)t R-DO,tF-DO250ps LVCMOS Output Voltage Low V LVCMOSOL400mV LVCMOS Output Voltage High V LVCMOSOH2500mVLVCMOS Input Current High/Low ILVCMOSI–100100µALVCMOS Output Current High4)I LVCMOSOH0.5mA LVCMOS Output Current Low5)I LVCMOSOL 4.0mA Total Jitter6),7),8),9),10)TJ0.33UI Deterministic Jitter6), 9), 11)DJ0.08UI Channel-to-channel skew12)t CSK100ps1)Typical value is measured at T case=45°C and 3.3 V, maximum value is measured at T case=80°C and 3.6 V.2)Calculated for I out = 3mA.3)Measured between 20% and 80% level. Maximum value is related to a maximum RC load time constant oftRC=150ps.4)Source current.5)Sink current.6)With no optical input jitter.7)Measured with an optical input power of 3 dB above minimum receiver sensitivity.8)Unused channels shall be terminated by 50 Ω.9)UI (Unit Interval) is equal to the length of one bit. For example, 2.72 Gbit/s corresponds to 368 ps.10)The Total Jitter (TJ) is the sum from Random Jitter (RJ) and Deterministic Jitter (DJ) according to:TJ = RJ (14 Sigma value) + DJ.The TJ is specified at a BER of 10–12 from TP3 to TP4 according to IEEE 802.3, sec. 38.5.The RJ is measured at the 50% level of the optical signal as the mean of the rising and falling edge RJ measurement value.11)The DJ consists of Duty Cycle Distortion and Data Dependent Jitter and is measured according to IEEE 802.3using a K28.5 pattern.12)With input channel-to-channel skew 0 ps.Receiver Electro-Optical CharacteristicsParameter Symbol Values Unitmin.max.Data Rate Per Channel DR5001)1250Mbit/s Sensitivity (Average Power)2)P IN–16.0dBm Optical Modulation Amplitude3)OMA0.0304)mW Saturation (Average Power)5)P SAT–2.0dBm Signal Detect Assert Level6)P SDA–17.0dBm Signal Detect Deassert Level6)P SDD–27.0dBm1.0 4.0dB Signal Detect Hysteresis6)P SDA–P SDDReturn Loss of Receiver 7) ORL12dB Electro-optical parameters valid for each channel and measured at the highest specified data rate.All optical parameters are measured with a 62.5 µm multimode fiber.1)Specified for CID worst case pattern (disparity 72) or any pattern with a smaller disparity. The minimum datarate depends on the disparity of the used data pattern. For example, a regular clock signal (1-0 sequence) can be received down to a data rate as low as 6Mbit/s.2)Sensitivity is measured for BER = 10–12 with a Pseudo Random Bit sequence of length 223–1 (PRBS23) and atest pattern source with RIN of –117 dB/Hz or better. Sensitivity is specified for the worst case extinction ratio and maximum cross talk possibility. The maximum crosstalk possibility is defined as the “victim” receiver channel operating at its sensitivity limit and the neighboring channels operating at 6 dB higher incident optical power.3)Peak to peak value.4)Corresponds to a maximum sensitivity (average power) of –16dBm at an extinction ratio of 6dB.5)Saturation is specified with a Pseudo Random Bit sequence of length 223–1 (PRBS23) and ER ≥ 6dB.6)P SDA: Average optical power when SD switches from inactive to active.P: Average optical power when SD switches from active to inactive.SDD7)Return loss is specified as the ration of the received optical power to the reflected optical power back into thelink fiber.。