第一章集合与简易逻辑小结

合集下载

第1章+集合与简单逻辑知识点汇总

第1章+集合与简单逻辑知识点汇总

《人教A版必修一知识点汇总》第1章《集合与常用逻辑用语》知识点汇总1.1 《集合的概念》1.集合的概念一般地,由某些确定的对象组成的整体就称为集合,简称为集.组成这个集合的对象称为这个集合的元素。

注:集合通常用大写字母表示,如A,B,C…元素通常用小写字母表示,如a,b,c…2.集合与元素之间的关系(1)如果a是集合A的元素,就说a属于A,记作a ∈ A,读作“a属于A”;(2)如果a不是集合A的元素,就说a不属于A,记作a∉A,读作“a不属于A”;3.集合中元素的三种特性(1)确定性:给定的集合,它的元素必须是确定的,也就是说给定一个集合,那么任何一个元素在不在这个集合中就确定了(即x∈A与x∉A必居其一.)(2)互异性:一个给定的集合中的元素是互不相同的,即集合中的元素不能相同.(3)无序性:集合中的元素是无先后顺序的,即集合里的任何两个元素可以交换位置.4.集合的分类根据集合所含有元素的个数,将集合分为:(1)有限集:含有有限个元素的集合;(2)无限集:含有无限个元素的集合;(3)空集:特别的,把不含有任何元素的集合叫做空集,记作∅.5.常用的数集例如1∈N,−5∈Z,π∉ Q6. 用列举法表示集合当集合中元素的个数为有限个(或无限个但呈现出某种规律)时,可以把集合中所有的元素一一列举出来,中间用逗号隔开,并用大括号“{}”把它们括起来,这种表示集合的方法就称为列举法。

例1小于6的所有正整数组成的集合A用列举法可以表示为A={1,2,3,4,5}.7.用描述法表示集合当集合的元素是无穷多个时,我们可以利用元素的特征性质来表示集合,这种表示集合的方法就叫做描述法.注:用描述法表示集合时,在大括号{}中画一条竖线(分隔符),竖线的左侧表示的是组成集合的元素,竖线的右侧是元素所具有的特征性质(或元素满足的条件).解:小于1的所有整数组成的集合A用描述法表示为A={x ∣ x<1,且 x∈Z }1.2集合间的基本关系1.子集与包含关系(1)定义像上面这样,对于两个集合A,B,如果集合A中任意一个元素都是集合B中的元素,我们就说这两个集合有包含关系,并称集合A为B的子集.记作:A⊆B(或者B⊇A),读作:A包含于B(或B包含A).规定:空集是任何集合的子集,即 ∅⊆A.(2)用Venn图表示集合与集合之间的关系例如集合A={1,2,3}与B={1,2,3,4,5}的关系为A⊆B,用Venn图表示为(3)非子集与不包含关系如果集合A不是集合B的子集,记作A⊈B或B⊉A,读作“A不包含于B“(或B不包含A).例如:集合C={2,3},集合D={2,4,5},则集合C不是集合D的子集,即C⊈D.2.集合与集合相等若集合A和集合B的元素完全相同:即A的每个元素都是B的元素,而B的每个元素也都是A的元素,那么就说A和B相等,记作“A=B”例如A={1,2,3} 与B={3 , 1 , 2},则A=B.3.真子集与真包含于一般的,若集合A是集合B的子集,且B中至少有一个元素不属于A,则A叫做B的真子集,记作A⫋B(或B⫌A),读作A真包含于B(或B真包含A)注:空集是任何非空集合的真子集例如A={1,3}与B={1, 3,5},则A⫋B(即A是B的真子集).1.3《集合的基本运算》1.交集的概念及其运算(1)定义一般地,对于给定的集合A与集合B,由既属于集合A又属于集合B的所有元素组成的集合,称为集合A与集合B的交集,记作A∩B.读作“A交B”.即 A∩B={ x | x∈A 且 x∈B }.(2)实例运用例1设集合A={2,4,6}, 集合B={0,1,2},则A∩B={2}.例2 设集合A={x | −2<x≤1},集合B ={x|−1≤x < 3},则A∩B={x |−1≤x ≤1}.2.并集的概念及其运算(1)定义一般地,对于给定的集合A与集合B,由集合A与集合B的所有元素组成的集合称为集合A与集合B的并集,记作A∪B.读作“A并B”.即A∪B={x|x∈A或x∈B}.(2)实例运用例1 设集合A={1,3,5,7}, 集合B={0,2,3,4,6},则A∪B={0,1,2,3,4,5,6,7}.例2 设集合A={x |−1<x≤2}, 集合B={x |0<x≤3},则 A∪B={x |−1<x≤3}.3.补集的概念及其运算(1)定义一般地,如果集合A是全集U的一个子集,则由集合U中不属于集合A的所有元素组成的集合称为集合A在全集U中的补集,记作C U A,即C U A={ x | x∈U且x∉A }(2)实例运用例1设全集U={x∈N|x<7},集合A={1,2,4,6},则C U A={0,3,5}.例2设全集U= R,集合A={x|−2≤x<1},则CA={ x | x<−2或 x≥1 }.U1.4充分条件与必要条件1.充分条件与必要条件(1)定义一般地,“若p, 则q”为真命题,即由“条件p 可以推出条件 q ”,记作:p⇒ q那么就称:“p 是 q 的充分条件, q 是p的必要条件”注:如果“若p, 则 q ”为假命题,即由“条件p不能推出条件 q ”,记作: p⇏ q那么就称:“p不是 q 的充分条件, q 不是p的必要条件”(2)实例运用例1若四边形的两组对角分别相等,则这个四边形是平行四边形;解析:设题设“四边形的两组对角分别相等”为p,结论“这个四边形是平行四边形”为 q∵ p ⇒ q∴p是 q的充分条件, q是p的必要条件例2若x2=1,则x = 1;解:设题设“x2=1”为 p ,结论“x = 1”为 q∵由x2=1可得x=1或x=−1∴p ⇏ q故p不是q的充分条件,q不是p的必要条件2.充要条件(1)定义一般地,如果 p ⇔ q (即情况1:原真逆真)我们就称 p 是 q 的充分必要条件,简称为“ 充要条件”.注1(情况2:原真逆假)如果 p ⇒ q ,且 q ⇏p , 我们就称 p是 q 的充分而不必要条件;注2(情况3:原假逆真)如果 p ⇏ q ,且 q ⇒p , 我们就称 p是 q 的必要而不充分条件;注3(情况4:原假逆假)如果 p ⇏ q ,且 q ⇏p , 我们就称 p是 q 的既不充分也不必要条件;(2)实例运用例1 p:两个三角形相似,q:两个三角形三边成比例;解:①原命题:“若p,则q”∵ 已知两个三角形相似∴ 两个三角形三边成比例即 p ⇒ q (相似三角形的性质)∴ p是q的充分条件②逆命题:“若 q ,则 p ”∵ 已知两个三角形三边成比例∴ 两个三角形相似即 q ⇒ p (三边定理)∴ p 是 q 的必要条件.综上所述,∵ p ⇔ q,即原真逆真,∴ p 是 q 的充要条件例2 p:四边形是正方形,q:四边形的对角线互相垂直且平分;解:①原命题:“若 p ,则 q ”∵ 已知四边形是正方形∴ 四边形的对角线互相垂直且平分即 p ⇒ q∴ p 是 q 的充分条件②逆命题:“若 q ,则 p ”∵ 已知四边形的对角线互相垂直且平分∴ 四边形是菱形,即 q ⇏ p∴ p 不是 q 的必要条件综上所述,∵ 原真逆假,∴ p 是 q 的充分而不必要条件1.5 全称量词与存在量词1.全称量词与全称量词命题一变:∀ (任意)变 ∃(存在) 二变:结论 p(x) 变 它的反面 ¬p(x) 像上面这样,短语“所有的”“任意一个”在逻辑中通常叫做全称量词,并用符号“∀”表示;含有全称量词的命题,叫做全称量词命题.例如,命题“对任意的n ∈Z,2n +1 是奇数”;“所有的正方形都是矩形” 等都是全称量词命题注:通常,将含有变量 x 的语句用 p(x),g(x),r(x),… 表示,变量x 的取值范围用 M 表示 那么,全称量词命题“对 M 中任意一个 x , p(x)成立”可用符号简记为:∀x ∈M ,p(x)2.存在量词与存在量词命题像上面这样,短语“存在一个”“至少有一个”在逻辑中通常叫做存在量词,并用符号“ ∃ ”表示;含有存在量词的命题,叫做存在量词命题.例如,命题“有的平行四边形是菱形”;“有一个素数不是奇数” 等都是存在量词命题注:通常,将含有变量 x 的语句用 p(x),g(x),r(x),… 表示,变量x 的取值范围用 M 表示 那么,存在量词命题“存在M 中的元素 x , p(x)成立”可用符号简记为:∃ x ∈M ,p(x)3. 全称量词的否定(1)概念一般地,对于全称量词命题:∀x ∈M , p(x)它的否定为:∃x ∈M , ¬p(x)注1:符号 “ ¬p(x) ” 表示 “ p(x) 的反面 ”注2:全称量词命题的否定是存在量词命题(2)实例运用例1所有能被3整除的整数都是奇数;解:原全称量词命题的否定为:“存在一个能被 3 整除的整数不是奇数”一变:∃ (存在)变 ∀(任意) 例2对 ∀ x ∈R , x 2≥0 ;解:原全称量词命题的否定为:“ ∃ x ∈R ,x 2<0 ”4.存在量词命题的否定(1)概念一般地,对于存在量词命题:∃ x ∈M , p(x)它的否定为:∀x ∈M , ¬p(x)注1:符号 “ ¬p(x) ” 表示 “ p(x) 的反面 ” 注2:存在量词命题的否定是全称量词命题(2)实例运用例1 ∃x ∈R,x +2 ≤ 0 ;解:原存在量词命题的否定为“ ∀x ∈R,x +2 > 0” 例2 有的三角形是等边三角形;解:原存在量词命题的否定为“ 所有的三角形都不是等边三角形 ”二变:结论 p(x) 变它的反面 ¬p(x)。

高中数学核心知识点及基本思想方法总结1----集合与简易逻辑

高中数学核心知识点及基本思想方法总结1----集合与简易逻辑

高中数学核心知识点及基本思想方法总结第一章 集合与简易逻辑¤第一部分·集合与集合运算¤◆内容概述◆集合是现代数学的基本概念,专门研究集合的理论叫做集合论。

“疯人数学家”康托尔(Cantor,G.F.P,1845-1918年,德国人)是集合论的创始者。

目前集合论的基本思想已渗透到现代数学的所有领域。

集合的思想、集合的语言和集合的符号在高中数学的很多章节如函数、数列、方程和不等式、立体几何、解析几何等中都被广泛的使用。

要求理解集合、子集、补集、交集、并集的概念。

了解空集和全集的意义。

了解属于、包含、相等关系的意义。

掌握有关术语和符号,并会用它们正确表示一些简单的集合。

◆知识点拨◆※< 1 >※ 集合与元素。

一般地,某些指定的对象.....集在一起就成为一个集合(确定性)。

集合中每个对象叫做这个集合的元素。

【注意】①集合的确定性如何体现?(例如很高的山,一条快乐的鱼能成为一个集合么) ②元素与集合的关系。

(属于∈、不属于∉)【例题】设集合},12|{},,2|{Z k k x x B Z k k x x A ∈+==∈==,若B b A a ∈∈,,试判断a+b 与A 、B 的关系。

〖分析〗两个集合中的k 不可以理解成是同一个变量,即解作:Z k k b a k b B b k a A a ∈+=+∴+=∴∈=∴∈,14,12,,2,,此法失去任意性。

〖解答〗.,,.1)(2,,12,,,2,21212211A b a B b a Z k k k k b a Z k k b B b Z k k a A a ∉+∈+∴∈+++=+∴∈+=∴∈∈=∴∈ ③集合中元素的三个特征。

(确定性、互异性、无序性) 【例题】已知}1,12,3{2+--=a a a A ,其中R a ∈。

(1)若A ∈-3,求实数a 的值;(2)当a 为何值时,集合A 的表示不正确?〖解答〗.2,,,11213123:,,3,)2(;10,12333,13)1(222-=∴∈+=-+=--=--==-=--=-∴+≠-a R a A a a a a a a A a a a a a 的表示不正确时或或即表示不正确集合个元素有重复情况时当由集合中元素的互异性或解得或显然④集合的表示方法有哪些?(列举法、描述法、图示法、区间法)【思考】各表示方法的特点,比如描述法注意限制决定条件、条件决定元素、元素决定集合。

1集合与简易逻辑知识点梳理.

1集合与简易逻辑知识点梳理.

§1集合与简易逻辑一、理解集合中的有关概念(1)集合中元素的特征:确定性,互异性,无序性。

集合元素的互异性:如:A={x,xy,lg(xy)},B={0,|x|,y},求A;(2)集合与元素的关系用符号∈,∉表示。

(3)常用数集的符号表示:自然数集;正整数集、;整数集;有理数集、实数集。

(4)集合的表示法:列举法,描述法,韦恩图。

说说下列集合的区别:A={x|y;B={y|y=;C={(x,y)|y;D={x|x=;E={(x,y)|y=x∈Z,y∈Z}.(5)空集是指不含任何元素的集合{0}、φ和{φ}的区别;0与三者间的关系;空集是任何集合的子集,是任何非空集合的真子集;注意:条件为A⊆B,在讨论的时候不要遗忘了A=φ的情况,如:A={x|ax2-2x-1=0},如果A R+=φ,求a的取值。

二、集合间的关系及其运算(1)符号“∈,∉”是表示元素与集合之间关系的,如立体几何中的体现点与直线(面)的关系;符号“⊂,⊄”或“⊆,”或“”等是表示集合与集合之间关系的,立体几何中的体现面与直线(面)的关系。

(2)切记:A⊆B⇔A⋂B=A;A⊆B⇔A⋃B=B.(3)集合中元素的个数的计算:若集合A中有n个元素,则集合A的所有不同的子集个数为_ __ ,所有真子集的个数是__ _,所有非空真子集的个数是。

基础训练一、选择题1.下列表示方法正确的是A.1⊆{0,1,2}D.φ{0}2.已知A={1,2,a2-3a-1},B={1,3},A⋂B={3,1}则a等于B.{1}∈{1,2}C.{0,1,2}⊆{0,1,3}A.-4或1B.-1或4C.-1D.43.设集合M={3,a},N={x|x2-3x﹤0,x∈Z},M⋂N={1},则M⋃N为A.{1,2,a}B.{1,2,3,a}C.{1,2,3}D.{1,3}4.集合P={(x,y)|x-y=2,x∈R},Q={(x,y)|x+y=2,x∈R},则P⋂QA.(2,0)B.{(2,0)}C.{0,2}D.{y|y≤2}n18.设集合A={x|x=,n∈Z},B={x|x=n+,n∈Z},则下列能较准确表示A、B关22 系的是图是11.已知集合M={x|x≤1},P={x|x﹥t},若M⋂P=φ,则实数t满足条件是A.t﹥1B.t≥1C.t<1D.t≤112.当a﹤0时,关于x的不等式x2-4ax-5a2>0的解集是A.{x|x﹥5a或x﹤-a}B.{x|x﹤5a或x﹥-a}C.{x|-a﹤x﹤5a}D.{x|5a﹤x﹤-a}二、填空题:13.集合M中含有8个元素,N中含有13个元素,(1)若M⋂N有6个元素,则M⋃N含有______个元素;(2)当M⋃N含_______个元素时, M⋂N=φ。

高一数学-集合与简易逻辑小结 精品

高一数学-集合与简易逻辑小结 精品

课题:第一章集合与简易逻辑小结教学目的:⒈理解集合、子集、补集、交集、并集的概念;了解空集和全集的意义;了解属于、包含、相等关系的意义;掌握有关的术语和符号,并会用它们正确表示一些简单的集合;掌握带绝对值的不等式与一元二次不等式的解法.⒉理解逻辑联结词“或”、“且”、“非”的含义;理解四种命题及其相互关系;进一步了解反证法,会用反证法证明简单的问题;掌握充要条件的意义.教学重点:1.有关集合的基本概念;2.逻辑联结词“或”、“且”、“非”与充要条件。

教学难点:1.有关集合的各个概念的含义以及这些概念相互之间的区别与联系;2.对一些代数命题真假的判断.授课类型:复习授课课时安排:1课时教具:多媒体、实物投影仪内容分析:这一章主要讲述集合的初步知识与简易逻辑知识两部分内容.集合部分主要包括集合的有关概念、集合的表示及集合同集合之间的关系.简易逻辑知识部分主要介绍逻辑联结词“或”、“且”、“非”、四种命题及其相互关系、充要条件等有关知识.教学过程:一、知识结构:本章知识主要分为集合、简单不等式的解法(集合化简)、简易逻辑三部分:【知识点与学习目标】:【高考评析】集合知识作为整个数学知识的基础,在高考中重点考察的是集合的化简,以及利用集合与简易逻辑的知识来指导我们思维,寻求解决其他问题的方法.【学法指导】本章的基本概念较多,要力求在理解的基础上进行记忆.【数学思想】1、等价转化的数学思想;2、求补集的思想;3、分类思想;4、数形结合思想.【解题规律】1、如何解决与集合的运算有关的问题:1)对所给的集合进行尽可能的化简;2)有意识应用维恩图来寻找各集合之间的关系;3)有意识运用数轴或其它方法来直观显示各集合的元素.2.如何解决与简易逻辑有关的问题:1)力求寻找构成此复合命题的简单命题;2)利用子集与推出关系的联系将问题转化为集合问题。

二、基本知识点:集合:1、集合中的元素属性:(1)(2)(3)2、常用数集符号:N Z Q R3、子集:数学表达式4、补集:数学表达式5、交集:数学表达式6、并集:数学表达式7、空集:它的性质(1)(2)8、如果一个集合A有n个元素(CradA=n),那么它有个个子集,个非空真子集。

精--第一章集合与简易逻辑章末总结.doc

精--第一章集合与简易逻辑章末总结.doc

第一章集合与简易逻辑章末总结一、本章数学思想方法1、分类讨论思想(1)分类讨论问题已成为高考考查学生的知识与能力的热点问题,这是因为:其一,分类讨论问题一般都覆盖知识点较多,有利于知识面的考查;其二,解分类讨论问题需要有一定的分析能力,一定的分类思想与分类技巧,有利于对学生能力的考查;其三,分类思想与生产实践和高等数学都紧密相关。

(2)解分类讨论问题的实质:整体问题化为若干个部分来解决,化成部分后从而增加了题设的条件,从而将问题解答进行到底,这正是我们要分类讨论的根本原因。

(3)分类讨论要注意的几点:(1)根据问题实际,做到分类不重不漏;(2)熟练地掌握基础知识,做到融汇贯通,是解好分类讨论问题的前提条件;(3)不断地的总结经验和教训,克服分类讨论中的主观性和盲目性;(4)要注意简化或避免分类讨论,优化解题过程。

【例1】已知三元素集,且a=b,求x与y的值。

【解】∵0∈b,a=b,∴0∈a。

又集合为3元素集,∴x≠xy,∴x≠0.又0∈b,y∈b,∴y≠0,从而x-y=0,即x=y这时,,∴|x|=x2.则x=0(舍去)x=±1当x=1时,a={1,1,0}舍去;当x=-1时,a={-1,1,0},b={0,1,-1}满足a=b,∴x=y=-1.【点评】此题若开始就讨论x=0,xy=0,x-y=0则较繁琐,故先分析,后讨论.【例2】解不等式分析将定义区域,划分为三段,x 分别讨论.解 (1)当x一、本章数学思想方法1、分类讨论思想(1)分类讨论问题已成为高考考查学生的知识与能力的热点问题,这是因为:其一,分类讨论问题一般都覆盖知识点较多,有利于知识面的考查;其二,解分类讨论问题需要有一定的分析能力,一定的分类思想与分类技巧,有利于对学生能力的考查;其三,分类思想与生产实践和高等数学都紧密相关。

(2)解分类讨论问题的实质:整体问题化为若干个部分来解决,化成部分后从而增加了题设的条件,从而将问题解答进行到底,这正是我们要分类讨论的根本原因。

第一章“集合与简易逻辑”教材分析

第一章“集合与简易逻辑”教材分析

第一章“集合与简易逻辑”教材分析本章安排的是“集合与简易逻辑”,这一章主要讲述集合的初步知识与简易逻辑知识两部分内容.集合的初步知识是现行高中数学教科书中原来就有的内容,这部分主要包括集合的有关概念、集合的表示及集合同集合之间的关系.简易逻辑知识则是新增加的内容,这部分主要介绍逻辑联结词“或”、“且”、“非”、四种命题及其相互关系、充要条件等有关知识集合概念及其基本理论,称为集合论,是近代数学的一个重要的基础.一方面,许多重要的学科,如数学中的数理逻辑、近世代数、实变函数、泛函分析、概率统计、拓扑等,都建立在集合理论的基础上.另一方面,集合论及其所反映的数学思想,在越来越广泛的领域中得到应用.逻辑是研究思维形式及其规律的一门基础学科.学习数学,需要全面地理解概念,正确地进行表述、推理和判断,这就离不开对逻辑知识的掌握和运用.更广泛地说,在日常生活、学习、工作中,基本的逻辑知识也是认识问题、研究问题不可缺少的工具,是人们文化素质的组成部分.在高中数学中,集合的初步知识与简易逻辑知识,与其他内容有着密切联系,它是学习、掌握和使用数学语言的基础,这就是把它们安排在高中数学起始章的出发点.本章共编排了8小节,教学时间约需22课时:11 集合约2课时12 子集、全集、补集约2课时13 交集、并集约2课时14 绝对值不等式的解法约2课时15 一元二次不等式的解法约4课时16 逻辑联结词约2课时17 四种命题约2课时18 充分条件与必要条件约2课时小结与复习约4课时说明:本章是高中数学的起始章,课时安排得相对宽松一些,像小结与复习部分安排4课时,其中考虑到了对初中内容进行适当复习、巩固的因素.一内容与要求大体上按照集合与逻辑这两个基本内容,第一章编排成两大节.第一大节是“集合”.学生在小学和初中数学中,已经接触过集合,对于诸如数集(整数的集合、有理数的集合)、点集(圆)等,都有了一定的感性认识.在此基础上,这一大节首先结合实例引出集合与集合的元素的概念,并介绍了集合的表示方法.然后,从讨论集合与集合之间的包含与相等的关系入手,给出子集的概念,此外,还给出了与子集相联系的全集与补集的概念.接着,又讲述了属于集合运算的交集、并集的初步知识.鉴于不等式的内容目前初中数学只讲述一元一次不等式与一元一次不等式组,考虑到集合知识的运用与巩固,又考虑到下一章讨论函数的定义域与值域的需要,第一大节最后安排的是绝对值不等式与一元二次不等式的解法.此外,在这一大节之后,还附了一篇关于有限集合元素个数的阅读材料.这一大节的重点是有关集合的基本概念.学习集合的初步知识,可以使学生更好地理解数学中出现的集合语言,可以使学生更好地使用集合语言表述数学问题,并且可以使学生运用集合的观点研究、处理数学问题,这里,起重要作用的就是有关集合的基本概念.这一大节的难点是有关集合的各个概念的含义以及这些概念相互之间的区别与联系.学生是从本章才正式开始学习集合知识的,这部分包含了比较多的新概念,还有相应的新符号,有些概念、符号还容易混淆,这些因素都可能造成学生学习的障碍.第二大节是“简易逻辑”.学生在初中数学中,学习过简单的命题(包括原命题与逆命题)知识,掌握了简单的推理方法(包括对反证法的了解).由此,这一大节首先给出含有“或”、“且”、“非”的复合命题的意义,介绍了判断含有“或”、“且”、“非”的复合命题的真假的方法.接下来,讲述四种命题及其相互关系,并且在初中的基础上,结合四种命题的知识,进一步讲解反证法.然后,通过若干实例,讲述了充分条件、必要条件和充要条件的有关知识.这一大节的重点是逻辑联结词“或”、“且”、“非”与充要条件.学习简易逻辑知识,主要是为了培养学生进行简单推理的技能,发展学生的思维能力,在这方面,逻辑联结词“或”、“且”、“非”与充要条件的有关内容是十分必要的.这一大节的难点是对一些代数命题真假的判断.初中阶段,学生只是对简单的推理方法有一定程度的熟悉,并且,相关的技能和能力,主要还是通过几何课的学习获得的,初中代数侧重的是运算的技能和能力,因此,像对代数命题的证明,学生还需要有一个逐步熟悉的过程.根据《全日制普通高级中学数学教学大纲(试验修订版)》的规定,本章的教学要求是:⒈理解集合、子集、补集、交集、并集的概念;了解空集和全集的意义;了解属于、包含、相等关系的意义;掌握有关的术语和符号,并会用它们正确表示一些简单的集合;掌握带绝对值的不等式与一元二次不等式的解法.⒉理解逻辑联结词“或”、“且”、“非”的含义;理解四种命题及其相互关系;进一步了解反证法,会用反证法证明简单的问题;掌握充要条件的意义.二本章的特点⒈注意初中与高中的衔接近年来,在与本章有关的内容上,按照教学大纲,初中的教学要求有哪些变化呢?先看有关集合的部分.初中适当渗透一些集合思想,这一点基本没有变化.此外,初中去掉了一元二次不等式与绝对值不等式的内容.再看有关逻辑的部分.1996年以前的初中毕业生,应该达到以下要求:⑴了解命题的概念;⑵初步掌握逆命题和逆定理的概念,能正确叙述题设与结论都是简单命题的命题的逆命题,了解正确命题的逆命题的逆命题不一定正确;⑶了解四种命题及其相互关系;⑷理解用反证法证明命题的思路,能用反证法证明一些比较简单的几何题.从1996年起,对于高一新生,初中的要求又有进一步调整.上述⑵改为:了解逆命题和逆定理的概念,原命题成立它的逆命题不一定成立,会识别两个互逆命题.⑶删去.⑷改为:了解反证法.基于以上情况,考虑到学习高中数学的需要,新教材一方面补充了一些必要的知识点,例如关于一元二次不等式与绝对值不等式的解法;另一方面对一些初中相对薄弱的内容,适当予以加强,例如关于反证法等.例如,关于交集、并集的概念,教科书先从图形表示入手,让学生有一个直观的认识,然后给出定义,再用实例加以说明,并且,引出概念的图形也只是采用了一种简明的形式,而没有画出全部可能出现的情况.又如,本章是对比初中学过的一元一次不等式,并且借助二次函数的图象,讲述一元二次不等式解法的.⒉重视集合与逻辑在中学数学学习中的应用本章是高中数学的基础,学习本章,主要目的是为了理解后续章节出现的集合与逻辑语言,会用集合与逻辑语言描述学习中遇到的数学问题,进而解决这些问题.像对一些性质、定理的理解,对函数的定义域、值域的描述,对推理方法的掌握,等等.本章在集合与逻辑内容的编排上,既考虑到知识的系统性,又照顾到学生的可接受性,并且始终围绕着集合与逻辑在中学数学学习中的应用这一基本出发点.在集合这部分,有关集合运算的内容,就注意在解方程和不等式方面的应用,在数学概念的分类方面的应用.在逻辑这部分,有关命题的内容,突出的是对逻辑联结词“或”、“且”、“非”的理解和对复合命题真值的认识,而不过多地涉及对一个语句是不是命题的判断.此外,像关于复合命题的否定,对近期学习影响不大,学生学习又比较困难,本章基本未涉及.为了帮助学生理解逻辑联结词“或”、“且”、“非”,教科书中介绍了“或门电路”、“与门电路”,这是两个应用的实例.实际上,计算机的“智能”装置就是以数学逻辑为基础进行设计的三教学中应注意的问题⒈教学要求的把握要适时、适度本章是高中数学的起始章,适当地把握本章的教学要求是教学中应该重视的问题.集合与逻辑的初步知识是高中数学的基础知识,学习这些内容,主要是为今后进一步学习其他知识作基本语言、基本方法的准备,相应地,对知识系统性、严谨性的要求一定要适度.学习有关集合的初步知识,其目的主要在于应用.具体说,就是在学习其他知识时,能读懂其中的简单的集合概念和符号;在处理简单的实际问题时,能根据需要,运用集合语言进行表述.在安排训练时,要把握一定的分寸,不要搞偏题、怪题.集合有关性质的证明,一般不要求学生掌握.有些可能混淆但在实际问题中并不多见的关系,就不必故意编排在一起,让学生去一一进行辨析.本章安排的是集合与逻辑的初步知识,这些知识的讲述,是以初中数学的内容为基础的.从引出有关知识的实例,到具体应用的问题,基本都属于初中数学的范围,这种局限自然会对有关知识的理解和掌握造成一定影响.随着后续章节的学习,对集合与逻辑知识的应用将越来越广泛和深入,相应地,对集合与逻辑知识理解和掌握的水平也就越来越高了.因此,本章的教学要求,应该避免一步到位.关于含有“或”、“且”、“非”的复合命题的真值表,在开始时,教学重点还是借助三个真值表,加深对含有“或”、“且”、“非”的复合命题的了解,而不必急于让学生掌握对一般复合命题的真假的判断.关于充分条件、必要条件与充要条件,本章对教学要求的尺度,还是控制在对初中代数、几何的有关问题的理解上为宜.⒉提高集合与逻辑的教学效益目前高中数学教学的一个突出问题是教学效益不高.具体表现在:一方面,学生用在数学上的时间比较多,像与美国比,是美国学生的好几倍;另一方面,学生在考试中表现良好,但创造性能力和应用能力有一定欠缺,个性发展也存在着不足之处.为了后续章节的学习,在本章必须给学生打下适当的集合与逻辑基础,限于学生的预备知识与接受能力,在本章又不能过多地追求理论的完整,只有处理好这个关系,才能提高教学效益.因此,在实际教学时,一定要抓住重点.怎样把握本章的教学重点呢?一是要有助于对初中数学的理解,二是要能为高中数学的学习扫除障碍.换句话说,学习集合与逻辑,要着眼于用集合与逻辑的知识解决数学学习中的问题,而不要在概念的严谨性、知识的系统性上花过多的时间与精力.像逻辑中有不少问题,在学术界内部都有争论,在高一数学课上,就完全没有必要去涉及了.⒊使用数学符号要规范本章教材有不少集合与逻辑的数学符号,这些符号的采用,依据的是新的国家标准,其中有些符号与原教科书不同,在教学时应该注意. 课 题:1.1集合-集合的概念(2)教学目的:(1)进一步理解集合的有关概念,熟记常用数集的概念及记法(2)使学生初步了解有限集、无限集、空集的意义(3)会运用集合的两种常用表示方法 教学重点:集合的表示方法教学难点:运用集合的列举法与描述法,正确表示一些简单的集合授课类型:新授课课时安排:1课时教 具:多媒体、实物投影仪教学过程:一、复习引入:上节所学集合的有关概念1、集合的概念(1)集合:某些指定的对象集在一起就形成一个集合(2)元素:集合中每个对象叫做这个集合的元素 2、常用数集及记法(1)自然数集:全体非负整数的集合记作N ,{} ,2,1,0=N(2)正整数集:非负整数集内排除0的集记作N *或N + ,{} ,3,2,1*=N(3)整数集:全体整数的集合记作Z , {} ,,,210±±=Z (4)有理数集:全体有理数的集合记作Q , {}所有整数与分数=Q (5)实数集:全体实数的集合记作R ,{}数数轴上所有点所对应的=R3、元素对于集合的隶属关系(1)属于:如果a 是集合A 的元素,就说a 属于A ,记作a ∈A(2)不属于:如果a 不是集合A 的元素,就说a 不属于A ,记作A a ∉4、集合中元素的特性(1)确定性:按照明确的判断标准给定一个元素或者在这个集合里, 或者不在,不能模棱两可(2)互异性:集合中的元素没有重复(3)无序性:集合中的元素没有一定的顺序(通常用正常的顺序写出)5、(1)集合通常用大写的拉丁字母表示,如A 、B 、C 、P 、Q ……元素通常用小写的拉丁字母表示,如a 、b 、c 、p 、q ……(2)“∈”的开口方向,不能把a ∈A 颠倒过来写二、讲解新课: (二)集合的表示方法1、列举法:把集合中的元素一一列举出来,写在大括号内表示集合例如,由方程012=-x 的所有解组成的集合,可以表示为{-1,1}注:(1)有些集合亦可如下表示:从51到100的所有整数组成的集合:{51,52,53, (100)所有正奇数组成的集合:{1,3,5,7,…}(2)a 与{a}不同:a 表示一个元素,{a}表示一个集合,该集合只 有一个元素2、描述法:用确定的条件表示某些对象是否属于这个集合,并把这个条 件写在大括号内表示集合的方法格式:{x ∈A| P (x )}含义:在集合A 中满足条件P (x )的x 的集合 例如,不等式23>-x 的解集可以表示为:}23|{>-∈x R x 或 23|{>-x x所有直角三角形的集合可以表示为:}|{是直角三角形x x注:(1)在不致混淆的情况下,可以省去竖线及左边部分如:{直角三角形};{大于104的实数}(2)错误表示法:{实数集};{全体实数}3、文氏图:用一条封闭的曲线的内部来表示一个集合的方法4、何时用列举法?何时用描述法?⑴有些集合的公共属性不明显,难以概括,不便用描述法表示,只能用列举法如:集合},5,23,{2232y x x y x x +-+ ⑵有些集合的元素不能无遗漏地一一列举出来,或者不便于、不需要一一列举出来,常用描述法如:集合}1|),{(2+=x y y x ;集合{1000以内的质数}例 集合}1|),{(2+=x y y x 与集合}1|{2+=x y y 是同一个集合吗?答:不是因为集合}1|),{(2+=x y y x 是抛物线12+=x y 上所有的点构成的集合,集合}1|{2+=x y y =}1|{≥y y 是函数12+=x y 的所有函数值构成的数集(三) 有限集与无限集1、 有限集:含有有限个元素的集合2、 无限集:含有无限个元素的集合3、 空集:不含任何元素的集合记作Φ,如:}01|{2=+∈x R x三、练习题:1、用描述法表示下列集合①{1,4,7,10,13} }5,23|{≤∈-=n N n n x x 且②{-2,-4,-6,-8,-10} }5,2|{≤∈-=n N n n x x 且2、用列举法表示下列集合①{x ∈N|x 是15的约数} {1,3,5,15}②{(x ,y )|x ∈{1,2},y ∈{1,2}}{(1,1),(1,2),(2,1)(2,2)}注:防止把{(1,2)}写成{1,2}或{x=1,y=2}③⎩⎨⎧=-=+}422|),{(y x y x y x )}32,38{(- ④},)1(|{N n x x n∈-= {-1,1}⑤},,1623|),{(N y N x y x y x ∈∈=+ {(0,8)(2,5),(4,2)} ⑥}4,|),{(的正整数约数分别是y x y x{(1,1),(1,2),(1,4)(2,1),(2,2),(2,4),(4,1),(4,2),(4,4)}3、关于x 的方程ax +b=0,当a,b 满足条件____时,解集是有限集;当a,b 满足条件_____时,解集是无限集4、用描述法表示下列集合:(1) { 1, 5, 25, 125, 625 }= ; (2) { 0,±21, ±52, ±103, ±174, ……}= 四、小结:本节课学习了以下内容:1.集合的有关概念:有限集、无限集、空集2.集合的表示方法:列举法、描述法、文氏图五、课后作业:六、板书设计(略)七、课后记:课 题:1.2子集 全集 补集(1)教学目的:(1)使学生了解集合的包含、相等关系的意义;(2)使学生理解子集、真子集(,(3)使学生理解补集的概念;(4)使学生了解全集的意义教学重点:子集、补集的概念教学难点:弄清元素与子集、属于与包含的关系授课类型:新授课课时安排:1课时教 具:多媒体、实物投影仪内容分析在研究数的时候,通常都要考虑数与数之间的相等与不相等(大于或小于)关系,而对于集合而言,类似的关系就是“包含”与“相等”关系 本节讲子集,先介绍集合与集合之间的“包含”与“相等”关系,并引出子集的概念,然后,对比集合的“包含”与“相等”关系,得出真子集的概念以及子集与真子集的有关性质 本节课讲重点是子集的概念,难点是弄清元素与子集、属于与包含之间的区别教学过程:一、复习引入:(1)回答概念:集合、元素、有限集、无限集、空集、列举法、描述法、文氏图(2)用列举法表示下列集合:①}022|{23=+--x x x x {-1,1,2}②数字和为5的两位数} {14,23,32,41,50}(3)用描述法表示集合:}51,41,31,21,1{ }5,1|{*≤∈=n N n nx x 且 (4)集合中元素的特性是什么?(5)用列举法和描述法分别表示:“与2相差3的所有整数所组成的集合”}3|2||{=-∈x Z x {-1,5}问题:观察下列两组集合,说出集合A 与集合B 的关系(共性)(1)A={1,2,3},B={1,2,3,4,5}(2)A=N ,B=Q(3)A={-2,4},}082|{2=--=x x x B(集合A 中的任何一个元素都是集合B 的元素)二、讲解新课:(一) 子集1 定义:(1)子集:一般地,对于两个集合A 与B ,如果集合A 的任何..一 个元素都是集合B 的元素,我们就说集合A 包含于集合B ,或集合B 包含集合A记作:A B B A ⊇⊆或 ,A ⊂B 或B ⊃A读作:A 包含于B 或B 包含AB A B x A x ⊆∈⇒∈,则若任意当集合A 不包含于集合B ,或集合B 不包含集合A 时,则记作A ⊆/B 或B ⊇/A注:B A ⊆有两种可能(1)A 是B 的一部分,;(2)A 与B 是同一集合(2)集合相等:一般地,对于两个集合A 与B ,如果集合A 的任何..一个元素都是集合B 的元素,同时集合B 的任何..一个元素都是集合A 的元素,我们就说集合A 等于集合B ,记作A=B(3)真子集:对于两个集合A 与B ,如果B A ⊆,并且B A ≠,我们就说集合A 是集合B 的真子集,记作:A B 或BA, 读作A 真包含于B 或B 真包含A (4)子集与真子集符号的方向不同与同义;与如B A B A A B B A ⊇⊆⊇⊆ (5)空集是任何集合的子集Φ⊆A空集是任何非空集合的真子集Φ A 若A ≠Φ,则ΦA任何一个集合是它本身的子集A A ⊆ (6)易混符号①“∈”与“⊆”:元素与集合之间是属于关系;集合与集合之间是包含关系如,,1,1R N N N ⊆∉-∈Φ⊆R ,{1}⊆{1,2,3}②{0}与Φ:{0}是含有一个元素0的集合,Φ是不含任何元素的集合如 Φ⊆{0}Φ={0},Φ∈{0}三、讲解范例:例1(1)写出N,Z,Q,R的包含关系,并用文氏图表示(2)判断下列写法是否正确A⊆④A A①Φ⊆A ②Φ A ③A解(1):N⊂Z⊂Q⊂R(2)①正确;②错误,因为A可能是空集③正确;④错误例2 (1)填空:N___Z, N___Q, R___Z, R___Q,Φ___{0}(2)若A={x∈R|x2-3x-4=0},B={x∈Z||x|<10},则A⊆B正确吗?⊆A,为什么?(3)是否对任意一个集合A,都有A(4)集合{a,b}的子集有那些?(5)高一(1)班同学组成的集合A,高一年级同学组成的集合B,则A、B的关系为.解:(1)N⊂Z, N⊂Q, R⊃Z, R⊃Q,Φ{0}(2)∵A={x∈R|x2-3x-4=0}={-1,4},B={x∈Z||x|<10}={-9,-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8,9}∴A⊆B正确⊆A,(3)对任意一个集合A,都有A(4)集合{a,b}的子集有:Φ、{a}、{b}、{a,b}A⊆.(5)A、B的关系为B例3解不等式x+3<2,并把结果用集合表示出来.解:{x∈R|x+3<2}={x∈R|x<-1}.四、练习:写出集合{1,2,3}的所有子集解:Φ、{1}、{2}、{3}、{1,2}、{1,3}、{2,3}、{1,2,3}五、子集的个数:由例与练习题,可知(1)集合{a,b}的所有子集的个数是4个,即Ø,{a},{b},{a,b}(2) 集合{a,b,c}的所有子集的个数是8个,即Ø,{a},{b},{c},{a,b},{a,c},{b,c},{a,b,c}24=)猜想:(1)集合{a,b,c,d}的所有子集的个数是多少?(16(2)集合{}n a a a ,,21 的所有子集的个数是多少?(n 2) 结论:含n 个元素的集合{}n a a a ,,21 的所有子集的个数是n2,所有真 子集的个数是n 2-1,非空真子集数为2-n六、小结:本节课学习了以下内容:1.概念:子集、集合相等、真子集2.性质:(1)空集是任何集合的子集⊆A(2)空集是任何非空集合的真子集Φ A (A ≠Φ)(3)任何一个集合是它本身的子集A A ⊆ (4)含n 个元素的集合的子集数为n 2;非空子集数为12-n ;真子集数为12-n ;非空真子集数为2-n七、作业:1.若{}{}A B m x m x B x x A ⊆+≤≤-=≤≤-=,112|,43|,求是实数m 的取值范围.)1(-≥m2.已知{}{}A C B C A B A 求,8,4,2,0,5,3,2,1,,==⊆⊆.({}φ或2)八、板书设计(略)九、课后记:。

集合与简易逻辑基础知识点总结

集合与简易逻辑基础知识点总结

集合、简易逻辑知识梳理:1、 集合:某些指定的对象集在一起就构成一个集合。

集合中的每一个对象称为该集合的元素。

元素与集合的关系:A a ∈或A a ∉集合的常用表示法: 列举法 、 描述法 。

集合元素的特征: 确定性 、 互异性 、 无序性 。

常用一些数集及其代号:非负整数集或自然数集N ;正整数集*N ,整数集Z ;有理数集Q ;实数集R2、子集:如果集合A 的任意一个元素都是集合B 的元素,那么集合A 称为集合B 的子集,记为A ⊆B3、真子集:如果A ⊆B ,并且B A ≠,那么集合A 成为集合B 的真子集,记为A ⊄B ,读作“A 真包含于B 或B 真包含A ”,如:}{}{b a a ,⊆。

注:空集是任何集合的子集。

是非空集合的真子集结论:设集合A 中有n 个元素,则A 的子集个数为n 2个,真子集个数为12-n 个4、补集:设A ⊆S ,由S 中不属于A 的所有元素组成的集合称为S 的子集A 的补集,记为A C s ,读作“A 在S 中的补集”,即A C s =}{A x S x x ∉∈且,|。

5、全集:如果集合S 包含我们所要研究的各个集合,这时S 可以看作一个全集。

通常全集记作U 。

6、交集:一般地,由所有属于集合A 且属于B 的元素构成的集合,称为A 与B 的交集,记作B A ⋂即:B A ⋂=}{B x A x x ∈∈且,|。

7、并集:一般地,由所有属于集合A 或属于B 的元素构成的集合,称为A 与B 的并集,记作B A ⋃即:B A ⋂=}{B x A x x ∈∈或,|。

记住两个常见的结论:B A A B A ⊆⇔=⋂;A B A B A ⊆⇔=⋃; 9、命题:可以判断真假的语句叫做命题。

(全称命题 特称命题)⑴全称量词——“所有的”、“任意一个”等,用“∀”表示;全称命题p :)(,x p M x ∈∀; 全称命题p 的否定⌝p :)(,x p M x ⌝∈∃。

高考,数学,集合与简单逻辑,知识点

高考,数学,集合与简单逻辑,知识点

§01. 集合与简易逻辑 知识要点一、知识结构:本章知识主要分为集合、简单不等式的解法(集合化简)、简易逻辑三部分:二、知识回顾: (一)集合1. 基本概念:集合、元素;有限集、无限集;空集、全集;符号的使用.2. 集合的表示法:列举法、描述法、图形表示法. 集合元素的特征:确定性、互异性、无序性. 集合的性质:①任何一个集合是它本身的子集,记为A A ⊆; ②空集是任何集合的子集,记为A ⊆φ; ③空集是任何非空集合的真子集; 如果B A ⊆,同时A B ⊆,那么A = B. 如果C A C B B A ⊆⊆⊆,那么,.[注]:①Z = {整数}(√) Z ={全体整数} (×)②已知集合S 中A 的补集是一个有限集,则集合A 也是有限集.(×)(例:S=N ; A=+N ,则C s A= {0}) ③ 空集的补集是全集.④若集合A =集合B ,则C B A = ∅, C A B = ∅ C S (C A B )= D ( 注 :C A B = ∅). 3. ①{(x ,y )|xy =0,x ∈R ,y ∈R }坐标轴上的点集. ②{(x ,y )|xy <0,x ∈R ,y ∈R}二、四象限的点集.③{(x ,y )|xy >0,x ∈R ,y ∈R } 一、三象限的点集. [注]:①对方程组解的集合应是点集. 例: ⎩⎨⎧=-=+1323y x y x 解的集合{(2,1)}.②点集与数集的交集是φ. (例:A ={(x ,y )| y =x +1} B={y |y =x 2+1} 则A ∩B =∅)4. ①n 个元素的子集有2n 个. ②n 个元素的真子集有2n -1个. ③n 个元素的非空真子集有2n -2个.5. ⑴①一个命题的否命题为真,它的逆命题一定为真. 否命题⇔逆命题. ②一个命题为真,则它的逆否命题一定为真. 原命题⇔逆否命题. 例:①若325≠≠≠+b a b a 或,则应是真命题.解:逆否:a = 2且 b = 3,则a+b = 5,成立,所以此命题为真. ②,且21≠≠y x 3≠+y x . 解:逆否:x + y =3x = 1或y = 2.21≠≠∴y x 且3≠+y x ,故3≠+y x 是21≠≠y x 且的既不是充分,又不是必要条件.⑵小范围推出大范围;大范围推不出小范围. 3. 例:若255 x x x 或,⇒. 4. 集合运算:交、并、补.{|,}{|}{,}A B x x A x B A B x x A x B A x U x A ⇔∈∈⇔∈∈⇔∈∉U 交:且并:或补:且C 5. 主要性质和运算律 (1) 包含关系:,,,,,;,;,.U A A A A U A U A B B C A C A B A A B B A B A A B B ⊆Φ⊆⊆⊆⊆⊆⇒⊆⊆⊆⊇⊇C(2) 等价关系:U A B A B A A B B AB U ⊆⇔=⇔=⇔=C (3) 集合的运算律:交换律:.;A B B A A B B A ==结合律:)()();()(C B A C B A C B A C B A == 分配律:.)()()();()()(C A B A C B A C A B A C B A == 0-1律:,,,A A A UA A UA U Φ=ΦΦ===等幂律:.,A A A A A A ==求补律:A ∩C U A =φ A ∪C U A =U C U U =φ C U φ=U反演律:C U (A ∩B)= (C U A )∪(C U B ) C U (A ∪B)= (C U A )∩(C U B ) 1.整式不等式的解法根轴法(零点分段法)①将不等式化为a 0(x-x 1)(x-x 2)…(x-x m )>0(<0)形式,并将各因式x 的系数化“+”;(为了统一方便) ②求根,并在数轴上表示出来;③由右上方穿线,经过数轴上表示各根的点(为什么?);④若不等式(x 的系数化“+”后)是“>0”,则找“线”在x 轴上方的区间;若不等式是“<0”,则找“线”在x 轴下方的区间.x(自右向左正负相间)则不等式)0)(0(0022110><>++++--a a x a x a x a n n n n 的解可以根据各区间的符号确定.特例① 一元一次不等式ax>b 解的讨论;22.分式不等式的解法 (1)标准化:移项通分化为)()(x g x f >0(或)()(x g x f <0);)()(x g x f ≥0(或)()(x g x f ≤0)的形式, (2)转化为整式不等式(组)⎩⎨⎧≠≥⇔≥>⇔>0)(0)()(0)()(;0)()(0)()(x g x g x f x g x f x g x f x g x f原命题若p 则q 否命题若┐p 则┐q 逆命题若q 则p逆否命题若┐q 则┐p 互为逆否互逆否互为逆否互互逆否互3.含绝对值不等式的解法(1)公式法:c b ax <+,与)0(>>+c c b ax 型的不等式的解法.(2)定义法:用“零点分区间法”分类讨论.(3)几何法:根据绝对值的几何意义用数形结合思想方法解题. 4.一元二次方程根的分布一元二次方程ax 2+bx+c=0(a ≠0) (1)根的“零分布”:根据判别式和韦达定理分析列式解之. (2)根的“非零分布”:作二次函数图象,用数形结合思想分析列式解之. (三)简易逻辑1、命题的定义:可以判断真假的语句叫做命题。

集合与简易逻辑高三总结

集合与简易逻辑高三总结

概念、方法、题型、易误点及应试技巧总结集合与简易逻辑1.集合元素具有确定性、无序性和互异性. 在求有关集合问题时,尤其要注意元素的互异性,如(1)设P 、Q 为两个非空实数集合,定义集合P+Q={|,}a b a P b Q +∈∈,若{0,2,5}P =,}6,2,1{=Q ,则P+Q 中元素的有________个。

(答:8)(2)设{(,)|,}U x y x R y R =∈∈,{(,)|20}A x y x y m =-+>,{(,)|B x y x y n =+-0}≤,那么点(2,3)U P A C B ∈⋂的充要条件是________(答:5,1<->n m );(3)非空集合}5,4,3,2,1{⊆S ,且满足“若S a ∈,则S a ∈-6”,这样的S 共有_____个(答:7) 2.遇到A B ⋂=∅时,你是否注意到“极端”情况:A =∅或B =∅;同样当A B ⊆时,你是否忘记∅=A 的情形?要注意到∅是任何集合的子集,是任何非空集合的真子集。

如集合{|10}A x ax =-=,{}2|320B x x x =-+=,且A B B = ,则实数a =______.(答:10,1,2a =;A B B A B ⋃=⇔⊆) 3.对于含有n 个元素的有限集合M ,其子集、真子集、非空子集、非空真子集的个数依次为,n 2,12-n ,12-n .22-n 如满足{1,2}{1,2,3,4,5}M ⊂⊆≠集合M 有______个。

(答:7)4.集合的运算性质: ⑴A B A B A =⇔⊆ ; ⑵A B B B A ⋂=⇔⊆;⑶A B ⊆⇔ u u C A C B ⊇; ⑷u A C B A B ⋂=∅⇔⊆; ⑸u C A B U A B ⋃=⇔⊆; ⑹()U C A B ⋂U U C A C B = ;⑺()U U U C A B C A C B ⋃=⋂.如设全集}5,4,3,2,1{=U ,若{}2A B ⋂=,{}4U C A B ⋂=,{}1,5U U C A C B ⋂=,则A =_____,B =___.(答:{2,3}A =,{2,4}B =) 5. 研究集合问题,一定要理解集合的意义―抓住集合的代表元素。

第一章 集合与简易逻辑

第一章   集合与简易逻辑

第一章 集合与简易逻辑1.集合的初步知识:⑴集合的基本概念①集合的元素:某些指定的对象集在一起就成为一个集合,集合中的 叫做这个集合的元素.若a 是集合A 的元素,就说a 集合A ,记作 .若a 不是集合A 的元素,称a 集合A ,记作 .不含任何元素的集合叫做 ,记作 .②集合元素的特性: .③集合的分类: .④集合的表示法: .⑤常见数集的记号: (自然数集)、 (正整数集)、 (整数集)、 (有理数集)、 (实数集).⑵集合与集合的关系①子集与真子集:对于集合A ,B ,若A 的任何一个元素都是B 的元素,就说集合B 包含集合A ,记作 ,此时也说集合A 是集合B 的 .对于集合A 与B ,若 且 则A=B.若A ⊆B 且A=B ,就说A 是B 的 ,记作 .传递性:对于集合C B A ,,,如果C B B A ⊆⊆,,则 .如果A B ,B C ,则 .空集是 的子集, 即 .空集是 的真子集,即 .含n 个元素的集合的子集的个数为 .含n 个元素的集合的真子集的个数为 .②补集与全集:若A ⊆S ,则A 在S 中的补集C s A= .若一个集合含有要研究的各个集合的全部元素,则这个集合就可以看做一个全集,全集通常用U 表示.③交集与并集:A ∩B= ;A ∪B= .④摩根律:(C U A)∩(C U B)= .(C U A)∪(C U B)= .⑶不等式的解法①含绝对值的不等式:|x|<a(a>0) ⇔ .|x|>a(a>0) ⇔ .)0(><+c c b ax ⇔ . )0(>>+c c b ax ⇔ . ②一元二次不等式:ax 2+bx+c>0或ax 2+bx+c <0 (a>0)的解集如下表:△=ac b 42- 0>∆0=∆ 0<∆二次函数 c bx ax y ++=2(0>a )的图象c bx ax y ++=2 c bx ax y ++=2 c bx ax y ++=2 一元二次方程 ()的根002>=++a c bx ax 有两相异实根)(,2121x x x x < 有两相等实根 a b x x221-== 无实根 的解集)a (c bx ax 002>>++的解集)a (c bx ax 002><++⒊简易逻辑⑴逻辑联结词: 这些词叫做逻辑联结词;简单命题: 的命题叫做简单命题;复合命题:由简单命题与 .构成的命题叫做复合命题.⑵四种命题及其关系:如右图所示.一个命题与 是等价的.⑶反证法:通过否定 而导出矛盾来达到肯定命题的结论,完成命题的论证的一种数学证明方法。

选修1-1 第一章 集合与简易逻辑知识点

选修1-1 第一章 集合与简易逻辑知识点

简易逻辑知识小结
1、四种命题及其相互之间的关系
提醒:互为逆否关系的命题是等价命题,即原命题与逆否命题同真、同假;逆命题与否命题同真同假。

但原命题与逆命题、否命题都不等价;
2、命题的真假:p 且q 、 p 或q 、非p 的真假如下表
(1)“或命题”的真假特点是“一真即真,要假全假”;“且命题”的真假特点是“一
假即假,要真全真”;“非命题”的真假特点是“真假相反”。

(2)要注意区别“否命题”与“命题的否定”:否命题要对命题的条件和结论都否定,而命题的否定仅对命题的结论否定;“p 且q ”为真是“p 或q ”为真的充分不必要条件;
3、充分、必要条件的判定 ①若p
q 且q
p ,则p 是q 的充分不必要条件;
②若p q 且q p ,则p 是q 的必要不充分条件; ③若p q 且q p ,则p 是q 的充要条件;
④若p
q 且q
p ,则p 是q 的既不充分也不必要条件.
从集合角度解释,若B A ⊆,则A 是B 的充分条件,B 是A 的必要条件;若A=B ,则A 是B 的充要条件。

若B A ≠
⊂,则A 是B 的充分不必要条件,B 是A 的必要不充分条件。

高中数学集合与简易逻辑知识要点

高中数学集合与简易逻辑知识要点

§01.集合与简易逻辑知识要点一、知识结构:本章知识主要分为集合、简单不等式的解法(集合化简)、简易逻辑三部分:二、知识回顾:(一)集合1. 基本概念:集合、元素;有限集、无限集;空集、全集;符号的使用2. 集合的表示法:列举法、描述法、图形表示法集合元素的特征:确定性、互异性、无序性.集合的性质:①任何一个集合是它本身的子集,记为 A ;= A;②空集是任何集合的子集,记为 A ;③空集是任何非空集合的真子集;如果A-B,同时B-A,那么A = B.如果A^B,B^C,那么A := C .[注]:①Z= {整数}(V) Z ={全体整数}(X)②已知集合S中A的补集是一个有限集,则集合A也是有限集.(X)(例:S=N ;A= N ,则CA= {0})③空集的补集是全集④若集合A=集合B,则C A = .一,C A B = C S (C B) = D (注:C B = ._ ).3. ①{ ( x, y)|xy =0,x€ R, y€ R}坐标轴上的点集.②殳(x, y) |xy v0, x€R, y€R 匸、四象限的点集.③殳(x, y) |xy>0, x€R, y€R} 一、三象限的点集.[注]:①对方程组解的集合应是点集•f例:』x+y=3 解的集合{(2 , 1)}.gx —3y =12②点集与数集的交集是'■.(例:A ={( x, y)| y = x+1} B={ y|y =x +1} 则AQB = •_ )4. ①n个元素的子集有2n个.②n个元素的真子集有2n- 1个•③n个元素的非空真子集有2n- 2个.5. ⑴①一个命题的否命题为真,它的逆命题一定为真.否命题:=逆命题.②一个命题为真,则它的逆否命题一定为真.原命题逆否命题.例:①若a 7=5,则a =2或b =3应是真命题.解:逆否:a = 2且b = 3,贝V a+b = 5,成立,所以此命题为真.② x =1 且y = 2、=. x y =3.解:逆否:x + y =3 =1或y = 2..x胡且丫屮2 =' x亠y =3,故x ■ y沁是x泪且y厂2的既不是充分,又不是必要条件⑵小范围推出大范围;大范围推不出小范围3. 例:若x '5, : x '5或x 2 .4. 集合运算:交、并、补.交:A CIB U {x|x A,且x B}并:AU B= {x|x A或x B}补:C U A 二{x U ,且x ' A}5. 主要性质和运算律(1)包含关系:A- A,H A,A-U ,G A-U,A B,B 0 = A C;AP]B A,Af]B B; A U B 二A, AU B 二B.(2)等价关系:A Bu Af]B 二A= AUB 二Bu C J AUB二U(3)集合的运算律:交换律:A B=B A; A B = B A.结合律:(A B) C 二A (B C);(A B) C 二A (B C)分配律:.A (B C)=(A B) (A C); A (B C)=(A B) (A C)0-1 律:;」"A -:」,;」IjA =A,U Pl A = A,U U A=U等幂律:A A 二A, A A 二A.求补律:A n C U A=0A U C U A=U C J U= 0」C U0=U反演律:C U(A n B)= (C U A)U (C UB) C U(A U B)=(C U A) n(QB)6. 有限集的元素个数定义:有限集A的元素的个数叫做集合A的基数,记为card( A)规定card( 0) =0.基本公式:(1) card (A IjB) =card (A) card (B) -card (Ap] B)(2) card (AU B UC)二card (A) card (B) card (C)-card (A Cl B) - card (B Pl C) - card (C 门A) card(AClBnc)(3) card ( 'U A)= card(U)- card(A)(二)含绝对值不等式、一元二次不等式的解法及延伸1. 整式不等式的解法根轴法(零点分段法)①将不等式化为a o(x-x i)(x-x 2)…(x-x m)>0(<0)形式,并将各因式x的系数化“ +”;(为了统一方便)②求根,并在数轴上表示出来;③由右上方穿线,经过数轴上表示各根的点(为什么?);0 =④ 若不等式(x 的系数化“ +”后)是“ >0 ”,则找“线”在x 轴上方的区间;若 不等式是“ <0 ”,则找“线”在x 轴下方的区间.则不等式a 0x n a 1x nJ - a 2x n ^■ a n .0(:::。

011集合与简易逻辑小结

011集合与简易逻辑小结

高三数学 序号011 高三 年级 班 教师 方雄飞 学生第一章 集合与简易逻辑小结学习目标:归纳本章易错考点,加深学生对本章知识网络的理解和记忆 学习重点:集合中的运算;学习难点:集合与简易逻辑的的综合问题 学习过程: 一 知识网络二 易错题分析1、已知集合{}32|320A x x x x =++>,{}2|0B x x ax b =++≤,若{}|02A B x x =<≤ ,{}|2A B x x =>- ,求实数a 、b 的值.2、已知集合A ={x|(x -2)[x -(3a +1)]<0},B ={x|x -2ax -(a 2+1)<0}.(1)当a =2时,求A∩B ;(2)求使B ⊆A 成立的实数a 的取值范围.3、已知集合A ={x |x 2-6x +8<0},B ={x |(x -a )(x -3a )<0}.(1)若x ∈A 是x ∈B 的充分条件,求a 的取值范围. (2)若A ∩B =∅,求a 的取值范围.4、已知命题p :|x -2|<a(a>0),命题q :|x 2-4|<1,若p 是q 的充分不必要条件,求实数a 的取值范围.5、已知:命题q :集合A ={x|x 2+ax +1=0,x ∈R },B ={x|x>0},且A ∩B =∅. (1)若命题q 为真命题,求实数a 的取值范围; (2)若命题p :f(x)=21x-,且|f(a)|<2,试求实数a 的取值范围,使得命题p ∨q 为真命题、p ∧q 为假命题. 课后练习1、下列各组函数中表示同一函数的是( )A 、0)(1)(x x g x f ==与 B 、x x g x x f lg 2)(lg )(2==与 C 、1111-+=-+=x x y x x y 与 D 、2)(1x y =与xy 1log 22= 2、设集合{02}M x x =≤≤,{02}N y y =≤≤,从M 到N 有四种对应如图所示:其中能表示为M 到N 的函数关系的有_____ ____.3、已知命题:“∃x ∈{x|-1<x<1},使等式x 2-x -m =0成立”是真命题. (1)求实数m 的取值集合M ;(2)设不等式(x -a)(x +a -2)<0的解集为N ,若x ∈N 是x ∈M 的必要条件,求实数a 的取值范围.4、若函数1,0()1(),03x x x f x x ⎧<⎪⎪=⎨⎪≥⎪⎩ 求不等式1|()|3f x ≥的解集.5、记函数f (x )=132++-x x 的定义域为A ,g (x )=lg [(x -a -1)(2a -x )](a <1) 的定义域为B . (1) 求A ; (2) 若B ⊆A ,求实数a 的取值范围.6、已知命题p :|x -2|<a(a>0),命题q :|x 2-4|<1,若p 是q 的充分不必要条件,求实数a 的取值范围.①②③④。

第一章 集合与简易逻辑

第一章 集合与简易逻辑

第一章集合与简易逻辑1. 集合的基本概念集合是数学中的一个基本概念,它代表着由一组确定的对象(元素)构成的整体。

集合的元素可以是任何东西,例如数字、字母、符号等。

集合可以使用大写字母表示,而其中的元素则使用小写字母表示。

例如,集合A可以表示为 A = {a, b, c}。

集合可分为空集和非空集两种情况。

空集是不包含任何元素的集合,可以用符号∅ 表示。

非空集则至少包含一个元素。

集合的元素之间没有顺序关系,也不允许重复元素存在。

如果一个集合中存在相同的元素,会被视为同一个元素。

2. 集合的运算在集合中,有三种常见的运算:并集、交集和补集。

2.1 并集并集运算是将两个或多个集合中的所有元素合并在一起,形成一个新的集合。

并集运算可以用符号∪ 表示。

例如,对于集合A和集合B,它们的并集可以表示为A ∪ B。

2.2 交集交集运算是求两个或多个集合中共有的元素构成的新集合。

交集运算可以用符号∩ 表示。

例如,对于集合A和集合B,它们的交集可以表示为A ∩ B。

2.3 补集补集运算是相对于某个全集,求一个集合中不属于另一个集合的元素。

补集运算可以用符号’ 表示。

例如,对于集合A的补集,可以表示为A’。

3. 简易逻辑逻辑是研究思维的科学。

在数学中,逻辑是处理命题及其推理的规则。

逻辑包括命题逻辑和谓词逻辑两种形式。

3.1 命题逻辑命题逻辑是研究命题和命题之间的关系的逻辑体系。

命题是陈述句,可以判断是否为真或假。

命题逻辑主要关注命题之间的合取、析取、蕴含和等价等关系。

•合取:合取符号∧ 表示同时满足两个命题的关系。

例如,命题P和命题Q的合取可以表示为P ∧ Q。

•析取:析取符号∨ 表示满足至少一个命题的关系。

例如,命题P和命题Q的析取可以表示为P ∨ Q。

•蕴含:蕴含符号→ 表示若一个命题成立,则另一个命题必定成立的关系。

例如,命题P蕴含命题Q可以表示为P → Q。

•等价:等价符号↔ 表示两个命题具有相同真值的关系。

例如,命题P和命题Q的等价可以表示为P ↔ Q。

集合与简易逻辑知识点总结

集合与简易逻辑知识点总结

集合、简易逻辑知识梳理:1、 集合:某些指定的对象集在一起就构成一个集合。

集合中的每一个对象称为该集合的元素。

元素与集合的关系:A a ∈或A a ∉集合的常用表示法: 列举法 、 描述法 。

集合元素的特征: 确定性 、 互异性 、 无序性 。

常用一些数集及其代号:非负整数集或自然数集N ;正整数集*N ,整数集Z ;有理数集Q ;实数集R2、子集:如果集合A 的任意一个元素都是集合B 的元素,那么集合A 称为集合B 的子集,记为A ⊆B3、真子集:如果A ⊆B ,并且B A ≠,那么集合A 成为集合B 的真子集,记为A ⊄B ,读作“A 真包含于B 或B 真包含A ”,如:}{}{b a a ,⊆。

注:空集是任何集合的子集。

是非空集合的真子集结论:设集合A 中有n 个元素,则A 的子集个数为n 2个,真子集个数为12-n 个4、补集:设A ⊆S ,由S 中不属于A 的所有元素组成的集合称为S 的子集A 的补集,记为A C s ,读作“A 在S 中的补集”,即A C s =}{A x S x x ∉∈且,|。

5、全集:如果集合S 包含我们所要研究的各个集合,这时S 可以看作一个全集。

通常全集记作U 。

6、交集:一般地,由所有属于集合A 且属于B 的元素构成的集合,称为A 与B 的交集,记作B A ⋂即:B A ⋂=}{B x A x x ∈∈且,|。

7、并集:一般地,由所有属于集合A 或属于B 的元素构成的集合,称为A 与B 的并集,记作B A ⋃即:B A ⋂=}{B x A x x ∈∈或,|。

记住两个常见的结论:B A A B A ⊆⇔=⋂;A B A B A ⊆⇔=⋃; 9、命题:可以判断真假的语句叫做命题。

(全称命题 特称命题)⑴全称量词——“所有的”、“任意一个”等,用“∀”表示;全称命题p :)(,x p M x ∈∀; 全称命题p 的否定⌝p :)(,x p M x ⌝∈∃。

第一章 集 合与简易逻辑

第一章  集 合与简易逻辑

第一章集合与简易逻辑在我们的数学世界中,集合与简易逻辑就像是构建知识大厦的基石,虽然看似基础简单,但却蕴含着深刻的道理和广泛的应用。

让我们一起揭开它们神秘的面纱,探索其中的奥秘。

集合,简单来说,就是把一些具有特定属性的对象放在一起,组成一个整体。

比如说,一个班级里的所有同学就可以构成一个集合,这个集合里的元素就是每一位同学。

再比如,所有小于 10 的正整数也能组成一个集合,那就是{1, 2, 3, 4, 5, 6, 7, 8, 9}。

集合有一些特定的表示方法。

常见的有列举法,就像前面提到的小于10 的正整数集合,我们把里面的元素一个一个列出来;还有描述法,比如{x | x 是大于 5 小于 15 的整数},通过描述元素所满足的条件来确定集合。

集合之间还有各种各样的关系。

比如子集,如果集合 A 中的所有元素都在集合 B 中,那么 A 就是 B 的子集。

举个例子,集合{1, 2, 3}是集合{1, 2, 3, 4, 5}的子集。

如果两个集合的元素完全一样,那它们就是相等的集合。

而集合的运算也是很重要的一部分。

交集,就是两个集合中共同的元素组成的新集合。

比如集合 A ={1, 2, 3},集合 B ={2, 3, 4},那么 A 和 B 的交集就是{2, 3}。

并集,则是把两个集合中的所有元素放在一起组成的新集合,A 和 B 的并集就是{1, 2, 3, 4}。

补集呢,是在一个给定的全集里,某个集合之外的部分。

说完了集合,咱们再来说说简易逻辑。

逻辑在我们的日常生活和数学推理中都起着至关重要的作用。

在简易逻辑中,命题是一个核心的概念。

命题就是能够判断真假的陈述句。

比如“2 加 3 等于5”这就是一个真命题,而“月亮是奶酪做的”就是一个假命题。

命题之间有不同的关系,比如原命题、逆命题、否命题和逆否命题。

原命题为“若 p 则q”,逆命题就是“若 q 则p”,否命题是“若非 p 则非q”,逆否命题则是“若非 q 则非p”。

第一章集合与简易逻辑教学小结

第一章集合与简易逻辑教学小结

“第一章集合与简易逻辑”教学小结对于高中数学教学内容的确定与安排,新大纲明确指出,应精选那些在现代社会生活、生产和科学技术中有着广泛应用的、为进一步学习所必需的、在理论上、方法上、思想上是最基本的、同时又是学生所能接受的知识。

在内容的安排上,既要注意各部分知识的系统性,注意与其他学科的相互配合,更要注意符合学生的认识规律,还要注意与义务教育内容相衔接。

因此新大纲、新教材对以往的教学目的、教学内容均作了较大幅度的调整。

由于就能力要求而言,旧大纲中提出三大能力,即培养学生的运算能力、逻辑思维能力和空间想象能力。

而新大纲中提出了四大能力及一种意识,即思维能力、运算能力、空间想象能力、解决实际问题的能力及创新意识,其中创新意识主要是指培养学生能对自然界和社会中的数学现象会从数学的角度发现和提出问题,进而进行探索和研究。

因此在新教材的编写上,增删了很多内容。

教学中更应注重联系生活实际,增强学生解决实际问题的能力及创新意识。

下面就第一章两个小节的内容,一对增删内容作一些教学内容的调整对比说明,二就教材的新布局论它的一些调整思想,三谈一点教学要求与设想,以供参考。

一、新旧教材的对比1.对于第一节集合部分,新旧大纲的教学要求基本一致,其教学目标有:(1)理解集合、子集、补集、交集、并集的概念;(2)了解空集、全集的意义;了解属于、包含、相等关系的意义;(3)掌握有关的术语和符号;(4)能正确表示一些简单的集合。

而不同点主要呈现在一些符号的表示上,有:(1)自然数集由原来的{1,2,3,…}改为现在的{0,1,2,3,…},即增加了一个0 ;(2)补集记号由原来的变为现在的 CUA ,突出了全集;(3)真子集的记号由原来的变为现在的 .2.对于第二节简易逻辑部分,它为新增教学内容,教学要求为:(1)理解逻辑联结词“或”、“且”、“非”的含义;(2)理解四种命题及其相互关系;(3)掌握充要条件的意义。

二、调整本章的指导思想1.集合是近、现代数学的一个重要基础,它的概念和基本思想,在高中数学中,有着广泛而重要的应用。

第一章 集合与简易逻辑

第一章  集合与简易逻辑

第一章集合与简易逻辑在数学的广袤世界里,集合与简易逻辑就像是构建知识大厦的基石,看似简单,却蕴含着深刻的思想和广泛的应用。

让我们一同踏上探索这一领域的旅程,揭开它们神秘的面纱。

首先,我们来聊聊集合。

集合是什么呢?简单来说,集合就是把一些具有特定性质的对象放在一起组成的整体。

比如说,咱们班所有同学就可以组成一个集合,操场上所有的篮球也能构成一个集合。

集合通常用大写字母来表示,比如A、B、C 等等。

集合中的元素,也就是组成集合的那些对象,用小写字母表示。

如果一个元素 x 属于某个集合 A,我们就记作 x ∈ A;要是不属于,那就是 x ∉ A。

集合的表示方法有好几种。

列举法大家应该很好理解,就是把集合中的元素一个一个地列出来,像{1,2,3,4,5}这样。

描述法呢,就是通过描述元素所具有的特征来表示集合,比如{x | x 是小于 10的正整数}。

集合之间还有各种各样的关系。

两个集合相等,意味着它们包含的元素完全相同。

子集呢,就是一个集合中的所有元素都在另一个集合里。

比如说集合 A ={1,2,3},集合 B ={1,2,3,4,5},那 A 就是 B 的子集。

真子集就是除了自身以外的子集。

集合的运算也很重要。

并集,就是把两个集合中的所有元素合在一起组成的新集合。

比如 A ={1,2,3},B ={3,4,5},A 并 B就是{1,2,3,4,5}。

交集呢,是两个集合中共同拥有的元素组成的集合,A 交 B 就是{3}。

补集则是在一个给定的全集 U 中,某个集合 A 的补集就是 U 中不属于 A 的元素组成的集合。

说完了集合,咱们再来说说简易逻辑。

逻辑在我们的日常生活和数学推理中都扮演着重要的角色。

命题是简易逻辑的核心概念之一。

命题就是能够判断真假的陈述句。

比如“今天是晴天”,这能判断真假,就是个命题;但像“这个苹果真好吃”,这就不是命题,因为好不好吃因人而异,没法明确判断真假。

命题又分为真命题和假命题。

第一章 集合与简易逻辑小结教案示例 人教版

第一章 集合与简易逻辑小结教案示例 人教版

第一章 集合与简易逻辑小结教案示例 人教版知识网络:知识纲要:集合的概念、集合的包含关系、集合的运算。

绝对值不等式的解法,一元二次不等式的解法。

命题、四种命题、四种命题间的关系。

四种命题集合概念 关系 运算 不等式二次函数一元二次方程含绝对值不等式 简单的分式不等式 一元二次不等式元素的特征集合的分类集合的表示元素与集合集合与集合子集交集 并集 补集且或非逻辑联结词简易逻辑原命题等价等价逆命题否命题逆否命题条件充分不必要 必要不充分 充要既不充分也不必要充分条件与必要条件。

方法总结:1、正确理解集合的概念必须掌握构成集合的两个必要条件:研究对象是具体的,其属性是确定的。

2、在判断给定对象能否构成集合时,特别要注意它的“确定性”,在表示一个集合时,要特别注意它的“互异性”。

3、在集合运算中必须注意组成集合的元素应具备的性质。

4、对由条件给出的集合要明白它所表示的意义,即元素指什么,是什么范围。

用集合表示不等式(组)的解集时,要注意分辨是交集还是并集,结合数轴或文氏图的直观性帮助思维判断。

空集是任何集合的子集,但因为不好用文氏图表示,容易被忽视。

如在关系式A B ⊆中,易漏掉φ=B 的情况。

5、若集合中的元素是用坐标形式表示的,要注意满足条件的点构成的图形是什么,用数形结合法解之。

6、若集合中含有参数,须对参数进行分类讨论,讨论时既不重复又不遗漏。

7、解不等式的基本思想是化归、转化,解含有参数的不等式常需要分类讨论,同解变形是解不等式的理论依据。

8、学习判断命题,关键是理解命题结构及逻辑联结词“或”、“且”、“非”的含义,掌握四种命题间的关系是学习充要条件的基础。

9、基本的逻辑知识是认识问题和研究问题不可缺少的工具,是我们进行学习、掌握和使用语言的基础,数学又是逻辑性很强的学科,因此,学习一些逻辑知识是非常必要的。

通过学习和训练可以规范和提高推理的技能,发展思维能力。

重点是正确使用逻辑联结词“或”、“且”、“非”,是否使用得当的依据是真值表,利用真值表再结合四种命题的充要条件判定复合命题的真假性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章集合与简易逻辑小结
Summary of the first chapter set and simple l ogic
第一章集合与简易逻辑小结
前言:小泰温馨提醒,数学是研究数量、结构、变化、空间以及信息等概念的一门学科,从某种角度看属于形式科学的一种,在人类历史发展和社会生活中,数学发挥着不可替代的作用,是学习和研究现代科学技术必不可少的基本工具。

本教案根据数学课程标准的要求和针对教学对象是高中生群体的特点,将教学诸要素有序安排,确定合适的教学方案的设想和计划、并以启迪发展学生智力为根本目的。

便于学习和使用,本文下载后内容可随意修改调整及打印。

教学目的:⒈理解集合、子集、补集、交集、并集的概念;了解空集和全集的意义;了解属于、包含、相等关系的意义;掌握有关的术语和符号,并会用它们正确表示一些简单的集合;掌握带绝对值的不等式与一元二次不等式的解法.⒉理解逻辑联结词“或”、“且”、“非”的含义;理解四种命题及其相互关系;进一步了解反证法,会用反证法证明简单的问题;掌握充要条件的意义.教学重点:
1.有关集合的基本概念;
2.逻辑联结词“或”、“且”、“非”与充要条件教学难点:
1.有关集合的各个概念的含义以及这些概念相互之间的区别与联系;
2.对一些代数命题真假的判断. 授课类型:复习授课课时安排:1课时教具:多媒体、实物投影仪内容分析:这一章主要讲述集合的初步知识与简易逻辑知识两部分内容.集合
部分主要包括集合的有关概念、集合的表示及集合同集合之间的关系.简易逻辑知识部分主要介绍逻辑联结词“或”、“且”、“非”、四种命题及其相互关系、充要条件等有关知识.教学过程:一、知识结构:本章知识主要分为集合、简单不等式的解法(集合化简)、简易逻辑三部分:【知识点与学习目标】:【高考评析】集合知识作为整个数学知识的基础,在高考中重点考察的是集合的化简,以及利用集合与简易逻辑的知识来指导我们思维,寻求解决其他问题的方法.【学法指导】本章的基本概念较多,要力求在理解的基础上进行记忆.【数学思想】
1、等价转化的数学思想;
2、求补集的思想;
3、分类思想;
4、数形结合思想.【解题规律】
1、如何解决与集合的运算有关的问题:
1)对所给的集合进行尽可能的化简;
2)有意识应用维恩图来寻找各集合之间的关系;
3)有意识运用数轴或其它方法来直观显示各集合的元素.
2.如何解决与简易逻辑有关的问题:
1)力求寻找构成此复合命题的简单命题;
2)利用子集与推出关系的联系将问题转化为集合问题二、基本知识点:集合:
1、集合中的元素属性:
(1)
(2)
(3)
2、常用数集符号:
n z q
r
3、子集:数学表达式
4、补集:数学表达式
5、交集:数学表达式
6、并集:数学表达式
7、空集:它的性质
(1)
(2)
8、如果一个集合a有n个元素(crada=n),那么它有
个个子集,个非空真子集注意:(1)元素与集合间的关系用符号表示;
(2)集合与集合间的关系
用符号表示解不等式:
1、绝对值不等式的解法:
(1)公式法:|f(x)|>g(x) |f (x)|0△=0△
-------- Designed By JinTai College ---------。

相关文档
最新文档