2.5指数

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一|上学期2.5 指数

教学目标:

1.理解次方根和次根式的概念及其性质,能根据性质进行简单的根式计算.

2.通过对根式的学习,使学生能进一步认清各种运算间的联系,提高归纳,概括的能力.

3.通过对根式的化简,使学生了解由特殊到一般的解决问题的方法,渗透分类讨论的思想.

教学重点难点:

重点是次方根的概念及其取值规律.

难点是次方根的概念及其运算根据的研究.

教学用具:投影仪

教学方法:启发探索式.

教学过程:

一. 复习引入

今天我们将学习新的一节指数.指数与其说它是一个概念,不如说它是一种重要的运算,且这种运算在初中曾经学习过,今天只不过把它进一步向前发展.

下面从我们熟悉的指数的复习开始.能举一个具体的指数运算的例子吗?

以为例,是指数运算要求学生指明各部分的名称,其中2称为底数,4为指数,称为幂.

教师还可引导学生回顾指数运算的由来,是从乘方而来,因此最初指数只能是正整数,同时引出正整数指数幂的定义.

.然后继续引导学生回忆零指数幂和负整数指数幂的定义,分别写出及

,同时追问这里的由来.最后将三条放在一起,用投影仪打出整数指数幂的概念

2.5指数(板书)

1. 关于整数指数幂的复习

(1) 概念

既然是一种运算,除了定义之外,自然要给出它的运算规律,再来回顾一下关于整数指数幂的运算性质.可以找一个学生说出相应的运算性质,教师用投影仪依次打出:

(2) 运算性质:;;.

复习后直接提出新课题,今天在此基础上把指数从整数范围推广到分数范围.在刚才的复习我们已经看到当指数在整数范围内时,运算最多也就是与分式有关,如果指数推广到分指数会与什么有关呢?应与根式有关.初中时虽然也学过一点根式,但不够用,因此有必要先从根式说起.

2. 根式(板书)

我们知道根式来源于开方,开方是乘方的逆运算,所以谈根式还是先从大家熟悉的乘方说起.

如果给出了4和2进行运算,那就是乘方运算.如果是知道了16和2,求4即,求?

问题也就是:谁的平方是16 ,大家都能回答是4和-4,这就是开方运算,且4和-4 有个名字叫16的平方根.

再如

知3和8,问题就是谁的立方是8?这就是开方运算,大家也知道结果为2,同时指出2叫做8的立方根.

(根据情况教师可再适当举几个例子,如,要求学生用语言描述式子的含义,I再说出结果分别为

和-2,同时指出它们分别称为9的四次方根和-8的立方根)

在以上几个式子会解释的基础上,提出即一个数的次方等于,求这个数,即开次方,那么这个数叫做的次方根.

(1) 次方根的定义:如果一个数的次方等于(,那么这个数叫做的次方根.

(板书)

对定义理解的第一步就是能把上述语言用数学符号表示,请同学们试试看.

由学生翻译为:若(,则叫做的次方根.(把它补在定义的后面)

翻译后教师在此基础上再次提出翻译的不够彻底,如结论中的的次方根就没有用符号表示,原因是什么?(如果学生不知从何入手,可引导学生回到刚才的几个例子,在符号表示上存在的问题,并一起研究解决的办法)最终把问题引向对的次方根的取值规律的研究.

(2) 的次方根的取值规律:(板书)

先让学生看到的次方根的个数是由的奇偶性决定的,所以应对分奇偶情况讨论

当为奇数时,再问学生的次方根是个什么样的数,与谁有关,再提出对的正负的讨论,从而明确分类讨论的标准,按的正负分为三种情况.

Ⅰ当为奇数时

,的次方根为一个正数;

,的次方根为一个负数;

,的次方根为零.(板书)

当奇数情况讨论完之后,再用几个具体例子辅助说明为偶数时的结论,再由学生总结归纳

Ⅱ当为偶数时

,的次方根为两个互为相反数的数;

,的次方根不存在;

,的次方根为零.

对于这个规律的总结,还可以先看的正负,再分的奇偶,换个角度加深理解.

有了这个规律之后,就可以用准确的数学符号去描述次方根了.

(3) 的次方根的符号表示(板书)

可由学生试说一说,若学生说不好,教师可与学生一起总结,当为奇数时,由于无论为何值,次方根都只有

一个值,可用统一的符号表示,此时要求学生解释符号的含义:为正数,则为一个确定的正数,为负数,

则为一个确定的负数,为零,则为零.

当为偶数时,为正数时,有两个值,而只能表示其中一个且应表示是正的,另一个应与它互为相反数,故只

需在前面放一个负号,写成,其含义为为偶数时,正数的次方根有两个分别为和.

为了加深对符号的认识,还可以提出这样的问题:一定表示一个正数吗? 中的一定是正数或非负数吗?让

学生来回答,在回答中进一步认清符号的含义,再从另一个角度进行总结

.对于符号,当为偶数是,它有意义的条件是;当为奇数

时,它有意义的条件时.

把称为根式,其中为根指数,叫做被开方数.(板书)

(4) 根式运算的依据(板书)

由于是个数值,数值自然要进行运算,运算就要有根据,因此下面有必要进一步研究根式运算的依据.但我们并不过分展开,只研究一些最基本的最简单的依据.

如应该得什么?有学生讲出理由,根据次方根的定义,可得Ⅰ=.(板书)

再问:应该得什么?也得吗?

若学生想不清楚,可用具体例子提示学生,如吗?吗?让学生能发现结果与有关,从而

得到Ⅱ=.(板书)

为进一步熟悉这个运算依据,下面通过练习来体会一下.

三.巩固练习

例1. 求值

(1).(2).

(3).(4).

(5).(

相关文档
最新文档