小学奥数 数列求和 巧妙求和 含答案

合集下载

小学奥数题讲解: 高斯求和(等差数列)

小学奥数题讲解: 高斯求和(等差数列)

小学奥数题讲解:高斯求和(等差数列)德国数学家高斯幼年时代聪明过人,上学时,有一天老师出了一道题让同学们计算:1+2+3+4+…+99+100=?老师出完题后,全班同学都在埋头计算,小高斯却很快算出答案等于5050。

高斯为什么算得又快又准呢?原来小高斯通过细心观察发现:1+100=2+99=3+98=…=49+52=50+51。

1~100正好能够分成这样的50对数,每对数的和都相等。

于是,小高斯把这道题巧算为(1+100)×100÷2=5050。

小高斯使用的这种求和方法,真是聪明极了,简单快捷,并且广泛地适用于“等差数列”的求和问题。

若干个数排成一列称为数列,数列中的每一个数称为一项,其中第一项称为首项,最后一项称为末项。

后项与前项之差都相等的数列称为等差数列,后项与前项之差称为公差。

例如:(1)1,2,3,4,5, (100)(2)1,3,5,7,9, (99)(3)8,15,22,29,36, (71)其中(1)是首项为1,末项为100,公差为1的等差数列;(2)是首项为1,末项为99,公差为2的等差数列;(3)是首项为8,末项为71,公差为7的等差数列。

由高斯的巧算方法,得到等差数列的求和公式:和=(首项+末项)×项数÷2。

例1 1+2+3+…+1999=?分析与解:这串加数1,2,3,…,1999是等差数列,首项是1,末项是1999,共有1999个数。

由等差数列求和公式可得原式=(1+1999)×1999÷2=1999000。

注意:利用等差数列求和公式之前,一定要判断题目中的各个加数是否构成等差数列。

例2 11+12+13+…+31=?分析与解:这串加数11,12,13,…,31是等差数列,首项是11,末项是31,共有31-11+1=21(项)。

原式=(11+31)×21÷2=441。

在利用等差数列求和公式时,有时项数并不是一目了然的,这时就需要先求出项数。

四年级奥数题第8讲 巧妙求和(一)

四年级奥数题第8讲 巧妙求和(一)

第2讲巧妙求和(一)一、知识要点若干个数排成一列称为数列。

数列中的每一个数称为一项。

其中第一项称为首项,最后一项称为末项,数列中项的个数称为项数。

从第二项开始,后项与其相邻的前项之差都相等的数列称为等差数列,后项与前项的差称为公差。

在这一章要用到两个非常重要的公式:“通项公式”和“项数公式”。

通项公式:第n项=首项+(项数-1)×公差项数公式:项数=(末项-首项)÷公差+1等差数列总和=(首项+末项)×项数÷2这个公式也叫做等差数列求和公式。

二、精讲精练【例题1】有一个数列:4,10,16,22.…,52.这个数列共有多少项?练习1:1、等差数列中,首项=1,末项=39,公差=2.这个等差数列共有多少项?2、有一个等差数列:2.5,8,11.…,101.这个等差数列共有多少项?【例题2】有一等差数列:3.7,11.15,……,这个等差数列的第100项是多少?练习2:1、一等差数列,首项=3.公差=2.项数=10,它的末项是多少?2、求1,4,7,10……这个等差数列的第30项。

【例题3】有这样一个数列:1.2.3.4,…,99,100。

请求出这个数列所有项的和。

练习3:计算下面各题。

(1)1+2+3+…+49+50(2)6+7+8+…+74+75【例题4】求等差数列2,4,6,…,48,50的和。

练习4:计算下面各题。

(1)2+6+10+14+18+22(2)5+10+15+20+…+195+200【例题5】计算(2+4+6+...+100)-(1+3+5+ (99)练习5:用简便方法计算下面各题。

(1)(2001+1999+1997+1995)-(2000+1998+1996+1994)(2)(2+4+6+...+2000)-(1+3+5+ (1999)三、课后作业1、已知等差数列11,16,21,26,…,1001.这个等差数列共有多少项?2、求等差数列2,6,10,14……的第100项。

四年级奥数举一反三第八课巧妙求和1附作业

四年级奥数举一反三第八课巧妙求和1附作业

第8讲巧妙求和(一)一、知识要点若干个数排成一列称为数列。

数列中的每一个数称为一项。

其中第一项称为首项,最后一项称为末项,数列中项的个数称为项数。

从第二项开始,后项与其相邻的前项之差都相等的数列称为等差数列,后项与前项的差称为公差。

在这一章要用到两个非常重要的公式:“通项公式”和“项数公式”。

通项公式:第n项=首项+(项数-1)×公差项数公式:项数=(末项-首项)÷公差+1二、精讲精练【例题1】有一个数列:4,10,16,22.…,52.这个数列共有多少项?【思路导航】容易看出这是一个等差数列,公差为6,首项是4,末项是52.要求项数,可直接带入项数公式进行计算。

项数=(52-4)÷6+1=9,即这个数列共有9项。

练习1:1.等差数列中,首项=1.末项=39,公差=2.这个等差数列共有多少项?2.有一个等差数列:,8,11.…,101.这个等差数列共有多少项?3.已知等差数列,,…,1001.这个等差数列共有多少项?【例题2】有一等差数列:,,……,这个等差数列的第100项是多少?【思路导航】这个等差数列的首项是3.公差是4,项数是100。

要求第100项,可根据“末项=首项+公差×(项数-1)”进行计算。

第100项=3+4×(100-1)=399.练习2:1.一等差数列,首项=3.公差=2.项数=10,它的末项是多少?2.求,7,10……这个等差数列的第30项。

3.求等差数列,10,14……的第100项。

【例题3】有这样一个数列:,…,99,100。

请求出这个数列所有项的和。

【思路导航】如果我们把,…,99,100与列100,99,…,相加,则得到(1+100)+(2+99)+(3+98)+…+(99+2)+(100+1),其中每个小括号内的两个数的和都是101.一共有100个101相加,所得的和就是所求数列的和的2倍,再除以2.就是所求数列的和。

四年级上册奥数第8讲 巧妙求和(一)

四年级上册奥数第8讲  巧妙求和(一)

第8周巧妙求和(一)专题简析:若干个数排成一列,称为数列。

数列中的每一个数称为一项,其中第一项称为首项,最后一项称为末项。

数列中数的个数称为项数。

从第二项开始,后项与其相邻的前项之差都相等的数列称为等差数列,后项与前项的差称为公差。

例如:3,6,9,…,96,这是一个首项为3,末项为96,项数为32,公差为3的等差数列。

这一周,我们将学习“等差数列求和”。

为了更好地掌握此类问题,我们需要记住三个公式:通项公式:第n项=首项+(项数-1)×公差项数公式:项数=(末项-首项)÷公差+1求和公式:总和=(首项+末项)X 项数÷2在等差数列中,只要知道首项、末项、公差、及总和这五个量中的三个,就可以利用通项公式、项数公式及求和公式求其余两个量。

例1:等差数列4,10,16,22,…,52共有多少项?练习一:1、等差数列中,首项=1,末项=39,公差=2。

这个等差数列共有多少项?2、等差数列2,5,8,11,…,101共有多少项?3、已知一个等差数列的首项是11,末项是101,总和是504,这个数列共有多少项?例2:已知等差数列3,7,11,15,…,则该等差数列的第100项是多少?练习二:1、一个等差数列的首项=3,公差=2,项数=10,则它的末项是多少?2、已知等差数列1,4,7,10,…,则该等差数列的第30项是多少?3、已知等差数列2,6,10,14,…,则该等差数列的第100项是多少?例3:有这样的一个列数1,2,3,4,…,99,100,请你求出这列数各项相加的和。

练习三:计算下面各题。

1、1+2+3+4+…+49+502、6+7+8+9+…+753、100+99+98+…+61+60例4:求等差数列2,4,6,…,48,50的和。

练习四:计算下面各题。

1、2+6+10+14+19+222、5+10+15+20+…+195+2003、9+18+27+36+…+261+270例5:如果一个等差数列的第4项为21,第6项为33,那么它的第8项是多少?练习五:1、如果一个等差数列的第5项是19,第8项是61,那么它的第11项是多少?2、如果一个等差数列的第3项是10,第7项是26,那么它的第12项是多少?3、如果一个等差数列的第2项是10,第6项是18,那么它的第110项是多少?1、有一个等差数列:9,12,15,18,…,2004,这个数列共有多少项?2、已知等差数列:1000,993,986,979,…,20,这个数列共有多少项?3、求等差数列:1,6,11,16,…的第61项。

四年级奥数《高斯求和》答案及解析

四年级奥数《高斯求和》答案及解析

高斯求和德国著名数学家高斯幼年时代聪明过人,上学时,有一天老师出了一道题让同学们计算:1+2+3+4+…+99+100=?老师出完题后,全班同学都在埋头计算,小高斯却很快算出答案等于5050。

高斯为什么算得又快又准呢?原来小高斯通过细心观察发现:1+100=2+99=3+98=…=49+52=50+51。

1~100正好可以分成这样的50对数,每对数的和都相等。

于是,小高斯把这道题巧算为(1+100)×100÷2=5050。

小高斯使用的这种求和方法,真是聪明极了,简单快捷,并且广泛地适用于“等差数列”的求和问题。

若干个数排成一列称为数列,数列中的每一个数称为一项,其中第一项称为首项,最后一项称为末项。

后项与前项之差都相等的数列称为等差数列,后项与前项之差称为公差。

例如:(1)1,2,3,4,5, (100)(2)1,3,5,7,9,...,99;(3)8,15,22,29,36, (71)其中(1)是首项为1,末项为100,公差为1的等差数列;(2)是首项为1,末项为99,公差为2的等差数列;(3)是首项为8,末项为71,公差为7的等差数列。

由高斯的巧算方法,得到等差数列的求和公式:和=(首项+末项)×项数÷2。

]例1 1+2+3+…+1999=?分析与解:这串加数1,2,3,…,1999是等差数列,首项是1,末项是1999,共有1999个数。

由等差数列求和公式可得原式=(1+1999)×1999÷2=1999000。

注意:利用等差数列求和公式之前,一定要判断题目中的各个加数是否构成等差数列。

例2 11+12+13+…+31=?分析与解:这串加数11,12,13,…,31是等差数列,首项是11,末项是31,共有31-11+1=21(项)。

原式=(11+31)×21÷2=441。

在利用等差数列求和公式时,有时项数并不是一目了然的,这时就需要先求出项数。

三年级奥数等差数列求和

三年级奥数等差数列求和

等差数列求和数列的第一个数(第一项)叫首项,最后一个数(最后一项)叫末项,如果一个数列从第二项起,每一项与前一项的差是一个不变的数,这样的数列叫做等差数列,这个不变的数则称为这个数列的公差。

一、公差为1例1:1+2+3+4+5+6+7+8+9+10例2:1+2+3+4+5+……+20练习1:1+2+3+4+……+99+100练习2:21+22+23+24+……+100二、公差不为1例1:21+23+25+27+29+31例2:312+315+318+321+324练习1:48+50+52+54+56+58+60+62练习2:108+128+148+168+188三、等差数列的项数、末项例1:有一个等差数列 1,4,7,10,…,25,这个数列共有多少项?例2:在公差为5的等差数列中,最大的数是50,最小的数是20,那么这个等差数列有多少项?练习1:这个等差数列的首项是3,公差是4,末项是39,这个等差数列有多少项?练习2:有一个数列4,6,8,10…40,这个数列共有多少项?例3:这个等差数列的首项是1,公差是5,项数是 40,第40项是?例4:等差数列4,7,10,13,16,19…第30项是?练习3:等差数列3,5,7,9,…,第20项是?练习4:一组数:1,5,9,13,17,…,这个数列的第100个数是多少?四、等差数列应用题例1:计算1000-11-89-12-88-13-87-14-86-15-85-16-84-17-83-18-82-19-81例2:计算1000-1-9-2-8-3-7-4-6-5-5-6-4-7-3-8-2-9-1练习1:1000-81-11-82-12-83-13-84-14-85-15-86-16-87-17-88-18-89-19练习2:2001-1+2-3+4-5+6-7+8-9+10-11+12-13+14-15+16例3:有一堆木材叠堆在一起,一共是10层,第1层有16根,第2层有17根,下面每层比上层多一根,这堆木材共有多少根?例4:体育馆的东区共有30排座位,呈梯形,第1排有10个座位,第2排有11个座位,这个体育馆东区共有多少个座位?练习3:有一串数,第1个数是10,以后每个数比前一个数大4,最后一个数是90,这串数连加的和是多少?练习4:有一堆粗细均匀的圆木,堆成如图的形状.已知最上面一层有6根,共堆了25层.请问:这堆圆木共有多少根?练习5:小青蛙沿着台阶往上跳,每跳一次都比上一次升高4厘米。

四年级奥数巧妙求和(一)

四年级奥数巧妙求和(一)

巧妙求和(一)专题简析:若干个数排成一列称为数列。

数列中的每一个数称为一项。

其中第一项称为首项,最后一项称为末项,数列中项的个数称为项数。

从第二项开始,后项与其相邻的前项之差都相等的数列称为等差数列,后项与前项的差称为公差。

需要记住三个非常重要的公式:“通项公式”、“项数公式”、“求和公式”。

通项公式:第n项=首项+(项数-1)×公差项数公式:项数=(末项-首项)÷公差+1求和公式:总和=(首项+末项)×项数÷2例1:有一个数列:4,10,16,22,…,52,这个数列共有多少项?练习:1,等差数列中,首项=1,末项=39,公差=2,这个等差数列共有多少项?2,有一个等差数列:2,5,8,11,…,101,这个等差数列共有多少项?3,已知等差数列11,16,21,26,…,1001,这个等差数列共有多少项?例2:有一等差数列:3,7,11,15,……,这个等差数列的第100项是多少?1练习:1,一等差数列,首项=3,公差=2,项数=10,它的末项是多少?2,求1,4,7,10……这个等差数列的第30项。

3,求等差数列2,6,10,14……的第100项。

例3:有这样一个数列:1,2,3,4,…,99,100。

请求出这个数列所有项的和。

练习:计算下面各题。

(1)1+2+3+…+49+50(2)6+7+8+…+74+75(3)100+99+98+…+61+60例4:求等差数列2,4,6,…,48,50的和。

2练习:计算下面各题。

(1)2+6+10+14+18+22(2)5+10+15+20+…+195+200(3)9+18+27+36+…+261+270例5:计算(2+4+6+...+100)-(1+3+5+ (99)练习:用简便方法计算下面各题。

(1)(2001+1999+1997+1995)-(2000+1998+1996+1994)(2)(2+4+6+...+2000)-(1+3+5+ (1999)(3)(1+3+5+...+1999)-(2+4+6+ (1998)例6:如果一个等差数列第4项为21,第6项为33,求他的第8项。

六年级奥数数列求和

六年级奥数数列求和

专题二 数列求和指点迷津在等差数列中,相邻两个数的差称为公差,用字母d 表示,首项(第一个数)用字母a 1表示,末项用字母a n 表示,项数用字母n 表示,和用S 表示。

则等差数列求和公式为S =(a 1+a n )×n ÷2:;通项公式a n = a 1+(n -1)×d ;项数n =(a n -a 1)÷d +1。

范例点拨例1 一堆相同的立方体堆积为右图所示的图形,第1层1个,第2层3个,第3层6个,…。

那么第100层有多少个立方体?思路提示:第1层有1个,第2层有(1+2)个,第3层有(1+2+3)个,…依次类推即可求出第100层有多少个。

尝试解答:例2 试求所有三位数中,7的倍数的和。

思路提示:在所有三位数中,7的最小倍数是105,最大倍数是994,公差是7只要找出从105到994共有多少项,就可求出它们的和。

尝试解答:例3 求100以内不能被3整除或5整除的所有自然数的和是多少。

思路提示:从1到100的自然数的和中减去能被3整除的数(等差数列)的和与能被5整除的数(等差数列)的和(注意重复),就是题目所要求的结果。

尝试解答:例4 求下面这个数列的前20项的和。

101,203,,105,207,109,211, …,137,239,…思路提示:从各个数的相同数位上寻找解题规律。

尝试解答:例5求数列1×2、2×3、3×4、4×5、…前99项的和。

思路提示:所求倒数之和就是:211⨯+321⨯+431⨯+…+100991⨯,显然可以采取拆项的方法求和。

尝试解答:触类旁通1.求100与500之间能被9整除的所有自然数之和。

2.如下图,三角形每边2等分时,顶点向下的小三角形有1个;每边4等分时,顶点向下的三角形有6个;每边10等分时,顶点向下的小三角形有几个?30等分呢?3.自然数1、2、3…按下图排列成6列,1991在第 行第 列。

四年级奥数举一反三第八课巧妙求和附作业

四年级奥数举一反三第八课巧妙求和附作业

8讲巧妙求和(一)第一、知识要点.若干个数排成一列称为数列。

数列中的每一个数称为一项。

其中第一项称为首项,最后一项称为末项,数列中项的个数称为项数。

从第二项开始,后项与其相邻的前项之差都相等的数列称为等差数列,后项与前项的差称为公差。

在这一章要用到两个非常重要的公式:“通项公式”和“项数公式”。

通项公式:第n项=首项+(项数-1)×公差项数公式:项数=(末项-首项)÷公差+1二、精讲精练【例题1】有一个数列:4,10,16,22.…,52.这个数列共有多少项【思路导航】容易看出这是一个等差数列,公差为6,首项是4,末项是52.要求项数,可直接带入项数公式进行计算。

项数=(52-4)÷6+1=9,即这个数列共有9项。

练习1:1.等差数列中,首项=1.末项=39,公差=2.这个等差数列共有多少项2.有一个等差数列:,8,11.…,101.这个等差数列共有多少项3.已知等差数列,,…,1001.这个等差数列共有多少项【例题2】有一等差数列:,,……,这个等差数列的第100项是多少【思路导航】这个等差数列的首项是3.公差是4,项数是100。

要求第100)”进行计算。

1公差×(项数-+首项=项,可根据“末项.第100项=3+4×(100-1)=399.练习2:1.一等差数列,首项=3.公差=2.项数=10,它的末项是多少2.求,7,10……这个等差数列的第30项。

3.求等差数列,10,14……的第100项。

【例题3】有这样一个数列:,…,99,100。

请求出这个数列所有项的和。

【思路导航】如果我们把,…,99,100与列100,99,…,相加,则得到(1+100)+(2+99)+(3+98)+…+(99+2)+(100+1),其中每个小括号内的两个数的和都是101.一共有100个101相加,所得的和就是所求数列的和的2倍,再除以2.就是所求数列的和。

1+2+3+…+99+100=(1+100)×100÷2=5050上面的数列是一个等差数列,经研究发现,所有的等差数列都可以用下面的公式求和:等差数列总和=(首项+末项)×项数÷2这个公式也叫做等差数列求和公式。

奥数小学三年级精讲与测试第3讲简单数列求和

奥数小学三年级精讲与测试第3讲简单数列求和

第3讲简单数列求和知识点、重点、难点当一列数的规律是相邻两项的差是一个固定的数,这样的数列就称为等差数列.其中固定的差用d表示,和用S表示,项数用n表示,其中第n项用a n表示.等差数列有以下几个通项公式:S=(a1+a n)×n÷2,n=(a n-a1)÷d+1(当a1<a n),a n=a1+(n-1)×d.例题精讲例1 1+2+3+4+5+6+7+8+9解原式=(1+9)×9÷2=10×9÷2=45例2 (1)1+5+9+13+…+2001解项数=(2001+1)÷4+1=501S=(1+2001)×501÷2=1001×501=501501(2)4000-(50+48+46+ (2)解原式=4000-(50+2)×25÷2=4000-26×25=3350例3 在1949、1950、1951…1997、1998这五十个正整数中,所有双数之和比所有单数之和大多少?解 (1950+1952+1954+...+1998)-(1949+1951+1953+ (1997)=(1950+1998)×25÷2-(1949+1997)×25÷2=(1950+1998-1949-1997)×25÷2=2×25÷2=25例 4 在1~200这二百个数中能被9整除的数的和是多少?分析:在1~200这二百个数中能被9整除的数构成了一个以9为首项,公差为9的等差数列:9,18,27,36,…,189,198.解项数=(198-9)÷2+1=22.S=(9+198)×22÷2==207×22÷2=2277.例 5 39个连续单数的和是1989,其中最大的一个单数是多少?分析:39个连续单数之和为1989,所以中间一个数是这39个数的平均数,然后再找出其中最大的一个单数.解 1989÷39=51,51+19×2=89.例 6 有一列数:1,1993,1992,1,1991,1990,1,...,从第三个数起,每一个数都是它前面两个数中大数减小数的差,从第1个到第1993个数这些数多的和是多少?分析:仔细观察这一数列,如果把1拿出,正好成为一个等差数列:1993,1992,1991,1990,...,在原数列中三个数一组出现一个1.1993÷3=664...1,可分为664组一个1,即665个1,其余是1993到666,共664×2=1328个数.解 1×665+(666+1993)×1328÷2=665+2659×1328÷2=665+1765576=1766241.水平测试 3A 卷一、填空题1.1+2+3+4+5+6+7=________2.2+4+6++8+10=_________3.1+3+5+7+9+11+13+15+17=__________4.25+27+29+31+33=________5.2002+2004+2006+2008+2010+2012=________6.15+20+25+30+35+40=_________7.11-12+13-14+15-16+17-18+19=_________8.(2003+2001+1999+...+3+1)-(2002+2000+1998+...+4+2)=_________9.27+31+35+39+43+47=_________10.121+134+127+130+133+136+139=_________11.101+103+105+...+139=_________二、解答题12.计算:10+13+16+19+...+295+298.13.求200以内的双数之和.14.等差数列7、10、13...的第20项数是几?15.肖肖从七月一日开始写毛笔字,第一天写了6个,以后每天比前一天多写相同数量的毛笔字,结果全月共写了1116个毛笔字,肖肖每天比前一天多写了几个毛笔字?B 卷一、填空题1.57+67+77+...+217+227=________2.11+12-13-14+15+16-17-18+...+31+32-33-34+35+36=_______3.1+3++5+7+...+151+153+155=_________4.96+97+98+...+293+294+295=________5.从37到111的所有单数之和是________6.所有三位数的和为_________7.1+4+7+10+...+292+295+298=_________8.1+2+3+...+59+60+59+...+3+2+1=________二、解答题9.计算:(2+4+6+...+100)-(1+2+3+...+50).10.把一堆苹果分给8个小朋友,要使每个小朋友都能拿到苹果,而且每个人拿到苹果个数都不同的话,这堆苹果至少应该有多少个?11.小红读一本书,第一天读30页,从第二天起,每天读的页数都必须比前一天多4页,最后一天读了70页刚好读完,这本书共有几页?12.小文从5岁开始存钱,5岁时他有了30元,以后每年比前一年多存10元,那么到他18岁时他共存了多少钱?13.求100以内所有7的倍数之和.C 卷一、填空题1.25个连续的正整数之和是750,则第13个数是_______,第一个数是_______2.一串钥匙30把,对应30把锁,若不小心搞乱了,那么至多需要试_______次.3.若在第2题中只要找出8把锁所对应的钥匙,那么至多需要试______次4.1+4+5+8+9+12+...+48+49+52=________5.321+320+319+...+124+123+124+...+319+320+321=________6.所有三位数中被26除余5的数之和是________7.学校礼堂共有30排座位,已知第一排是15个座位,以后每排比前一排多2个座位,那么共有______个座位.8.1+3+7+13+15+19+25+27+31+...+121+123+127=________二、解答题9.小华看一本书,第一天看了3页,以后每一天比前一天多看的页数相同.第20天看了79页,刚好看完,问这本书共多少页?每天比前一天多看多少页?10.求两位数中所有含有数字5的数之和.11.如图,每个最小的等边三角形的面积是1平方厘米,边长是一根火柴棒,问最大的三角形的面积是多少平方厘米?整个图形由几根火柴棒摆成?12.有10个盒子,44只乒乓球.把这44只乒乓球放到盒子中,能不能使每个盒中的球数都不相同(每个盒子中至少要放一个球)?13.已知数列2,7,5,5,3,2,7,5,5,3,2,7,5,5,3,...,这个数列的第40项是哪个数字?前36项之和是多少?简单数列求和答案:A 卷1.28 原式=(1+7)×7÷2=282.30 原式=(2+10)×5÷2=303.81 原式=(1+17)×9÷2=814.145 原式=(25+33)×5÷2=1455.12042 原式=(2002+2012)×6÷2=120426.165 原式=(15+40)×6÷2=1657.15 原式=11+(13-12)+(15-14)+(17-16)+(19-18)=15.8.1002 原式=(2003-2002)+(2001-2000)+...+(3-2)+1=10021001对9.222 原式=(27+47)×6÷2=22210.910 原式=(121+139)×7÷2=91011.2400 原式=(101+139)×[(139-101)÷2+1]÷2=240012.14938 原式=(10+298)×[(298-10)÷3+1]÷2=308×(96+1)÷2=154×97=1493813.200以内所有双数之和等于10100 2+4+6+...+198+200=(2+200)×100÷2=1010014.64 a n=a1+(n-1)×d=7+(20-1)×3=6415.最后一天写了1116×2÷31-6=66(个),(66-6)÷(31-1)=2(个)B 卷1.2556 由于共有(227-57)÷10+1=18项,原式=(57+227)×18÷2=25562.47 原式=(36-34)+(35-33)+(32-30)+(31-29)+...+(16-14)+(15-13)+11+12=24+23=47. 其中每个括号内两项之差为2,所以除11,12外所有和等于项数,即36-13+1=24.3.6084 原式=(1+155)×78÷2=6084,其中项数78=(155-1)÷2+1.4.39100.项数为(295-96)÷1+1=200,原式=(96+295)×200÷2=39100.5.2812.项数为(111-37)÷2+1=38,原式=(37+111)×38÷2=2812.6.494550 100+101+102+103+...+999=(100+999)×900÷2=4945507.14950.项数为(298-1)÷3+1=100,原式=(1+298)×100÷2=14950.8.3600. 原式=(1+59)×59÷2×2+60=3600.9.原式=(2-1)+(4-2)+(6-3)+...+(100-50)=1+2+3+...+50=(1+50)×50÷2=1275.10.36个 1+2+3+4+5+6+7+8=(1+8)×8÷2=36(个).11.550页. 先求小红看了几天,(70-30)÷4+1=11(天).再求这本书的总页数,(30+70)×11÷2=550(页).12.当他18岁时,他共存了1330元.(30+10×(18-5)+30)×(18-5+1)÷2=(30+130+30)×(14÷2)=190×7=1330(元).13.100以内所有7的倍数之和为735.7+14+21+...+98=7×(1+14)×14÷2=735.C 卷1.30,18第13项是中间项,对等差数列中间项等于数列平均数,即750÷25=30;第一个数为30-(13-1)×1=182.464第一把最多试30次,第二把锁最多试29次,...第29把最多试2次,所以共30+29+...+2=(30+2)×29÷2=464(次)3.212第一把锁最多试了30次,第二把锁最多试29次,...第八把最多试23次,所以最多须试30+29+...+23=(30+23)×8÷2=212(次).4.689原式=(1+5+9+...+49)+(4+8+12+...+52)=(1+49)×((49-1)÷4+1)÷2+4×(1+2+...+13)=50×13÷2+4×(1+13)×13÷2=325+364=689.5.88233.原式=(321+124)×((321-124)+1)÷2×2+123=445×198+123=88233.6.19285.原式=26×4+5+26×5+5+...+26×38+5=26×(4+5+...+38)+5×(38-4+1)=19285.7.1320.最后一排座位数为15+2×(30-1)=73,由(15+73)×30÷2=1320(个).8.2101.原式=(1+13+25+...+121)+(3+15+27+...+123)+(7+19+31+...+127)=(1+121)×11÷2+(3+123)×11÷2+(7+127)×11÷2=2101.9.全书共有820页,小华每天比前一天多看4页.(3+79)×20÷2=820(页),(79-3)÷(20-1)=4(页).10.两位数中所有含数字5的数之和为985.(15+25+...+95)+(50+51+...59)-55=(15+95)×9÷2+(50+59)×10÷2-55=495+545-55=985.11.45平方厘米,45根.每层小三角形个数分别是1.3.5.7.9.所以面积是(1+9)×9÷2=45(平方厘米).每层火柴棒根数分别是3.6.9.12.15,所以总根数是(3+15)×5÷2=45(根).12.不能.每个盒子中的乒乓球个数都不相同,所以球的个数有1+2+...+10=55(个).44个乒乓球是不能这样放的.13.这个数列第40项的数字是3,前36项之和为156.由于这个数列每5个重复一次,而40÷5=8,所以第40项就等于前5项中最后一项,即数字为3.由于36÷5=7...1,所以前36之和为(2+7+5+5+3)×7+2=156.。

四年级奥数 等差数列求和二

四年级奥数    等差数列求和二

四年级奥数等差数列求和二work Information Technology Company.2020YEAR第四周巧妙求和专题解析:前面我们学习了等差数列求和,其实生活中某些问题,可以转化为求若干个数的和,在解决这些问题时,要先判断是否是求某个等差数列的和。

如果是等差数列求和,就可以用等差数列公式求和。

某一项=首项+(项数-1)×公差项数=(末项-首项)÷公差 + 1总和=(首项+末项)×项数÷2例题1:计算1+3+5+7+……+197+199【思路导航】仔细观察发现,这个算式是一个等差数列求和的问题,公差为2,再根据项数=(末项-首项)÷公差 + 1来求得项数是多少,然后根据公式:总和=(首项+末项)×项数÷2 ,即得到算式总和。

解:公差为2,项数=(199-1)÷2+1=100,总和:(1+199)×100÷2=10000。

练习1:(1)计算:2+6+10+14+……+398+402 (2)计算:5+10+15+20+……+195+200(3)计算:1+11+21+31+……+1991+2001+2011 (4)计算:100+99+98+……+61+60例题2:计算:(2+4+6+……+98+100)-(1+3+5+……+97+99)【思路导航】我们可以发现,被减数和减数都是等差数列的和,因此,可以先分别求出它们各自的和,然后相减。

练习2:计算下面各题。

(1)(2+4+6+......+2000)-(1+3+5+ (1999)(2)(2001+1999+1997+1995)-(2000+1998+1996+1994)(3)1+2-3+4+5-6+7+8-9+……+58+59-60例题3:王俊读一本小说,他第一天读了30页,从第二天起,他每天读的页数都比前一天多3页,第11天读了60页,正好读完,这本书共有多少页练习3:(1)刘师傅做一批零件,第一天做了20个,以后每天都比前一天多做2个,第15天做了48个,正好做完,这批零件共有多少个(2)一个电影院的第一排有17个座位,以后每排比第一排多2个座位,最后一排有75个座位,这个电影院共有多少个座位(3)赵玲读一本书,她第一天读了20页,从第二天起,每天读的页数比前一天多5页,最后一天读了50页恰好读完,这本书有多少页。

四年级奥数举一反三第八课巧妙求和1附作业

四年级奥数举一反三第八课巧妙求和1附作业

四年级奥数举一反三第八课巧妙求和1附作业第8讲巧妙求和(一)一、知识要点若干个数排成一列称为数列。

数列中的每一个数称为一项。

其中第一项称为首项,最后一项称为末项,数列中项的个数称为项数。

从第二项开始,后项与其相邻的前项之差都相等的数列称为等差数列,后项与前项的差称为公差。

在这一章要用到两个非常重要的公式:“通项公式”和“项数公式”。

通项公式:第n项=首项+(项数-1)×公差项数公式:项数=(末项-首项)÷公差+1二、精讲精练【例题1】有一个数列:4,10,16,22.…,52.这个数列共有多少项?【思路导航】容易看出这是一个等差数列,公差为6,首项是4,末项是52.要求项数,可直接带入项数公式进行计算。

项数=(52-4)÷6+1=9,即这个数列共有9项。

练习1:1.等差数列中,首项=1.末项=39,公差=2.这个等差数列共有多少项?2.有一个等差数列:,8,11.…,101.这个等差数列共有多少项?3.已知等差数列,,…,1001.这个等差数列共有多少项?【例题2】有一等差数列:,,……,这个等差数列的第100项是多少?【思路导航】这个等差数列的首项是3.公差是4,项数是100。

要求第100项,可根据“末项=首项+公差×(项数-1)”进行计算。

第100项=3+4×(100-1)=399.练习2:1.一等差数列,首项=3.公差=2.项数=10,它的末项是多少?2.求,7,10……这个等差数列的第30项。

3.求等差数列,10,14……的第100项。

【例题3】有这样一个数列:,…,99,100。

请求出这个数列所有项的和。

【思路导航】如果我们把,…,99,100与列100,99,…,相加,则得到(1+100)+(2+99)+(3+98)+…+(99+2)+(100+1),其中每个小括号内的两个数的和都是101.一共有100个101相加,所得的和就是所求数列的和的2倍,再除以2.就是所求数列的和。

四年级奥数-6巧妙求和

四年级奥数-6巧妙求和
巧妙Байду номын сангаас和
等差数列的基本知识
数列可以是有限的也可以是无限的
认识数列
观察数列,找找规律
观察数列,找找规律
等差数列的项
数列:1,3,5,7,9· · · · · ·
你发现了什么?
数列:1,3,5,7,9· · · · · ·
怎么求项数?
你能根据规律推出求项数的公式吗?
小结等差数列的有关规律
你还有其他方法吗?
课后作业:
1、 求1~199的199个连续自然数的所有数字之和。
2、 5+10+15+20+〃〃〃+195+200 3、 2001+1999+1997+1995-2000-1998-1996-1994
4、
练一练:(2+4+6+· · · · · · +2000)-(1+3+5 +· · · · · · +1999 )
例:计算 1+2-3+4+5-6+7+8-9· · · · · · +58+59-60
例:计算 1+2-3+4+5-6+7+8-9· · · · · · +58+59-60
关键是如何拆分
你记住了吗?
练习:
练习:
练习:
练习:
练习:
练习:
练习:
练习:
等差数列的和
你能推出求等差数列和的公式吗?
你都记住了吗?
求和的应用
例:计算(2+4+6+ · · · · · · +100)- (1+3+5+ · · · · · · +99)

四年级奥数(举一反三)第19周巧妙求和(一)

四年级奥数(举一反三)第19周巧妙求和(一)

举一反三-巧妙求和(一)专题简析按一定顺序排列起来的一列数叫作数列。

数列中的每一个数称为-项,其中第一项称为首项,最后一项称为末项。

数列中数的个数称为项数。

在一个数列中,如果从第 2 项起,相邻两项之差都相等,那么这个数列就称为等差数列,这个相等的差称为公差。

学习“等差数列”要掌握以下知识点:1.等差数列中的公式通项公式:第 n 项=首项+(项数-1)×公差项数公式:项数=(末项-首项)÷公差+1求和公式:和=(首项+末项)×项数÷22.在等差数列中,只要知道首项、未项、项数、公差及总和这五个量中的任意三个量,就可以用公式求出其他两个量。

王牌例题1等差数列 1,4,7,10,…中,100是这个数列的第( )项。

举一反三11、有一个等差数列:3,8,13,18,23,…,208。

这个数列一共有多少项?2、一个等差数列的首项为26,末项为626,公差为8,这个等差数列共有多少项?3、有一列数:99,96,93,90,87,…,12,9,6,3。

这列数中,57 是从右往左数的第几个数?是从左往右数的第几个数?等差数列 103,117,131,145,…中,第138是( )。

举一反三21.数列 2,6,10,14,…的第 101项是( )2.一个等差数列一共有 2019 项,第1项是 10091,第2项是 10086,那么最后一项是( )3.将1~2020这 2020 个自然数按照如下方式分成甲、乙、丙三组。

甲组:1,6,7,12,13,18,…乙组:2,5,8,11,14,17,…那么丙组的第 47个数是( )。

已知一个等差数列的第 8 项是50,第 15项是 71,则该数列的第 22 项是( )。

举一反三31、一个等差数列的第 4 项是 21,第6项是 33,求它的第8项。

2、一个等差数列的第 3 项是 20.第 7项是 52,则它的第 12 项是多少?3.一个剧院有很多排座位,从第1 排起,每排都比前一排多同样多个座位。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第16讲巧妙求和
一、知识要点
某些问题,可以转化为求若干个数的和,在解决这些问题时,同样要先判断是否求某个等差数列的和。

如果是等差数列求和,才可用等差数列求和公式。

在解决自然数的数字问题时,应根据题目的具体特点,有时可考虑将题中的数适当分组,并将每组中的数合理配对,使问题得以顺利解决。

二、精讲精练
【例题1】刘俊读一本长篇小说,他第一天读30页,从第二天起,他每天读的页数都前一天多3页,第11天读了60页,正好读完。

这本书共有多少页?
【思路导航】根据条件“他每天读的页数都比前一天多3页”可以知道他每天读的页数是按一定规律排列的数,即30、33、36、……57、60。

要求这本书共多少页也就是求出这列数的和。

这列数是一个等差数列,首项=30,末项=60,项数=11.因此可以很快得解:
(30+60)×11÷2=495(页)
想一想:如果把“第11天”改为“最后一天”该怎样解答?
练习1:
1.刘师傅做一批零件,第一天做了30个,以的每天都比前一天多做2个,第15天做了48个,正好做完。

这批零件共有多少个?
2.胡茜读一本故事书,她第一天读了20页,从第二天起,每天读的页数都比前一天多5页。

最后一天读了50页恰好读完,这本书共有多少页?
3.丽丽学英语单词,第一天学会了6个,以后每天都比前一天多学1个,最后一天学会了16个。

丽丽在这些天中学会了多少个英语单词?
【例题2】30把锁的钥匙搞乱了,为了使每把锁都配上自己的钥匙,至多要试几次?
【思路导航】开第一把锁时,如果不凑巧,试了29把钥匙还不行,那所剩的一把就一定能把它打开,即开第一把锁至多需要试29次;同理,开第二把锁至多需试28次,开第三把锁至多需试27次……等打开第29把锁,剩下的最后一把不用试,一定能打开。

所以,至多需试29+28+27+…+2+1=(29+1)×29÷2=435(次)。

练习2:
1.有80把锁的钥匙搞乱了,为了使每把锁都配上自己的钥匙,至多要试多少次?
2.有一些锁的钥匙搞乱了,已知至多要试28次,就能使每把锁都配上自己的钥匙。

一共有几把锁的钥匙搞乱了?
3.有10只盒子,44只羽毛球。

能不能把44只羽毛球放到盒子中去,使各个盒子里的羽毛球只数不相等?
【例题3】某班有51个同学,毕业时每人都和其他的每个人握一次手。

那么共握了多少次手?
【思路导航】假设51个同学排成一排,第一个人依次和其他人握手,一共握了50次,第二个依次和剩下的人握手,共握了49次,第三个人握了48次。

依次类推,第50个人和剩下的一人握了1次手,这样,他们握手的次数和为:50+49+48+…+2+1=(50+1)×50÷2=1275(次).
练习3:
1.学校进行乒乓球赛,每个选手都要和其他所有选手各赛一场。

如果有21人参加比赛,一共要进行多少场比赛?
2.在一次同学聚会中,一共到43位同学和4位老师,每一位同学或老师都要和其他同学握一次手。

那么一共握了多少次手?
3.假期里有一些同学相约每人互通两次电话,他们一共打了78次电话,问有多少位同学相约互通电话?
【例题4】求1 ~ 99 这99个连续自然数的所有数字之和。

【思路导航】首先应该弄清楚这题是求99个连续自然数的数字之和,而不是求这99个数之和。

为了能方便地解决问题,我们不妨把0算进来(它不影响我们计算数字之和)计算0~99这100个数的数字之和。

这100个数头尾两配对后每两个数的数字之和都相等,是9+9=18,一共有100÷2=50对,所以,1~99这99个连续自然数的所有数字之和是18×50=900。

练习4:
1.求1~199这199个连续自然数的所有数字之和。

2.求1~999这999个连续自然数的所有数字之和。

3.求1~3000这3000个连续自然数的所有数字之和。

.
【例题5】求1~209这209个连续自然数的全部数字之和。

【思路导航】不妨先求0~199的所有数字之和,再求200~209的所有数字之和,然后把它们合起来。

0~199的所有数字之和为(1+9×2)×(200÷2)=1900,200~209的所有数字之和为2×10+1+2+…+9=65。

所以,1~209这209个连续自然数的全部数字之和为1900+65=1965。

练习5:
1.求1~308连续自然数的全部数字之和。

2.求1~2009连续自然数的全部数字之和。

3.求连续自然数2000~5000的全部数字之和。

相关文档
最新文档