第2章光纤和光缆_1

合集下载

光纤技术光纤拉制及成缆

光纤技术光纤拉制及成缆
第2章 光纤拉制及成缆
光纤是如何拉制的,又是如何成缆的? 本章内容: 光纤种类、材料、制作方式及 光缆的类型等方面
2.1 光纤的分类
光纤基本结构:折射率较高的纤芯+折射率较低的包层 原理:在纤芯和包层率差异引起光在纤芯发生全内反
射,光在纤芯内传播。 为保护光纤和免受环境影响,有涂敷层。
涂覆层 包层
2.2 光纤材料
1. 光纤材料的选择 • 材料是光纤制作的核心。 • 选择光纤材料的因素:纯度高、透明度高、 折射率径向分布易于精确控制等,同时要注 意材料自身的机械强度和化学稳定性。
气体材料:可见和近红外区光衰减小,但折射率难控 制。 液体材料:光衰减小,但折射率随温度变化大,折射 率难精确控制。 固体材料:光衰减较大,但光学特性稳定,易控制折 射率,使用最多。 固体材料中,SiO2为主的石英对可见光和近红外光的 透光性好,且有好的化学稳定性和机械强度。通过掺 杂(锗、硼、氟、磷等),也易改变石英折射率,来 源充足,价格低,是光纤的首选材料
原料制 备 原料提 纯 制棒
(2种)
拉丝
涂敷
筛选
合格光 纤
纯度分 质量控 析 制
性能测 量
图2.4制造光纤的工 艺流程
1. 制棒
掺杂纤芯
折 射 率
石英+锗 纯石英包层 匹配包层光纤 低掺杂纤芯
纯石英 石英+氟 凹陷包层
石英+低锗 石英+氟 凹陷包层 凹陷包层光纤
纯石英
纯石英
纯石英纤芯
纯石英
塑料包层
塑料包层光纤 (不适用于单模光纤)
塑料包层
图2.3 三种阶跃光纤掺杂方式和折射率曲线
2.3 光纤的拉制
光纤制造流程如图2.4。 主要流程是制棒、拉丝、涂敷

光纤通信技术-第二章-光纤光缆技术-作业习题(2)

光纤通信技术-第二章-光纤光缆技术-作业习题(2)

1.光纤是如何分类的?各分为那些类别?2.相对折射指数差的表示式是什么?什么是弱导条件?。

3.什么是光纤的径向归一化相位常数U、光纤的径向归一化衰减常数W和光纤的归一化频率V?4.渐变型光纤的本地数值孔径的定义为什么?5.当光纤中出现什么时,即认为导波截止。

6.单模光纤是如何定义的?在标量近似解中,阶跃单模光纤只传输什么模?7.光纤的传输特性有哪几种?8.什么是导行波,什么是辐射波?9.什么是全反射,全发射的条件是什么?10.什么是弱导光纤,为什么标量近似解只适用于弱导光纤?11.为什么说采用渐变型光纤可以减小光纤的色散?12.什么是自聚焦现象?13.说明造成光纤损耗的原因。

14.单模光纤和多模光纤有何区别?各有何用途?15.根据ITU-T建议,单模光纤分为那几类?G.655光纤有何特点?16.什么是光纤的数值孔径NA?有何物理意义?17.光纤的波动方程是什么?18.光纤的电磁场表达式是什么?19.光纤的特征方程是什么?有何物理意义?20.什么是光纤的截止波长?21.光纤传输特性通常有几种?分别是什么?22.什么是光纤的色散?分析多模光纤和单模光纤的色散机理。

23.为什么色散和损耗是光纤通信的主要限制因素?24.什么是G.652和G.655光纤,它们的特点分别是什么?。

25.通常光缆结构由那些组成?26.光缆型号是如何标识的?如GYGZL03-12T50/125代表什么意思?27.光纤通信中常用的波长是什么?28.阶跃型光纤的导光原理是什么?29.什么是光纤色散?光纤色散主要有几种类型?其对光纤通信系统有何影响?色散带来的危害是什么?30.解释光纤中的模式色散、材料色散及波导色散。

31.什么是色散位移单模光纤。

32.什么是非零色散光纤。

33.什么是色散平坦光纤。

34.什么是色散补偿光纤。

35.均匀光纤芯与包层的折射率分别为n1=1.5,n2=1.45 试计算:光纤芯与包层的相对折射率差。

光纤的数值孔径。

光纤通信复习(各章复习要点)

光纤通信复习(各章复习要点)

光纤通信复习(各章复习要点)光纤通信复习(各章复习要点)第⼀章光纤的基本理论1、光纤的结构以及各部分所⽤材料成分2、光纤的种类3、光纤的数值孔径与相对折射率差4、光纤的⾊散5、渐变光纤6、单模光纤的带宽计算7、光纤的损耗谱8、多模光纤归⼀化频率,模的数量第⼆章光源和光发射机1、光纤通信中的光源2、LD的P-I曲线,测量Ith做法3、半导体激光器的有源区4、激光器的输出功率与温度关系5、激光器的发射中⼼波长与温度的关系6、发光⼆极管⼀般采⽤的结构7、光源的调制8、从阶跃响应的瞬态分析⼊⼿,对LD数字调制过程出现的电光延迟和张弛振荡的瞬态性质分析(p76)9、曼彻斯特码10、DFB激光器第三章光接收机1、光接收机的主要性能指标2、光接收机主要包括光电变换、放⼤、均衡和再⽣等部分3、光电检测器的两种类型4、光电⼆极管利⽤PN结的什么效应第四章光纤通信系统1、光纤通信系统及其⽹管OAM2、SDH系统3、再⽣段距离的设计分两种情况4、EDFA第五章⽆源光器件和WDM1、⼏个常⽤性能参数2、波分复⽤器的复⽤信道的参考频率和最⼩间隔3、啁啾光纤光栅4、光环形器的各组成部分的功能及⼯作原理其他1、光孤⼦2、中英⽂全称:DWDM 、EDFA 、OADM 、SDH 、SOA第⼀章习题⼀、单选题1、阶跃光纤中的传输模式是靠光射线在纤芯和包层的界⾯上(B)⽽是能量集中在芯⼦之中传输。

A、半反射B、全反射C、全折射D、半折射2、多模渐变折射率光纤纤芯中的折射率是(A)的。

A、连续变化B、恒定不变C、间断变换D、基本不变3、⽬前,光纤在(B)nm处的损耗可以做到0.2dB/nm左右,接近光纤损耗的理论极限值。

A、1050B、1550C、2050D、25504、普通⽯英光纤在波长(A)nm附近波导⾊散与材料⾊散可以相互抵消,使⼆者总的⾊散为零。

A、1310B、2310C、3310D、43105、⾮零⾊散位移单模光纤也称为(D)光纤,是为适应波分复⽤传输系统设计和制造的新型光纤。

光纤通信课后习题解答-第2章习题参考答案

光纤通信课后习题解答-第2章习题参考答案

第二章 光纤和光缆1.光纤是由哪几部分组成的?各部分有何作用?答:光纤是由折射率较高的纤芯、折射率较低的包层和外面的涂覆层组成的。

纤芯和包层是为满足导光的要求;涂覆层的作用是保护光纤不受水汽的侵蚀和机械擦伤,同时增加光纤的柔韧性。

2.光纤是如何分类的?阶跃型光纤和渐变型光纤的折射率分布是如何表示的?答:(1)按照截面上折射率分布的不同可以将光纤分为阶跃型光纤和渐变型光纤;按光纤中传输的模式数量,可以将光纤分为多模光纤和单模光纤;按光纤的工作波长可以将光纤分为短波长光纤、长波长光纤和超长波长光纤;按照ITU-T 关于光纤类型的建议,可以将光纤分为G .651光纤(渐变型多模光纤)、G.652光纤(常规单模光纤)、G.653光纤(色散位移光纤)、G.654光纤(截止波长光纤)和G.655(非零色散位移光纤)光纤;按套塑(二次涂覆层)可以将光纤分为松套光纤和紧套光纤。

(2)阶跃型光纤的折射率分布 () 21⎩⎨⎧≥<=ar n ar n r n 渐变型光纤的折射率分布 () 2121⎪⎩⎪⎨⎧≥<⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛∆-=ar n a r a r n r n cm α 3.阶跃型光纤和渐变型光纤的数值孔径NA 是如何定义的?两者有何区别?它是用来衡量光纤什么的物理量?答:阶跃型光纤的数值孔径 2sin 10∆==n NA φ渐变型光纤的数值孔径 ()() 20-0s i n220∆===n n n NA c φ两者区别:阶跃型光纤的数值孔径是与纤芯和包层的折射率有关;而渐变型光纤的数值孔径只与纤芯内最大的折射率和包层的折射率有关。

数值孔径是衡量光纤的集光能力,即凡是入射到圆锥角φ0以内的所有光线都可以满足全反射条件,在芯包界面上发生全反射,从而将光线束缚在纤芯中沿轴向传播。

4.简述光纤的导光原理。

答:光纤之所以能够导光就是利用纤芯折射率略高于包层折射率的特点,使落于数值孔径角)内的光线都能收集在光纤中,并在芯包边界以内形成全反射,从而将光线限制在光纤中传播。

光纤通信课后答案

光纤通信课后答案

全书习题参考答案第1章概述1.1 填空题(1)光导纤维(2)掺铒光纤放大器(EDFA) 波分复用(WDM) 非零色散光纤(NIDSF) 光电集成(OEIC)(3)0.85µm 1.31µm 1.55µm 近红外(4)光发送机 光接收机 光纤链路(5)光纤 C=BW×log2(1+SNR) 信道带宽(6)大 大(7)带宽利用系数(8)可重构性可扩展性透明性兼容性完整性生存性1.2 解:利用光导纤维传输光波信号的通信方式称为光纤通信。

即以光波为载频,以光纤为传输介质的通信方式称为光纤通信。

1.3 解:(1)传输频带宽,通信容量大(2)传输距离长(3)抗电磁干扰能力强,无串音(4)抗腐蚀、耐酸碱(5)重量轻,安全,易敷设(6)保密性强(7) 原料资源丰富1.4 解:在光纤通信系统中,最基本的三个组成部分是光发送机、光接收机和光纤链路。

光发送机由电接口、驱动电路和光源组件组成。

其作用是将电信号转换为光信号,并将生成的光信号注入光纤。

光接收机是由光检测器组件、放大电路和电接口组成。

其作用是将光纤送来的光信号还原成原始的电信号。

光纤链路由光纤光缆、光纤光缆线路(接续)盒、光缆终端盒、光纤连接器和中继器等构成。

光纤光缆用于传输光波信息。

中继器主要用于补偿信号由于长距离传送所损失的能量。

光缆线路盒:将光缆连接起来。

光缆终端盒:将光缆从户外引入到室内,将光缆中的光纤从光缆中分出来。

光纤连接器:连接光纤跳线与光缆中的光纤。

1.5解:“掺铒光纤放大器(EDFA)+波分复用(WDM)+非零色散光纤(NIDSF)+光电集成(OEIC)”正成为国际上光纤通信的主要发展方向。

1.6 解:第一阶段(1966~1976年),实现了短波长(0.85µm)、低速(45或34 Mb/s)多模光纤通信系统,无中继传输距离约10km。

第二阶段(1976~1986年),光纤以多模发展到单模,工作波长以短波(0.85um)发展到长波长,实现了波长为1.31µm、传输速率为140~165Mb/s的单模光纤通信系统,无中继传输距离为50~100km。

光纤通信复习

光纤通信复习

新型的G.
光纤损耗的计算: Loss= P i / P o 谱线宽 20-50nm
调制是用数字或模拟信号改变载波的幅度、频率或相位的过程。
P i — 为输入功率 即:L(km)= (Pout-Prec-Ac-Pm)/Af
发散角大,与光纤的耦合效率低 (5-10%)
P o —为输出功率
常以分贝dB来表示 Ltot 所有损耗
DWDM技术 DWDM当前水平:
目前1.6Tbit/s WDM系统已经大量商用。
100km 10.9Tbit/s(273x40Gbit/s) 50GHz S、C和L波段
100km 10.2Tbit/s(256x40Gbit/s)交替75和 50GHz ,C和L波段
CWDM技术 技术参数:
波长组合:三种,即4、8和16个 波长通路间隔:20nm 允许波长漂移±6.5nm
LD特点 : 受激辐射、相干光、谱线窄、功率高 发光面小、发散较小,与光纤耦合效率高 寿命和可靠性比LED稍低
Table - Comparison of LEDs and Lasers
Characteristic
LEDs
Lasers
Output Power
Pr=10 μW=10log(10μ W/1mW)
<0.1
光检测器和光接收机
PIN光电二极管是在掺杂浓度很高的P型、N型半导 体之间,加一层轻掺杂的N型材料,称为I(本征 层)。由于是轻掺杂,电子浓度很低,经扩散后形 成一个很宽的耗尽层。这样可以提高其响应速度和 转换效率。
PIN光电二极管的优点
提高了响应速度
提高了长波的量子效率
噪声小
APD光电二极管 雪崩光电二极管,又称APD(Avalanche

第二章光纤的结构和种类

第二章光纤的结构和种类

r≤a r>a >
a为纤芯半径 ;g为纤芯折射率 为纤芯半径 为纤芯折射率 分布指数; 为相对折射率差。 分布指数;△为相对折射率差。
△是表征纤芯折射率与包层折射率 差的大小的一个物理量, 差的大小的一个物理量,这个物理量直 接影响着光纤的性能。 接影响着光纤的性能。当n1与n2差别极 趋近于n 小(n1趋近于n2),这种光纤称弱导波光 纤。目前应用的通信光纤常为弱导波光 纤。 2 ∆ = (n12 − n 2 )/ 2 n12 弱导波光纤相对折射率差△ 弱导波光纤相对折射率差△可近似为 相对折射率差
∆ ≈ (n1 − n2 )/ n1
不同g值的折射率分布 不同 值的折射率分布 n n1 2 g=1 n2 ∞
n(r)= n 1− 2∆ (r / a ) 1
[
1/2 g 1
]
g=∞时为阶跃光纤 = 时为阶跃光纤 g=2时为平方律折射率 = 时为平方律折射率 分布光纤 g=1时为三角形折射率分布 时为三角形折射率分布
二次涂覆层 一次涂覆层
··
紧套管 松套管
两种多心型芯线结构
1、带状光纤芯线 、 聚酸酯带 光纤涂覆层
裸纤
粘合剂
一个光纤带由几十至数百根光纤组成, 一个光纤带由几十至数百根光纤组成,并且 一个光纤带的接续可以一次完成,以适应大量光 一个光纤带的接续可以一次完成, 纤接续、安装的需要。特别适合用作用户光缆。 纤接续、安装的需要。特别适合用作用户光缆。
4、按光纤的材料分类 根据光纤的组成材料不同,可分为四种。 根据光纤的组成材料不同,可分为四种。 (1)石英玻璃光纤。(最常用) 石英玻璃光纤。 最常用) (2)多组分玻璃光纤(氧化物光纤)。 多组分玻璃光纤(氧化物光纤) (3)石英芯、塑料包层光纤。 石英芯、塑料包层光纤。 (4)塑料光纤。 塑料光纤。

《光纤通信》的复习要点

《光纤通信》的复习要点

《光纤通信》的复习要点《光纤通信》课程复习要点和重点浙江传媒学院陈柏年(2014年6⽉)第⼀章概述1、光纤通信:以光波作为信号载体,以光纤作为传输媒介的通信⽅式。

2、光纤通信发展历程:(1)光纤模式:从多模发展到单模;(2)⼯作波长:从短波长到长波长;(3)传输速率:从低速到⾼速;(4)光纤价格:不断下降;(5)应⽤范围:不断扩⼤。

3、光纤通信系统基本组成:(1)光纤,(2)光发送器,(3)光接收器,(4)光中继器,(5)适当的接⼝设备。

第⼆章光纤光缆⼀、光纤(Fibel)1、光纤三层结构:(1)纤芯(core),(2)包层(coating),(3)涂覆层(jacket)。

2、各类光纤的缩写和概念:SIF(突变型折射率光纤),GIF(渐变折射率光纤);DFF(⾊散平坦光纤)、DSF(⾊散移位光纤);MMF(多模光纤),SMF(单模光纤);松套光纤,紧套光纤。

⼆、光的两种传输理论(⼀)光的射线传输理论1、光纤的⼏何导光原理:光纤是利⽤光的全反射特性导光;纤芯折射率必须⼤于包层折射率,但相差不⼤。

2、突变型折射率多模光纤主要参数:★(1)光纤的临界⾓θc:只有在半锥⾓为θ≤θc的圆锥内的光束才能在光纤中传播。

★(2)数值孔径NA:⼊射媒质折射率与最⼤⼊射⾓(临界⾓)的正弦值之积。

与纤芯与包层直径⽆关,只与两者的相对折射率差有关。

它表⽰光纤接收和传输光的能⼒。

(3)光纤的时延差Δτ:时延差⼤,则造成脉冲展宽和信号畸变,影响光纤的容量,模间⾊散增⼤。

3、渐变型折射率多模光纤主要参数:(1)⾃聚焦效应:如果折射率分布恰当,有可能使不同⾓度⼊射的全部光线以同样的轴向速度在光纤中传输,同时达到光纤轴上的某点,即所有光线都有相同的空间周期。

(2)光纤的时延差Δτ:⽐突变型光纤要⼩,减⼩脉冲展宽,增加传输带宽。

(⼆)光纤波动传输理论★1、光纤模式:⼀个满⾜电磁场⽅程和边界条件的电磁场结构。

表⽰光纤中电磁场(传导模)沿光纤横截⾯的场形分布和沿光纤纵向的传播速度。

梁瑞生《现代光纤通信技术及应用》课后习题及参考答案

梁瑞生《现代光纤通信技术及应用》课后习题及参考答案

第1章概述1-1、什么是光纤通信?参考答案:光纤通信(Fiber-optic communication)是以光作为信息载体,以光纤作为传输媒介的通信方式,其先将电信号转换成光信号,再透过光纤将光信号进行传递,属于有线通信的一种。

光经过调变后便能携带资讯。

光纤通信利用了全反射原理,即当光的注入角满足一定的条件时,光便能在光纤内形成全反射,从而达到长距离传输的目的。

1-2、光纤通信技术有哪些特点?参考答案:(1)无串音干扰,保密性好。

(2)频带极宽,通信容量大。

(3)抗电磁干扰能力强。

(4)损耗低,中继距离长。

(5)光纤径细、重量轻、柔软、易于铺设。

除以上特点之外,还有光纤的原材料资源丰富,成本低;温度稳定性好、寿命长等特点。

1-3、光纤通信系统由哪几部分组成?简述各部分作用。

参考答案:光纤通信系统最基本由光发送机、光接收机、光纤线路、中继器以及无源器件组成。

其中光发送机负责将信号转变成适合于在光纤上传输的光信号,光纤线路负责传输信号,而光接收机负责接收光信号,并从中提取信息,然后转变成电信号,最后得到对应的话音、图象、数据等信息。

(1)光发送机:由光源、驱动器和调制器组成,实现电/光转换的光端机。

其功能是将来自于电端机的电信号对光源发出的光波进行调制,成为已调光波,然后再将已调的光信号耦合到光纤或光缆去传输。

(2)光接收机:由光检测器和光放大器组成,实现光/电转换的光端机。

其功能是将光纤或光缆传输来的光信号,经光检测器转变为电信号,然后,再将这微弱的电信号经放大电路放大到足够的电平,送到接收端的电端机去。

(3)光纤线路:其功能是将发信端发出的已调光信号,经过光纤或光缆的远距离传输后,耦合到收信端的光检测器上去,完成传送信息任务。

(4)中继器:由光检测器、光源和判决再生电路组成。

它的作用有两个:一个是补偿光信号在光纤中传输时受到的衰减;另一个是对波形失真的脉冲进行整形。

(5)无源器件:包括光纤连接器、耦合器等,完成光纤间的连接、光纤与光端机的连接及耦合。

光纤通信复习重点

光纤通信复习重点

光纤通信复习重点题型:填空、选择、判断30’、问答40’、计算30’第一章概论光纤通信的优点☆☆1)容许频带很宽,传输容量很大2)损耗很小,中继距离很长,且误码率很小3)重量轻,体积小4)抗电磁干扰性能好5)泄露小,保密性能好6)节约金属材料,有利于资源合理使用光纤通信系统的基本组成作用:1)信息源:把用户信息转换为原始电信号,这种信号称为基带信号2)电发射机:把信息源传递过来的模拟信号转换成数字信号PCM3)光发射机:把输入电信号转换为光信号,并用耦合技术吧光信号最大限度地注入光纤线路;4)光纤线路:把来自光发射机的光信号,以尽可能小的失真和衰减传输到光接收机; 5)光接收机:把从光纤线路输出、产生畸变和衰减的微弱光信号转换为电信号,并经其后的电接收机放大和处理后恢复成基带电信号;光接收机由光检测器、放大器和相关电路组成,光检测器是光接收机的核心;光接收机最重要的特性参数数灵敏度;6)电接收机:把接收的电信号转换为基带信号,最后由信息宿恢复用户信息;说明:光发射机之前和光接收机之后的电信号段,光纤通信所用的技术和设备和电缆通信相同,不同的只是由光发射机、光纤线路和光接收机所组成的基本光纤传输系统代替了电缆传输;注:计算题3个,全来自第二第三章的课后习题第二章光纤和光缆光纤结构光纤是由中心的纤芯和外围的包层同轴组成的圆柱形细丝;相对折射率差典型值△=n1-n2/n1,△越大,把光能量束缚在纤芯的能力越强,但信息传输容量确越小光纤类型三种基本类型图突变型多模光纤:纤芯折射率为n1保持不变,到包层突然变为n2;这种光纤一般纤芯直径2a=50~80 μm,光线以折线形状沿纤芯中心轴线方向传播,特点是信号畸变大;渐变型多模光纤:纤芯中心折射率最大为n1,沿径向r向外围逐渐变小,直到包层变为n2;这种光纤一般纤芯直径2a为50μm,光线以正弦形状沿纤芯中心轴线方向传播,特点是信号畸变小;单模光纤:折射率分布和突变型光纤相似,纤芯直径只有8~10 μm,光线以直线形状沿纤芯中心轴线方向传播;因为这种光纤只能传输一个模式两个偏振态简并,所以称为单模光纤,其信号畸变很小;光纤传输原理 展宽 衰减的原因 1)突变型多模光纤2)数值孔径:定义临界角θc 的正弦为数值孔径NANA 表示光纤接收和传输光的能力,NA 或θc 越大,光纤接收光的能力越强,从光源到光纤的耦合效率越高;对于无损耗光纤,在θc 内的入射光都能在光纤中传输;NA 越大,纤芯对光能量的束缚越强,光纤抗弯曲性能越好;但NA 越大经光纤传输后产生的信号畸变越大,因而限制了信息传输容量; 时间延迟:这种时间延迟差在时域产生脉冲展宽,或称为信号畸变;由此可见,突变型多模光纤的信号畸变是由于不同入射角的光线经光纤传输后,其时间延迟不同而产生的; 3)渐变型多模光纤 渐变型多模光纤具有能减小脉冲展宽、增加带宽的优点; 自聚焦效应:不同入射角相应的光线,虽然经历的路程不同,但是最终都会聚在同一点上;渐变型多模光纤具有自聚焦效应,不仅不同入射角相应的光线会聚在同一点上,而且这些光线的时间延迟也近似相等; 光纤传输的波动理论 单模光纤的模式特性 1单模条件和截止波长传输模式数目随V 值的增加而增多;当V 值减小时,不断发生模式截止,模式数目逐渐减少;特别值得注意的是当V<时,只有HE11LP01一个模式存在,其余模式全部截止;HE11称为基模,由两个偏振态简并而成;由此得到单模传输条件为可以看到,对于给定的光纤n1、n2和a 确定,存在一个临界波长λc,当λ<λc 时,是多模传输,当λ>λc 时,是单模传输,这个临界波长λc 称为截止波长; 2)光强分布和模场半径通常认为单模光纤基模 HE11的电磁场分布近似为高斯分布 Ψr=Aexp式中,A 为场的幅度,r 为径向坐标,w0为高斯分布1/e 点的半宽度,称为模场半径; 3)双折射把两个偏振模传输常数的差βx-βy 定义为双折射Δβ, 通常用归一化双折射β来表示∆≈-=212212n n n NA ∆≈==∆cL n NA c n L c n L c 12121)(22θτ405.222221≤-n n a λπ])([2w r -ββββββ)(y x -=∆=式中, =βx+βy/2为两个传输常数的平均值;把两个正交偏振模的相位差达到2π的光纤长度定义为拍长Lb= 光纤传输特性损耗和色散是光纤最重要的传输特性;损耗限制系统的传输距离,色散则限制系统的传输容量;☆☆☆☆☆三种色散模式色散是由于不同模式的传播时间不同而产生的,它取决于光纤的折射率分布,并和光纤材料折射率的波长特性有关;材料色散是由于光纤的折射率随波长而改变,以及模式内部不同波长成分的光实际光源不是纯单色光,其传播时间不同而产生的;这种色散取决于光纤材料折射率的波长特性和光源的谱线宽度;波导色散是由于波导结构参数与波长有关而产生的,它取决于波导尺寸和纤芯与包层的相对折射率差;说明:色散对光纤传输系统的影响,在时域和频域的表示方法不同;从频域上看,色散限制了传输信号的带宽;从时域上看,色散引起信号脉冲的展宽; 理想的单模光纤没有模式色散,只有材料色散和波导色散;材料色散和波导色散总称为色度色散,常简称为色散,它是传播时间随波长变化的产生的;光纤损耗光纤的损耗在很大程度上决定了系统的传输距离;在最一般的条件下,在光纤内传输的光功率P 随距离z 的变化,可以用 表示;α是损耗系数;吸收损耗:由SiO 2材料引起的固有吸收和由杂质引起的吸收产生的;散射损耗:主要由材料微观密度不均匀引起的瑞利散射和由光纤结构缺陷引起; 光纤总损耗α与波长λ的关系可以表示为: α= +B+CW λ+IR λ+UV λA 为瑞利散射系数,B 为结构缺陷散射产生的损耗,CW λ、IR λ和UV λ分别为杂质吸收、红外吸收和紫外吸收产生的损耗; 第三章 通信用光器件 光源光源是光发射机的关键器件,其功能是把电信号转换为光信号;半导体激光器是向半ββ∆2apdz dp -=4λA导体PN 节注入电流,实现粒子数反转分布,产生受激辐射,在利用谐振腔的正反馈,实现光放大而产恒激光震荡的;工作原理:半导体激光器是向半导体PN 结注入电流实现粒子数翻转分布,产生受激辐射,实现光放大,在利用谐振腔的正反馈而产生激光振荡的;基本结构:结构中间有一层厚~ μm 的窄带隙P 型半导体,称为有源层;两侧分别为宽带隙的P 型和N 型半导体, 称为限制层;三层半导体置于基片衬底上,前后两个晶体解理面作为反射镜构成法布里 - 珀罗FP 谐振腔; 三种跃迁:受激吸收:处于低能级E1的电子,在入射光作用下,它会吸收光子的能量跃迁到高能级E2上;自发辐射:在高能级E2的电子是不稳定的,即使没有外界的作用,也会自动地跃迁到低能级E1上与空穴复合,释放的能量转换为光子辐射出去;受激辐射:在高能级E2的电子,受到入射光的作用,被迫跃迁到低能级E1上与空穴复合,释放的能量产生光辐射; 能级跃迁:电子在E1和E2两个能级之间跃迁,吸收的光子能量或辐射的光子能量都要满足波尔条件,即 E2-E1=hf 12,其中 h=×10-34J ·s,为普朗克常数,f 12为吸收或辐射的光子频率; 受激辐射和自发辐射光的区别:它们的特点很不相同;受激辐射光的频率、相位、偏振态和传播方向与入射光相同,这种光称为相干光;自发辐射光是由大量不同激发态的电子自发跃迁产生的,其频率和方向分布在一定范围内,相位和偏振态是混乱的,这种光称为非相干光; 粒子数分布:低能级E1和处于高能级E2E2>E1的原子数分别为N1和N2;当系统处于热平衡状态时,存在下面的分布)12(exp 12kTE E N N --=k=10-23为玻尔兹曼常数,T 为热力学温度 N1>N2,即受激吸收大于受激辐射;当光通过这种物质时,光强按指数衰减, 这种物质称为吸收物质;正常状态N2>N1,即受激辐射大于受激吸收,当光通过这种物质时,会产生放大作用,这种物质称为激活物质;粒子数反转分布 如何实现粒子数反转分布:半导体激光器是向半导体PN 结注入电流,实现粒子数反转分布;发射波长:半导体激光器的发射波长取决于倒带的电子跃迁到价带时所释放的能量;这个能量近似等于禁带宽度;EgEg24.1hc ==λ不同半导体材料有不同的禁带宽度Eg,所以有不同的发射波长光谱特性:随着驱动电流的增加,纵模模数逐渐减少,谱线宽度变窄; 随着调制电流增大,纵模模数增多,光谱密度变宽; 弛张频率:弛张频率f r 是调制频率的上限,在接近f r 处,数字调制要产生弛张震荡,模拟调制要产生非线性失真;温度特性:激光器输出光功率随温度而变化有两个原因:一是激光器的阈值电流I th 随温度升高而增大,二是外微分量子效率ηd 随温度升高而减小;温度升高时,I th 增大,ηd 减小,输出光功率明显下降,达到一定温度时,激光器就不激射了;当以直流电流驱动激光器时,阈值电流随温度的变化更加严重;当对激光器进行脉冲调制时,阈值电流随温度呈指数变化,在一定温度范围内,可以表示为)ex p(00th T T I I =I 0为常数,T 为结区的热力学温度,T 0为激光器材料的特征温度 发光二极管 对应的看看就可以发光二极管LED 的工作原理与激光器LD 有所不同, LD 发射的是受激辐射光,LED 发射的是自发辐射光;发光二极管的优点:和激光器相比,发光二极管输出光功率较小,谱线宽度较宽,调制频率较低;但发光二极管性能稳定,寿命长,输出光功率线性范围宽, 而且制造工艺简单,价格低廉; 光检测器光电二极管工作原理光电效应光电效应:在PN 结界面上,由于电子和空穴的扩散运动,形成内部电场;内部电场使电子和空穴产生与扩散运动方向相反的漂移运动,最终使能带发生倾斜, 在PN 结界面附近形成耗尽层;在耗尽层,会形成光生漂移电流;在中性区会形成光生扩散电流;当与P 层和N 层连接的电路断开时,便会在两端产生电动势;说明:光生漂移电流分量和光生扩散电流分量的总和即为光生电流; 光无源器件小知识点 考小题 无计算 连接器:实现光纤与光纤之间可拆卸连接 接头:实现光纤与光纤之间的永久性连接光耦合器:把一个输入的光信号分配给多个输出,或者把多个输入的光信号复合成一个输出;分为:T 型耦合器.星型耦合器.定向耦合器.波分复用器/解复用器光隔离器:非互易器件,只允许光波向一个方向上传输,阻止光波往其他方向特别是反方向传播;环形器:有多个接口的光隔离器;外调制器:为了解决直接调制激光器会产生线性调频的问题;光开关:转换电路,实现光交换;光发射机光发射机基本组成相应的模块对光源有什么要求、电路的作用☆☆对光源的要求:简单题1号嫌疑犯1发射的光波长应和光纤低损耗“窗口”一致,即中心波长应在μm、μm和μm附近;光谱单色性要好,即谱线宽度要窄,以减小光纤色散对带宽的限制;2电/光转换效率要高,即要求在足够低的驱动电流下,有足够大而稳定的输出光功率,且线性良好;发射光束的方向性要好,即远场的辐射角要小,以利于提高光源与光纤之间的耦合效率;3允许的调制速率要高或响应速度要快,以满足系统的大传输容量的要求;4器件应能在常温下以连续波方式工作,要求温度稳定性好,可靠性高,寿命长;5此外,要求器件体积小,重量轻,安装使用方便,价格便宜;发射机的电路部分:作用:电路的设计应该以光源为依据,使输出光信号准确反映输入电信号;对调制电路和控制电路的要求:1)输出光脉冲的通断比应大于10,以保证足够的光接收信噪比;2)输出光脉冲的宽度应远大于电光延迟时间,光脉冲的上升时间、下降时间和开通延迟时间应足够短,以便在高速率调制下,输出的光脉冲能准确再现输入电脉冲的波形.3)对激光器应施加足够的偏置电流,以便抑制在较高速率调制下可能出现的张弛振荡,保证发射机正常工作;4)应采用自动功率控制APC和自动温度控制ATC,以保证输出光功率有足够的稳定性; 线路编码电路必要的原因:因为电端机输出的数字信号是适合电缆传输的双极性码,而光源不能发射负脉冲;调制特性效应小知识码型效应:当电光延迟时间td与数字调制的码元持续时间T/2为相同数量级时,会使“0”码过后的第一个“1码的脉冲宽度变窄,幅度减小,严重时可能使单个“1”码丢失,这种现象称为“码型效应”;码型效应的特点:在脉冲序列中较长的连“0”码后出现的“1”码,其脉冲明显变小,而且连“0”码数目越多,调制速率越高,这种效应越明显;可以采用“过调制”补偿方法,消除码型效应;弛张震荡:当电流脉冲注入激光器后,输出光脉冲会出现幅度逐渐衰减的震荡; 自脉动现象:某些激光器在脉冲调制甚至直流驱动下,当注入电流达到某个范围时,输出光脉冲出现持续等幅的高频振荡,这种现象叫做自脉动现象;温度对激光器输出光功率的影响主要通过阈值电流I th 和外微分量子效率ηd 产生温度升高,阈值电流增加,外微分量子效率减小,输出光脉冲幅度下降; 光接收机 ☆☆☆☆☆☆器流对光检测器的要求:1)波长相应要和光纤低损耗窗口μm,μm 和μm 兼容;2)响应度要高,在一定的接收光功率下,能产生尽可能大的光电流; 3)噪声要尽可能低,能接收微弱光信号,; 4)性能稳定,可靠性高,寿命长,功耗和体积小; 均衡的目的是:对经光纤传输、光/电转换和放大后已产生畸变的电信号进行补偿,使输出信号的波形适合于判决,以消除码间干扰减小误码率;灵敏度的定义:在保证通信质量的条件下,光接收机所需的最小平均接收光功率P min ,并以dBm 为单位;计算公式:定义公式:Pr=10lg 理想光接收机灵敏度:Pr=10lg)](10)min([3dBm w P -><λη2bnhcf基本概念:因为量子噪声是伴随光信号的随机噪声,只要有光信号输入,就有量子噪声存在; 光接收机的噪声包括光检测器的噪声量子噪声、暗电流噪声、APD 附加噪声、电阻热噪声和前置放大器的噪声; 线路编码有什么要求数字光纤通信系统对线路骂醒的主要要求是保证传输的透明性,具体要求是: 1)能限制信号带宽,减小功率谱中的高低频分量; 2)能给光接收机提供足够的定时信息;3)能提供一定的冗余度,用于平衡码流、误码监测和公务通信;但对高速光纤通信系统,应尽量减小冗余度,以免占用过大的带宽;常用的线路码型为:扰码、mBnB 码和插入码; 第四章 数字光纤通信同步数字系列SDH 帧结构 作用因素 图 简答题2号嫌疑犯字节发送顺序:由上往下发 每行先左后右1)段开销SOH 又可分为再生段开销SOH 和复接段开销LOH 2)信息载荷Payload 3)管理指针单元AU-PTRSDH 环形网的一个突出优点是“自愈”能力; 系统的性能指标 小知识点 掌握为进行系统性能研究,ITU-T 建议中提出了一个数字传输参考模型,称为假设参考连接HRX ;假设参考数字链路HRDL数字光纤通信系统的主要性能指标有:传输速率,误码率,抖动和可靠性 系统的设计往年有计算,今年没有,但有小知识点12345…9顺序数字光纤通信系统设计的主要任务是确定中继距离,一般采用最坏情况设计法来确定中继距离;在光纤传输中,中继距离不但受到光纤损耗限制,而且还受到光纤色散的限制;第七、八章讲过的一些小知识点,你大爷,哪些讲过,臣妾不知道哇1参饵光纤放大器工作波长正好与光纤的最佳波长一致,增益高、噪声系数小、频带宽,在光纤通信系统中可以作为中继放大器,前置放大器和后置放大器;2光波分复用增加了光纤的传输容量,降低了成本;3光交换目前主要有两种方式:空分交换和波分交换4目前光通信系统采用光强调制——直接检测的方式;5相干光通信在接收端采用零差检测或外差检测;6SDH技术的最大优势在于组网上,它的传送网通常采用线形、星形、树形、环形和网孔形拓扑结构;7SDH的特色之一是能利用ADM构成环形自愈网,自愈网结构分为两类:通道倒换环和复用段倒换环;8建议将光传送网分为光通道层OCH、光复用段层OMS和光传输层OTS;9WDM光网络的结点主要有两种功能,即光波长信道的分插复用功能和交叉连接功能,实现这两种功能的网络元件是:OADM和OXC;。

第二章 光纤与光缆

第二章    光纤与光缆

38
波动方程的求解
运用分离变量法求解波动方程经过一系列数学处 理,可得
d 2Ez dr2

1 r
dEz dr
(n2k2 0

2

m2 r2
)Ez

0
d 2Hz dr 2

1 r
dH z dr
(n2k 2 0
2

m2 r2 )Hz
0
上式是贝塞尔方程,式中m是贝塞尔函数的阶数,称为方 位角模数,它表示纤芯沿方位角 绕一圈场变化的周期数。
23
光缆结构示意图
层绞式
中心束管式
带状式
24
2.2 光纤传输原理
2.2.1 射线光学分析方法 2.2.2 波动光学分析方法
25
★光的传输理论
光纤的三个基本性能指标
(1)定义临界角θc的正弦为数值孔径 (Numerical
Aperture, NA)
物理意义:数值孔径反映了光纤的集光能力,值越 大,集光能力越强。
2.1.3 光纤制造工艺
改进的化学汽相沉积法(MCVD) 轴向汽相沉积法(VAD) 棒外化学汽相沉积法(OVD) 等离子体激活化学汽相沉积法(PCVD)
19
光纤接续方法
□ 永久接续法 □ 连接器接续法
20
2.1.4 光缆及其结构
光缆是以光纤为主要通信元件,通过加强件 和外护层组合成的整体。光缆是依靠其中的光纤 来完成传送信息的任务,因此光缆的结构设计必 须要保证其中的光纤具有稳定的传输特性。
单模光纤 多模光纤
14
单模光纤---色散最小
r n2 n1
2a =8.3m 2 b =125m
n(r) 2a

光传输线路与设备维护(华为版)习题答案要点

光传输线路与设备维护(华为版)习题答案要点

第一章光纤通信概述一填空1.华裔学者高锟博士和霍克哈姆科学的预言了制造通信用的超低耗光纤的可能性。

2.目前光纤通信所使用的频段为电磁频谱上的近红外线。

3.数字光纤通信系统由光发射机、光纤、光接收机构成。

二简答1 光纤通信发展的阶段。

请参考1.12 光纤通信的3个低衰耗波长窗口分别是多少。

0.85μm、1.31μm、1.55μm3个窗口3 简述光纤通信的优点和缺点。

优点:1. 频带宽、通信容量大。

2. 损耗低,传输距离远。

3. 信号串扰小,保密性好。

4. 抗电磁干扰,传输质量佳。

5. 尺寸小、重量轻,便于敷设和传输。

6. 材料来源丰富,环境适应性强。

缺点:1. 光纤性质脆,需要涂覆加以保护。

2. 切断和连接光纤时,需要高精度技术和仪表器具。

3. 光路的分路和耦合不方便。

4.光纤不能输送中继器所需要的电能。

5. 弯曲半径不宜太小。

4 简述光全反射原理。

根据折射理论,光从折射率大的介质进入折射率小的介质时,折射角大于入射角,并随着入射角增大而增大。

当入射角增达到临界角0ϕ时,折射角∠2ϕ=90°,这时光以1ϕ角全反射回去,从能量角度看,折射光能量越来越小,反射光能量越来越大,直到折射光消失。

5 简述光纤通信系统的基本组成。

数字光纤通信系统由光发射机、光纤、光接收机构成。

6 光纤通信系统的主要分类有哪些。

按波长:短波长光纤通信系统、长波长光纤通信系统、超长波长光纤通信系统。

按调制信号形式:模拟光纤通信系统、数字光纤通信系统。

按传输信号的调制方式:直接调制光纤通信系统、间接调制光纤通信系统。

按光纤传导模式数量:多模光纤通信系统、单模光纤通信系统。

其他划分略。

第二章 光纤光缆一 填空1. 光纤的特性主要分为传输特性(损耗和色散)、机械特性、温度特性三种。

2. 非色散位移光纤零色散波长在1310nm ,在波长为1550nm 处衰减最小。

3. 光纤的主要色散主要有模式色散、材料色散、波导色散三种。

4. 光纤主要由纤芯和包层构成,单模光纤芯径一般为10μm ,多模光纤芯径一般在50μm 左右。

光纤试题及答案

光纤试题及答案

光纤试题及答案第一章导论一. 填空1. 光纤通信的通信窗口波长范围为()。

2. 光纤通信是以()为载频,以()为传输介质的通信方式。

3. 光纤通信的最低损耗波长是(),零色散波长是()。

二. 选择题(有一个或者多个答案) 1. 目前光纤通信常用的窗口有()。

A、0.85 μmB、2 μmC、1.31 μmD、1.55 μm 2. 目前纤光通信常用的光源有()。

A、 LEDB、 LDC、PCMD、PDH3. 光纤通信是以光波为载波,以()为传播介质的通信方式。

A、电缆 B、无线电磁波 C、光纤 D、红外线三. 简答题1. 光纤通信主要有哪些优点?2. 为什么说光纤通信比电缆通信的容量大?参考答案一、1、0.7~1.7μm 2、光波光纤 3、1.55μm 1.31μm 二、1、ACD 2、AB 3、C 三、1、通信容量大,中继距离长,保密性能好,抗电磁干扰,体积小、重量轻、便于施工和维护,价格低廉。

2、光纤通信的载波是光波,电缆通信的载波是电波。

虽然光波和电波都是电磁波,但频率差别很大。

光纤通信用的近红外光(波长约1μm)的频率(约300THz)比电波(波长为0.1m~1mm)的频率(3~300GHz)高三个数量级以上。

载波频率越高,频带宽度越宽,因此信息传输容量越大。

第二章光纤与光缆一、填空1.单模光纤中不存在()色散,仅存在()色散,具体来讲,可分为()和()。

2. 光纤中的最低阶非线性效应起源于()阶电极化率,它是引起()、()和()等现象的原因。

3、光缆大体上都是由()、()和()三部分组成的。

4、散射损耗与()及()有关。

5、允许单模传输的最小波长称为()。

6、数值孔径(NA)越大,光纤接收光线的能力就越(),光纤与光源之间的耦合效率就越()。

二、选择(一个或多个答案)1、从横截面上看,光纤基本上由3部分组成:()、()、()。

A、折射率较高的芯区B、折射率较低的包层C、折射率较低的涂层D、外面的涂层E、外面的包层2、单模光纤只能传输一个模式,即(),称为光纤的基模。

《光纤通信概论》PPT课件

《光纤通信概论》PPT课件

光源:
(1)1960年美国人梅曼(Maiman)发明了第一台红宝石激光器 (2)氦—氖(He - Ne)激光器
(3)二氧化碳(CO2)激光器
激光具有波谱宽度窄,方向性极好, 亮度极高,以及频率和 相位较一致的良好特性。是一种理想的光载波。激光器的发明 和应用, 使沉睡了80年的光通信进入一个崭新的阶段。
(1)1976 年,美国在亚特兰大(Atlanta)进行了世界上第一个 实用光纤通信系统的现场试验,系统采用GaAlAs激光器作光源, 多模光纤作传输介质,速率为44.7 Mb/s,传输距离约10 km。
(2)1983年敷设了纵贯日本南北的光缆长途干线,全长3400 km, 初期传输速率为400 Mb/s,后来扩容到1.6 Gb/s。
光纤通信
h
1
主要内容:
第一章 概论 第二章 光纤和光缆 第三章 通信用光器件 第四章 光端机 第五章 数字光纤通信系统 第六章 光纤通信新技术
h
2
什么叫通信? 什么叫光纤通信?
利用光纤传输光波信号的通信方式。
h
3
第1章概论
1·1 光纤通信发展的历史和现状 1·2 1·3 光纤通信系统的基本组成
二、光源研制的发展
(1)1970 年,美国贝尔实验室、日本电气公司(NEC)和前 苏联先后研制成功室温下连续振荡的镓铝砷(GaAlAs)双异质 结半导体激光器(短波长)。寿命只有几个小时。
(2)1973 年,半导体激光器寿命达到7000小时。
(3)1977 年,贝尔实验室研制的半导体激光器寿命达到10 万小时(约11.4年),外推寿命达到100万小时,完全满足实 用化的要求。
h
6
传输介质的探索:
美国麻省理工学院利用He - Ne激光器和CO2激光器进 行了大气激光通信试验。实验证明:通过大气的传播承载 信息的光波,实现点对点的通信是可行的。但是通信的距 离和稳定性都受到极大的限制,体现在以下两个方面:

弱电工程:综合布线光纤和光缆技术区别

弱电工程:综合布线光纤和光缆技术区别

弱电工程:综合布线光纤和光缆技术区别光纤和光缆的区别,广泛上来说光纤是光缆,都是一种传输介质。

但严格意义上讲,两者是不相同的产品。

光纤和光缆的区别:光纤是一种传输光束的细而柔软的媒质。

多数光纤在使用前必须由几层保护结构包覆,包覆后的缆线即被称为光缆。

所以光纤是光缆的核心部分,光纤经过一些构件极其附属保护层的保护就构成了光缆。

光纤外层的保护结构可以防止周遭环境对光纤的伤害。

光缆包括光纤、缓冲层及披覆。

光纤和同轴电缆相似,只是没有网状屏蔽层。

中心是光传播的玻璃芯。

光纤通常被扎成束,外面有外壳保护。

纤芯通常是由石英玻璃制成的横截面积很小的双层同心圆柱体,它质地脆、易断裂,因此需要外加一保护层。

所以它们的区别就在于此。

光缆和光纤结构上的区分光纤主要分搜索为两类,一是渐变光纤,一是跃阶光纤。

前者的折射率是渐变的,而后者的折射率是突变的。

另外还分为单模光纤及多模光纤近年来,又有新的光子晶体光纤问世。

光导纤维是双重构造,核心部分是高折射率玻璃,表层部分是低折射率的玻璃或塑料,光在核心部分传播,并在表层交界处不断进行全反射,沿“之”字形向前传播。

这种纤维比头发丝还细,这样细的纤维要有折射率截然不同的双重结构分布,是一个非常惊人的技术。

光缆(optical fiber cable)主要是由光导纤维(细如头发的玻璃丝)和塑料保护套管及塑料外皮构成,光缆内没有金、银、铜铝等金属,一般无回收价值。

光缆是一定数量的光纤按照一定方式组成缆心,外包有护套,有的还包覆外护层,用以实现光信号传输的一种通信线路。

光缆和光纤的传播效率上的区别光纤制成了超高石英玻璃,特制成的光导纤维传播光的效率有了非常明显的提高。

现在较好的光导纤维,其光传播损耗每公里只有零点二分贝;也就是说传播一公里后只损耗4.5%。

光纤的雷射虽不具伤力,但直视仍有危险。

光缆,通信光缆是一定数量的光纤按照一定方式组成缆心,外包有护套,有的还包覆外护层,用以实现光信号传输的一种通信线路。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
设纤芯和包层折射率分别为n1和n2,空气的折射率n0=1, 纤芯 中心轴线与z 轴一致。 光线在光纤端面以小角度 θ 从空气入射到纤芯 (n0<n1) ,折射角 为θ1 ,折射后的光线在纤芯直线传播,并在纤芯与包层交界面以 角度1入射到包层(n1>n2)。

3 2
空气
1 1 c
l L 纤芯 n1
2015-1-8 现代通信技术研究所 殷洪玺
18
由于渐变型多模光纤折射率分布是径向坐标 r 的函数,
纤芯各点的数值孔径不同,所以要定义局部数值孔径NA(r)和 最大数值孔径NAmax
NA( r ) n ( r ) n
2 2 2
2 NAmax n12 n2
射线方程的解 (证明不同入射角的光线近似会聚在中心轴线的一点上。) 用几何光学方法分析渐变型多模光纤,要求解射线方程, 射线方程的一般形式为
(2.11)
22
现代通信技术研究所 殷洪玺
r
* o
ri 0 dz
i
dr
rm p P
纤芯n (r)
r z
2015-1-8
现代通信技术研究所 殷洪玺
23
由图2.5的入射光得到dr/dz=tani≈i≈0/n(r), 把该近似关系 代入式 (2.11) 得到
C1
0
An(r )
C2 ri
2015-1-8 现代通信技术研究所 殷洪玺
4
横截面
折射率分布 r
n2
输入脉冲 Ai 纤芯
光线传播路径 包层
输出脉冲 Ao
(a)
2b
2a
50~80m
n1
n t r
(r)
(b) 1 25 m
5 0 m
n t r
n2
t Ao
Ai
(c)
1 25 m
~10 m
n1
n t t
图 2.2三种基本类型的光纤
偏振保持光纤用在外差接收方式的相干光系统,这种系统最 大优点是提高接收灵敏度,增加传输距离。
2015-1-8 现代通信技术研究所 殷洪玺
8
2.2 光纤传输原理
分析光纤传输原理的常用理论:
射线光学(几何光学)理论

条件是: 光波长要远小于光波导的横向尺寸。近似认为 0,于是,光的衍射现象可以忽略,光的发散角可近 似为0,从而,可将光看成一条射线。优点:直观、简 单;缺点:不严格,无法解释模式的概念。
由此可见,只有在半锥角为≤c的圆锥内入射的光束,才 能在光纤中传播。
根据这个传播条件,定义临界角 c 的正弦为数值孔径 (Numerical Aperture, NA)。根据定义和斯奈尔定律
NA n0 sin c n1 cos c
n1 sin c n2 sin90
n0=1,由式 (2.2) 经简单计算得到
2015-1-8
入射角为 的光线在长度为L 的光纤中传输,所经
现代通信技术研究所 殷洪玺
历的路程为l。在 不大的条件下,其传播时间(即时间延迟)为
14
空气
l

1
0
1
1
L 纤芯 n1
1 z x
包层 n2
2015-1-8
现代通信技术研究所 殷洪玺
15
n1l n1L n1L 12 sec 1 (1 ) c c c 2
g 1/ 2 g r r n1 1 2 n1 1 0 r a n( r ) a a n1[1 ] ra
(2.6)
2015-1-8
现代通信技术研究所 殷洪玺
1/ 2
refractive index
2015-1-8
现代通信技术研究所 殷洪玺
6
特种单模光纤
双包层光纤 色散平坦光纤(Dispersion Flattened Fiber, DFF) 色散移位光纤(Dispersion Shifted Fiber, DSF) 三角芯光纤 椭圆芯光纤 双折射光纤或偏振保持光纤。
1
x
1 z
1 2 3
c
0
2015-1-8
包层 n2
现代通信技术研究所 殷洪玺
11
改变角度,不同 相应的光线将在纤芯与包层交界面发 生反射或折射。
根据全反射原理, 存在一个临界角c。
• 当<c时,相应的光线将在交界面发生全反射而返回纤 芯,并以折线的形状向前传播,如光线1。根据斯奈尔 (Snell) 定律得到
第 2 章 光纤和光缆

本章主要内容:
2.1 光纤结构和类型 2.2 光纤传输原理 2.3 光纤传输特性 2.4 光缆 2.5 光纤特性测量方法
现代通信技术研究所 殷洪玺


2015-1-8
1
2.1 光纤结构和类型
2.1.1 光纤结构
光纤(Optical Fiber)是由中心的纤芯和外围的包层同轴 组成的圆柱形细丝。 纤芯的折射率比包层稍高,损耗比包层更低,光能量主 要集中在纤芯内传输。 包层为光的传输提供反射面和光隔离,并起一定的机械 保护作用。 设纤芯和包层的折射率分别为 n1 和 n2 ,光能量在光纤中 传输的必要条件是n1>n2。
式中c为真空中的光速。最大入射角 ( =c)和最小入射角
( =0)的光线之间时间延迟差近似为
n1 L L 2 L 2 c ( NA) 2n1c 2n1c c
(2.5)
该时间延迟差在时域使脉冲展宽,或称为信号畸变。 由此可见,突变型多模光纤的信号畸变是由于不同入射角的 光线经光纤传输后,其时间延迟不同而产生的。
17
r b a 0
n2
n2 n 1 ( r) n ( r) n 1 ( r)
式中,n1和n2分别为纤芯中心和包层的折射率, r和a分别为径 向坐标和纤芯半径,Δ=(n1n2)/n1为相对折射率差,g为折射率分 布指数。 对于r<a, 在 g→∞的极限条件下,(r/a)g→0,式(2.6)表示突变型 多模光纤的折射率分布。 如果 g=2,n(r)按平方律(抛物线)变化,表示常规渐变型多模 光纤的折射率分布。此时,不同入射角的光线会聚在中心轴线的 一点上,因而脉冲展宽减小。
把C1和C2代入式(2.10)得到
r ( z ) ri cos( Az )
把式(2.6)和g=2代入式(2.8)得到
d 2r 2 dz 2r 2 2 a r 2 a 1 a 2r
(2.8)
(2.9)
2015-1-8
现代通信技术研究所 殷洪玺
21

d 2 r 2 2 r 0 2 dz a
解这个二阶微分方程, 得到光线的轨迹为 r(z)=C1sin(Az)+C2 cos(Az) (2.10)
r z
图 2.5 渐变型多模光纤的光线传播原理
2015-1-8 现代通信技术研究所 殷洪玺
20
如式(2.6)所示,一般光纤相对折射率差都很小,光线和中心 轴线z 的夹角也很小,即,sin≈。由于n(r) 具有圆对称性和沿 轴线的均匀性,n与 和z 无关。此时, 式(2.7)可简化为
d dr d 2 r dn n n 2 dz dz dz dr
n1 n2
n1(r) n2
n1
n2
n3
n3
2b 2a ′ 2a
a/a2
(a) (a) 双包层 (W型) (b) (b) 三角芯 (NZDSF)
现代通信技术研究所 殷洪玺
图 2.3典型特种单模光纤
2015-1-8
(b) (c) 椭圆芯 (保偏光纤)
7
主要用途:
突变型多模光纤只能用于小容量短距离的传输系统。
2015-1-8 现代通信技术研究所 殷洪玺
3
2.1.2 光纤类型
光纤种类很多,这里只讨论作为信息传输波导用的由高纯
度石英(SiO2)制成的光纤。
实用光纤主要有三种基本类型: 突变(阶跃)型多模光纤(Step-Index Fiber, SIF) 渐变型多模光纤(Graded-Index Fiber, GIF) 单模光纤(Single-Mode Fiber, SMF) 相对于单模光纤而言,突变型和渐变型多模光纤的纤芯直 径都很大,可以容纳数百个模式,所以,称为多模光纤。
n0 sin c n1 sin 1 n1 cos1
(2.1)
• 当=c时,相应的光线将以c入射到交界面,并沿交界面 向前传播(折射角为90), 如光线2。 • 当>c时,相应的光线将在交界面折射进入包层并逐渐 消失,如光线3。
2015-1-8 现代通信技术研究所 殷洪玺
12
渐变型多模光纤适用于中等容量中等距离的传输系统。 单模光纤用在大容量、长距离的光纤通信系统。 特种单模光纤大幅度提高光纤通信系统的水平 1.55m色散移位光纤实现了10 Gb/s容量的100 km的大容量、 长距离传输系统。 色散平坦光纤适用于 WDM 系统,可以把传输容量提高几倍 到几十倍。
三角芯光纤有效面积较大,适用于DWDM和孤子系统,可以 把传输容量提高几倍到几十倍,实现超大容量和超长距离传输。
NA表示光纤接收和传输光的能力,NA(或c)越大,光纤接 收光的能力越强,从光源到光纤的耦合效率越高。
对于无损耗光纤,在c内的入射光都能在光纤中传输。
NA越大, 纤芯对光能量的束缚越强,光纤抗弯曲性能越好; 但NA越大,经光纤传输后产生的信号畸变越大,因而限制了传 输容量。 所以, 要根据实际使用场合,选择适当的NA。 时间延迟
d d (n ) n ds ds
2015-1-8 现代通信技术研究所 殷洪玺
(2.7)
19
式中, 为特定光线的位置矢量, s为从某一固定参考点起 的光线长度。选用圆柱坐标(r, ,z),把渐变型多模光纤的子午 面(r z)示于下图。
相关文档
最新文档