二次函数的应用11

合集下载

部编数学九年级上册专题11二次函数的实际应用—喷水问题(解析版)含答案

部编数学九年级上册专题11二次函数的实际应用—喷水问题(解析版)含答案

答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。

2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。

亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。

相信你是最棒的!2022-2023学年人教版数学九年级上册压轴题专题精选汇编专题11 二次函数的实际应用—喷水问题考试时间:120分钟试卷满分:100分一.选择题(共10小题,满分20分,每小题2分)1.(2分)(2021九上·和平期末)如图,要修建一个圆形喷水池,在池中心竖直安装一根水管,在水管的顶端安一个喷水头,使喷出的抛物线形水柱在与池中心的水平距离为1m处达到最高,高度为3m,水柱落地处离池中心3m,水管的长为( )A.9m4B.19m8C.39m16D.45m16【答案】A【完整解答】解:由题意可知点(1,3)是抛物线的顶点,∴设这段抛物线的解析式为y=a(x-1)2+3.∵该抛物线过点(3,0),∴0=a(3-1)2+3,解得:a=-34.∴y=-34(x-1)2+3.∵当x=0时,y=-34(0-1)2+3=-34+3=94,∴水管应长94 m.故答案为:A【分析】由题意可知点(1,3)是抛物线的顶点,可设顶点式为y=a(x-1)2+3,将(3,0)代入解析式中求出a值即得解析式,再求出x=0时的y值即可.2.(2分)(2021九上·长兴月考)学校卫生间的洗手盘台面上有一瓶洗手液(如图①).小丽经过测量发现:洗手液瓶子的截面图下部分是矩形CGHD,洗手液瓶子的底面直径GH=12cm,D,H与喷嘴位置点B三点共线.当小丽按住顶部A下压至如图②位置时,洗手液从喷口B流出(此时喷嘴位置点B距台面的距离为16cm),路线近似呈抛物线状,小丽在距离台面15cm处接洗手液时,手心Q到直线DH的水平距离为4cm,若小丽不去接,则洗手液落在台面的位置距DH的水平距离是16cm.根据小丽测量所得数据,可得洗手液喷出时的抛物线函数解析式的二次项系数是( )A.﹣118B.118C.﹣116D.116【答案】C【完整解答】解:根据题意:GH所在直线为x轴,GH的垂直平分线所在直线为y轴建立如图所示的平面直角坐标系,喷口B为抛物线顶点,共线的三点B、D、H所在直线为抛物线的对称轴,根据题意,OH=6,B(6,16),Q(10,15),设抛物线解析式为y=a(x﹣6)2+16,把Q(10,15)代入解析式得:15=a(10﹣6)2+16,解得:a=﹣116,故答案为:C.【分析】如图以GH 所在直线为x 轴,GH 的垂直平分线所在直线为y 轴建立如图所示的平面直角坐标系,喷口B 为抛物线顶点,共线的三点B 、D 、H 所在直线为抛物线的对称轴,然后写出顶点B 及Q 的坐标,利用顶点式求出抛物线解析式即可.3.(2分)(2021九上·青县月考)如图,水从山坡下的水管的小孔喷出,喷洒在山坡上,已知山坡AB :OB=1:2,若把小孔处设为原点,喷出的水柱的路线近似地用函数y=−12x 2+4x 来刻画,下列结论错误的是( ) A .山坡可以用正比例函数 12y x = 来刻画B .若水柱到水平地面的距离为1.875米,则此时距离原点水平距离为0.5米或7.5米C .水柱落到斜面时距O 点的距离为7米D .水柱距O 点水平距离超过4米呈下降趋势【答案】C【完整解答】解:A.∵山坡AB :OB=1:2,∴斜坡可以用正比例函数y=12 x 刻画,不符合题意;B.当y=1.875时,即− 12x 2+4x=1.875,解得:x 1=0.5,x 2=7.5,∴若水柱到水平地面的距离为1.875米,则此时距离原点水平距离为0.5米或7.5米,不符合题意;C.解方程组 212142y x y x x ⎧=⎪⎪⎨⎪=-+⎪⎩ 得, 1100x y =⎧⎨=⎩ , 22772x y =⎧⎪⎨=⎪⎩ ,∴当小球落在斜坡上时,它离O 点的水平距离是7m ,符合题意;D.∵y=− 12 x 2+4x=- 12(x-4)2+8,则抛物线的对称轴为x=4,∴当x >4时,y 随x 的增大而减小,即小球距O 点水平距离超过4米呈下降趋势,不符合题意;故答案为:C .【分析】根据二次函数的图象与性质对每个选项一一判断即可。

二次函数的应用

二次函数的应用

二次函数的应用一、介绍二次函数是一种特殊的函数形式,其表达式为y=ax^2+bx+c,其中a、b、c为常数,且a≠0。

二次函数在数学和实际问题中具有广泛的应用。

本文将以实际问题为例,探讨二次函数的应用。

二、抛物线的性质二次函数的图像是一条抛物线。

对于二次函数y=ax^2+bx+c,其图像的性质如下:1. 凹凸性:当a>0时,图像开口向上,为凹向上的抛物线;当a<0时,图像开口向下,为凹向下的抛物线。

2. 零点:即二次函数的x轴交点。

零点的个数与抛物线与x轴的交点的个数相等。

对于二次函数y=ax^2+bx+c,其零点的判别式为Δ=b^2-4ac。

当Δ>0时,有两个不同实数零点;当Δ=0时,有一个实数零点;当Δ<0时,则无实数零点。

3. 对称轴:对称轴是抛物线的中轴线,过顶点且与x轴垂直。

对于二次函数y=ax^2+bx+c,其对称轴的方程为x=-b/2a。

三、二次函数在实际问题中的应用二次函数的应用广泛,涵盖了许多领域。

以下将介绍二次函数在数学、物理和经济领域的应用。

1. 最值问题在数学中,二次函数常常用于解决最值问题。

最值问题是指找出一个函数在特定区间内的最大值或最小值。

以二次函数y=ax^2+bx+c为例,如何确定其最值呢?- 当a>0时,二次函数为凹向上的抛物线。

其顶点就是函数的最小值,可通过求对称轴上的点来找到。

- 当a<0时,二次函数为凹向下的抛物线。

其顶点就是函数的最大值,同样可通过求对称轴上的点来找到。

这种最值问题可以应用于优化领域,如物流中最短路径的确定、经济学中的成本最小化等。

2. 物体运动问题在物理学中,二次函数有重要的应用,特别是在描述物体运动的问题上。

抛物线图像可以表示物体的轨迹,具体应用包括:- 自由落体问题:当物体沿竖直方向自由下落时,其运动轨迹为抛物线。

通过二次函数可以计算出物体的运动轨迹、最高点和最大高度等参数。

- 抛体运动问题:当物体在水平方向斜抛时,其运动轨迹也是抛物线。

二次函数的应用

二次函数的应用

二次函数的应用二次函数是高中数学中的一个重要概念,也是数学中经常应用的一种函数类型。

二次函数的应用广泛,涵盖了很多领域,包括物理学、经济学、工程学等。

本文将探讨几个二次函数的应用场景,并分析其原理和实际意义。

一、地面抛射运动地面抛射运动是我们生活中常见的一种物理现象,比如投掷物体、打击物体等。

在不考虑空气阻力的情况下,地面抛射运动的轨迹可以用二次函数描述。

其函数模型为:h(t) = -gt^2 + v0t + h0其中h(t)表示时间t时刻的高度,g为重力加速度,v0为初速度,h0为初始高度。

二次函数可以帮助我们计算抛体的高度、最高点高度、到达地面的时间等重要参数。

对于投掷物体来说,了解这些参数可以帮助我们更好地控制力度和角度,以达到我们想要的结果。

二、经济学中的收益函数在经济学中,我们常常使用收益函数来研究生产经营的效益。

很多实际问题可以用二次函数近似表示,从而分析最大化收益的策略。

假设某个公司的销售收益可以用二次函数模型表示:R(x) = -ax^2 + bx + c其中R(x)表示销售收益,x表示销售量,a、b、c为常数。

我们可以通过对二次函数进行求导,找到其最大值对应的销售量,从而确定最佳的经营策略。

通过研究收益函数,我们可以优化资源配置,提高经济效益。

三、工程中的抛物线设计在工程领域,二次函数常常用于抛物线设计。

比如,在桥梁、建筑物等结构的设计过程中,我们需要考虑各种因素,如力学原理、结构稳定性等。

二次函数能够很好地描述抛物线形状,帮助我们确定结构的合理设计。

例如,在桥梁设计中,通过二次函数的应用,可以确定拱桥的合适形状和尺寸,以满足结构强度和美观性的要求。

另外,在草坪的设计中,也可以利用二次函数描述草地的曲率,使得草坪在自然光线的照射下呈现出优美的效果。

四、物体运动的轨迹分析二次函数也可以用于分析物体在空间中的运动轨迹。

比如,一个碰撞物体的轨迹可以由以下二次函数表示:x(t) = v0t + 1/2at^2y(t) = h0 + v0t + 1/2gt^2其中x(t)、y(t)分别表示物体在水平和竖直方向上的位移,v0为初速度,a为加速度,h0为初始高度,g为重力加速度。

二次函数实际应用

二次函数实际应用

二次函数实际应用二次函数是数学中的一种基本函数形式,具有形如y=ax^2+bx+c的表达式。

在实际应用中,二次函数可以描述许多现象和问题,并被广泛应用于物理、经济、工程等领域。

首先,二次函数在物理学中有着广泛的应用。

例如,自由落体运动可以通过秒关系y=1/2gt^2的二次函数形式进行描述,其中y表示物体的下落距离、g表示重力加速度、t表示时间。

此外,抛体运动、弹道轨迹、摆动等运动现象也可以用二次函数进行建模和分析。

其次,经济学中的成本、收益等问题也可以通过二次函数进行描述。

例如,一个企业的总成本可以表示为二次函数的形式,其中在一些产量水平下,固定成本和变动成本构成了二次函数中的常数项和一次项,而对应产量的平方构成了二次项。

通过分析这个二次函数,可以找到企业产量的最优值,从而使得总成本达到最小。

此外,工程学中的一些场景也可以通过二次函数进行建模。

例如,在桥梁设计中,桥的弯曲形状可以通过二次函数进行描述,从而确定合适的材料和结构;在天线设计中,信号的收发效果也可以通过二次函数进行分析,从而优化天线的设计参数。

除了以上几个领域,二次函数还可以用于图形的绘制和文化艺术中的创作。

二次函数具有形状优美的拱形,因此可以用于音乐中的节奏变化、舞蹈中的身体动作设计等方面。

此外,在美术作品中,二次函数的图像也经常被用来表现风景、人物或者抽象的意境。

除了上述应用领域,二次函数在数学领域本身也有着重要的地位。

二次函数是一种基本的函数形式,可以通过平方完成全域的建模,而一般的函数形式可以通过一次函数和二次函数的组合得到。

此外,二次函数的图像特点例如顶点、对称轴、开口方向等,以及与其他函数形式的关系,也是数学教育中的重要内容。

总之,二次函数在实际应用中有着广泛的用途。

无论是物理、经济、工程等领域,还是数学本身,都需要用到二次函数进行建模、分析和解决问题。

同时,二次函数也在文化艺术中发挥了重要的作用。

因此,了解和掌握二次函数的性质和应用,对于数学教育和实际应用都具有重要意义。

二次函数的应用问题

二次函数的应用问题

二次函数的应用问题二次函数是一种常见的代数函数,它的一般形式为f(x) = ax² + bx + c,其中a、b、c都是实数且a ≠ 0。

由于二次函数具有抛物线的形状,因此在各种实际问题中都能够找到应用。

本文将介绍二次函数在现实生活中的一些典型应用问题,并通过具体案例来解析解决方法。

问题一:飞行物体高度计算假设有一架飞机以初速度v₀从地面起飞,以固定的加速度a直线上升,问它在时间t后的高度h为多少?解决方法:根据牛顿第二定律,加速运动下飞机在t时刻的速度v可以表示为v = v₀ + at,高度h可以表示为h = v₀t + 1/2at²。

将其中的v带入,得到h = v₀t + 1/2a(v - v₀),代入飞机起飞时速度为0的条件,可得到简化的高度公式h = 1/2at²。

这就是一个二次函数,其中a为加速度,t为时间。

问题二:物体抛射问题假设有一个人以速度v₀把一个物体从一定高度h₀抛出,考察物体的运动轨迹。

解决方法:物体的垂直位移可以通过二次函数来表示。

首先,垂直方向上的受力只有重力,因此物体在下落过程中的运动可以描述为s = -1/2gt² +v₀t + h₀,其中s为垂直位移,g为重力加速度。

而在水平方向上,物体保持匀速运动,所以可以通过s = v₀x来描述其水平位移,其中x为时间。

问题三:最优化问题对于一个二次函数f(x) = ax² + bx + c,如何确定其在定义域内的最大值或最小值。

解决方法:对于给定的二次函数f(x),可以通过求取其导数f'(x)来确定最大值或最小值的位置。

当f'(x) = 0时,函数取得极值。

根据二次函数的性质,若a > 0,f(x)开口向上,则该极值为最小值;若a < 0,f(x)开口向下,则该极值为最大值。

问题四:实际应用问题二次函数还有很多其他实际应用,比如经济学中的成本、利润和产量问题,物理学中的速度、加速度和位移问题,以及几何学中的抛物线问题等等。

二次函数的应用

二次函数的应用

二次函数的应用二次函数是数学中的一种重要函数类型,其应用十分广泛。

本文将以实例的形式探讨二次函数在实际生活中的几个应用。

一、抛物线的模型二次函数的图像是抛物线,其常见模型有抛物线的顶点形式和描点形式。

以顶点形式为例,二次函数的一般形式为:f(x) = a(x-h)^2 + k其中a,h,k是常数,(h,k)表示抛物线的顶点。

我们以一道题目为例:某物体以初速度30m/s向上抛出,经过2s达到最高点,求其下落的高度。

解:设物体下落的高度为f(t),t为时间。

根据物理学的运动规律,物体自由落体的公式为:f(t) = -5t^2 + v0*t + h0其中v0为初速度,h0为初始高度。

题目中给出了初速度为30m/s,代入公式得:f(t) = -5t^2 + 30t + h0根据题目要求,物体经过2s达到最高点,即f(2)=0。

代入公式求解得:0 = -5*2^2 + 30*2 + h0= -20 + 60 + h0= 40 + h0可得h0 = -40,即物体的初始高度为-40m。

因此,物体下落的高度可以表示为:f(t) = -5t^2 + 30t - 40我们可以通过二次函数模型得出物体在任意时间t下的高度。

二、最值问题二次函数也常用于求解最值问题。

例如,我们考虑以下问题:用2根长为L的铁丝围成一个矩形,求该矩形的最大面积。

解:设矩形的长度为x,宽度为L-2x(由于必须用2根铁丝围成,所以长度和宽度之和为L)。

矩形的面积可以表示为:S = x(L-2x)= Lx - 2x^2显然,S是一个关于x的二次函数。

要求最大面积,即求函数的最大值。

通过求导的方法,我们可以得到该函数的极值点。

首先,将函数求导得:S' = L - 4x令导数等于0,求解可得极值点:L - 4x = 04x = Lx = L/4将x代入原函数得到最大面积:S = (L/4)(L-2(L/4))= (L/4)(L/2)= L^2/8因此,该矩形的最大面积为L^2/8。

二次函数在生活中的运用

二次函数在生活中的运用

二次函数在生活中的运用
二次函数是一种常见的数学函数,在生活中有很多实际应用。

它的形式为 y = ax + bx + c,其中 a、b、c 是常数,而 x 和 y 分别表示自变量和因变量。

以下是二次函数在生活中的几个实际应用:
1. 物体的运动轨迹
当物体受到恒定的重力作用时,它的运动轨迹通常是一个二次函数。

这个函数的自变量可以是物体的时间或者位置,而因变量则是物体的高度或者速度。

通过分析这个函数,人们可以预测物体的落地时间和落点位置,为实际生活中的运动问题提供了重要的帮助。

2. 投资收益的计算
在投资领域,人们通常使用复利计算来估算投资收益。

而复利计算的公式可以转化为一个二次函数,其中自变量是投资时间,因变量是投资收益。

通过这个函数,人们可以预测不同投资方案的收益情况,为投资决策提供了参考依据。

3. 地址编码的设计
在物流配送领域,地址编码是非常重要的一环。

通过设计合适的地址编码,可以提高配送效率,减少误送和漏送的问题。

而地址编码通常采用的是二进制编码,其中每个位都是一个二次函数。

通过对这些二次函数的分析,人们可以设计出高效而准确的地址编码方案。

综上所述,二次函数在生活中有着广泛的应用。

人们可以通过学习和掌握二次函数的相关知识,更好地理解和应用这个数学概念,为
实际生活中的问题提供更加精准和科学的解决方案。

二次函数的应用案例总结

二次函数的应用案例总结

二次函数的应用案例总结二次函数是一种常见的数学函数形式,它的形式为:y = ax^2 + bx + c。

在现实生活中,二次函数可以用于解决各种问题,包括物理、经济、工程等领域。

本文将总结几个常见的二次函数应用案例,以展示二次函数的实际应用。

案例一:物体自由落体的高度模型假设一个物体从高处自由落体,忽略空气阻力,我们可以用二次函数来表示物体的高度与时间之间的关系。

设物体初始高度为H,加速度为g,时间为t。

根据物理定律,物体的高度可以表示为:h(t) = -0.5gt^2 + H。

这个二次函数模型可以帮助我们计算物体在任意时间点的高度,并可以用于预测物体何时落地。

案例二:销售收入和定价策略假设一个公司生产和销售某种产品,销售价格为p(单位:元),销售量为q(单位:件)。

二次函数可以用于建立销售收入与定价策略之间的模型。

设定售价的二次函数为:R(p) = -ap^2 + bp + c,其中a、b、c为常数。

我们可以通过分析二次函数的图像、求解极值等方法,确定最佳售价,以使得销售收入最大化。

案例三:桥梁设计中的弧线形状在桥梁设计中,常常需要确定桥梁的弧线形状,以使得车辆在桥上行驶时感到平稳。

二次函数可以用来描述桥梁的曲线形状。

设桥梁的弧线形状为y = ax^2 + bx,其中x表示桥梁长度的一半,y表示桥梁的高度。

通过调整参数a和b,可以得到不同形状的弧线,以满足设计要求。

案例四:市场需求和价格关系分析在经济学中,二次函数可以用于建立市场需求与价格之间的关系模型。

设市场需求量为D,价格为p。

根据经济理论,市场需求可以表示为:D(p) = ap^2 + bp + c,其中a、b、c为常数。

通过分析二次函数的图像、求解极值等方法,可以研究市场需求和价格之间的关系,得出不同价格下的市场需求量。

综上所述,二次函数在物理、经济、工程等领域中具有广泛的应用。

通过建立二次函数模型,我们可以更好地理解和解决各种实际问题。

二次函数的应用举例

二次函数的应用举例

二次函数的应用举例一、圆的方程在数学中,圆的方程可以通过二次函数来表示。

假设圆的圆心坐标为(h, k),半径为r,那么圆的方程可以写为:(x - h)² + (y - k)² = r²其中,(x, y)表示圆上的任意一点。

通过这个方程,我们可以得到圆上的所有点的坐标。

举例:假设有一个圆,圆心坐标为(2, 3),半径为4。

那么圆的方程可以写为:(x - 2)² + (y - 3)² = 16通过这个方程,我们可以求解出圆上的任意点的坐标。

二、抛物线抛物线是二次函数的一种特殊形式。

它可以用来模拟抛体在重力作用下的运动轨迹。

抛物线的方程可以写为:y = ax² + bx + c其中,a、b、c都是实数,而a不等于0。

抛物线的开口方向由a的正负号决定。

举例:假设有一个抛物线,方程为y = 2x² - 3x + 1。

我们可以通过这个方程来分析抛物线的特性。

1. 开口方向:由于a的值为正,所以该抛物线开口向上。

2. 顶点坐标:抛物线的顶点坐标可以通过公式计算得到。

公式为:x = -b / (2a)y = f(x) = a(x - h)² + k将a、b、c代入公式,可以计算出该抛物线的顶点坐标为:x = -(-3) / (2 * 2) = 3/4y = 2 * (3/4)² - 3 * (3/4) + 1 = 7/8所以该抛物线的顶点坐标为(3/4, 7/8)。

3. 对称轴:抛物线的对称轴垂直于x轴,并通过顶点。

所以这个抛物线的对称轴方程为x = 3/4。

通过这个抛物线的方程,我们可以确定它的基本特性,并进行更进一步的分析。

三、最优化问题二次函数还可以用来解决最优化问题,即在一定条件下寻找使某个函数值达到最大或最小的变量取值。

举例:假设有一个二次函数f(x) = 2x² + 3x - 5。

我们要找到使得函数f(x)取得最小值的x的取值。

二次函数在生活中的应用

二次函数在生活中的应用

二次函数在生活中的应用
二次函数是一种常见的数学函数,它在我们的生活和工作中有许多应用。

以下是二次函数在生活中的几个应用:
1. 抛物线运动
当一个物体以一定的初速度开始运动,并且受到重力的影响而向下运动时,它的运动轨迹就是一条抛物线。

这个运动过程可以用二次函数来描述。

例如,当你抛出一颗球时,它的高度会随着时间的推移而不断降低,形成一条抛物线。

2. 建筑设计
在建筑设计中,二次函数可以用来描述建筑物的结构和形状。

例如,在建造一座拱形桥时,设计师需要使用二次函数来确定桥的最高点和曲线的形状。

3. 经济学
在经济学中,二次函数可以用来描述成本和收益之间的关系。

例如,当一家企业决定生产某种产品时,它需要考虑生产成本和销售收益之间的平衡点,这个平衡点可以用二次函数来计算。

4. 电子技术
在电子技术中,二次函数可以用来描述电路中的电压和电流之间的关系。

例如,在设计一条放大电路时,工程师需要使用二次函数来确定电路的增益和频率响应。

总之,二次函数在我们的生活和工作中有许多应用,这些应用涉及到不同的领域,包括物理学、工程学、经济学和电子技术等。

熟练
掌握二次函数的概念和应用可以帮助我们更好地理解和解决实际问题。

二次函数的应用

二次函数的应用

二次函数的应用二次函数是数学中一种常见的函数形式,其方程可以表示为:y = ax^2 + bx + c其中,a、b、c为常数,且a ≠ 0。

二次函数在许多实际问题中都有广泛的应用,本文将介绍二次函数在几个不同领域的具体应用案例。

一、物理学领域中的应用1. 自由落体问题当物体在重力作用下自由落体时,其高度与时间之间的关系可以用二次函数来描述。

假设物体从初始高度h0下落,时间t与高度h之间的关系可以表示为:h = -gt^2 + h0其中g为重力加速度,取9.8m/s^2。

通过解二次方程可以求解物体落地的时间以及落地时的位置。

2. 弹射物体的运动考虑一个弹射物体,如抛射出的炮弹或投射物,其路径可以用一个抛物线来表示。

弹射物体的运动轨迹可以通过二次函数得到,可以利用二次函数的顶点坐标来确定最远射程或最高点。

二、经济学领域中的应用1. 成本和收入关系在经济学中,企业的成本和收入通常与产量相关。

通常情况下,成本和收入之间存在二次函数关系。

通过分析二次函数的图像,可以确定最大利润产量或最低成本产量。

2. 售价和需求关系在市场经济中,产品的售价通常与需求量相关。

通常情况下,售价和需求量之间存在二次函数关系。

通过分析二次函数的图像,可以找到最佳定价,以达到利润最大化。

三、工程学领域中的应用1. 抛物线拱桥在建筑和结构工程中,抛物线是通常用来设计拱桥的形状。

由于抛物线具有均匀承重特性,因此可以最大程度地减少桥墩的数量,提高桥梁的承载能力。

2. 抛物面反射器在光学和声学工程中,抛物面被广泛应用于反射器的设计。

由于抛物面具有焦点特性,因此可以实现光或声波的聚焦效果,提高反射效率。

四、生物学领域中的应用1. 生长模型植物和动物的生长通常可以使用二次函数模型来描述。

二次函数可以帮助分析生物在不同生长阶段的生长速率,并预测未来的生长趋势。

2. 群体增长生态学中,群体增长通常可以使用二次函数模型来描述。

例如,一种昆虫群体的数量随时间的变化可以通过二次函数来表示,通过分析二次函数的图像,可以预测种群数量的变化趋势。

二次函数的应用巧妙运用二次函数解决算式问题

二次函数的应用巧妙运用二次函数解决算式问题

二次函数的应用巧妙运用二次函数解决算式问题二次函数的应用:巧妙运用二次函数解决算式问题二次函数是高中数学中的一个重要概念,它的应用广泛而深远。

在解决算式问题的过程中,我们可以巧妙地运用二次函数,提高解题效率。

本文将通过几个具体的例子,来展示如何巧妙地运用二次函数解决不同类型的算式问题。

例子一:求解最大值问题:对于函数y = 2x² - 3x + 1,求其在定义域内的最大值。

解法:为了求解最大值,我们可以利用二次函数的顶点坐标来找到答案。

二次函数的顶点坐标为(h,k),其中h为x的值,k为y的值。

根据二次函数的性质,当x = h 时,二次函数取得最大值k。

首先,我们需要找到二次函数的顶点坐标。

根据二次函数的标准式可知,顶点的横坐标为:h = -b / (2a)。

将函数y = 2x² - 3x + 1的系数代入得到:h = -(-3) / (2 * 2) = 3/4。

接下来,将h的值代入函数中,即可求得最大值k。

代入得:k = 2 * (3/4)² - 3 * (3/4) + 1 = 1/8。

因此,函数y = 2x² - 3x + 1在定义域内的最大值为1/8。

例子二:求解交点问题:已知函数y = 2x² - 3x + 1与直线y = x + 1相交于两个点,请求出这两个交点的坐标。

解法:为了求解交点的坐标,我们可以将二次函数和直线的方程联立,解得交点的横坐标,再代入其中一个方程求得纵坐标。

将函数y = 2x² - 3x + 1与直线y = x + 1联立得到方程:2x² - 3x + 1 = x + 1。

化简方程得到:2x² - 4x = 0。

因此,x * (2x - 4) = 0。

解得x₁ = 0 和 x₂ = 2。

将x₁ = 0代入y = x + 1,得到y₁ = 1。

将x₂ = 2代入y = x + 1,得到y₂ = 3。

专题11 二次函数的实际应用-九年级数学上册(解析版)

专题11 二次函数的实际应用-九年级数学上册(解析版)

专题11二次函数的实际应用考点1:拱桥问题;考点2:抛球、喷泉问题;考点3:面积问题;考点4:利润问题。

1.赵州桥的桥拱是近似的抛物线形,建立如图所示的平面直角坐标系,其函数的关系式为y=−125x2,当水面离桥拱顶的高度DO是4m时,这时水面宽度AB为()A.﹣20m B.10m C.20m D.﹣10m解:根据题意B的纵坐标为﹣4,把y=﹣4代入y=−125x2,得x=±10,∴A(﹣10,﹣4),B(10,﹣4),∴AB=20m.即水面宽度AB为20m.答案:C.2.图2是图1中拱形大桥的示意图,桥拱与桥面的交点为O,B,以点O为原点,水平直线OB为x轴,建立平面直角坐标系,桥的拱形可近似看成抛物线y=−1400(x﹣80)2+16,桥拱与桥墩AC的交点C恰好在水面,有AC ⊥x轴,若OA=10米,则桥面离水面的高度AC为()A.16940米B.174米C.16740米D.154米题型01拱桥问题解:∵AC⊥x轴,OA=10米,∴点C的横坐标为﹣10,当x=﹣10时,y=−1400(x﹣80)2+16=−1400(﹣10﹣80)2+16=−174,∴C(﹣10,−174),∴桥面离水面的高度AC为174m.答案:B.3.(易错题)三孔桥横截面的三个孔都呈抛物线形,两小孔形状、大小完全相同.当水面刚好淹没小孔时,大孔水面宽度为10米,孔顶离水面1.5米;当水位下降,大孔水面宽度为14米时,单个小孔的水面宽度为4米,若大孔水面宽度为20米,则单个小孔的水面宽度为()A.43米B.52米C.213米D.7米解:如图,建立如图所示的平面直角坐标系,由题意可得MN=4,EF=14,BC=10,DO=32,设大孔所在抛物线解析式为y=ax2+32,∵BC=10,∴点B(﹣5,0),∴0=a×(﹣5)2+32,∴a=−350,∴大孔所在抛物线解析式为y=−350x2+32,设点A(b,0),则设顶点为A的小孔所在抛物线的解析式为y=m(x﹣b)2,∵EF=14,∴点E的横坐标为﹣7,∴点E坐标为(﹣7,−3625),∴−3625b)2,∴x1=b,x2=−b,∴MN=4,+b﹣(b)|=4∴m=−925,∴顶点为A的小孔所在抛物线的解析式为y=−925(x﹣b)2,∵大孔水面宽度为20米,∴当x=﹣10时,y=−92,∴−92925(x﹣b)2,∴x1=b,x2∴单个小孔的水面宽度=|+b)﹣(+b)|=52(米),答案:B.4.如图,济南建邦大桥有一段抛物线型的拱梁,抛物线的表达式为y=ax2+bx.小强骑自行车从拱梁一端O沿直线匀速穿过拱梁部分的桥面OC,当小强骑自行车行驶10秒时和26秒时拱梁的高度相同,则小强骑自行车通过拱梁部分的桥面OC共需36秒.解:如图,设从O到A花10秒,从O到B花26秒,则由对称性可知OA=BC,故从B到C也花10秒,故从O到C一共花26+10=36(秒),答案:36.5.如图,一抛物线型拱桥,当拱顶到水面的距离为2米时,水面宽度为4米;那么当水位下降1米后,水面的宽解:如图,建立平面直角坐标系,设横轴x通过AB,纵轴y通过AB中点O且通过C点,则通过画图可得知O为原点,抛物线以y轴为对称轴,且经过A,B两点,OA和OB可求出为AB的一半2米,抛物线顶点C坐标为(0,2),通过以上条件可设顶点式y=ax2+2,其中a可通过代入A点坐标(﹣2,0),到抛物线解析式得出:a=﹣0.5,所以抛物线解析式为y=﹣0.5x2+2,当水面下降1米,通过抛物线在图上的观察可转化为:当y=﹣1时,对应的抛物线上两点之间的距离,也就是直线y=﹣1与抛物线相交的两点之间的距离,可以通过把y=﹣1代入抛物线解析式得出:﹣1=﹣0.5x2+2,解得:x=±6,所以水面宽度增加到26米,答案:26米.6.某校想将新建图书楼的正门设计为一个抛物线型门,并要求所设计的拱门的跨度与拱高之积为48m3,还要兼顾美观、大方,和谐、通畅等因素,设计部门按要求价出了两个设计方案.现把这两个方案中的拱门图形放入平面直角坐标系中,如图所示:方案一,抛物线型拱门的跨度ON=12m,拱高PE=4m.其中,点N在x轴上,PE⊥ON,OE=EN.方案二,抛物线型拱门的跨度ON′=8m,拱高P'E'=6m.其中,点N′在x轴上,P′E′⊥O′N′,O′E′=E′N′.要在拱门中设置高为3m的矩形框架,其面积越大越好(框架的粗细忽略不计).方案一中,矩形框架ABCD的面积记为S1,点A、D在抛物线上,边BC在ON上;方案二中,矩形框架A'B'C′D'的面积记为S2,点A',D'在抛物线上,边B'C'在ON'上.现知,小华已正确求出方案二中,当A'B'=3m时,2=1222,请你根据以上提供的相关信息,解答下列问题:(1)求方案一中抛物线的函数表达式;(2)在方案一中,当AB=3m时,求矩形框架ABCD的面积S1并比较S1,S2的大小.解:(1)由题意知,方案一中抛物线的顶点P(6,4),设抛物线的函数表达式为y=a(x﹣6)2+4,把O(0,0)代入得:0=a(0﹣6)2+4,解得:a=−19,∴y=−19(x﹣6)2+4=−19x2+43x;∴方案一中抛物线的函数表达式为y=−19x2+43x;(2)在y=−19x2+43x中,令y=3得:3=−19x2+43x;解得x=3或x=9,∴BC=9﹣3=6(m),∴S1=AB•BC=3×6=18(m2);∵18>122,∴S1>S2.7.(易错题)如图1是一座抛物线型拱桥侧面示意图.水面宽AB与桥长CD均为24m,在距离D点6米的E处,测得桥面到桥拱的距离EF为1.5m,以桥拱顶点O为原点,桥面为x轴建立平面直角坐标系.(1)求桥拱顶部O离水面的距离.(2)如图2,桥面上方有3根高度均为4m的支柱CG,OH,DI,过相邻两根支柱顶端的钢缆呈形状相同的抛物线,其最低点到桥面距离为1m.①求出其中一条钢缆抛物线的函数表达式.②为庆祝节日,在钢缆和桥拱之间竖直装饰若干条彩带,求一条彩带长度的最小值.解:(1)根据题意可知点F的坐标为(6,﹣1.5),可设拱桥侧面所在二次函数表达式为:y1=a1x2.将F(6,﹣1.5)代入y1=a1x2有:﹣1.5=36a1,求得a1=−124,∴y1=−124x2,当x=12时,y1=−124×122=﹣6,∴桥拱顶部离水面高度为6m.(2)①由题意可知右边钢缆所在抛物线的顶点坐标为(6,1),可设其表达式为y2=a2(x﹣6)2+1,将H(0,4)代入其表达式有:4=a2(0﹣6)2+1,求得a2=112,∴右边钢缆所在抛物线表达式为:y2=112(x﹣6)2+1,同理可得左边钢缆所在抛物线表达式为:y3=112(x+6)2+1②设彩带的长度为Lm,则L=y2﹣y1=112(x﹣6)2+1﹣(−124x2)=182−+4=18(−4)2+2,∴当x=4时,L最小值=2,答:彩带长度的最小值是2m.8.某景点的“喷水巨龙”口中C处的水流呈抛物线形,该水流喷出的高度y(m)与水平距离x(m)之间的关系如图所示,D为该水流的最高点,DA⊥OB,垂足为A.已知OC=OB=8m,OA=2m,则该水流距水平面的最大高度AD的长度为()A.9m B.10m C.11m D.12m解:根据题意,设抛物线解析式为y=a(x﹣2)2+k,将点C(0,8)、B(8,0)代入,得:4+=836+=0,解得=−14=9,∴抛物线解析式为y=−14(x﹣2)2+9,所以当x=2时,y=9,即AD=9m,答案:A.9.某幢建筑物,从10米高的窗口A用水管和向外喷水,喷的水流呈抛物线(抛物线所在平面与墙面垂直),(如图)如果抛物线的最高点M离墙1米,离地面403米,则水流下落点B离墙距离OB是()题型02抛球、喷泉问题A.2米B.3米C.4米D.5米解:设抛物线解析式:y=a(x﹣1)2+403,把点A(0,10)代入抛物线解析式得:a=−103,∴抛物线解析式:y=−103(x﹣1)2+403.当y=0时,x1=﹣1(舍去),x2=3.∴OB=3米.答案:B.10.竖直上抛物体离地面的高度h(m)与运动时间t(s)之间的关系可以近似地用公式h=﹣5t2+v0t+h0表示,其中h0(m)是物体抛出时离地面的高度,v0(m/s)是物体抛出时的速度.某人将一个小球从距地面1.5m的高处以20m/s的速度竖直向上抛出,小球达到的离地面的最大高度为()A.23.5m B.22.5m C.21.5m D.20.5m解:由题意可得,h=﹣5t2+20t+1.5=﹣5(t﹣2)2+21.5,因为a=﹣5<0,故当t=2时,h取得最大值,此时h=21.5,答案:C.11.(易错题)如图,水池中心点O处竖直安装一水管,水管喷头喷出抛物线形水柱,喷头上下移动时,抛物线形水柱随之竖直上下平移,水柱落点与点O在同一水平面.安装师傅调试发现,喷头高2.5m时,水柱落点距O点2.5m;喷头高4m时,水柱落点距O点3m.那么喷头高8m时,水柱落点距O点4m.解:由题意可知,在调整喷头高度的过程中,水柱的形状不发生变化,当喷头高2.5m时,可设y=ax2+bx+2.5,将(2.5,0)代入解析式得出6.25a+2.5b+2.5=0,整理得2.5a+b+1=0①;喷头高4m时,可设y=ax2+bx+4;将(3,0)代入解析式得9a+3b+4=0②,联立可求出a=−23,b=23,设喷头高为h时,水柱落点距O点4m,∴此时的解析式为y=−23x2+23x+h,将(4,0)代入可得−23×42+23×4+h=0,解得h=8.答案:8.12.如图,以一定的速度将小球沿与地面成一定角度的方向击出时,小球的飞行路线是一条抛物线.若不考虑空气阻力,小球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有函数关系:h=﹣5t2+20t,则当小球飞行高度达到最高时,飞行时间t=2s.解:∵h=﹣5t2+20t=﹣5(t﹣2)2+20,且﹣5<0,∴当t=2时,h取最大值20,答案:2.13.某学生在一平地上推铅球,铅球出手时离地面的高度为53米,出手后铅球在空中运动的高度y(米)与水平距离x(米)之间的函数关系式为y=−112x2+bx+c,当铅球运行至与出手高度相等时,与出手点水平距离为8米,则该学生推铅球的成绩为10米.解:设铅球出手点为点A,当铅球运行至与出手高度相等时为点B,根据题意建立平面直角坐标系,如图:由题意可知,点A(0,53),点B(8,53),代入y=−112x2+bx+c,得:==−112×82+8+,解得=23=53.∴y=−112x2+23x+53,当y=0时,0=−112x2+23x+53,解得x1=10,x2=﹣2(不符合题意,舍去).∴该学生推铅球的成绩为10m.答案:10.14.一次足球训练中,小明从球门正前方8m的A处射门,球射向球门的路线呈抛物线.当球飞行的水平距离为6m 时,球达到最高点,此时球离地面3m.已知球门高OB为2.44m,现以O为原点建立如图所示直角坐标系.(1)求抛物线的函数表达式,并通过计算判断球能否射进球门(忽略其他因素);(2)对本次训练进行分析,若射门路线的形状、最大高度均保持不变,则当时他应该带球向正后方移动多少米射门,才能让足球经过点O正上方2.25m处?解:(1)∵8﹣6=2,∴抛物线的顶点坐标为(2,3),设抛物线为y=a(x﹣2)2+3,把点A(8,0)代入得:36a+3=0,解得a=−112,∴抛物线的函数表达式为y=−112(x﹣2)2+3;当x=0时,y=−112×4+3=83>2.44,∴球不能射进球门.(2)设小明带球向正后方移动m米,则移动后的抛物线为y=−112(x﹣2﹣m)2+3,把点(0,2.25)代入得:2.25=−112(0﹣2﹣m)2+3,解得m=﹣5(舍去)或m=1,∴当时他应该带球向正后方移动1米射门,才能让足球经过点O正上方2.25m处.15.(易错题)跳台滑雪运动可分为助滑、起跳、飞行和落地四个阶段,运动员起跳后飞行的路线是抛物线的一部分(如图中实线部分所示),落地点在着陆坡(如图中虚线部分所示)上,着陆坡上的基准点K为飞行距离计分的参照点,落地点超过K点越远,飞行距离分越高.2022年北京冬奥会跳台滑雪标准台的起跳台的高度OA为66m,基准点K到起跳台的水平距离为75m,高度为hm(h为定值).设运动员从起跳点A起跳后的高度y(m)与水平距离x(m)之间的函数关系为y=ax2+bx+c(a≠0).(1)c的值为66;(2)①若运动员落地点恰好到达K点,且此时a=−150,b=910,求基准点K的高度h;②若a=−150时,运动员落地点要超过K点,则b的取值范围为b>910;(3)在(2)的条件下,若运动员飞行的水平距离为25m时,恰好达到最大高度76m,试判断他的落地点能否超过K点,并说明理由.解:(1)∵起跳台的高度OA为66m,∴A(0,66),把A(0,66)代入y=ax2+bx+c得:c=66,答案:66;(2)①∵a=−150,b=910,∴y=−150x2+910x+66,∵基准点K到起跳台的水平距离为75m,∴y=−150×752+910×75+66=21,∴基准点K的高度h为21m;②∵a=−150,∴y=−150x2+bx+66,∵运动员落地点要超过K点,∴x=75时,y>21,即−150×752+75b+66>21,解得b>910,答案:b>910;(3)他的落地点能超过K点,理由如下:∵运动员飞行的水平距离为25m时,恰好达到最大高度76m,∴抛物线的顶点为(25,76),设抛物线解析式为y=a(x﹣25)2+76,把(0,66)代入得:66=a(0﹣25)2+76,解得a=−2125,∴抛物线解析式为y=−2125(x﹣25)2+76,当x=75时,y=−2125×(75﹣25)2+76=36,∵36>21,∴他的落地点能超过K点.16.(易错题)科研人员为了研究弹射器的某项性能,利用无人机测量小钢球竖直向上运动的相关数据.无人机上升到离地面30米处开始保持匀速竖直上升,此时,在地面用弹射器(高度不计)竖直向上弹射一个小钢球(忽略空气阻力),在1秒时,它们距离地面都是35米,在6秒时,它们距离地面的高度也相同.其中无人机离地面高度y1(米)与小钢球运动时间x(秒)之间的函数关系如图所示;小钢球离地面高度y2(米)与它的运动时间x(秒)之间的函数关系如图中抛物线所示.(1)直接写出y1与x之间的函数关系式;(2)求出y2与x之间的函数关系式;(3)小钢球弹射1秒后直至落地时,小钢球和无人机的高度差最大是多少米?解:(1)设y1与x之间的函数关系式为y1=kx+b,∵函数图象过点(0,30)和(1,35),则+=35=30,解得:=5=30,∴y1与x之间的函数关系式为y1=5x+30;(2)∵x=6时,y1=5×6+30=60,∵y2的图象是过原点的抛物线,设y2=ax2+bx,∴点(1.35),(6.60)在抛物线y2=ax2+bx上,∴+=3536+6=60,解得:=−5=40,∴y2=﹣5x2+40x,答:y2与x的函数关系式为y2=﹣5x2+40x;(3)设小钢球和无人机的高度差为y米,由﹣5x2+40x=0得,x=0或x=8,①1<x≤6时,y=y2﹣y1=﹣5x2+40x﹣5x﹣30=﹣5x2+35x﹣30=﹣5(x−72)2+1254∵a=﹣5<0,∴抛物线开口向下,又∵1<x≤6,∴当x=72时,y的最大值为1254;②6<x≤8时,y=y1﹣y2=5x+30+5x2﹣40x=5x2﹣35x+30=5(x−72)2−1254,∵a=5>0,∴抛物线开口向上,又∵对称轴是直线x=72,∴当x>72时,y随x的增大而增大,∵6<x≤8,∴当x=8时,y的最大值为70,∵1254<70,∴高度差的最大值为70米.题型03面积问题17.九年级2班计划在劳动实践基地内种植蔬菜,班长买回来8米长的围栏,准备围成一边靠墙(墙足够长)的菜园,为了让菜园面积尽可能大,同学们提出了围成矩形、等腰三角形(底边靠墙)、半圆形这三种方案,最佳方)案是(A.方案1B.方案2C.方案3D.方案1或方案2解:方案1:设AD=x米,则AB=(8﹣2x)米,则菜园面积=x(8﹣2x)=﹣2x2+8x=﹣2(x﹣2)2+8,当x=2时,此时菜园最大面积为8米2;方案2:如图,过点B作BH⊥AC于H,则BH≤AB=4,=12•AC•BH,∵S△ABC;∴当BH=4时,△ABC的面积最大为12×4×4=8方案3:半圆的半径=8米,∴此时菜园最大面积=H(8)22=32米2>8米2;答案:C.18.在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两边足够长),用28m长的篱笆围成一个矩形花园ABCD(篱笆只围AB,BC两边),设AB=m.若在P处有一棵树与墙CD,AD的距离分别是15m和6m,要将这棵树围在花园内(含边界,不考虑树的粗细),则花园面积S的最大值为()A.193B.194C.195D.196解:∵AB=m米,∴BC=(28﹣m)米.则S=AB•BC=m(28﹣m)=﹣m2+28m.即S=﹣m2+28m(0<m<28).由题意可知,≥628−≥15,解得6≤m≤13.∵在6≤m≤13内,S随m的增大而增大,∴当m=13时,S=195,最大值即花园面积的最大值为195m2.答案:C.19.(易错题)如图,利用一个直角墙角修建一个梯形储料场ABCD,其中∠C=120°.若新建墙BC与CD总长为12m,则该梯形储料场ABCD的最大面积是()A.18m2B.183m2C.243m2D.4532m2解:如图,过点C作CE⊥AB于E,则四边形ADCE为矩形,∴CD=AE,∠DCE=∠CEB=90°,设CD=AE=xm,则∠BCE=∠BCD﹣∠DCE=30°,BC=(12﹣x)m,在Rt△CBE中,∵∠CEB=90°,∴BE=12BC=(6−12x)m,∴AD=CE=3BE=(63−32x)m,AB=AE+BE=x+6−12x=(12x+6)m,∴梯形ABCD面积S=12(CD+AB)•CE=12(x+12x+6)•(63−32x)338x2+33x+183=−338(x﹣4)2+243,=243.∴当x=4时,S最大即CD长为4m时,使梯形储料场ABCD的面积最大为243m2;答案:C.20.某农场拟建两间矩形饲养室,一面靠现有墙(墙足够长),中间用一道墙隔开,并在如图所示的三处各留1m宽的门.已知计划中的材料可建墙体(不包括门)总长为27m,则能建成的饲养室面积最大为75m2.解:设垂直于墙的材料长为x米,则平行于墙的材料长为27+3﹣3x=30﹣3x,则总面积S=x(30﹣3x)=﹣3x2+30x=﹣3(x﹣5)2+75,故饲养室的最大面积为75平方米,答案:75.21.如图,一块矩形土地ABCD由篱笆围着,并且由一条与CD边平行的篱笆EF分开.已知篱笆的总长为900m(篱笆的厚度忽略不计),当AB=150m时,矩形土地ABCD的面积最大.解:设AB=xm,则BC=12(900﹣3x),由题意可得,S=AB×BC=x×12(900﹣3x)=−32(x2﹣300x)=−32(x﹣150)2+33750∴当x=150时,S取得最大值,此时,S=33750,∴AB=150m,答案:150.22.(易错题)为了节省材料,某农场主利用围墙(围墙足够长)为一边,用总长为80m的篱笆围成了如图所示的①②③三块矩形区域,而且这三块矩形区域的面积相等,则能围成的矩形区域ABCD的面积最大值是300m2.解:如图,∵三块矩形区域的面积相等,∴矩形AEFD面积是矩形BCFE面积的2倍,∴AE=2BE,设BC=x,BE=FC=a,则AE=HG=DF=2a,∴DF+FC+HG+AE+EB+EF+BC=80,即8a+2x=80,∴a=−14x+10,3a=−34x+30,∴矩形区域ABCD的面积S=(−34x+30)x=−34x2+30x,∵a=−14x+10>0,∴x<40,则S=−34x2+30x(0<x<40);∵S=−34x2+30x=−34(x﹣20)2+300(0<x<40),且二次项系数为−34<0,∴当x=20时,S有最大值,最大值为300m2.答案:300.23.为落实国家《关于全面加强新时代大中小学劳动教育的意见》,某校准备在校园里利用围墙(墙长12m)和21m 长的篱笆墙,围成Ⅰ、Ⅱ两块矩形劳动实践基地.某数学兴趣小组设计了两种方案(除围墙外,实线部分为篱笆墙,且不浪费篱笆墙),请根据设计方案回答下列问题:(1)方案一:如图①,全部利用围墙的长度,但要在Ⅰ区中留一个宽度AE=1m的水池,且需保证总种植面积为32m2,试分别确定CG、DG的长;(2)方案二:如图②,使围成的两块矩形总种植面积最大,请问BC应设计为多长?此时最大面积为多少?解:(1)∵(21﹣12)÷3=3(m),∴Ⅰ、Ⅱ两块矩形的面积为12×3=36(m2),设水池的长为am,则水池的面积为a×1=a(m2),∴36﹣a=32,解得a=4,∴DG=4m,∴CG=CD﹣DG=12﹣4=8(m),即CG的长为8m、DG的长为4m;(2)设BC长为xm,则CD长度为21﹣3x,∴总种植面积为(21﹣3x)•x=﹣3(x2﹣7x)=﹣3(x−72)2+1474,∵﹣3<0,∴当x =72时,总种植面积有最大值为1474m 2,即BC 应设计为72m 总种植面积最大,此时最大面积为1474m 2.24.一件工艺品进价为100元,标价135元售出,每天可售出100件.根据销售统计,一件工艺品每降价1元出售,则每天可多售出4件,要使每天获得的利润最大,每件需降价的钱数为()A .5元B .10元C .0元D .36元解:设每件需降价的钱数为x 元,每天获利y 元,则y =(135﹣x ﹣100)(100+4x )即:y =﹣4(x ﹣5)2+3600∵﹣4<0∴当x =5元时,每天获得的利润最大.答案:A .25.某宾馆共有80间客房.宾馆负责人根据经验作出预测:今年7月份,每天的房间空闲数y (间)与定价x (元/间)之间满足y =14x ﹣42(x ≥168).若宾馆每天的日常运营成本为5000元,有客人入住的房间,宾馆每天每间另外还需支出28元的各种费用,宾馆想要获得最大利润,同时也想让客人得到实惠,应将房间定价确定为()A .252元/间B .256元/间C .258元/间D .260元/间解:设每天的利润为W 元,根据题意,得:W =(x ﹣28)(80﹣y )﹣5000=(x ﹣28)[80﹣(14x ﹣42)]﹣5000=−14x 2+129x ﹣8416=−14(x ﹣258)2+8225,∵当x =258时,y =14×258﹣42=22.5,不是整数,∴x =258舍去,∴当x =256或x =260时,函数取得最大值,最大值为8224元,题型04利润问题又∵想让客人得到实惠,∴x=260(舍去)∴宾馆应将房间定价确定为256元时,才能获得最大利润,最大利润为8224元.答案:B.26.“闻起来臭,吃起来香”的臭豆腐是长沙特色小吃,臭豆腐虽小,但制作流程却比较复杂,其中在进行加工煎炸臭豆腐时,我们把“焦脆而不糊”的豆腐块数的百分比称为“可食用率”.在特定条件下,“可食用率”P与加工煎炸时间t(单位:分钟)近似满足的函数关系为:P=at2+bt+c(a≠0,a,b,c是常数),如图记录了三次实验的数据.根据上述函数关系和实验数据,可以得到加工煎炸臭豆腐的最佳时间为()A.3.50分钟B.4.05分钟C.3.75分钟D.4.25分钟解:将图象中的三个点(3,0.8)、(4,0.9)、(5,0.6)代入函数关系P=at2+bt+c中,9+3+=0.816+4+=0.925+5+=0.6,解得=−0.2=1.5=−1.9,所以函数关系式为:P=﹣0.2t2+1.5t﹣1.9,由题意可知:加工煎炸臭豆腐的最佳时间为抛物线顶点的横坐标:t=−2=−1.52×(−0.2)=3.75,则当t=3.75分钟时,可以得到最佳时间.答案:C.27.某快餐店销售A、B两种快餐,每份利润分别为12元、8元,每天卖出份数分别为40份、80份.该店为了增加利润,准备降低每份A种快餐的利润,同时提高每份B种快餐的利润.售卖时发现,在一定范围内,每份A 种快餐利润每降1元可多卖2份,每份B种快餐利润每提高1元就少卖2份.如果这两种快餐每天销售总份数不变,那么这两种快餐一天的总利润最多是1264元.解:设每份A种快餐降价a元,则每天卖出(40+2a)份,每份B种快餐提高b元,则每天卖出(80﹣2b)份,由题意可得,40+2a+80﹣2b=40+80,解得a=b,∴总利润W=(12﹣a)(40+2a)+(8+a)(80﹣2a)=﹣4a2+48a+1120=﹣4(a﹣6)2+1264,∵﹣4<0,∴当a=6时,W取得最大值1264,即两种快餐一天的总利润最多为1264元.答案:1264.28.某食品零售店新上架一款冷饮产品,每个成本为8元,在销售过程中,每天的销售量y(个)与销售价格x(元/个)的关系如图所示,当10≤x≤20时,其图象是线段AB,则该食品零售店每天销售这款冷饮产品的最大利润为121元(利润=总销售额﹣总成本).解:当10≤x≤20时,设y=kx+b,把(10,20),(20,10)代入可得:10+=2020+=10,解得=−1=30,∴每天的销售量y(个)与销售价格x(元/个)的函数解析式为y=﹣x+30,设该食品零售店每天销售这款冷饮产品的利润为w元,w=(x﹣8)y=(x﹣8)(﹣x+30)=﹣x2+38x﹣240=﹣(x﹣19)2+121,∵﹣1<0,∴当x=19时,w有最大值为121,答案:121.29.某电商销售一款夏季时装,进价40元/件,售价110元/件,每天销售20件,每销售一件需缴纳电商平台推广费用a元(a>0).未来30天,这款时装将开展“每天降价1元”的夏令促销活动,即从第1天起每天的单价均比前一天降1元.通过市场调研发现,该时装单价每降1元,每天销量增加4件.在这30天内,要使每天缴纳电商平台推广费用后的利润随天数t(t为正整数)的增大而增大,a的取值范围应为0<a<6.解:设未来30天每天获得的利润为y,y=(110﹣40﹣t)(20+4t)﹣(20+4t)a化简,得y=﹣4t2+(260﹣4a)t+1400﹣20a每天缴纳电商平台推广费用后的利润随天数t(t为正整数)的增大而增大,∴−260−42×(−4)>29.5,解得,a<6,又∵a>0,即a的取值范围是:0<a<6.30.(易错题)某商店销售某种商品的进价为每件30元,这种商品在近60天中的日销售价与日销售量的相关信息如下表:时间:第x(天)1≤x≤3031≤x≤60日销售价(元/件)0.5x+3550日销售量(件)124﹣2x(1≤x≤60,x为整数)设该商品的日销售利润为w元.(1)直接写出w与x的函数关系式w=−2+52+620(1≤≤30)−40+2480(31≤≤60);(2)该商品在第几天的日销售利润最大?最大日销售利润是多少?解:(1)当1≤x≤30时,w=(0.5x+35﹣30)•(﹣2x+124)=﹣x2+52x+620,当31≤x≤60时,w=(50﹣30)•(﹣2x+124)=﹣40x+2480,∴w与x的函数关系式w=−2+52+620(1≤≤30)−40+2480(31≤≤60),答案:w=−2+52+620(1≤≤30)−40+2480(31≤≤60);(2)当1≤x≤30时,w=﹣x2+52x+620=﹣(x﹣26)2+1296,∵﹣1<0,∴当x=26时,w有最大值,最大值为1296;当31≤x≤60时,w=﹣40x+2480,∵﹣40<0,∴当x=31时,w有最大值,最大值为﹣40×31+2480=1240,∵1296>1240,∴该商品在第26天的日销售利润最大,最大日销售利润是1296元.31.(易错题)某工厂计划从A,B两种产品中选择一种生产并销售,每日产销x件.已知A产品成本价m元/件(m 为常数,且4≤m≤6,售价8元/件,每日最多产销500件,同时每日共支付专利费30元;B产品成本价12元/件,售价20元/件,每日最多产销300件,同时每日支付专利费y元,y(元)与每日产销x(件)满足关系式y =80+0.01x2.(1)若产销A,B两种产品的日利润分别为w1元,w2元,请分别写出w1,w2与x的函数关系式,并写出x的取值范围;(2)分别求出产销A,B两种产品的最大日利润.(A产品的最大日利润用含m的代数式表示)(3)为获得最大日利润,该工厂应该选择产销哪种产品?并说明理由.【利润=(售价﹣成本)×产销数量﹣专利费】解:(1)根据题意,得w1=(8﹣m)x﹣30,(0≤x≤500).w2=(20﹣12)x﹣(80+0.01x2)=﹣0.01x2+8x﹣80,(0≤x≤300).(2)∵8﹣m>0,∴w1随x的增大而增大,又0≤x≤500,∴当x=500时,w1有最大值,即w最大=﹣500m+3970(元).∵w2=﹣0.01x2+8x﹣80=﹣0.01(x﹣400)2+1520.又∵﹣0.01<0.对称轴x=400.∴当0≤x≤300时,w2随x的增大而增大,∴当x=300时,w2最大=﹣0.01×(300﹣400)2+1520=1420(元).(3)①若w1最大=w2最大,即﹣500m+3970=1420,解得m=5.1,②若w1最大>w2最大,即﹣500m+3970>1420,解得m<5.1,③若w1最大<w2最大,即﹣500m+3970<1420,解得m>5.1.又4≤m≤6,综上可得,为获得最大日利润:当m=5.1时,选择A,B产品产销均可;当4≤m<5.1时,选择A种产品产销;当5.1<m≤6时,选择B种产品产销.答:当A产品成本价为5.1元时,工厂选择A或B产品产销日利润一样大,当A产品4≤m<5.1时,工厂选择A 产品产销日利润最大,当5.1<m≤6时,工厂选择B产品产销日利润最大.。

二次函数的实际应用总结

二次函数的实际应用总结

二次函数的实际应用总结二次函数是高中数学中重要的一类函数。

它具有形如y=ax^2+bx+c的特点,其中a、b、c是实数且a不等于0。

二次函数有许多实际应用,涉及到物理、经济和生活中的各种问题。

本文将总结几个二次函数的实际应用。

一、物体自由落体物体自由落体是一个常见的物理问题,可以用二次函数来描述。

当一物体从高处自由落下时,它的高度与时间之间的关系可以由二次函数表示。

设物体自由落下的高度为H(米),时间为t(秒),重力加速度为g(9.8米/秒²),则有公式H = -gt²/2。

其中负号表示高度的减小,因为物体向下运动。

通过这个二次函数,我们可以计算物体在不同时间下的高度,进而研究物体的运动规律。

例如,我们可以计算物体自由落地所需的时间,或者计算物体在某个时间点的高度。

这在工程设计和物理实验中具有重要意义,帮助我们预测和控制物体的运动。

二、开口向上/向下的抛物线二次函数的图像通常是一个抛物线,其开口的方向由二次项系数a的正负决定。

当a大于0时,抛物线开口向上;当a小于0时,抛物线开口向下。

对于开口向上的抛物线,我们可以将其应用到生活中的一些情景。

比如,一个喷泉的水柱,水流高度与时间之间的变化可以用开口向上的二次函数来描述。

同样,开口向下的抛物线也有实际应用。

例如,一个弹簧的变形量与受力之间的关系常常是开口向下的二次函数。

通过了解抛物线的性质和方程,我们可以更好地理解和解决与之相关的问题。

三、经济学中的应用二次函数在经济学中也有广泛的应用。

例如,成本函数和收入函数常常是二次函数。

企业的成本与产量之间的关系可以用二次函数来刻画。

同样,市场需求和供给也可以用二次函数来表达。

在经济学中,研究成本、收入、需求和供给的函数对于决策和市场分析至关重要。

通过对二次函数的运用,我们可以计算某一产量下的成本和收入,并了解市场价格的影响因素。

这有助于企业决策和经济政策的制定。

四、其他实际应用除了以上提到的应用,二次函数还可以用于建模和预测其他实际问题。

二次函数的应用举例

二次函数的应用举例

二次函数的应用举例在数学中,二次函数是一类常见的函数形式,其表达式一般为y =ax^2 + bx + c,其中a、b、c为常数,且a不为零。

二次函数在实际应用中具有广泛的应用,本文将介绍二次函数的几个常见应用举例。

1. 物体的抛射运动物体的抛射运动是二次函数的典型应用之一。

当一个物体被斜抛时,其运动轨迹可以用二次函数表示。

例如,当某个物体以一定的初速度水平抛出时,其高度与飞行时间之间的关系可以用二次函数模型来描述。

具体而言,该模型为y = -16t^2 + vt + h,其中t为时间(单位为秒),v为初速度(单位为米/秒),h为抛出高度(单位为米)。

2. 曲线的绘制二次函数可以绘制出各种曲线形状,从而在绘画、设计等领域中被广泛应用。

例如,在建筑设计中,二次函数常被用于绘制圆顶建筑、拱桥等曲线形状。

在绘画中,二次函数可以绘制出各种曲线,如抛物线、椭圆等,用于美化作品或表达特定的艺术效果。

3. 利润的最大化在经济学中,二次函数常被用于研究企业的利润最大化问题。

根据经济学原理,企业在销售产品时,需考虑生产成本和销售价格之间的关系,以实现最大利润。

假设某企业的成本函数为C(x) = ax^2 + bx + c,其中x为生产数量,a、b、c为常数。

则该企业的利润函数为P(x) =R(x) - C(x),其中R(x)为销售收入函数。

通过求解利润函数的极大值,可以确定最佳的生产数量,从而实现利润的最大化。

4. 投射物体的落地点计算二次函数还可以用于计算投射物体的落地点。

例如,当一个物体从一定高度自由落体时,它的落地点(水平方向的距离)可以用二次函数模型来计算。

具体而言,该模型为d = v0t + 1/2at^2,其中d为落地点距离(单位为米),v0为初速度(水平方向,单位为米/秒),t为时间(单位为秒),a为重力加速度(单位为米/秒^2)。

总结起来,二次函数在物理学、数学、经济学等领域具有广泛的应用。

通过物体的抛射运动、曲线的绘制、利润的最大化以及落地点的计算等实例,我们可以看到二次函数在实际问题中的重要性。

二次函数的应用

二次函数的应用

二次函数的应用二次函数是一种常见的数学函数,它的一般形式为 y = ax^2 + bx + c,其中 a、b、c 是实数且a ≠ 0。

二次函数在各个领域都有广泛的应用,下面将介绍几个常见的二次函数应用场景。

1. 物理学中的自由落体运动自由落体是物理学中常见的运动形式,它的运动规律可以用二次函数来描述。

当一个物体在重力作用下自由下落时,其位移和时间的关系可以通过二次函数来表示。

假设物体的下落轨迹为 y = -4.9t^2 + v0t + h0,其中 t 表示时间,v0 表示初始速度,h0 表示初始高度。

通过二次函数的图像,我们可以计算物体的落地时间、最大高度等物理量,进一步分析自由落体运动的特性。

2. 金融学中的收益率曲线在金融学中,收益率曲线常用来描述不同期限的债券收益率之间的关系。

假设某个债券的收益率与到期期限的关系可以用二次函数表示,那么我们可以通过该二次函数的图像来预测不同期限的债券的收益率。

另外,通过对收益率曲线进行分析,可以评估利率的变动趋势、市场风险等重要的金融指标。

3. 经济学中的成本函数在经济学中,成本函数是描述企业生产成本与产量之间关系的数学函数。

对于某些生产过程,成本函数常常具有二次函数的形式。

例如,某企业的总成本可以表示为 C(q) = aq^2 + bq + c,其中 q 表示产量,a、b、c 是常数。

通过分析该二次函数,可以找到最小成本对应的产量,从而在生产决策中进行合理的成本控制。

4. 工程学中的抛物线天桥设计在工程设计中,抛物线天桥是一种常见的设计形式。

抛物线为二次函数的图像,因此可以通过二次函数来描述天桥的形状和结构。

工程师可以利用二次函数的性质来计算天桥的高度、跨度等参数,确保天桥的结构稳定性和安全性。

总结起来,二次函数的应用十分广泛,涵盖了物理学、金融学、经济学、工程学等多个领域。

通过对二次函数图像的分析和计算,我们可以探索和解决实际问题,提高问题的解决效率和准确性。

二次函数的应用11

二次函数的应用11

二次函数的应用姓名1.某商店销售一种商品,每件的进价为2.50元,根据市场调查,销售量与销售单价满足如下关系:在一段时间内,单价是13.50元时,销售量为500件,而单价每降低2元,就可以多售出400件.请你分析,销售单价多少时,可以获利最大.2.某超市销售一种饮料,平均每天可售出100箱,每箱利润120元.为了扩大销售,增加利润,超市准备适当降价.据测算,若每箱每降价1元,每天可多售出2箱.(1)如果要使每天销售饮料获利14000元,问每箱应降价多少元?(2)每箱饮料降价多少元时,超市平均每天获利最多?请你设计销售方案.3.如图,在一面靠墙的空地上用长为24米的篱笆,围成中间隔有二道篱笆的长方形花圃,若墙的最大可用长度为8米,设花圃的宽AB 为x 米,面积为S 平方米。

求围成花圃的最大面积。

4.如图,在⊿ABC 中,∠B=90°.点P 从点A 开始沿边AB 向点B 以1cm/s 的速度移动, 与此同时,点Q 从点B 开始沿边BC 向点C 以2cm/s 的速度移动.如果P 、Q 分别从A 、B 同时出发,(1)经过几秒,⊿PBQ 的面积等于8cm2?(2)经过几秒,⊿PBQ 的面积最大?P A BCQ 6cm 8c m5.如图,在平面直角坐标系中,抛物线的顶点P 到x 轴的距离是4,抛物线与x 轴相交O 、M 两点,OM =4,矩形ABCD 的边BC在线段OM上,点A,D在抛物线上,(1)求抛物线的解析式(2)矩形ABCD 的周长为m,求m的最大值6.一场篮球赛中,小明跳起投篮,已知球出手时离地面高920米,与篮圈中心的水平距离为7米,当球出手后水平距离为4米时到达最大高度4米,设篮球运行的轨迹为抛物线,篮圈中心距离地面3米,问此球能否投中?32098447.抛物线形拱桥,当水面在L时,拱顶离水面2m,水面宽度4m,水面下降1m,水面宽度增加多少?。

二次函数在生活中的运用

二次函数在生活中的运用

二次函数在生活中的运用二次函数是一个具有形式为y=ax^2+bx+c的二次多项式函数,其中a、b、c是实数且a≠0。

它是数学中一个重要的函数类型,其在现实生活中有许多广泛的应用。

下面将介绍一些二次函数在生活中的运用。

1.物体的自由落体运动:当物体从静止的位置开始自由下落时,其高度与时间的关系可以用二次函数来描述。

根据物体下落的加速度和初速度,我们可以建立二次函数模型来预测物体的高度随时间的变化。

2.弹性力的计算:弹性力是恢复力的一种,其大小与物体偏离平衡位置的距离成正比。

当物体被施加一个力使其偏离平衡位置时,恢复力的大小可以用二次函数描述。

3.抛物线的建模:抛物线是二次函数的图像,它在很多领域中都有应用。

例如,在建筑设计中,抛物线形状的屋顶可以提供更好的排水系统。

在桥梁设计中,抛物线形状的拱桥可以提供更好的结构稳定性。

4.投射物体的路径预测:当一个物体以一定的初速度和角度被抛出时,它的轨迹可以用二次函数模型来预测。

例如,在棒球运动中,球员可以通过分析投球的初速度和角度来预测球的落点。

5.音乐乐器的调音:乐器的音高可以通过改变乐器弦的张力来调节。

根据弦的拉紧程度,可以建立一个二次函数模型来描述音高与弦长的关系。

这使得乐器演奏者能够根据需要调整乐器的音高。

6.经济中的成本与产出关系:在经济学中,成本与产出的关系经常可以用二次函数来描述。

例如,生产一定数量的商品所需的成本与产出之间可能存在一个最优点,通过求二次函数的极值,可以确定最大化利润的产量。

7.变量与值的关系:二次函数可以用来描述两个变量之间的关系。

例如,员工的工资与工作经验之间可能存在一个二次函数模型,随着工作经验的增加,工资可能会呈现先上升后下降的趋势。

8.交通流量的模拟:交通流量的变化可以用二次函数来建模。

例如,小时交通流量随时间的变化可能呈现一个钟形曲线,交通高峰期的交通流量较大,而其他时间段的交通流量相对较小。

以上仅列举了二次函数在生活中的一些应用,其中还有许多其他的应用。

二次函数的应用与解析方法总结

二次函数的应用与解析方法总结

二次函数的应用与解析方法总结二次函数是数学中常见的一种函数类型,其方程的一般形式为y = ax^2 + bx + c,其中a、b、c为常数,且a ≠ 0。

本文将对二次函数的应用以及解析方法进行总结,力求给读者带来清晰而有力的理解。

一、二次函数的应用二次函数在实际中有着广泛的应用,下面将从几个常见的应用领域进行介绍。

1. 物体运动的轨迹当物体在匀加速的情况下运动时,其运动轨迹可以用二次函数来表示。

例如,一个水平抛体的运动轨迹满足二次函数的形式。

通过分析二次函数的参数,我们可以获得物体的运动方程、最高点、最远点等重要信息。

2. 抛物线的建模在物理学、经济学等领域,经常需要对抛物线进行建模。

二次函数正好可以描述抛物线的形状,在分析与解决问题时起到重要作用。

例如,利用二次函数可以进行岩石抛射的模拟、抛物线路径的优化等。

3. 金融领域在金融领域,二次函数可以用来建模一些与利率、价格等相关的问题。

例如,通过利用二次函数可以计算债券的价格、利润最大化的产销决策等金融问题。

4. 工程建模在工程领域,二次函数被广泛应用于建筑、桥梁、道路等项目的设计与规划中。

例如,通过对桥梁的曲线进行建模,可以确定合适的桥高、长度等参数。

二、二次函数的解析方法解析二次函数是指求解二次方程的根的过程,下面将介绍几种常见的解析方法。

1. 因式分解法对于一般的二次方程ax^2 + bx + c = 0,如果可以将其因式分解得到(a1x + b1)(a2x + b2) = 0的形式,那么方程的解就可以直接由此得到。

2. 完全平方式当二次方程的判别式D = b^2 - 4ac大于0时,方程有两个不相等的实根。

可以通过使用求根公式x = (-b ± √D) / 2a来求解。

3. 配方法对于一些特殊的二次方程,可以通过配方法化简为平方差的形式,从而方便求解。

一般而言,如果方程的b项较大,可以通过配方法将其化为完全平方式进行处理。

4. 公式转换法当遇到二次方程的系数a或b很难处理时,可以通过一些公式的转化来简化求解的过程。

二次函数在生活中的应用案例

二次函数在生活中的应用案例

二次函数在生活中的应用案例1. 游艺项目中的过山车设计过山车是一个经典的游艺项目,其设计中应用了二次函数的概念。

在过山车的设计中,设计师需要考虑到乘客的体验和安全。

二次函数可以描述过山车的轨道曲线,使乘客在高速行驶和兴奋的同时,保持相对平稳和安全的感觉。

通过调整二次函数的参数,如抛物线的开口方向、高度、曲率等,设计师可以创造出令人惊险刺激又相对安全的过山车体验。

2. 投掷运动中的球的抛物线轨迹在投掷运动中,例如投掷物体或运动员抛投物体,物体在空中的轨迹可以被二次函数描述。

球类运动如篮球、足球、棒球等的投掷和弹射过程,都可以用二次函数模型来描述球的运动轨迹。

运动员和教练可以利用二次函数模型来预测球的飞行轨迹和最佳投掷角度,从而提高命中率和战术效果。

3. 桥梁和建筑物设计在桥梁和建筑物的设计过程中,对于拱形和弧形结构的设计,也是利用了二次函数的概念。

二次函数可以描述建筑物和桥梁的曲线形状,使得结构既具有美观性,又具备一定的坚固和稳定性。

例如,拱桥和拱门的设计中,二次函数模型可以帮助工程师确定合适的拱形曲线,以及正确的弧度和支撑结构,从而确保桥梁的结构稳定和承载能力。

4. 金融领域的货币供给和通货膨胀模型二次函数在金融领域中也有广泛的应用。

例如,货币供给和通货膨胀模型可以使用二次函数来描述。

在经济学中,通过调整二次函数的参数,如货币供应量和通货膨胀率之间的关系,可以预测未来经济的走势和市场表现。

政府和央行可以据此采取相应的货币政策,以维持经济的稳定和平衡。

5. 自然界中的抛物线曲线在自然界中,许多自然现象的运动轨迹也可以用二次函数来描述。

例如,抛物线轨迹可以在大多数情况下模拟自然界中物体的运动。

比如,自由落体下的物体、喷泉中水的喷射、炮弹的轨迹等都可以使用二次函数模型来描述其运动状态。

通过利用二次函数,我们可以更好地理解和解释自然界中的规律和现象。

总结:二次函数在生活中的应用案例非常广泛。

从游艺项目的过山车设计到金融领域的经济模型,从投掷运动的球的抛物线轨迹到桥梁和建筑物的设计,二次函数都发挥着重要的作用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次函数的应用
1、抛物线c bx x y ++-=2的部分图象如图所示,若0>y ,则x
A.14<<-x
B. 13<<-x
C. 4-<x 或1>x
D.3-<x 或1>x
2、二次函数221(0)y kx x k =++<的图象可能是( )
3、若二次函数222y ax bx a =++-(a b ,为常数)的图象如下,则a 的值为( )
A .2-
B .
C .1
D 4、小敏用一根长为8cm 的细铁丝围成矩形,则矩形的最大面积是( )
A .4cm 2
B .8cm 2
C .16cm 2
D .32cm 2
5、如图,抛物线223y x x =--与x 轴分别交于A ,B 两点.
(1)求A ,B 两点的坐标;(2)求 抛物线顶点M 关于x 轴对称的点M '的坐标,并判断四边形AMB M '是何特殊平行四边形(不要求说明理由).
6、如图,抛物线21
222y x x =-++与x 轴交于A B 、两点,与y 轴交于C 点.
(1)求A B C 、、三点的坐标;
(2)证明A B C △为直角三角形;
(3)在抛物线上除C 点外,是否还存在另外一个点P ,使A B P △是直角三角形,若存在,请求出点P 的坐标,若不存在,请说明理由.
A. B. C. D.。

相关文档
最新文档