高斯列主元消去法解方程的Matlab源程序

合集下载

Gauss消去法等matlab程序

Gauss消去法等matlab程序
end
huidai.M文件:
functionx=huidaini(a)
n=length(a)-1;
x=zeros(n,1);
s=0;
fori=1:1:n
ifi==1
orj=1:1:i-1
s=s+a(i,j)*x(j)
end
x(i)=(a(i,n+1)-s)/a(i,i)
2.)列主元消去法:
functionx=GaussL(A,b)
a=[A b];
x=[];
n=length(a)-1;
fork=1:n
A=a(k:n,k);
h=max(A);
[u,v]=find(A==h);
u=u+k-1;
B=a;
a(k,:)=B(u,:);
a(u,:)=B(k,:);
fori=k+1:n
L(j+1,i)=A(j+1,i)/A(i,i)
A(j+1,:)=A(j+1,:)-L(j+1,i)*A(i,:)
end
end
U=A(:,1:n)
a1=[L b]
y=zeros(n,1)
y=huidaini(a1)
a2=[U y]
x=huidai(a2)
4:实验结果:
1.)Gauss消去法:
>> A=[2 2 3;4 7 7;-2 4 5];b=[3;1;-7];
>> Gauss(A,b)
ans =
2 -2 1
2.)列主元消去法:
>> A=[2 2 3;4 7 7;-2 4 5];b=[3;1;-7];
GaussL(A,b)

高斯列主元消去法matlab

高斯列主元消去法matlab

高斯列主元消去法matlab高斯列主元消去法是一种数值方法,用于求解线性方程组。

下面是使用MATLAB实现高斯列主元消去法的代码示例:```matlabfunction x = gauss_elimination(A, b)% 输入参数:% A: 系数矩阵% b: 右侧常数向量% 输出参数:% x: 方程组的解向量[m, n] = size(A);if m ~= nerror('系数矩阵必须是一个方阵!');end% 增广矩阵AB = [A, b];for k = 1:n-1% 找到主元所在的行[~, pivot_row] = max(abs(AB(k:end, k)));pivot_row = pivot_row + k - 1;% 交换当前行和主元所在行AB([k, pivot_row], :) = AB([pivot_row, k], :);% 消元for i = k+1:nfactor = AB(i, k) / AB(k, k);AB(i, k+1:end) = AB(i, k+1:end) - factor * AB(k, k+1:end);endend% 回代x = zeros(n, 1);x(n) = AB(n, n+1) / AB(n, n);for i = n-1:-1:1x(i) = (AB(i, n+1) - AB(i, i+1:n) * x(i+1:n)) / AB(i, i);endend```使用时,可以调用该函数并传入系数矩阵和右侧常数向量,例如:```matlabA = [1, 2, 3; 4, 5, 6; 7, 8, 9];b = [10; 20; 30];x = gauss_elimination(A, b);```该代码将返回线性方程组的解向量`x`。

gauss列主元素消去法matlab

gauss列主元素消去法matlab

高斯列主元素消去法是一种解线性方程组的常用方法,特别在数值分析和线性代数中应用广泛。

在Matlab中,我们可以使用该方法来解决大规模的线性方程组,包括矩阵的求解和矩阵的反转。

一、高斯列主元素消去法的基本原理高斯列主元素消去法是一种基于矩阵消元的方法,它通过一系列的矩阵变换将原始的线性方程组转化为上三角形式,然后再进行回代求解。

这个方法的核心就是通过矩阵的变换来简化原始的线性方程组,使得求解过程更加简单高效。

在Matlab中,我们可以利用矩阵运算和函数来实现高斯列主元素消去法,如`lu`分解函数和`\"`运算符等。

通过这些工具,我们能够快速地求解各种规模的线性方程组并得到准确的结果。

二、高斯列主元素消去法在Matlab中的实现在Matlab中,我们可以通过调用`lu`函数来实现高斯列主元素消去法。

该函数返回一个上三角矩阵U和一个置换矩阵P,使得PA=LU。

通过对U进行回代求解,我们可以得到线性方程组的解。

除了`lu`函数之外,Matlab还提供了一些其他的函数和工具来帮助我们实现高斯列主元素消去法,比如`\"`运算符和`inv`函数等。

通过这些工具的组合使用,我们能够更加灵活地进行线性方程组的求解,并且可以方便地处理特殊情况和边界条件。

三、高斯列主元素消去法的应用与局限性高斯列主元素消去法在实际应用中具有广泛的适用性,特别是对于大规模的线性方程组或者稀疏矩阵的求解。

通过Matlab中的工具和函数,我们可以快速地求解各种规模的线性方程组,并得到高精度的数值解。

然而,高斯列主元素消去法也存在一些局限性,比如对于奇异矩阵或者接近奇异矩阵的情况时,该方法的求解精度可能会下降。

在实际应用中,我们需要结合具体的问题和矩阵特性来选择合适的求解方法,以确保得到准确的结果。

四、个人观点和总结作为一种经典的线性方程组求解方法,高斯列主元素消去法在Matlab 中具有较好的实现和应用效果。

通过对其原理和实现细节的深入理解,我们能够更加灵活地应用该方法,并且能够更好地理解其适用性和局限性。

(完整)高斯消去法解线性方程的Matlab程序

(完整)高斯消去法解线性方程的Matlab程序

1151091 杨晨辉高斯消去法解线性方程的Matlab 程序方法一:function x = gauss(A,b) n = length(b);for k = 1 : n-1if A(k,k)==0fprintf( 'Error: the %dth pivot element equal to zero!\n' return ;endindex = [k+1:n];m = -A(index,k)/A(k,k);A(index,index) = A(index,index) + m*A(k,index); b(index) = b(index) + m*b(k);endx = zeros(n,1);x(n) = b(n)/A(n,n);for i = n-1:-1:1x(i) = ( b(i) - A(i,[i+1:n])*x([i+1:n]) )/A(i,i); end运行结果:>> A=[1 1.355 1.4 2; 3 3.5 0.22 1; 0.5 2 2.1 3;>> b=[2.00,1.00,0.55,3.00]' b =2.00001.00000.55003.0000 >> gauss(A,b)ans =2.5225-2.23130.01771.2381 方法二:矩阵求逆:function [ B ] = qiuni( A )%UNTITLED Summary of this function goes here% Detailed explanation goes here n=numel(A);r=rank(A);B=eye(r);if n==L2for k=1:rfor i=1:r ,k);0.3 0.1 -0.55 2];for j=1:rii=i-1;jj=j-1;if ii==0 && jj==0;ii=r;jj=r;B(ii,jj)=1/A(1,1);elseif ii==0 && jj~=0;ii=r;B(ii,jj)=-A(1,j)/A(1,1);elseif jj==0 && ii~=0;jj=r;B(ii,jj)=A(i,1)/A(1,1);elseB(ii,jj)=A(i,j)-A(i,1)*A(1,j)/A(1,1);endendendA=B;B=eye(r);endB=A;elsemsgbox( ' 矩阵不可逆' , 'message' , 'warn' ); end endGr^l Jr«t jskiALM13LII4I3 S ]J. IXI f 8 4»LEF3f* ll.Tfil™'.*?a. nr-ii I. >3 DOC-1- E^:I.MQP n rml.»HGil・a血«.4WtOMHi超if iMr MHfH 曰ITfar !■ i: rIlliUliNJTL2in kLIU#•十*minilu-dzr齡 4 J 2.4 7^3.9 il-l-Z U • (14 M,1 1*1,1 i Ih.i 他[S 4 J 2 4 2 it 3.3 I ? 5.4 3 3 lh”gg飞『可选1M^4T<E AfrrE喩耳.庇賈■斗『.*玛11册V ttii< .M ■帥?脅 Q* M It 当方程不可逆时:第二种:fun ction [ B ] = lyxq inv( A )%UNTITLED Summary of this fun ctio n goes here % Detailed expla nati on goes here n=n umel(A);r=ra nk(A);B=eye(r);if n==L2E=eye(r);A=[A E];for k=1:(r-1)for i=(k+1):rfor j=(k+1):2*rA(i,j) = A(i,j)-A(i,k)* A(k,j) / A(k,k);endj=k;A(i,j) = A(i,j)-A(i,k)* A(k,j) / A(k,k);endendfor k=2:rpuspus !( .UJBM , £ .sBesseiu, £ ,廡址k 捌目# . )xoq6siu9S|9 :(j^:(i,+j )i:)a=apue pue©!)▼/(「!)皆(「!)日J^:L=[」oj」j=!」ojpue pue:(>l 1>l )V/(r>l )V.(>l 1!)V-(r!)V=(r!)V■>l=f pue:(>i i >i )v/(r>i )v.(>i i !)v-(r!)v=(r!)v j^:(i /+>i )=r 」oj(宀)J=!」OJ!■« ^'1 1 I t'C 0 £ S't t fe- S]-*-fiN1=5 3 If• ◎ ID * ・E -*w J£ 口1M^!PIS^'D-EMJ'DgfWP Sfft F IMF CGiK S^£j£K 加屜iz "UP EWtT>- UKH MX®MJFV- HQFU岡Z 伽巾w:MMsmn a t i 11 ft g i t z t if 町■ V —1 J£*frdrj_ E-C-^'P ■fp XklMC I «f*E|«ul3 5 ¥ 1 i I r'C 9 £ C I ・ ** epiiJbcMH L ^btLJ=Ul] Ci 1 J't 1 I L'L 9 ■£ R* L I 3]^j ",|Q 鼻 H-R r ft ・ 4 ■卩 * C- [- T'P- f ■门碑 :\|T- i TI :-q r R!- 3 I 旷£- « 1- 4 1- f E- F]-» 14肯1肚丫 F1 41 J. I 时4T ■ = FIT IF P 町贰F 3»rl-qll 5 I 3 -5 A I E :f B 5 P C E > 5]<*V] *■*iia t i i i E C g i P S I t ・町詐(q Fri "T<e fc-xsr[i —we*Fip - . jr r ■'w■I« !J►5 ft O EWK陆羽 LfEMLD?K :fl.«ll r miEI f lfiMlbiM.T -[| g 盅 E fi J E £'L 5> E »'Z € t £]=9 «IH -MnhiQui'u^iJEi 1I in-M ka« tfun cti on X=jie(A,b); [m,n ]=size(A);B=[A,b];RA=ra nk(A);RB=ra nk(B);formatratif RA==RB & RA==n %判断方程有唯一解 X=A\b;else if RA==RB & RA<n %判断方程有无穷解X=A\b %求特解 C=null(A,'R' );%求AX=0勺基础解系else X='方程无解’;%判断方程无解 end end上图的方程有两个,第一个有解,显示结果;第二个无解,显示 方程无解当方程有无穷解时,显示其特解■ -1^ u* sf Bi fclw JtJf• 6 •CiJ □ £J 4■谍 1 3 7 fl I 7 >7 13 D<L. rlsipc-hn- >Ji>; «»EV i > 1.4 > H >J < i T >■ t iipiM -caim 勒诵 < 3 j,4 g ].] I 7 5.? 3 fi« j a m 半・ jj.^(]!4M r A ).i i Fv.? > t 盯・・口©・ *-C5 4 3 a pfUkb)A F IB 4 ft 1J ji«L4ib)X|t 4 1 1,4 •EE i 3 2;a Jt Ct < 5 1.4 ■£L -2 J -L J -i & -J,2 I 2 -2P r «^(b 2 ]]',1 i 1J l !*«/■■ 1]X14N3 g 3.3 I T 5.S 3 5 l.|.b-[14Mi 1 6 3.3 I r 9.2 3 1 d|il>±(14rt if山n 4 I 2 4 I 4 3,9 3 r t,3 ) 6 lixim KJ Hip.EDM 酉52IDiU|i -a v -i ,s -i b o s ? ar■AT“n4 a M H 4 3 IQ:\・B I 各聲a&14+3 3l :gi52図邸H - g ><k 申r 5.71 %门.・口0医2 d ).] i. ?3 S i|,b-{^94 I■IWr=iIMIS» M 【l I 3 ・l"・l •> 4.1 5 V -«),tell < •】•.”心”」UTIMntrtE ex J 9 Q, " Si・ V12M)l»724?»n« Ut9・ i/i2«e )in^4rmi« m|g 门“t—SJ. *Mb 4 ) 1.4 2 ・).3 I r e.4 ) 1MH 4 >:.< 2 • X> I r «.? ) t ibMOHM “ 4 > 2.4 2 e X )I r 5.2 ) 3ibUOUMA^li 4 ) 2.4 2 « >.> I I C.2 ) < l)#b-(l«M IJWU.WMIS 4 > 2.4 7 • J.5 I f 5.2 S 1 IJUU.b>A F 5 < > >.4 < 3.S I > 6.J > « l).^(l«M 1 Mb <>:.<? « XI I r o.2 ) 9 lbW (l«M I "4 2 6 3.3 I 7 6.J 1 5l),W(l<M I4 > 2.4 2 • >.> t r B.2 > ■ IA=!l -2 3 -l.> -I 5 -3.2 I 2 -2!.bs(> 2 «* J A*|l 1 J -I i ・(・1 4.1 i -• -l|.b-(l 4 •)•*nu *" >«w “5*a□ Jk fi W 2f » -ute«twec»>x - €>»»<» M S^*9V«9<aa >4X<t * * J (J)Mg ■ r.Tp■"daStn m 一「一 . M4te~ 3144-18S44 3B • r *H» " MIL X14 4-189 15 M SmM*lte 3314^21719X3M4・ X144-3215152® .dbr«4M»U RMUMXH4^259O4C N 1 Qf* n M 低 an 心 2( aooTXT Mr201H-2 Id 1)518)0 &1Q @6 ■.U, _ B Ulw« Mi . : MUI 4iwAM« .。

高斯消元法,列主元素消元法及LU分解法的matlab程序

高斯消元法,列主元素消元法及LU分解法的matlab程序

§2.2.1高斯消元法的MATLAB程序f unction [RA,RB,n,X]=gaus(A,b)B=[A b]; n=length(b); RA=rank(A);RB=rank(B);zhica=RB-RA;if zhica>0,disp('请注意:因为RA~=RB,所以此方程组无解.')returnendif RA==RBif RA==ndisp('请注意:因为RA=RB=n,所以此方程组有唯一解.')X=zeros(n,1); C=zeros(1,n+1);for p= 1:n-1for k=p+1:nm= B(k,p)/ B(p,p);B(k,p:n+1)= B(k,p:n+1)-m* B(p,p:n+1);endendb=B(1:n,n+1);A=B(1:n,1:n); X(n)=b(n)/A(n,n);for q=n-1:-1:1X(q)=(b(q)-sum(A(q,q+1:n)*X(q+1:n)))/A(q,q);endelsedisp('请注意:因为RA=RB<n,所以此方程组有无穷多解.') endend运行命令及结果a=[2.51 1.48 4.53;1.48 0.93 -1.30 ;2.68 3.04 -1.48];b=[0.05;1.03;-0.53];[RA,RB,n,X] =gaus (A,b)请注意:因为RA=RB=n,所以此方程组有唯一解.RA =3RB =3n =3X =1.4531-1.5892-0.2749§2.2.2 列主元素消元法的MATLAB程序function [RA,RB,n,X]=liezhu(A,b)B=[A b]; n=length(b); RA=rank(A);RB=rank(B);zhica=RB-RA;if zhica>0,disp('请注意:因为RA~=RB,所以此方程组无解.')returnendif RA==RBif RA==ndisp('请注意:因为RA=RB=n,所以此方程组有唯一解.')X=zeros(n,1); C=zeros(1,n+1);for p= 1:n-1[Y,j]=max(abs(B(p:n,p))); C=B(p,:);B(p,:)= B(j+p-1,:); B(j+p-1,:)=C;for k=p+1:nm= B(k,p)/ B(p,p);B(k,p:n+1)= B(k,p:n+1)-m* B(p,p:n+1);endendb=B(1:n,n+1);A=B(1:n,1:n); X(n)=b(n)/A(n,n);for q=n-1:-1:1X(q)=(b(q)-sum(A(q,q+1:n)*X(q+1:n)))/A(q,q);endelsedisp('请注意:因为RA=RB<n,所以此方程组有无穷多解.') endend运行命令及结果a=[2.51 1.48 4.53;1.48 0.93 -1.30 ;2.68 3.04 -1.48];b=[0.05;1.03;-0.53];[RA,RB,n,X]=liezhu(A,b)请注意:因为RA=RB=n,所以此方程组有唯一解.RA =3RB =3n =3X =1.4531-1.5892-0.2749§2.2.3 LU分解法的MATLAB程序function hl=zhjLU(A)[n n] =size(A); RA=rank(A);if RA~=ndisp('请注意:因为A的n阶行列式hl等于零,所以A不能进行LU分解.A的秩RA如下:'), RA,hl=det(A);returnendif RA==nfor p=1:nh(p)=det(A(1:p, 1:p));endhl=h(1:n);for i=1:nif h(1,i)==0disp('请注意:因为A的r阶主子式等于零,所以A不能进行LU分解.A的秩RA和各阶顺序主子式值hl依次如下:'), hl;RAreturnendendif h(1,i)~=0disp('请注意:因为A的各阶主子式都不等于零,所以A能进行LU分解.A的秩RA和各阶顺序主子式值hl依次如下:')for j=1:nU(1,j)=A(1,j);endfor k=2:nfor i=2:nfor j=2:nL(1,1)=1;L(i,i)=1;if i>jL(1,1)=1;L(2,1)=A(2,1)/U(1,1);L(i,1)=A(i,1)/U(1,1);L(i,k)=(A(i,k)- L(i,1:k-1)*U(1:k-1,k))/U(k,k);elseU(k,j)=A(k,j)-L(k,1:k-1)*U(1:k-1,j);endendendendhl;RA,U,Lendend运行命令及结果a=[2.51 1.48 4.53;1.48 0.93 -1.30 ;2.68 3.04 -1.48];hl=zhjLU(A)请注意:因为A的各阶主子式都不等于零,所以A能进行LU分解.A的秩RA和各阶顺序主子式值hl依次如下:RA =3U =2.5100 1.4800 4.53000 0.9300 -3.97110 0 -0.0837L =1.0000 0 00.5896 1.0000 01.0677 1.5696 1.0000hl =2.5100 0.1439 13.6410>> U=[2.5100 1.4800 4.53000 0.9300 -3.97110 0 -0.0837];>>L= [1.0000 0 00.5896 1.0000 01.0677 1.5696 1.0000];>> b=[0.05;1.03;-0.53];U1=inv(U); L1=inv(L); X=U1*L1*b,x=A\bX =-111.8440110.953125.7324x =1.4531-1.5892-0.2749例2.1: 用高斯消元法求解下面的非齐次线性方程组。

Gauss消去matlab程序

Gauss消去matlab程序

%消元过程 for i=k+1:n m=A(i,k)/A(k,k); for j=k+1:n A(i,j)=A(i,j)-m*A(k,j); end b(i)=b(i)-m*b(k); end end
贵州师范大学数学与计算机科学学院
%回代过程 if abs(A(n,n))<1e-10 index=0; return; end for k=n:-1:1 for j=k+1:n b(k)=b(k)-A(k,j)*x(j); end x(k)=b(k)/A(k,k); end
贵州师范大学数学与计算机科学学院
Gauss列主元消去法 列主元消去法Matlab程序 (2) 列主元消去法 程序
function X=Gausslzxq(A,B) % Input A is an N×N nonsingular matrix % B is an N×1 vector % Output X is an N×1 matrix containing the solution to AX=B % Initialize X and the temporary storage matrix C [N N]=size(A); X=zeros(N,1); C=zeros(1,N+1); Az=[A B]; % 形成增广矩阵: Az=[A | B]
贵州师范大学数学与计算机科学学院
if a_max<1e-10 index=0; end if r>k %交换两行 for j=k:n z=A(k,j); A(k,j)=A(r,j); A(r,j)=z; end z=b(k); b(k)=b(r); b(r)=z; end return;
贵州师范大学数学与计算机科学学院

高斯消元法(含MATLAB编程)

高斯消元法(含MATLAB编程)

第2次选列主元后的增广矩阵
1 6 5 6 6 0 11/ 3 4 13/ 3 11 0 5/ 3 5 11/ 3 4 2 0 1 0 0
第2次消元后的增广矩阵
1 6 5 6 6 0 11/ 3 4 13 / 3 11 0 0 75 /11 62 /11 9 0 0 24 /11 37 /11 6
(1)输入增广矩阵A=[-3 2 6 4;10 -7 0 7;5 -1 5 6] 第1次选列主元后的增广矩阵 10 -3 -7 2 6 0 4 6 7 61/10 5/2 7
第1次消元后的增广矩阵 5 -1 5 10 -7 0 0 0 -1/10 5/2 6 5
第2次选列主元后的增广ห้องสมุดไป่ตู้阵 10 -7 0 0 0 5/2 -1/10 5 6
3 2 1 1 4 3 2 1 1 4 3/4 4 3 2 1 3/4 7/4 3/2 5/4 1/4 ( 2) A : b 1/2 3 4 3 1 1/2 6/7 4 3 1 4 1 1/4 2 3 4 1 1/4 5/7 3 3 2 1 1 4 3 2 1 1 4 3/4 7/4 3/2 5/4 1/4 3/4 7/4 3/2 5/4 1/4 , 1/2 6/7 12/7 10/7 -12/7 1/2 6/7 12/7 10/7 -12/7 1 1/4 5/7 5/6 5/3 0 1/4 5/7 5/6 4 2 1 1 4 3 3/ 4 1 7 / 4 3/ 2 5/ 4 ,U L 1/ 2 6 / 7 1 12 / 7 10 / 7 1 5/ 3 1/ 4 5 / 7

lu分解法、列主元高斯法、jacobi迭代法、gaussseidel法的原理及matlab程序

lu分解法、列主元高斯法、jacobi迭代法、gaussseidel法的原理及matlab程序

一、实验目的及题目1.1 实验目的:(1)学会用高斯列主元消去法,LU 分解法,Jacobi 迭代法和Gauss-Seidel 迭代法解线性方程组。

(2)学会用Matlab 编写各种方法求解线性方程组的程序。

1.2 实验题目:1. 用列主元消去法解方程组:1241234123412343421233234x x x x x x x x x x x x x x x ++=⎧⎪+-+=⎪⎨--+=-⎪⎪-++-=⎩2. 用LU 分解法解方程组,Ax b =其中4824012242412120620266216A --⎛⎫⎪-⎪= ⎪ ⎪-⎝⎭,4422b ⎛⎫ ⎪ ⎪= ⎪- ⎪-⎝⎭ 3. 分别用Jacobi 迭代法和Gauss-Seidel 迭代法求解方程组:1232341231234102118311210631125x x x x x x x x x x x x x -+=-⎧⎪-+=-⎪⎨-+=⎪⎪-+-+=⎩二、实验原理、程序框图、程序代码等2.1实验原理2.1.1高斯列主元消去法的原理Gauss 消去法的基本思想是一次用前面的方程消去后面的未知数,从而将方程组化为等价形式:1111221122222n n n n nn n nb x b x b x g b x b x g b x g +++=⎧⎪++=⎪⎨⎪⎪=⎩这个过程就是消元,然后再回代就好了。

具体过程如下: 对于1,2,,1k n =-,若()0,k kk a ≠依次计算()()(1)()()(1)()()/,,1,,k k ik ik kk k k k ij ij ik kjk k k i i ik k m a a a a m a b b m b i j k n++==-=-=+然后将其回代得到:()()()()()1/()/,1,2,,1n n n n nn n k k k k k kj j kk j k x b a x b a x a k n n =+⎧=⎪⎨=-=--⎪⎩∑以上是高斯消去。

用Gauss列主元消去法求解方程组

用Gauss列主元消去法求解方程组

\\本程序适用于n个方程,n个未知数的线性代数方程组# include "stdio.h"# include"math.h"# define eps 1e-8# define n 2\\以上为定义部分main(){int t,i,j,k;double T,m[3][3],x[3];double A[3][3]={{2,2,3},{4,7,7},{-2,4,5}};double b[3]={3,1,-7};\\以上为输入部分for(k=0;k<n;k++){t=k;for(i=k+1;i<=n;i++){if(fabs(A[t][k])<fabs(A[i][k]))t=i;}\\寻找第k列的主元素(绝对值最大的数)for(j=k;j<=n;j++){T=A[t][j];A[t][j]=A[k][j];A[k][j]=T;}T=b[k];b[k]=b[t];b[t]=T;\\把主元素及其所在的行与第k行交换if(fabs(A[k][k])<=eps){printf("fail!");exit();}\\判断系数矩阵的行列式的值是否为0,确定是否有唯一解for(i=k+1;i<=n;i++){m[i][k]=A[i][k]/A[k][k];for(j=k+1;j<=n;j++){A[i][j]=A[i][j]-m[i][k]*A[k][j];}b[i]=b[i]-m[i][k]*b[k];A[i][k]=0.000000;}\\消元,把第k列对角线以下的系数通过矩阵变换化为0 for(i=0;i<=n;i++){for(j=0;j<=n;j++)printf("%f\t",A[i][j]);printf("%f\n",b[i]);}printf("\n");}\\输出消元后的系数矩阵和右端项\\上述过程为消元过程,以下为回代过程if(fabs(A[n][n])<=eps){printf("A[%d][%d]=0,fail!",n,n);exit(); }\\判断是否有唯一解elsex[n]=b[n]/A[n][n];\\最后一行求解xnfor(i=n-1;i>=0;i--){for(j=i+1;j<=n;j++){ b[i]=b[i]-A[i][j]*x[j];}x[i]=b[i]/A[i][i];}\\从n-1行依次求解x(n-1) (x1)printf("Result is:\n");for(i=0;i<=n;i++)printf("X%d=%f\t",i,x[i]);}\\输出结果。

matalab怎么用高斯消去法解方程组

matalab怎么用高斯消去法解方程组

matalab怎么用高斯消去法解方程组高斯消去法(Gaussian Elimination)是一种解线性方程组的常用方法,其中包括了高斯消元和回代两个步骤。

通过高斯消去法,我们可以将一个线性方程组转化为简化的上三角矩阵,从而简化求解过程。

要使用高斯消去法解决线性方程组,首先需要将方程组写成矩阵形式。

假设有一个n个方程和n个未知数的线性方程组,可以表示为Ax = b,其中A是一个n×n的系数矩阵,x是一个n×1的未知数向量,b是一个n×1的常数向量。

下面我们将详细介绍高斯消去法的步骤:步骤1:将系数矩阵A和常数向量b合并为增广矩阵[Ab],即在A的右边添加一个列向量b。

步骤2:选取主元素(pivot),通常选择第一行的首个非零元素作为主元素。

如果第一行的首个元素为零,则选择下一行的首个非零元素。

步骤3:将主元素所在的行交换到第一行,以确保主元素位于第一行。

步骤4:除以主元素,使主元素变为1。

这可以通过将主元素所在的行除以主元素的值来实现。

步骤5:用第一行的主元素消去其它行。

对于第i行,将其乘以第一行的主元素的负倒数,并加到第一行上。

步骤6:重复步骤2至步骤5,直到最后一行或最后一列为零。

如果最后一行或最后一列为零,则说明方程组无解或有无穷多解。

步骤7:回代。

从最后一行开始,将求得的解代入每一行的方程中,依次求解未知数。

下面我们将通过一个具体的例子来说明高斯消去法的过程。

假设有以下线性方程组:2x + y - z = 8-3x - y + 2z = -11-2x + y + 2z = -3我们首先将方程组转化为增广矩阵形式:[2 1 -1 | 8][-3 -1 2 | -11][-2 1 2 | -3]首先我们选择第一行的主元素,即第一行第一个非零元素2。

然后将第一行与第二行交换,使主元素位于第一行:[-3 -1 2 | -11][2 1 -1 | 8][-2 1 2 | -3]接下来我们将主元素化为1,即将第一行除以-3:[1 1/3 -2/3 | 11/3][2 1 -1 | 8][-2 1 2 | -3]然后用第一行的主元素消去第二行和第三行:[1 1/3 -2/3 | 11/3][0 1/3 1/3 | 2/3][0 5/3 4/3 | 2/3]此时我们得到了上三角矩阵形式的增广矩阵。

高斯消元法化简行列式matlab

高斯消元法化简行列式matlab

高斯消元法化简行列式matlab
高斯消元法是一种求解线性方程组和计算行列式的常用方法之一。

在MATLAB中,可以通过编写程序来实现高斯消元法化简行列式。

下面
是使用MATLAB编写的高斯消元法化简行列式的程序。

```matlab
% 计算行列式的函数
function detA = Gauss_det(A)
n = length(A); % 矩阵的阶数
detA = 1; % 存储行列式的值
% 消元过程
for k = 1:n-1
for i = k+1:n
factor = A(i,k)/A(k,k);
for j = k+1:n
A(i,j) = A(i,j) - factor*A(k,j);
end
A(i,k) = 0;
end
detA = detA * A(k,k);
end
detA = detA * A(n,n); % 最后一个元素即为行列式的值
end
```
该程序可以接受一个矩阵作为输入,输出该矩阵的行列式的值。

在程序中,通过嵌套三层循环实现了高斯消元法的算法过程,具体地,外层循环枚举每一行,中层循环枚举当前行以下的行,内层循环枚举
每一列,更新矩阵元素的值。

通过不断消元,矩阵最终变为上三角矩阵,对角线上的元素即为矩阵的行列式的值。

LU分解高斯消元列主元高斯消元matlab代码

LU分解高斯消元列主元高斯消元matlab代码

数学实验作业一、矩阵LU分解:function [L,U,p]=lutx(A)[n,n]=size(A);p=(1:n)';for k=1:n-1[r,m]=max(abs(A(k:n,k)));m=m+k-1;if (A(m,k)~=0)if (m~=k)A([k m],:)=A([m k],:);p([k m])=p([m k]);endi=k+1:n;A(i,k)=A(i,k)/A(k,k);j=k+1:n;A(i,j)=A(i,j)-A(i,k)*A(k,j);endendL=tril(A,-1)+eye(n,n)U=triu(A)pend高斯消元法求解方程:n=3;a=[1 2 3 ;4 5 6 ;7 8 9 ];b=[17 18 19];l=eye(n);y=1;for i=1:(n-1)for j=1:(n-i)if a(j+(i-1)*n+y)~=0l(j+(i-1)*n+y)=a(j+(i-1)*n+y)/a(j+(i-1)*n+y-j)for k=1:(n-i+1)a(j+(i-1)*n+y+(k-1)*n)=a(j+(i-1)*n+y+(k-1)*n)-a(j+(i-1)*n+y+(k-1)*n-j)*l(j+(i-1)*n+y) endb(j+y-1)=b(j+y-1)-b(y)*l(j+(i-1)*n+y);endendy=y+1;endsum=0;for j=1:nsum=sum+x(j)+a(k,j);endsum=0;for j=1:nx(j)=0;endfor k=n:-1:1for j=1:nsum=sum+x(j)*a(k,j)endx(k)=(b(k)-sum)/a(k,k) sum=0;end列主元高斯消元法代码:n=3;a=[1 2 3 ;4 5 6 ;7 8 9 ]; b=[17 18 19];l=eye(n);p=eye(n);ma=0for i=1:(n-1)for j=i:nif a(j,i)>ma;ma=a(j,i)endendfor k=i:nif a(k,i)==mam=k;endendfor j=1:na1=a(m,j);a(m,j)=a(i,j);a(i,j)=a1p1=p(m,j);p(m(1),j)=p(i,j);p(i,j)=p1;endb1=b(m);b(m)=b(i);b(i)=b1;ma=0;endy=1;for i=1:(n-1)for j=1:(n-i)if a(j+(i-1)*n+y)~=0l(j+(i-1)*n+y)=a(j+(i-1)*n+y)/a(j+(i-1)*n+y-j)for k=1:(n-i+1)a(j+(i-1)*n+y+(k-1)*n)=a(j+(i-1)*n+y+(k-1)*n)-a(j+(i-1)*n+y+(k-1)*n-j )*l(j+(i-1)*n+y)endb(j+y-1)=b(j+y-1)-b(y)*l(j+(i-1)*n+y);endendy=y+1;endsum=0;for j=1:nx(j)=0;endfor k=n:-1:1for j=1:nsum=sum+x(j)*a(k,j)endx(k)=(b(k)-sum)/a(k,k)sum=0;end全主元高斯消元法代码:n=3;a=[1 2 3 ;4 5 6 ;7 8 9 ];b=[17 18 19];l=eye(n);p=eye(n);q=eye(n);max=0;for i=1:(n-1)for j=i:nfor k=i:nif max<abs(a(j,k)) max=abs(a(j,k));endendendfor j=i:nfor k=i:nif max==abs(a(j,k)) m=[j,k];endendendfor j=1:na1=a(m(1),j);a(m(1),j)=a(i,j);a(i,j)=a1;p1=p(m(1),j);p(m(1),j)=p(i,j);p(i,j)=p1;endb1=b(m(1));b(m(1))=b(i);b(i)=b1;for j=1:na1=a(j,m(2));a(j,m(2))=a(j,i);a(j,i)=a1;q1=q(j,m(2));q(j,m(2))=q(j,i);q(j,i)=q1;endmax=0;endy=1;for i=1:(n-1)for j=1:(n-i)if a(j+(i-1)*n+y)~=0l(j+(i-1)*n+y)=a(j+(i-1)*n+y)/a(j+(i-1)*n+y-j)for k=1:(n-i+1)a(j+(i-1)*n+y+(k-1)*n)=a(j+(i-1)*n+y+(k-1)*n)-a(j+(i-1)*n+y+(k-1)*n-j )*l(j+(i-1)*n+y);endb(j+y-1)=b(j+y-1)-b(y)*l(j+(i-1)*n+y);endendy=y+1;endsum=0;for j=1:nx(j)=0;endfor k=n:-1:1for j=1:nsum=sum+x(j)*a(k,j)endx(k)=(b(k)-sum)/a(k,k)sum=0;end解:编写矩阵:0 1 0 0 0 -1 0 0 0 0 0 0 00 0 1 0 0 0 0 0 0 0 0 0 0a 0 0 -1 -a 0 0 0 0 0 0 0 0a 0 -1 0 -a 0 0 0 0 0 0 0 00 0 0 1 0 0 0 -1 0 0 0 0 00 0 0 0 0 0 1 0 0 0 0 0 0 A= 0 0 0 0 a 1 0 0 -a -1 0 0 00 0 0 0 a 0 1 0 -a 0 0 0 00 0 0 0 0 0 0 0 0 1 0 0 -10 0 0 0 0 0 0 0 0 0 1 0 00 0 0 0 0 0 0 1 a 0 0 -a 00 0 0 0 0 0 0 0 a 0 1 a 00 0 0 0 0 0 0 0 0 0 0 a 1B= (0 10 0 0 0 0 0 15 0 20 0 0 0)’F= (f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13)’AF=B F=A\B程序及运算结果:>> a=sym(1/sqrt(2))a =2^(1/2)/2>> A=[0 1 0 0 0 -1 0 0 0 0 0 0 00 0 1 0 0 0 0 0 0 0 0 0 0a 0 0 -1 -a 0 0 0 0 0 0 0 0a 0 -1 0 -a 0 0 0 0 0 0 0 00 0 0 1 0 0 0 -1 0 0 0 0 00 0 0 0 0 0 1 0 0 0 0 0 00 0 0 0 a 1 0 0 -a -1 0 0 00 0 0 0 a 0 1 0 -a 0 0 0 00 0 0 0 0 0 0 0 0 1 0 0 -10 0 0 0 0 0 0 0 0 0 1 0 00 0 0 0 0 0 0 1 a 0 0 -a 00 0 0 0 0 0 0 0 a 0 1 a 00 0 0 0 0 0 0 0 0 0 0 a -1]A =[ 0, 1, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0] [ 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] [ 2^(1/2)/2, 0, 0, -1, -2^(1/2)/2, 0, 0, 0, 0, 0, 0, 0, 0][ 2^(1/2)/2, 0, -1, 0, -2^(1/2)/2, 0, 0, 0, 0, 0, 0, 0, 0][ 0, 0, 0, 1, 0, 0, 0, -1, 0, 0, 0, 0, 0] [ 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0] [ 0, 0, 0, 0, 2^(1/2)/2, 1, 0, 0, -2^(1/2)/2, -1, 0, 0, 0] [ 0, 0, 0, 0, 2^(1/2)/2, 0, 1, 0, -2^(1/2)/2, 0, 0, 0, 0] [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, -1] [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0] [ 0, 0, 0, 0, 0, 0, 0, 1, 2^(1/2)/2, 0, 0, -2^(1/2)/2, 0] [ 0, 0, 0, 0, 0, 0, 0, 0, 2^(1/2)/2, 0, 1, 2^(1/2)/2, 0] [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2^(1/2)/2, 1]>> B=[0;10;0;0;0;0;0;15;0;20;0;0;0] B =101520>> F=A\BF =10*2^(1/2)-101010-1010-15*2^(1/2)520-5*2^(1/2)5LU分解:>> a=2^(1/2)/2a =0.7071>> A=[0 1 0 0 0 -1 0 0 0 0 0 0 00 0 1 0 0 0 0 0 0 0 0 0 0a 0 0 -1 -a 0 0 0 0 0 0 0 0a 0 -1 0 -a 0 0 0 0 0 0 0 00 0 0 1 0 0 0 -1 0 0 0 0 00 0 0 0 0 0 1 0 0 0 0 0 00 0 0 0 a 1 0 0 -a -1 0 0 00 0 0 0 a 0 1 0 -a 0 0 0 00 0 0 0 0 0 0 0 0 1 0 0 -10 0 0 0 0 0 0 0 0 0 1 0 00 0 0 0 0 0 0 1 a 0 0 -a 00 0 0 0 0 0 0 0 a 0 1 a 00 0 0 0 0 0 0 0 0 0 0 a 1]A =Columns 1 through 80 1.0000 0 0 0 -1.0000 0 00 0 1.0000 0 0 0 0 00.7071 0 0 -1.0000 -0.7071 0 0 00.7071 0 -1.0000 0 -0.7071 0 0 00 0 0 1.0000 0 0 0 -1.00000 0 0 0 0 0 1.0000 00 0 0 0 0.7071 1.0000 0 00 0 0 0 0.7071 0 1.0000 00 0 0 0 0 0 0 00 0 0 0 0 0 0 00 0 0 0 0 0 01.00000 0 0 0 0 0 0 00 0 0 0 0 0 0 0Columns 9 through 130 0 0 0 00 0 0 0 00 0 0 0 00 0 0 0 00 0 0 0 00 0 0 0 0-0.7071 -1.0000 0 0 0-0.7071 0 0 0 00 1.0000 0 0 -1.00000 0 1.0000 0 00.7071 0 0 -0.7071 00.7071 0 1.0000 0.7071 00 0 0 0.7071 1.0000>> [L,U,P]=lu(A)L =Columns 1 through 81.0000 0 0 0 0 0 0 00 1.0000 0 0 0 0 0 00 0 1.0000 0 0 0 0 01.0000 0 -1.0000 1.0000 0 0 0 00 0 0 0 1.0000 0 0 00 0 0 0 1.0000 1.0000 0 00 0 0 0 0 0 1.0000 00 0 0 1.0000 0 0 01.00000 0 0 0 0 0 0 -1.00000 0 0 0 0 0 0 00 0 0 0 0 0 0 00 0 0 0 0 0 0 00 0 0 0 0 0 0Columns 9 through 130 0 0 0 00 0 0 0 00 0 0 0 00 0 0 0 00 0 0 0 00 0 0 0 00 0 0 0 00 0 0 0 01.0000 0 0 0 00 1.0000 0 0 00 0 1.0000 0 01.0000 0 1.0000 1.0000 00 0 0 0.5000 1.0000U =Columns 1 through 80.7071 0 0 -1.0000 -0.7071 0 0 00 1.0000 0 0 0 -1.0000 0 00 0 1.0000 0 0 0 0 00 0 0 1.0000 0 0 0 00 0 0 0 0.7071 1.0000 0 00 0 0 0 0 -1.0000 1.0000 00 0 0 0 0 0 1.0000 00 0 0 0 0 0 0 -1.00000 0 0 0 0 0 0 00 0 0 0 0 0 0 00 0 0 0 0 0 0 00 0 0 0 0 0 0 00 0 0 0 0 0 0 0Columns 9 through 130 0 0 0 00 0 0 0 00 0 0 0 00 0 0 0 0-0.7071 -1.0000 0 0 00 1.0000 0 0 00 0 0 0 00 0 0 0 00.7071 0 0 -0.7071 00 1.0000 0 0 -1.00000 0 1.0000 0 00 0 0 1.4142 00 0 0 0 1.0000P =0 0 1 0 0 0 0 0 0 0 0 0 01 0 0 0 0 0 0 0 0 0 0 0 00 1 0 0 0 0 0 0 0 0 0 0 00 0 0 1 0 0 0 0 0 0 0 0 00 0 0 0 0 0 1 0 0 0 0 0 00 0 0 0 0 0 0 1 0 0 0 0 00 0 0 0 0 1 0 0 0 0 0 0 00 0 0 0 1 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 1 0 00 0 0 0 0 0 0 0 1 0 0 0 00 0 0 0 0 0 0 0 0 1 0 0 00 0 0 0 0 0 0 0 0 0 0 1 00 0 0 0 0 0 0 0 0 0 0 0 1>> F=U\(L\B)F =10.606637.500010.606627.5000-15.000010.606627.5000-10.60667.5000解:程序及运算结果:Lutx.m文件:function [L,U,p,sig] = lutx(A) %LU Triangular factorization% [L,U,p,sig] = lutx(A) computes a unit lower triangular % matrix L, an upper triangular matrix U, a permutation % vector p, and a scalar sig, so that L*U = A(p,:) and% sig = +1 or -1 if p is an even or odd permutation. [n,n] = size(A);p = (1:n)';w=0for k = 1:n-1% Find largest element below diagonal in k-th column [r,m] = max(abs(A(k:n,k)));m = m+k-1;% Skip elimination if column is zeroif (A(m,k) ~= 0)% Swap pivot rowif (m ~= k)A([k m],:) = A([m k],:);p([k m]) = p([m k]);w=w+1;end% Compute multipliersi = k+1:n;A(i,k) = A(i,k)/A(k,k);% Update the remainder of the matrixj = k+1:n;A(i,j) = A(i,j) - A(i,k)*A(k,j);endend% Separate resultL = tril(A,-1) + eye(n,n)U = triu(A)psig=(-1)^wmydet.m文件:function det=mydet(A)[L,U,p,sig] = lutx(A)det=sig*prod(diag(U))运行结果:>> a=2^(1/2)/2a =0.7071>> A=[0 1 0 0 0 -1 0 0 0 0 0 0 00 0 1 0 0 0 0 0 0 0 0 0 0a 0 0 -1 -a 0 0 0 0 0 0 0 0a 0 -1 0 -a 0 0 0 0 0 0 0 00 0 0 1 0 0 0 -1 0 0 0 0 00 0 0 0 0 0 1 0 0 0 0 0 00 0 0 0 a 1 0 0 -a -1 0 0 00 0 0 0 a 0 1 0 -a 0 0 0 00 0 0 0 0 0 0 0 0 1 0 0 -10 0 0 0 0 0 0 0 0 0 1 0 00 0 0 0 0 0 0 1 a 0 0 -a 00 0 0 0 0 0 0 0 a 0 1 a 00 0 0 0 0 0 0 0 0 0 0 a 1]A =Columns 1 through 80 1.0000 0 0 0 -1.0000 0 00 0 1.0000 0 0 0 0 00.7071 0 0 -1.0000 -0.7071 0 0 00.7071 0 -1.0000 0 -0.7071 0 0 00 0 0 1.0000 0 0 0 -1.00000 0 0 0 0 0 1.0000 00 0 0 0 0.7071 1.0000 0 00 0 0 0 0.7071 0 1.0000 00 0 0 0 0 0 0 00 0 0 0 0 0 0 00 0 0 0 0 0 01.00000 0 0 0 0 0 0 00 0 0 0 0 0 0 0Columns 9 through 130 0 0 0 00 0 0 0 00 0 0 0 00 0 0 0 00 0 0 0 00 0 0 0 0-0.7071 -1.0000 0 0 0-0.7071 0 0 0 00 1.0000 0 0 -1.00000 0 1.0000 0 00.7071 0 0 -0.7071 00.7071 0 1.0000 0.7071 00 0 0 0.7071 1.0000>> mydet(A)w =L =Columns 1 through 81.0000 0 0 0 0 0 0 00 1.0000 0 0 0 0 0 00 0 1.0000 0 0 0 0 01.0000 0 -1.0000 1.0000 0 0 0 00 0 0 0 1.0000 0 0 00 0 0 0 1.0000 1.0000 0 00 0 0 0 0 0 1.0000 00 0 0 1.0000 0 0 01.00000 0 0 0 0 0 0-1.00000 0 0 0 0 0 0 00 0 0 0 0 0 0 00 0 0 0 0 0 0 00 0 0 0 0 0 0 0Columns 9 through 130 0 0 0 00 0 0 0 00 0 0 0 00 0 0 0 00 0 0 0 00 0 0 0 00 0 0 0 00 0 0 0 01.0000 0 0 0 00 1.0000 0 0 00 0 1.0000 0 01.0000 0 1.0000 1.0000 00 0 0 0.5000 1.0000U =Columns 1 through 80.7071 0 0 -1.0000 -0.7071 0 0 00 1.0000 0 0 0 -1.0000 0 00 0 1.0000 0 0 0 0 00 0 0 1.0000 0 0 0 00 0 0 0 0.7071 1.0000 0 00 0 0 0 0 -1.0000 1.0000 00 0 0 0 0 0 1.0000 00 0 0 0 0 0 0 -1.00000 0 0 0 0 0 0 00 0 0 0 0 0 0 00 0 0 0 0 0 0 00 0 0 0 0 0 0 00 0 0 0 0 0 0 0Columns 9 through 130 0 0 0 00 0 0 0 00 0 0 0 00 0 0 0 0-0.7071 -1.0000 0 0 00 1.0000 0 0 00 0 0 0 00 0 0 0 00.7071 0 0 -0.7071 00 1.0000 0 0 -1.00000 0 1.0000 0 00 0 0 1.4142 00 0 0 0 1.0000p =31247865119101213sig =-1L =Columns 1 through 81.0000 0 0 0 0 0 0 00 1.0000 0 0 0 0 0 00 0 1.0000 0 0 0 0 01.0000 0 -1.0000 1.0000 0 0 0 00 0 0 0 1.0000 0 0 00 0 0 0 1.0000 1.0000 0 00 0 0 0 0 0 1.0000 00 0 0 1.0000 0 0 01.00000 0 0 0 0 0 0 -1.00000 0 0 0 0 0 0 00 0 0 0 0 0 0 00 0 0 0 0 0 0 00 0 0 0 0 0 0 0Columns 9 through 130 0 0 0 00 0 0 0 00 0 0 0 00 0 0 0 00 0 0 0 00 0 0 0 00 0 0 0 00 0 0 0 01.0000 0 0 0 00 1.0000 0 0 00 0 1.0000 0 01.0000 0 1.0000 1.0000 00 0 0 0.5000 1.0000U =Columns 1 through 80.7071 0 0 -1.0000 -0.7071 0 0 00 1.0000 0 0 0 -1.0000 0 00 0 1.0000 0 0 0 0 00 0 0 1.0000 0 0 0 00 0 0 0 0.7071 1.0000 0 00 0 0 0 0 -1.0000 1.0000 00 0 0 0 0 0 1.0000 00 0 0 0 0 0 0 -1.00000 0 0 0 0 0 0 00 0 0 0 0 0 0 00 0 0 0 0 0 0 00 0 0 0 0 0 0 00 0 0 0 0 0 0 0Columns 9 through 130 0 0 0 00 0 0 0 00 0 0 0 00 0 0 0 0-0.7071 -1.0000 0 0 00 1.0000 0 0 00 0 0 0 00 0 0 0 00.7071 0 0 -0.7071 00 1.0000 0 0 -1.00000 0 1.0000 0 00 0 0 1.4142 00 0 0 0 1.0000 p =31247865119101213sig =-1ans =-0.5000解:程序及运算结果:function [L,U,p] = lutx1(A)[n,n] = size(A);p = (1:n)';for k = 1:n-1[r,m] = max(abs(A(k:n,k)));m = m+k-1;if (A(m,k) ~= 0)if (m ~= k)A([k m],:) = A([m k],:);p([k m]) = p([m k]);endfor i=k+1:nA(i,k)=A(i,k)/A(k,k);endfor j=k+1:nA(i,j)=A(i,j)-A(i,k)*A(k,j);endendendL=tril(A,-1)+eye(n,n)U=triu(A)运行结果:>> lutx1(A)L =1 0 0 0 0 0 0 0 0 0 0 0 00 1 0 0 0 0 0 0 0 0 0 0 00 0 1 0 0 0 0 0 0 0 0 0 00 0 0 1 0 0 0 0 0 0 0 0 01 0 -1 0 1 0 0 0 0 0 0 0 00 0 0 0 -1 1 0 0 0 0 0 0 00 0 0 0 0 0 1 0 0 0 0 0 00 0 0 0 0 0 0 1 0 0 0 0 00 0 0 0 -1 0 1 0 1 0 0 0 00 0 0 0 0 0 0 0 0 1 0 0 00 0 0 0 0 0 0 0 0 0 1 0 00 0 0 0 0 0 0 0 -1 0 1 1 00 0 0 0 0 0 0 0 0 0 0 1 1 U =Columns 1 through 80.7071 0 0 -1.0000 -0.7071 0 0 00 1.0000 0 0 0 -1.0000 0 00 0 1.0000 0 0 0 0 00 0 0 1.0000 0 0 0 -1.00000 0 0 0 -0.7071 0 0 00 0 0 0 0 1.0000 0 00 0 0 0 0 0 1.0000 00 0 0 0 0 0 01.00000 0 0 0 0 0 0 00 0 0 0 0 0 0 00 0 0 0 0 0 0 00 0 0 0 0 0 0 00 0 0 0 0 0 0 0Columns 9 through 130 0 0 0 00 0 0 0 00 0 0 0 00 0 0 0 00 0 0 0 0-0.7071 -1.0000 0 0 00 0 0 0 00.7071 0 0 -0.7071 0-0.7071 0 0 0 00 1.0000 0 0 -1.00000 0 1.0000 0 00 0 0 0.7071 00 0 0 0 1.0000ans =1 0 0 0 0 0 0 0 0 0 0 0 00 1 0 0 0 0 0 0 0 0 0 0 00 0 1 0 0 0 0 0 0 0 0 0 00 0 0 1 0 0 0 0 0 0 0 0 01 0 -1 0 1 0 0 0 0 0 0 0 00 0 0 0 -1 1 0 0 0 0 0 0 00 0 0 0 0 0 1 0 0 0 0 0 00 0 0 0 0 0 0 1 0 0 0 0 00 0 0 0 -1 0 1 0 1 0 0 0 00 0 0 0 0 0 0 0 0 1 0 0 00 0 0 0 0 0 0 0 0 0 1 0 00 0 0 0 0 0 0 0 -1 0 1 1 00 0 0 0 0 0 0 0 0 0 0 1 1。

最新高斯消去法和列主元高斯消去法解线性方程组的程序(C语言)

最新高斯消去法和列主元高斯消去法解线性方程组的程序(C语言)

//Gauss消去法解线性方程组//参考教材《计算方法教程》第二版,西安交通大学出版社#include<stdio.h>int main(void){float A[7][7]={{3,-5,6,4,-2,-3,8},{1,1,-9,15,1,-9 ,2},{2,-1,7,5,-1,6,11},{-1,1,3,2,7,-1,-2},{4,3,1,-7,2,1,1},{2,9,-8,11,-1,-4,-1},{7,2,-1, 2,7,-1,9}};float b[7]={11,2,29,9,5,8,25};float x[7]={0};float Aik,S;int i,j,k;int size=7;printf("A[][]\n");for(i=0;i<size;i++){for(j=0;j<size;j++)printf("%f ",A[i][j]);printf("\n");}printf("b[]\n");for(i=0;i<size;i++)printf("%f ",b[i]);printf("\n\n");//消去过程for(k=0;k<size-1;k++){if(!A[k][k])return -1;for(i=k+1;i<size;i++){Aik=A[i][k]/A[k][k];for(j=k;j<size;j++){A[i][j]=A[i][j]-Aik*A[k][j];}b[i]=b[i]-Aik*b[k];}}//消去的结果printf("A[]\n");for(i=0;i<size;i++){for(j=0;j<size;j++)printf("%f ",A[i][j]);printf("\n");}printf("b[]\n");for(i=0;i<size;i++)printf("%f ",b[i]);printf("\n\n");//回代过程x[size-1]=b[size-1]/A[size-1][size-1];for(k=size-2;k>=0;k--){S=b[k];for(j=k+1;j<size;j++){S=S-A[k][j]*x[j];}x[k]=S/A[k][k];}//solutionprintf("The solution x[]=\n");for(i=0;i<size;i++)printf("%f ",x[i]);return 0;}/列主元Gauss消去法解线性方程组//参考教材《计算方法教程》第二版,西安交通大学出版社#include<stdio.h>#include<math.h>int main(void){float A[7][7]={{3,-5,6,4,-2,-3,8},{1,1,-9,15,1,-9 ,2},{2,-1,7,5,-1,6,11},{-1,1,3,2,7,-1,-2},{4,3,1,-7,2,1,1},{2,9,-8,11,-1,-4,-1},{7,2,-1, 2,7,-1,9}}; float b[7]={11,2,29,9,5,8,25};float x[7]={0};float Aik,S,temp;int i,j,k;float max;//列主元的绝对值int col;//列主元所在的行int size=7;printf("A[][]\n");for(i=0;i<size;i++){for(j=0;j<size;j++)printf("%f ",A[i][j]);printf("\n");}printf("b[]\n");for(i=0;i<size;i++)printf("%f ",b[i]);printf("\n\n");//-------消去过程---------for(k=0;k<size-1;k++){max=fabs(A[k][k]);col=k;//查找最大元素所在的行for(i=k;i<size;i++){if(max<fabs(A[i][k])){max=fabs(A[i][k]);col=i;}}printf("col:%d\n",col);for(j=k;j<size;j++){temp=A[col][j];A[col][j]=A[k][j];A[k][j]=temp;}temp=b[col];b[col]=b[k];b[k]=temp;if(!A[k][k])return -1;for(i=k+1;i<size;i++){Aik=A[i][k]/A[k][k];for(j=k;j<size;j++){A[i][j]=A[i][j]-Aik*A[k][j];}b[i]=b[i]-Aik*b[k];}}//消去的结果printf("A[]\n");for(i=0;i<size;i++){for(j=0;j<size;j++)printf("%f ",A[i][j]);printf("\n");}printf("b[]\n");for(i=0;i<size;i++)printf("%f ",b[i]);printf("\n\n");//回代过程x[size-1]=b[size-1]/A[size-1][size-1];for(k=size-2;k>=0;k--){S=b[k];for(j=k+1;j<size;j++){S=S-A[k][j]*x[j];}x[k]=S/A[k][k];}//solutionprintf("The solution x[]=\n");for(i=0;i<size;i++)printf("%f ",x[i]);return 0;} 填充图案代码查询一、编码查询。

matlab高斯消gf,高斯消去、追赶法matlab(示例代码)

matlab高斯消gf,高斯消去、追赶法matlab(示例代码)

matlab⾼斯消gf,⾼斯消去、追赶法matlab(⽰例代码)1. 分别⽤Gauss消去法、列主元Gauss消去法、三⾓分解⽅法求解⽅程组程序:(1)Guess消去法:function x=GaussXQByOrder(A,b)%Gauss消去法N = size(A);n = N(1);x = zeros(n,1);for i=1:(n-1)for j=(i+1):nif(A(i,i)==0)disp(‘对⾓元不能为0‘);return;endm = A(j,i)/A(i,i);A(j,i:n)=A(j,i:n)-m*A(i,i:n);b(j)=b(j)-m*b(i);endendx(n)=b(n)/A(n,n);for i=n-1:-1:1x(i)=(b(i)-sum(A(i,i+1:n)*x(i+1:n)))/A(i,i);end命令⾏输⼊:A=[1 -1 2 1;-1 3 0 -3 ;2 0 9 -6;1 -3 -6 19];b=[1 3 5 7];b=b‘;x=GaussXQByOrder(A,b)-8.0000000000000000.3333333333333333.6666666666666672.000000000000000(2)列主元Gauss消去法程序:function x=GaussXQLineMain(A,b)%列主元Gauss消去法N = size(A);n = N(1);x = zeros(n,1);zz=zeros(1,n);for i=1:(n-1)[~,p]=max(abs(A(i:n,i)));zz=A(i,:);A(i,:)=A(p+i-1,:);A(p+i-1,:)=zz;temp=b(i);b(i)=b(i+p-1);b(i+p-1)=temp;for j=(i+1):nm = A(j,i)/A(i,i);A(j,i:n)=A(j,i:n)-m*A(i,i:n);b(j)=b(j)-m*b(i);endendx(n)=b(n)/A(n,n);for i=n-1:-1:1x(i)=(b(i)-sum(A(i,i+1:n)*x(i+1:n)))/A(i,i); end命令⾏:A=[1 -1 2 1;-1 3 0 -3 ;2 0 9 -6;1 -3 -6 19];x=GaussXQLineMain(A,b)运⾏结果:x =-8.0000000000000050.3333333333333323.6666666666666682.000000000000000(3)三⾓分解⽅法程序:function x = LU(A,b)%三⾓分解N = size(A);n = N(1);L = eye(n,n);U = zeros(n,n);x = zeros(n,1);y = zeros(n,1);U(1,1:n) = A(1,1:n);L(1:n,1) = A(1:n,1)/U(1,1);for k=2:nfor i=k:nU(k,i) = A(k,i)-L(k,1:(k-1))*U(1:(k-1),i);endfor j=(k+1):nL(j,k) = (A(j,k)-L(j,1:(k-1))*U(1:(k-1),k))/U(k,k); endendy(1)=b(1)/L(1,1);for i=2:ny(i)=b(i)-sum(L(i,1:i-1)*y(1:i-1));endx(n)=y(n)/U(n,n);x(i)=(y(i)-sum(U(i,i+1:n)*x(i+1:n)))/U(i,i);end命令⾏:A=[1 -1 2 1;-1 3 0 -3 ;2 0 9 -6;1 -3 -6 19];b=[1 3 5 7];b=b‘;x=LU(A,b)运⾏结果:x =-8.0000000000000000.3333333333333333.6666666666666672.000000000000000程序:function [times,wucha]=zhuiganfa(a,b,c,f)%追赶法:x为所求解,times为所有乘除运算次数(即时间),wucha为误差的2-范数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档