四则运算运算定律

合集下载

四则运算运算定律

四则运算运算定律
运算定律 整理与复习
1、减法的运算性质:
一个数连续减去两个数,等于一个数减 去这两个数的和. a-b-c = a-(b+c)
或者也可以先减第二个数再减第一个数. a-b-c = a-c-b
如:634-123-577 =634-( + ) 234-66-34=234- -66
2.乘法中的简89+11
(2) 546-127-373
(3)25×(4+8)
(4) 2400÷25÷4
(5)87×101
(6) 25×12
= 25×4×6
56×125 = 7×8×125
2、扩数和缩数
通常会遇到例如103、99等,十分接近整百整千的数字,把这些 数字拆分为100+3或者100-1之后,再与另一个因数进行乘法运算, 会更加简单。
1002×44 = (1000+2)×44
99×85 = (100-1)×85
3、除法的运算性质:
下面哪些算式运用了哪些定律?
117×3+117×7 = 117×(3+7)
乘法分配律
24×(5+12) = 24×17
按运算顺序计算
(8+80) × 125 = 8×125+80×125
乘法分配律
36 × (4× 6) = 36 × 6× 4
乘法交换律和 乘法结合律
看一看,错在哪!
125x88 =125x(80+8) =125x80+8 =10008
正确:
125x88 =125x(80+8) =125x80+125x8 =10000+1000 =11000
看一看,错在哪!
25x44 =25x(11x4) =25x11+25x4 =375

小学四年级数学知识点乘除法加减法四则运算定律和性质

小学四年级数学知识点乘除法加减法四则运算定律和性质

运算定律和性质1、加法交换律:两个加数交换位置,和不变。

用字母表示:a+b=b+a2、加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。

用字母表示:(a+b)+c= a +( b+c)3、减法的性质:一个数连续减去两个数,可以减去这两个减数的和。

用字母表示:a-b-c= a -( b+c) a -( b+c) = a-b-c4、一个数连续减去两个数,可以先减去第二个减数,再减去第一个减数。

用字母表示:a-b-c= a- c – b5、乘法交换律:两个因数交换位置,积不变。

用字母表示:a×b=b×a6、乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积不变。

用字母表示:(a×b)×c= a ×( b×c)7、乘法分配律:两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再相加。

用字母表示:(a+b)×c= a×c+b×c a ×( b+c) =a×b+a×c拓展:(a-b)×c= a×c-b×c a ×( b-c) =a×b-a×c8、除法的性质:一个数连续除以两个数,可以除以这两个除数的积。

用字母表示:a÷b÷c= a ÷( b×c) a ÷( b×c) = a÷b÷c9、一个数连续除以两个数,可以先除以第二个除数,再除以第一个除数。

用字母表示:a÷b÷c= a÷ c ÷b。

小学四年级数学知识点:乘除法加减法四则运算定律和性质

小学四年级数学知识点:乘除法加减法四则运算定律和性质

⼩学四年级数学知识点:乘除法加减法四则运算定律和性质运算定律和性质1、加法交换律:两个加数交换位置,和不变。

⽤字母表⽰:a+b=b+a2、加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。

⽤字母表⽰:(a+b)+c= a +( b+c)3、减法的性质:⼀个数连续减去两个数,可以减去这两个减数的和。

⽤字母表⽰:a-b-c= a -( b+c) a -( b+c) = a-b-c4、⼀个数连续减去两个数,可以先减去第⼆个减数,再减去第⼀个减数。

⽤字母表⽰:a-b-c= a- c – b5、乘法交换律:两个因数交换位置,积不变。

⽤字母表⽰:a×b=b×a6、乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积不变。

⽤字母表⽰:(a×b)×c= a ×( b×c)7、乘法分配律:两个数的和与⼀个数相乘,可以先把它们与这个数分别相乘,再相加。

⽤字母表⽰:(a+b)×c= a×c+b×c a ×( b+c) =a×b+a×c拓展:(a-b)×c= a×c-b×c a ×( b-c) =a×b-a×c8、除法的性质:⼀个数连续除以两个数,可以除以这两个除数的积。

⽤字母表⽰:a÷b÷c= a ÷( b×c) a ÷( b×c) = a÷b÷c9、⼀个数连续除以两个数,可以先除以第⼆个除数,再除以第⼀个除数。

⽤字母表⽰:a÷b÷c= a÷ c ÷b。

四则运算定律概念及公式

四则运算定律概念及公式
a-b-c=a-c-b
乘法的运算定律
两个数相乘,交换两个因数的位置,积不变,这就叫做乘法交换律。
a×b=b×a
三个数相乘,先乘前两个数,或者先乘后两个数,积不变。这就叫做乘法结合律。
(a×b)×c=a×(b×c)
加法运算定律
两个数相加,交换加数的位置,和不变。这就叫做加法交换律。
a+b+a
三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。这就叫做加法结合律。
(a+b)+c=a+(b+c)
加法运算定律的应用
在在计算加法时,要先观察数字的特点,看看哪些数字可以凑成整十、整百……,灵活运用加法运算定律,可以使计算更简便。
连减的简便运算
在计算连减时,可以把减数加起来,再从被减数里减去它们的和。
a-b-c=a-(b+c)
在计算减法时,要先观察数字的特点,如果减数的和可以凑成整十、整百……的数时,就可以改写成被减数减去两个减数的和的形式。
在连减计算时,任意交换减数的位置,差不变。
(如果被减数减去与它不相邻的数能得到一个整十、整百……的数时,可以先交换减数的位置再计算。)

完整版)四则运算和运算定律知识点

完整版)四则运算和运算定律知识点

完整版)四则运算和运算定律知识点四则运算和运算定律是数学中的基础知识点。

首先,四则运算包括加法、减法、乘法和除法,没有括号的算式中,单独的加减法或乘除法按顺序从左往右计算,有混合运算的先算乘除法再算加减法。

如果有括号,要先算括号里面的,再算括号外面的,括号的计算顺序为小→中→大,括号里面的运算遵循以上的计算顺序。

其次,运算定律包括加法交换律、加法结合律、乘法交换律、乘法结合律和乘法分配律。

这些定律可以简化计算,例如交换加数位置不影响和的大小,三个数相加可以先把前两个数相加或后两个数相加,积的顺序也可以交换,两个数的和与一个数相乘可以先分别相乘再相加,两个数的差与一个数相乘可以先分别相乘再相减。

此外,还有连减定律和连除定律,也可以简化计算。

最后,我们可以通过简便计算来练四则运算和运算定律的应用,例如常见乘法计算、加法交换律、加法结合律和乘法交换律的简算例题。

掌握好这些知识点,可以帮助我们更快更准确地进行数学计算。

五、乘法结合律的应用:99×125×8可以改写为99×(125×8),再进行简算得到.六、加法交换律和结合律的应用:65+286+35+714可以改写为(65+35)+(286+714),再进行简算得到1100.七、乘法交换律和结合律的应用:25×0.125×4×8可以改写为(25×4)×(0.125×8),再进行简算得到100.八、乘法分配律的应用:1.分解式25×(40+4)可以拆分为25×40+25×4,再进行简算得到1100.2.合并式135×12.3—135×2.3可以拆分为135×(12.3—2.3),再进行简算得到1350.3.特殊例题1:99×25.6+25.6可以拆分为99×25.6+25.6×1,再进行简算得到2560.4.特殊例题2:45×102可以拆分为45×(100+2),再进行简算得到4590.5.特殊例题3:99×26可以拆分为(100—1)×26,再进行简算得到2574.6.特殊例题4:35.3×8+35.3×6—4×35.3可以拆分为35.3×(8+6—4),再进行简算得到353.九、连减的简便运算例子:1.528—6.5—3.5可以拆分为528—(6.5+3.5),再进行简算得到518.2.528—89—128可以拆分为528—128—89,再进行简算得到311.3.52.8—(40+12.8)可以拆分为52.8—12.8—40,再进行简算得到0.十、连除的简便运算例子:3200÷25÷4可以拆分为3200÷(25×4),再进行简算得到32.十一、其他简便运算例子:1.256—58+44可以拆分为256+44—58,再进行简算得到242.2.250÷8×4可以拆分为250×4÷8,再进行简算得到125.。

四则运算运算律

四则运算运算律

四则运算运算律加法运算律应用:两个数相加,交换……;三个数相加,可以先把前两数相加,再和第三个数……复习加法运算律,如下: 54+87+13 39+144+61延伸:减法:a-b-c=a-c-b=a-(b+c) 除法:a ÷b ÷c=a ÷c ÷b=a ÷(b ×c)酌情巧用分配律分配律是指m a b ma mb ()+=+,它可以推广到多个数的情况,例如,m a b c d ma mb mc md ()+++=+++,在进行有理数的乘除运算时,适当运用分配律改变运算顺序,可以大大简化计算过程。

下面举例说明。

一、直接运用分配律 二、逆向运用分配律例1. 计算:36795671834⨯--+() 例2. 计算:324123241332456...⨯+⨯-⨯ 解:原式=⨯-⨯-⨯+⨯36793656367183634 解:原式=⨯+-324121356.()=--+=2830142711=⨯-=32456560.()三、变形后顺向运用分配律 例3. 计算:()()()-⨯-+⨯-351224711189 解:原式=--⨯-++⨯-()()()()351224711189=-⨯-+-⨯-+⨯-+⨯-=+--=()()()()()()3245122479111897210635121312四、变形后逆向运用分配律例4. 计算:2277931383523÷+⨯--() 解:原式=⨯+⨯--2279710383523()=⨯+⨯--=⨯--=-23172387232317871113()()五、综合运用分配律例5. 计算:[()()]()(.)(.)(.)(.)---+⨯-+-⨯-+-⨯-1316291083407540945913407 解:原式=-⨯---⨯-+⨯-+-⨯-+-()()()()()(.)[(.)(.)]131081610829108340954094591 =--+=36182434093403例:24×2425怎样计算简便?运用什么运算律?方法一:原式=(25-1)×2425 方法二:原式=24×(1-125 )=25×2425 -1×2425 =24×1-24×125=24-2425 =24-2425=23125 =23125练习:用分配律计算下面各题:()()()()()11223453023812534125181253531428415168431383522718722151212131624911123524453()()()()()()().-+⨯⨯+⨯+-⨯-⨯-+⨯-⨯-+⨯-⨯-+-⨯+⨯+⨯答案:(1)19;(2)125;(3)10612;(4)-23;(5)-204乘法交换律和结合律练习(25×125)×(8×4)(80+8)×25 35×37+65×37 135×6+65×6 (43+25)×40 8×(125+7) 18×82+18×47+18×712 5×(40-4)16×256-16×56 125×(80+8) 69×45+31×45 38×29+38123×99 +123 125 ×7+125 79×99+79 35×102 47×10125×44 45×201-45 98×37 38×101-38 87×199 25×199+25 25×199 99×201-99 102×83 125×88 124×25-25×24 (80+8)×25 35×37+65×37 135×6+65×6 (43+25)×40 8×(125+7)18×82+18×47+18×7 14×24+26×24 30×2+25×2 (30×25)×4025×4=4×25=125×8=8×125=20×5=2×50=5×12=12×5=4×50=50×4=(15×25)×415×(25×4)(6×12)×56×(12×5)(13×5)×2013×(5×20) 299 ×120+120 38×25×48×17×1254×8×25×12535×2×5=35×(2×__)125×5×8=(__×__)×5 23×3= 70×5= 13×100=25×4= 125×8= 125×16=16×25=25×6×4=25×12=(8×125)×(4×25)8×4×125×25125×8×8(25×4)×6125×32= 125×8×4=64×125=42×125×8=27×4×5= 8×(7×25)= 195×25×4= 110×2+90×2=2×125×8×5 125×489×4 20×17×2×5×2×2 (110+90)×212×10538×62+38×38 75×14—70×14 101×38 12×98 55×99+5555×99 12×29+12 58×199+58 42×79+42 52×8969×101—69 55×21—55 125×(80+8) 125×(80×8) 125×32×2599×99+99 38×7+31×14 25×46+50×27 79×25+22×25—25乘法分配律练习题2一、选择。

四则运算法则(四则混合运算法则口诀)

四则运算法则(四则混合运算法则口诀)

四则运算法则(四则混合运算法则口诀)四则运算法则(四则混合运算法则口诀)知识点一:四则运算的概念和运算顺序1.加、减、乘、除合称为四则运算。

2.在没有括号的公式中,如果只有加减或乘除,则应从左至右依次计算。

3.如果没有括号的公式中有乘除法、加减法,则先计算乘除法,再计算加减法。

4、算式有括号,要先算括号里面的,再算括号外面的;大、中、小括号的计算顺序为小→中→大。

括号里面的计算顺序遵循以上1、2、3条的计算顺序。

知识点二:0的运算1、0不能做除数;字母表示:无,a÷0是错误的表达2、一个数加上0还得原数;字母表示:a+0 = a3、一个数减去0还得原数;字母表示:a-0 = a4、一个数减去它本身,差是0;字母表示:a-a =05、一个数和0相乘,仍得0;字母表示:a×0 =06、0除以任何非0的数,还得0;字母表示:0÷a =0(a≠0)知识点三:运算定律1.加法交换律:在两个数的加法运算中,两个加数的位置互换,和不变。

字母的意思是:a+b=b+a2、加法结合律:三个数相加,先把前两个数相加,再加另一个加数;或者先把后两个数相加,再加另一个加数,和不变。

字母表示:(a+b)+c=a+(b+c)3.乘法互换定律:在两个数相乘的乘法运算中,两个乘数的位置互换,乘积不变。

字母的意思是:a×b=b×a4.乘法结合律:三个数相乘时,前两个数先相乘,或者后两个数先相乘,乘积不变。

字母表示:(a×b)×c=a×(b×c)5、乘法分配律:两个数相加(或相减)再乘另一个数,等于把这个数分别同两个加数(减数)相乘,再把两个积相加(相减),得数不变。

字母表示:①(a+b)×c=a×c+b×c;a×c+b×c=(a+b)×c;②a×(b—c)=a×b—a×c;a×b—a×c=a×(b—c)6、连减定律:①一个数连续减两个数, 等于这个数减后两个数的和,得数不变;字母表示:a—b—c=a—(b+c);a—(b+c)=a—b—c;②在三个数的加减法运算中,交换后两个数的位置,得数不变。

四则运算和运算定律知识点

四则运算和运算定律知识点

四则运算和运算定律知识点一、四则运算的概念和运算顺序1、加法、减法、乘法和除法统称四则运算。

2、在没有括号的算式里,如果只有加、减法或者只有乘、除法,都要从左往右按顺序计算。

3、在没有括号的算式里,既有乘、除法又有加、减法的,要先算乘除法,再算加减法。

4、算式有括号,要先算括号里面的,再算括号外面的;大、中、小括号的计算顺序为小→中→大。

括号里面的计算顺序遵循以上1、2、3条的计算顺序。

二、运算定律1、加法交换律:两个数相加,交换加数的位置,和不变。

字母表示:a+b=b+a2、加法结合律:三个数相加,先把前两个数相加;或者先把后两个数相加,和不变。

字母表示:(a+b)+c=a+(b+c)3、乘法交换律:两个数相乘,交换两个因数的位置,积不变。

字母表示:a×b=b×a4、乘法结合律:三个数相乘,先乘前两个数,或先乘后两个数,积不变。

字母表示:(a×b)×c=a×(b×c)5、乘法分配律:①两个数的和与一个数相乘,可以先把他们与这个数分别相乘,再相加,得数不变,字母表示:(a+b)×c=a×c+b×c;a×c+b×c=(a+b)×c;②两个数的差与一个数相乘,可以先把他们与这个数分别相乘,再相减,得数不变,字母表示:(a—b)×c=a×c—b×c;a×c—b×c=(a—b)×c;6、连减定律:①一个数连续减去两个数, 等于这个数减后两个数的和,得数不变;字母表示:a—b—c=a—(b+c);a—(b+c)=a—b—c;②在三个数的加减法运算中,交换后两个数的位置,得数不变。

字母表示:a—b—c=a—c—b;a—b+c=a+c—b7、连除定律:①一个数连续除以两个数, 等于这个数除以后两个数的积,得数不变。

字母表示:a÷b÷c=a÷(b×c);a÷(b×c)=a÷b÷c;②在三个数的乘除法运算中,交换后两个数的位置,得数不变。

四则运算的运算定律

四则运算的运算定律

四则运算的运算定律
(一)加法运算定律:
1、两个加数交换位置,和不变,这叫做加法交换律。

字母公式:a+b=b+a
2、先把前两个数相加,或者先把后两个数相加,和不变,这叫做加法结合律。

字母公式:(a+b) +c=a+(b+c)
(二)乘法运算定律:
1、交换两个因数的位置,积不变,这叫做乘法交换律。

字母公式:a×b=b×a
2、先乘前两个数,或者先乘后两个数,积不变,这叫做乘法结合律。

字母公式:(a×b)×c=a×(b×c)
3、两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再相加,这叫做乘法分配律。

用字母公式:(a+b)×c=a×c+b×c或a×(b+c) =a×b+a×c 拓展:(a-b)×c=a×c-b×c或a×(b-c) =a×b-a×c
(三)减法简便运算:
1、一个数连续减去两个数,可以用这个数减去这两个数的和。

用字母表示:a-b-c=a-(b+c)
2、一个数连续减去两个数,可以用这个数先减去后一个数再减去前一个数。

用字母表示:a-b-c=a—c-b
(四)除法简便运算:
1、一个数连续除以两个数,可以用这个数除以这两个数的积。

用字母表示:a÷b÷c=a÷(b×c)
2、一个数连续除以两个数,可以用这个数先除以后一个数再除以前一个数。

用字母表示:a÷b÷c=a÷c÷b。

总复习(四则运算及运算定律)

总复习(四则运算及运算定律)
交换律定义
交换律是指两个数相加或相乘,交换加数或因数 的位置,和或积不变。
交换律的应用
在加法或乘法中,交换律允许我们改变加数或因 数的顺序,而不改变结果。
交换律的数学表示
a + b = b + a 或 ab = ba。
结合律
结合律定义
结合律是指三个数相加或相乘, 改变加数或因数的组合方式,和
或积不变。
分配律的应用
在乘法和除法中,分配律 允许我们改变乘数或除数 的组合方式,而不改变结 果。
分配律的数学表示
(a + b) × c = a × c + b × c 或 a ÷ (b + c) = a ÷ b - a ÷ c。
03 运算顺序理解
先乘除后加减
乘法和除法在加法和减法之前 进行,这是数学运算的基本顺 序。
有括号先算括号里的
括号内的运算具有最高优先级, 应首先计算括号内的表达式。
例如,在表达式"(2+3)*4"中, 应先计算括号内的加法运算
"2+3=5",然后再与4进行乘法 运算"5*4=20"。
有括号先算括号里的规则确保了 数学表达式的精确计算,避免了
优先级混淆。
04 综合练习与解答
练习题一:基础四则运算
除法
掌握除法的试商方法,能够准确 计算两位数、三位数甚至更多位 数的除法。

练习题二:运算定律应用
总结词
理解并能够应用四则运算中的基本定律, 如加法交换律、乘法交换律等,简化计算 过程。
乘法结合律
掌握乘法结合律的原理,能够在计算中灵 活运用,如$(a×b)×c=a×(b×c)$。
加法交换律

四则运算定律公式

四则运算定律公式

四则运算定律公式四则运算定律公式一、加法定律加法定律是四则运算中最基础的定律之一。

它包括以下几个要点:•任意数与零相加,结果仍为原数;•两个数相加,顺序不影响结果。

二、减法定律减法定律是四则运算中相对较为复杂的一条定律。

它主要涉及以下几点:•任意数减去零,结果仍为原数;•一个数减去自身,结果为零;•减法可以转换为加法运算。

三、乘法定律乘法定律是四则运算中比较重要的一条定律。

它包括以下关键内容:•任意数与零相乘,结果为零;•任意数与一相乘,结果仍为原数;•乘法满足交换律和结合律。

四、除法定律除法定律是四则运算中最复杂的一条定律,需要特别注意以下几个方面:•任意数除以一,结果仍为原数;•非零数除以零是不合法的;•除法可以转换为乘法运算。

五、小结四则运算定律公式是数学中非常重要的基础知识。

通过了解和熟练运用这些定律,我们能更加灵活地进行运算,简化计算过程。

在实际生活和工作中,四则运算定律也有着广泛的应用。

因此,我们应该加强相关知识的学习和理解,以提高我们的计算能力和数学素养。

六、实例应用接下来,我们将以实例的形式来应用和演示四则运算定律公式的使用。

假设有以下数学算式需要求解:1. 3 + 4 * 2 - 5 = ?2. 6 * 7 - (9 - 3) = ?3.8 / 2 + 5 - 1 = ?我们将逐步使用四则运算定律公式来计算结果:例1:1.首先,按照乘法定律,计算4 * 2 = 8;2.然后,按照加法定律,计算3 + 8 = 11;3.最后,按照减法定律,计算11 - 5 = 6。

所以,3 + 4 * 2 - 5 = 6。

例2:1.首先,按照减法定律,计算9 - 3 = 6;2.然后,按照乘法定律,计算6 * 7 = 42;3.最后,按照减法定律,计算42 - 6 = 36。

所以,6 * 7 - (9 - 3) = 36。

例3:1.首先,按照除法定律,计算8 / 2 = 4;2.然后,按照加法定律,计算4 + 5 = 9;3.最后,按照减法定律,计算9 - 1 = 8。

运算律的全部公式

运算律的全部公式

运算律的全部公式如下:
(1)加法交换律:a+b=b+a。

(2)加法结合律:(a+b)+c=a+(b+c)。

(3)乘法交换律:ab=ba。

(4)乘法结合律:(ab)c=a(bc)。

(5)乘法对加法的分配律:(a+b)c=ac+bc。

(6)乘法分配律公式:(a+b)×c=a×c+b×c
运算律既是重要的数学规律,也是数学运算所固有的性质。

1、根据运算的定义可以推导出运算律。

运算律是通过对一些等式的观察、比较和分析而抽象、概括出来的运算规律。

这个过程属于由具体到抽象、由特殊到一般的归纳,体现了合情推理的基本特点。

但从知识逻辑来说,运算律与相关运算的定义是相伴相生的。

数学家在定义四则运算的同时即需考虑“能否由定义出发合乎逻辑地推导出相应的运算律”。

2、运算定义和运算律是探索相关计算方法的依据。

完成运算、得出结果的方法、程序或途径,通常叫做运算方法或计算方法。

把运算方法所要求的操作程序和要点用相对准确、规范且比较容易理解的文本语言表述出来,或者将当前运算归结为学生早先已经掌握的相关运算,就是所谓的“运算法则”。

四则运算定律概念及公式

四则运算定律概念及公式

四则运算定律概念及公式
四则运算是指加法、减法、乘法和除法这四种基本运算。

四则运算定律是指这四种基本运算中的一些性质和规则。

1.加法定律:
-交换律:对于任意的实数a和b,a+b=b+a。

-结合律:对于任意的实数a、b和c,(a+b)+c=a+(b+c)。

2.减法定律:
-减法与加法的关系:对于任意的实数a、b和c,如果a+b=c,那么c-b=a。

3.乘法定律:
-交换律:对于任意的实数a和b,a*b=b*a。

-结合律:对于任意的实数a、b和c,(a*b)*c=a*(b*c)。

4.除法定律:
-除法与乘法的关系:对于任意的实数a、b和c(其中b和c不为零),如果a*b=c,那么c/b=a。

-倒数:对于任意的非零实数a,存在一个实数b,使得a*b=1,这个b被称为a的倒数,记作1/a。

此外,还有一些其他的四则运算定律:
5.零元素:
-加法的零元素:对于任意的实数a,a+0=a。

-乘法的零元素:对于任意的实数a,a*0=0。

6.乘法的单位元:
-乘法的单位元:对于任意的实数a,a*1=a。

7.分配律:
-左分配律:对于任意的实数a、b和c,a*(b+c)=a*b+a*c。

-右分配律:对于任意的实数a、b和c,(a+b)*c=a*c+b*c。

以上是四则运算的一些基本定律和公式。

在进行四则运算时,这些定律和公式可以帮助我们简化和优化计算过程,提高计算的准确性和效率。

四则运算定律性质整理

四则运算定律性质整理

四则运算运算定律性质整理一,四则运算运算定律1.加法结合律: 三个数相加,先把前两个数相加,再加上第三个数,或者先把后两个数相加,再和第一个数相加,他们的和不变,这叫加法结合律。

字母表达式 : ( a + b )+ c = a + ( b + c ) 例子: 456+455+445=456=456+(455+445)=456+900=13562.乘法结合律:三个数相乘,先把前两个数乘,再乘第三个数,或者先把后两个数相乘,再和第一个数相乘 ,它们的积不变,这叫乘法结合律。

字母表达式:( a xb )xc = a x (b x c ) 例子 : 243x8x125=243x( 8x125)=243x1000=2430003. 加法交换律: 两个数相加,交换加数的位置,它们的和不变,这叫做加法交换律。

字母表达式: a + b= b = a 例子: 123+345=345=1234乘法交换律 : 两个数相乘, 交换因数的位置,他们积不变,这叫做乘法交换律。

字母表达式: a x b = b x a 例子: 1276 x762 =762 x12765. 乘法分配律:两个数的和和一个数相乘,可以把两个加数分别与这个数相乘,再把两个积相加,所得的结果不变,这叫乘法分配律。

字母表达式:( a + b ) x c= a x c + b x c 例子:( 100+ 125 ) x8 = 8 x100 + 8x 125 =800 +1000 =1800二,四则运算性质1.减法运算性质:一个数连续减去两个数,可以先把两个减数加起来,再从被减数里减去。

字母表达式: a - b - c =a - ( b + c ) 例子: 274 – 23 – 177 =274 - (23 + 177 )=274 - 200 = 742.除法运算性质 :一个数连续除以两个数,可以先把两个除数乘起来 , 再去除被除数。

字母表达式: a ÷ b ÷ c = a ÷ ( b x c ) (b≠0 c≠0) 例子: 2000 ÷8÷125 =2000÷(8 x125 ) = 2000 ÷1000= 23.商不变性质:被除数和除数同时乘或除以一个相同的数,(零除外) ,它们的商不变,这叫做商不变性质. 字母表达式: a ÷ b = ( a ÷x c)÷ ( b ÷x c) ( b ≠ 0) ( c≠0 )例子:1100÷25 = (1100 x4 ) ÷ ( 25x 4) =4400÷100 =44。

加减乘除各种运算定律举列说明

加减乘除各种运算定律举列说明

加减乘除是我们在日常生活中经常需要用到的四则运算,而它们都有各自的定律和规则。

本文将从各种运算的定律出发,通过举例说明加减乘除的运算规则,帮助读者更好地理解和掌握这些基本的数学概念。

一、加法定律1. 加法交换律加法交换律指的是:对于任意两个实数 a 和 b,a + b = b + a。

3 + 5 = 5 + 3。

2. 加法结合律加法结合律指的是:对于任意三个实数 a、b 和 c,(a + b) + c = a +(b + c)。

(2 + 3) + 4 = 2 + (3 + 4)。

二、减法定律1. 减法的定义减法是加法的逆运算,即 a - b = c 可以简化为 a = b + c,其中 a、b 和 c 都为实数。

7 - 3 = 4,可以简化为 7 = 3 + 4。

2. 减法的性质减法具有不满足交换律和结合律的特点。

三、乘法定律1. 乘法交换律乘法交换律指的是:对于任意两个实数 a 和 b,a × b = b × a。

2 ×3 = 3 × 2。

2. 乘法结合律乘法结合律指的是:对于任意三个实数 a、b 和 c,(a × b) × c = a ×(b × c)。

(4 × 5) × 6 = 4 × (5 × 6)。

3. 乘法分配律乘法分配律指的是:对于任意三个实数 a、b 和 c,a × (b + c) = a ×b + a × c。

3 × (6 + 2) = 3 × 6 + 3 × 2。

四、除法定律1. 除法的基本概念除法是乘法的逆运算,即a ÷ b = c 可以简化为a = b × c,其中 a、b 和c 都为实数。

12 ÷ 4 = 3,可以简化为12 = 4 × 3。

2. 除法的性质除法具有不满足交换律和结合律的特点。

四则运算和运算定律知识点

四则运算和运算定律知识点

四则运算和运算定律知识点四则运算是数学中最基本且最常见的运算方式,包括加法、减法、乘法和除法。

四则运算在日常生活和各个学科中应用广泛,它们是建立数学基础的重要环节。

运算定律则是四则运算中的一些重要规则,它们帮助我们简化计算、加深理解和解决复杂问题。

下面将对四则运算和运算定律进行详细的介绍。

一、加法运算加法运算是将两个或多个数相加得到一个和的运算方式。

例如,3+4=7,表示将3和4相加得到7、加法运算有以下几个特点:1.交换律:a+b=b+a,两个数的顺序变化不影响结果。

例如,2+3=3+2=52.结合律:(a+b)+c=a+(b+c),将三个数按照不同的顺序相加得到的结果相同。

例如,(2+3)+4=2+(3+4)=93.加法逆元:对于任意的数a,存在一个数-b,使得a+(-b)=0。

例如,3+(-3)=0。

这里的-3就是数3的加法逆元。

二、减法运算减法运算是将一个数减去另一个数得到一个差的运算方式。

例如,5-3=2,表示将5减去3得到2、减法运算有以下几个特点:1.减法的定义:a-b=a+(-b),将减法运算转化为加法运算。

例如,5-3=5+(-3)=22.减法的交换律不存在:a-b≠b-a,减法的顺序不能随意调换,结果会发生改变。

三、乘法运算乘法运算是将两个或多个数相乘得到一个积的运算方式。

例如,2×3=6,表示将2和3相乘得到6、乘法运算有以下几个特点:1.交换律:a×b=b×a,两个数的顺序变化不影响结果。

例如,2×3=3×2=62.结合律:(a×b)×c=a×(b×c),将三个数按照不同的顺序相乘得到的结果相同。

例如,(2×3)×4=2×(3×4)=243.乘法逆元:对于任意的非零数a,存在一个数1/a,使得a×(1/a)=1、例如,2×(1/2)=1、这里的1/2就是数2的乘法逆元。

小学四年级数学知识点:乘除法加减法四则运算定律和性质

小学四年级数学知识点:乘除法加减法四则运算定律和性质

.;. 运算定律和性质1、加法交换律:两个加数交换位置,和不变。

用字母表示:a+b=b+a2、加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。

用字母表示:(a+b)+c= a +( b+c)3、减法的性质:一个数连续减去两个数,可以减去这两个减数的和。

用字母表示: a-b-c= a -( b+c) a -( b+c) = a-b-c4、一个数连续减去两个数,可以先减去第二个减数,再减去第一个减数。

用字母表示:a-b-c= a- c – b5、乘法交换律:两个因数交换位置,积不变。

用字母表示:a×b=b×a6、乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积不变。

用字母表示:(a×b)×c= a ×( b×c)7、乘法分配律:两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再相加。

用字母表示:(a+b)×c= a×c+b×c a ×( b+c) =a×b+a×c拓展:(a-b)×c= a×c-b×c a ×( b-c) =a×b-a×c8、除法的性质:一个数连续除以两个数,可以除以这两个除数的积。

用字母表示: a÷b÷c= a ÷( b×c) a ÷( b×c) = a÷b÷c9、一个数连续除以两个数,可以先除以第二个除数,再除以第一个除数。

用字母表示:a÷b÷c= a÷ c ÷ b。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档