北师大数学七年级下第一单元
北师大数学七年级下册第一单元1
1.4 整式乘法与除法知识点1 单项式乘单项式单项式乘单项式(1)单项式乘法法则:单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.注意:①在计算时,应先进行符号运算,积的系数等于各因式系数的积;②注意按顺序运算;③不要丢掉只在一个单项式里含有的字母因式;④此性质对于多个单项式相乘仍然成立.(2)单项式乘单项式的“三点规律”:①利用乘法交换律、结合律转化为数与数相乘,同底数幂相乘的形式,单独一个字母照抄;②不论几个单项式相乘,都可以用这个法则;③单项式乘单项式的结果仍是单项式.【典例】例1计算:2a2•5a=.【方法总结】本题考查了单项式乘以单项式,熟练掌握单项式乘以单项式的运算法则是解题的关键.例2计算(2x)2(﹣3xy2)=.【方法总结】本题考查了积的乘方以及单项式乘单项式,掌握相关运算法则是解答本题的关键.例3 计算(﹣b)2•(﹣b)3•(﹣b)5=;(﹣x2)•(﹣x)2•(﹣x)3=;﹣4xy3•(﹣xy)+(﹣3xy2)2=.【方法总结】此题主要考查了同底数幂的乘法运算、积的乘方运算等知识,正确掌握相关运算法则是解题关键.【随堂练习】1.计算:(﹣2x3y)•5xy3=.2.计算:(a)2•(3a)3=.3.计算:(a3b)•(﹣2bc2)=.知识点2 单项式乘多项式单项式乘多项式(1)单项式与多项式相乘的运算法则:单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.(2)单项式与多项式相乘时,应注意以下几个问题:①单项式与多项式相乘实质上是转化为单项式乘以单项式;②用单项式去乘多项式中的每一项时,不能漏乘;③注意确定积的符号.【典例】例1计算(﹣m2)•(2m+1)的结果是()A.﹣m3﹣2m2B.﹣m3+2m2C.﹣2m3﹣m2D.﹣2m3+m2【方法总结】此题考查了单项式乘多项式,熟练掌握单项式乘多项式的运算法则是解题的关键.例2一个长方体的长、宽、高分别为2x、2x﹣1、x2,它的体积等于()A.4x4﹣4x2B.4x4﹣2x3C.4x3﹣2x2D.4x4【方法总结】本题考查单项式乘多项式,长方体的体积计算方法,掌握长方体体积的计算公式是列出算式的前提,掌握单项式乘多项式的计算方法是得出正确答案的关键.例3计算:(﹣3x2)2•(﹣x2+2x﹣1).【方法总结】本题主要考查积的乘方,单项式乘多项式,解答的关键是对相应的运算法则的掌握.【随堂练习】1.计算:3x(2x﹣5)的结果为()A.6x2﹣15x B.6x2+5C.6x2+15x D.6x2﹣5x2.计算:﹣2x(x2﹣x+1).3.计算:.知识点3 多项式乘多项式多项式乘多项式(1)多项式与多项式相乘的法则:多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.(2)运用法则时应注意以下两点:①相乘时,按一定的顺序进行,必须做到不重不漏;②多项式与多项式相乘,仍得多项式,在合并同类项之前,积的项数应等于原多项式的项数之积.【典例】例1计算(x+3)(x+4)﹣2(x+6)的结果为.【方法总结】本题主要考查多项式乘多项式,去括号,解答的关键是去括号时注意符号的变化.例2(2021秋•临江市期末)已知(x+4)(x﹣9)=x2+mx﹣36,则m的值为.【方法总结】本题考查多项式,解题的关键是熟练运用整式的运算法则,本题属于基础题型.例3计算:(2x+5y)(3x﹣2y).【方法总结】本题主要考查多项式乘以多项式的法则.注意不要漏项,漏字母,有同类项的合并同类项.【随堂练习】1.若(x+a)(2x﹣3)的展开式中不含有x的一次项,则a的值为.2.计算:(a﹣2)(a+4)+2a(a﹣1).3.在计算(x+a)(x+b)时,甲把b错看成了6,得到结果是:x2+8x+12.(1)求出a的值;(2)在(1)的条件下,且b=﹣3时,计算(x+a)(x+b)的结果.4.已知(x2+mx﹣3)(2x+n)的展开式中不含x2项,常数项是﹣6.(1)求m,n的值.(2)求(m+n)(m2﹣mn+n2)的值.知识点4 单项式除以单项式单项式相除,把它们的系数相除,同底数幂的指数相减,作为商的一个因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式。
北师大版七年级数学下册知识点总结
第一章 整式运算知识点(一)概念应用1、单项式和多项式统称为整式。
单项式:表示数与字母的积的代数式。
另外规定单独的一个数或字母也是单项式。
单项式有三种:单独的字母(a,-w 等);单独的数字(125,,3.25,-14562等);数字与字母乘积的一般形式(-2s,πx 5)。
2、 单项式的系数是指数字部分,注意系数包括前面的符号如2a 的系数是2 (注意系数部分应包含∏π,因为∏是常数);单项式的次数是它所有字母的指数和(记住不包括数字和∏π的指数)3、多项式:几个单项式的和叫做多项式。
每一个单项式叫做多项式的项,注意项包括前面的符号。
4、多项式的特殊形式:½(a+b)等。
5、 一个多项式次数最高的项的次数叫做这个多项式的次数。
其中不含字母的项叫做常数项。
6、单独的一个非零数的次数是0。
知识点(二)公式应用1 、n m n m a a a +=⋅ (m,n 都是正整数)如523b b b -=⋅-。
拓展运用n m n m a a a ⋅=+ 如已知m a =2, n a =8,求n m a +。
解:n m n m a a a ⋅=+=2×8=16. 2 、mn n m a a =)( (m,n 都是正整数) 如12436243622)()(2a a a a a =-=-⨯⨯拓展应用m n n m mn a a a )()(==。
若2=n a ,则42)(222===n n a a 。
3、n n n b a ab =)((n 是正整数) 拓展运用n n n ab b a )(=。
4、n m n m a a a -=÷(a 不为0,m,n 都为正整数,且m 大于n)。
拓展应用n m n m a a a ÷=- 如若9=m a ,3=n a ,则339=÷=÷=-n m n m a a a 。
5、)0(10≠=a a ;0(1≠=-a aa p p ,是正整数)。
北师大数学七年级下册第一单元1
完全平方公式知识点1 完全平方公式222a b a ab b-=-+,()2()2a b a ab b+=++;222即两数和(或差)的平方,等于它们的平方和加上(或减去)它们积的2倍.【典例】例1化简:(x﹣2)2+(x+3)(x+1).【方法总结】本题主要考查了完全平方公式,多项式乘多项式,熟记相关公式和运算法则是解题的关键.例2已知a+b=8,ab=15,求下列式子的值:(1)a2+b2;(2)(a﹣b)2.【方法总结】本题主要考查完全平方公式,熟练掌握完全平方公式是解决本题的关键.例3下面是小颖化简整式的过程,仔细阅读后解答所提出的问题.解:x(x+2y)﹣(x+1)2+2x=(x2+2xy)﹣(x2+2x+1)+2x第一步=x2+2xy﹣x2+2x+1+2x第二步=2xy+4x+1第三步(1)小颖的化简过程从第步开始出现错误,错误的原因是.(2)写出此题正确的化简过程.【方法总结】本题考查完全平方公式,整式的加减以及单项式乘多项式,解答本题的关键是明确整式的混合运算的计算方法.例4已知(x﹣p)2=x2+mx+36,则m=.【方法总结】本题考查了完全平方公式的运用,能熟练地运用公式进行计算是解此题的关键.完全平方公式:(a±b)2=a2±2ab+b2.【随堂练习】1.已知(x+y)2=25,(x﹣y)2=1,求x2+y2与xy的值.2.计算:(2x﹣3)2﹣(x﹣3)(2x+1).3.已知x+y=7,xy=﹣8,求(1)x2+y2的值;(2)(x﹣y)2的值.知识点2 利用完全平方公式进行整式与数的运算利用完全平方公式进行整式与数的运算是完全平方公式的一种实际应用,主要考察对公式222a b a ab b()2-=-+的掌握情况.()2a b a ab b+=++;222【典例】例1计算:2002﹣400×199+1992.【方法总结】本题主要考查完全平方公式,熟练掌握完全平方公式是解决本题的关键.例2已知实数m,n满足m+n=3,mn=﹣3.(1)求(m﹣2)(n﹣2)的值;(2)求m﹣n的值.【方法总结】本题考查了完全平方公式:灵活运用完全平方公式是解决此类问题的关键.完全平方公式为:(a±b)2=a2±2ab+b2.【随堂练习】1.若(a+b)2=17,(a﹣b)2=11,则a2+b2=.2.已知x﹣y=3,x2+y2﹣3xy=4.求下列各式的值:(1)xy;(2)x3y+xy3.知识点3 完全平方式完全平方式的定义:对于一个具有若干个简单变元的整式A,如果存在另一个实系数整式B,使A=B2,则称A是完全平方式.a2±2ab+b2=(a±b)2完全平方式分两种,一种是完全平方和公式,就是两个整式的和括号外的平方.另一种是完全平方差公式,就是两个整式的差括号外的平方.算时有一个口诀“首末两项算平方,首末项乘积的2倍中间放,符号随中央.(就是把两项的乘方分别算出来,再算出两项的乘积,再乘以2,然后把这个数放在两数的乘方的中间,这个数以前一个数间的符号随原式中间的符号,完全平方和公式就用+,完全平方差公式就用-,后边的符号都用+)”【典例】1.要使x2+kx+4是完全平方式,那么k的值是()A.k=±4B.k=4C.k=﹣4D.k=±2【方法总结】本题主要考查了完全平方式,根据平方项确定出这两个数是解题的关键,也是难点,熟记完全平方公式对解题非常重要.例2已知x2﹣2mx+9是完全平方式,则m的值为()A.±3B.3C.±6D.6【方法总结】本题考查了完全平方公式,注意符合条件的答案有两个,以防漏解.【随堂练习】1.已知y2﹣6y+m是完全平方式,则m=()A.6B.﹣6C.9D.﹣9 2.若二次三项式x2﹣8x+m2是一个完全平方式,则m的值是()A.±4B.4C.±8D.8 3.下列各式是完全平方式的是()A.x2﹣x+14B.1+4x2C.a2+ab+b2D.x2+2x﹣1知识点4 完全平方公式的几何背景(1)运用几何直观理解、解决完全平方公式的推导过程,通过几何图形之间的数量关系对完全平方公式做出几何解释.(2)常见验证完全平方公式的几何图形(a+b)2=a2+2ab+b2.(用大正方形的面积等于边长为a和边长为b的两个正方形与两个长宽分别是a,b的长方形的面积和作为相等关系)【典例】例1 有一张边长为a的正方形桌面,因实际需要,需将正方形边长增加b,木工师傅设计了如图所示的方案,该方案能验证的等式是()A.(a+b)2=a2+2ab+b2B.a2﹣b2=(a+b)(a﹣b)C.(a﹣b)2=a2﹣2ab+b2 D.(a+2b)(a﹣b)=a2+ab+b2【方法总结】考查完全平方公式的几何背景,通过不同方法计算面积,通过面积之间的关系得出等式是常用的方法.例2如图,将一个边长为a+b的正方形图形分割成四部分(两个正方形和两个长方形),请认真观察图形,解答下列问题:(1)根据图中条件,请用两种方法表示该图形的总面积(用含a、b的代数式表示出来);(2)如果图中的a,b(a>b)满足a2+b2=57,ab=12,求a+b的值.【方法总结】本题考查对完全平方公式几何意义的理解,关键是从整体和部分两方面来理解完全平方公式的几何意义,并能对整式结论变式应用.例3如图1在一个长为2a,宽为2b的长方形图中,沿着虚线用剪刀均分成4块小长方形,然后按图2的形状拼成一个正方形.(1)图2中阴影部分的正方形边长为.(2)请你用两种不同的方法表示图2中阴影部分的面积,并用等式表示.(3)如图3,点C是线段AB上的一点,以AC,BC为边向两边作正方形,面积分别是S1和S2,设AB=8,两正方形的面积和S1+S2=28,求图中阴影部分面积.【方法总结】本题考查完全平方公式的背景及其应用,将同一个图形的面积用两种方法表示是求解本题的关键.例4如图①所示是一个长为2m,宽为2n的长方形,沿图中虚线用剪刀均分成相等的四个小长方形,然后按图②的方式拼成一个正方形.(1)图②中阴影部分的正方形的边长等于;(2)请用两种不同的方法列代数式表示图②中阴影部分的面积:方法一:;方法二:;(3)根据(2),直接写出(m﹣n)2,(m+n)2,mn这三个代数式之间的等量关系.(4)根据(3)中的等量关系,解决如下问题:对于任意的有理数x和y,若x+y=9,xy=18,求x﹣y的值.【方法总结】本题考查完全平方公式的几何背景,用不同方法表示同一个图形的面积是得出结论的关键.【随堂练习】1.如图所示的四边形均为矩形或正方形,下列等式能够正确表示该图形面积关系的是( )A .(a +b )2=a 2+2ab +b 2B .(a +b )2=a 2+2ab ﹣b 2C .(a ﹣b )2=a 2﹣2ab +b 2D .(a ﹣b )2=a 2﹣2ab ﹣b 22.如图,将长方形ABCD 的各边向外作正方形,若四个正方形周长之和为24,面积之和为12,则长方形ABCD 的面积为( )A .4B .32C .5D .63.图(1)是一个长为2a ,宽为2b (a >b )的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形. (1)图2中间空白的部分的面积是 ;(2)观察图2,请你写出代数式(a +b )2、(a ﹣b )2、ab 之间的等量关系式 ;(3)根据你得到的关系式解答下列问题:若x +y =﹣4,xy =3,求x ﹣y 的值.4.请认真观察图形,解答下列问题:(1)根据图①中条件,请用两种不同方法表示两个阴影图形的面积的和;(2)在(1)的条件下,如图②,两个正方形边长分别为a,b,如果a+b=ab=9,求阴影部分的面积.综合运用1.若4x2﹣2kx+1是完全平方式,则常数k的值为()A.2B.﹣2C.±2D.±42.已知关于x的多项式16x2+mx+1是一个完全平方式,则常数m的值是.3.计算:(2x﹣3y)(3x+2y)﹣(2x﹣3y)2.4.计算:(a﹣2b﹣1)2.5.已知a+b=7,ab=﹣2.求:(1)a2+b2的值;(2)(a﹣b)2的值.6.图1,是一个长为2m,宽为2n的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后按图2的形状拼成一个正方形.(1)图2中的阴影部分的面积为;(2)观察图2,三个代数式(m+n)2,(m﹣n)2,mn之间的等量关系是;(3)若x+y=﹣6,xy=2.75,求x﹣y;(4)观察图3,你能得到怎样的代数恒等式呢?7.如图,正方形ABCD中,点G是边CD上一点(不与端点C,D重合),以CG为边在正方形ABCD外作正方形CEFG,且B、C、E三点在同一直线上,设正方形ABCD和正方形CEFG的边长分别为a和b(a>b).(1)求图1和图2中阴影部分的面积S1、S2(用含a,b的代数式表示);(2)如果a+b=8,ab=6,求S1的值;(3)当S1=S2时,求a与b满足的数量关系.8.1)请写出三个代数式(a+b)2、(a﹣b)2和ab之间数量关系式.(2)应用上一题的关系式,计算:xy=﹣3,x﹣y=4,试求x+y的值.(3)如图:线段AB=10,C点是AB上的一点,分别以AC、BC为边长在AB的异侧做正方形ACDE和正方形CBGF,连接AF;若两个正方形的面积S1+S2=32,求阴影部分△ACF面积.。
北师大版数学七年级下册第一单元1同底数幂的乘法课件
判断(正确的打“√”,错误的打“×”)
(1)x4·x6=x24 ( × )
(2) x·x3=x3 ( × )
(3) x4+x4=x8 ( × )
(4) x2·x2=2x4 ( × )
(5)(-x)2 ·(-x)3 = (-x)5 ( √ ) (6)a2·a3- a3·a2 = 0 ( √ )
(7)x3·y5=(xy)8 ( × )
(8) x7+x7=x14 ( × )
新课讲授
比一比
类比同底数幂的乘法公式am ·an = am+n (当m、n都是正
整数) a ·a6 ·a3 = a7 ·a3 =a10
想一想:当三个或三个以上同底数幂相乘时,是否也具 有这一性质呢?用字母表示 am ·an ·ap 等于什么呢?
am·an·ap = am+n+p (m、n、p都是正整数)
23×22=25
当堂小练
3.计算下列各题:
A组
注意符号哟! B组
(1)(-9)2×93 =92×93=95
(2)(a-b)2·(a-b)3=(a-b)5
(3)-a4·(-a)2 =-a4·a2 =-a6
(1) xn+1·x2n =x3n+1
(2)
1 10
m
1 10
n
1 10
m+n
(3) a·a2+a3=a3+a3=2a6
布置作业
请完成对应习题
新课讲授
归纳总结
同底数幂的乘法法则:
am ·an = am+n (m,n都是正整数).
同底数幂相乘, 底数不变,指数 相加.
注意 条件:①乘法
北师大版七年级数学下第一单元测试卷
北师大版七年级数学下第一单元测试卷全文共4篇示例,供读者参考北师大版七年级数学下第一单元测试卷篇1一、填空题(每空1分,共41分)1、从右边起第( )位是万位,第( )位是亿位。
2、一个数是由6个百万、7个万和8个一组成,这个数写作( ),读作( )。
3、在自然数中,每相邻的两个计数单位之间的进率都是( ),这种计数方法叫作( )进制计数法。
4、49( )≈50万,( )里最小要填( ),最大能填( )。
5、最小的八位数是( ),减去1是( );最大的八位数是( ),加上1是( )。
6、用三个“0”和三个“9”组成的最大的六位数是( ),读作( ),把它四舍五入到万位约是( );组成最小的六位数是( ),读作( ),把它四舍五入到万位约是( )。
7、由五十亿、七亿和六千组成的数是( ),把它精确到亿位约是( )。
8、=( )万≈( )万=( )亿≈( )亿=( )亿=( )万≈( )万≈( )万=( )万9、一个8位数,千万位、万位、千位上的数字都是9,其他数位上的数字都是0,这个数写作( ),读作( ),精确到万位约是( )万。
10、在数字7和8中间添( )个0,就是七千万零八。
11、最小的自然数是( )。
12、是( )位数,最高位是( )位,其中的三个5从左往右分别表示( )、( )、( )。
二、在○里填上“<”、“>”或“=”。
(每题1分,共5分)○ 三十八万○三百八十万万○1亿万元○元5万米○米三、请读出下列数字。
(每题1分,共6分)读作:__________________________________读作:__________________________________读作:__________________________________读作:__________________________________读作:__________________________________读作:__________________________________四、请写出下列数字。
完整word版,北师大版七年级下数学目录(最新版)
第一章整式的乘除
1同底数幂的乘法
2幂的乘方与积的乘方
3同底数幂的除法
4整式的乘法
5平方差公式
6完全平方公式
7整式的除法
第二章相交线与平行线
1两条直线的位பைடு நூலகம்关系
2探索直线平行的条件
3平行线的性质
4用尺规作角
第三章三角形
1认识三角形
2图形的全等
3探索三角形全等的条件
4用尺规作三角形
5利用三角形全等测距离
第四章变量之间的关系
1用表格表示的变量间关系
2用关系式表示的变量间关系
3用图象表示的变量间关系
第五章生活中的轴对称
1轴对称现象
2探索轴对称的性质
3简单的轴对称图形
4利用轴对称进行设计
第六章概率初步
1感受可能性
2频率的稳定性
3等可能事件的概率
总复习
综合与实践
⊙设计自己的运算程序
综合与实践
⊙七巧板
北师大版七年级数学下册数学各章节知识点总结
北七下知识要点分章梳理 第一章:整式的运算单项式式 多项式 同底数幂的乘法幂的乘方积的乘方同底数幂的除法 零指数幂 负指数幂 整式的加减 单项式与单项式相乘单项式与多项式相乘整式的乘法 多项式与多项式相乘 整式运算 平方差公式 完全平方公式单项式除以单项式整式的除法多项式除以单项式一、单项式1、都是数字与字母的乘积的代数式叫做单项式。
2、单项式的数字因数叫做单项式的系数。
3、单项式中所有字母的指数和叫做单项式的次数。
4、单独一个数或一个字母也是单项式。
5、只含有字母因式的单项式的系数是1或―1。
6、单独的一个数字是单项式,它的系数是它本身。
7、单独的一个非零常数的次数是0。
8、单项式中只能含有乘法或乘方运算,而不能含有加、减等其他运算。
9、单项式的系数包括它前面的符号。
10、单项式的系数是带分数时,应化成假分数。
11、单项式的系数是1或―1时,通常省略数字“1”。
12、单项式的次数仅与字母有关,与单项式的系数无关。
二、多项式1、几个单项式的和叫做多项式。
2、多项式中的每一个单项式叫做多项式的项。
3、多项式中不含字母的项叫做常数项。
4、一个多项式有几项,就叫做几项式。
5、多项式的每一项都包括项前面的符号。
6、多项式没有系数的概念,但有次数的概念。
7、多项式中次数最高的项的次数,叫做这个多项式的次数。
三、整式1、单项式和多项式统称为整式。
2、单项式或多项式都是整式。
3、整式不一定是单项式。
4、整式不一定是多项式。
5、分母中含有字母的代数式不是整式;而是今后将要学习的分式。
四、整式的加减1、整式加减的理论根据是:去括号法则,合并同类项法则,以及乘法分配律。
2、几个整式相加减,关键是正确地运用去括号法则,然后准确合并同类项。
3、几个整式相加减的一般步骤:(1)列出代数式:用括号把每个整式括起来,再用加减号连接。
(2)按去括号法则去括号。
(3)合并同类项。
4、代数式求值的一般步骤:(1)代数式化简。
北师大版七年级下册数学《第一章 整式的乘除--完全平方公式》知识点讲解!
北师大版七年级下册数学《第一章整式的乘除--完全平方公式》知识点讲解!1.完全平方公式:(a+b)2=a2+b2+2ab (a-b)2=a2+b2-2ab两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍。
叫做完全平方公式.为了区别,我们把前者叫做两数和的完全平方公式,后者叫做两数差的完全平方公式。
2.派生公式:(a+b)2-2ab=a2+b2(a-b)2+2ab=a2+b2(a-b)2+(a+b)2=2(a2+b2) (a+b)2-(a-b)2=4ab考点解析完全平方公式是进行代数运算与变形的重要知识基础。
该知识点重点是对完全平方公式的熟记及应用,难点是对公式特征的理解(如对公式中积的一次项系数的理解)。
两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍,叫做完全平方公式。
为了区别,我们把前者叫做两数和的完全平方公式,后者叫做两数差的完全平方公式。
理解公式左右边特征(一)学会推导公式(这两个公式是根据乘方的意义与多项式的乘法法则得到的),真实体会随意“创造”的不正确性;(二)学会用文字概述公式的含义:两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍.都叫做完全平方公式.为了区别,我们把前者叫做两数和的完全平方公式,后者叫做两数差的完全平方公式.(三)这两个公式的结构特征是:1、左边是两个相同的二项式相乘,右边是三项式,是左边二项式中两项的平方和,加上或减去这两项乘积的2倍;2、左边两项符号相同时,右边各项全用“+”号连接;左边两项符号相反时,右边平方项用“+”号连接后再“-”两项乘积的2倍(注:这里说项时未包括其符号在内);3、公式中的字母可以表示具体的数(正数或负数),也可以表示单项式或多项式等数学式.(四)两个公式的统一:因为所以两个公式实际上可以看成一个公式:两数和的完全平方公式。
这样可以既可以防止公式的混淆又杜绝了运算符号的出错。
北师大初中数学七年级(下册)第一章整式的乘除练习题(带答案)
3 x2 y3 5
3x2y ;
( 2) 10 a4b 3c 2
5a3bc ;
( 3) (2 x2 y)3 ( 7 xy2 ) 14x 4 y3 ;
( 4) ( 2a b)4 (2a b)2 .
14、【基础题】计算: ( 1) (6ab 8b) 2b ; ( 2) (27a3 15a 2 6a) 3a ; ( 3) (9x2 y 6xy 2 ) 3xy ;
( 9) (ab 1)2 (ab 1) 2 ;
(10) (2x y) 2 4( x y)( x 2 y) .
12.3、【综合Ⅰ】先化简,再求值:
( 1) ( 2x- 1)( x+2)-( x- 2) 2-( x+2) 2,其中 x= - 1 . 3
( 2) ( x+2 y)( x-2 y)( x 2 -4 y 2 ),其中 x=2, y=-1 .
2
10、【基础题】 计算: (1) (2 x 1)(x 3) ; (2) ( m 2n)( m 3n) ; (3) ( a 1) ; (4) (a 3b )(a 3b) ;
2
(5) (2 x
1)(x
4) ;
2
(6) (x
3)(2 x
5) ;
( 7) (7) 3a
bc
bc 3a ;
( 8)( 3x - 2y) 2- (3x + 2y) 2 11
( 3)(x-2 y)( x+2 y)-( x+2 y) 2 ;
( 4)(a+ b+ c)(a+ b- c);
( 5)(2 a+1) 2 -(1-2 a) 2 ;
( 6)(3 x - y) 2 -(2 x+ y) 2 +5 x ( y -x) .
( 7) (2 x y 1)( 2x y 1) ;
北师大版七年级下册数学第一章整式的乘除《平方差公式》
北师大版七年级下册数学第一章整式的乘除《平方差公式》知识点总结平方差公式:(a+b)(a-b)=a²-b²两个数的和与这两个数的差的积,等于这两个数的平方差。
要点诠释:在这里,a,b既可以是具体数字,也可以是单项式或多项式。
抓住公式的几个变形形式利于理解公式。
但是关键仍然是把握平方差公式的典型特征:既有相同项,又有“相反项”,而结果是“相同项”的平方减去“相反项”的平方.常见的变式有以下类型:(1)位置变化:如(a+b)(a-b)利用加法交换律可以转化为公式的标准型(2)系数变化:如(3x+5y)(3x-5y)(3)指数变化:如(m3+n2)(m3-n2)(4)符号变化:如(-a-b)(a-b)(5)增项变化:如(m+n+p)(m-n+p)(6)增因式变化:如(a-b)(a+b)(a2+b2)(a4+b4)做题步骤:1)先判断能否使用平方差公式。
判断依据:一对相等项,一对相反项。
2)如果可以使用,则一般情况下我们可以将相等的一项放在多项式的第一位进行计算(第一个数的平方减去第二个数的平方);3)不管能否使用平方差公式,多项式乘以多项式是基本方法。
表达式:(a+b)(a-b)=a^2-b^2,两个数的和与这两个数差的积,等于这两个数的平方差,这个公式就叫做乘法的平方差公式公式运用可用于某些分母含有根号的分式:1/(3-4倍根号2)化简:1×(3+4倍根号2)/(3-4倍根号2)^2;=(3+4倍根号2)/(9-32)=(3+4倍根号2)/-23注意事项:(1)有公因式(包括负号)则先提取公因式;(2)整式乘法的平方差公式与因式分解的平方差公式是互逆关系;(3)平方差公式中的a与b既可以是单项式,又可以是多项式;第一关:直接运用公式1.(a+3)(a-3)2..( 2a+3b)(2a-3b)3. (1+2c)(1-2c)4. (-x+2)(-x-2)5. (2x+1/2)(2x-1/2)6. (a+2b)(a-2b)7. (2a+5b)(2a-5b)8. (-2a-3b)(-2a+3b)第二关:运用公式使计算简便1、1998×20022、498×5023、999×10014、1.01×0.995、30.8×29.26、100-1/3×99-2/37、20-1/9×19-8/9第三关:两次运用平方差公式1、(a+b)(a-b)(a2+b2)2、(a+2)(a-2)(a2+4)3、(x-1/2)(x2+1/4)(x+1/2)第四关:需要先变形再用平方差公式1、(-2x-y)(2x-y)2、(y-x)(-x-y)3.(-2x+y)(2x+y) 4.(4a-1)(-4a-1)5.(b+2a)(2a-b)6.(a+b)(-b+a)7.(ab+1)(-ab+1)第五关:每个多项式含三项1.(a+b+c)(a+b-c)2.(a+b-3)(a-b+3)3.x-y+z)(x+y-z)4.(m-n+p)(m-n-p)课后练习导学案图文导学。
北师大版数学七年级下册1.1《同底数幂的乘法》教案
北师大版数学七年级下册1.1《同底数幂的乘法》教案一. 教材分析《同底数幂的乘法》是北师大版数学七年级下册第一章《整式的运算》中的第一节内容。
本节内容主要介绍同底数幂的乘法法则,为学生以后学习幂的运算打下基础。
同底数幂的乘法是初中学员比较容易混淆的知识点,因此,在教学过程中,需要通过大量的例子让学生理解和掌握同底数幂的乘法法则。
二. 学情分析七年级的学生已经学习了有理数的乘法、幂的定义等知识,对于幂的运算有一定的基础。
但是,学生对于同底数幂的乘法法则的理解和运用还需要加强。
因此,在教学过程中,需要通过引导、讲解、练习等方式,帮助学生理解和掌握同底数幂的乘法法则。
三. 教学目标1.让学生理解同底数幂的乘法法则,并能熟练运用。
2.培养学生的数学思维能力,提高学生的数学素养。
3.通过对同底数幂的乘法的学习,培养学生解决问题的能力。
四. 教学重难点1.同底数幂的乘法法则的推导和理解。
2.同底数幂的乘法在实际问题中的应用。
五. 教学方法采用讲授法、引导法、练习法、小组合作法等教学方法。
通过讲解、引导、练习等形式,让学生理解和掌握同底数幂的乘法法则。
六. 教学准备1.教案、PPT等教学资料。
2.练习题。
3.黑板、粉笔等教学工具。
七. 教学过程1.导入(5分钟)通过复习幂的定义和有理数的乘法,引导学生思考同底数幂的乘法应该如何计算。
2.呈现(10分钟)利用PPT展示同底数幂的乘法法则,并通过具体的例子进行讲解,让学生理解和掌握同底数幂的乘法法则。
3.操练(10分钟)让学生独立完成一些同底数幂的乘法运算,教师进行个别辅导。
4.巩固(10分钟)通过一些综合性的题目,让学生运用同底数幂的乘法法则进行计算,巩固所学知识。
5.拓展(10分钟)引导学生思考同底数幂的乘法在实际问题中的应用,让学生尝试解决一些实际问题。
6.小结(5分钟)对本节课的主要内容进行小结,让学生巩固所学知识。
7.家庭作业(5分钟)布置一些同底数幂的乘法运算题目,让学生巩固所学知识。
北师大版本七年级下册第一单元《整式的乘除》全章知识讲解+经典练习
《整式的乘除》全章复习与巩固【要点梳理】要点一、幂的运算1.同底数幂的乘法:(m n ,为正整数);同底数幂相乘,底数不变,指数相加. 2.幂的乘方:(m n ,为正整数);幂的乘方,底数不变,指数相乘. 3.积的乘方:(n 为正整数);积的乘方,等于各因数乘方的积. 4.同底数幂的除法:(a ≠0, m n ,为正整数,并且m n >).同底数幂相除,底数不变,指数相减.5.零指数幂:()010.a a =≠即任何不等于零的数的零次方等于1. 6.负指数幂:1n na a -=(a ≠0,n 是正整数). 要点诠释:公式中的字母可以表示数,也可以表示单项式,还可以表示多项式;需灵活地双向应用运算性质.要点二、整式的乘法和除法1.单项式乘以单项式单项式与单项式相乘,把他们的系数,相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式.2.单项式乘以多项式单项式与多项式相乘,就是根据分配率用单项式去乘多项式的每一项,再把所得的积相加.即mc mb ma c b a m ++=++)((c b a m ,,,都是单项式).3.多项式乘以多项式多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.即()()a b m n am an bm bn ++=+++.要点诠释:运算时,要注意积的符号,多项式中的每一项包含前面的“+”“-”号.根据多项式的乘法,能得出一个应用广泛的公式:()()()2x a x b x a b x ab ++=+++. 4.单项式相除单项式相除、把系数、同底数幂分别相除后,作为商的因式,对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式.5.多项式除以单项式先把这个多项式的每一项分别除以单项式,再把所得的商相加.即:()am bm cm m am m bm m cm m a b c ++÷=÷+÷+÷=++要点三、乘法公式1.平方差公式:22()()a b a b a b +-=-两个数和与这两个数差的积,等于这两个数的平方差. 要点诠释:1.在这里,a b ,既可以是具体数字,也可以是单项式或多项式.2.平方差公式的典型特征:既有相同项,又有“相反项”,而结果是“相同项”的平方减去“相反项”的平方.2. 完全平方公式:()2222a b a ab b +=++;2222)(b ab a b a +-=-两数和 (差)的平方等于这两数的平方和加上(减去)这两数乘积的两倍.要点诠释:公式特点:左边是两数的和(或差)的平方,右边是三项,是这两数的平方和加(或减)这两数之积的2倍.【典型例题】类型一、幂的运算1、已知:2m +3n =5,则4m •8n =( )A .16B .25C .32D .64 【解答】解:4m •8n =22m •23n =22m +3n =25=32,故选:C .2.下列各式正确的有( )①x 4+x 4=x 8;②﹣x 2•(﹣x )2=x 4;③(x 2)3=x 5;④(x 2y )3=x 3y 6;⑤(﹣3x 3)3=﹣9x 9;⑥2100×(﹣0.5)99=﹣2;A .1个B .2个C .3个D .4个【解答】解:①x 4+x 4=2x 4,此计算错误;②﹣x 2•(﹣x )2=﹣x 4,此计算错误;③(x 2)3=x 6,此计算错误;④(x 2y )3=x 6y 3,此计算错误;⑤(﹣3x 3)3=﹣27x 9,此计算错误;⑥2100×(﹣0.5)99=2×299×(﹣0.5)99=2×(﹣0.5×2)99=2×(﹣1) =﹣2,此计算正确;故选:A .3、阅读下列两则材料,解决问题:材料一:比较322和411的大小.解:∵411=(22)11=222,且3>2∴322>222,即322>411小结:指数相同的情况下,通过比较底数的大小,来确定两个幂的大小材料二:比较28和82的大小解:∵82=(23)2=26,且8>6∴28>26,即28>82小结:底数相同的情况下,通过比较指数的大小,来确定两个幂的大小【方法运用】(1)比较344、433、522的大小(2)比较8131、2741、961的大小(3)已知a 2=2,b 3=3,比较a 、b 的大小(4)比较312×510与310×512的大小【解答】解;(1)∵344=(34)11=8111,433=(43)11=6411,522=(52)11=2511, ∵81>64>25,∴8111>6411>2511,即344>433>522;(2)∵8131=(34)31=3124,2741=(33)41=3123,961=(32)61=3122,∵124>123>122,∴3124>3123>3122,即8131>2741>961;(3)∵a 2=2,b 3=3,∴a 6=8,b 6=9,∵8<9,∴a 6<b 6,∴a <b ;(4)∵312×510=(3×5)10×32,310×512=(3×5)10×52,又∵32<52,∴312×510<310×512.类型二、整式的乘除法运算1、要使()()621x a x -+的结果中不含x 的一次项,则a 等于( )A.0B.1C.2D.3【答案】D ;【解析】先进行化简,得:,要使结果不含x 的一次项,则x 的一次项系数为0,即:62a -=0.所以3a =.【总结升华】代数式中不含某项,就是指这一项的系数为0.2.如图,一个边长为(m +2)的正方形纸片剪去一个边长为m 的正方形,剩余的部分可以拼成一个长方形,若拼成的长方形的一边长为2,则另一边长为 2m +2 .【解答】解:设另一边长为x ,根据题意得,2x =(m +2)2﹣m 2,解得x =2m +2.故答案为:2m +2.3.如图,现有A ,C 两类正方形卡片和B 类长方形卡片各若干张,用它们可以拼成一些新的长方形.如果要拼成一个长为(3a+2b),宽为(a+b)的长方形,那么需要B类长方形卡片5张.【解答】解:长为3a+2b,宽为a+b的长方形的面积为:(3a+2b)(a+b)=3a2+5ab+2b2,∵A类卡片的面积为a2,B类卡片的面积为ab,C类卡片的面积为b2,∴需要A类卡片3张,B类卡片5张,C类卡片2张,故答案为:5.类型三、乘法公式1.如果x2﹣2(m+1)x+4是一个完全平方公式,则m=.【解答】解:∵x2﹣2(m+1)x+4是一个完全平方公式,∴﹣2(m+1)=±4,则m=﹣3或1.故答案为:﹣3或1.2、用简便方法计算:(1)1002﹣200×99+992(2)2018×2020﹣20192 (3)计算:(x﹣2y+4)(x+2y﹣4)【解答】解:(1)1002﹣200×99+992=1002﹣2×100×(100﹣1)+(100﹣1)2=[100﹣(100﹣1)]2=12=1;(2)2018×2020﹣20192=(2019﹣1)(2019+1)﹣20192=20192﹣1﹣20192=﹣1.(3)原式=x2﹣(2y﹣4)2=x2﹣4y2+16y﹣16;3.图①是一个长为2a,宽为2b(a>b)的长方形,用剪刀沿图中虚线(对称抽)剪开,把它分成四块形状和大小都一样的小长方形,然后按图②那样拼成一个正方形,则中间空的部分的面积是()A.ab B.a2+2ab+b2C.a2﹣b2D.a2﹣2ab+b2【解答】解:图(1)是一个长为2a,宽为2b(a>b)的长方形,∴正方形的边长为:a +b ,∴正方形的面积为(a +b )2,∵原矩形的面积为4ab ,∴中间空的部分的面积=(a +b )2﹣4ab =a 2﹣2ab +b 2.故选:D .4、已知222246140x y z x y z ++-+-+=,求代数式2012()x y z --的值.【思路点拨】将原式配方,变成几个非负数的和为零的形式,这样就能解出,,x y z .【答案与解析】解:222246140x y z x y z ++-+-+= ()()()2221230x y z -+++-= 所以1,2,3x y z ==-=所以20122012()00x y z --==.【总结升华】一个方程,三个未知数,从理论上不可能解出方程,尝试将原式配方过后就能得出正确答案.类型四、综合类大题1.在前面的学习中,我们通过对同一面积的不同表达和比较,利用图①和图②发现并验证了平方差公式和完全平方公式,不仅更清晰地“看到”公式的结构,同时感受到这样的抽象代数运算也有直观的背景.这种利用面积关系解决问题的方法,使抽象的数量关系因几何直观而形象化.请你利用上述方法解决下列问题:(1)请写出图(1)、图(2)、图(3)所表示的代数恒等式(2)试画出一个几何图形,使它的面积能表示(x+y)(x+3y)=x2+4xy+3y2【拓展应用】提出问题:47×43,56×54,79×71,……是一些十位数字相同,且个位数字之和是10的两个两位数相乘的算式,是否可以找到一种速算方法?几何建模:用矩形的面积表示两个正数的乘积,以47×43为例:(1)画长为47,宽为43的矩形,如图③,将这个47×43的矩形从右边切下长40,宽3的一条,拼接到原矩形的上面.(2)分析:几何建模步骤原矩形面积可以有两种不同的表达方式,47×43的矩形面积或(40+7+3)×40的矩形与右上角3×7的矩形面积之和,即47×43=(40+10)×40+3×7=5×4×100+3×7=2021,用文字表述47×43的速算方法是:十位数字4加1的和与4相乘,再乘以100,加上个位数字3与7的积,构成运算结果.请你参照上述几何建模步骤,计算57×53.要求画出示意图,写出几何建模步骤(标注有关线段)归纳提炼:两个十位数字相同,并且个位数字之和是10的两位数相乘的速算方法是(用文字表述):证明上述速算方法的正确性.【解答】解:(1)图(1)所表示的代数恒等式:(x+y)•2x=2x2+2xy,图(2)所表示的代数恒等式:(x+y)(2x+y)=2x2+3xy+y2图(3)所表示的代数恒等式:(x+2y)(2x+y)=2x2+5xy+2y2.(2)几何图形如图所示:拓展应用:(1)①几何模型:②用文字表述57×53的速算方法是:十位数字5加1的和与5相乘,再乘以100,加上个位数字3与7的积,构成运算结果;即57×53=(50+10)×50+3×7=6×5×100+3×7=3021;十位数字加1的和与十位数字相乘,再乘以100,加上两个个位数字的积,构成运算结果;故答案为十位数字加1的和与十位数字相乘,再乘以100,加上两个个位数字的积,构成运算结果;2.阅读下列材料并解决后面的问题材料:对数的创始人是苏格兰数学家纳皮尔(J.Npler,1550﹣1617年),纳皮尔发明对数是在指数书写方式之前,直到18世纪瑞士数学家欧拉(Evler,1707﹣﹣1783)才发现指数与对数之间的联系,我们知道,n个相同的因数a相乘a•a…,a记为a n,如23=8,此时,3叫做以2为底8的对数,记为log28,即log28=3一般地若a n=b(a>0且a≠1,b>0),则n叫做以a为底b的对数,记为log a b,即log a b=n.如34=81,则4叫做以3为底81的对数,记为log381,即log381=4.(1)计算下列各对数的值:log24=,log216=,log264=(2)通过观察(1)中三数log24、log216、log264之间满足的关系式是;(3)拓展延伸:下面这个一股性的结论成立吗?我们来证明log a M+log a N=log,a MN(a>0且a≠1,M>0,N>0)证明:设log a M=m,log a N=n,由对数的定义得:a m=M,a n=N,∴a m•a n=a m+n=M•N,∴log a MN=m+n,又∵log a M=m,log a N=n,∴log a M+log a N=log a MN(a>0且a≠1,M>0,N>0)(4)仿照(3)的证明,你能证明下面的一般性结论吗?log a M﹣log a N=log a(a>0且a≠1,M>0,N>0)(5)计算:log34+log39﹣log312的值为.【解答】解:(1)log24=log222=2,log216=log224=4,log264=log226=6;故答案为:2,4,6;(2)通过观察(1)中三数log24、log216、log264之间满足的关系式是:log24+log216=log264;(4)证明:设log a M=m,log a N=n,由对数的定义得:a m=M,a n=N,∴a m÷a n=a m﹣n=,∴log a=m﹣n,又∵log a M=m,log a N=n,∴log a M﹣log a N=log a(a>0且a≠1,M>0,N>0)(5)log34+log39﹣log312,=log3,=log33,=1,故答案为:1.。
七年级数学北师大版下册初一数学--第一单元 整式的除法《整式的化简》课件
知2-讲
解:(1)由题意,5月份甲超市的销售额为a(1+x%)2,
乙超市的销售额为a(1-x% )2,
则甲、乙两超市的销售额的差为
a(1+x%)2- a(1-x% )2
a
1
2x 100
x2 10000
a
1
2x 100
x2 10000
ax . 25
解:(m+n)2+(m+n)(m-3n) =(m2+2mn+n2)+(m2-3mn+mn-3n2) =m2+2mn+n2+m2-3mn+mn-3n2 =2m2-2n2. 当m= 2, n=1时, 原式=2×( 2 )2-2×12=2×2-2×1=2.
总结
知1-讲
化简时能用乘法公式的要用乘法公式,要注意解 题格式的规范性.
答:甲超市的销售额比乙超市多 ax 万元. 25
知2-讲
(2)当a=150,x=2时, ax 150 2 12. 25 25
答:甲超市的销售额比乙超市多12万元.
总结
知2-讲
在解答实际问题时,如果题目有字母就注意整式 的化简,化简后再代入数值.
知2-讲
例4 如图,某市有一块长为(3a+b)米,宽为(2a+b)米 的长方形地块,规划部门计划将该长方形地块进 行绿化,中间留出一块边长为(a+b)米的正方形区 域修建凉亭,则阴影部分的面积是多少平方米? 并求出当a=3,b=2时,阴影部分的面积.
A.0
B.2
C.-2
D.不能确定
3 若代数式x2+ax+9-(x-3)2的值等于零,则a的
值为( C )
A.0
B.-3
七年级数学北师大版下册初一数学--第一单元 《完全平方公式》第一课时参考课件
结果不同: 即 (a b)2=a2 2ab+b2;
平方差公式的结果 是两项, 即 (a+b)(a−b)=a2−b2.
在解题过程中要准确确定a和b、对照公式原形的 两边, 做到不丢项、不弄错符号、2ab时不少乘2; 首项、末项是乘积被平方时要注意添括号, 是运用 完全平方公式进行多项式乘法的关键.
语言表述:
两数和(差)的平方等于这两数的平方和加 上(减去)这两数乘积的两倍. (a−b)2 = a2 −ab −b(a−b) = a2−2ab+b2 .
例题解析
1 2
注意 使用完全平方公式与平方差公式的使用一样, 先把要计算的式子与完全平方公式对照, 明确个是 a , 哪个是 b.
解:(1) (2x−3)2 = (2x )2 − 2 • 2x • 3+ 32 = 4x2 − 12x + 9 ;
1.8 完全平方公式(一)
回顾 & 思考☞
平方差公式 (a+b)(a−b)= a2 − b2
公式的结构特征: 左边是 两个二项式的乘积, 即两数和与这两数差的积. 右边是 两数的平方差.
应用平方差公式的注意事项:
☾ 弄清在什么情况下才能使用平方差公式:
对于一般两个二项式的积, 看准有无相等的“项”和 符号相反的“项”; 仅当把两个二项式的积变 成公式标准形式后,才能使用平方差公式。
解题规律:
当所给的二项式的符号相同时,就用“和”的完全平方式; 当所给的二项式的符号不同时,就用“差”的完全平方式。
6.填空: 1) a2+ 2ab +b2=(a+b)2 2) a2+ (-2ab)+b2=(a - b)2 3) 4a2+ 4ab +b2=(2a+b)2 4) 4a2+ (-4ab) +b2=(2a - b)2 5) (2a )2+4ab+b2=( 2a +b)2 6) a2-8ab+16b2=( a-4b )2 7.如果 x2 +mx+4是完全平方式,那么 m的值是多少?
北师大版数学七年级初一下知识点总结归纳
欢迎阅读页脚内容七年级下第一章 整式的乘除(大约15课时?) 一、单项式、单项式的次数只含有数字与字母的积的代数式叫做单项式。
单独的一个数或一个字母也是单项式。
一个单项式中,所有字母的指数的和叫做这个单项式的次数。
二、多项式几个单项式的和叫做多项式。
其中每个单项式叫做这个多项式的项。
多项式中不含字母的项叫做常数项。
多项式中次数最高的项的次数,叫做这(1幂乘,(0a ≠()m a a =方:(ab 逆用,n a 负指 数幂:反)1法则:2、(m a b +法则:单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。
3、多项式乘以多项式:()()m n a b m a m b ++=++ na nb +。
多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。
4、单项式除以单项式单项式相除,把系数、同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式。
5、多项式除以单项式:()a b c m a m b ++÷=÷+÷ m c m +÷。
多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加。
三、整式乘法公式:1、平方差公式: 22))((b a b a b a -=-+公式特点:有一项完全相同,另一项只有符号不同,结果=22()-相同)(不同。
2、完全平方公式: 222()2a b a ab b ±=±+ 首平方,尾平方,2倍首尾放中央。
逆用:2222()a ab b a b ±+=±。
完全平方公式变形(知二求一): 2),n x有公共并且并且在第三条直线(截线)的两旁,这样的一对角叫做内错角。
3)、同旁内角:两个角都在两条直线之间,并且在第三条直线(截线)的同旁,这样的一对角叫同旁内角。
2、平行线的判定: 1)、两条直线被第三条直线所截,如果同位角相等,那么两直线平行。
北师大版七年级数学下册第一章整式的运算复习及其整理(带练习)
第一章 整式的运算第一节 整式1.整式的有关概念:(1)单项式的定义:像1.5V ,28n π,h r 231π等,都是数与字母的乘积,这样的代数式叫做单项式.(2)单项式的次数:一个单项式中,所有字母的指数和叫做这个单项式的次数.(3)多项式的概念:几个单项式的和叫做多项式.(4)多项式的次数:一个多项式中,次数最高项的次数,叫做这个多项式的次数.(5)整式的概念:单项式和多项式统称为整式.2.定义的补充: (1)单项式的系数:单项式中的数字因数叫做单项式的系数.(2)多项式的项数:多项式中单项式的个数叫做多项式的项数.(3)区别是否是整式:关键:分母中是否含有字母?分母有字母的为分式,如a 分之3是分式。
3.例题讲解:例1:下列代数式中,哪些是整式?单项式?多项式?并指出它们的系数和次数? (!)ab +c (2)ax 2+bx +c (3)-5(4)π.2y x - (5)12-x x 例2:求多项式363222+--b ab a 的各项系数之和?第二节 整式的加减一、 知识点复习:1、填空:整式包括单项式和多项式.2、整式的加减实质上就是去括号后,合并同类项,运算结果是一个多项式或是单项式.3、所含字母相同,并且相同字母的指数也分别相同的项叫做同类项。
4、括号前面是“-”号,去括号时,括号内各项要变号,一个数与多项式相乘时,这个数与括号内各项都要相乘。
二、练习: 例1:下列各式,是同类项的一组是( ) (A )y x 222与231yx (B )n m 22与22m n 例2、计算:(1))134()73(22+-++k k k k (2))2()2123(22x xy x x xy x +---+例3:先化简,再求值:()[],673235222x x x x x x +++--其中x=21 例4、已知:A=x 3-x 2-1,B=x 2-2,计算:(1)B -A (2)A -3B第三节 同底数幂的乘法一、复习提问2.指出下列各式的底数与指数:(1)34;(2)a 3;(3)(a+b)2;(4)(-2)3;(5)-23.3、同底数幂的乘法法则: m n m n a a a += (,m n 都是正数)是幂的运算中最基本的法则,在应用法则运算时,要注意以下几点:①法则使用的前提条件是:幂的底数相同而且是相乘时,底数a 可以是一个具体的数字式字母,也可以是一个单项或多项式;②指数是1时,不要误以为没有指数;③不要将同底数幂的乘法与整式的加法相混淆,对乘法,只要底数相同指数就可以相加;而对于加法,不仅底数相同,还要求指数相同才能相加;④当三个或三个以上同底数幂相乘时,法则可推广为 m n p m n p a a a a++=(其中m 、n 、p 均为正数);⑤公式还可以逆用: m n m n aa a +=(m 、n 均为正整数)二、巩固练习(1)107×104; (2)x 2·x 5;(3)10·102·104;(4)-a ·(-a)3;(5)(-a)2·(-a)3三、小结1.同底数幂相乘,底数不变,指数相加,对这个法则要注重理解“同底、相乘、不变、相加”这八个字.2.解题时要注意a 的指数是1.3.解题时,是什么运算就应用什么法则.同底数幂相乘,就应用同底数幂的乘法法则;整式加减就要合并同类项,不能混淆.4.-a 2的底数a ,不是-a .计算-a 2·a 2的结果是-(a 2·a 2)=-a 4,而不是(-a)2+2=a 4.5.若底数是多项式时,要把底数看成一个整体进行计算第四节 幂的乘方与积的乘方一、知识点复习:1. 幂的乘方法则:()m n mn a a =(,m n 都是正整数)幂的乘方,底数不变,指数相乘。
数学七年级北师大版下册1.1同底数幂的乘法(教案)
在实践活动环节,学生们分组讨论和实验操作,积极参与,课堂氛围活跃。这让我意识到,让学生在实践中学习数学,既能巩固知识,又能提高他们的合作能力。不过,我也发现部分小组在讨论过程中,存在时间分配不均的问题。针对这一点,我需要在今后的教学活动中,加强引导,确保每个学生都能充分参与到实践活动中。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是“同底数幂的乘法”这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要将相同的数相乘多次的情况?”(例如:计算2×2×2×2)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索同底数幂乘法的奥秘。
-难点3:解决实际问题,如“小明有一块地,长为2a米,宽为3a米,求这块地的面积。”学生需要将长和宽表示为同底数幂(a^1 × a^1),然后运用同底数幂乘法法则计算面积,得出6a^2。
在教学过程中,教师应关注学生的理解情况,针对难点进行详细讲解和示范,确保学生能够透彻理解同底数幂乘法的核心知识。通过反复练习和实际应用,帮助学生突破教学难点,提高数学素养。
(3)将同底数幂乘法法则应用于实际问题,培养学生的数学应用能力。
举例:
-例如,计算2^3 × 2^4,学生需要掌握运用同底数幂乘法法则,将其简化为2^(3+4),得出结果2^7。
2.教学难点
(1)理解同底数幂乘法法则的原理:对于部分学生来说,理解指数相加的原理可能存在困难。
北师大数学七年级下册第一单元1.5平方差公式
乘法公式一平方差公式知识点1 平方差公式22+-=-a b a b a b()()平方差公式的特点:两个数的和与这两个数的差的积,等于这两个数的平方差.在利用平方差公式进行计算时,先判断式子能否利用平方差公式计算,如果可以,再根据22+-=-进行乘法计算.a b a b a b()()【典例】例1下列各式,不能用平方差公式计算的是()A.(a+b﹣1)(a﹣b+1)B.(﹣a﹣b)(﹣a+b)C.(a+b2)(b2﹣a)D.(2x+y)(﹣2x﹣y)【方法总结】本题考查了平方差公式,能熟记平方差公式是解题的关键,注意:平方差公式是(a+b)(a﹣b)=a2﹣b2.例2若a2﹣b2=10,a﹣b=2,则a+b的值为()A.5B.2C.10D.无法计算【方法总结】本题考查了平方差公式,运用平方差公式计算时,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方.例3计算:(3x+2)(3x﹣2)+x(x﹣2).【方法总结】本题考查平方差公式、单项式乘多项式,掌握运算法则和公式是解题的关键.例4课堂上,老师让同学们计算(3a﹣b)(3a+b)﹣a(4a﹣1).(3a﹣b)(3a+b)﹣a(4a﹣1)=3a2﹣b2﹣4a2﹣a=﹣a2﹣b2﹣a左边是小朱的解题过程.请你判断其是否正确?如果有错误,请写出正确的解题过程.【方法总结】本题考查平方差公式,单项式乘多项式,以及整式的加减,掌握平方差公式的结构特征以及去括号、合并同类项是得出正确答案的前提.【随堂练习】1.下列各式中,能用平方差公式计算的是()A.(a+b)(﹣a﹣b)B.(a+b)(a﹣b)C.(a+b)(a﹣d)D.(a+b)(2a﹣b)2.若a2﹣b2=﹣,a+b=﹣,则a﹣b的值为.3.化简:(1﹣2m)(2m+1)﹣(3+4m)(6﹣m).知识点2 利用平方差公式进行数的运算在一些计算中,有时利用平方差公式,会使计算量大大减少;例如98×102,可以利用平方差公式化成98×102=(100-2)×(100+2)=100²-2²=9996.【典例】例1用乘法公式计算:100×99.【方法总结】本题主要考查平方差公式,熟练掌握平方差公式是解决本题的关键.例2计算:20092﹣2010×2008;【方法总结】本题考查了多项式乘多项式、平方差公式,熟记多项式乘多项式的运算法则、平方差公式是解题的关键.【随堂练习】1.利用公式计算:101×99﹣9722.用乘法公式简算:(1)199×201;(2)20132﹣2014×2012.知识点3 平方差公式—几何背景平方差公式的证明方法有很多种,其中几何法证明是最常见的一种,也是初中阶段最容易理解的一种.【典例】例1为庆祝中国共产党的百年华诞,某校要进行美化校园,各班同学设计热爱祖国的板报.八年一班学生在设计板报时,在黑板中间画一个半径为R的大圆,然后挖去半径为r的四个小圆,分别作为热爱中国共产党、热爱人民、认同中华文化和继承革命传统四个学习区域.请计算当R=7.8cm,r=1.1cm时剩余部分的面积.(结果保留π)【方法总结】此题考查了利用平方差公式几何背景解决实际问题的能力,关键是能根据图形准确列式并运用平方差公式进行解决.例2将边长为a的正方形的左上角剪掉一个边长为b的正方形(如图1),将剩下部分按照虚线分割成①和②两部分,将①和②两部分拼成一个长方形(如图2),解答下列问题:(1)设图1中阴影部分的面积为S1,图2中阴影部分的面积为S2,请用含a,b的式子表示:S1=,S2=;(不必化简)(2)由(1)中的结果可以验证的乘法公式是;(3)利用(2)中得到的公式,计算:20212﹣2020×2022.【方法总结】此题考查了平方差公式几何背景的应用能力,关键是能根据图形准确列式验证平方差公式,并能利用所验证公式解决相关问题.【随堂练习】1.如图所示,有一个狡猾的地主,把一块边长为a米的正方形土地租给马老汉栽种.过了一年,他对马老汉说:“我把你这块地的一边减少5米,另一边增加5米,继续租给你,你也没吃亏,你看如何?”马老汉一听,觉得好像没吃亏,就答应了.同学们,你们觉得马老汉有没有吃亏?请说明理由.2.学校有一块边长为(2a+b)米的正方形草坪,经统一规化后,南北方向要缩短2b米,而东西方向要加长2b米,请回答下列问题:(1)改造后的长方形草坪的面积是多少平方米?(2)改造后的长方形草坪的面积比改造前的面积增加了还是减少了?增加或减少了多少平方米?3.(1)如图1所示,若大正方形的边长为a,小正方形的边长为b,则阴影部分的面积是;若将图1中的阴影部分裁剪下来,重新拼成如图2所示的一个长方形,则它的面积是;(2)由(1)可以得到一个公式:;(3)利用你得到的公式计算:20212﹣2022×2020.综合运用1.下列算式中不能利用平方差公式计算的是()A.(x+y)(x﹣y)B.(x﹣y)(﹣x﹣y)C.(x﹣y)(﹣x+y)D.(x+y)(y﹣x)2.计算:(x﹣2)(x+2)﹣6x(x﹣3)+5x2.3.用乘法公式计算:99×101.4.利用公式计算:20152﹣2014×2016.5.利用乘法公式计算:①计算:(2+1)•(22+1)•(24+1)•(28+1);②计算:(3+1)•(32+1)•(34+1)•(38+1);③计算:1002﹣992+982﹣972+…+22﹣12.6.探究下面的问题:(1)如图甲,在边长为a的正方形中去掉一个边长为b的小正方形(a>b),把余下的部分剪拼成如图乙的一个长方形,通过计算两个图形(阴影部分)的面积,验证了一个等式,这个等式是(用式子表示),即乘法公式中的公式.(2)运用你所得到的公式计算:①10.3×9.7;②(x+2y﹣3z)(x﹣2y﹣3z).7.从边长为a的正方形中剪掉一个边长为b的正方形(如图1),然后将剩余部分拼成一个长方形(如图2).(1)上述操作能验证的等式是.(请选择正确的一个)A.a2﹣2ab+b2=(a﹣b)2B.a2+ab=a(a+b)C.a2﹣b2=(a+b)(a﹣b)(2)运用你从(1)中选出的等式,完成下列各题:①已知9x2﹣4y2=18,3x﹣2y=3.求3x+2y的值.②计算:(1﹣)(1﹣)(1﹣)…(1﹣)(1﹣)。
北师大版七年级数学下册第一章整式的乘除1.完全平方公式课件(18张)
2n 1
(2 xy) 2
2
(2xy)
1
x
1
2
x
5 5
4x2 y2 4 x2 y 1 x2;
5
25
【想一想】
如何计算 (a b c)2 ?
(a b c)2
(a b) c2
(a b)2 2(a b)c c 2 a 2 2ab b2 2ac 2bc c 2 a 2 b2 c 2 2ab 2bc 2ac
【课堂小结】
完全平方公式
a b2 a 2 2ab b2 a b2 a 2 2ab b2
a2 2ab b2 (a b)2
【当堂检测】
1.计算:
(1)2x 5y2;
(2)
1
m
1
2
;
3 2
(3) 2t 12 ;
(4)7ab 22.
2.若9x2 kx 1是某个整式的平方,则k .x24x Nhomakorabea4
k
4
所以k的值为 4.
m2 12m 36 m 6 2 ;
x2 4x 4 x 2 2
【知识迁移】
如果a2 b2 2c2 2ac 2bc 0,则a b
解:因为a 2 b2 2c2 2ac 2bc 0,
所以a 2 2ac c2 b2 2bc c2
视察下列算式及其运算结果,你有什么发现?
(m 3)2 ( m 3 )( m 3 ) m 2 3m 3m 9 m 2 2 3m 9 m 2 6m 9
(23x)2 (2 3x)(2 3x) 22 23x23x9x2 4223x9x2 412x9x2
再举两例验证你的发现.
【当堂检测】
给多项式4x2 1加上一个单项式后恰好是另一个
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北师大版七年级下册第一单元测试题
一、精心选一选(每小题3分,共21分)
1.多项式892334+-+xy y x xy 的次数是 ( )
A. 3
B. 4
C. 5
D. 6
2.下列计算正确的是 ( ) m m
二、耐心填一填(第1~4题每空1分,第5、6题每空2分,共28分)
1.在代数式23xy , m ,362+-a a , 12 ,22514xy yz x -
, ab
32中,单项式有 个,多项式有 个。
2.单项式z y x 425-的系数是 ,次数是 。
3.多项式5
134+-ab ab 有 项,它们分别是 。
4. ⑴ =⋅52x x 。
⑵ ()=43
y 。
⑶ ()=322b a 。
⑷ ()=-425y x 。
⑸ =÷39a a 。
⑹=⨯⨯-024510 。
5.⑴=⎪⎫ ⎛-⋅⎪⎫ ⎛3261
mn mn 。
⑵()()=+-55x x 。
3. ()
()xy xy y x y x 2862432-÷-+-
四、计算题。
(每题6分,共12分)
1. ()()()2112
+--+x x x
2. ()()532532-+++y x y x
b
八、在如图边长为7.6的正方形的角上挖掉一个边长为2.6的小正方形,剩余的图形
能否拼成一个矩形?若能,画出这个矩形,并求出这个矩形的面积是多少.(5分)
第一单元答案
一、 (每小题3分,共21分)
七、432ab a --
八、能,图略,()5156.26.7=⨯+。