第3章 数值积分

合集下载

积分的数值方法

积分的数值方法

b b
作为平均高度 f() 的近似值而获得的一种数值 积分方法。
中矩形公式是把 [a,b] 的中点处的函数值: a b f ( ) 2 作为平均高度f()的近似值而获得的一种数值积分 方法。 Simpson公式是以函数 f(x) 在 a, b, (a+b)/2 这三点的 函数值 f(a), f(b),
Pn ( x) f ( xk )lk ( x)
k 0 n
式中 这里
( x) lk ( x ) ( x xk )( xk ) j 0 xk x j
n j k
x xj
( x) ( x x0 )(x x1 )( x xn )
的近似值,即:
多项式Pn(x)易于求积,所以可取
b
y=f(x)
图3-1 数值积分 的几何意义
a
b
建立数值积分公式的途径比较多, 其中最常用的
有两种:
(1)由积分中值定理可知,对于连续函数f(x),在
积分区间[a,b]内存在一点ξ,使得:

因而
b
a
f ( x)dx (b a) f ( )
a, b
即所求的曲边梯形的面积恰好等于底为(b-a),高为
R( f ) f ( x) P( x)dx
b a
b
a
f ( n 1) ( ) ( x)dx (n 1)!
其中
a, b
当f(x)是次数不高于n的多项式时,有 f ( n1) ( x) 0 R ( f ) =0,求积公式(3-10)能成为准确的等式。由于 闭区间[a,b]上的连续函数可用多项式逼近,所以
x4
ex
6.40 6.389

数值积分-计算方法

数值积分-计算方法

(k=0,1,…,n) 作代换x=a+th带入上式,变为: 其中:
(k=0,1,…,n) (1-1) 这个积分是有理多项式积分,它与被积函数f(x)和区间[a,b]无关。
只要确定n就能计算出系数
。 于是得到称为Newton—Cotes公式的求积公式: (1-2) 其中
称为Newton—Cotes系数。如表1所示。 表1 Newton—Cotes系数
§3.1计算n阶求积公式
若有m次代数精度,对(k=0,1,…)应有
而。
§3.2 Gauss求积公式的基本原理
更一般形式: (2-1) 为权函数,设>0,且在[a,b]上可积,构造n阶求积公式:
(2-2) 积分点使得(2-2)式达到2n+1次代数精度,则积分点称为Gauss 点,(2-2)式称为Gauss求积公式。
§2Newton—Cotes公式 §2.1Newton—Cotes公式的推导
当§1.1插值求积公式的插值节点为等距节点时,就得到Newton— Cotes公式。
将区间[a,b]n等分,,n+1个节点为 xk=a+kh (k=0,1,…,n)
在节点上对f(x)的Lagrange插值多项式是:
用Pn(x)代替f(x)构造求积公式: 记
y=(1-1/2*(sin(x)).^2).^(1/2); 在Matlab工作窗口中调用函数:
y2=gauss2('gaussf',0,pi/2) 运行结果为:
y2= 1.3508
第5章 结论
通过以上变成和计算,得到所求的两组积分:
应用Newton—Cotes积分公式所求的结果分别是 y1=1.5078,y2 = 1.3506,而应用Gauss-Legendre方法所求得的结果分别是y1=1.5705 和 y2= 1.3508。单从结果上看,我们也能看出,Newton—Cotes积分公式 和Gauss-Legendre积分公式在精度上的确存在着差异(两者n的取值不 同)。而结果上的差异来源很明显是插值积分在近似替代时产生的,结 合第1章理论依据的内容,Newton-Cotes积分公式的精度最高可达n+1 次,Gauss-Legendre积分公式的精度为2n+1次,由此可知,当n相同 时, Gauss -Legendre积分公式比Newton—Cotes积分公式具有更高的 代数精度。而就本题而言Gauss -Legendre积分公式具有5次代数精度, Newton—Cotes积分公式也具有5次代数精度。因此二者所求积分只存在 微小的差异,结果都比较准确。

期末数值分析重点总结

期末数值分析重点总结

期末数值分析重点总结第一部分:数值逼近(Approximation)数值逼近是数值分析的基础,主要研究如何利用有限的计算资源得到逼近数学问题的有效算法。

数值逼近的主要内容包括多项式逼近、插值和最小二乘等。

1. 多项式逼近多项式逼近是指用一个多项式函数来逼近给定函数的值。

通过选择合适的多项式次数和插值点,可以使得多项式逼近误差最小化。

其中最常用的方法是最小二乘法,它可以通过最小化残差来得到最佳的多项式逼近。

多项式逼近在信号处理、图像处理和计算机图形学等领域中有广泛的应用。

2. 插值插值是指通过已知数据点的函数值来估计在其他点的函数值。

常用的插值方法有拉格朗日插值和牛顿插值。

拉格朗日插值通过构造一个满足插值条件的多项式来逼近给定函数。

牛顿插值则利用差商的概念来构造插值多项式。

插值方法在数值微分和数值积分中有广泛的应用。

3. 最小二乘最小二乘是一种在一组离散数据点上拟合曲线的方法。

通过最小化数据点与拟合曲线之间的欧几里得距离,可以得到最佳拟合曲线。

最小二乘法可以用于曲线拟合、参数估计和数据关联等问题。

第二部分:数值解方程(Numerical Solution of Equations)数值解方程是数值分析的重要内容之一,研究如何通过数值计算来求解非线性方程组和线性方程组。

数值解方程的主要方法有迭代法、常微分方程数值解和偏微分方程数值解等。

1. 迭代法迭代法是求解非线性方程组的常用方法之一。

通过不断迭代逼近方程的根,可以得到方程组的数值解。

常用的迭代法有牛顿迭代法和弦截法。

迭代法在计算机辅助设计、优化和数据分析等领域中有广泛的应用。

2. 常微分方程数值解常微分方程数值解研究如何通过数值计算来求解常微分方程。

常微分方程数值解的主要方法有Euler方法、Runge-Kutta方法和线性多步法等。

常微分方程数值解在物理学、工程学和生物学等领域中有广泛的应用。

3. 偏微分方程数值解偏微分方程数值解研究如何通过数值方法来求解偏微分方程。

第三章物理学中定积分的数值计算方法

第三章物理学中定积分的数值计算方法

第三章 物理学中定积分的数值计算方法一、填空题1、库仑常数k 等于 9×109mV/C ,真空中的介电常数ε0等于8.85×10-12F/m 。

2、对于电量为Q 的点电荷,在距离r 处产生的电场强度为21ˆˆ()4QrE r rrrπε==。

3、已知定积分()ba f x dx ⎰,被积分函数为()f x ,积分区间为[],ab 。

将该区间N 等分,步长()/x b a N ∆=-,用曲线下的虚矩形面积和近似替代积分值,该方法称为矩形法。

积分近似计算公式为1()()N bi ai I f x dx f x x -==≈∆∑⎰。

4、毕奥—萨伐尔定律所描述的公式为034Idl rdB r μπ⨯=。

5、玻尔兹曼常数是 k=1.38×1023 J/K 。

6、麦克斯韦速率分布律公式23/22/2()4()2v kTdN f v dv v e dv N kTμμππ-==。

7、在计算物理中求解定积分的方法有 辛普森法 、 龙贝格法 、 高斯求积法等。

二、简答1、写出库仑常数、真空中的介电常数和玻尔兹曼常数的值。

答:库仑常数k= 9×109mV/C ,真空中的介电常数ε0= 8.85×10-12F/m ,玻尔兹曼常数是 k=1.38×1023 J/K 。

2、什么是矩形法?答:已知定积分()ba f x dx ⎰,被积分函数为()f x ,积分区间为[],ab 。

将该区间N 等分,步长()/x b a N ∆=-,用曲线下的虚矩形面积和近似替代积分值,该方法称为矩形法。

积分近似计算公式为1()()N bi ai I f x dx f x x -==≈∆∑⎰。

3、毕奥—萨伐尔定律和麦克斯韦速率分布律公式。

答:毕奥—萨伐尔定律所描述的公式为034Idl rdB rμπ⨯=。

麦克斯韦速率分布律公式23/22/2()4()2v kTdN f v dv v e dv N kTμμππ-==。

第3章 微积分问题的计算机求解

第3章 微积分问题的计算机求解

• 在(-0.1,0.1)区间绘制出函数曲线:
>> x=-0.1:0.001:0.1; >> y=(exp(x.^3)-1)./(1-cos(sqrt(x-sin(x)))); Warning: Divide by zero. (Type "warning off MATLAB: divideByZero" to suppress this warning.) >> plot(x,y,'-',[0], [12],'o')
• 对原函数求4 阶导数,再对结果进行4次积分 >> y4=diff(y,4); >> y0=int(int(int(int(y4)))); >> pretty(simple(y0))
sin(x) -----------2 x + 4 x + 3
• 例:证明
>> syms a x; f=simple(int(x^3*cos(a*x)^2,x)) f = 1/16*(4*a^3*x^3*sin(2*a*x)+2*a^4 *x^4+6*a^2*x^2*cos(2*a*x)-6*a*x*sin(2*a*x)3*cos(2*a*x)-3)/a^4 >> f1=x^4/8+(x^3/(4*a)-3*x/(8*a^3))*sin(2*a*x)+... (3*x^2/(8*a^2)-3/(16*a^4))*cos(2*a*x); >> simple(f-f1) % 求两个结果的差 ans = -3/16/a^4
• 定积分与无穷积分计算:
–格式: I=int(f,x,a,b)

数值积分与微分方程数值解法

数值积分与微分方程数值解法

数值积分与微分方程数值解法数值积分和微分方程数值解法是数值计算中的重要组成部分,在科学计算、工程分析和实际问题求解中起着不可或缺的作用。

本文将介绍数值积分的基本概念和常用方法,以及微分方程数值解法的应用和实现过程。

一、数值积分的基本概念和常用方法数值积分是求解定积分近似值的方法,通过将连续函数的积分转化为离散形式的求和,以达到近似计算的目的。

常用的数值积分方法包括矩形法、梯形法、辛普森法等。

(1)矩形法:将积分区间等分为若干子区间,然后在每个子区间内取点,用函数在相应点处的取值近似代替该子区间内的函数值,最后将所有子区间的函数值相加得到近似积分值。

(2)梯形法:与矩形法类似,但是将每个子区间近似为一个梯形,通过计算梯形的面积来近似计算积分值。

(3)辛普森法:将积分区间等分为若干子区间,然后在每个子区间内取三个点,根据这三个点构造出一个二次函数,并用该二次函数的积分来近似计算积分值。

二、微分方程数值解法的应用和实现过程微分方程数值解法是对微分方程进行近似求解的方法,通过离散化微分方程来构造数值格式,然后通过数值计算来求解。

常用的微分方程数值解法包括常微分方程的欧拉法、改进欧拉法和龙格-库塔法,以及偏微分方程的有限差分法、有限元法等。

(1)常微分方程数值解法:- 欧拉法:根据微分方程的定义,将微分项近似为差分项,通过迭代逼近真实解。

- 改进欧拉法:在欧拉法的基础上,通过利用两个点的斜率来逼近解的变化率,提高精度。

- 龙格-库塔法:通过多次迭代,根据不同的权重系数计算不同阶数的近似解,提高精度。

(2)偏微分方程数值解法:- 有限差分法:将偏微分方程中的一阶和二阶导数近似为差分项,通过离散化区域和时间来构造矩阵方程组,然后通过求解线性方程组来获得数值解。

- 有限元法:将区域进行剖分,将偏微分方程转化为变分问题,通过选取适当的试函数和加权残差法来逼近真实解。

总结:数值积分和微分方程数值解法是数值计算中重要的工具,能够帮助我们处理实际问题和解决科学工程中的复杂计算。

数值积分

数值积分

W(x) W(x 0) W(x 1) W(x2 ) W' (x 1) 0, x xi, i 0,1,2.
类似于上面对插值误差的讨论,在区间内至少有一点,使
(4)
W
整理上式,得到

0
(x x 0)(x x 1) 2 (x x 2) (4) f(x) G 3(x) f ( ), x 0 x 2. 4!
于是,由式(1.8)得到
(x x 0)(x x 1) 2 (x x 2) (4) E 2 [f(x) N 3(x)] dx f (ξ ) dx x0 x0 4!
x2 x2
因子(xx0)(xx1)2(xx2)在区间[x0,x2]内不会变号,故可以应用广 义中值定理,即在[x0,x2]内存在,使
(1.11)
所以,辛卜生公式的误差项为 1 5 (4) E2 h f ( ), x0 x2 90
(1.12)
Newton-Cotes公式的代数精度
定理: 由(n+1)个相异节点x0 、x1 、…x n构造的求积公式的代
数精度至少为n。
证明:记Ln(x)为x0,x1,x2...xn的Lagrange 插值多项式,即Ln ( x ) 因为 f ( x ) L ( x ) n
x
x3
0
3h P 3(x) (f 0 3 f 1 3 f 2 f 3) 8
(1.4)
当n=2时,为抛物线公式

b
a
ba ab f ( x)dx ( f (a) 4 f ( ) f (b)) 6 2
y
y=P2(x) y=f(x)
0
x0
x1

现代科学工程计算基础课后答案

现代科学工程计算基础课后答案

现代科学工程计算基础课后答案《现代科学与工程计算基础》较为详细地介绍了科学与工程计算中常用的数值计算方法、基本概念及有关的理论和应用。

全书共分八章,主要内容有误差分析,函数的插值与逼近,数值积分与数值微分,线性代数方程组的直接解法与迭代解法,非线性方程及非线性方程组的数值解法,矩阵特征值和特征向量的数值解法,以及常微分方程初、边值问题的数值解法等。

使用对象为高等院校工科类研究生及理工科类非“信息与计算科学”专业本科生,也可供从事科学与工程计算的科技工作者参考。

《现代科学与工程计算基础》讲授由浅人深,通俗易懂,具备高等数学、线性代数知识者均可学习。

基本信息出版社: 四川大学出版社; 第1版 (2003年9月1日)平装: 378页语种:简体中文开本: 32ISBN: 7561426879条形码: 9787561426876商品尺寸: 20 x 13.8 x 1.6 cm商品重量: 399 g品牌: 四川大学出版社ASIN: B004XLDT8C《研究生系列教材:现代科学与工程计算基础》是我们在长期从事数值分析教学和研究工作的基础上,根据多年的教学经验和实际计算经验编写而成。

其目的是使大学生和研究生了解数值计算的重要性及其基本内容,熟悉基本算法并能在计算机上实现,掌握如何构造、评估、选取、甚至改进算法的数学理论依据,培养和提高读者独立解决数值计算问题的能力。

目录第一章绪论§1 研究对象§2 误差的来源及其基本概念2.1 误差的来源2.2 误差的基本概念2.3 和、差、积、商的误差§3 数值计算中几点注意事项习题第二章函数的插值与逼近§1 引言1.1 多项式插值1.2 最佳逼近1.3 曲线拟合§2 Lagrange插值2.1 线性插值与抛物插值2.2 n次Lagrange插值多项式2.3 插值余项§3 迭代插值§4 Newton插值4.1 Newton均差插值公式4.2 Newton差分插值公式§5 Hermite插值§6 分段多项式插值6.1 分段线性插值6.2 分段三次Hermite插值§7 样条插值7.1 三次样条插值函数的定义7.2 插值函数的构造7.3 三次样条插值的算法7.4 三次样条插值的收敛性§8 最小二乘曲线拟合8.1 问题的引入及最小二乘原理8.2 一般情形的最小二乘曲线拟合8.3 用关于点集的正交函数系作最小二乘拟合8.4 多变量的最小二乘拟合§9 连续函数的量佳平方逼近9.1 利用多项式作平方逼近9.2 利用正交函数组作平方逼近§10 富利叶变换及快速富利叶变换10.1 最佳平方三角逼近与离散富利叶变换10.2 快速富利叶变换习题第三章数值积分与数值微分§1 数值积分的基本概念1.1 数值求积的基本思想1.2 代数精度的概念1.3 插值型求积公式§2 等距节点求积公式2.1 Newton—CoteS公式2.2 复化求积法及其收敛性2.3 求积步长的自适应选取§3 Romberg 求积法3.1 Romberg求积公式3.2 Richardson外推加速技术§4 Gauss型求积公式4.1 Gauss型求积公式的一般理论4.2几种常见的Gauss型求积公式§5 奇异积分和振荡函数积分的计算5.1 奇异积分的计算5.2 振荡函数积分的计算§6 多重积分的计算6.1 基本思想6.2 复化求积公式6.3 Gauss型求积公式§7 数值微分7.1 Taylor级数展开法7.2 插值型求导公式习题第四章解线性代数方程组的直接法§1 Gauss消去法§2 主元素消去法2.1 全主元素消去法2.2 列主元素消去法§3 矩阵三角分解法3.1 Doolittle分解法(或LU分解)3.2 列主元素三角分解法3.3 平方根法3.4 三对角方程组的追赶法§4 向量范数、矩阵范数及条件数4.1 向量和矩阵的范数4.2 矩阵条件数及方程组性态习题第五章解线性代数方程组的迭代法§1 Jacobi迭代法§2 Gauss-Seidel迭代法§3 超松弛迭代法§4 共轭梯度法习题第六章非线性方程求根§1 逐步搜索法及二分法1.1 逐步搜索法1.2 二分法§2 迭代法2.1 迭代法的算法2.2 迭代法的基本理论2.3 局部收敛性及收敛阶§3 迭代收敛的加速3.1 松弛法3.2 Aitken方法§4 New-ton迭代法4.1 Newton迭代法及收敛性4.2 Newton迭代法的修正4.3 重根的处理§5 弦割法与抛物线法5.1 弦割法5.2 抛物线法§6 代数方程求根6.1 多项式方程求根的Newton法6.2 劈因子法§7 解非线性方程组的Newton迭代法习题……第七章矩阵特征值和特征向量的计算第八章常微方分程数值解法附录参考文献欢迎下载,资料仅供参考!!!资料仅供参考!!!资料仅供参考!!!。

工程电磁场数值方法编程实验3-数值积分方法_OK

工程电磁场数值方法编程实验3-数值积分方法_OK
数 n 2k,其复合辛普生求积公式为
n
I
i 1
xi1 g (x)dx h n1
xi
6 i0
f (xi ) 4 f (xi h / 2) f (xi1)
8
辛普生求积公式
计算二重积分时,数值积分的处理是将二重积分分解
为两个单积分,每个积分使用辛普生求积公式,即在
第一重积分内采用辛普生求积公式,公式中每产生一
• 编写轴对称线圈的矢量位计算计算函数
33
p ij
2
zp zij
2
zp zij
2
E
K
Bz
m i1
mz j 1
0 Jd d z 2
p ij
1
2
zp zij
2
2 ij
2 p
p ij
2
zp zij
2
zp zij
2
E
K
ij R1 i 1/ 2 d
zij
1h
2
j 1/ 2dz 32
编程实践四
d e
令 2 , d 2d , cos 2sin2 1
Ap
a0I
/2 0
2sin2 1 d z2 (a )2 4a sin2
令k 2
z2
4a
(a
)2
Ap
0 I k
a
1
1 2
k2
K
E
第一、二类完全椭圆积分
23
轴对称磁场
向量磁位Ap计算出来后,可计算磁感应强度
个固定某变量值x,在另一重积分也用辛普生求积公
式计算。
S
b
dx
y2 (x) f (x, y)dy
a

数值分析知识点总结

数值分析知识点总结

数值分析知识点总结说明:本文只提供部分较好的例题,更多例题参考老师布置的作业题和课件相关例题。

一、第1章 数值分析与科学计算引论1. 什么是绝对误差与相对误差?什么是近似数的有效数字?它与绝对误差和相对误差有何关系?相对误差限:**r re ε=的一个上界。

有效数字:如果近似值*x 的误差限是某一位的半个单位,该位到*x 的第一位非零数字共有n 位,就说x *共有n 位有效数字。

即x *=±10m ×(a 1+a 2×10-1+…+a n ×10-(n-1)),其中a 1≠0,并且*11102m n x x -+-≤⨯。

其中m 位该数字在科学计数法时的次方数。

例如9.80的m 值为0,n 值为3,绝对误差限*211102ε-=⨯。

2. 一个比较好用的公式:f(x)的误差限:()***()'()()f x f x x εε≈ 例题:二、第2章插值法例题:5. 给出插值多项式的余项表达式,如何用其估计截断误差?6. 三次样条插值与三次分段埃尔米特插值有何区别?哪一个更优越?7. 确定n+1个节点的三次样条插值函数需要多少个参数?为确定这些参数,需加上什么条件?8. 三弯矩法:为了得到三次样条表达式,我们需要求一些参数:对于第一种边界条件,可导出两个方程:,那么写成矩阵形式:公式 1对于第二种边界条件,直接得端点方程:,则在这个条件下也可以写成如上公式1的形式。

对于第三种边界条件,可得:也可以写成如下矩阵形式:公式 2求解以上的矩阵可以使用追赶法求解。

(追赶法详见第五章)例题:数值分析第5版清华大学出版社第44页例7三、第3章函数逼近与快速傅里叶变换的正交多项式?什么是[-1,1]上的勒让德多项式?它有3.什么是[a,b]上带权()x什么重要性质?4.什么是切比雪夫多项式?它有什么重要性质?5.用切比雪夫多项式零点做插值点得到的插值多项式与拉格朗日插值有何不同?6.什么是最小二乘拟合的法方程?用多项式做拟合曲线时,当次数n较大时,为什么不直接求解法方程?例题请参考第3章书上的作业题和课件上的例题。

数值分析-数值积分详解

数值分析-数值积分详解

xk
和 Ak 的代数问题.

b
a
f ( x)dx
A
k 0
n
k
f ( xk ),
11
例 求a,b,c的值使下列求积公式的代数精度 达到最高。

1 1
f ( x)dx a f (1) bf (0) cf (1)
12
3.
插值型的求积公式
设给定一组节点
a x0 x1 x2 xn b,
b
a
f ( x)dx (b a) f ( ),
3
就是说,底为 b a 而高为 f ( ) 的矩形面积恰等于所求 曲边梯形的面积 I (图4-1).
图4-1
4
问题在于点ξ的具体位置一般是不知道的,因而难以
准确算出 f ( ) 的值.
将 f ( ) 称为区间 [a, b]上的平均高度.
k 0
n
16
4 .
定义2
求积公式的收敛性与稳定性
在求积公式中,若
lim
n h 0 k 0
Ak f ( xk )
n

b
a
f ( x)dx,
( xi xi 1 ), 则称求积公式(1.3)是收敛的. 其中 h max 1i n
在求积公式中,由于计算 f ( xk )可能产生误差 k ,
ab 的“高度” f (c ) 2
近似地取代平均
高度 f ( ),则又可导出所谓中矩形公式(简称矩形公式)
R (b a ) f ( ab ). 2
6
一般地,可以在区间 [a, b] 上适当选取某些节点 xk , 然后用 f ( xk ) 加权平均得到平均高度 f ( )的近似值,这样 构造出的求积公式具有下列形式:

数值微分与数值积分

数值微分与数值积分

数值微分与数值积分数值微分和数值积分是数值分析中两个重要的概念和技术。

它们在数学与工程领域中都有着广泛的应用。

本文将介绍数值微分和数值积分的概念、原理和应用。

1. 数值微分数值微分是指通过数值计算方法来逼近函数的导数。

在实际计算中,我们常常需要求解某一函数在特定点的导数值,这时数值微分就能派上用场了。

一种常用的数值微分方法是有限差分法。

它基于函数在离给定点很近的两个点上的函数值来逼近导数。

我们可以通过选取合适的差分间距h来求得函数在该点的导数值。

有限差分法的一般形式可以表示为:f'(x) ≈ (f(x+h) - f(x))/h其中,f'(x)是函数f(x)在点x处的导数值,h是差分间距。

数值微分方法有很多种,比如前向差分、后向差分和中心差分等。

根据实际需求和计算精度的要求,我们可以选择合适的数值微分方法来进行计算。

2. 数值积分数值积分是指通过数值计算方法来近似计算函数的定积分。

在实际问题中,我们经常需要求解函数在某一区间上的积分值,而数值积分可以提供一个快速而准确的近似。

一种常见的数值积分方法是复合梯形法。

它将积分区间分割成若干个小区间,然后在每个小区间上应用梯形面积的计算公式。

最后将所有小区间上的梯形面积相加,即可得到整个积分区间上的积分值。

复合梯形法的一般形式可以表示为:∫[a, b] f(x)dx ≈ h/2 * [f(a) + 2∑(i=1 to n-1)f(x_i) + f(b)]其中,[a, b]是积分区间,h是分割的小区间宽度,n是划分的小区间个数,x_i表示第i个小区间的起始点。

除了复合梯形法,还有其他常用的数值积分方法,比如复合辛普森法、龙贝格积分法等。

根据被积函数的性质和计算精度要求,我们可以选择合适的数值积分方法来进行计算。

3. 数值微分和数值积分的应用数值微分和数值积分在科学研究和工程实践中具有广泛的应用。

以下是一些常见的应用领域:3.1 物理学在物理学中,我们经常需要对物体的位置、速度和加速度进行计算。

数值计算方法教案

数值计算方法教案

数值计算方法教案第一章:数值计算概述1.1 数值计算的定义与意义介绍数值计算的概念解释数值计算在科学研究与工程应用中的重要性1.2 数值计算方法分类介绍数值逼近、数值积分、数值微分、数值解方程等基本方法分析各种方法的适用范围和特点1.3 误差与稳定性解释误差的概念及来源讨论数值计算中误差的控制与减小方法介绍稳定性的概念及判断方法第二章:插值与逼近2.1 插值法的基本概念介绍插值的概念及意义解释插值函数的性质和条件2.2 常用的插值方法介绍线性插值、二次插值、三次插值等方法分析各种插值方法的优缺点及适用范围2.3 逼近方法介绍切比雪夫逼近、傅里叶逼近等方法解释逼近的基本原理及应用场景第三章:数值积分与数值微分3.1 数值积分的基本概念介绍数值积分的概念及意义解释数值积分的原理和方法3.2 常用的数值积分方法介绍梯形公式、辛普森公式、柯特斯公式等方法分析各种数值积分方法的适用范围和精度3.3 数值微分的基本概念与方法介绍数值微分的概念及意义解释数值微分的原理和方法第四章:线性方程组的数值解法4.1 线性方程组数值解法的基本概念介绍线性方程组数值解法的概念及意义解释线性方程组数值解法的原理和方法4.2 常用的线性方程组数值解法介绍高斯消元法、LU分解法、迭代法等方法分析各种线性方程组数值解法的优缺点及适用范围4.3 稀疏矩阵技术解释稀疏矩阵的概念及意义介绍稀疏矩阵的存储和运算方法第五章:非线性方程和方程组的数值解法5.1 非线性方程数值解法的基本概念介绍非线性方程数值解法的概念及意义解释非线性方程数值解法的原理和方法5.2 常用的非线性方程数值解法介绍迭代法、牛顿法、弦截法等方法分析各种非线性方程数值解法的优缺点及适用范围5.3 非线性方程组数值解法介绍消元法、迭代法等方法讨论非线性方程组数值解法的特点和挑战第六章:常微分方程的数值解法6.1 常微分方程数值解法的基本概念介绍常微分方程数值解法的概念及意义解释常微分方程数值解法的原理和方法6.2 初值问题的数值解法介绍欧拉法、改进的欧拉法、龙格-库塔法等方法分析各种初值问题数值解法的适用范围和精度6.3 边界值问题的数值解法介绍有限差分法、有限元法、谱方法等方法讨论边界值问题数值解法的特点和挑战第七章:偏微分方程的数值解法7.1 偏微分方程数值解法的基本概念介绍偏微分方程数值解法的概念及意义解释偏微分方程数值解法的原理和方法7.2 偏微分方程的有限差分法介绍显式差分法、隐式差分法、交错差分法等方法分析各种有限差分法的适用范围和精度7.3 偏微分方程的有限元法介绍有限元法的原理和步骤讨论有限元法的适用范围和优势第八章:数值模拟与计算可视化8.1 数值模拟的基本概念介绍数值模拟的概念及意义解释数值模拟的原理和方法8.2 计算可视化技术介绍计算可视化的概念及意义解释计算可视化的原理和方法8.3 数值模拟与计算可视化的应用讨论数值模拟与计算可视化在科学研究与工程应用中的重要作用第九章:数值计算软件与应用9.1 数值计算软件的基本概念介绍数值计算软件的概念及意义解释数值计算软件的原理和方法9.2 常用的数值计算软件介绍MATLAB、Mathematica、Python等软件的特点和应用领域9.3 数值计算软件的应用案例分析数值计算软件在科学研究与工程应用中的典型应用案例第十章:数值计算方法的改进与新发展10.1 数值计算方法的改进讨论现有数值计算方法的局限性介绍改进数值计算方法的研究现状和发展趋势10.2 新的数值计算方法介绍近年来发展起来的新型数值计算方法分析新型数值计算方法的优势和应用前景10.3 数值计算方法的未来发展探讨数值计算方法在未来可能的发展方向和挑战重点和难点解析一、数值计算概述难点解析:对数值计算概念的理解,误差来源及控制方法的掌握。

(计算物理学)第3章物理学中定积分的数值计算方法

(计算物理学)第3章物理学中定积分的数值计算方法

辛普森法则
总结词
详细描述
公式表示
辛普森法则是另一种改进的数值积分 方法,通过将积分区间划分为若干个 小的子区间,然后在每个子区间上取 一个点,并使用这些点的函数值来近 似积分值。
辛普森法则是基于梯形法的改进,它 使用了更多的点来近似函数曲线。具 体来说,它在每个子区间上取两个点 (即区间的端点和中点),然后使用 这两个点的函数值来计算该子区间的 近似面积。将这些近似面积相加,即 可得到定积分的近似值。
几何意义
定积分表示曲线与x轴所夹的面积,即原函数曲线与x轴、 x=a、x=b所围成的区域面积。
定积分的性质
线性性质
∫baf(x)dx+∫baf(x)dx=∫baf(x)+f (x)dx
区间可加性
∫caf(x)dx=∫baf(x)dx+∫caf(x)dx
常数倍性质
k∫baf(x)dx=k∫baf(x)dx
感谢您的观看
THANKS
误差分析
梯形法误差主要来源于对曲线的近似,当梯形 越多,近似程度越高,误差越小。
适用范围
适用于被积函数在积分区间上变化较小的情形。
辛普森法则的误差分析
辛普森法则的基本思想
将积分区间分成若干个小区间,每个小区间上用抛物线代替曲线, 然后求抛物线面积之和。
误差分析
辛普森法则误差主要来源于对曲线的近似,当抛物线越多,近似程 度越高,误差越小。
形等。
计算体积
02
定积分可以用来计算三维物体的体积,例如长方体、球体、圆
柱体等。
计算长度
03
定积分可以用来计算曲线或曲面的长度,例如圆的周长、椭圆
的弧长等。
在物理学中的应用
01

数值分析中的数值微分与数值积分

数值分析中的数值微分与数值积分

数值分析中的数值微分与数值积分数值微分和数值积分是数值分析领域中两个重要的概念。

它们在计算机科学、工程学和物理学等领域中有广泛的应用。

本文将介绍数值微分和数值积分的概念、原理以及一些常用的方法和技巧。

一、数值微分数值微分是通过数值方法来计算函数的导数。

导数是描述函数变化率的工具,它在物理学、经济学和生物学等领域中具有重要的作用。

1. 前向差分法(Forward Difference)前向差分法是一种简单而常用的计算导数的方法。

它利用函数在某一点上的值与函数在该点附近的一个点上的值之间的差异来估计导数。

具体公式如下:f'(x) ≈ (f(x+h) - f(x))/h其中,h为步长,为了提高精度,需要选择足够小的步长。

2. 后向差分法(Backward Difference)后向差分法与前向差分法类似,不同之处在于它利用函数在某一点上的值与函数在该点附近的一个点上的值之间的差异来估计导数。

具体公式如下:f'(x) ≈ (f(x) - f(x-h))/h同样地,步长h需要选择足够小。

3. 中心差分法(Central Difference)中心差分法是一种更加准确的数值微分方法,它利用函数在某一点上的前后两个点的值来估计导数。

具体公式如下:f'(x) ≈ (f(x+h) - f(x-h))/(2h)中心差分法相对于前向差分法和后向差分法而言,具有更高的精度。

二、数值积分数值积分是通过数值方法来计算函数的积分。

积分在物理学、经济学和统计学等领域中起着重要的作用,它可以用来计算面积、体积以及概率等。

1. 矩形法(Rectangle Method)矩形法是一种简单的数值积分方法,它利用多个矩形来逼近曲线下的面积。

具体来说,将积分区间等分为若干子区间,然后在每个子区间上选择一个点作为高度,从而构造出多个矩形。

最后,将各个矩形的面积相加,即可得到近似的积分值。

2. 梯形法(Trapezoidal Method)梯形法是一种更加准确的数值积分方法,它利用多个梯形来逼近曲线下的面积。

数值分析第七版教学设计

数值分析第七版教学设计

数值分析第七版教学设计课程概述数值分析是现代科学发展必不可少的一门学科,它以计算机为工具,利用数学理论和科学计算方法来解决实际问题。

本课程学习数值计算方法的基本理论和应用,包括插值法、数值微积分、非线性方程求解、数值代数、数值微分方程等内容。

教学目标1.掌握常用的数值计算方法,并能够将其应用于解决实际问题。

2.理解数值计算方法的数学原理和数值误差,并能够对计算结果进行误差分析。

3.提高计算机编程和计算机应用的能力。

教学内容本课程为选修课,共分为16个教学周期。

具体教学内容如下:第一章引论1.数值计算的概念和基本原理。

2.计算机误差的分类和数值误差的控制方法。

3.数值计算中常用的符号和记号。

第二章插值法1.多项式插值和样条插值。

2.插值问题的误差分析和解决方法。

3.插值方法的应用和实例。

第三章数值微积分1.数值积分和数值微分的基础概念和做法。

2.数值积分和数值微分的误差分析和控制。

3.数值积分和数值微分方法在实际问题中的应用。

第四章非线性方程求解1.常用非线性方程求解方法的原理和步骤。

2.非线性方程求解方法的收敛性和误差分析。

3.非线性方程求解方法的应用和实例。

第五章数值代数1.线性方程组求解的基本思路和方法。

2.矩阵的特征值和特征向量的求解。

3.数值代数方法在各种实际问题中的应用。

第六章数值微分方程1.常微分方程的数值解法和误差分析。

2.偏微分方程的数值解法和误差分析。

3.数值微分方程方法在实际问题中的应用。

教学方法本课程采用理论讲解和实例分析相结合,强调理论、方法与实践的有机联系。

具体教学方法如下:1.理论讲解:通过教师的讲解,让学生理解数值计算方法的基本原理和相关概念。

2.实例分析:通过实例分析,让学生具体了解数值计算方法的具体应用和实现方法。

3.上机实验:通过上机实验,让学生掌握计算机编程和计算机应用的基本技能。

教学评估本课程设有期末考试和实验成绩评估。

其中期末考试占比60%,实验占比40%。

数值积分方法讨论

数值积分方法讨论

数值积分方法讨论一、引言数值积分方法是一种计算函数曲线下面积的方法。

在实际应用中,很多函数的积分无法通过解析方法求得,因此需要使用数值积分方法来近似计算。

本文将讨论数值积分的基本概念、常用方法和应用场景。

二、基本概念1. 积分积分是微积分学中的一个重要概念,其定义为:对于给定函数f(x),在区间[a,b]上的定积分为:∫(b,a)f(x)dx2. 数值积分数值积分是指通过数值计算来近似计算定积分的过程。

由于很多函数无法通过解析方法求得其定积分,因此需要使用数值计算来近似求解。

三、常用方法1. 矩形法矩形法是最简单的数值积分方法之一。

该方法将区间[a,b]等分成n个小区间,每个小区间内取一个点作为代表点,然后将每个小区间内的函数值乘以该小区间长度得到矩形面积,并将所有矩形面积相加即可得到近似结果。

2. 梯形法梯形法是一种比矩形法更精确的数值积分方法。

该方法将区间[a,b]等分成n个小区间,每个小区间内取两个点作为代表点,然后将每个小区间内的函数值求平均值,再乘以该小区间长度得到梯形面积,并将所有梯形面积相加即可得到近似结果。

3. 辛普森法辛普森法是一种比梯形法更精确的数值积分方法。

该方法将区间[a,b]等分成n个小区间,每个小区间内取三个点作为代表点,然后通过插值公式计算出一个二次函数,并对该二次函数进行积分得到近似结果。

四、应用场景1. 科学计算在科学计算中,很多问题需要求解函数的定积分。

由于很多函数无法通过解析方法求得其定积分,因此需要使用数值积分方法来近似计算。

2. 金融领域在金融领域中,很多问题需要对某些数据进行统计和分析。

而这些数据通常以曲线的形式呈现,因此需要使用数值积分方法来计算曲线下面的面积。

3. 工程领域在工程领域中,很多问题需要对某些物理量进行计算和预测。

而这些物理量通常以曲线的形式呈现,因此需要使用数值积分方法来计算曲线下面的面积。

五、总结数值积分方法是一种重要的数值计算方法,它可以用来近似计算函数曲线下面积。

高职高专高等数学教案

高职高专高等数学教案

高职高专高等数学教案第一章:函数与极限1.1 函数的概念与性质教学目标:理解函数的基本概念,掌握函数的性质。

教学内容:函数的定义,函数的单调性,奇偶性,周期性。

教学方法:通过实例讲解函数的概念,利用图形演示函数的性质。

1.2 极限的概念与性质教学目标:理解极限的基本概念,掌握极限的性质。

教学内容:极限的定义,极限的性质,无穷小,无穷大。

教学方法:通过实际问题引入极限的概念,利用数学推理证明极限的性质。

第二章:导数与微分2.1 导数的概念与计算教学目标:理解导数的基本概念,掌握基本函数的导数计算。

教学内容:导数的定义,导数的计算规则,基本函数的导数。

教学方法:通过实际问题引入导数的概念,利用公式计算基本函数的导数。

2.2 微分的概念与计算教学目标:理解微分的概念,掌握微分的计算方法。

教学内容:微分的定义,微分的计算规则,微分在实际问题中的应用。

教学方法:通过实际问题引入微分的概念,利用公式计算微分。

第三章:积分与面积3.1 积分的概念与计算教学目标:理解积分的基本概念,掌握基本函数的积分计算。

教学内容:积分的定义,积分的计算方法,基本函数的积分。

教学方法:通过实际问题引入积分的概念,利用公式计算基本函数的积分。

3.2 面积的概念与计算教学目标:理解面积的概念,掌握面积的计算方法。

教学内容:面积的定义,面积的计算方法,平面图形面积的计算。

教学方法:通过实际问题引入面积的概念,利用公式计算平面图形的面积。

第四章:级数与级数求和4.1 级数的概念与性质教学目标:理解级数的基本概念,掌握级数的性质。

教学内容:级数的定义,级数的性质,收敛级数,发散级数。

教学方法:通过实际问题引入级数的概念,利用数学推理证明级数的性质。

4.2 级数求和的方法教学目标:掌握级数求和的方法。

教学内容:等差级数的求和,等比级数的求和,交错级数的求和。

教学方法:利用数学推理和实例讲解级数求和的方法。

第五章:常微分方程5.1 微分方程的基本概念教学目标:理解微分方程的基本概念。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第2章 数值积分
一、考核知识点
内插求积公式,代数精度,梯形公式、辛卜生公式、复化梯形公式和复化辛卜生公式及其余项.
二、考核要求
1.了解内插求积公式及其性质,掌握内插求积公式的计算方法;
2.理解代数精度的概念,掌握内插求积公式代数精度的计算方法;
3.熟练掌握梯形、复化梯形公式、辛卜生、复化辛卜生公式及其余项,熟练掌握运用它们计算定积分的近似值.
三、例题分析
例1 在区间上,求以]1,1[−1,0,1321==−=x x x 为节点的内插求积公式.
解:由系数计算公式得
∫∫∫−−−=++==−+−+==−−−−=1121111
1031)11()1(,34)10)(10()1)(1(,31)11()1(dx x x A dx x x A dx x x A 所以求积公式为)1(31)0(34)1(31)(11f f f dx x f ++−≈∫
− 例2求数值积分公式)2(31)1(34)0(31)(20
f f f dx x f ++≈∫的代数精确度. 解 由于此公式为3个节点的内插求积公式,代数精度至少为2.
令,代入内插求积公式得
3)(x x f =左边=44120
42
03==∫x dx x , 而 右边423
1134)0(31333=++= 所以 左边=右边. 再令,代入内插求积公式得
4)(x x f =左边=5
322
04=∫dx x ,
右边=3
20231134031
444=++ 所以 左边右边.
≠所以此公式具有3次代数精度.
例3 用梯形公式和的复化梯形公式求积分
4=n ∫+101x dx ,并估计误差. 解 (1) 梯形公式
因为 ,1,0==b a 11)(+=
x x f ,代入梯形公式得 则75.0111101[21)]1()0([211
11
0=+++=+≈+∫f f dx x (2) 复化梯形公式 因为 414=−=
a b h 和复化梯形公式得 )]1())4
3()21()41((2)0([811110f f f f f dx x ++++≈+∫ 697.0]21)746454(21[81≈+++×+=
因为 1
1)(+=x x f , 3)1(2)(x x f +=′′ , 2)(max 102=′′=≤≤x f M x 所以 96
116122)3(12)()(23=×≤′′−=f n a b f R 注意:在用复化梯形公式和复化辛卜生公式计算 积分时注意系数的排列.
例4 用辛卜生公式和复化辛卜生公式计算 积分
∫+101x dx ,使误差小于 310−解 (1) 辛卜生公式
因为,1,0==b a 11)(+=
x x f ,代入辛卜生公式得 694.0]11112
114101[61)1()21(4)0(61110=+++++=⎥⎦⎤⎢⎣⎡++≈+∫f f f x dx 4 (2) 复化辛卜生公式
因为24)
1(24)(max 5)4(104=+==≤≤x x f M x 解不等式 345441012012880−<=−≤m
a b m M f R )( 得 ,用2≥m 41,4,2=
==n n m ,复化辛卜生公式计算得 ⎥⎦
⎤⎢⎣⎡++++≈+∫)1(21(2)43(4)41(4)0(121110f f f f f x dx 69325.0)1()21(2)43(4)41(4)0(121≈⎥⎦⎤⎢⎣⎡++++=f f f f f。

相关文档
最新文档