SIFT 特征提取算法总结

合集下载

SIFT算法详解

SIFT算法详解

SIFT算法详解Scale Invariant Feature Transform(SIFT)Just For Funzdd zddmail@对于初学者,从David G.Lowe的论文到实现,有许多鸿沟,本文帮你跨越。

1、SIFT综述尺度不变特征转换(Scale-invariant feature transform或SIFT)是一种电脑视觉的算法用来侦测与描述影像中的局部性特征,它在空间尺度中寻找极值点,并提取出其位置、尺度、旋转不变量,此算法由David Lowe在1999年所发表,2004年完善总结。

其应用范围包含物体辨识、机器人地图感知与导航、影像缝合、3D模型建立、手势辨识、影像追踪和动作比对。

此算法有其专利,专利拥有者为英属哥伦比亚大学。

局部影像特征的描述与侦测可以帮助辨识物体,SIFT 特征是基于物体上的一些局部外观的兴趣点而与影像的大小和旋转无关。

对于光线、噪声、些微视角改变的容忍度也相当高。

基于这些特性,它们是高度显著而且相对容易撷取,在母数庞大的特征数据库中,很容易辨识物体而且鲜有误认。

使用SIFT特征描述对于部分物体遮蔽的侦测率也相当高,甚至只需要3个以上的SIFT物体特征就足以计算出位置与方位。

在现今的电脑硬件速度下和小型的特征数据库条件下,辨识速度可接近即时运算。

SIFT特征的信息量大,适合在海量数据库中快速准确匹配。

SIFT算法的特点有:1. SIFT特征是图像的局部特征,其对旋转、尺度缩放、亮度变化保持不变性,对视角变化、仿射变换、噪声也保持一定程度的稳定性;2. 独特性(Distinctiveness)好,信息量丰富,适用于在海量特征数据库中进行快速、准确的匹配;3. 多量性,即使少数的几个物体也可以产生大量的SIFT特征向量;4. 高速性,经优化的SIFT匹配算法甚至可以达到实时的要求;5. 可扩展性,可以很方便的与其他形式的特征向量进行联合。

SIFT算法可以解决的问题:目标的自身状态、场景所处的环境和成像器材的成像特性等因素影响图像配准/目标识别跟踪的性能。

图像识别中的SIFT算法实现与优化

图像识别中的SIFT算法实现与优化

图像识别中的SIFT算法实现与优化一、SIFT算法介绍SIFT算法(Scale-Invariant Feature Transform)是一种用于图像对比和匹配的局部特征提取算法,由David Lowe于1999年开发提出并持续改良。

SIFT算法可以检测出具有旋转、缩放、光照变化等不变性的图像特征点,被广泛应用于计算机视觉领域,如图像匹配、图像检索、物体识别等。

SIFT算法主要分为四步:尺度空间极值检测、关键点定位、关键点方向确定和描述子生成。

尺度空间极值检测:SIFT算法通过构建高斯金字塔来检测尺度下的极值点。

在高斯金字塔中,首先对原始图像进行下采样,生成一组不同尺度的图像。

然后在每个尺度上利用高斯差分来检测极值点,满足以下条件的点即为极值点:周围像素点中的最大值或最小值与当前像素点的差值达到一定阈值,而且是在尺度空间上达到极值。

关键点定位:对于极值点的定位,SIFT算法采用了一种基于拟合精细的方法来定位真实的关键点。

SIFT算法通过在尺度空间中计算极值点的DoG(高斯差分)的Hessian矩阵,来估计关键点的尺度和位置。

如果Hessian矩阵的行列式和迹符号都满足一定的条件,则认为该点为关键点。

关键点方向确定:在确定关键点的位置和尺度之后,SIFT算法还需要确定关键点的主方向。

该方向是通过计算关键点周围像素点的梯度方向和大小,并在组合后的梯度图像上寻找最大梯度方向得到的。

这个方向是在许多方向中确定的,而描述符是相对于主方向定义的。

描述子生成:最后,SIFT算法采用一个高维向量来描述关键点,并且具有不变性。

该向量的计算是在相对于关键点的周围图像区域内,采集图像梯度方向的统计信息来完成的。

描述符向量包含了关键点的位置、主方向,以及相对于主方向的相对性质。

二、SIFT算法优化思路尽管SIFT算法已经被广泛使用,但是由于算法复杂度和内存消耗等问题,使得在大数据和实时应用场景下,SIFT算法的运行速度和效果表现都有巨大限制。

sift算法的原理和步骤

sift算法的原理和步骤

sift算法的原理和步骤SIFT算法的原理和步骤SIFT算法是一种用于图像特征提取的算法,它能够从图像中提取出具有独特性、稳定性和可重复性的关键点,用于图像匹配、目标跟踪等任务。

本文将介绍SIFT算法的原理和步骤。

一、原理1. 尺度空间尺度空间是指同一物体在不同尺度下的表现形式。

SIFT算法采用高斯金字塔来实现尺度空间的构建,即将原始图像不断缩小并平滑处理,得到一系列模糊程度不同的图像。

2. 关键点检测在尺度空间中,SIFT算法采用DoG(Difference of Gaussian)来检测关键点。

DoG是指两个不同尺寸的高斯滤波器之间的差值,可以有效地提取出具有高斯拉普拉斯变换极值点(LoG)特征的区域。

3. 方向确定对于每个关键点,在其周围区域内计算梯度幅值和方向,并统计梯度直方图。

最终确定该关键点最显著的梯度方向作为其主方向。

4. 描述子生成以关键点为中心,生成一个16x16的方形区域,并将其分为4x4的小块。

对于每个小块,计算其内部像素的梯度方向直方图,并将其串联成一个128维的向量,作为该关键点的描述子。

5. 匹配通过计算不同图像之间的关键点描述子之间的距离来进行匹配。

采用最近邻法(Nearest Neighbor)和次近邻法(Second Nearest Neighbor)来进行筛选,从而得到最终的匹配结果。

二、步骤1. 构建高斯金字塔对于原始图像,采用高斯滤波器进行平滑处理,并将其缩小一定比例后再次平滑处理,得到一系列不同尺度下的图像。

这些图像构成了高斯金字塔。

2. 构建DoG金字塔在高斯金字塔中,相邻两层之间做差得到一组DoG金字塔。

通过在DoG金字塔上寻找局部极值点来检测关键点。

3. 确定关键点主方向对于每个关键点,在其周围区域内计算梯度幅值和方向,并统计梯度直方图。

最终确定该关键点最显著的梯度方向作为其主方向。

4. 生成描述子以关键点为中心,生成一个16x16的方形区域,并将其分为4x4的小块。

sift算法原理

sift算法原理

sift算法原理SIFT算法原理。

SIFT(Scale-invariant feature transform)算法是一种用于图像处理和计算机视觉领域的特征提取算法。

它能够在不同尺度和旋转角度下提取出稳定的特征点,并且对光照、噪声等干扰具有较强的鲁棒性。

SIFT算法由David Lowe于1999年提出,至今仍被广泛应用于图像拼接、目标识别、三维重建等领域。

本文将介绍SIFT算法的原理及其关键步骤。

1. 尺度空间极值检测。

SIFT算法首先通过高斯滤波构建图像的尺度空间金字塔,然后在不同尺度空间上寻找局部极值点作为关键点。

这些关键点在不同尺度下具有不变性,能够在不同大小的目标上被检测到。

2. 关键点定位。

在尺度空间极值点的基础上,SIFT算法通过对尺度空间进行插值,精确定位关键点的位置和尺度。

同时,为了提高关键点的稳定性,还会对梯度方向进行进一步的精确计算。

3. 方向分配。

为了使关键点对旋转具有不变性,SIFT算法会计算关键点周围像素点的梯度方向直方图,并选择主方向作为关键点的方向。

这样可以使得关键点对于图像的旋转具有不变性。

4. 特征描述。

在确定了关键点的位置、尺度和方向后,SIFT算法会以关键点为中心,提取周围区域的梯度信息,并将其转换为具有较强区分度的特征向量。

这些特征向量可以很好地描述关键点周围的图像信息,从而实现对图像的匹配和识别。

5. 特征匹配。

最后,SIFT算法使用特征向量进行特征匹配,通常采用欧氏距离或者余弦相似度进行特征匹配。

通过匹配不同图像的特征点,可以实现图像的配准、目标的识别等应用。

总结。

SIFT算法作为一种经典的特征提取算法,在图像处理和计算机视觉领域具有重要的应用价值。

其关键在于通过尺度空间极值点的检测和特征描述子的构建,实现了对图像的稳健特征提取。

同时,SIFT算法对于光照、噪声等干扰具有较强的鲁棒性,能够应对复杂环境下的图像处理任务。

因此,SIFT算法在目标识别、图像拼接、三维重建等领域有着广泛的应用前景。

SIFTSURFORBFAST特征提取算法比较

SIFTSURFORBFAST特征提取算法比较

SIFTSURFORBFAST特征提取算法比较在计算机视觉领域中,SIFT(Scale-Invariant Feature Transform,尺度不变特征转换)、SURF(Speeded Up Robust Features,加速鲁棒特征)、ORB(Oriented FAST and Rotated BRIEF,方向性的快速特征和旋转的BRIEF)、FAST(Features from Accelerated Segment Test,加速线段测试特征)都是常用的特征提取算法。

本文将对这四种算法进行比较,主要从算法原理、特点以及在不同应用场景的优缺点进行分析。

1.SIFT算法SIFT算法是由Lowe在1999年提出的一种获取图像局部特征的算法。

其主要兴趣点在于尺度不变特征的提取,通过尺度空间构建和关键点提取和描述来实现图像匹配。

SIFT算法的特点是具有旋转不变性、尺度不变性和光照不变性。

然而,SIFT算法计算复杂度较高,不适合实时应用。

2.SURF算法SURF算法是由Bay等人在2024年提出的一种加速鲁棒特征提取算法。

与SIFT算法相比,SURF算法主要优化了尺度空间构建、关键点检测和描述子生成等步骤。

SURF算法利用图像的Hessian矩阵来检测尺度空间的极值点,并通过Haar小波响应计算描述子。

该算法具有较好的尺度不变性和旋转不变性,同时计算速度更快。

然而,SURF算法对于局部对比度较低的图像特征提取效果较差。

3.ORB算法ORB算法是由Rublee等人在2024年提出的一种速度和描述能力兼具的特征提取算法。

该算法结合了FAST关键点检测和BRIEF描述子生成算法,并引入了旋转和尺度不变性。

ORB算法在FAST检测关键点时,通过计算像素灰度和检测周围点的弧长度来提高检测的稳定性。

在描述子生成过程中,ORB算法利用了方向梯度直方图(DOG)来提取关键点的旋转信息。

ORB算法具有快速、简单和可靠的特点,适合于实时应用。

图像识别中的特征提取算法的使用方法

图像识别中的特征提取算法的使用方法

图像识别中的特征提取算法的使用方法在图像识别中,特征提取是一个关键步骤,它通过从图像中提取有用的信息来帮助分类、定位或识别图像中的对象。

特征提取算法的选择和使用对于图像识别的准确性和效率具有重要影响。

本文将介绍几种常用的特征提取算法,并探讨其使用方法。

1. 尺度不变特征变换(SIFT)尺度不变特征变换(Scale-Invariant Feature Transform,简称SIFT)是一种基于局部特征的特征提取算法。

它通过检测图像中的关键点,并计算这些关键点周围的描述子来提取特征。

SIFT算法具有尺度不变性和旋转不变性的特点,对于图像缩放、旋转和平移变换具有较好的适应性。

使用SIFT算法进行特征提取的方法如下:a. 使用SIFT算法检测图像中的关键点。

b. 对于每个关键点,计算其周围区域的描述子。

c. 基于描述子进行特征匹配和对象识别。

2. 快速RCNN算法快速区域卷积神经网络(Fast Region-based Convolutional Neural Network,简称Fast R-CNN)是一种基于深度学习的特征提取算法。

它通过将整个图像输入神经网络,并利用区域建议网络(Region Proposal Network)生成候选区域,然后对这些候选区域进行分类和定位。

使用快速RCNN算法进行特征提取的方法如下:a. 使用区域建议网络生成候选区域。

b. 将候选区域输入卷积神经网络进行特征提取。

c. 基于提取的特征进行分类和定位。

3. 卷积神经网络(CNN)卷积神经网络(Convolutional Neural Network,简称CNN)是一种广泛应用于图像识别的特征提取算法。

它通过一系列的卷积和池化层来提取图像的特征,并将这些特征输入全连接层进行分类。

使用卷积神经网络进行特征提取的方法如下:a. 设计并训练深度卷积神经网络。

b. 将图像输入神经网络,通过卷积和池化层提取特征。

c. 基于提取的特征进行分类和识别。

图像局部特征提取方法综述

图像局部特征提取方法综述

图像局部特征提取方法综述引言:图像是一种包含丰富信息的视觉表征形式,但如何从图像中提取有助于识别和描述图像内容的局部特征一直是计算机视觉领域的一个重要研究方向。

图像局部特征提取方法的目标是在不受图像整体变化的影响下,提取出能够表征图像局部结构和纹理信息的特征点。

本文将综述目前常用的图像局部特征提取方法,并对其优缺点进行评述。

一、经典的图像局部特征提取方法1. 尺度不变特征变换(Scale-Invariant Feature Transform, SIFT)SIFT是一种经典的图像局部特征提取算法,它通过检测极值点和描述关键区域的局部图像块的梯度分布来提取特征点。

SIFT算法具有旋转、平移和尺度不变性,且对光照变化和噪声有一定的鲁棒性。

然而,SIFT算法在计算时间和计算资源消耗方面存在一定的局限性。

2. 尺度空间极值法(Scale-Space Extrema, DoG)DoG是尺度空间极值法的一种实现方式,通过在不同尺度下对图像进行高斯平滑和差分运算,从而检测出具有较大尺度极值的特征点。

DoG算法具有尺度不变性,并且对图像的旋转、平移和仿射变换具有一定的鲁棒性。

然而,DoG算法在计算速度和尺度空间选择方面存在一些问题。

3. 快速特征检测(Fast Feature Detector, FAST)FAST算法是一种基于像素值比较的简单快速特征检测算法,它通过比较像素点和周围邻域像素点的灰度值大小来检测图像中的角点特征。

FAST算法具有快速检测速度和低计算复杂度的优点,适用于实时应用。

然而,FAST算法对旋转、尺度和光照变化较为敏感。

4. 加速稳健特征(Accelerated Robust Features, SURF)SURF算法是基于Hessian矩阵的加速稳健特征提取算法,它通过检测图像中的兴趣点、计算兴趣点的主方向和提取描述子来提取特征点。

SURF算法具有较快的计算速度和较好的尺度不变性。

然而,SURF算法在处理图像模糊和噪声方面相对较弱。

SIFT特征提取算法

SIFT特征提取算法

SIFT特征提取算法SIFT(Scale-Invariant Feature Transform)特征提取算法是一种用于图像的局部特征分析的算法。

它能够提取出图像中的关键点,并对这些关键点进行描述,从而可以用于图像匹配、物体识别等应用领域。

本文将详细介绍SIFT算法的原理和过程。

1.尺度空间构建SIFT算法首先通过使用高斯滤波器来构建图像的尺度空间,以便在不同尺度下检测关键点。

高斯滤波器可以通过一系列的高斯卷积操作实现,每次卷积之后对图像进行下采样(降低分辨率),得到不同尺度的图像。

2.关键点检测在尺度空间构建完成后,SIFT算法使用差分运算来检测关键点。

差分运算可以通过对图像进行高斯平滑操作来实现,然后计算相邻尺度之间的差分图像。

对差分图像进行极值检测,即寻找局部最大和最小值的像素点,这些像素点就是图像中的关键点。

3.关键点精确定位关键点的精确定位是通过拟合关键点周围的局部图像来实现的。

SIFT算法使用了一种高度鲁棒的方法,即利用关键点周围梯度的方向和大小来进行拟合。

具体来说,SIFT算法在关键点周围计算图像的梯度幅值和方向,并构建梯度直方图。

然后通过在梯度直方图中寻找局部极值来确定关键点的方向。

4.关键点描述关键点的描述是为了提取关键点周围的特征向量,用于后续的匹配和识别。

SIFT算法使用了一种局部特征描述算法,即将关键点周围的图像区域划分为小的子区域,并计算每个子区域的梯度方向直方图。

然后将这些直方图组合起来,构成一个维度较高的特征向量。

5.特征向量匹配在完成关键点描述之后,SIFT算法使用一种近似的最近邻方法来进行特征向量的匹配。

具体来说,使用KD树或者暴力匹配的方法来寻找两幅图像中最相似的特征向量。

通过计算特征向量之间的距离,可以找到最相似的匹配对。

6.尺度不变性SIFT算法具有尺度不变性的特点,即对于图像的缩放、旋转和视角变化等变换具有较好的鲁棒性。

这是因为在特征提取的过程中,SIFT算法对图像进行了多尺度的分析,并利用了关键点周围的梯度信息进行描述。

SIFT算法原理

SIFT算法原理

SIFT算法原理SIFT(Scale-Invariant Feature Transform,尺度不变特征变换)是一种用于图像处理和计算机视觉中的特征提取算法。

SIFT算法最初由David Lowe于1999年提出,它的核心思想是通过检测图像中的关键点,并提取这些关键点周围的局部特征描述子来进行图像匹配、物体识别、图像拼接等应用。

1.尺度空间构建首先,为了使SIFT算法对图像特征具有尺度不变性,需要构建一系列尺度空间图像。

这是通过将原始图像应用高斯模糊,然后进行下采样得到不同尺度的图像来实现的。

在每个尺度级别上,通过使用高斯差分金字塔(Difference of Gaussian,DoG)来提取图像中的关键点。

2.极值点检测在尺度空间中,通过在DoG金字塔中寻找局部极值点来检测关键点。

这些局部极值点通常表示图像中的显著特征点。

3.关键点定位对于每个检测到的极值点,需要通过拟合其周围的梯度方向来确定更加精确的位置和尺度。

这可以找到关键点的精确位置,并且作为后续步骤的输入。

4.方向分配为了使SIFT算法具有旋转不变性,需要为每个关键点分配一个主方向。

这可以通过计算关键点周围区域的梯度方向直方图来实现。

选择直方图中峰值最高的方向作为主方向。

5.特征描述在关键点的周围区域内,通过计算局部区域的梯度幅值和方向来构建特征描述子。

这些特征描述子对尺度、旋转和光照等变化都具有较强的鲁棒性,可以用来进行匹配和识别。

总的来说,SIFT算法通过构建尺度空间,检测局部极值点,定位关键点,分配主方向以及构建特征描述子等步骤,提取出图像中的稳定且具有鲁棒性的特征点。

这些特征点可以用于图像匹配、物体识别、图像拼接等计算机视觉任务,并且对尺度、旋转以及光照等变化具有一定的不变性。

SIFT算法在实际应用中具有广泛的应用价值,并成为计算机视觉领域中最经典的特征提取算法之一1.尺度空间构建2.关键点检测3.关键点定位对于检测到的关键点,SIFT算法通过拟合其周围的梯度方向来定位关键点的精确位置和尺度。

SIFT特征点提取与匹配

SIFT特征点提取与匹配

SIFT特征点提取与匹配SIFT(Scale-Invariant Feature Transform)特征点提取与匹配是一种在计算机视觉领域广泛使用的图像特征提取和匹配算法。

它由David G. Lowe于1999年提出,并在后续的研究中得到了改进和优化。

关键点检测的目标是找到一些具有局部极值的图像点。

这里的局部极值是指该点所在位置的像素值在周围邻域中达到最大或最小值。

为了实现尺度不变性,SIFT算法使用了高斯金字塔来检测不同尺度下的关键点。

高斯金字塔是通过对原始图像进行多次平滑操作得到的一系列图像,每一层图像的尺度比上一层的尺度大约减少一半。

在每一层中,使用DoG (Difference of Gaussians)来寻找关键点。

DoG是通过对两个邻近的高斯平滑图像进行差分操作得到的,它可以提供图像中的边缘和角点等信息。

通过在每一层的DoG图像中找到局部极值点,即可得到关键点的粗略位置。

为了进一步提高关键点的准确性,还需要对这些粗略位置进行精细的插值。

最终得到的关键点具有尺度和旋转不变性,并且能够抵抗光照变化的影响。

描述子的计算是对关键点周围区域的图像内容进行编码,生成一个具有较高区分度的特征向量。

首先,将关键点周围的邻域划分为若干个子区域,每个子区域内的像素值作为一个特征向量的元素。

然后,对每个子区域内的像素值进行高斯加权,以减小光照变化对特征描述子的影响。

最后,对加权后的像素值进行方向直方图统计,得到一个具有旋转不变性的特征描述子。

对于每个关键点,都会得到一个128维的特征向量。

这些特征向量可以通过比较欧式距离来进行匹配。

SIFT特征点匹配是通过在两个图像中的特征描述子之间进行比较,找到最佳匹配的特征点对。

常用的匹配方法是计算两个特征向量之间的欧式距离,并将距离最小的两个特征点视为匹配点。

为了提高匹配的准确性和鲁棒性,还可以采用诸如RANSAC(RANdom SAmple Consensus)的算法来剔除错误匹配。

matlab sift特征提取代码

matlab sift特征提取代码

一、介绍SIFT特征提取算法SIFT(Scale-Invariant Feature Transform)是一种用于图像处理和计算机视觉领域的特征提取算法,由David Lowe在1999年提出。

SIFT算法能够在不同尺度、旋转和光照条件下检测和描述图像中的关键特征点。

二、SIFT特征提取的原理1. 尺度空间极值检测SIFT算法首先通过高斯滤波器构建图像的尺度空间金字塔,在不同尺度上检测图像中的极值点,用于定位关键特征点。

2. 关键点定位在尺度空间金字塔上定位极值点,并通过尺度空间的拟合插值定位关键点的位置和尺度。

3. 方向确定对关键点周围的梯度方向进行统计,选择主要梯度方向作为关键点的方向。

4. 关键点描述基于关键点周围的梯度幅值和方向构建特征向量,用于描述关键点的外观特征。

三、MATLAB实现SIFT特征提取代码MATLAB提供了丰富的图像处理工具包,其中也包括对SIFT算法的支持。

下面给出MATLAB实现SIFT特征提取的简单示例代码:```matlab读入图像I = imread('image.jpg');I = single(rgb2gray(I));提取SIFT特征点[f, d] = vl_sift(I);显示特征点imshow(I);h1 = vl_plotframe(f);h2 = vl_plotsiftdescriptor(d, f);set(h1,'color','k','linewidth',3);set(h2,'color','g');```上述代码中,首先使用`imread`读入一张图像,并将其转化为灰度图像。

然后使用`vl_sift`函数提取图像中的SIFT特征点,其中`f`为特征点的位置和尺度,`d`为特征点的描述子。

最后使用`vl_plotframe`和`vl_plotsiftdescriptor`函数将特征点和特征描述子可视化出来。

sift(尺度不变特征变换)的原理

sift(尺度不变特征变换)的原理

sift(尺度不变特征变换)的原理尺度不变特征变换(Scale-Invariant Feature Transform,简称SIFT)是一种用于图像处理和计算机视觉领域的特征提取算法,由David Lowe在1999年首次提出。

与其他特征提取算法相比,SIFT具有尺度不变性、旋转不变性、光照不变性和局部性等特点,因此在许多应用领域中得到了广泛应用,如物体识别、图像匹配和三维重建等。

SIFT算法主要包括四个关键步骤:尺度空间极值点检测、关键点定位、关键点方向分配和局部特征描述。

第一步,尺度空间极值点检测。

图像中的一个关键点应该能在不同尺度的图像中被检测到。

为了实现尺度不变性,SIFT算法采用高斯差分函数(Difference of Gaussian, DoG)来检测尺度空间中的极值点。

高斯差分图像是通过两个不同尺度的高斯模糊图像相减得到的。

在不同的尺度和位置上,对差分图像进行非极大值抑制和阈值处理,得到稳定的关键点。

第二步,关键点定位。

在每个尺度空间中检测到的极值点需要进行精确定位,以提取具有稳定性和鲁棒性的关键点。

SIFT算法引入了尺度空间的二阶偏导数来计算关键点的位置和尺度。

通过建立高斯金字塔,利用图像的不同分辨率,通过差分图像计算尺度。

然后,在关键点周围的邻域内,通过二阶偏导数来确定关键点的位置。

第三步,关键点方向分配。

为了使计算机具有旋转不变性,SIFT算法需要为每个关键点分配一个主方向。

在关键点周围的邻域内,计算梯度幅值和方向,构建梯度直方图。

然后,在梯度直方图中寻找主方向,选取梯度幅值最大的方向作为关键点的主方向。

第四步,局部特征描述。

SIFT算法通过关键点的局部邻域计算局部特征描述子,以实现光照不变性和局部性。

在关键点周围的邻域内,通过建立一个统一的坐标系,将关键点归一化为固定大小的邻域。

然后,在归一化的邻域内计算梯度幅值和方向。

为了增强鲁棒性,SIFT采用了高斯加权窗口来抑制噪声和光照变化的影响。

图像处理中的特征点提取算法

图像处理中的特征点提取算法

图像处理中的特征点提取算法特征点是图像的局部特点,如角点、边缘、纹理等。

提取图像中的特征点是图像处理中的一个重要的基础技术。

特征点提取算法可以用在计算机视觉、机器学习、模式识别等领域中。

常见的特征点提取算法包括SIFT、SURF、ORB、FAST等,接下来,我们将对这些算法进行介绍。

SIFT(Scale-invariant feature transform)SIFT算法是由David Lowe于1999年提出的。

SIFT算法是一种基于尺度空间理论的特征点提取算法,可以提取出具有尺度不变性和旋转不变性的特征点。

SIFT算法的基本思想是把图像从低到高分解成不同尺度的高斯金字塔,然后在每个尺度上,通过差分来得到图像的尺度空间。

接着,在每个尺度上,检测出具有较高响应的关键点,并利用高斯金字塔在关键点周围生成描述子。

最后,通过匹配描述子来实现图像的配准和识别。

SURF(Speeded Up Robust Features)SURF算法是Herbert Bay等人于2006年提出的。

SURF算法是一种快速的特征点提取算法,通过使用Hessian矩阵来检测尺度和旋转不变性的兴趣点。

SURF算法可以用于图像识别、特征匹配、图像拼接等领域。

SURF算法的特点是速度快、稳定性好、鲁棒性强,并且在尺度变换和噪声干扰的情况下仍然能够识别到兴趣点。

ORB(Oriented FAST and Rotated BRIEF)ORB算法是Ethan Rublee等人于2011年提出的。

ORB算法是一种基于FAST和BRIEF的特征点提取算法,具有尺度不变性和旋转不变性。

ORB算法的基本思想是将FAST算法用于检测关键点,并在其基础上应用BRIEF算法来产生描述子。

与SIFT算法相比,ORB算法具有更好的速度和更好的检测能力,并且具有与SIFT算法相当的识别性能。

FAST(Features from Accelerated Segment Test)FAST算法是Edward Rosten等人于2006年提出的。

SIFT特征提取算法

SIFT特征提取算法

SIFT特征提取算法SIFT特征提取算法(Scale-Invariant Feature Transform)是一种计算机视觉领域广泛应用的特征提取算法,它具有尺度不变性和旋转不变性的特点,能够在图像中鲁棒地提取出关键点,并生成与这些关键点相关的描述子,以实现图像特征的匹配和识别。

SIFT特征提取算法包含以下几个重要的步骤:尺度空间极值检测、关键点定位、关键点方向确定、关键点描述子生成等。

首先,SIFT特征提取算法从一幅图像中构建尺度空间。

为了实现尺度不变性,SIFT算法利用高斯金字塔模拟不同尺度下的图像,通过对图像进行多次高斯模糊操作得到一系列尺度不同的图像。

然后,通过对这些图像进行差分运算,得到一组差分图像用于尺度空间极值检测。

接下来,SIFT算法从尺度空间极值检测结果中选取稳定的关键点。

在差分图像中,极值点表示着尺度空间中的局部最大值或最小值,这些极值点对应着图像中的关键点。

为了保证关键点的稳定性,SIFT算法会过滤掉一些不稳定的候选关键点,例如低对比度的关键点和边缘响应较大的关键点。

然后,对于选取的关键点,SIFT算法会计算它们的主方向。

利用关键点附近的梯度直方图,SIFT算法可以确定关键点的方向。

这个主方向可以提高后续描述子生成的旋转不变性。

最后,SIFT算法根据关键点的位置和主方向生成关键点的描述子。

在关键点周围的邻域内,SIFT算法通过计算邻域内像素的梯度幅值和方向,生成一个特征向量来描述关键点的外观特征。

这个特征向量被称为SIFT特征描述子,通常是一个128维的向量。

为了保证描述子的不变性,SIFT算法对特征向量进行了归一化和方向旋转等处理。

总结来说,SIFT特征提取算法通过尺度空间极值检测、关键点定位、关键点方向确定和关键点描述子生成等步骤,能够从图像中提取出具有尺度不变性和旋转不变性的关键点和描述子。

SIFT特征提取算法在计算机视觉领域有着广泛的应用,例如图像匹配、物体识别和三维重建等任务中都能够发挥重要作用。

SIFT特征提取算法详解

SIFT特征提取算法详解

SIFT特征提取算法详解SIFT(Scale-Invariant Feature Transform)特征提取算法是一种用于在图像中寻找关键点的方法,该算法具有尺度不变性,能够提取出能够对图像进行描述的稳定的局部特征。

本文将从算法原理、关键步骤以及优缺点等方面进行详细解析。

一、算法原理SIFT算法的主要思想是通过寻找关键点和计算这些关键点的特征向量,来描述图像中的局部特征,并实现对尺度、旋转和亮度的不变性。

1.尺度空间极值检测SIFT算法首先通过DoG(Difference of Gaussian)来检测图像中的关键点。

DoG是指在不同尺度下的高斯平滑图像之间的差异,这样可以有效地检测出图像中的尺度空间极值点。

2.关键点精确定位通过在DoG金字塔中精确定位关键点,SIFT算法可以找到图像中的关键点。

该算法使用了Hessian矩阵的近似来计算特征点的位置和尺度,并用Taylor展开来精确计算特征点的位置。

3.方向分配为了使特征具有旋转不变性,SIFT算法通过计算特征点周围的梯度方向直方图来分配特征点的主方向。

具体步骤是确定特征点周围像素的梯度幅值和方向,并将方向分配到主方向上。

4.特征描述在计算了特征点的尺度和方向之后,SIFT算法通过计算特征点周围的局部图像块的梯度直方图来描述特征。

这些梯度直方图能够描述特征点周围的领域特征,并且具有尺度和旋转不变性。

二、关键步骤详解1.构建高斯金字塔SIFT算法首先对输入的图像进行平滑处理,然后通过不断降采样生成高斯金字塔。

高斯金字塔能够提供多尺度图像。

2.构建差分金字塔利用高斯金字塔计算DoG金字塔。

通过对相邻两层高斯图像进行差分操作,可以得到相应的两层DoG图像。

3.检测尺度空间极值点在DoG金字塔上,通过比较每一个像素点与其8邻域和相邻的26个像素点的像素值来确定极值点。

具体方法是通过比较每一层图像的像素值与周围像素值进行判定。

4.精确定位关键点通过利用Taylor展开公式来精确定位关键点的位置,这可以减小特征点在尺度和位置上的误差。

sift特征提取的几个主要步骤

sift特征提取的几个主要步骤

sift特征提取的几个主要步骤SIFT特征提取的主要步骤SIFT(Scale-Invariant Feature Transform)是一种用于图像处理和计算机视觉的特征提取算法。

该算法能够在不受图像尺度、旋转和亮度变化的影响下,提取出图像中的关键特征点。

SIFT特征提取算法主要由以下几个步骤组成:1. 尺度空间极值检测SIFT算法首先通过构建高斯金字塔来寻找图像中的尺度空间极值点。

高斯金字塔是一系列的高斯模糊图像,每一层的图像都是前一层图像的2倍尺寸。

通过对不同尺度的图像进行高斯滤波,可以在不同尺度下检测到不同大小的特征。

2. 关键点定位在尺度空间极值检测的基础上,SIFT算法进一步在每个尺度空间上进行关键点的定位。

通过对图像的局部极值点进行精确定位,剔除低对比度和边缘响应较大的特征点,得到更加稳定和可靠的关键点。

3. 方向分配为了使SIFT特征具有旋转不变性,算法在每个关键点周围的邻域内计算图像梯度的方向直方图。

通过统计梯度方向的分布,选择主要的梯度方向作为关键点的主方向。

这样可以使得SIFT特征对图像的旋转具有不变性。

4. 特征描述在确定了关键点的位置和主方向之后,SIFT算法对每个关键点周围的邻域内进行特征描述。

通过计算关键点周围像素的梯度幅值和方向,生成一个128维的特征向量。

这个特征向量能够描述关键点周围的图像纹理信息,具有一定的旋转和尺度不变性。

5. 特征匹配SIFT算法最后通过特征向量的匹配来实现图像间的特征匹配。

在匹配过程中,通常采用欧氏距离或其他相似性度量来计算特征向量之间的距离。

通过比较距离的大小,可以找到最佳的匹配对。

SIFT特征提取算法的独特之处在于其对图像的尺度、旋转和亮度变化具有很好的不变性。

这使得SIFT特征在许多计算机视觉任务中具有广泛的应用,如目标识别、图像拼接、三维重建等。

尽管SIFT算法在计算复杂度和内存消耗方面相对较高,但由于其稳定性和鲁棒性,仍然是一种非常有价值的特征提取方法。

特征点匹配——SIFT算法详解

特征点匹配——SIFT算法详解

特征点匹配——SIFT算法详解SIFT(Scale-Invariant Feature Transform)是一种用于在图像中寻找关键点并进行匹配的算法。

该算法由David Lowe在1999年发布,并且一直被广泛应用于计算机视觉领域。

SIFT算法具有尺度不变性和旋转不变性,可以在不同的图像尺度和旋转角度下进行特征点的匹配。

SIFT算法的主要步骤包括关键点检测、关键点描述和特征点匹配。

关键点检测:在一张图像中,关键点通常是指存在于不同尺度和方向上的局部最大值或局部最小值。

SIFT使用高斯差分金字塔来检测关键点。

首先,通过对原始图像进行高斯模糊,创建一个金字塔,然后在每一组金字塔中计算高斯差分图像。

接着,通过比较每个像素周围的8个像素和自身像素的差值,找到局部极值点。

最后,使用尺度空间极大值抑制来进一步过滤出稳定的关键点。

关键点描述:在关键点检测后,需要对每个关键点进行描述。

SIFT使用局部图像梯度的直方图来描述关键点。

首先,在每个关键点周围的16x16像素块上计算梯度的幅值和方向。

然后将这个块分成16个4x4的子块,并在每个子块上计算一个8方向的直方图。

最后,将这些直方图连接起来形成一个128维的向量,用来表示该关键点。

在对两幅图像提取出关键点并进行描述后,需要对这些特征点进行匹配。

SIFT使用欧式距离来计算特征向量之间的相似性。

对于每个特征点,将其描述子与另一幅图像中的所有描述子进行比较,选择最佳匹配的特征点对。

SIFT算法在匹配过程中还引入了RANSAC算法来排除错误的匹配。

RANSAC(Random Sample Consensus)是一种迭代的鲁棒性估计方法,可以通过随机选择一个小子集来估计模型参数,并通过计算剩余误差和阈值来确定最终的模型。

总结一下,SIFT算法通过关键点检测、关键点描述和特征点匹配三个步骤来实现对图像中的特征点进行匹配。

该算法具有尺度不变性和旋转不变性,可以在不同的图像尺度和旋转角度下进行特征点的匹配。

SIFT特征点提取与匹配算法

SIFT特征点提取与匹配算法

SIFT 特征点匹配算法基于SIFT 方法的图像特征匹配可分为特征提取和特征匹配两个部分,可细化分为五个部分: ① 尺度空间极值检测(Scale-space extrema detection );② 精确关键点定位(Keypoint localization )③ 关键点主方向分配(Orientation assignment )④ 关键点描述子生成(Keypoint descriptor generation )⑤ 比较描述子间欧氏距离进行匹配(Comparing the Euclidean distance of the descriptors for matching )1.1 尺度空间极值检测特征关键点的性质之一就是对于尺度的变化保持不变性。

因此我们所要寻找的特征点必须具备的性质之一,就是在不同尺度下都能被检测出来。

要达到这个目的,我们可以在尺度空间内寻找某种稳定不变的特性。

Koenderink 和Lindeberg 已经证明,变换到尺度空间唯一的核函数是高斯函数。

因此一个图像的尺度空间定义为:(,,)L x y σ,是由可变尺度的高斯函数(,,)G x y σ与输入图像(,)I x y 卷积得到,即:),(),,(),,(y x I y x G y x L *=σσ (1.1) 其中:2222/)(221),,(σπσσy x e y x G +-=在实际应用中,为了能相对高效地计算出关键点的位置,建议使用的是差分高斯函数(difference of Gaussian )(,,)D x y σ。

其定义如下:),,(),,(),()),,(),,((),,(σσσσσy x L k y x L y x I y x G k y x G y x D -=*-= (1.2)如上式,D 即是两个相邻的尺度的差(两个相邻的尺度在尺度上相差一个相乘系数k )。

图 1.1图1.1所展示的是建立DOG 的一种实用的方法。

SIFT特征提取算法总结

SIFT特征提取算法总结

SIFT特征提取算法总结SIFT(Scale-Invariant Feature Transform)特征提取算法是一种旋转不变性和尺度不变性较强的特征提取算法,被广泛应用于计算机视觉领域中的图像配准、目标识别、三维重建等任务中。

SIFT算法由David Lowe在1999年提出,并在2004年发表了他的论文,成为一种经典的特征提取算法。

本篇文章将对SIFT特征提取算法进行总结和分析。

1.SIFT特征提取算法原理(1)尺度空间极值检测:在不同的尺度空间中寻找关键点。

SIFT算法使用高斯金字塔对图像进行尺度空间的离散采样。

在每个尺度空间中,通过构建DoG(Difference of Gaussian)金字塔来检测图像中的局部极值点。

(2)关键点定位:对尺度空间极值点进行精确定位以得到关键点。

在尺度空间中使用Hessian矩阵来估计关键点的位置和尺度,并通过亚像素插值来获得更加精确的关键点位置。

(3)方向分配:为每个关键点分配主方向。

SIFT算法在关键点周围的邻域内计算梯度方向直方图,选择梯度方向最大的方向作为该关键点的主方向。

(4)描述子生成:对关键点周围的邻域进行描述子的生成。

SIFT算法将关键点周围的邻域划分为一个个小区域,并计算每个小区域内的梯度方向直方图,从而生成描述子。

2.SIFT特征提取算法优点(1)尺度不变性:SIFT算法在不同尺度空间中检测图像的关键点,使得检测到的关键点能够具有尺度不变性。

(2)旋转不变性:SIFT算法对每个关键点分配主方向,通过旋转关键点周围的邻域来实现旋转不变性。

(3)良好的特征描述性:SIFT特征由128维向量表示,能够克服一些小范围内的图像变换,如亮度变化等。

(4)鲁棒性:SIFT算法对噪声、模糊等干扰具有较强的鲁棒性,适用于复杂的图像条件下提取特征。

3.SIFT特征提取算法应用SIFT特征提取算法广泛应用于计算机视觉领域中的图像配准、目标识别、三维重建等任务中。

机器视觉中的特征提取与目标识别算法

机器视觉中的特征提取与目标识别算法

机器视觉中的特征提取与目标识别算法机器视觉是人工智能领域的一个重要分支,它研究如何使机器具备类似于人类的视觉能力。

在机器视觉应用中,特征提取和目标识别算法起着至关重要的作用。

特征提取是将图像中的信息转化为有意义的特征向量的过程,而目标识别算法则是对提取的特征进行分类和识别的过程。

本文将介绍机器视觉中常用的特征提取和目标识别算法。

一、特征提取算法1. 尺度不变特征变换(Scale-Invariant Feature Transform,SIFT)SIFT算法是一种基于图像局部特征的特征提取算法,它能够在不同尺度、旋转和亮度下提取出鲁棒性较高的特征点。

SIFT算法首先使用高斯滤波器进行尺度空间构建,然后对每个尺度的图像进行关键点检测和描述子生成。

最后,通过特征匹配和筛选来实现目标的识别。

2. 方向梯度直方图(Histogram of Oriented Gradients,HOG)HOG算法是一种基于图像梯度的特征提取算法,它通过计算图像中每个小区域的梯度方向直方图来表示图像的特征。

HOG算法在目标识别领域被广泛应用,特别是人体检测和行人识别。

它能够较好地捕捉目标的形状和边缘信息。

3. 卷积神经网络(Convolutional Neural Network,CNN)CNN是一种深度学习算法,在图像特征提取和目标识别中取得了很大的成功。

CNN通过多个卷积层和池化层来逐步提取图像的特征,并通过全连接层将特征映射到目标的类别。

由于CNN能够通过学习得到更复杂、高级的特征表示,它在许多视觉任务中表现出了很强的性能。

二、目标识别算法1. 支持向量机(Support Vector Machine,SVM)SVM是一种经典的机器学习算法,在目标识别中得到了广泛应用。

SVM通过构建一个现行或非线性的分类超平面来实现目标的二分类或多分类。

对于图像分类任务,可以通过提取好的特征向量作为输入,然后使用SVM来训练分类模型,实现目标的识别。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

主要步骤
1)、尺度空间的生成;
2)、检测尺度空间极值点;
3)、精确定位极值点;
4)、为每个关键点指定方向参数;
5)、关键点描述子的生成。

L(x,y,σ), σ= 1.6 a good tradeoff
D(x,y,σ), σ= 1.6 a good tradeoff
关于尺度空间的理解说明:图中的2是必须的,尺度空间是连续的。

在 Lowe的论文中,将第0层的初始尺度定为1.6,图片的初始尺度定为0.5. 在检测极值点前对原始图像的高斯
平滑以致图像丢失高频信息,所以Lowe 建议在建立尺度空间前首先对原始图像长宽扩展一倍,以保留原始图像信息,增加特征点数量。

尺度越大图像越模糊。

next octave 是由first octave 降采样得到(如2)

尺度空间的所有取值,s为每组层数,一般为3~5
同一组中的相邻尺度(由于k的取值关系,肯定是上下层)之间进行寻找
在极值比较的过程中,每一组图像的首末两层是无法进行极值比较的,为了满足尺度变化的连续性,我们在每一组图像的顶层继续用高斯模糊生成了 3 幅图像,高斯金字塔有每组S+3层图像。

DOG金字塔每组有S+2层图像.
If ratio > (r+1)2/(r), throw it out (SIFT uses r=10)
表示DOG金字塔中某一尺度的图像x方向求导两次
通过拟和三维二次函数以精确确定关键点的位置和尺度(达到亚像素精度)?
直方图中的峰值就是主方向,其他的达到最大值80%的方向可作为辅助方向
Identify peak and assign orientation and sum of magnitude to key point The user may choose a threshold to exclude key points based on their
assigned sum of magnitudes.
利用关键点邻域像素的梯度方向分布特性为每个关键点指定方向参数,使算子具备
旋转不变性。

以关键点为中心的邻域窗口内采样,并用直方图统计邻域像素的梯度
方向。

梯度直方图的范围是0~360度,其中每10度一个柱,总共36个柱。

随着距中心点越远的领域其对直方图的贡献也响应减小.Lowe论文中还提到要使用高斯函
数对直方图进行平滑,减少突变的影响。

关键点描述子的生成步骤
通过对关键点周围图像区域分块,计算块内梯度直方图,生成具有独特性
的向量,这个向量是该区域图像信息的一种抽象,具有唯一性。

每一个小格都代表了特征点邻域所在的尺度空间的一个像素,箭头方向代表了像素梯度方向,箭头长度代表该像素的幅值。

然后在4×4的窗口内计算8个方向的梯度方向直方图。

绘制每个梯度方向的累加可形成一个种子点。

每个直方图有8方向的梯度方向,每一个描述符包含一个位于关键点附近的四个直方图数组.这就导致了SIFT的特征向量有128维.(先是一个4×4的来计算出一个直方图,每个直方图有8个方向。

所以是4×4×8=128维)将这个向量归一化之后,就进一步
去除了光照的影响。

旋转为主方向
基本概念及一些补充
什么是局部特征?
•局部特征从总体上说是图像或在视觉领域中一些有别于其周围的地方
•局部特征通常是描述一块区域,使其能具有高可区分度
•局部特征的好坏直接会决定着后面分类、识别是否会得到一个好的结果
局部特征需具备的特性
•重复性
•可区分性
•准确性
•数量以及效率
•不变性
局部特征提取算法-sift
•SIFT算法由D.G.Lowe 1999年提出,2004年完善总结。

后来Y.Ke将其描述子部分用PCA代替直方图的方式,对其进行改进。

•SIFT算法是一种提取局部特征的算法,在尺度空间寻找极值点,提取位置,尺度,旋转不变量
•SIFT特征是图像的局部特征,其对旋转、尺度缩放、亮度变化保持不变性,对视角变化、仿射变换、噪声也保持一定程度的稳定性。

•独特性好,信息量丰富,适用于在海量特征数据库中进行快速、准确的匹配。

•多量性,即使少数的几个物体也可以产生大量SIFT特征向量。

•可扩展性,可以很方便的与其他形式的特征向量进行联合。

尺度空间理论
•尺度空间理论目的是模拟图像数据的多尺度特征
•其基本思想是在视觉信息图像信息处理模型中引入一个被视为尺度的参数, 通过连续变化尺度参数获得不同尺度下的视觉处理信息, 然后综合这些信息以深入地挖掘图像的本质特征。

描述子生成的细节
•以极值点为中心点,并且以此点所处于的高斯尺度sigma值作为半径因子。

对于远离中心点的梯度值降低对其所处区域的直方图的贡献,防止一些突变的影响。

•每个极值点对其进行三线性插值,这样可以把此极值点的贡献均衡的分到直方图中相邻的柱子上
归一化处理
•在求出4*4*8的128维特征向量后,此时SIFT特征向量已经去除了尺度变化、旋转等几何变形因素的影响。

而图像的对比度变化相当于每个像素点乘上一个因子,光照变化是每个像素点加上一个值,但这些对图像归一化的梯度没有影响。

因此将特征向量的长度归一化,则可以进一步去除光照变化的影响。

•对于一些非线性的光照变化,SIFT并不具备不变性,但由于这类变化影响的主要是梯度的幅值变化,对梯度的方向影响较小,因此作者通过限制梯度幅值的值来减少这类变化造成的影响。

PCA-SIFT算法
•PCA-SIFT与标准SIFT有相同的亚像素位置,尺度和主方向。

但在第4步计算描述子的设计,采用的主成分分析的技术。

•下面介绍一下其特征描述子计算的部分:
•用特征点周围的41×41的像斑计算它的主元,并用PCA-SIFT将原来的2×39×39维的向量降成20维,以达到更精确的表示方式。

•它的主要步骤为,对每一个关键点:在关键点周围提取一个41×41的像斑于给定的尺度,旋转到它的主方向;计算39×39水平和垂直的梯度,形成一个大小为3042的矢量;用预先计算好的投影矩阵n×3042与此矢量相乘;这样生成一个大小为n的PCA-SIFT描述子。

相关文档
最新文档