2015上海中考数学压轴专题之面积问题
中考数学压轴题---增长率(面积问题)例题讲解
中考数学压轴题---增长率(面积问题)例题讲解例1、(2022•无锡)某农场计划建造一个矩形养殖场,为充分利用现有资源,该矩形养殖场一面靠墙(墙的长度为10m),另外三面用栅栏围成,中间再用栅栏把它分成两个面积为1:2的矩形,已知栅栏的总长度为24m,设较小矩形的宽为xm(如图).(1)若矩形养殖场的总面积为36m2,求此时x的值;(2)当x为多少时,矩形养殖场的总面积最大?最大值为多少?【解答】解:(1)根据题意知:较大矩形的宽为2xm,长为=(8﹣x)m,∴(x+2x)×(8﹣x)=36,解得x=2或x=6,经检验,x=6时,3x=18>10不符合题意,舍去,∴x=2,答:此时x的值为2;(2)设矩形养殖场的总面积是ym2,∵墙的长度为10m,根据题意得:y=(x+2x)×(8﹣x)=﹣3x2+24x=﹣3(x﹣4)2+48,∵﹣3<0,∴当x=时,y取最大值,最大值为﹣3×(﹣4)2+48=(m2),答:当x=时,矩形养殖场的总面积最大,最大值为m2.【变式1-1】(2022•湘潭)为落实国家《关于全面加强新时代大中小学劳动教育的意见》,某校准备在校园里利用围墙(墙长12m)和21m长的篱笆墙,围成Ⅰ、Ⅱ两块矩形劳动实践基地.某数学兴趣小组设计了两种方案(除围墙外,实线部分为篱笆墙,且不浪费篱笆墙),请根据设计方案回答下列问题:(1)方案一:如图①,全部利用围墙的长度,但要在Ⅰ区中留一个宽度AE=1m 的水池,且需保证总种植面积为32m2,试分别确定CG、DG的长;(2)方案二:如图②,使围成的两块矩形总种植面积最大,请问BC应设计为多长?此时最大面积为多少?【解答】解:(1)∵(21﹣12)÷3=3(m),∴Ⅰ、Ⅱ两块矩形的面积为12×3=36(m2),设水池的长为am,则水池的面积为a×1=a(m2),解得a=4,∴DG=4m,∴CG=CD﹣DG=12﹣4=8(m),即CG的长为8m、DG的长为4m;(2)设BC长为xm,则CD长度为21﹣3x,∴总种植面积为(21﹣3x)•x=﹣3(x2﹣7x)=﹣3(x﹣)2+,∵﹣3<0,∴当x=时,总种植面积有最大值为m2,即BC应设计为m总种植面积最大,此时最大面积为m2.【变式1-2】(2021•重庆)重庆小面是重庆美食的名片之一,深受外地游客和本地民众欢迎.某面馆向食客推出经典特色重庆小面,顾客可到店食用(简称“堂食”小面),也可购买搭配佐料的袋装生面(简称“生食”小面).已知3份“堂食”小面和2份“生食”小面的总售价为31元,4份“堂食”小面和1份“生食”小面的总售价为33元.(1)求每份“堂食”小面和“生食”小面的价格分别是多少元?(2)该面馆在4月共卖出“堂食”小面4500份,“生食”小面2500份.为回馈广大食客,该面馆从5月1日起每份“堂食”小面的价格保持不变,每份“生食”小面的价格降低a%.统计5月的销量和销售额发现:“堂食”小面的销量与4月相同,“生食”小面的销量在4月的基础上增加a%,这两种小面的总销售额在4月的基础上增加a%.求a的值.【解答】解:(1)设每份“堂食”小面的价格为x元,每份“生食”小面的价格为y元,根据题意得:,解得:,答:每份“堂食”小面的价格为7元,每份“生食”小面的价格为5元;(2)由题意得:4500×7+2500(1+a%)×5(1﹣a%)=(4500×7+2500×5)(1+a%),设a%=m,则方程可化为:9×7+25(1+m)(1﹣m)=(9×7+25)(1+ m),375m2﹣30m=0,m(25m﹣2)=0,解得:m1=0(舍),m2=,∴a=8.【变式1-3】(2022•大渡口区校级模拟)草莓是大家非常喜欢的水果,3月份是草莓上市的旺季.某水果超市销售草莓,第一周每千克草莓的销售单价比第二周销售单价高10元,该水果超市这两周共销售草莓180千克,且第一周草莓的销量与第二周的销量之比为4:5,该水果超市这两周草莓销售总额为11600元.(1)第二周草莓销售单价是每千克多少元?(2)随着草莓的大量上市,3月份第三周,草莓定价与第二周保持一致,且该水果超市推出会员优惠活动,所有的会员均可享受每千克直降a元的优惠,而非会员需要按照原价购买,第三周草莓的销量比第二周增加了20%,其中通过会员优惠活动购买的销量占第三周草莓总销量的,而第三周草莓的销售总额为(6200+100a)元,求a的值.【解答】解:(1)设第一周草莓销售单价是每千克x元,第二周草莓销售单价是每千克y元,依题意得:,解得:,答:第二周草莓销售单价是每千克60元.(2)依题意可知,3月份第三周草莓的销售单价为60元/千克,第三周草莓的销售量为:180×(1+20%)=120(千克),其中会员购买的销量为:120×=20a(千克),非会员购买的销量为:(120﹣20a)千克,由题意得:20a(60﹣a)+(120﹣20a)×60=6200+100a,整理得:a2+5a﹣50=0,解得:a1=5,a2=﹣10(不符合题意,舍去).答:a的值为5.【变式1-4】(2021•湖州)今年以来,我市接待的游客人数逐月增加,据统计,游玩某景区的游客人数三月份为4万人,五月份为5.76万人.(1)求四月和五月这两个月中该景区游客人数平均每月增长百分之几;(2)若该景区仅有A,B两个景点,售票处出示的三种购票方式如下表所示:并且当甲、乙两种门票价格不变时,丙种门票价格每下降1元,将有600人原计划购买甲种门票的游客和400人原计划购买乙种门票的游客改为购买丙种门票.①若丙种门票价格下降10元,求景区六月份的门票总收入;②问:将丙种门票价格下降多少元时,景区六月份的门票总收入有最大值?最大值是多少万元?【解答】解:(1)设四月和五月这两个月中该景区游客人数平均每月增长率为x,由题意,得4(1+x)2=5.76,解这个方程,得x1=0.2,x2=﹣2.2(舍去),答:四月和五月这两个月中该景区游客人数平均每月增长率为20%;(2)①由题意,得100×(2﹣10×0.06)+80×(3﹣10×0.04)+(160﹣10)×(2+10×0.06+10×0.04)=798(万元).答:景区六月份的门票总收入为798万元.②设丙种门票价格降低m元,景区六月份的门票总收入为W万元,由题意,得W=100(2﹣0.06m)+80(3﹣0.04m)+(160﹣m)(2+0.06m+0.04m),化简,得W=﹣0.1(m﹣24)2+817.6,∵﹣0.1<0,∴当m=24时,W取最大值,为817.6万元.答:当丙种门票价格下降24元时,景区六月份的门票总收入有最大值,最大值是817.6万元.。
【中考压轴题专项练习】最新中考数学压轴大题冲刺专项训练:《 面积的最值问题 》含答案与解析
中考数学压轴大题冲刺专项训练面积的最值问题1.如图三角形ABC,BC=12,AD是BC边上的高AD=10.P,N分别是AB,AC边上的点,Q,M是BC 上的点,连接PQ,MN,PN交AD于E.求(1)若四边形PQMN是矩形,且PQ:PN=1:2.求PQ、PN的长;(2)若四边形PQMN是矩形,求当矩形PQMN面积最大时,求最大面积和PQ、PN的长.2.如图,四边形ABCD的两条对角线AC、BD互相垂直,10AC BD,当AC、BD的长是多少时,四边形ABCD的面积最大?3.已知,如图,矩形ABCD中,AD=6,DC=7,菱形EFGH的三个顶点E,G,H分别在矩形ABCD的边AB,CD,AD上,AH=2,连接CF.(1)当四边形EFGH为正方形时,求DG的长;(2)当DG =6时,求△FCG 的面积;(3)求△FCG 的面积的最小值.4.如图,已知点P 是∠AOB 内一点,过点P 的直线MN 分别交射线OA ,OB 于点M ,N ,将直线MN 绕点P 旋转,△MON 的形状与面积都随之变化.(1)请在图1中用尺规作出△MON ,使得△MON 是以OM 为斜边的直角三角形;(2)如图2,在OP 的延长线上截取PC =OP ,过点C 作CM ∥OB 交射线OA 于点M ,连接MP 并延长交OB 于点N .求证:OP 平分△MON 的面积;(3)小亮发现:在直线MN 旋转过程中,(2)中所作的△MON 的面积最小.请利用图2帮助小亮说明理由.5.如图,现有一张矩形纸片ABCD ,2AB =,6BC =,点M ,N 分别在矩形的边AD ,BC 上,将矩形纸片沿直线MN 折叠,使点C 落在矩形的边AD 上,记为点P ,点D 落在G 处,连接PC ,交MN 于点Q ,连接CM .(1)求证:PM PN =;(2)当P ,A 重合时,求MN 的值;(3)若PQM ∆的面积为S ,求S 的取值范围.6.某公司对办公大楼一块墙面进行如图所示的图案设计.这个图案由四个全等的直角三角形和一个小正方形拼接而成的大正方形,设小正方形的边长m ,直角三角形较短边长n ,且n =2m ﹣4,大正方形的面积为S .(1)求S 关于m 的函数关系式.(2)若小正方形边长不大于3,当大正方形面积最大时,求m 的值.7.如图:已知矩形ABCD 中,AB =3cm ,BC =3cm ,点O 在边AD 上,且AO =1cm.将矩形ABCD 绕点O 逆时针旋转α角(0180α<<),得到矩形A ′B ′C ′D ′(1)求证:AC ⊥OB ;(2)如图1, 当B ′落在AC 上时,求AA ′;(3)如图2,求旋转过程中△CC ′D ′的面积的最大值.8.[问题提出](1)如图①,在ABC 中,6,BC D =为BC 上一点,4,AD =则ABC 面积的最大值是(2)如图②,已知矩形ABCD 的周长为12,求矩形ABCD 面积的最大值[实际应用](3)如图③,现有一块四边形的木板余料ABCD ,经测量60.80,70,AB cm BC cm CD cm ===且60,B C ∠=∠=︒木匠师傅从这块余料中裁出了顶点,M N 在边BC 上且面积最大的矩形,PQMN 求该矩形的面积9.如图,已知A ,B 是线段MN 上的两点,4MN =,1MA =,1MB >,以A 为中心顺时针旋转点M ,以B 为中心逆时针旋转点N ,使M ,N 两点重合成一点C ,构成ABC ,设AB x =.(1)求x的取值范围;(2)求ABC面积的最大值.10.如图,已知AB为半圆O的直径,P为半圆上的一个动点(不含端点),以OP、OB为一组邻边作▱POBQ,连接OQ、AP,设OQ、AP的中点分别为M、N,连接PM、ON.(1)试判断四边形OMPN的形状,并说明理由.(2)若点P从点B出发,以每秒15°的速度,绕点O在半圆上逆时针方向运动,设运动时间为ts.①试求:当t为何值时,四边形OMPN的面积取得最大值?并判断此时直线PQ与半圆O的位置关系(需说明理由);②是否存在这样的t,使得点Q落在半圆O内?若存在,请直接写出t的取值范围;若不存在,请说明理由.11.如图①,在△ABC中,∠C=90°,AB=10,BC=8.点D,E分别是边AC,BC上的动点,连接DE.设CD=x(x>0),BE=y,y与x之间的函数关系如图②所示.(1)求出图②中线段PQ所在直线的函数表达式;(2)将△DCE沿DE翻折,得△DME.①点M是否可以落在△ABC的某条角平分线上?如果可以,求出相应x的值;如果不可以,说明理由;②直接写出△DME与△ABC重叠部分面积的最大值及相应x的值.12.问题提出(1)如图①,已知线段AB,请以AB为斜边,在图中画出一个直角三角形;(2)如图②,已知点A是直线l外一点,点B、C均在直线l上,AD⊥l且AD=3,∠BAC=60°,求△ABC 面积的最小值;问题解决(3)如图③,某园林单位要设计把四边形花园划分为几个区域种植不同花草,在四边形ABCD中,∠A=45°,∠B=∠D=90°,CB=CD=6m,点E、F分别为AB、AD上的点,若保持CE⊥CF,那么四边形AECF的面积是否存在最大值?若存在,请求出面积的最大值;若不存在,请说明理由.参考答案与试题解析1.如图三角形ABC,BC=12,AD是BC边上的高AD=10.P,N分别是AB,AC边上的点,Q,M是BC 上的点,连接PQ,MN,PN交AD于E.求(1)若四边形PQMN是矩形,且PQ:PN=1:2.求PQ、PN的长;(2)若四边形PQMN是矩形,求当矩形PQMN面积最大时,求最大面积和PQ、PN的长.【解析】解:(1)设PQ=y,则PN=2y,∵四边形PQMN是矩形,∴PN∥BC,∴△APN∽△ABC,∵AD⊥BC,∴AD⊥PN,∴PNBC=AEAD,即212y=1010y,解得y=154,∴PQ=154,PN=152.(2)设AE=x.∵四边形PQMN是矩形,∴PN∥BC,∴△APN∽△ABC,∵AD⊥BC,∴AD⊥PN,∴PN BC =AE AD, ∴PN =65x ,PQ =DE =10﹣x , ∴S 矩形PQMN =65x (10﹣x )=﹣65(x ﹣5)2+30, ∴当x =5时,S 的最大值为30,∴当AE =5时,矩形PQMN 的面积最大,最大面积是30,此时PQ =5,PN =6.2.如图,四边形ABCD 的两条对角线AC 、BD 互相垂直,10ACBD ,当AC 、BD 的长是多少时,四边形ABCD 的面积最大?【解析】解:设AC=x ,四边形ABCD 面积为S ,则BD=10-x ,则:211125(10)(5)2222S AC BD x x x =⋅=-=--+, ∴当x=5时,S 最大=252, 所以当AC=BD=5时,四边形ABCD 的面积最大.3.已知,如图,矩形ABCD 中,AD =6,DC =7,菱形EFGH 的三个顶点E ,G ,H 分别在矩形ABCD 的边AB,CD,AD上,AH=2,连接CF.(1)当四边形EFGH为正方形时,求DG的长;(2)当DG=6时,求△FCG的面积;(3)求△FCG的面积的最小值.【解析】解:(1)∵四边形EFGH为正方形,∴HG=HE,∠EAH=∠D=90°,∵∠DHG+∠AHE=90°,∠DHG+∠DGH=90°,∴∠DGH=∠AHE,∴△AHE≌△DGH(AAS),∴DG=AH=2;(2)过F作FM⊥DC,交DC延长线于M,连接GE,∵AB∥CD,∴∠AEG=∠MGE,∵HE∥GF,∴∠HEG=∠FGE,∴∠AEH=∠MGF,在△AHE和△MFG中,∠A=∠M=90°,HE=FG,∴△AHE≌△MFG(AAS),∴FM=HA=2,即无论菱形EFGH如何变化,点F到直线CD的距离始终为定值2,因此S△FCG=12×FM×GC=12×2×(7-6)=1;(3)设DG=x,则由(2)得,S△FCG=7-x,在△AHE中,AE≤AB=7,∴HE2≤53,∴x2+16≤53,∴x≤37,∴S△FCG的最小值为7-37,此时DG=37,∴当DG=37时,△FCG的面积最小为(7-37).4.如图,已知点P是∠AOB内一点,过点P的直线MN分别交射线OA,OB于点M,N,将直线MN绕点P旋转,△MON的形状与面积都随之变化.(1)请在图1中用尺规作出△MON,使得△MON是以OM为斜边的直角三角形;(2)如图2,在OP的延长线上截取PC=OP,过点C作CM∥OB交射线OA于点M,连接MP并延长交OB于点N.求证:OP平分△MON的面积;(3)小亮发现:在直线MN旋转过程中,(2)中所作的△MON的面积最小.请利用图2帮助小亮说明理由.【解析】(1)①在OB下方取一点K,②以P为圆心,PK长为半径画弧,与OB交于C、D两点,③分别以C 、D为圆心,大于12CD 长为半径画弧,两弧交于E 点, ④作直线PE ,分别与OA 、OB 交于点M 、N ,故△OMN 就是所求作的三角形;(2)∵CM ∥OB ,∴∠C =∠PON ,在△PCM 和△PON 中,C PON PC POCPH OPN ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△PCM ≌△PON (ASA ),∴PM =PN ,∴OP 平分△MON 的面积;(3)过点P 作另一条直线EF 交OA 、OB 于点E 、F ,设PF <PE ,与MC 交于于G ,∵CM ∥OB ,∴∠GMP =∠FNP ,在△PGM 和△PFM 中,PMG PNF PM PNMPG NPF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△PGM ≌△PFN (ASA ),∴S △PGM =S △PFN∴S 四边形MOFG =S △MON .∵S 四边形MOFG <S △EOF ,∴S △MON <S △EOF ,∴当点P 是MN 的中点时S △MON 最小.5.如图,现有一张矩形纸片ABCD ,2AB =,6BC =,点M ,N 分别在矩形的边AD ,BC 上,将矩形纸片沿直线MN 折叠,使点C 落在矩形的边AD 上,记为点P ,点D 落在G 处,连接PC ,交MN 于点Q ,连接CM .=;(1)求证:PM PN(2)当P,A重合时,求MN的值;∆的面积为S,求S的取值范围.(3)若PQM【解析】(1)证明:如图1中,∵四边形ABCD是矩形,∴PM∥CN,∴∠PMN=∠MNC,∵∠MNC=∠PNM,∴∠PMN=∠PNM,∴PM=PN.(2)解:点P与点A重合时,如图2中,设BN=x ,则AN=NC=6-x ,在Rt △ABN 中,AB 2+BN 2=AN 2,即22+x 2=(6-x )2,解得x=83, ∴CN=6-83=103,222226210AC AB BC =+=+=, ∴1102CQ AC ==, ∴222210()(10)310QN CN CQ =-=-=, ∴10223MN QN ==. (3)解:当MN 过点D 时,如图3所示,此时,CN 最短,四边形CMPN 的面积最小,则S 最小为14S S =菱形CMPN =12214⨯⨯=,当P点与A点重合时,CN最长,四边形CMPN的面积最大,则S最大为11210152102223S=⨯⨯⨯⨯=,∴513S≤≤.6.某公司对办公大楼一块墙面进行如图所示的图案设计.这个图案由四个全等的直角三角形和一个小正方形拼接而成的大正方形,设小正方形的边长m,直角三角形较短边长n,且n=2m﹣4,大正方形的面积为S.(1)求S关于m的函数关系式.(2)若小正方形边长不大于3,当大正方形面积最大时,求m的值.【解析】解:(1)∵小正方形的边长m,直角三角形较短边长n,∴直角三角形较长边长为m+n,∴由勾股定理得:S=(m+n)2+n2,∵n=2m﹣4,∴S=(m+2m﹣4)2+(2m﹣4)2,=13m2﹣40m+32,∵n=2m﹣4>0,∴m>2,∴S关于m的函数关系式为S=13m2﹣40m+32(m>2);(2)∵S=13m2﹣40m+32(2<m≤3),∴S =13(m-2013)2+1613∵m≥2013时,S 随x 的增大而增大, ∴m =3时,S 取最大.∴m =3.7.如图:已知矩形ABCD 中,AB =3cm ,BC =3cm ,点O 在边AD 上,且AO =1cm.将矩形ABCD 绕点O 逆时针旋转α角(0180α<<),得到矩形A ′B ′C ′D ′(1)求证:AC ⊥OB ;(2)如图1, 当B ′落在AC 上时,求AA ′;(3)如图2,求旋转过程中△CC ′D ′的面积的最大值.【解析】解:(1)Rt △OAB 中,tan 3AB AOB OA∠== ∴∠AOB =60° R t △ACD 中,3tan CD CAD AD ∠== ∴∠CAD =30°∴∠OMA =180°-60°-30°=90°即AC ⊥OB(2)Rt △OAM 中,1•sin 1sin 302OM OA CAD =∠=⨯︒= Rt △OAB 中,OB ′=OB =60OA COS ︒=2, Rt △O B ′M 中,B ′M =2215OB OM -=', BM =OB -OM =32, Rt △B B ′M 中,2222153()()622BB B M BM =++''== ,,OA OB AOB A OB AOA BOB OA OB'''=∠=∴∆'∆''∽ ∴1,26AA OA BB OB =='', ∴62AA '=(3)如图,过C 点作CH ⊥于C ′D ′点H ,连结OC ,则CH ≤OC +OD ′只有当D ′在CO 的延长线上时,CH 才最大.又C ′D ′长一定,故此时△CC ′D ′的面积的最大.而2222OC CD OD =+=∴△CC ′D ′的最大面积为1(222)3632+⨯=+ 8.[问题提出](1)如图①,在ABC 中,6,BC D =为BC 上一点,4,AD =则ABC 面积的最大值是(2)如图②,已知矩形ABCD 的周长为12,求矩形ABCD 面积的最大值[实际应用](3)如图③,现有一块四边形的木板余料ABCD ,经测量60.80,70,AB cm BC cm CD cm ===且60,B C ∠=∠=︒木匠师傅从这块余料中裁出了顶点,M N 在边BC 上且面积最大的矩形,PQMN 求该矩形的面积【解析】解:(1)过点A 作AE ⊥BC ,如图所示:∴12ABCS BC AE=⋅,∵D为BC上一点,∴AD AE≥,∴要使△ABC的面积最大,则需满足AD=AE,∵BC=6,AD=4,∴△ABC的面积最大为:16412 2⨯⨯=;故答案为12;(2)∵四边形ABCD是矩形,∴AB=DC,AD=BC,∵矩形ABCD的周长是12,∴设AB=x,则有AD=6-x,矩形ABCD的面积为S,则有:()()226639S x x x x x=-=-+=--+,此函数为二次函数,由10a=-<,二次函数的开口向下,∴当x=3时,矩形ABCD的面积有最大值为:S9=;(3)如图所示:∵四边形PQMN 是矩形,∴QM=PN ,PQ=MN ,∠QMN=∠PNM=90°,∵∠B=∠C=60°,∠QMB=∠PNC=90°,∴△BMQ ≌△CNP ,∴BM=NC ,设BM=NC=x ,则有MN=PQ=80-2x , ∴603QM BM tan x =⋅︒=,∴()()2380223208003PQMN S PQ QM x x x =⋅=⋅-=--+矩形, 此函数关系为二次函数,由230a =-<可得开口向下, ∴当x=20时,矩形PQMN 的面积有最大,即8003PQMN S =矩形. 9.如图,已知A ,B 是线段MN 上的两点,4MN =,1MA =,1MB >,以A 为中心顺时针旋转点M ,以B 为中心逆时针旋转点N ,使M ,N 两点重合成一点C ,构成ABC ,设AB x =.(1)求x 的取值范围;(2)求ABC 面积的最大值.【解析】解:(1)∵4MN =,1MA =,AB x =,∴413BN x x =--=-.由旋转的性质,得1MA AC ==,3BN BC x ==-,由三角形的三边关系,得31,31,x x x x --<⎧⎨-+>⎩①② 解不等式①得1x >,解不等式②得2x <,∴x 的取值范围是12x <<.(2)如图,过点C 作CD AB ⊥于点D ,设CD h =,由勾股定理,得2221AD AC CD h -=-=2222(3)BD BC CD x h =-=--∵BD AB AD =-, 222(3)1x h x h --=-2134-=-h x ,两边平方整理,得()222832=x x h x -+-.∵ABC 的面积为1122AB CD xh ⋅=, ∴()2222113183222422S xh x x x ⎛⎫⎛⎫==-⨯-+=--+ ⎪ ⎪⎝⎭⎝⎭,∴当32x 时,ABC面积最大值的平方为12,∴ABC面积的最大值为22.10.如图,已知AB为半圆O的直径,P为半圆上的一个动点(不含端点),以OP、OB为一组邻边作▱POBQ,连接OQ、AP,设OQ、AP的中点分别为M、N,连接PM、ON.(1)试判断四边形OMPN的形状,并说明理由.(2)若点P从点B出发,以每秒15°的速度,绕点O在半圆上逆时针方向运动,设运动时间为ts.①试求:当t为何值时,四边形OMPN的面积取得最大值?并判断此时直线PQ与半圆O的位置关系(需说明理由);②是否存在这样的t,使得点Q落在半圆O内?若存在,请直接写出t的取值范围;若不存在,请说明理由.【解析】(1)四边形OMPN为矩形,理由如下:∵四边形POBQ为平行四边形,∴PQ∥OB,PQ=OB.又∵OB=OA,∴PQ=AO.又∵PQ∥OA,∴四边形PQOA为平行四边形,∴P A∥QO,P A=QO.又∵M、N分别为OQ、AP的中点,∴OM=12OQ,PN=12AP,∴OM=PN,∴四边形OMPN为平行四边形.∵OP=OA,N是AP的中点,∴ON⊥AP,即∠ONP=90°,∴四边形OMPN为矩形;(2)①∵四边形OMPN为矩形,∴S矩形OMPN =ON·NP=ON·12AP,即S矩形OMPN=S△AOP.∵△AOP的底AO为定值,∴当P旋转运动90°(运动至最高点)时,△AOP的AO边上的高取得最大值,此时△AOP的面积取得最大值,∴t=90÷15=6秒,∴当t=6秒时,四边形OMPN面积最大.此时,PQ与半圆O相切.理由如下:∵此时∠POB=90°,PQ//OB,∴∠OPQ=90°,∴PQ与半圆O相切;②当点Q在半圆O上时,∵四边形POBQ为平行四边形,且OB=OP,∴四边形POBQ为菱形,∴OB=BQ=OQ=OP=PQ,∴∠POQ=∠BOQ=60°,即:∠BOP=120°,∴此时,t=120°÷15°=8秒,当点P与点A重合时,t=180°÷15°=12秒,综上所述:当8<t<12时,点Q在半圆O内.11.如图①,在△ABC中,∠C=90°,AB=10,BC=8.点D,E分别是边AC,BC上的动点,连接DE.设CD=x(x>0),BE=y,y与x之间的函数关系如图②所示.(1)求出图②中线段PQ所在直线的函数表达式;(2)将△DCE沿DE翻折,得△DME.①点M是否可以落在△ABC的某条角平分线上?如果可以,求出相应x的值;如果不可以,说明理由;②直接写出△DME与△ABC重叠部分面积的最大值及相应x的值.【解析】解:(1)设线段PQ 所在直线的函数表达式为y =kx +b ,将P (3,4)和Q (6,0)代入得,0306k b k b =+⎧⎨=+⎩,解得438k b ⎧=-⎪⎨⎪=⎩, ∴线段PQ 所在直线的函数表达式为483y x =-+; (2)①如图1,连接CM 并延长CM 交AB 于点F ,∵∠C =90°,AB =10,BC =8,∴AC 22AB BC -=6,由(1)得BE =()2221624248DEKP S x x x =-+-=--+四边形,∴CE =43x ,∴34DC AC CE BC ==, ∵∠DCE =∠ACB ,∴△DCE ∽△ACB ,∴∠DEC =∠ABC ,∴DE//AB,∵点C和点M关于直线DE对称,∴CM⊥DE,∴CF⊥AB,∵1122ABCS AC BC AB CF==△,∴6×8=10×CF,∴CF=24 5,∵∠C=90°,CD=x,CE=43x,∴DE53x =,∴CM=85x,MF=24855x-,过点M作MG⊥AC于点M,过点M作MH⊥BC于点H,则四边形GCHM为矩形,∵∠GCM+∠BCF=∠BCF+∠ABC=90°,∴∠GCM=∠ABC,∵∠MGC=∠ACB=90°,∴△CGM∽△BCA,∴MG CG CM AC BC AB==,即85 6810x MG CG==,∴MG =2425x ,CG =3225x , ∴MH =3225x , (Ⅰ)若点M 落在∠ACB 的平分线上,则有MG =MH ,即24322525x x =,解得x =0(不合题意舍去), (Ⅱ)若点M 落在∠BAC 的平分线上,则有MG =MF ,即242482555x x =-,解得x =158, (Ⅲ)若点M 落在∠ABC 的平分线上,则有MH =MF ,即322482555x x =-,解得x =53. 综合以上可得,当x =158或x =53时,点M 落在△ABC 的某条角平分线上. ②当0<x ≤3时,点M 不在三角形外,△DME 与△ABC 重叠部分面积为△DME 的面积,∴2142233S x x x ==, 当x =3时,S 的最大值为22363⨯=. 当3<x ≤6时,点M 在三角形外,如图2,由①知CM =2CQ =85x , ∴MT =CM ﹣CF =82455x -, ∵PK//DE ,∴△MPK ∽△MDE ,∴()2222824265545MPKMDE x x S MF S MQ x x ⎛⎫- ⎪-⎛⎫=== ⎪ ⎪⎝⎭ ⎪⎝⎭△△ , ∴()2226MPK MDE x S S x -=△△,∵DEKP MDE MPK S S S =-△△四边形,∴()()2222226262113DEKP MDE x x S S x x x ⎡⎤⎡⎤--=-=-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦△四边形, 即:()2221624248DEKP S x x x =-+-=--+四边形,∴当x =4时,△DME 与△ABC 重叠部分面积的最大值为8.综合可得,当x =4时,△DME 与△ABC 重叠部分面积的最大值为8.13.问题提出(1)如图①,已知线段AB ,请以AB 为斜边,在图中画出一个直角三角形;(2)如图②,已知点A 是直线l 外一点,点B 、C 均在直线l 上,AD ⊥l 且AD=3,∠BAC=60°,求△ABC 面积的最小值;问题解决(3)如图③,某园林单位要设计把四边形花园划分为几个区域种植不同花草,在四边形ABCD 中,∠A=45°,∠B=∠D=90°,CB=CD=6m ,点E 、F 分别为AB 、AD 上的点,若保持CE ⊥CF ,那么四边形AECF 的面积是否存在最大值?若存在,请求出面积的最大值;若不存在,请说明理由.【解析】解:(1)如图,Rt△ACB即为所求.(2)如图,作△ABC的外接圆⊙O,连接OA,OB,OC,过点O作OE⊥BC于点E,则∠BOC=2∠BAC,OA=OB=OC,BE=CE=12 BC,∵∠BAC=60°,∴∠BOC=120°,∠OBC=∠OCB=30°,设OA=OB=OC=r,则OE=12r,3,∵AO+OE≥A D,AD=3,∴r+12r≥3,解得r≥2,∴323∴S△ABC=12BC·AD≥12×33=33∴△ABC 面积的最小值为33.(3)存在;如图,分别延长AB 、DC 交于点M , 则△ADM 、△CBM 均为等腰直角三角形, ∵CB=CD=6m ,∴BM=6m ,CM=62,AD=DM=(6+2m , ∴S 四边形ABCD=S △ADM -S △CBM=12DM 2-12BC 2 =12×(6+622-12×62 =(36+362)m 2.将△CBE 绕点C 顺时针旋转135°得到△CDE′, 则A 、D 、E′三点共线.∴S 四边形AECF =S 四边形ABCD –(S △CBE +S △CDF )=S 四边形ABCD –S △CE ′F ∵S 四边形ABCD 为定值,∴当S △CE ′F 取得最小值时,S 四边形AECF 取得最大值.∵∠E′CF=135°-90°=45°,∴以E′F为斜边作等腰Rt△OE′F,则△CE′F的外接圆是以点O为圆心,OF长为半径的圆,设△CE′F的外接圆半径为rm,∴E′F=2rm,又∵OC+OD≥CD,∴22r+r≥6,∴r≥12-62,当点O在CD上时,E′F最短,此时E′F=2r=(122-12)m,∴S△CE′F最小=12×(122-12)×6=(362-36)m2,∴S四边形AECF最大=S四边形ABCD-S△CE’F最小=36+362-(362-36)=72m2.。
中考数学压轴题:二次函数中的面积问题(含答案)
学生/课程年级日期学科时段课型数学授课教师核心内容二次函数中求面积最值,图形平移或折叠面积问题1.会利用函数的图象性质来研究几何图形的面积最值问题;教学目标重、难点2.掌握几种求图形面积的常见解题方法与技巧,如:割补法、平行等积变换法等。
3.掌握图形平移或折叠变换过程中找等量关系列函数解析式求图形面积问题的一般方法.割补法求三角形面积,动态问题一般解题思路。
了解学生的学习情况S△ = a h或S△ = a d (d表示已知点到直线的距离)以动点作垂直(平行)x轴的直线,即铅垂高,再分别过点A,C作PF的高,即和为水平宽。
S△ = ×水平宽×铅垂高如下图:①等底等高的两个三角形面积相等.②底在同一条直线上并且相等,该底所对角的顶点是同一个点或在与底平行的直线上,这两个三角形面积相等.如图,AD∥BC中,AC与BD交点O,则S△ABC = S△DBC,S△AOB = S△COD2如图,在平面直角坐标系中,抛物线y=mx -8mx+4m+2(m>0)与y轴的交点为A,与x轴的交点分别为B(x ,10),C(x ,0),且x -x =4,直线AD∥x轴,在x轴上有一动点E(t,0)过点E作平行于y轴的直线l与抛物线,直线AD2 2 1的交点分别为P,Q.(1)求抛物线的解析式;(2)当0<t≤8时,求△APC面积的最大值.图形面积的求法常见有三种,分别是:(1)_______________________________(2)_______________________________(3)_______________________________[学有所获答案] (1)直接公式求法 割补法 平行线等积变换法(2)(3) 2 如图,已知抛物线y =x +bx +c 与 轴交于A ,B 两点(点A 在点B 的左侧)与 轴交于点C (0,-3),对称轴是直线x=1,直线BC 与抛物线的对称轴交于点D ,点E 为y 轴上一动点,CE 的垂直平分线交抛物线于P ,Q 两点(点P 在第三象限)(1)求抛物线的函数表达式和直线BC 的函数表达式;(2)当△CDE 是直角三角形,且∠CDE =90°时,求出点P 的坐标;(3)当△PBC 的面积为 时,求点E 的坐标.2 如图,已知抛物线y = x +ax +4a 与x 轴交于点A ,B ,与y 轴负半轴交于点C 且OB =OC ,点P 为抛物线上的一个动点,且点P 位于x 轴下方,点P 与点C 不重合.(1)求该抛物线的解析式;(2)若△PAC 的面积为 ,求点P 的坐标;(3)若以A ,B ,C ,P 为顶点的四边形面积记作S ,则S 取何值时,对应的点P 有且只有2个?将()的图像如何平移到的图像。
(已整理)中考数学必刷压轴题专题:抛物线之基础面积问题(含解析)
中考数学抛物线压轴题之面积问题(1)求抛物线的解析式;(2)若点M为抛物线上第四象限内一动点,顺次连接AC,CM,MB,是否存在点M,使四边形MBAC的面积为9,若存在,求出点M的坐标,若不存在,请说明理由.(3)将直线BC沿x轴翻折交y轴于N点,过B点的直线l交y轴、抛物线分别于D、E,且D在N的上方,将A点绕O顺时针旋转90°得M,若∠NBD=∠MBO,试求E的的坐标.2.已知:如图,直线y=﹣x﹣3交坐标轴于A、C两点,抛物线y=x2+bx+c过A、C两点,(1)求抛物线的解析式;(2)若点P为抛物线位于第三象限上一动点,连接PA,PC,试问△PAC的面积是否存在最大值,若存在,请求出△APC面积的最大值,以及此时点P的坐标;若不存在,请说明理由;(3)点M为抛物线上一点,点N为抛物线对称轴上一点,若△NMC是以∠NMC为直角的等腰直角三角形,请直接写出点M的坐标.3.如图1,二次函数y=﹣x2+x+3的图象交x轴于A、B两点(点A在点B的左侧),交y轴于C点,连结AC,过点C作CD⊥AC交AB于点D.(1)求点D的坐标;(2)如图2,已知点E是该二次函数图象的顶点,在线段AO上取一点F,过点F作FH⊥CD,交该二次函数的图象于点H(点H在点E的右侧),当五边形FCEHB的面积最大时,求点H的横坐标;(3)如图3,在直线BC上取一点M(不与点B重合),在直线CD的右上方是否存在这样的点N,使得以C、M、N为顶点的三角形与△BCD全等?若存在,请求出点N的坐标;若不存在,请说明理由.4.如图,在平面直角坐标系中抛物线y=ax2+bx+c经过原点,且与直线y=﹣kx+6交于则A(6,3)、B(﹣4,8)两点.(1)求直线和抛物线的解析式;(2)点P在抛物线上,解决下列问题:①在直线AB下方的抛物线上求点P,使得△PAB的面积等于20;②连接OA,OB,OP,作PC⊥x轴于点C,若△POC和△ABO相似,请直接写出点P的坐标.5.如图,在平面直角坐标系中,抛物线y=ax2+bx+c的图象与x轴交于A(4,0),B两点,与y轴交于点C(0,2),对称轴x=1,与x轴交于点H.(1)求抛物线的函数表达式;(2)直线y=kx+1(k≠0)与y轴交于点E,与抛物线交于点P,Q(点P在y轴左侧,点Q在y轴右侧),连接CP,CQ,若△CPQ的面积为,求点P,Q的坐标;(3)在(2)的条件下,连接AC交PQ于G,在对称轴上是否存在一点K,连接GK,将线段GK绕点G顺时针旋转90°,使点K恰好落在抛物线上?若存在,请直接写出点K的坐标;若不存在,请说明理由.6.在平面直角坐标系中,直线y=x+3与x轴交于点A,与y轴交于点B,抛物线y=ax2+bx+c(a<0)经过点A、B.(1)求c的值及a、b满足的关系式;(2)当x<0时,若y=ax2+bx+c(a<0)的函数值随x的增大而增大,求a的取值范围;(3)如图,当a=﹣1时,在抛物线上是否存在点P,使△PAB的面积为?若存在,请求出符合条件的所有点P的坐标;若不存在,请说明理由.7.如图,在平面直角坐标系中,抛物线y=ax2+bx+c的图象与x轴交于A(4,0),B两点,与y轴交于点C(0,2),对称轴x=与x轴交于点H.(1)求抛物线的函数表达式;(2)直线y=kx+1(k≠0)与y轴交于点E,与抛物线交于点 P,Q(点P在y轴左侧,点Q在y轴右侧),连接CP,CQ,若△CPQ的面积为,求点P,Q的坐标;(3)在(2)的条件下,连接AC交PQ于G,在对称轴上是否存在一点K,连接GK,将线段GK绕点G逆时针旋转90°,使点K恰好落在抛物线上,若存在,请直接写出点K的坐标;若不存在,请说明理由.8.如图,抛物线y=ax2+bx+c与x轴相交于A(3,0)、B两点,与y轴交于点C(0,3),点B在x轴的负半轴上,且OA=3OB.(1)求抛物线的函数关系式;(2)若P是抛物线上且位于直线AC上方的一动点,求△ACP的面积的最大值及此时点P的坐标;(3)在线段OC上是否存在一点M,使BM+CM的值最小?若存在,请求出这个最小值及对应的M点的坐标;若不存在,请说明理由.9.如图,已知抛物线y=ax2+bx+3(a≠0)经过点A(1,0)和点B(3,0),与y轴交于点C.(1)求此抛物线的解析式;(2)若点P是直线BC下方的抛物线上一动点(不点B,C重合),过点P作y轴的平行线交直线BC于点D,设点P的横坐标为m.①用含m的代数式表示线段PD的长.②连接PB,PC,求△PBC的面积最大时点P的坐标.(3)设抛物线的对称轴与BC交于点E,点M是抛物线的对称轴上一点,N为y轴上一点,是否存在这样的点M和点N,使得以点C、E、M、N为顶点的四边形是菱形?如果存在,请直接写出点M的坐标;如果不存在,请说明理由.10.如图,在平面直角坐标系中,点A的坐标为(m,m),点B的坐标为(n,﹣n),抛物线经过A、O、B 三点,连接OA、OB、AB,线段AB交y轴于点C.已知实数m、n(m<n)分别是方程x2﹣2x﹣3=0的两根.(1)求抛物线的解析式;(2)若点P为线段OB上的一个动点(不与点O、B重合),直线PC与抛物线交于D、E两点(点D在y轴右侧),连接OD、BD.①求△BOD面积的最大值,并写出此时点D的坐标;②当△OPC为等腰三角形时,请直接写出点P的坐标.11.如图抛物线y=ax2+bx+6的开口向下与x轴交于点A(﹣6,0)和点B(2,0),与y轴交于点C,点P 是抛物线上一个动点(不与点C重合)(1)求抛物线的解析式;(2)当点P是抛物线上一个动点,若△PCA的面积为12,求点P的坐标;(3)如图2,抛物线的顶点为D,在抛物线上是否存在点E,使得∠EAB=2∠DAC,若存在请直接写出点E 的坐标;若不存在请说明理由.12.如图,直线y=x+c与x轴交于点B(4,0),与y轴交于点C,抛物线y=x2+bx+c经过点B,C,与x轴的另一个交点为点A.(1)求抛物线的解析式;(2)点P是直线BC下方的抛物线上一动点,求四边形ACPB的面积最大时点P的坐标;(3)若点M是抛物线上一点,请直接写出使∠MBC=∠ABC的点M的坐标.13.综合与探究如图1,抛物线y=ax2+bx﹣3与x轴交于A(﹣2,0),B(4,0)两点,与y轴交于点C.(1)求抛物线的表达式;(2)点N是抛物线上异于点C的动点,若△NAB的面积与△CAB的面积相等,求出点N的坐标;(3)如图2,当P为OB的中点时,过点P作PD⊥x轴,交抛物线于点D.连接BD,将△PBD沿x轴向左平移m个单位长度(0<m≤2),将平移过程中△PBD与△OBC重叠部分的面积记为S,求S与m的函数关系式.14.如图,已知抛物线y=﹣x2+bx+c与一直线相交于A(﹣1,0),C(2,3)两点,与y轴交于点N.其顶点为D.(1)抛物线及直线AC的函数关系式;(2)若抛物线的对称轴与直线AC相交于点B,E为直线AC上的任意一点,过点E作EF∥BD交抛物线于点F,以B,D,E,F为顶点的四边形能否为平行四边形?若能,求点E的坐标;若不能,请说明理由;(3)若P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值.15.如图,已知关于x的二次函数y=﹣x2+bx+c(c>0)的图象与x轴相交于A、B两点(点A在点B的左侧),与y轴交于点C,且OB=OC=3,顶点为M.(1)求出二次函数的关系式;(2)点P为线段MB上的一个动点,过点P作x轴的垂线PD,垂足为D.若OD=m,△PCD的面积为S,求S关于m的函数关系式,并写出m的取值范围;(3)探索线段MB上是否存在点P,使得△PCD为直角三角形?如果存在,求出P的坐标;如果不存在,请说明理由.16.如图,Rt△AOB中,∠A=90°,以O为坐标原点建立直角坐标系,使点A在x轴正半轴上,OA=2,AB =8,点C为AB边的中点,抛物线的顶点是原点O,且经过C点.(1)填空:直线OC的解析式为;抛物线的解析式为;(2)现将该抛物线沿着线段OC移动,使其顶点M始终在线段OC上(包括端点O、C),抛物线与y轴的交点为D,与AB边的交点为E;①是否存在这样的点D,使四边形BDOC为平行四边形?如存在,求出此时抛物线的解析式;如不存在,说明理由;②设△BOE的面积为S,求S的取值范围.17.已知抛物线y=﹣x2+bx和直线l:y=x﹣b.(1)求证:抛物线与直线l至少有一个公共点;(2)若抛物线与直线l交于A,B两点,当线段AB上恰有2个纵坐标是整数的点时,求b的取值范围;(3)当b>0时,将直线l向上平移b+1个单位长度得直线l',若抛物线y=﹣x2+bx的顶点P在直线l'上,且与直线l'的另一个交点为Q,当点C在直线l'上方的抛物线上时,求四边形OPCQ面积的最大值.18.如图,在平面直角坐标系中抛物线y=ax2+bx+c交x轴于点A(﹣2,0)、B(4,0),交y轴于点C(0,﹣3).(1)求抛物线的解析式;(2)动点D在第四象限且在抛物线上,当△BCD面积最大时,求点D坐标,并求△BCD面积的最大值;(3)抛物线的对称轴上是否存在一点Q,使得∠QBC=45°,如果存在,直接写出点Q坐标,不存在,请说明理由.19.如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,且抛物线经过A(1,0),C(0,3)两点,与x轴交于点B.(1)若直线y=mx+n经过B、C两点,求直线BC和抛物线的解析式;(2)在抛物线的对称轴x=﹣1上找一点M,使点M到点A的距离与到点C的距离之和最小,求出点M的坐标:(3)在抛物线上存在点P,使得△APB的面积与△ACB的面积相等,求点P的坐标.20.如图,对称轴x=﹣1的抛物线y=ax2+bx+c与x轴交于A(2,0),B两点,与y轴交于点C(0,﹣2),(1)求抛物线的函数表达式;(2)若点P是直线BC下方的抛物线上的动点,求△BPC的面积的最大值;(3)若点P在抛物线对称轴的左侧运动,过点P作PD⊥x轴于点D,交直线BC于点E,且PE=OD,求点P的坐标;(4)在对称轴上是否存在一点M,使△AMC的周长最小.若存在,请求出M点的坐标和△AMC周长的最小值;若不存在,请说明理由.21.如图,已知抛物线y=﹣x2+4x+5与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C.(1)直接写出点A、B、C的坐标;(2)在抛物线的对称轴上存在一点P,使得PA+PC的值最小,求此时点P的坐标;(3)点D是第一象限内抛物线上的一个动点(与点C、B不重合)过点D作DF⊥x轴于点F,交直线BC于点E,连接BD,直线BC把△BDF的面积分成两部分,使S△BDE:S△BEF=2:3,请求出点D的坐标;(4)若M为抛物线对称轴上一动点,使得△MBC为直角三角形,请直接写出点M的坐标.22.如图,抛物线y=x2+bx+c经过A(1,0)、C(0,3)两点,点B是抛物线与x轴的另一个交点.作直线BC.点P是抛物线上的一个动点.过点P作PQ⊥x轴,交直线BC于点Q.设点P的横坐标为m(m>0).PQ 的长为d.(1)求此抛物线的解析式及顶点坐标;(2)求d与m之间的函数关系式;(3)当点P在直线BC下方,且线段PQ被x轴分成的两部分之比为1:2时,求m的值;(4)连接AC,作直线AP,直线AP交直线BC于点M,当△PCM、△ACM的面积相等时,直接写出m的值.23.已知:如图,抛物线y=ax2+bx﹣3与x轴交于A点,与y轴交于C点,且A(1,0)、B(3,0),点D 是抛物线的顶点.(1)求抛物线的解析式(2)在y轴上是否存在M点,使得△MAC是以AC为腰的等腰三角形?若存在,求出点M的坐标;若不存在,请说明理由.(3)点P为抛物线上的动点,且在对称轴右侧,若△ADP面积为3,求点P的坐标.24.如图,开口向下的抛物线y=ax2﹣5ax+4a(a为常数)与x轴交于A、B两点(A在B点左侧),与y轴交于点C,点D是抛物线上的一个动点,横坐标设为t,连接DC、DB.(1)求A、B的坐标.(2)当点D为抛物线的顶点时,△BCD的面积为15,求抛物线的解析式.(3)若a=﹣1,过点D作x轴的垂线,垂足为H,当1≤t≤4时,DH+mHO的最大值为.求正实数m的值.25.在平面直角坐标系中,二次函数y=ax2+bx+2的图象与x轴交于A(﹣3,0),B(1,0)两点,与y轴交于点C.(1)求这个二次函数的关系解析式,x满足什么值时y<0?(2)点P是直线AC上方的抛物线上一动点,是否存在点P,使△ACP面积最大?若存在,求出点P的坐标;若不存在,说明理由;(3)点M为抛物线上一动点,在x轴上是否存在点Q,使以A、C、M、Q为顶点的四边形是平行四边形?若存在,直接写出点Q的坐标;若不存在,说明理由.26.如图,已知抛物线y=x2+bx+c与x轴交于点A(﹣4,0)和点B(1,0),与y轴交于点C,过点A 的直线y=mx+n交抛物线的另一个点为点E,点E的横坐标为2.(1)求b和c的值;(2)点P在直线AE下方的抛物线上任一点,点P的横坐标为t,过点P作PF∥y轴,交AE于点F,设PF =d,求出d与t的函数关系式,并直接写出t的取值范围;(3)在(2)问的条件下,过点P作PK⊥AE,垂足为点K,连接PE,若PF把△PKE分成面积比为11:12的两个三角形,求出此时t的值.27.若抛物线上y1=ax2+bx+c,它与y轴交于C(0,4),与x轴交于A(﹣1,0)、B(k,0),P是抛物线上B、C之间的一点.(1)当k=4时,求抛物线的方程,并求出当△BPC面积最大时的P的横坐标;(2)当a=1时,求抛物线的方程及B的坐标,并求当△BPC面积最大时P的横坐标;(3)根据(1)、(2)推断P的横坐标与B的横坐标有何关系?28.在平面直角坐标系中,抛物线y=ax2+bx+c过点A(﹣1,0),B(3,0),与y轴交于点C,连接AC,BC,将△OBC沿BC所在的直线翻折,得到△DBC,连接OD.(1)用含a的代数式表示点C的坐标.(2)如图1,若点D落在抛物线的对称轴上,且在x轴上方,求抛物线的解析式.(3)设△OBD的面积为S1,△OAC的面积为S2,若=,求a的值.29.如图,抛物线y=ax2﹣x﹣2(a≠0)的图象与x轴交于A、B两点,与y轴交于C点,已知B点坐标为(4,0).(1)求抛物线的解析式;(2)试探究△ABC的外接圆的圆心位置,并求出圆心坐标;(3)若点M是线段BC下方的抛物线上一点,求△MBC的面积的最大值,并求出此时M点的坐标.30.如图,在平面直角坐标系xOy中,四边形ABCD是菱形,顶点A、C、D均在坐标轴上,且AB=5,sinB=.(1)求过A、C、D三点的抛物线的解析式;(2)记直线AB的解析式为y1=mx+n,(1)中抛物线的解析式为y2=ax2+bx+c,求当y1<y2时,自变量x的取值范围;(3)设直线AB与(1)中抛物线的另一个交点为E,P点为抛物线上A、E两点之间的一个动点,当P点在何处时,△PAE的面积最大?并求出面积的最大值.31.如图,在平面直角坐标系xOy中,AB⊥x轴于点B,AB=3,tan∠AOB=,将△OAB绕着原点O逆时针旋转90°,得到△OA1B1;再将△OA1B1绕着线段OB1的中点旋转180°,得到△OA2B1,抛物线y=ax2+bx+c(a≠0)经过点B、B1、A2.(1)求抛物线的解析式.(2)在第三象限内,抛物线上的点P在什么位置时,△PBB1的面积最大?求出这时点P的坐标.(3)在第三象限内,抛物线上是否存在点Q,使点Q到线段BB1的距离为?若存在,求出点Q的坐标;若不存在,请说明理由.32.在平面直角坐标系中,直线y=x+3与x轴交于点A,与y轴交于点B,抛物线y=ax2+bx+c(a<0)经过点A、B.(1)求c的值及a、b满足的关系式;(2)当x<0时,若y=ax2+bx+c(a<0)的函数值随x的增大而增大,求a的取值范围;(3)如图,当a=﹣1时,在抛物线上是否存在点P,使△PAB的面积为?若存在,请求出符合条件的所有点P的坐标;若不存在,请说明理由.33.如图①,在平面直角坐标中,点A的坐标为(1,﹣2),点B的坐标为(3,﹣1),二次函数y=﹣x2的图象为l1.(1)平移抛物线l1,使平移后的抛物线经过点A,但不过点B.①满足此条件的函数解析式有个.②写出向下平移且经点A的解析式.(2)平移抛物线l1,使平移后的抛物线经过A,B两点,所得的抛物线l2,如图②,求抛物线l2的函数解析式及顶点C的坐标,并求△ABC的面积.(3)在y轴上是否存在点P,使S△ABC=S△ABP?若存在,求出点P的坐标;若不存在,请说明理由.34.如图1,关于x的二次函数y=﹣x2+bx+c经过点A(﹣3,0),点C(0,3),点D为二次函数的顶点,DE为二次函数的对称轴,E在x轴上.(1)求抛物线的解析式;(2)DE上是否存在点P到AD的距离与到x轴的距离相等?若存在求出点P,若不存在请说明理由;(3)如图2,DE的左侧抛物线上是否存在点F,使2S△FBC=3S△EBC?若存在求出点F的坐标,若不存在请说明理由.35.如图,已知抛物线y=﹣x2+bx+c与坐标轴分别交于点A(0,8)、B(8,0)和点E,动点C从原点O 开始沿OA方向以每秒1个单位长度移动,动点D从点B开始沿BO方向以每秒1个单位长度移动,动点C、D同时出发,当动点D到达原点O时,点C、D停止运动.(1)直接写出抛物线的解析式:;(2)求△CED的面积S与D点运动时间t的函数解析式;当t为何值时,△CED的面积最大?最大面积是多少?(3)当△CED的面积最大时,在抛物线上是否存在点P(点E除外),使△PCD的面积等于△CED的最大面积?若存在,求出P点的坐标;若不存在,请说明理由.36.如图,在平面直角坐标系中,矩形OABC的边OA在y轴的正半轴上,OC在x轴的正半轴上,∠AOC的平分线交AB于点D,E为BC的中点,已知A(0,4)、C(5,0),二次函数y=x2+bx+c的图象抛物线经过A,C两点.(1)求该二次函数的表达式;(2)F、G分别为x轴,y轴上的动点,顺次连接D、E、F、G构成四边形DEFG,求四边形DEFG周长的最小值;(3)抛物线上是否在点P,使△ODP的面积为12?若存在,求出点P的坐标;若不存在,请说明理由.37.如图,在平面直角坐标系中,抛物线y=ax2+bx﹣3(a≠0)与x轴交于点A(﹣2,0)、B(4,0)两点,与y轴交于点C.(1)求抛物线的解析式;(2)点P从A点出发,在线段AB上以每秒3个单位长度的速度向B点运动,同时点Q从B点出发,在线段BC上以每秒1个单位长度的速度向C点运动,其中一个点到达终点时,另一个点也停止运动,当△PBQ 存在时,求运动多少秒使△PBQ的面积最大,最大面积是多少?(3)当△PBQ的面积最大时,在BC下方的抛物线上存在点K,使S△CBK:S△PBQ=5:2,求K点坐标.38.如图,在平面直角坐标系中,直线y=x+1与抛物线y=ax2+bx﹣3交于A、B两点,点A在x轴上,点B的纵坐标为3.点P是直线AB下方的抛物线上一动点(不与A、B点重合),过点P作x轴的垂线交直线AB于点C,作PD⊥AB于点D.(1)求a、b及sin∠ACP的值;(2)设点P的横坐标为m;①用含有m的代数式表示线段PD的长,并求出线段PD长的最大值;②连接PB,线段PC把△PDB分成两个三角形,是否存在适合的m的值,使这两个三角形的面积之比为9:10?若存在,直接写出m的值;若不存在,说明理由.39.如图,在平面直角坐标系中,抛物线y=ax2+bx+2与直线y=x﹣2交于点A(m,0)和点B(﹣2,n),与y轴交于点C.(1)求抛物线的解析式及顶点D的坐标;(2)若向下平移抛物线,使顶点D落在x轴上,原来的抛物线上的点P平移后的对应点为P′,若OP′=OP,求点P的坐标;(3)在抛物线上是否存在点Q,使△QAB的面积是△ABC面积的一半?若存在,直接写出点Q的坐标;若不存在,请说明理由.1.【解答】解:(1)∵A(﹣1,0),∴OA=1,OC=3OA=3,∴C(0,﹣3),将A(﹣1,0)、C(0,﹣3)代入y=x2+mx+n中,得,解得,∴y=x2﹣2x﹣3;(2)存在,理由:令y=0,则x2﹣2x﹣3=0,解得x1=﹣1,x2=3,∴B(3,0),∴直线BC的解析式为y=x﹣3,设M(m,m2﹣2m﹣3),过点M作MN∥y轴交BC于N,如图1,∴N(m,m﹣3),∴MN=m﹣3﹣(m2﹣2m﹣3)=﹣m2+3m,∴S四边形MBAC=S△ABC+S△BCM=AB×OC+MN×OB=×4×3×(﹣m2+3m)×3=9,解得:m=1或2,故点M的坐标为(1,﹣4)或(2,﹣3);(3)∵OB=OC=ON,∴△BON为等腰直角三角形,∵∠OBM+∠NBM=45°,∴∠NBD+∠NBM=∠DBM=45°,∴MB=MF,过点M作MF⊥BM交BE于F,过点F作FH⊥y轴于点H,如图2,∴∠HFM+∠BMO=90°,∵∠BMO+∠OMB=90°,∴∠OMB=∠HFM,∵∠BOM=∠MHF=90°,∴△BOM≌△MHF(AAS),∴FH=OM=1,MH=OB=3,故点F(1,4),由点B、F的坐标得,直线BF的解析式为y=﹣2x+6,联立,解得,∴E(﹣3,12).2.【解答】解:(1)y=﹣x﹣3交坐标轴于A、C两点,则点A、C的坐标分别为:(﹣3,0)、(0,﹣3);将点A、C的坐标代入抛物线表达式得:,解得,故抛物线的表达式为:y=x2+2x﹣3;(2)存在,理由:如图1,过点P作y轴的平行线交AC于点H,设点P(x,x2+2x﹣3),则点H(x,﹣x﹣3),△APC面积S=S△PHA+S△PHC=×PH×OA=(﹣x﹣3﹣x2﹣2x+3)×3=﹣x2﹣x,∵﹣<0,故S有最大值,当x=﹣时,S的最大值为,此时点P(﹣,﹣);(3)如图2,设点N(﹣1,s),点M(m,n),n=m2+2m﹣3,过点M作y轴的平行线交过点C与x轴的平行线于点H,交过点N与x轴的平行线于点G,∵∠GMN+∠GNM=90°,∠GMN+∠HMC=90°,∴∠HMC=∠GNM,∵∠MGN=∠CHM=90°,MN=MC,∴△MGN≌△CHM(AAS),∴GN=MH,即GN=|﹣1﹣m|=MH=|n+3|,①当﹣1﹣m=n+3时,即m+n+4=0,即m2+3m+1=0,解得:m=,故点M(,);②当﹣1﹣m=﹣(n+3)时,即m=n+2,同理可得:点M(,);故点M的坐标为:(,)或(,)或(,)或(,).3.【解答】解:(1)令x=0,则y=3,∴C(0,3),∴OC=3.令y=0,则﹣x2+x+3=0,解得:x1=﹣4,x2=6,∴A(﹣4,0),B(6,0),∴OA=4,OB=6.∵CD⊥AC,∴∠ACD=90°,∵CO⊥AD,∴OC2=OA•OD,∴OD=,∴D(,0).(2)∵y=﹣x2+x+3=﹣(x﹣1)2+,∴E(1,).如图2,连接OE、BE,作HG⊥x轴于点G,交BE于点P.由B、E两点坐标可求得直线BE的解析式为:y=﹣x+.设H(m,﹣m2+m+3),则P(m,﹣m+).∴HG=﹣m2+m+3,HP=y H﹣y P=﹣m2+m﹣.∴S△BHE=(x B﹣x E)•HP=(﹣m2+m﹣)=﹣m2+m﹣.∵FH⊥CD,AC⊥CD,∴AC∥FH,∴∠HFG=∠CAO,∵∠AOC=∠FGH=90°,∴△ACO∼△FHG,∴==,∴FG=HG=﹣m2+m+4,∴AF=AG﹣FG=m+4+m2﹣m﹣4=m2+m,∴S△AFC=AF•OC=(m2+m)=m2+m,∵S四边形ACEB=S△ACO+S△OCE+S△OEB=×4×3+×3×1+6×=,∴S五边形FCEHB=S四边形ACEB+S△BHE﹣S△AFC=+(﹣m2+m﹣)﹣(m2+m)=﹣m2+m+15=﹣(m ﹣)2+,∴当m=时,S五边形FCEHB取得最大值.此时,H的横坐标为.(3)∵B(6,0),C(0,3),D(,0),∴CD=BD=,BC=3,∴∠DCB=∠DBC.①如图3﹣1,△CMN≌△DCB,MN交y轴于K,则CM=CN=DC=DB=,MN=BC=3,∠CMN=∠CNM=∠DBC=∠DCB,∴MN∥AB,∴MN⊥y轴,∴∠CKN=∠COB=90°,MK=NK=MN=,∴△CKN∼△COB,∴==,∴CK=,∴OK=OC+CK=,∴N(,).②如图3﹣2,△MCN≌△DBC,则CN=CB=3,∠MCN=∠DBC,∴CN∥AB,∴N(3,3).③如图3﹣3,△CMN≌△DBC,则∠CMN=∠DCB,CM=CN=DC=DB=,MN=BC=3,∴MN∥CD,作MR⊥y轴于R,则===,∴CR=,RM=,∴OR=3﹣,作MQ∥y轴,NQ⊥MQ于点Q,则∠NMQ=∠DCO,∠NQM=∠DOC=90°,∴△COD∼△MQN,∴==,∴MQ=MN=,NQ=MN=,∴NQ﹣RM=,OR+MQ=,∴N(﹣,).综上所述,满足要标的N点坐标有:(,)、(3,3)、(﹣,).4.【解答】解:(1)把A(6,3)代入y=﹣kx+6,得3=﹣6x+6.解得k=﹣.故直线的解析式是:y=﹣x+6.把O(0,0)、A(6,3)、B(﹣4,8)分别代入y=ax2+bx+c,得.解得.故该抛物线解析式是:y=x2﹣x;(2)①如图1,作PQ∥y轴,交AB于点Q,设P(x,x2﹣x),则Q(x,﹣x+6),则PQ=(﹣x+6)﹣(x2﹣x)=﹣(x﹣1)2+,∴S△PAB=(6+4)×PQ=﹣(x﹣1)2+=20,解得x1=﹣2,x2=4,∴点P的坐标为(4,0)或(﹣2,3);②设P(x,x2﹣x),如图2,由题意得:AO=3,BO=4,AB=5,∵AB2=AO2+BO2,∴∠AOB=90°,∵∠AOB=∠PCO,∴当=时,△CPO∽△OAB,即=.整理,得4|x2﹣x|=3|x|.解方程4(x2﹣x)=3x,得x1=0(舍去),x2=7,此时P点坐标为(7,);解方程4(x2﹣x)=﹣3x,得x1=0(舍去),x2=1,此时P点坐标为(1,﹣);当=时,△CPO∽△OBA,即=,整理,得3|x2﹣x|=4|x|,解方程3(x2﹣x)=4x,得x1=0(舍去),x2=,此时P点坐标为(,).解方程3(x2﹣x)=﹣4x,得x1=0(舍去),x2=﹣,此时P点坐标为(﹣,).综上所述,点P的坐标为:(7,)或(1,﹣)或(﹣,)或(,).5.【解答】解:(1)对称轴x=1,则点B(﹣2,0),则抛物线的表达式为:y=a(x+2)(x﹣4)=a(x2﹣2x﹣8),即﹣8a=2,解得:a=,故抛物线的表达式为:y=;(2)设直线PQ交y轴于点E(0,1),点P、Q横坐标分别为m,n,△CPQ的面积=×CE×(n﹣m)=,即n﹣m=2,联立抛物线与直线PQ的表达式并整理得:…①,m+n=2﹣4k,mn=﹣4,n﹣m=2==,解得:k=0(舍去)或1;将k=1代入①式并解得:x=,故点P、Q的坐标分别为:(,﹣)、(,).(3)设点K(1,m),联立PQ和AC的表达式并解得:x=,故点G(,)过点G作x轴的平行线交函数对称轴于点M,交过点R与y轴的平行线于点N,则△KMG≌△GNR(AAS),GM=1﹣==NR,MK=,故点R的纵坐标为:,则点R(m﹣1,)将该坐标代入抛物线表达式解得:x=,故m=,故点K(1,).6.【解答】解:(1)y=x+3,令x=0,则y=3,令y=0,则x=﹣3,故点A、B的坐标分别为(﹣3,0)、(0,3),则c=3,则函数表达式为:y=ax2+bx+3,将点A坐标代入上式并整理得:b=3a+1;(2)当x<0时,若y=ax2+bx+c(a<0)的函数值随x的增大而增大,则函数对称轴x=﹣≥0,而b=3a+1,即:﹣≥0,解得:a≥﹣,故:a的取值范围为:﹣≤a<0;(3)当a=﹣1时,b=3a+1=﹣2二次函数表达式为:y=﹣x2﹣2x+3,过点P作直线l∥AB,作PQ∥y轴交BA于点Q,作PH⊥AB于点H,∵OA=OB,∴∠BAO=∠PQH=45°,S△PAB=×AB×PH=×3×PQ×=,则PQ=|y P﹣y Q|=1,在直线AB下方作直线m,使直线m和l与直线AB等距离,则直线m与抛物线两个交点,分别与点AB组成的三角形的面积也为1,故:|y P﹣y Q|=1,设点P(x,﹣x2﹣2x+3),则点Q(x,x+3),即:﹣x2﹣2x+3﹣x﹣3=±1,解得:x=或,故点P(,)或(,)或(,)或(,).7.【解答】解:(1)对称轴x=,则点B(﹣1,0),则抛物线的表达式为:y=a(x+1)(x﹣4)=a(x2﹣3x﹣4),即﹣4a=2,解得:a=﹣,故抛物线的表达式为:y=x2+x+2;(2)设直线PQ交y轴于点E(0,1),点P、Q横坐标分别为m,n,△CPQ的面积=×CE×(n﹣m)=,即n﹣m=,联立抛物线于直线PQ的表达式并整理得:x2+(﹣k)x+1=0…①,m+n=3﹣2k,mn=﹣2,n﹣m===解得:k=0(舍去)或3;故y=3x+1,则x2+x+2=3x+1,解得:x=,故点P、Q的坐标分别为:(,)、(,);(3)设点K(,m),联立PQ和AC的表达式并解得:x=,故点G(,),过点G作y轴的平行线交过点K′与x轴的平行线于点M,交过点K与x轴的平行线于点N,则△GNK≌△K′MG(AAS),NK=﹣==MG,NG=﹣m,则点K′(﹣m,)将该坐标代入抛物线表达式并解得:m=,故点K(,)或(,).8.【解答】解:(1)OA=3OB=3,则点B(﹣1,0),抛物线的表达式为:y=a(x+1)(x﹣3)=a(x2﹣2x﹣3),即﹣3a=3,解得:a=﹣1,故抛物线的表达式为:y=﹣x2+2x+3;(2)过点P作y轴的平行线交CA于点H,由点A、C的坐标得,直线AC的表达式为:y=﹣x+3△ACP的面积=PH×OA=3×(x2﹣2x+3+x﹣3)=(﹣x2+3x),当x=时,△ACP的面积的最大,最大值为:,此时点P(,);(3)过点M作MN⊥AC,则MN=CM,故当B、M、N三点共线时,BM+CM=BN最小,直线CA的倾斜角为45°,BN⊥AC,则∠NBA=45°,即BN=AB=2=AN,则点N(1,2),由点B、N的坐标得,直线BN的表达式为:y=x+1,故点M(0,1).9.【解答】解:(1)∵抛物线y=ax2+bx+3(a≠0)经过点A(1,0)和点B(3,0),与y轴交于点C,∴,解得,∴抛物线解析式为y=x2﹣4x+3;(2)如图:①设P(m,m2﹣4m+3),将点B(3,0)、C(0,3)代入得直线BC解析式为y BC=﹣x+3.∵过点P作y轴的平行线交直线BC于点D,∴D(m,﹣m+3),∴PD=(﹣m+3)﹣(m2﹣4m+3)=﹣m2+3m.答:用含m的代数式表示线段PD的长为﹣m2+3m.②S△PBC=S△CPD+S△BPD=OB•PD=﹣m2+m=﹣(m﹣)2+.∴当m=时,S有最大值.当m=时,m2﹣4m+3=﹣.∴P(,﹣).答:△PBC的面积最大时点P的坐标为(,﹣).(3)存在这样的点M和点N,使得以点C、E、M、N为顶点的四边形是菱形.根据题意,点E(2,1),∴EF=CF=2,∴EC=2,根据菱形的四条边相等,∴ME=EC=2,∴M(2,1﹣2)或(2,1+2)当EM=EF=2时,M(2,3)答:点M的坐标为M1(2,3),M2(2,1﹣2),M3(2,1+2).10.【解答】解:(1)x2﹣2x﹣3=0,则x=3或﹣1,故点A、B的坐标分别为(﹣1,﹣1)、(3,﹣3),设抛物线的表达式为:y=ax2+bx,将点A、B的坐标代入上式得:,解得:,故抛物线的表达式为:y=﹣x2+x;(2)将点A、B的坐标代入一次函数表达式并解得:直线AB的表达式为:y=﹣x﹣,故点C(0,﹣),同理可得:直线OP的表达式为:y=﹣x;①过点D作y轴的平行线交AB于点H,设点D(x,﹣x2+x),则点H(x,﹣x),△BOD面积=×DH×x B=×3(﹣x2+x+x)=﹣x2+x,∵,故△BOD面积有最大值为:,此时x=,故点D(,﹣);②当OP=PC时,则点P在OC的中垂线上,故y P=﹣,则点P(,﹣);②当OP=OC时,t2+t2=()2,解得:t=(舍去负值),故点P(,﹣);③当PC=OC时,同理可得:点P(,﹣);综上,点P(,﹣)或(,﹣)或(,﹣).11.【解答】解:(1)函数的表达式为:y=a(x+6)(x﹣2)=a(x2+4x﹣12),﹣12a=6,解得:a=﹣,函数的表达式为:y=﹣x2﹣2x+6…①,顶点D坐标为(﹣2,8);(2)如图1所示,过点P作直线m∥AC交抛物线于点P′,在直线AC下方等距离处作直线n交抛物线与点P″、P′″,过点P作PH∥y轴交AC于点H,作PG⊥AC于点G,∵OA=OC,∴∠PHG=∠CAB=45°,则HP=PG,S△PCA=PG×AC=PG×6=12,解得:PH=4,直线AC的表达式为:y=x+6,则直线m的表达式为:y=x+10…②,联立①②并解得:x=﹣2或﹣4,则点P坐标为(﹣2,8)或(﹣4,6);直线n的表达式为:y=x+2…③同理可得点P(P″、P′″)的坐标为(﹣3﹣,﹣﹣1)或(﹣3,﹣1),综上,点P的坐标为(﹣2,8)或(﹣4,6)或(﹣3﹣,﹣﹣1)或(﹣3,﹣1).(3)点A、B、C、D的坐标为(﹣6,0)、(2,0)、(0,6)、(﹣2,8),则AC=,CD=,AD=,则∠ACD=90°,sin∠DAC==,延长DC至D′使CD=CD′,连接AD′,过点D作DH⊥AD′,则DD′=2,AD=AD′=,S△ADD′=DD′×AC=DH×AD′,即:2×=DH×,解得:DH=,sin2∠DAC=sin∠DAD′====sin∠EAB,则tan∠EAB=,①当点E在AB上方时,则直线AE的表达式为:y=x+b,将点A坐标代入上式并解得:直线AE的表达式为:y=x+…④,联立①④并解得:x=(不合题意值已舍去),即点E(,);②当点E在AB下方时,同理可得:点E(,﹣),综上,点E(,)或(,﹣).12.【解答】解:(1)将点B坐标代入y=x+c并解得:c=﹣3,故抛物线的表达式为:y=x2+bx﹣3,将点B坐标代入上式并解得:b=﹣,故抛物线的表达式为:y=x2﹣x﹣3;(2)过点P作PH∥y轴交BC于点H,设点P(x,x2﹣x﹣3),则点H(x,x﹣3),S四边形ACPB=S△AOC+S△PCB,∵S△AOC是常数,故四边形面积最大,只需要S△PCB最大即可,S△PCB=×OB×PH=×2(x﹣3﹣x2+x+3)=﹣x2+3x,∵﹣<0,∴S△PCB有最大值,此时,点P(2,﹣);(3)过点B作∠ABC的角平分线交y轴于点G,交抛物线于M′,设∠MBC=∠ABC=2α,过点B在BC之下作角度数为α的角,交抛物线于点M,过点G作GK⊥BC交BC于点K,延长GK交BM于点H,则GH=GN,BC是GH的中垂线,OB=4,OC=3,则BC=5,设:OG=GK=m,则CK=CB﹣HB=5﹣4=1,由勾股定理得:(3﹣m)2=m2+1,解得:m=,则OG=ON=,GH=GN=2OG=,点G(0,﹣),在Rt△GCK中,GK=OG=,GC=OC﹣OG=3﹣=,则cos∠CGK==,sin∠CGK=,则点K(,﹣),点K是点GH的中点,则点H(,﹣),则直线BH的表达式为:y=x﹣…②,同理直线BG的表达式为:y=x﹣…③联立①②并整理得:27x2﹣135x+100=0,解得:x=或4(舍去4),则点M(,﹣);联立①③并解得:x=﹣,故点M′(﹣,﹣);故点M(,﹣)或(﹣,﹣).13.【解答】解:(1)如图1,把点A(﹣2,0)、B(4,0)分别代入y=ax2+bx﹣3(a≠0),得,解得,所以该抛物线的解析式为:y=x2﹣x﹣3;(2)将x=0代入y=x2﹣x﹣3,得y=﹣3,∴点C的坐标为(0,﹣3),∴OC=3.设N(x,y),∵S△NAB=S△CAB,∴|y|=OC=3,∴y=±3.当y=3时,x2﹣x﹣3=3,解得x=+1.当y=﹣3时,x2﹣x﹣3=﹣3,解得x1=2,x2=0(舍去).综上所述,点N的坐标是(+1,3)或(﹣+1,3)或(2,﹣3);(3)如图2,由已知得,BB′=m,PB′=2,设直线BC的表达式为y=kx+b(k≠0).∵直线y=kx+b经过点B(4,0),C(0,﹣3),∴,解得,∴直线BC的表达式为y=x﹣3.当0<m≤2时,由已知得P′B=2+m.∵OP′=2﹣m,∴E(2﹣m,﹣m﹣).由OB=4得OP=2,把x=2代入y=x2﹣x﹣3中,得y=﹣3,∴D(2,﹣3),∴直线CD∥x轴.∵EP′=m+,D′P=3,∴ED′=DP′﹣EP′=3﹣m﹣=﹣m+.过点F作FH⊥PD′于点H,则∠D′HF=∠D′P′B′=90°.∵∠HD′F=∠P′D′B′,∴△D′HF∽△D′P′B′,∴=.∵∠FCD′=∠FBB′,∠FD′C=∠FB′B,∴△CD′F∽△BB′F,∴=.又∵CD′=2﹣m,∴=.设D′F=k(2﹣m),B′F=km,∴D′B′=2k,∴=.∴=.∵P′B′=2,∴HF=2﹣m.∴S△ED′F=ED′•HF=×(﹣m+)×(2﹣m).∵S△PB′D′=PB′•PD′=×3×2=3,∴S=S△PB′D′﹣S△ED′F=3﹣×(﹣m+)×(2﹣m)=﹣m2+m+.14.【解答】解:(1)由抛物线y=﹣x2+bx+c过点A(﹣1,0)及C(2,3)得,,解得,故抛物线为y=﹣x2+2x+3;又设直线为y=kx+n过点A(﹣1,0)及C(2,3),得,解得,故直线AC为y=x+1;(2)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴D(1,4),当x=1时,y=x+1=2,∴B(1,2),∵点E在直线AC上,设E(x,x+1).①如图2,当点E在线段AC上时,点F在点E上方,则F(x,x+3),∵F在抛物线上,∴x+3=﹣x2+2x+3,解得,x=0或x=1(舍去),∴E(0,1);②当点E在线段AC(或CA)延长线上时,点F在点E下方,则F(x,x﹣1),∵F在抛物线上,∴x﹣1=﹣x2+2x+3,解得x=或x=,。
中考数学狙击重难点系列专题----二次函数的实际应用之面积最大值问题(含答案)
面积最大值问题1. 如图,在平面直角坐标系中,二次函数的图象交坐标轴于A(﹣1,0),B (4,0),C(0,﹣4)三点,点P是直线BC下方抛物线上一动点.(1)求这个二次函数的解析式;(2)动点P运动到什么位置时,△PBC面积最大,求出此时P点坐标和△PBC 的最大面积.2. 如图,已知抛物线y=ax2+c过点(﹣2,2),(4,5),过定点F(0,2)的直线l:y=kx+2与抛物线交于A、B两点,点B在点A的右侧,过点B作x 轴的垂线,垂足为C.(1)求抛物线的解析式;(2)若k=1,在直线l下方的抛物线上是否存在点Q,使得△QBF的面积最大?若存在,求出点Q的坐标及△QBF的最大面积;若不存在,请说明理由.3. 如图,二次函数y=ax 2+2x+c 的图象与x 轴交于点A (﹣1,0)和点B ,与y 轴交于点C (0,3).(1)求该二次函数的表达式;(2)过点A 的直线AD ∥BC 且交抛物线于另一点D ,求直线AD 的函数表达式;(3)在(2)的条件下,请解答问题: 动点M 以每秒1个单位的速度沿线段AD 从点A 向点D 运动,同时,动点N 以每秒个单位的速度沿线段DB 从点D 向点B 运动,问:在运动过程中,当运动时间t 为何值时,△DMN 的面积最大,并求出这个最大值.4. 如图,在平面直角坐标系中,二次函数y=﹣x 2+bx+c 的图象与坐标轴交于A 、B 、C 三点,其中点A 的坐标为(0,8),点B 的坐标为(﹣4,0).(1)求该二次函数的表达式及点C 的坐标; (2)点D 的坐标为(0,4),点F 为该二次函数在第一象限内图象上的动点,连接CD 、CF ,以CD 、CF 为邻边作平行四边形CDEF ,设平行四边形CDEF 的面积为S .求S 的最大值;5. 如图,已知二次函数y=ax2+ x+c的图象与y轴交于点A(0,4),与x轴交于点B、C,点C坐标为(8,0),连接AB、AC.(1)请直接写出二次函数y=ax2+ x+c的表达式;(2)判断△ABC的形状,并说明理由;(3)若点N在线段BC上运动(不与点B、C重合),过点N作NM∥AC,交AB于点M,当△AMN面积最大时,求此时点N的坐标.6.如图,在平面直角坐标系中,直线AB和抛物线交于点A(﹣4,0),B(0,4),且点B是抛物线的顶点.(1)求直线AB和抛物线的解析式.(2)点P是直线上方抛物线上的一点,求当△PAB面积最大时点P的坐标.7.如图,抛物线y=x2+bx+c与y轴交于点C(0,﹣4),与x轴交于点A、B,且B点的坐标为(2,0).(1)求抛物线的解析式;(2)若点P是AB上的一个动点,过点P作PE∥AC交BC于点E,连接CP,求△PCE面积最大时P点的坐标;8.如图,在平面直角坐标系中,已知点A,B,C的坐标分别为(﹣1,0),(5,0),(0,2).(1)求过A,B,C三点的抛物线解析式;(2)若点P从A点出发,沿x轴正方向以每秒1个单位长度的速度向B点移动,连接PC并延长到点E,使CE=PC,将线段PE绕点P顺时针旋转90°得到线段PF,连接FB.若点P运动的时间为t秒,(0≤t≤6)设△PBF的面积为S;①求S与t的函数关系式;②当t是多少时,△PBF的面积最大,最大面积是多少?9.如图,曲线y1抛物线的一部分,且表达式为:y 1=(x2﹣2x﹣3)(x≤3)曲线y2与曲线y1关于直线x=3对称.(1)求A、B、C三点的坐标和曲线y2的表达式;(2)过点D作CD∥x轴交曲线y1于点D,连接AD,在曲线y2上有一点M,使得四边形ACDM为筝形(如果一个四边形的一条对角线被另一条对角线垂直平分,这样的四边形为筝形),请求出点M的横坐标;(3)设直线CM与x轴交于点N,试问在线段MN下方的曲线y2上是否存在一点P,使△PMN的面积最大?若存在,求出点P的坐标;若不存在,请说明理由.10.如图,二次函数y=x2-4x+3的图象与x轴交于A,B两点(点B在点A的右侧),与y轴交于点C,抛物线的对称轴与x轴交于点D.、(备用图)(1)求点A,点B和点D的坐标;(2)若动点M从点A出发,以每秒1个单位长度的速度沿AB向点B运动,同时另一个动点N从点D出发,以每秒2个单位长度的速度在抛物线的对称轴上运动,当点M到达点B时,点M,N同时停止运动,问点M,N运动到何处时,∆MNB的面积最大,试求出最大面积.11.如图,二次函数的图象与x轴相交于点A(﹣3,0)、B(﹣1,0),与y 轴相交于点C(0,3),点P是该图象上的动点;一次函数y=kx﹣4k(k≠0)的图象过点P交x轴于点Q.(1)求该二次函数的解析式;(2)当点P的坐标为(﹣4,m)时,求证:∠OPC=∠AQC;(3)点M,N分别在线段AQ、CQ上,点M以每秒3个单位长度的速度从点A向点Q运动,同时,点N以每秒1个单位长度的速度从点C向点Q运动,当点M,N中有一点到达Q点时,两点同时停止运动,设运动时间为t秒.连接AN,当△AMN的面积最大时,求t的值;12.在平面直角坐标系中,抛物线y=x2+(k﹣1)x﹣k与直线y=kx+1交于A,B 两点,点A在点B的左侧.(1)如图1,当k=1时,直接写出A,B两点的坐标;(2)在(1)的条件下,点P为抛物线上的一个动点,且在直线AB下方,试求出△ABP面积的最大值及此时点P的坐标;13.已知在平面直角坐标系xOy中,O为坐标原点,二次函数y=x2+bx的图象经过点A(﹣1,4),交x轴于点B(a,0).(1)求a与b的值;(2)如图1,点M为抛物线上的一个动点,且在直线AB下方,试求出△ABM 面积的最大值及此时点M的坐标;14.如图,抛物线y=-x 2+bx+c与x轴交于A、B两点,与y轴交于点C,已知经过B、C两点的直线的表达式为y=-x+3.(1)求抛物线的函数表达式;(2)点P(m,0)是线段OB上的一个动点,过点P作y轴的平行线,交直线BC 于D,交抛物线于E,EF∥x轴,交直线BC于F,DG∥x轴,FG∥y轴,DG与FG交于点G.设四边形DEFG的面积为S,当m为何值时S最大,最大值是多少?15.如图,在平面直角坐标系中,直角三角形AOB的顶点A、B分别落在坐标轴上.O为原点,点A的坐标为(6,0),点B的坐标为(0,8).动点M 从点O出发.沿OA向终点A以每秒1个单位的速度运动,同时动点N从点A出发,沿AB向终点B以每秒个单位的速度运动.当一个动点到达终点时,另一个动点也随之停止运动,设动点M、N运动的时间为t秒(t>0).(1)当t=3秒时.直接写出点N的坐标,并求出经过O、A、N三点的抛物线的解析式;(2)在此运动的过程中,△MNA的面积是否存在最大值?若存在,请求出最大值;若不存在,请说明理由;16.如图,对称轴为直线x=2的抛物线经过A(﹣1,0),C(0,5)两点,与x轴另一交点为B.已知M(0,1),E(a,0),F(a+1,0),点P是第一象限内的抛物线上的动点.(1)求此抛物线的解析式;(2)当a=1时,求四边形MEFP的面积的最大值,并求此时点P的坐标;。
2015年中考数学压轴题及答案汇总
2015中考压轴题突破 训练⽬标 熟悉题型结构,辨识题⽬类型,调⽤解题⽅法; 书写框架明晰,踩点得分(完整、快速、简洁)。
题型结构及解题⽅法 压轴题综合性强,知识⾼度融合,侧重考查学⽣对知识的综合运⽤能⼒,对问题背景的研究能⼒以及对数学模型和套路的调⽤整合能⼒。
考查要点常考类型举例题型特征解题⽅法 问题背景研究求坐标或函数解析式,求⾓度或线段长已知点坐标、解析式或⼏何图形的部分信息研究坐标、解析式,研究边、⾓,特殊图形。
模型套路调⽤求⾯积、周长的函数关系式,并求最值速度已知,所求关系式和运动时间相关分段:动点转折分段、图形碰撞分段; 利⽤动点路程表达线段长; 设计⽅案表达关系式。
坐标系下,所求关系式和坐标相关利⽤坐标及横平竖直线段长; 分类:根据线段表达不同分类; 设计⽅案表达⾯积或周长。
求线段和(差)的最值有定点(线)、不变量或不变关系利⽤⼏何模型、⼏何定理求解,如两点之间线段最短、垂线段最短、三⾓形三边关系等。
套路整合及分类讨论点的存在性点的存在满⾜某种关系,如满⾜⾯积⽐为9:10 抓定量,找特征; 确定分类;. 根据⼏何特征或函数特征建等式。
图形的存在性特殊三⾓形、特殊四边形的存在性分析动点、定点或不变关系(如平⾏); 根据特殊图形的判定、性质,确定分类; 根据⼏何特征或函数特征建等式。
三⾓形相似、全等的存在性找定点,分析⽬标三⾓形边⾓关系; 根据判定、对应关系确定分类; 根据⼏何特征建等式求解。
答题规范动作 试卷上探索思路、在演草纸上演草。
合理规划答题卡的答题区域:两栏书写,先左后右。
作答前根据思路,提前规划,确保在答题区域内写完答案;同时⽅便修改。
作答要求:框架明晰,结论突出,过程简洁。
23题作答更加注重结论,不同类型的作答要点: ⼏何推理环节,要突出⼏何特征及数量关系表达,简化证明过程; ⾯积问题,要突出⾯积表达的⽅案和结论; ⼏何最值问题,直接确定最值存在状态,再进⾏求解; 存在性问题,要明确分类,突出总结。
中考数学专题探究-----面积问题(二)(含答案)
中考数学专题----面积问题(2)面积倍分问题面积问题在中考中占有很重要的地位,一般情况下,计算一些基本图形的面积,可以直接运用图形的面积公式,对于一些不规则的图形面积的计算,可以对图形进行转化,这类问题虽然解题方法比较灵活多样,但难度一般不太大。
但是,在中考压轴题中,有关面积的问题常常以动态的方式出现,经常与函数知识联系起来,有时还需要分类讨论。
因此,对考生要求较高,在解题时,要注意分清其中的变量和不变量,并把运动的过程转化成静止的状态,做到动静结合,以静求动。
中考数学面积问题的考点主要有:(1)面积的函数关系式问题;(2)面积的最值问题;(3)面积的倍分问题。
前二个考点在上次的专题中已经讲过,今天我们来探究面积的倍分问题。
一、典型例题: 1、(2007江苏扬州)如图,矩形ABCD 中,3AD =厘米,AB a =厘米(3a >).动点M N ,同时从B 点出发,分别沿B A →,B C →运动,速度是1厘米/秒.过M 作直线垂直于AB ,分别交AN ,CD 于P Q ,.当点N 到达终点C 时,点M 也随之停止运动.设运动时间为t 秒.(1)若4a =厘米,1t =秒,则PM =______厘米;(2)若5a =厘米,求时间t ,使PNB PAD △∽△,并求出它们的相似比;(3)若在运动过程中,存在某时刻使梯形PMBN 与梯形PQDA 的面积相等,求a 的取值范围;(4)是否存在这样的矩形:在运动过程中,存在某时刻使梯形PMBN ,梯形PQDA ,梯形PQCN 的面积都相等?若存在,求a 的值;若不存在,请说明理由.分析:问题(1)比较容易解答,问题(2)利用三角形相似的性质也容易解决,问题(3)需要利用 BM=BN=t,利用面积相等求出t 和a 的关系式,利用t 的范围求a 的取值范围,问题(4)只需要在问题(3)的基础上,让梯形PQCN 的面积与梯形PMBN 的面积相等即可。
解.(1)34PM =, (2)2t =,使PNB PAD △∽△,相似比为3:2 (3)PM AB CB AB AMP ABC ∠=∠⊥,⊥,,NAMP ABC △∽△,PM AM BN AB ∴=即()PM a t t a t PM t a a--==,, at a t QM )(3--= 当梯形PMBN 与梯形PQDA 的面积相等,即()()22QP AD DQ MP BN BM++=2)(2)(3)(3tt t a a t t a a t a t ⎪⎭⎫ ⎝⎛+-=-⎪⎭⎫⎝⎛+--=化简得66a t a=+, 3t ≤,636aa∴+≤,则636a a ∴<≤,≤, (4)36a <≤时,梯形PMBN 与梯形PQDA 的面积相等∴梯形PQCN 的面积与梯形PMBN 的面积相等即可,则CN PM =()3t a t t a ∴-=-,把66at a=+代入,解之得a =±,所以a = 所以,存在a ,当a =PMBN 与梯形PQDA 的面积、梯形PQCN 的 面积相等.温馨提示:本题考查与面积有关的问题,解答的关键是将梯形的面积相等转化后求解,另外,在解决这一类问题时,要善于运用数形结合的思想,把几何条件转化,建立合适的数学模型,本题就充分运用了方程的思想。
中考数学专题探究-----面积问题(含详细解答)
中考数学专题探究-----面积问题面积问题在中考中占有很重要的地位,一般情况下,计算一些基本图形的面积,可以直接运用图形的面积公式,对于一些不规则的图形面积的计算,可以对图形进行转化,这类问题虽然解题方法比较灵活多样,但难度一般不太大。
但是,在中考压轴题中,有关面积的问题常常以动态的方式出现,经常与函数知识联系起来,有时还需要分类讨论。
因此,对考生要求较高,在解题时,要注意分清其中的变量和不变量,并把运动的过程转化成静止的状态,做到动静结合,以静求动。
考点一:面积的函数关系式问题典型例题:1、(2009年湖南衡阳)如图12,直线4+-=x y 与两坐标轴分别相交于A 、B 点,点M 是线段AB 上任意一点(A 、B 两点除外),过M 分别作MC ⊥OA 于点C ,MD ⊥OB 于D . (1)当点M 在AB 上运动时,你认为四边形OCMD 的周长是否发生变化?并说明理由;(2)当点M 运动到什么位置时,四边形OCMD 的面积有最大值?最大值是多少?(3)当四边形OCMD 为正方形时,将四边形OCMD 沿着x 轴的正方向移动,设平移的距离为)40<<a a (,正方形OCMD 与△AOB 重叠部分的面积为S .试求S 与a 的函数关系式并画出该函数的图象.解:(1)设点M 的横坐标为x ,则点M 的纵坐标为-x+4(0<x<4,x>0,-x+4>0); 则:MC =∣-x+4∣=-x+4,MD =∣x ∣=x ;∴C 四边形OCMD =2(MC+MD )=2(-x+4+x )=8∴当点M 在AB 上运动时,四边形OCMD 的周长不发生变化,总是等于8; (2)根据题意得:S 四边形OCMD =MC ·MD =(-x+4)· x =-x 2+4x =-(x-2)2+4∴四边形OCMD 的面积是关于点M 的横坐标x (0<x<4)的二次函数,并且当x =2,即当点M 运动到线段AB 的中点时,四边形OCMD 的面积最大且最大面积为4; (3)如图10(2),当20≤<a 时,42121422+-=-=a aS ; 如图10(3),当42<≤a 时,22)4(21)4(21-=-=a a S ;∴S 与a 的函数的图象如下图所示:图12(1)图12(2)图12(3)2、(2009宁夏)已知:等边三角形ABC 的边长为4厘米,长为1厘米的线段MN 在ABC △的边A B 上沿A B 方向以1厘米/秒的速度向B 点运动(运动开始时,点M 与点A 重合,点N 到达点B 时运动终止),过点M N 、分别作A B 边的垂线,与ABC △的其它边交于P Q 、两点,线段MN 运动的时间为t 秒.(1)线段MN 在运动的过程中,t 为何值时,四边形M N Q P 恰为矩形?并求出该矩形的面积; (2)线段MN 在运动的过程中,四边形M N Q P 的面积为S ,运动的时间为t .求四边形M N Q P的面积S 随运动时间t 变化的函数关系式,并写出自变量t 的取值范围. 解:(1)过点C 作CD AB ⊥,垂足为D . 则2A D =,当MN 运动到被CD 垂直平分时,四边形M N Q P 是矩形, 即32A M =时,四边形M N Q P 是矩形,32t ∴=秒时,四边形M N Q P 是矩形.tan 60PM AM = °=,M N Q P S ∴=四边形(2)1°当01t <<时,1()2M N Q P S P M Q N M N =+四边形·11)2t ⎤=++⎦2=+))4<≤aC PQBA M NC PQBA MN2°当12t ≤≤时1()2M N Q P S P M Q N M N =+四边形·1)12t ⎤=+-⎦·= 3°当23t <<时,1()2M N Q P S P M Q N M N =+四边形·1))2t t ⎤=-+-⎦=+3、(2010年辽宁丹东)如图,平面直角坐标系中有一直角梯形OMNH ,点H 的坐标为(-8,0),点N 的坐标为(-6,-4).(1)画出直角梯形OMNH 绕点O 旋转180°的图形OABC ,并写出顶点A ,B ,C 的坐标(点M 的对应点为A , 点N 的对应点为B , 点H 的对应点为C ); (2)求出过A ,B ,C 三点的抛物线的表达式;(3)截取CE =OF =AG =m ,且E ,F ,G 分别在线段CO ,OA ,AB 上,求四边形...BEFG 的面积S 与m 之间的函数关系式,并写出自变量m 的取值范围;面积S 是否存在最小值?若存在,请求出这个最小值;若不存在,请说明理由;(4)在(3)的情况下,四边形BEFG 是否存在邻边相等的情况,若存在,请直接..写出此时m 的值,并指出相等的邻边;若不存在,说明理由.解:(1) 利用中心对称性质,画出梯形OABC . ∵A ,B ,C 三点与M ,N ,H 分别关于点O 中心对称, ∴A (0,4),B (6,4),C (8,0)CPQA M N CPQA MN(2)设过A ,B ,C 三点的抛物线关系式为2y ax bx c =++, ∵抛物线过点A (0,4),∴4c =.则抛物线关系式为24y ax bx =++. 将B (6,4), C (8,0)两点坐标代入关系式,得3664464840a b a b ++=⎧⎨++=⎩,. 解得1432a b ⎧=-⎪⎪⎨⎪=⎪⎩,.所求抛物线关系式为:213442y x x =-++.(3)∵OA =4,OC =8,∴AF =4-m ,OE =8-m .∴AG F EO F BEC EFG B ABC O S S S S S =---△△△四边形梯形 21=OA (AB +OC )12-AF ·AG 12-OE ·OF 12-CE ·OAm m m m m 421)8(21)4(2186421⨯-----+⨯⨯=)(2882+-=m m ( 0<m <4)∵2(4)12S m =-+. ∴当4m =时,S 的取最小值. 又∵0<m <4,∴不存在m 值,使S 的取得最小值. (4)当2m =-+GB =GF ,当2m =时,BE =BG .4、如图所示,菱形ABCD 的边长为6厘米,60B ∠=°.从初始时刻开始,点P 、Q 同时从A 点出发,点P 以1厘米/秒的速度沿A C B →→的方向运动,点Q 以2厘米/秒的速度沿A B C D →→→的方向运动,当点Q 运动到D 点时,P 、Q 两点同时停止运动,设P 、QO MN HA CE FDB↑→ -8(-6,-4)x y运动的时间为x 秒时,APQ △与ABC △重叠部分....的面积为y 平方厘米(这里规定:点和线段是面积为O 的三角形),解答下列问题:(1)点P 、Q 从出发到相遇所用时间是 秒;(2)点P 、Q 从开始运动到停止的过程中,当APQ △是等边三角形时x 的值是 秒; (3)求y 与x 之间的函数关系式. 解:(1)6. (2)8.(3)①当03x <≤时,2111sin 6022222AP Q y S AP AQ x x x ==︒==13△1·····. ②当3x <≤6时,1222222121sin 6021(12-2)22A P Q y S A P P Q A P C Q x x ==︒=△= ····=2.2x -+③当69x ≤≤时,设33P Q 与AC 交于点O . (解法一)过3Q 作3,Q E CB ∥则3CQ E △为等边三角形.33333212..Q E C E C Q x Q E C B C O P EO Q ∴===-∴ ∥△∽△(第28题)Q 1B C D Q 2 P 3 Q 3 EP 2 P 1 O3361,212211(212),33C P O C x O EEQ x O C C E x -∴===-∴==-3333311sin 60sin 6022AQ P AC P C O P y S S C P AC O C C P ===-△△△-S ··°··°111(6)(212)(6)22232x x x =-⨯-⨯--⨯·6.262x x =-+-.(解法二)如右图,过点O 作3OF CP ⊥于点F ,3O G C Q ⊥,于点,G 过点3P 作3P H DC ⊥交DC 延长线于点H .,.A CB ACD O F O G ∠=∠∴=又33,6,2122(6),C P x C Q x x =-=-=-3312C Q P C O Q S S ∴=△△3333321,3113211(212)(6)322(6).6C O P C P Q S S C Q P H x x x ∴==⨯=⨯--=-△△···又331sin 602AC P S C P AC =△··°1(6)6226).2x x =-⨯⨯=-P 3OABC DQ 3G H F3A O P y S ∴=△3326)6)26AC P O C P S S x x =-=---△△262x x =-+-考点2、面积最值问题典型例题:1、(2008年广东广州)如图11,在梯形ABCD 中,AD ∥BC ,AB=AD=DC=2cm ,BC=4cm ,在等腰△PQR 中,∠QPR=120°,底边QR=6cm ,点B 、C 、Q 、R 在同一直线l 上,且C 、Q 两点重合,如果等腰△PQR 以1cm/秒的速度沿直线l 箭头所示方向匀速运动,t 秒时梯形ABCD 与等腰△PQR 重合部分的面积记为S 平方厘米 (1)当t=4时,求S 的值(2)当4t ≤≤10,求S 与t 的函数关系式,并求出S 的最大值解.(1)t =4时,Q 与B 重合,P 与D 重合, 重合部分是BDC ∆=3232221=⋅⋅(2)当时,如图104≤≤tQB=DP=t-4,CR=6-t,AP=6-t 由PQR ∆∽BQM ∆∽CRN ∆图11得2)324(-=∆∆t S S PQRBQM2)326(t S S PQRCRN -=∆∆22)4(43)324(-=-=∆∆t S t S PQR BQM ,22)6(43)326(t S t S PQR CRN -=-=∆∆S =3255)-(t 23t)-(6434t 4333222+-=---)(当t 取5时,最大值为325当t 取6时,有最大值32 综上所述,最大值为325二、名题精练:1、(2009湖南永州)如图,在平面直角坐标系中,点A C 、的坐标分别为(10)(0--,、,,点B在x 轴上.已知某二次函数的图象经过A 、B 、C 三点,且它的对称轴为直线1x =,点P 为直线BC 下方的二次函数图象上的一个动点(点P 与B 、C 不重合),过点P 作y 轴的平行线交BC 于点F .(1)求该二次函数的解析式;(2)若设点P 的横坐标为m ,用含m 的代数式表示线段P F(3)求PBC △面积的最大值,并求此时点P 的坐标. 解:(1)设二次函数的解析式为2(0)y ax bx c a a b c =++≠,、、为常数,由抛物线的对称性知B 点坐标为(30),,依题意得:093a b c a b c c ⎧-+=⎪++=⎨⎪=⎩(第25题)解得:33a b c ⎧=⎪⎪⎪⎪=-⎨⎪⎪⎪=⎪⎩∴所求二次函数的解析式为233y x x =--(2)P 点的横坐标为m ,P ∴点的纵坐标为233m m --设直线BC 的解析式为(0)y kx b k k b =+≠,、是常数,依题意,得30k b b +=⎧⎪⎨=⎪⎩3k b ⎧=⎪∴⎨⎪=⎩ 故直线BC的解析式为3y x =-∴点F的坐标为3m ⎛-⎝⎭2(03)3PF m ∴=-+<<(3)PBC △的面积12C P F B P F S S S P F B O =+=△△·=2213323228m ⎛⎫⎫⨯-+⨯=--+ ⎪⎪ ⎪⎝⎭⎝⎭∴当32m =时,PBC △的最大面积为8把32m =代入233y m m =--4y =-∴点P的坐标为324⎛⎫-⎪ ⎪⎝⎭,(第25题)2、(2007年淮安)在平面直角坐标系中,放置一个如图所示的直角三角形纸片AOB ,已知OA=2 ∠AOB=30°,D 、E 两点同时从原点O 出发,D 点以每秒3个单位长度的速度沿x 轴的正方向运动,E 点以每秒1个单位长度的速度沿y 轴的正方向运动,设D 、E 两点运动的时间为t 秒。
中考数学复习之因动点产生的面积问题解题策略
因动点产生的面积问题解题策略一.解题策略解读:面积的存在性问题常见的题型和解题策略有两类:图1 图2 图3 计算面积常用到的策略还有:图4 图5 图6例1.已知抛物线y=mx2+(1-2m)x+1-3m与x轴交于不同的两点A、 B.(1) 求m的取值范围;(2) 证明该抛物线一定经过非坐标轴上的一点P,并求出点P的坐标;(3) 当<m≤8时,由(2)求出的点P和点A、 B构成的△ABP的面积是否有最值,若有,求出最值及相应的m的值;若没有,请说明理由.思路:1. 已知的抛物线的解析式可以因式分解的,抛物线过x轴上的定点(-1, 0).2. 第(2)题分两步,先对m赋予两个不同的值,联立求方程组的解,再验证这个点是确定的.3. 第(3)题中△ABP的高为定值,点A为定点,求△ABP的最大面积,其实就是求点B的横坐标的最大值.例2.问题提出(1) 如图1,已知△ABC,请画出△ABC关于直线AC对称的三角形.问题探究(2) 如图2,在矩形ABCD中,AB=4, AD=6, AE=4, AF=2.是否在边BC、CD上分别存在点G、 H,使得四边形EFGH的周长最小?若存在,求出它周长的最小值;若不存在,请说明理由.问题解决(3) 如图3,有一块矩形板材ABCD, AB=3米, AD=6米,现想从此板材中截出一个面积尽可能大的四边形EFGH部件,使∠EFG=90°,米,∠EHG=45°.经研究,只有当点E、 F、 G分别在边AD、 AB、 BC上时,且AF<BF,并满足点H在矩形ABCD内部或边上时,才有可能截出符合要求的部件.试问能否截得符合要求的面积尽可能大的四边形EFGH部件?若能,求出截得的四边形EFGH 部件的面积;若不能,请说明理由.图1 图2 图3思路:1. 第(2)题的模型是“打台球”两次碰壁问题,依据光的反射原理.2. 第(3)题需先设AF的长并求解,再验证点H在矩形内部,然后计算面积.例3.如图1,在平面直角坐标系中,矩形OCDE的顶点C和E分别在y轴的正半轴和x轴的正半轴上,OC=8, OE=17.抛物线y=x2-3x+m与y轴交于点A,抛物线的对称轴与x轴交于点B,与CD交于点K.(1) 将矩形OCDE沿AB折叠,点O恰好落在边CD上的点F处.①求点F的坐标;②请直接写出抛物线的函数表达式;(2) 将矩形OCDE沿着经过点E的直线折叠,点O恰好落在边CD上的点G处,连结OG,折痕与OG交于点H,点M是线段EH上的一个动点(不与点H重合),连结MG, MO,过点G作GP⊥OM于点P,交EH于点N,连结ON.点M从点E开始沿线段EH向点H运动,至与点N重合时停止,△MOG和△NOG的面积分别表示为S1和S2,在点M的运动过程中,S1·S2(即S1与S2的积)的值是否发生变化?若变化,请直接写出变化的范围;若不变,请直接写出这个值.温馨提示: 考生可以根据题意,在备用图中补充图形,以便作答.图1 备用图思路:1. 第(1)题中点F的位置是由A、 B两点确定的,A、 B两点的坐标都隐含在抛物线的解析式中.2. 第(2)题思路在画示意图过程中,点G是关键点.以E为圆心,EO为半径画弧,交CD于点G.例 4.如图,已知平行四边形ABCD的三个顶点A(n, 0)、 B(m, 0)、 D(0,2n)(m>n>0),作平行四边形ABCD关于直线AD的对称图形AB1C1 D.(1) 若m=3,试求四边形CC1B1B面积S的最大值;(2) 若点B1恰好落在y轴上,试求的值.思路:1. 第(1)题先说理再计算,说理四边形CC1B1B是矩形.2. 第(2)题根据AB1=AB列关于m、 n的方程,整理就可以得到m与n的关系.例5.如图,在平面直角坐标系中,抛物线y=-x2+bx+c经过点A(3, 0)和点B(2, 3),过点A的直线与y轴的负半轴相交于点C,且tan∠CAO=.(1) 求这条抛物线的表达式及对称轴;(2) 连结AB、 BC,求∠ABC的正切值;(3) 若点D在x轴下方抛物线的对称轴上,当S△ABC =S△ADC时,求点D的坐标.解析:1. 直觉告诉我们,△ABC是直角三角形.2. 第(3)题的意思可以表达为: B、 D在直线AC的两侧,到直线AC的距离相等.于是我们容易想到,平行线间的距离处处相等.例6.如图,半圆O的直径AB=10,有一条定长为6的动弦CD在弧AB上滑动(点C、D分别不与点A、 B重合),点E、 F在AB上,EC⊥CD, FD⊥CD.(1) 求证:EO=FO;(2) 连结OC,如果△ECO中有一个内角等于45°,求线段EF的长;(3) 当动弦CD在弧AB上滑动时,设变量CE=x,四边形CDFE的面积为S,周长为l,问:S与l是否分别随着x变化而变化?试用所学过的函数知识直接写出它们的函数解析式及函数定义域,以说明你的结论.思路:1. 用垂径定理和平行线等分线段定理证明点O是EF的中点.2. 第(2)题的△ECO中,∠ECO是定值,45°的角分两种情况.3. 第(3)题用x表示OE的长,在△ECO中,∠ECO是定值.例7.直线y=2x+m与抛物线y=ax2+ax+b都过点M(1, 0),且a<b.(1) 求抛物线顶点Q的坐标(用含a的式子表示);(2) 试说明抛物线与直线有两个交点;(3) 设抛物线与直线的另一个交点为N.①若-1≤a≤-时,求MN的取值范围;②求△QMN的面积最小值.思路:1. 将M(1, 0)分别代入直线和抛物线的解析式,可以确定m的值,用a表示b.2. 联立直线与抛物线的解析式,消去y,得到关于a的一元二次方程,判断Δ>0.3. 第(3)题①,分别求a=-1和a=-时直线与抛物线的交点M、 N的坐标,再求MN的长,两个MN的长,就是MN的取值范围的两端值.例8.已知Rt△EFP和矩形ABCD如图1摆放(点P与点B重合),点F、 B(P)、 C 在同一直线上,AB=EF=6cm, BC=FP=8cm, ∠EFP=90°.如图2, △EFP从图1位置出发,沿BC方向匀速运动,速度为1cm/s, EP与AB交于点G;同时,点Q从点C出发,沿CD方向匀速运动,速度为1cm/s.过点Q作QM⊥BD,垂足为H,交AD于点M,连结AF、 PQ.当点Q停止运动时,△EFP也停止运动.设运动时间为t(s)(0<t<6).解答下列问题:(1) 当t为何值时,PQ∥BD?(2) 设五边形AFPQM的面积为y(cm2),求y与t之间的函数关系式;(3) 在运动过程中,是否存在某一时刻t,使S五边形AFPQM ∶S矩形ABCD=9∶8?若存在,求出t的值;若不存在,请说明理由;(4) 在运动过程中,是否存在某一时刻t,使点M在线段PG的垂直平分线上?若存在,求出t的值;若不存在,请说明理由.图1 图2思路:1. 把线段BP、 PC、 CQ、 DQ的长用t表示出来.再把线段BG、 DM的长用t表示出来.2. 用割补法求五边形AFPQM的面积,等于直角梯形减去两个直角三角形的面积.3. 第(3)题用第(2)题的结果,直接解方程就可以了.4. 第(4)题是根据MP2=MG2列方程,需要构造以MP为斜边的直角三角形.例9.如图1,在平面直角坐标系中,过原点O及点A(8, 0)、 C(0, 6)作矩形OABC,连结OB,点D为OB的中点,点E是线段AB上的动点,连结DE,作DF⊥DE,交OA于点F,连结EF.已知点E从点A出发,以每秒1个单位长度的速度在线段AB上移动,设移动时间为t秒.(1) 如图1,当t=3时,求DF的长;(2) 如图2,当点E在线段AB上移动的过程中,∠DEF的大小是否发生变化?如果变化,请说明理由;如果不变,请求出tan∠DEF的值;(3) 连结AD,当AD将△DEF分成的两部分的面积比为1∶2时,求相应的t的值.图1 图2思路;1. 作DM⊥AB于M, DN⊥OA于N,那么△NDF与△MDE的相似比为3∶4.2. 面积比为1∶2要分两种情况讨论.把面积比转化为两个同高三角形底边的比.3. 过点E作OA的平行线,构造“8字型”相似,这样就把底边的比利用起来了.例10.如图1,二次函数y=x2+bx+c的图象与x轴交于A、 B两点,与y轴交于点C, OB=OC.点D在函数图象上,CD∥x轴,且CD=2,直线l是抛物线的对称轴,E是抛物线的顶点.(1) 求b、 c的值;(2) 如图1,连结BE,线段OC上点F关于直线l的对称点F'恰好在线段BE上,求点F的坐标;(3) 如图2,动点P在线段OB上,过点P作x轴的垂线分别与BC交于点M,与抛物线交于点N.试问:抛物线上是否存在点Q,使得△PQN与△APM的面积相等,且线段NQ的长度最小?如果存在,求出点Q的坐标;如果不存在,说明理由.图1 图2思路:1. 由已知抛物线的解析式可得C(0, c),再用c表示B、 D两点的坐标,然后将B、 D代入抛物线的解析式列关于b、 c的方程组.2. 第(2)题: 通过点C、 F分别与点D、 F'关于直线l对称,得到点F'是BE的中点,从而求得点F的坐标.3. 第(3)题: 设点P的横坐标为m,用m表示点M、 N的坐标,进而用m表示线段PM、 PN、 PA的长,根据两个三角形的面积相等,求出PN边上的高QH.最后讨论NQ与QH的关系.例11.如图,在平面直角坐标系中,直线y=12x+2与x 轴交于点A,与y 轴交于点C.抛物线y=-x 2+bx+c 经过A 、 C 两点,与x 轴的另一个交点为点B.(1) 求抛物线的函数表达式;(2) 点D 为直线AC 上方抛物线上一动点.① 连结BC 、 CD.设直线BD 交线段AC 于点E, △CDE 的面积为S 1, △BCE 的面积为S 2,求 12S S 的最大值; ② 过点D 作DF ⊥AC,垂足为F,连结CD.是否存在点D,使得△CDF 中的某个角恰好等于∠BAC 的2倍?若存在,求出点D 的坐标;若不存在,请说明理由.图1 备用图思路: 1. △CDE 与△BCE 是同高三角形,面积比等于底边的比.构造“8字型”,把底边的比转化为竖直线段的比.2. 第(3)题的第一种情况∠DCF=2∠BAC,过点C 作x 轴的平行线,通过内错角相等,再作轴对称的角,很容易找到点D 的位置.3. 第(3)题的第二种情况∠CDF=2∠BAC,先要探求2∠BAC的大小(正切值),如果这一步探究不出来,基本上进行不下去.例12.已知Rt△OAB,∠OAB=90°,∠ABO=30°,斜边OB=4,将Rt△OAB绕点O 顺时针旋转60°,如题图1,连接BC.(1)填空:∠OBC= ;(2)如图1,连接AC,作OP⊥AC,垂足为P,求OP的长度;(3)如图2,点M,N同时从点O出发,在△OCB边上运动,M沿O→C→B路径匀速运动,N沿O→B→C路径匀速运动,当两点相遇时运动停止,已知点M的运动速度为1.5单位/秒,点N的运动速度为1单位/秒,设运动时间为x秒,△OMN 的面积为y,求当x为何值时y取得最大值?最大值为多少?思路:(1)由旋转的性质可以证明△OBC是等边三角形,从而可得∠OBC的度数;(2)求出△AOC的面积,利用三角形的面积公式计算即可;(3)分三种情形讨论求解即可解决问题:①当0<x≤83时,M在OC上运动,N在OB上运动,此时过点N作NE⊥OC且交OC于点E,利用面积公式表示出△OMN的面积(y值);②当8 3<x≤4时,M在BC上运动,N在OB上运动.作MH⊥OB于H,利用∠CBO=60°表示出MH,再利用面积公式表示出△OMN的面积(y值);③当4<x≤4.8时,M、N都在BC上运动,作OG⊥BC于G,易求OG,再利用面积公式表示出△OMN的面积(y值),最后分别求出三种情况下面积最大值,从而求出整个运动过程中y的最大值.例13. 在平面直角坐标系中,抛物线2y ax bx c=++交x轴于A、B两点,交y轴于点C(0,43-),OA=1,OB=4,直线l过点A,交y轴于点D,交抛物线于点E,且满足tan∠OAD=34.(1)求抛物线的解析式;(2)动点P从点B出发,沿x轴正方向以每秒2个单位长度的速度向点A运动,动点Q从点A出发,沿射线AE以每秒1个单位长度的速度向点E运动,当点P运动到点A时,点Q也停止运动,设运动为t秒.①在P、Q的运动过程中,是否存在某一时刻t,使得△ADC与△PQA相似,若存在,求出t的值;若不存在,请说明理由;②在P、Q的运动过程中,是否存在某一时刻t,使得△APQ与△CAQ的面积之和最大?若存在,求出t的值;若不存在,请说明理由.思路:本题是代数几何综合题,以平面直角坐标系为背景,考查了求二次函数解析式,二次函数的性质,,方程组的解法,几何图形面积的表示,相似三角形的判定与性质,分类讨论思想,三角形的面积的最值问题,综合性强,难度大,解题的关键是需要学生有良好的运算能力及分析问题和解决问题的能力,还得富有耐心.(1)利用A、B、C三点的坐标确定二次函数的解析式.(2)利用题目的已知条件表示出相关线段的长,①中利用三角函数值探索出∠PAQ=∠ACD,再根据题目中的要求使得△ADC与△PQA相似,进行分类讨论得到对应线段成比例,列出关于t的方程求解即可;②直接利用三角形的面积公式列出△APQ与△CAQ 的面积之和与时间t之间的函数关系式,再将所得的二次函数的解析式配方确定最值即可得到答案.。
上海中考数学压轴题解题方法总结
上海中考数学压轴题解题方法总结上海中考数学压轴题各题型解题方法总结18题题型一:翻折问题;性质:翻折前后两个图形全等:边相等,角相等折痕垂直平分对应点的连线学会找等腰画图:已知折痕:过对应点做折痕的垂线并延长已知对应点:做对应点连线的垂直平分线【解题策略分析】解决动态问题需要我们运用运动与变化的观点去观察与研究图形,把握图形运动与变化的全过程,在动中找出不变的因素,利用不变的因素来解决变化的问题。
1)通过翻折后与原图形全等找出等量关系;2)联结原点和翻折后的点,必定关于折痕对称(或者用折痕是对称点的垂直平分线);3)跟其他线段中点结合构造中位线;4)做垂线运用“双勾股”。
图形翻折之“翻折边长”题型解题方法与策略:1.寻找翻折直线,即对称轴;2.根据翻折情况,画图,画图是解题的关键;3.寻觅翻折相等的线段或角度;4.利用翻折并结合题目中的特殊条件找到隐含条件;5.勾股定理、三角比、相似三角形构造方程;6.部分题目注意分类讨论。
图形翻折之“翻折角度”题型解题办法与战略:1.寻找翻折直线,即对称轴;2.根据翻折情况,画图,画图是解题的关键;3.寻找翻折相等的线段或角度;4.利用翻折并结合题目中的特殊条件解题(比如平行、垂直等);5.利用好三角形的内角和、外角性质。
图形翻折之“翻折面积”题型解题办法与战略:1.寻找翻折直线,即对称轴;2.根据翻折情况,画图,画图是解题的关键;3.寻觅翻折相等的线段和角度;4.利用翻折并结合题目中的特殊条件(比如平行、垂直)解题;5.利用好勾股定理、相似、等高三角形面积干系等转化成线段干系。
运题型二:旋转问题;旋转三要素旋转中心旋转偏向:顺时针;逆时针旋转角度性质:旋转前后两个图形全等:边相等,角相等会找新的相似:以旋转角为顶角的两个等腰三角形相似,相似后对应角相等注意题目中的暗示:画图:点的旋转图形的旋转:可以把图形的旋转转化为点的旋转,从而画圆旋转后点落在边上、直线上、射线上1.寻找旋转中心;2.寻找旋转的方向,“逆时针”和“顺时针”,如果没有说明则分类讨论;3.挖掘题目中的特殊条件:题目中有哪些角相等?哪些边相等?4.准确画出旋转后的图形是解题的关键.图形旋转之“旋转边长”题型解题方法与策略:1.寻找旋转中心;2.寻觅旋转的偏向,“逆时针”和“顺时针”,如果没有申明则分类会商;3.寻觅旋转前后相等的线段或角度,根据题意准确画图;4.利用旋转并结合题目中的特殊条件解题;5.勾股定理、三角比、相似三角形构造方程;6.部分题目注意分类会商;图形旋转之“旋转面积”题型解题方法与策略:1.寻觅旋转中心;2.寻觅旋转的偏向,“逆时针”和“顺时针”,如果没有申明则分类会商;3.寻觅旋转前后相等的线段或角度,根据题意准确画图;4.观察所求图形面积形状,结合面积公式、相似、等高模型求解;5.部分题目注意分类讨论;图形旋转之“旋转角度”题型解题方法与策略:1.寻觅旋转中心;2.寻找旋转的方向,“逆时针”和“顺时针”,如果没有说明则分类讨论;3.寻觅旋转旋转角、旋转前后相等的线段、相等的角度,根据题意准确画图;4.利用内角和、外角性质并结合题目中的特殊条件解题;5.部分题目注意分类讨论;题型三:平移问题平移图形的特征1.平移前后的图形全等2.图形上每一个点平移的距离和偏向都是相同的平移之“函数中的图象平移”题型解题办法与战略:1.寻找平移方法和距离;2.化简原函数解析式,并在坐标系中画出原函数大致图象;3.根据请求画出平移后函数的图象;4.结合平移前后对应点坐标以及二次函数对称轴和举行相关计算和求解;5.部分题目注意分类讨论。
上海十年中考数学压轴题与答案解析
XX 十年中考数学压轴题解析2001年XX 市数学中考27.已知在梯形ABCD 中,AD ∥BC ,AD <BC ,且AD =5,AB =DC =2. (1)如图8,P 为AD 上的一点,满足∠BPC =∠A .图8①求证;△ABP ∽△DPC ②求AP 的长.(2)如果点P 在AD 边上移动(点P 与点A 、D 不重合),且满足∠BPE =∠A ,PE 交直线BC 于点E ,同时交直线DC 于点Q ,那么①当点Q 在线段DC 的延长线上时,设AP =x ,CQ =y ,求y 关于x 的函数解析式,并写出函数的定义域; ②当CE =1时,写出AP 的长(不必写出解题过程).27.(1)①证明:∵∠ABP =180°-∠A -∠APB ,∠DPC =180°-∠BPC -∠APB ,∠BPC =∠A ,∴∠ABP =∠DPC .∵在梯形ABCD 中,AD ∥BC ,AB =CD ,∴∠A =∠D .∴△ABP ∽△DPC .②解:设AP =x ,则DP =5-x ,由△ABP ∽△DPC ,得DCPD AP AB =,即252xx -=,解得x 1=1,x 2=4,则AP 的长为1或4.(2)①解:类似(1)①,易得△ABP ∽△DPQ ,∴DQ AP PD AB =.即y xx +=-252,得225212-+-=x x y ,1<x <4. ②AP =2或AP =3-5.(题27是一道涉与动量与变量的考题,其中(1)可看作(2)的特例,故(2)的推断与证明均可借鉴(1)的思路.这是一种从模仿到创造的过程,模仿即借鉴、套用,创造即灵活变化,这是中学生学数学应具备的一种基本素质,世上的万事万物总有着千丝万缕的联系,也有着质的区别,模仿的关键是发现联系,创造的关键是发现区别,并找到应付新问题的途径.)XX市2002年中等学校高中阶段招生文化考试27.操作:将一把三角尺放在边长为1的正方形ABCD上,并使它的直角顶点P在对角线AC上滑动,直角的一边始终经过点B,另一边与射线DC相交于点Q.图1 图2 图3探究:设A、P两点间的距离为x.(1)当点Q在边CD上时,线段PQ与线段PB之间有怎样的大小关系?试证明你观察得到结论;(2)当点Q在边CD上时,设四边形PBCQ的面积为y,求y与x之间的函数解析式,并写出函数的定义域;(3)当点P在线段AC上滑动时,△PCQ是否可能成为等腰三角形?如果可能,指出所有能使△PCQ成为等腰三角形的点Q的位置,并求出相应的x的值;如果不可能,试说明理由.五、(本大题只有1题,满分12分,(1)、(2)、(3)题均为4分)27.图1 图2 图3(1)解:PQ=PB……………………(1分)证明如下:过点P作MN∥BC,分别交AB于点M,交CD于点N,那么四边形AMND和四边形BCNM都是矩形,△AMP 和△CNP都是等腰直角三角形(如图1).∴NP=NC=MB.……………………(1分)∵∠BPQ=90°,∴∠QPN+∠BPM=90°.而∠BPM+∠PBM=90°,∴∠QPN=∠PBM.……………………(1分)又∵∠QNP=∠PMB=90°,∴△QNP≌△PMB.……………………(1分)∴PQ =PB . (2)解法一由(1)△QNP ≌△PMB .得NQ =MP . ∵AP =x ,∴AM =MP =NQ =DN =x 22,BM =PN =CN =1-x 22, ∴CQ =CD -DQ =1-2·x 22=1-x 2. 得S △PBC =21BC ·BM =21×1×(1-x 22)=21-42x . ………………(1分) S △PCQ =21CQ ·PN =21×(1-x 2)(1-x 22)=21-x 423+21x 2 (1分) S 四边形PBCQ =S △PBC +S △PCQ =21x 2-x 2+1.即 y =21x 2-x 2+1(0≤x <22). ……………………(1分,1分)解法二作PT ⊥BC ,T 为垂足(如图2),那么四边形PTCN 为正方形. ∴PT =CB =PN .又∠PNQ =∠PTB =90°,PB =PQ ,∴△PBT ≌△PQN .S 四边形PBCQ =S △四边形PBT +S 四边形PTCQ =S 四边形PTCQ +S △PQN =S 正方形PTCN…(2分)=CN 2=(1-x22)2=21x 2-x 2+1 ∴y =21x 2-x 2+1(0≤x <22). ……………………(1分)(3)△PCQ 可能成为等腰三角形①当点P 与点A 重合,点Q 与点D 重合,这时PQ =QC ,△PCQ 是等腰三角形, 此时x =0 ……………………(1分) ②当点Q 在边DC 的延长线上,且CP =CQ 时,△PCQ 是等腰三角形(如图3) ……………………(1分) 解法一 此时,QN =PM =x 22,CP =2-x ,CN =22CP =1-x 22.∴CQ =QN -CN =x 22-(1-x 22)=x 2-1. 当2-x =x 2-1时,得x =1. ……………………(1分) 解法二 此时∠CPQ =21∠PCN =22.5°,∠APB =90°-22.5°=67.5°, ∠ABP =180°-(45°+67.5°)=67.5°,得∠APB =∠ABP ,∴AP =AB =1,∴x =1. ……………………(1分)XX 市2003年初中毕业高中招生统一考试27.如图,在正方形ABCD 中,AB =1,弧AC 是点B 为圆心,AB 长为半径的圆的一段弧。
初三中考数学专题复习:二次函数综合题(面积问题)含答案
中考数学专题复习:二次函数综合题(面积问题)1.如图所示,二次函数22y x x m =-++的图像与x 轴的一个交点为A (3,0),另一个交点为B ,且与y 轴交于点C .(1)求二次函数的解析式; (2)求点B 、点C 的坐标;(3)若抛物线的顶点是M ,求△ACM 的面积.2.如图,抛物线2y x bx c =++经过()1,0A -、()4,5B 两点,点E 是线段AB 上一动点,过点E 作x 轴的垂线,交抛物线于点F .(1)求抛物线的解析式; (2)求线段EF 的最大值;(3)抛物线与x 轴的另一个交点为点C ,在抛物线上是否存在一个动点P ,使得25ACP ABC S S ∆∆= ?若存在,求出点P 的坐标;若不存在,请说明理由.3.如图,二次函数23y ax bx =++的图像与x 正半轴相交于点B ,负半轴相交于点A ,其中A 点坐标是(-1,0),B 点坐标是(3,0).(1)求此二次函数的解析式;(2)如图1,点P在第一象限的抛物线上运动,过点P作PD x轴于点D,交线段BC于点E,线段BC把△CPD分割成两个三角形的面积比为1△2,求P点坐标;(3)如图2,若点H在抛物线上,点F在x轴上,当以B、C、H、F为顶点的四边形是平行四边形时,请直接写出点F的坐标.4.如图,已知直线y=43x+4与x轴交于点A,与y轴交于点C,抛物线y=ax2+bx+c经过A,C两点,且与x轴的另一个交点为B,对称轴为直线x=﹣1.(1)求抛物线的表达式;(2)D是第二象限内抛物线上的动点,设点D的横坐标为m,求四边形ABCD面积S的最大值及此时D点的坐标;(3)若点P在抛物线对称轴上,是否存在点P,Q,使以点A,C,P,Q为顶点的四边形是以AC为对角线的菱形?若存在,请求出P,Q两点的坐标;若不存在,请说明理由.5.如图,已知在平面直角坐标系xOy 中,抛物线y =-12x 2+bx +c 经过点A (-2,0).与点C (0,4).与x 轴的正半轴交于点B .(1)求抛物线的表达式;(2)如果D 是抛物线上一点,AD 与线段BC 相交于点E ,且AD 将四边形ABDC 分成面积相等的两部分,求DEAE的值; (3)如果P 是x 轴上一点,△PCB =△ACO ,求△PCO 的正切值.6.如图,抛物线23y ax bx =+-交x 轴于()30A -,,()10B ,两点,与y 轴交于点.C 连接AC ,BC .(1)求抛物线的解析式;(2)如图1,点P 为抛物线在第三象限的一个动点,PM x ⊥轴于点M ,交AC 于点G ,PE AC ⊥于点E ,当PGE 的面积为1时,求点P 的坐标;(3)如图2,若Q 为抛物线上一点,直线OQ 与线段AC 交于点N ,是否存在这样的点Q ,使得以A ,O ,N 为顶点的三角形与ABC 相似.若存在,请求出此时点Q 的坐标;若不存在,请说明理由.7.在平面直角坐标系中,已知抛物线经过A(-4,0),B(0,-4),C(2,0)三点.(1)求抛物线的解析式;(2)若点M为第三象限内抛物线上一动点,点M的横坐标为m,△AMB的面积为S.求S关于m的函数关系式,并求出S的最大值.(3)若点P是抛物线上的动点,点Q是直线y=-x上的动点,判断有几个位置能够使得点P、Q、B、O 为顶点的四边形为平行四边形,直接写出相应的点Q的坐标.8.如图,二次函数23=++的图象经过点A(-1,0),B(3,0),与y轴交于点C.y ax bx(1)求二次函数的解析式;(2)第一象限内的二次函数23=++图象上有一动点P,x轴正半轴上有一点D,且OD=2,当y ax bxS△PCD=3时,求出点P的坐标;(3)若点M在第一象限内二次函数图象上,是否存在以CD为直角边的Rt MCD,若存在,求出点M的坐标,若不存在,请说明理由.9.如图,在平面直角坐标系中,已知抛物线y =ax 2+4x +c 与直线AB 相交于点A (0,1)和点B (3,4).(1)求该抛物线的解析式;(2)设C 为直线AB 上方的抛物线上一点,连接AC ,BC ,以AC ,BC 为邻边作平行四边形ACBP ,求四边形ACBP 面积的最大值;(3)将该抛物线向左平移2个单位长度得到抛物线y =a 1x 2+b 1x +c 1(a 1≠0),平移后的抛物线与原抛物线相交于点D ,是否存在点E 使得△ADE 是以AD 为腰的等腰直角三角形?若存在,直接写出....点E 的坐标;若不存在,请说明理由.10.如图,在平面直角坐标系中,抛物线2(0)y ax bx c a =++≠与x 轴交于A ,B 两点(A 在B 的左侧),与y 轴的交点为C ()0,3-,顶点为()1,4D -.(1)求抛物线的表达式;(2)若平行于x 轴的直线与抛物线交于M ,N 两点,与抛物线的对称轴交于点H ,若点H 到x 轴的距离是线段MN 长的12,求线段MN 的长;(3)若经过C ,D 两点的直线与x 轴相交于点E ,F 是y 轴上一点,且AF ∥CD ,在抛物线上是否存在点P ,使直线PB 恰好将四边形AECF 的周长和面积同时平分?如果存在, 求出点P 的坐标;如果不存在,请说明理.11.如图,已知抛物线y=ax2+4x+c经过A(2,0)、B(0,﹣6)两点,其对称轴与x轴交于点C.(1)求该抛物线和直线BC的解析式;(2)设抛物线与直线BC相交于点D,求△ABD的面积;(3)在该抛物线的对称轴上是否存在点Q,使得△QAB的周长最小?若存在,求出Q点的坐标;若不存在,请说明理由.12.如图,抛物线y=ax2+bx+c 与x轴交于A(﹣2,0)、B(6,0)两点,与y轴交于点C.直线l 与抛物线交于A、D 两点,与y 轴交于点E,点D 的坐标为(4,3).(1)求抛物线的解析式与直线l 的解析式;(2)若点P 是抛物线上的点且在直线l 上方,连接P A、PD,求△P AD 面积最大值;(3)由(2)并求出点P的坐标.13.已知抛物线2y ax c =+过点()2,0A -和()1,3D -两点,交x 轴于另一点B .(1)求抛物线解析式;(2)如图1,点P 是BD 上方抛物线上一点,连接AD ,BD ,PD ,当BD 平分ADP 时,求P 点坐标; (3)将抛物线图象绕原点O 顺时针旋转90°形成如图2的“心形”图案,其中点M ,N 分别是旋转前后抛物线的顶点,点E 、F 是旋转前后抛物线的交点. △直线EF 的解析式是______;△点G 、H 是“心形”图案上两点且关于EF 对称,则线段GH 的最大值是______.14.如图,抛物线2142y x x =-++与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C .(1)求A ,B ,C 三点的坐标,并直接写出直线AC 的函数表达式;(2)若D 是第一象限内抛物线上一动点,且△BCD 的面积等于△AOC 的面积,求点D 的坐标;(3)在(2)的条件下,连接AD ,试判断在抛物线上是否存在点M ,使△MDA =△ACO ?若存在,请直接写出点M 的坐标;若不存在,请说明理由.15.综合与探究线交x 轴于另一点C ,且2OA OC =,点F 是直线AB 下方抛物线上的动点,连接F A ,FB .(1)求抛物线解析式;(2)当点F 与抛物线的顶点重合时,ABF 的面积为______;. (3)求四边形F AOB 面积的最大值及此时点F 的坐标.(4)在(3)的条件下,点Q 为平面内y 轴右侧的一点,是否存在点Q 及平面内另一点M ,使得以A ,F ,Q ,M 为顶点的四边形是正方形?若存在,直接写出点Q 的坐标;若不存在,说明理由.16.抛物线224y ax ax =--交x 轴于(2,0)A -、B 两点,交y 轴于C ;直线AD 交抛物线于第一象限内点D ,且D 的横坐标为5,(1)求抛物线解析式;(2)点E 为直线AD 下方抛物线上一动点,且21ADES=,求点E 的坐标;(3)抛物线上是否存在点P ,使PCO DAO CBO ∠+∠=∠,若存在,请求出此时点P 的坐标;若不存在,请说明理由.17.如图,在平面直角坐标系中,矩形OABC 的两边OA ,OC 分别在x 轴和y 轴上,3OA =,4OC =,抛物线24y ax bx =++经过点B ,且与x 轴交于点()1,0D -和点E .(1)求抛物线的表达式:(2)若P 是第一象限抛物线上的一个动点,连接CP ,PE ,当四边形OCPE 的面积最大时,求点P 的坐标,此时四边形OCPE 的最大面积是多少;(3)若N 是抛物线对称轴上一点,在平面内是否存在一点M ,使以点C ,D ,M ,N 为顶点的四边形是矩形?若存在,请直接写出点M 的坐标;若不存在,说明理由.18.如图,抛物线与x 轴交于点()2,0B -、()4,0C 两点,与y 轴交于点()0,2A ;(1)求出此抛物线的解析式;(2)如图1,在直线AC 上方的抛物线上有一点M ,求AMC S △的最大值;(3)如图2,将线段OA 绕x 轴上的动点(),0P m 顺时针旋转90°得到线段O A '',若线段O A ''与抛物线只有一个公共点,请结合函数图象,求m 的取值范围;19.如图,已知抛物线2=++与x轴交于点A,B(点A在点B的左侧),与y轴交于点C,y x bx cOA=OC=3.(1)求抛物线的函数表达式;(2)若点P为直线AC下方抛物线上一点,连接BP并交AC于点Q,若AC分ABP△的面积为1:2两部分,请求出点P的坐标;(3)在y轴上是否存在一点N,使得45∠+∠=︒,若存在,请求出点N的坐标;若不存在,请说BCO BNO明理由.C-.20.已知二次函数2(0)y x bx c a=++≠的图像与x轴的交于A、(1,0)B两点,与y轴交于点(0,3)(1)求二次函数的表达式及A点坐标;(2)D是二次函数图像上位于第三象限内的点,求点D到直线AC的距离取得最大值时点D的坐标;(3)M是二次函数图像对称轴上的点,在二次函数图像上是否存在点N.使以M、N、B、O为顶点的四边形是平行四边形?若有,请写出点N的坐标(不写求解过程).答案1.(1)2y x 2x 3=-++(2)()0,3C 、()1,0B -(3)32.(1)223y x x =-- (2)254(3)存在,点P 的坐标为(12) 或(12)或()12-或(12)-3.(1)2y x 2x 3=-++(2)P 点坐标115(,)24或(2,3)(3)F 点坐标为:(1,0)、(5,0)、)2,0、()2- 4.(1)y =﹣43x 2﹣83x +4 (2)S 最大=252,D (﹣32,5) (3)存在,Q (﹣2,198) 5.(1)抛物线解析式为y =-12x 2+x +4; (2)14DE AE =; (3)△PCO 的正切值13或3.6.(1)223y x x =+-(2)()14P --,或()23--,(3)存在,坐标为⎝⎭或⎝⎭或或(-7.(1)2142y x x =+- (2)24=--S m m ,4(3)()4,4Q -或(2-+-或(2--+或()4,4-8.(1)2+23y x x =-+(2)P 1(32,154),P 2(2,3)(3)存在点M 其坐标为1M 43539(,)或2M9.(1)241y x x =-++ (2)274(3)存在,E (4,3)或(-2,5)或(-3,2)或(3,0).10.(1)223y x x =--(2)1或1-(3)在抛物线上存在点3(4P -,15)16-,使直线PB 恰好将四边形AECF 的周长和面积同时平分 11.(1)y =﹣12x 2+4x ﹣6,y =32x ﹣6 (2)152(3)存在,点Q 的坐标为(4,﹣2)12.(1)(1)y =-14x 2+x +3,y =12x +1 (2)274(3)(1,154) 13.(1)24y x =-+ (2)232,39P ⎛⎫ ⎪⎝⎭(3)△y x =;△414.(1)A (-2,0),B (4,0),C (0,4),24y x =+(2)(2,4)(3)存在,(-23,289)或(-6,-20)15.(1)2142y x x =-- (2)3 (3)FAOB S 四边形有最大值12,此时点F 的坐标为()2,4-(4)存在,点Q 的坐标()18,2Q -,()26,6Q -,()35,3Q -,()41,1Q -16.(1)2142y x x =-- (2)191,2E ⎛⎫- ⎪⎝⎭;E 2(2,-4) (3)存在,(8,20)17.(1)y =-x 2+3x +4(2)P (2,6);四边形OCPE 的面积最大为16(3)存在; M 113,28⎛⎫- ⎪⎝⎭或M 252728,⎛⎫ ⎪⎝⎭或M 355,22⎛⎫- ⎪⎝⎭或M 453,22⎛⎫- ⎪⎝⎭18.(1)211242y x x =-++ (2)2(3)34m -≤-或32m -≤≤19.(1)223y x x =+-(2)(-2,-3)或(-1,-4)(3)(0,2)或(0,-2)20.(1)223y x x =+-,(3,0)A - (2)315,24D ⎛⎫-- ⎪⎝⎭(3)存在,(2,3)--或(0,3)-或(2,5)。
上海中考数学压轴题专题复习——二次函数的综合
一、二次函数 真题与模拟题分类汇编(难题易错题)1.如图,已知抛物线2(0)y ax bx c a =++≠的对称轴为直线1x =-,且抛物线与x 轴交于A 、B 两点,与y 轴交于C 点,其中(1,0)A ,(0,3)C .(1)若直线y mx n =+经过B 、C 两点,求直线BC 和抛物线的解析式;(2)在抛物线的对称轴1x =-上找一点M ,使点M 到点A 的距离与到点C 的距离之和最小,求出点M 的坐标;(3)设点P 为抛物线的对称轴1x =-上的一个动点,求使BPC ∆为直角三角形的点P 的坐标.【答案】(1)抛物线的解析式为223y x x =--+,直线的解析式为3y x .(2)(1,2)M -;(3)P 的坐标为(1,2)--或(1,4)-或317(+-或317()--. 【解析】分析:(1)先把点A ,C 的坐标分别代入抛物线解析式得到a 和b ,c 的关系式,再根据抛物线的对称轴方程可得a 和b 的关系,再联立得到方程组,解方程组,求出a ,b ,c 的值即可得到抛物线解析式;把B 、C 两点的坐标代入直线y=mx+n ,解方程组求出m 和n 的值即可得到直线解析式;(2)设直线BC 与对称轴x=-1的交点为M ,此时MA+MC 的值最小.把x=-1代入直线y=x+3得y 的值,即可求出点M 坐标;(3)设P (-1,t ),又因为B (-3,0),C (0,3),所以可得BC 2=18,PB 2=(-1+3)2+t 2=4+t 2,PC 2=(-1)2+(t-3)2=t 2-6t+10,再分三种情况分别讨论求出符合题意t 值即可求出点P 的坐标.详解:(1)依题意得:1203b a a b c c ⎧-=-⎪⎪++=⎨⎪=⎪⎩,解得:123a b c =-⎧⎪=-⎨⎪=⎩,∴抛物线的解析式为223y x x =--+.∵对称轴为1x =-,且抛物线经过()1,0A ,∴把()3,0B -、()0,3C 分别代入直线y mx n =+,得303m n n -+=⎧⎨=⎩,解之得:13m n =⎧⎨=⎩, ∴直线y mx n =+的解析式为3y x =+.(2)直线BC 与对称轴1x =-的交点为M ,则此时MA MC +的值最小,把1x =-代入直线3y x =+得2y =,∴()1,2M -.即当点M 到点A 的距离与到点C 的距离之和最小时M 的坐标为()1,2-. (注:本题只求M 坐标没说要求证明为何此时MA MC +的值最小,所以答案未证明MA MC +的值最小的原因).(3)设()1,P t -,又()3,0B -,()0,3C ,∴218BC =,()2222134PB t t =-++=+,()()222213610PC t t t =-+-=-+, ①若点B 为直角顶点,则222BC PB PC +=,即:22184610t t t ++=-+解得:2t =-,②若点C 为直角顶点,则222BC PC PB +=,即:22186104t t t +-+=+解得:4t =,③若点P 为直角顶点,则222PB PC BC +=,即:22461018t t t ++-+=解得: 1317t +=2317t -=. 综上所述P 的坐标为()1,2--或()1,4-或3171,2⎛+- ⎝⎭或3171,2⎛- ⎝⎭. 点睛:本题综合考查了二次函数的图象与性质、待定系数法求函数(二次函数和一次函数)的解析式、利用轴对称性质确定线段的最小长度、难度不是很大,是一道不错的中考压轴题.2.在平面直角坐标系中,我们定义直线y=ax-a 为抛物线y=ax 2+bx+c (a 、b 、c 为常数,a≠0)的“衍生直线”;有一个顶点在抛物线上,另有一个顶点在y 轴上的三角形为其“衍生三角形”.已知抛物线233333y x x =--+“衍生直线”交于A 、B 两点(点A 在点B 的左侧),与x 轴负半轴交于点C .(1)填空:该抛物线的“衍生直线”的解析式为 ,点A 的坐标为 ,点B 的坐标为 ;(2)如图,点M 为线段CB 上一动点,将△ACM 以AM 所在直线为对称轴翻折,点C 的对称点为N ,若△AMN 为该抛物线的“衍生三角形”,求点N 的坐标;(3)当点E 在抛物线的对称轴上运动时,在该抛物线的“衍生直线”上,是否存在点F ,使得以点A 、C 、E 、F 为顶点的四边形为平行四边形?若存在,请直接写出点E 、F 的坐标;若不存在,请说明理由.【答案】(1)2323y=;(-2,231,0); (2)N 点的坐标为(0,3-3),(0,23+3);(3)E (-1,43F (023)或E (-1,43),F (-4103) 【解析】【分析】(1)由抛物线的“衍生直线”知道二次函数解析式的a 即可;(2)过A 作AD ⊥y 轴于点D ,则可知AN=AC ,结合A 点坐标,则可求出ON 的长,可求出N 点的坐标;(3)分别讨论当AC 为平行四边形的边时,当AC 为平行四边形的对角线时,求出满足条件的E 、F 坐标即可【详解】(1)∵2234323y x x =-+a=233-,则抛物线的“衍生直线”的解析式为2323y=; 联立两解析式求交点2234323332323y=y x x ⎧=--+⎪⎪⎨⎪⎪⎩,解得x=-2y=23⎧⎪⎨⎪⎩x=1y=0⎧⎨⎩, ∴A (-2,3B (1,0);(2)如图1,过A 作AD ⊥y 轴于点D ,在223432333y x x =--+中,令y=0可求得x= -3或x=1, ∴C (-3,0),且A (-2,23),∴AC=22-++2133=(23)()由翻折的性质可知AN=AC=13,∵△AMN 为该抛物线的“衍生三角形”,∴N 在y 轴上,且AD=2,在Rt △AND 中,由勾股定理可得DN=22AN -AD =13-4=3,∵OD=23,∴ON=23-3或ON=23+3,∴N 点的坐标为(0,23-3),(0,23+3);(3)①当AC 为平行四边形的边时,如图2 ,过F 作对称轴的垂线FH ,过A 作AK ⊥x 轴于点K ,则有AC ∥EF 且AC=EF ,∴∠ ACK=∠ EFH ,在△ ACK 和△ EFH 中ACK=EFH AKC=EHF AC=EF ∠∠⎧⎪∠∠⎨⎪⎩∴△ ACK ≌△ EFH ,∴FH=CK=1,HE=AK=23∵抛物线的对称轴为x=-1,∴ F 点的横坐标为0或-2,∵点F 在直线AB 上,∴当F 点的横坐标为0时,则F (0,233),此时点E 在直线AB 下方, ∴E 到y 轴的距离为EH-OF=32343,即E 的纵坐标为43∴ E(-1,-433);当F点的横坐标为-2时,则F与A重合,不合题意,舍去;②当AC为平行四边形的对角线时,∵ C(-3,0),且A(-2,23),∴线段AC的中点坐标为(-2.5,3),设E(-1,t),F(x,y),则x-1=2×(-2.5),y+t=23,∴x= -4,y=23-t,23-t=-233×(-4)+233,解得t=43-3,∴E(-1,43-3),F(-4,1033);综上可知存在满足条件的点F,此时E(-1,-433)、(0,233)或E(-1,43 -3),F(-4,1033)【点睛】本题是对二次函数的综合知识考查,熟练掌握二次函数,几何图形及辅助线方法是解决本题的关键,属于压轴题3.已知二次函数的图象以A(﹣1,4)为顶点,且过点B(2,﹣5)(1)求该函数的关系式;(2)求该函数图象与坐标轴的交点坐标;(3)将该函数图象向右平移,当图象经过原点时,A、B两点随图象移至A′、B′,求△O A′B′的面积.【答案】(1)y=﹣x2﹣2x+3;(2)抛物线与x轴的交点为:(﹣3,0),(1,0)(3)15.【解析】【分析】(1)已知了抛物线的顶点坐标,可用顶点式设该二次函数的解析式,然后将B 点坐标代入,即可求出二次函数的解析式;(2)根据函数解析式,令x=0,可求得抛物线与y轴的交点坐标;令y=0,可求得抛物线与x轴交点坐标;(3)由(2)可知:抛物线与x轴的交点分别在原点两侧,由此可求出当抛物线与x轴负半轴的交点平移到原点时,抛物线平移的单位,由此可求出A′、B′的坐标.由于△OA′B′不规则,可用面积割补法求出△OA′B′的面积.【详解】(1)设抛物线顶点式y=a(x+1)2+4,将B(2,﹣5)代入得:a=﹣1,∴该函数的解析式为:y=﹣(x+1)2+4=﹣x2﹣2x+3;(2)令x=0,得y=3,因此抛物线与y轴的交点为:(0,3),令y=0,﹣x2﹣2x+3=0,解得:x1=﹣3,x2=1,即抛物线与x轴的交点为:(﹣3,0),(1,0);(3)设抛物线与x轴的交点为M、N(M在N的左侧),由(2)知:M(﹣3,0),N(1,0),当函数图象向右平移经过原点时,M与O重合,因此抛物线向右平移了3个单位,故A'(2,4),B'(5,﹣5),∴S△OA′B′=12×(2+5)×9﹣12×2×4﹣12×5×5=15.【点睛】本题考查了用待定系数法求抛物线解析式、函数图象与坐标轴交点、图形面积的求法等知识.熟练掌握待定系数法、函数图象与坐标轴的交点的求解方法、不规则图形的面积的求解方法等是解题的关键.4.如图,在平面直角坐标系中,抛物线y=ax2+2x+c与x轴交于A(﹣1,0)B(3,0)两点,与y轴交于点C,点D是该抛物线的顶点.(1)求抛物线的解析式和直线AC的解析式;(2)请在y轴上找一点M,使△BDM的周长最小,求出点M的坐标;(3)试探究:在拋物线上是否存在点P,使以点A,P,C为顶点,AC为直角边的三角形是直角三角形?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.【答案】(1)抛物线解析式为y=﹣x2+2x+3;直线AC的解析式为y=3x+3;(2)点M的坐标为(0,3);(3)符合条件的点P的坐标为(73,209)或(103,﹣139),【解析】分析:(1)设交点式y=a(x+1)(x-3),展开得到-2a=2,然后求出a即可得到抛物线解析式;再确定C(0,3),然后利用待定系数法求直线AC的解析式;(2)利用二次函数的性质确定D的坐标为(1,4),作B点关于y轴的对称点B′,连接DB′交y轴于M,如图1,则B′(-3,0),利用两点之间线段最短可判断此时MB+MD的值最小,则此时△BDM的周长最小,然后求出直线DB′的解析式即可得到点M的坐标;(3)过点C作AC的垂线交抛物线于另一点P,如图2,利用两直线垂直一次项系数互为负倒数设直线PC的解析式为y=-13x+b,把C点坐标代入求出b得到直线PC的解析式为y=-13x+3,再解方程组223133y x xy x⎧-++⎪⎨-+⎪⎩==得此时P点坐标;当过点A作AC的垂线交抛物线于另一点P时,利用同样的方法可求出此时P点坐标.详解:(1)设抛物线解析式为y=a(x+1)(x﹣3),即y=ax2﹣2ax﹣3a,∴﹣2a=2,解得a=﹣1,∴抛物线解析式为y=﹣x2+2x+3;当x=0时,y=﹣x2+2x+3=3,则C(0,3),设直线AC的解析式为y=px+q,把A(﹣1,0),C(0,3)代入得3p qq-+=⎧⎨=⎩,解得33pq=⎧⎨=⎩,∴直线AC的解析式为y=3x+3;(2)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点D的坐标为(1,4),作B点关于y轴的对称点B′,连接DB′交y轴于M,如图1,则B′(﹣3,0),∵MB=MB′,∴MB+MD=MB′+MD=DB′,此时MB+MD的值最小,而BD的值不变,∴此时△BDM的周长最小,易得直线DB′的解析式为y=x+3,当x=0时,y=x+3=3,∴点M的坐标为(0,3);(3)存在.过点C作AC的垂线交抛物线于另一点P,如图2,∵直线AC的解析式为y=3x+3,∴直线PC的解析式可设为y=﹣13x+b,把C(0,3)代入得b=3,∴直线PC的解析式为y=﹣13x+3,解方程组223133y x xy x⎧-++⎪⎨-+⎪⎩==,解得3xy=⎧⎨=⎩或73209xy⎧=⎪⎪⎨⎪=⎪⎩,则此时P点坐标为(73,209);过点A作AC的垂线交抛物线于另一点P,直线PC的解析式可设为y=﹣x+b,把A(﹣1,0)代入得13+b=0,解得b=﹣13,∴直线PC的解析式为y=﹣13x﹣13,解方程组2231133y x x y x ⎧-++⎪⎨--⎪⎩==,解得10x y =-⎧⎨=⎩或103139x y ⎧=⎪⎪⎨⎪=-⎪⎩,则此时P 点坐标为(103,﹣139). 综上所述,符合条件的点P 的坐标为(73,209)或(103,﹣139). 点睛:本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征和二次函数的性质;会利用待定系数法求函数解析式,理解两直线垂直时一次项系数的关系,通过解方程组求把两函数的交点坐标;理解坐标与图形性质,会运用两点之间线段最短解决最短路径问题;会运用分类讨论的思想解决数学问题.5.如图1,在平面直角坐标系中,直线AB :y =kx +b (k <0,b >0),与x 轴交于点A 、与y 轴交于点B ,直线CD 与x 轴交于点C 、与y 轴交于点D .若直线CD 的解析式为y =﹣1k(x +b ),则称直线CD 为直线AB 的”姊线”,经过点A 、B 、C 的抛物线称为直线AB 的“母线”.(1)若直线AB 的解析式为:y =﹣3x +6,求AB 的”姊线”CD 的解析式为: (直接填空);(2)若直线AB 的”母线”解析式为:2142y x x =-+,求AB 的”姊线”CD 的解析式; (3)如图2,在(2)的条件下,点P 为第二象限”母线”上的动点,连接OP ,交”姊线”CD 于点Q ,设点P 的横坐标为m ,PQ 与OQ 的比值为y ,求y 与m 的函数关系式,并求y 的最大值;(4)如图3,若AB 的解析式为:y =mx +3(m <0),AB 的“姊线”为CD ,点G 为AB 的中点,点H 为CD 的中点,连接OH ,若GH =5,请直接写出AB 的”母线”的函数解析式.【答案】(1)1(6)3y x =+;(2)(2,0)、(0,4)、(﹣4,0);(3)当m =﹣32,y 最大值为338;(4)y =x 2﹣2x ﹣3.【解析】【分析】(1)由k ,b 的值以及”姊线”的定义即可求解;(2)令x =0,得y 值,令y =0,得x 值,即可求得点A 、B 、C 的坐标,从而求得直线CD 的表达式;(3)设点P 的横坐标为m ,则点P (m ,n ),n =﹣12m 2﹣m+4, 从而求得直线OP 的表达式,将直线OP 和CD 表达式联立并解得点Q 坐标, 由此求得P Q y y ,从而求得y =﹣12m 2﹣32m+3,故当m =﹣32,y 最大值为338; (4)由直线AB 的解析式可得AB 的“姊线”CD 的表达式y =﹣1m(x+3),令x =0,得 y 值,令y =0,得x 值,可得点C 、D 的坐标,由此可得点H 坐标,同理可得点G 坐标, 由勾股定理得:m 值,即可求得点A 、B 、C 的坐标,从而得到 “母线”函数的表达式.【详解】(1)由题意得:k =﹣3,b =6, 则答案为:y =13(x+6); (2)令x =0,则y =4,令y =0,则x =2或﹣4,点A 、B 、C 的坐标分别为(2,0)、(0,4)、(﹣4,0),则直线CD 的表达式为:y =12(x+4)=12x+2; (3)设点P 的横坐标为m ,则点P (m ,n ),n =﹣12m 2﹣m+4, 则直线OP 的表达式为:y =n mx , 将直线OP 和CD 表达式联立得122n y x m y x ⎧=⎪⎪⎨⎪=+⎪⎩, 解得:点Q (2438m m m --+,222838m m m m +-+-) 则P Q y y =﹣12m 2﹣32m+4, y =1P Q P Q Q y y y PQ OQ y y -==-=﹣12m 2﹣32m+3, 当m =﹣32,y 最大值为338;(4)直线CD的表达式为:y=﹣1m(x+3),令x=0,则y=﹣3m,令y=0,则x=﹣3,故点C、D的坐标为(﹣3,0)、(0,﹣3m),则点H(﹣32,﹣32m),同理可得:点G(﹣32m,32),则GH2=(32+32m)2+(32﹣32m)2=(5)2,解得:m=﹣3(正值已舍去),则点A、B、C的坐标分别为(1,0)、(0,3)、(﹣3,0),则“母线”函数的表达式为:y=a(x﹣1)(x+3)=a(x2﹣2x﹣3),即:﹣3a=﹣3,解得:a=1,故:“母线”函数的表达式为:y=x2﹣2x﹣3.【点睛】此题是二次函数综合题目,考查了“姊线”的定义,待定系数法求二次函数解析式,二次函数的最值问题,掌握二次函数的有关性质是解答此题的关键.6.如图,抛物线y=ax2+bx过点B(1,﹣3),对称轴是直线x=2,且抛物线与x轴的正半轴交于点A.(1)求抛物线的解析式,并根据图象直接写出当y≤0时,自变量x的取值范围;(2)在第二象限内的抛物线上有一点P,当PA⊥BA时,求△PAB的面积.【答案】(1)抛物线的解析式为y=x2﹣4x,自变量x的取值范图是0≤x≤4;(2)△PAB的面积=15.【解析】【分析】(1)将函数图象经过的点B坐标代入的函数的解析式中,再和对称轴方程联立求出待定系数a和b;(2)如图,过点B作BE⊥x轴,垂足为点E,过点P作PE⊥x轴,垂足为F,设P(x,x2-4x),证明△PFA∽△AEB,求出点P的坐标,将△PAB的面积构造成长方形去掉三个三角形的面积.【详解】(1)由题意得,322a b b a+-⎧⎪⎨-⎪⎩==,解得14a b -⎧⎨⎩==,∴抛物线的解析式为y=x 2-4x , 令y=0,得x 2-2x=0,解得x=0或4, 结合图象知,A 的坐标为(4,0),根据图象开口向上,则y≤0时,自变量x 的取值范围是0≤x≤4;(2)如图,过点B 作BE ⊥x 轴,垂足为点E ,过点P 作PE ⊥x 轴,垂足为F ,设P (x ,x 2-4x ), ∵PA ⊥BA ∴∠PAF+∠BAE=90°, ∵∠PAF+∠FPA=90°, ∴∠FPA=∠BAE 又∠PFA=∠AEB=90° ∴△PFA ∽△AEB,∴PF AF AE BE =,即244213x x x--=-, 解得,x= −1,x=4(舍去) ∴x 2-4x=-5∴点P 的坐标为(-1,-5),又∵B 点坐标为(1,-3),易得到BP 直线为y=-4x+1 所以BP 与x 轴交点为(14,0) ∴S △PAB=115531524⨯⨯+= 【点睛】本题是二次函数综合题,求出函数解析式是解题的关键,特别是利用待定系数法将两条直线表达式解出,利用点的坐标求三角形的面积是关键.7.如图,直线y=﹣x+分别与x轴、y轴交于B、C两点,点A在x轴上,∠ACB=90°,抛物线y=ax2+bx+经过A,B两点.(1)求A、B两点的坐标;(2)求抛物线的解析式;(3)点M是直线BC上方抛物线上的一点,过点M作MH⊥BC于点H,作MD∥y轴交BC 于点D,求△DMH周长的最大值.【答案】(1)(﹣1,0)(2)y=﹣x2+x+(3)【解析】试题分析:(1)由直线解析式可求得B、C坐标,在Rt△BOC中由三角函数定义可求得∠OCB=60°,则在Rt△AOC中可得∠ACO=30°,利用三角函数的定义可求得OA,则可求得A点坐标;(2)由A、B两点坐标,利用待定系数法可求得抛物线解析式;(3)由平行线的性质可知∠MDH=∠BCO=60°,在Rt△DMH中利用三角函数的定义可得到DH、MH与DM的关系,可设出M点的坐标,则可表示出DM的长,从而可表示出△DMH 的周长,利用二次函数的性质可求得其最大值.试题解析:(1)∵直线y=﹣x+分别与x轴、y轴交于B、C两点,∴B(3,0),C(0,),∴OB=3,OC=,∴tan∠BCO==,∴∠BCO=60°,∵∠ACB=90°,∴∠ACO=30°,∴=tan30°=,即=,解得AO=1,∴A(﹣1,0);(2)∵抛物线y=ax2+bx+经过A,B两点,∴,解得,∴抛物线解析式为y=﹣x2+x+;(3)∵MD∥y轴,MH⊥BC,∴∠MDH=∠BCO=60°,则∠DMH=30°,∴DH=DM,MH=DM,∴△DMH的周长=DM+DH+MH=DM+DM+DM=DM,∴当DM有最大值时,其周长有最大值,∵点M是直线BC上方抛物线上的一点,∴可设M(t,﹣t2+t+),则D(t,﹣t+),∴DM=﹣t2+t+),则D(t,﹣t+),∴DM=﹣t2+t+﹣(﹣t+)=﹣t2+t=﹣(t﹣)2+,∴当t=时,DM有最大值,最大值为,此时DM=×=,即△DMH周长的最大值为.考点:1、二次函数的综合应用,2、待定系数法,3、三角函数的定义,4方程思想8.(本小题满分12分)如图,在平面直角坐标系xOy中,抛物线()与x轴交于A,B两点(点A在点B的左侧),经过点A的直线l:与y轴负半轴交于点C,与抛物线的另一个交点为D,且CD=4AC.(1)直接写出点A的坐标,并求直线l的函数表达式(其中k,b用含a的式子表示);(2)点E是直线l上方的抛物线上的动点,若△ACE的面积的最大值为,求a的值;(3)设P是抛物线的对称轴上的一点,点Q在抛物线上,以点A,D,P,Q为顶点的四边形能否成为矩形?若能,求出点P的坐标;若不能,请说明理由.【答案】(1)A(-1,0),;(2);(3)P的坐标为(1,)或(1,-4).【解析】试题分析:(1)在中,令y=0,得到,,得到A(-1,0),B(3,0),由直线l经过点A,得到,故,令,即,由于CD=4AC,故点D的横坐标为4,即有,得到,从而得出直线l的函数表达式;(2)过点E作EF∥y轴,交直线l于点F,设E(,),则F(,),EF==,S△ACE=S△AFE-S△CFE==,故△ACE的面积的最大值为,而△ACE的面积的最大值为,所以,解得;(3)令,即,解得,,得到D (4,5a),因为抛物线的对称轴为,设P(1,m),然后分两种情况讨论:①若AD是矩形的一条边,②若AD是矩形的一条对角线.试题解析:(1)∵=,令y=0,得到,,∴A(-1,0),B(3,0),∵直线l经过点A,∴,,∴,令,即,∵CD=4AC,∴点D的横坐标为4,∴,∴,∴直线l的函数表达式为;(2)过点E作EF∥y轴,交直线l于点F,设E(,),则F(,),EF==,S△ACE=S△AFE-S△CFE===,∴△ACE的面积的最大值为,∵△ACE的面积的最大值为,∴,解得;(3)令,即,解得,,∴D(4,5a),∵,∴抛物线的对称轴为,设P(1,m),①若AD是矩形的一条边,则Q(-4,21a),m=21a+5a=26a,则P(1,26a),∵四边形ADPQ为矩形,∴∠ADP=90°,∴,∴,即,∵,∴,∴P1(1,);②若AD是矩形的一条对角线,则线段AD的中点坐标为(,),Q(2,),m =,则P(1,8a),∵四边形APDQ为矩形,∴∠APD=90°,∴,∴,即,∵,∴,∴P2(1,-4).综上所述,以点A、D、P、Q为顶点的四边形能成为矩形,点P的坐标为(1,)或(1,-4).考点:二次函数综合题.9.如图,直线y=﹣3x+3与x轴、y轴分别交于A,B两点,抛物线y=﹣x2+bx+c与直线y=c 分别交y轴的正半轴于点C和第一象限的点P,连接PB,得△PCB≌△BOA(O为坐标原点).若抛物线与x轴正半轴交点为点F,设M是点C,F间抛物线上的一点(包括端点),其横坐标为m.(1)直接写出点P的坐标和抛物线的解析式;(2)当m 为何值时,△MAB 面积S 取得最小值和最大值?请说明理由; (3)求满足∠MPO=∠POA 的点M 的坐标.【答案】(1)点P 的坐标为(3,4),抛物线的解析式为y=﹣x 2+3x+4;(2)当m=0时,S 取最小值,最小值为12;当m=3时,S 取最大值,最大值为5.(3)满足∠MPO=∠POA 的点M 的坐标为(0,4)或(247,12449).【解析】【分析】(1)代入y=c 可求出点C 、P 的坐标,利用一次函数图象上点的坐标特征可求出点A 、B 的坐标,再由△PCB ≌△BOA 即可得出b 、c 的值,进而可得出点P 的坐标及抛物线的解析式;(2)利用二次函数图象上点的坐标特征求出点F 的坐标,过点M 作ME ∥y 轴,交直线AB 于点E ,由点M 的横坐标可得出点M 、E 的坐标,进而可得出ME 的长度,再利用三角形的面积公式可找出S=﹣12(m ﹣3)2+5,由m 的取值范围结合二次函数的性质即可求出S 的最大值及最小值;(3)分两种情况考虑:①当点M 在线段OP 上方时,由CP ∥x 轴利用平行线的性质可得出:当点C 、M 重合时,∠MPO=∠POA ,由此可找出点M 的坐标;②当点M 在线段OP 下方时,在x 正半轴取点D ,连接DP ,使得DO=DP ,此时∠DPO=∠POA ,设点D 的坐标为(n ,0),则DO=n ,()()22304n -+-DO=DP 可求出n 的值,进而可得出点D 的坐标,由点P 、D 的坐标利用待定系数法即可求出直线PD 的解析式,再联立直线PD 及抛物线的解析式成方程组,通过解方程组求出点M 的坐标.综上此题得解. 【详解】(1)当y=c 时,有c=﹣x 2+bx+c , 解得:x 1=0,x 2=b ,∴点C 的坐标为(0,c ),点P 的坐标为(b ,c ), ∵直线y=﹣3x+3与x 轴、y 轴分别交于A 、B 两点, ∴点A 的坐标为(1,0),点B 的坐标为(0,3), ∴OB=3,OA=1,BC=c ﹣3,CP=b , ∵△PCB ≌△BOA ,∴BC=OA ,CP=OB , ∴b=3,c=4,∴点P 的坐标为(3,4),抛物线的解析式为y=﹣x 2+3x+4; (2)当y=0时,有﹣x 2+3x+4=0, 解得:x 1=﹣1,x 2=4, ∴点F 的坐标为(4,0),过点M 作ME ∥y 轴,交直线AB 于点E ,如图1所示, ∵点M 的横坐标为m (0≤m≤4),∴点M 的坐标为(m ,﹣m 2+3m+4),点E 的坐标为(m ,﹣3m+3), ∴ME=﹣m 2+3m+4﹣(﹣3m+3)=﹣m 2+6m+1, ∴S=12OA•ME=﹣12m 2+3m+12=﹣12(m ﹣3)2+5, ∵﹣12<0,0≤m≤4, ∴当m=0时,S 取最小值,最小值为12;当m=3时,S 取最大值,最大值为5; (3)①当点M 在线段OP 上方时,∵CP ∥x 轴, ∴当点C 、M 重合时,∠MPO=∠POA , ∴点M 的坐标为(0,4);②当点M 在线段OP 下方时,在x 正半轴取点D ,连接DP ,使得DO=DP ,此时∠DPO=∠POA ,设点D 的坐标为(n ,0),则DO=n ,∴n 2=(n ﹣3)2+16, 解得:n=256, ∴点D 的坐标为(256,0), 设直线PD 的解析式为y=kx+a (k≠0), 将P (3,4)、D (256,0)代入y=kx+a , 342506k a k a +=⎧⎪⎨+=⎪⎩,解得:2471007k a ⎧=-⎪⎪⎨⎪=⎪⎩, ∴直线PD 的解析式为y=﹣247x+1007, 联立直线PD 及抛物线的解析式成方程组,得:2241007734y x y x x ⎧=+⎪⎨⎪=-++⎩﹣,解得:1134x y =⎧⎨=⎩,2224712449x y ⎧=⎪⎪⎨⎪=⎪⎩.∴点M 的坐标为(247,12449). 综上所述:满足∠MPO=∠POA 的点M 的坐标为(0,4)或(247,12449).【点睛】本题考查了待定系数法求一次函数解析式、一次(二次)函数图象上点的坐标特征、全等三角形的性质、二次函数的性质、三角形的面积以及等腰三角形的性质,解题的关键是:(1)利用全等三角形的性质求出b 、c 的值;(2)利用三角形的面积公式找出S=﹣(m ﹣3)2+5;(3)分点M 在线段OP 上方和点M 在线段OP 下方两种情况求出点M 的坐标.10.如图,已知抛物线2y ax bx c =++(a≠0)经过A (﹣1,0)、B (3,0)、C (0,﹣3)三点,直线l 是抛物线的对称轴.(1)求抛物线的函数关系式;(2)设点P 是直线l 上的一个动点,当点P 到点A 、点B 的距离之和最短时,求点P 的坐标;(3)点M 也是直线l 上的动点,且△MAC 为等腰三角形,请直接写出所有符合条件的点M 的坐标.【答案】(1)223y x x =--;(2)P (1,0);(3).【解析】试题分析:(1)直接将A 、B 、C 三点坐标代入抛物线的解析式中求出待定系数即可; (2)由图知:A .B 点关于抛物线的对称轴对称,那么根据抛物线的对称性以及两点之间线段最短可知,直线l 与x 轴的交点,即为符合条件的P 点;(3)由于△MAC 的腰和底没有明确,因此要分三种情况来讨论:①MA=AC 、②MA=MC 、③AC=MC ;可先设出M 点的坐标,然后用M 点纵坐标表示△MAC 的三边长,再按上面的三种情况列式求解.试题解析:(1)将A (﹣1,0)、B (3,0)、C (0,﹣3)代入抛物线2y ax bx c=++中,得:0{9303a b c a b c c -+=++==-,解得:1{23a b c ==-=-,故抛物线的解析式:223y x x =--.(2)当P 点在x 轴上,P ,A ,B 三点在一条直线上时,点P 到点A 、点B 的距离之和最短,此时x=2b a -=1,故P (1,0); (3)如图所示:抛物线的对称轴为:x=2b a -=1,设M (1,m ),已知A (﹣1,0)、C (0,﹣3),则:2MA =24m +,2MC =2(3)1m ++=2610m m ++,2AC =10;①若MA=MC ,则22MA MC =,得:24m +=2610m m ++,解得:m=﹣1; ②若MA=AC ,则22MA AC =,得:24m +=10,得:m=6±;③若MC=AC ,则22MC AC =,得:2610m m ++=10,得:10m =,26m =-; 当m=﹣6时,M 、A 、C 三点共线,构不成三角形,不合题意,故舍去;综上可知,符合条件的M 点,且坐标为 M (1,6)(1,6-)(1,﹣1)(1,0).考点:二次函数综合题;分类讨论;综合题;动点型.。
2015年上海中考数学专题-等腰相似直角三角形存在性问题试题一和参考答案
2015年上海中考数学专题-等腰相似直角三角形存在性问题试题一和参考答案研究创造才智,知识成就未来。
以下是上海市初中数学考试的几道题目。
题目一:等腰相似直角三角形存在性问题给定顶点为P(4,-4)的二次函数图像,经过原点,并且点A在该图像上。
连接OA与对称轴l的交点为M,点M和N 关于点P对称,连接AN和ON。
1) 求该二次函数的关系式。
2) 若点A的坐标是(6,-3),求△ANO的面积。
3) 当点A在对称轴l右侧的二次函数图像上运动时,请回答以下问题:①证明:∠ANM=∠XXX。
②△ANO能否为直角三角形?如果能,请求出所有符合条件的点A的坐标,如果不能,请说明理由。
题目二:等腰三角形的存在性问题在△ABC中,已知AB=AC=5,BC=6,且△ABC≌△DEF,将△XXX与△XXX重合在一起,△XXX不动,△DEF运动,并满足:点E在边BC上沿B到C的方向运动,且DE、始终经过点A,EF与AC交于M点。
1) 求证:△ABE∽△ECM。
2) 探究:在△DEF运动过程中,重叠部分能否构成等腰三角形?若能,请求出BE的长;若不能,请说明理由。
3) 当线段AM最短时,求重叠部分的面积。
题目三:抛物线问题已知抛物线y=3/2x^2+bx+63经过A(2,0)。
设顶点为点P,与x轴的另一交点为点B。
1) 求b的值,求出点P、点B的坐标。
2) 如图,在直线y=3x上是否存在点D,使四边形OPBD 为平行四边形?若存在,求出点D的坐标;若不存在,请说明理由。
3) 在x轴下方的抛物线上是否存在点M,使△AMP≌△AMB?如果存在,请举例验证你的猜想;如果不存在,请说明理由。
题目四:三角形问题在△ABC中,∠ABC=45°,tan∠ACB=1.把△XXX的一边BC放置在x轴上,有OB=14,OC=AC与y轴交于点E。
1) 求AC所在直线的函数解析式。
2) 过点O作OG⊥AC,垂足为G,求△OEG的面积。
一次函数压轴题专题突破6:一次函数与面积问题(含解析)
一次函数压轴题之面积问题1.如图,直线y=﹣2x+7与x轴、y轴分别相交于点C、B,与直线y=x相交于点A.(1)求A点坐标;(2)如果在y轴上存在一点P,使△OAP是以OA为底边的等腰三角形,则P点坐标是;(3)在直线y=﹣2x+7上是否存在点Q,使△OAQ的面积等于6?若存在,请求出Q点的坐标,若不存在,请说明理由.2.如图,直线y=﹣2x+4与x轴、y轴分别交于A、B两点,P是直线AB上的一个动点,点C的坐标为(﹣4,0),PC交y轴点于D,O是原点.(1)求△AOB的面积;(2)线段AB上存在一点P,使△DOC≌△AOB,求此时点P的坐标;(3)直线AB上存在一点P,使以P、C、O为顶点的三角形面积与△AOB面积相等,求出P点的坐标.3.直线y=kx+3和x轴、y轴的交点分别为B、C,∠OBC=30°,点A的坐标是(﹣,0),另一条直线经过点A、C.(1)求点B的坐标及k的值;(2)求证:AC⊥BC;(3)点M为直线BC上一点(与点B不重合),设点M的横坐标为x,△ABM的面积为S.①求S与x的函数关系式;②当S=6时,求点M的坐标.4.如图1,已知直线y=2x+2与y轴,x轴分别交于A,B两点,以B为直角顶点在第二象限作等腰Rt△ABC (1)求点C的坐标,并求出直线AC的关系式;(2)如图2,直线CB交y轴于E,在直线CB上取一点D,连接AD,若AD=AC,求证:BE=DE.(3)如图3,在(1)的条件下,直线AC交x轴于点M,P(﹣,k)是线段BC上一点,在x轴上是否存在一点N,使△BPN面积等于△BCM面积的一半?若存在,请求出点N的坐标;若不存在,请说明理由.5.已知y关于x的一次函数y=mx+2﹣2m(m≠0且m≠1),其图象交x轴于点A,交y轴于点B.(0为坐标系的原点)(1)若OB=6,求这时m的值;(2)对于m≠0的任意值,该函数图象必过一定点,请求出定点的坐标;(3)是否存在m的值,使△OAB的面积为8?若存在,求出m的值;若不存在,请说明理由.6.如图,在平面直角坐标系中,O为坐标原点,直线y=﹣x+8与x轴交于点A,与y轴交于点B.(1)A点坐标为,B点坐标为;(2)若动点D从点B出发以4个单位/秒的速度沿射线BO方向运动,过点D作OB的垂线,动点E从点O 出发以2个单位/秒的速度沿射线OA方向运动,过点E作OA的垂线,两条垂线相交于点P,若D、E两点同时出发,此时,我们发现点P在一条直线上运动,请求这条直线的函数解析式.(3)若点P也在直线y=3x上,点Q在坐标轴上,当△ABP的面积等于△BAQ面积时,请直接写出点Q的坐标.7.如图,一次函数y=x+3的函数图象与x轴,y轴分别交于点A,B.(1)若点P(﹣2,m)为第三象限内一个动点,请问△OPB的面积会变化吗?若不变,请求出面积;若变化,请说明理由.(2)在(1)的条件下,试用含m的代数式表示四边形APOB的面积;若△APB的面积是6,求m的值.8.如图1,在直角坐标系中,过A(2,0),B(0,﹣4)两点的直线与直线y=﹣x+5交于点E,直线y=﹣x+5分别交x轴、y轴于C,D两点,(1)求直线AB的解析式和点E的坐标;(2)在射线EB上有一点M,使得点M到直线DC的距离为3,求点M的坐标;(3)在(1)的基础上,过点O,A,P,Q(0,2)作正方形OAPQ如图2,将正方形OAPQ沿x轴正方向平移,得到正方形O′A′P′Q′,当点A与点C重合时停止移动.设点A'的坐标为(t,0),正方形O′A′P′Q′与△ACE重叠部分的面积为S,直接写出S与t之间的函数关系式和相应t的取值范围.9.如图,直线OC、BC的函数关系式分别是:y1=x和y2=﹣2x+6,动点P(x,0)在OB上运动(0<x<3).(1)求点C的坐标,并回答当x取何值时y2<y1?(2)P点在运动过程中,当△COP为等腰三角形时,求点P的坐标;(3)是否存在点P,使CP将△COB分成的两部分面积之比为1:2?若存在,请求出点P的坐标;若不存在,请说明理由.10.如图,点A(0,1)、B(2,0),点P从(4,0)出发,以每秒2个单位长度沿x轴向坐标原点O匀速运动,同时,点Q从点B出发,以每秒1个单位长度沿x轴向坐标原点O匀速运动,过点P作x轴的垂线l,过点Q作AB的垂线l2,它们的交点为M.设运动的时间为t(0<t<2)秒(1)写出点M的坐标(用含t的代数式表示);(2)设△MPQ与△OAB重叠部分的面积为S,试求S关于t的函数关系式及t的取值范围.11.直线y=x﹣6与x轴、y轴分别交于A、B两点,点E从B点出发,以每秒1个单位长度的速度沿线段BO向O点移动(不考虑点E与B、O两点重合的情况),过点E作EF∥AB,交x轴于点F,将四边形ABEF沿直线EF折叠后,与点A对应的点记作点C,与点B对应的点记作点D,得到四边形CDEF,设点E的运动时间为t秒.(1)画出当t=2时,四边形ABEF沿直线EF折叠后的四边形CDEF(不写画法);(2)在点E运动过程中,CD交x轴于点G,交y轴于点H,试探究t为何值时,△CGF的面积为;(3)设四边形CDEF落在第一象限内的图形面积为S,求S关于t的函数解析式,并求出S的最大值.12.如图,在平面直角坐标系中,以点B(0,8)为端点的射线BG∥x轴,点A是射线BG上一个动点(点A与点B不重合),在射线AG上取AD=OB,作线段AD的垂直平分线,垂足为E,且与x轴交于点F,过点A 作AC⊥OA,交射线EF于点C,连接OC、CD.设点A的横坐标为t.(1)用含t的式子表示点E的坐标为;(2)当t为何值时,∠OCD=180°?(3)当点C与点F不重合时,设△OCF的面积为S,求S与t之间的函数解析式.13.如图,在平面直角坐标系中,直线与x轴交于点A,与y轴交于点B,动点P从点A出发沿折线AO﹣OB﹣BA运动,点P在AO、OB、BA上运动的速度分别为每秒3个单位长度、4个单位长度、5个单位长度,直线l从与x轴重合的位置出发,以每秒个单位长度的速度沿y轴向上平移,移动过程中直线l 分别与直线OB、AB交于点E、F,若点P与直线l同时出发,当点P沿折线AO﹣OB﹣BA运动一周回到点A 时,直线l和点P同时停止运动,设运动时间为t秒,请解答下列问题:(1)求A、B两点的坐标;(2)当t为何值时,点P与点E重合?(3)当t为何值时,点P与点F重合?(4)当点P在AO﹣OB上,且点P、E、F不在同一直线上时,设△PEF的面积为S,请直接写出S关于t的函数解析式,并写出t的取值范围.14.如图1,直线y=﹣2x+8分别交y轴、x轴于A、B两点.(1)求点A、B的坐标:(2)如图1,点P为线段AB上的动点(点P不与点A、B重合),过点P作PE⊥x轴于点E,作PF⊥y轴于点F,求矩形PEOF的面积S1与点P的横坐标m之间的函数关系式,并求出当m为何值时,S1最大,最大值是多少?(3)在(2)的条件下,当S1最大时,将直线l从与直线AB重合的位置出发,沿y轴负方向向下平移a(0<a≤8)个单位,设直线l扫过矩形PEOF的面积为S2,求S2与a之间的函数关系式,并在图2中画出他们之间的函数关系图象(画出草图即可).15.如图,在平面直角坐标系中,矩形OABC的边OA=2,OC=6,在OC上取点D将△AOD沿AD翻折,使O 点落在AB边上的E点处,将一个足够大的直角三角板的顶点P从D点出发沿线段DA→AB移动,且一直角边始终经过点D,另一直角边所在直线与直线DE,BC分别交于点M,N.(1)填空:D点坐标是(,),E点坐标是(,);(2)如图1,当点P在线段DA上移动时,是否存在这样的点M,使△CMN为等腰三角形?若存在,请求出M点坐标;若不存在,请说明理由;(3)如图2,当点P在线段AB上移动时,设P点坐标为(x,2),记△DBN的面积为S,请直接写出S与x 之间的函数关系式,并求出S随x增大而减小时所对应的自变量x的取值范围.16.如图,直线y=﹣x+4与坐标轴分别交于点A、B,与直线y=x交于点C.在线段OA上,动点Q以每秒1个单位长度的速度从点O出发向点A做匀速运动,同时动点P从点A出发向点O做匀速运动,当点P、Q其中一点停止运动时,另一点也停止运动.分别过点P、Q作x轴的垂线,交直线AB、OC于点E、F,连接EF.若运动时间为t秒,在运动过程中四边形PEFQ总为矩形(点P、Q重合除外).(1)求点P运动的速度是多少?(2)当t为多少秒时,矩形PEFQ为正方形?(3)当t为多少秒时,矩形PEFQ的面积S最大?并求出最大值.17.如图1,在平面直角坐标系中,已知△AOB是等边三角形,点A的坐标是(0,4),点B在第一象限,点P是x轴上的一个动点,连接AP,并把△AOP绕着点A按逆时针方向旋转,使边AO与AB重合,得到△ABD.(1)求直线AB的解析式;(2)当点P运动到点(,0)时,求此时DP的长及点D的坐标;(3)是否存在点P,使△OPD的面积等于?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.18.如图,在直角梯形OABC中,AB∥OC,BC⊥x轴于点C,A(1,2),C(3,0).动点P从O点出发,沿x 轴正方向以每秒1个单位长度的速度移动.过P点作PQ⊥直线OA,垂足为Q.设P点移动的时间为t秒(0<t≤7),△OPQ与直角梯形OABC重叠部分的面积为S.(1)写出点B的坐标:;(2)当t=7时,求直线PQ的解析式,并判断点B是否在直线PQ上;(3)求S关于t的函数关系式;(4)连接AC.是否存在t,使得PQ分△ABC的面积为1:3?若存在,直接写出t的值;若不存在,请说明理由.19.如图,梯形OABC中,BC∥AO,∠BAO=90°,B(﹣3,3),直线OC的解析式为y=﹣x,将△OBC 绕点C顺时针旋转60°后,O到O1,B到B1,得△O1B1C.(1)求证:点O1在x轴上;(2)将点O1运动到点M(﹣4,0),求∠B1MC的度数;(3)在(2)的条件下,将直线MC向下平移m个单位长度,设直线MC与线段AB交于点P,与线段OC的交于点Q,四边形OAPQ的面积为S,求S与m的函数关系式,并求出m的取值范围.20.如图(1)(2),直线y=﹣x+4与两坐标轴分别相交于A、B点,点M是线段AB上任意一点(A、B两点除外),过M分别作MC⊥OA于点C,MD⊥OB于D.(1)若点M的横坐标是a,则点M的纵坐标是(用含a的代数式表示)(2)当点M在AB上运动时,你认为四边形OCMD的周长是否发生变化?并说明理由;(3)当点M运动到什么位置时,四边形OCMD的面积有最大值?最大值是多少?(4)当四边形OCMD为正方形时,将四边形OCMD沿着x轴的正方向移动,设平移的距离为b(0<b<4),正方形O′CMD与△AOB重叠部分的面积为S.试求S与b的函数关系式并画出该函数的图象.21.如图1,在等腰梯形ABCD中,AB∥CO,E是AO的中点,过点E作EF∥OC交BC于F,AO=4,OC=6,∠AOC=60°.现把梯形ABCO放置在平面直角坐标系中,使点O与原点重合,OC在x轴正半轴上,点A、B在第一象限内.(1)求点E的坐标;(2)点P为线段EF上的一个动点,过点P作PM⊥EF交OC于点M,过M作MN∥AO交折线ABC于点N,连接PN.设PE=x.△PMN的面积为S.①求S关于x的函数关系式;②△PMN的面积是否存在最大值,若不存在,请说明理由.若存在,求出面积的最大值;(3)另有一直角梯形EDGH(H在EF上,DG落在OC上,∠EDG=90°,且DG=3,HG∥BC).现在开始操作:固定等腰梯形ABCO,将直角梯形EDGH以每秒1个单位的速度沿OC方向向右移动,直到点D与点C重合时停止(如图2).设运动时间为t秒,运动后的直角梯形为E′D′G′H′;探究:在运动过程中,等腰梯ABCO 与直角梯形E′D′G′H′重合部分的面积y与时间t的函数关系式.22.如图,直线AB与两坐标轴分别相交于A、B点,OA=OB=4,点M是线段AB上一动点(A、B两点除外),过M分别作MC⊥OA于点C,MD⊥OB于点D.(1)写出直线AB的函数解析式;(2)设点M的横坐标为x,写出四边形OCMD的面积S与x的函数关系式,当点M运动到什么位置时,四边形OCMD的面积有最大值?最大值是多少?(3)探究:当四边形OCMD为正方形时,将四边形OCMD沿着x轴的正方向移动,设平移的距离为a(0<a <4),正方形OCMD与△AOB重叠部分的面积为S,试求S与a的函数关系式,并画出该函数的图象.23.如图所示,四边形OABC是矩形,点A、C的坐标分别为(3,0),(0,1),点D是线段BC上的动点(与端点B、C不重合),过点D作直线y=﹣+b交折线OAB于点E.记△ODE的面积为S.(1)当点E在线段OA上时,求S与b的函数关系式;并求出b的范围;(2)当点E在线段AB上时,求S与b的函数关系式;并求出b的范围;(3)当点E在线段OA上时,若矩形OABC关于直线DE的对称图形为四边形OA1B1C1,试探究OA1B1C1与矩形OABC的重叠部分的面积是否发生变化?若不变,求出该重叠部分的面积;若改变,请说明理由.24.如图a,矩形ABCD的两条边在坐标轴上,点D与原点重合,对角线BD所在直线函数式为,AD =8,矩形ABCD沿DB方向以每秒一个单位长度运动,同时点P从点A出发做匀速运动,沿矩形ABCD的边经B到达终点C,用了14秒.(1)求矩形ABCD周长;(2)如图b,当P到达B时,求点P坐标;(3)当点P在运动时,过点P作x轴、y轴的垂线,垂足分别为E、F,①如图c,当P在BC上运动时,矩形PEOF的边能否与矩形ABCD的边对应成比例?若能,求出时间t的值,若不能,说明理由;②如图d,当P在AB上运动时,矩形PEOF的面积能否等于256?若能,求出时间t的值,若不能,说明理由;25.如图,等腰Rt△ABC中,∠ACB=90°,在直角坐标系中如图摆放,点A的坐标为(0,2),点B的坐标为(6,0).(1)直接写出线段AB的中点P的坐标为;(2)求直线OC的解析式;(3)动点M、N分别从O点出发,点M沿射线OC以每秒个单位长度的速度运动,点N沿线段OB以每秒1个长度的速度向终点B运动,当N点运动到B点时,M、N同时停止运动,设△PMN的面积为S(S≠0)运动时间为t秒,求S与t的函数关系式,并直接写出自变量t的取值范围.26.如图,在平面直角坐标系中,△ABC是直角三角形,∠ACB=90°,点A (﹣15,0),AB=25,AC=15,点C在第二象限,点P是y轴上的一个动点,连接AP,并把△AOP绕着点A逆时钟方向旋转.使边AO与AC 重合.得到△ACD.(1)求直线AC的解析式;(2)当点P运动到点(0,5)时,求此时点D的坐标及DP的长;(3)是否存在点P,使△OPD的面积等于5?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.27.如图在Rt△AOB中,∠BAO=90°,O为坐标原点,B在x轴正半轴上,A在第一象限.OA和AB的长是方程两根,且OA<AB.(1)求直线AB的解析式;(2)将△AOB沿垂直于x轴的线段CD折叠(点C在x轴上,且不与点B重合,点D在线段AB上),使点B 落在x轴上,对应点为E,设点C的坐标为(x,0).①是否存在这样的点C,使得△AED为直角三角形?若存在,求出点C的坐标;若不存在,请说明理由;②设△CDE与△AOB重叠部分的面积为S,直接写出S与点C的横坐标x之间的函数关系式(包括自变量x 的取值范围).28.如图所示,四边形OABC是矩形,点A、C的坐标分别为(3,0),(0,1),点D是线段BC上的动点(与端点B、C不重合),过点D作直线y=﹣x+b交折线OAB于点E.(1)记△ODE的面积为S,求S与b的函数关系式;(2)当点E在线段OA上时,若矩形OABC关于直线DE的对称图形为四边形O1A1B1C1,试探究O1A1B1C1与矩形OABC的重叠部分的面积是否发生变化?若不变,求出该重叠部分的面积;若改变,请说明理由.29.如图1,在Rt△A′OB′中,∠B′A′0=90°,A′,B′两点的坐标分别为(2,﹣1)和(0,﹣5),将A′0B′绕点O逆时针方向旋转90°,使OB’落在x轴正半轴上,得△AOB,点A′的对应点是A,点B’的对应点是B.(1)写出A,B两点的坐标,并求直线AB的解析式;(2)如图2,将△AOB沿垂直于x轴的线段CD折叠,(点C在x轴上,且不与点B重合,点D在线段AB上),使点B落在x轴上,对应点为点E,设点C的坐标为(x,0).①当x为何值时,线段DE平分△AOB的面积;②是否存在这样的点使得△AED为直角三角形?若存在,求出点C的坐标;若不存在,请说明理由.③设△CDE与△AOB重叠部分的面积为S,直接写出S与点C的横坐标x之间的函数关系式(包括自变量x 的取值范围).30.如图,已知直线l1:y=x+与直线l2:y=﹣2x+16相交于点C,l1、l2分别交x轴于A、B两点.矩形DEFG的顶点D、E分别在直线l1、l2上,顶点F、G都在x轴上,且点G与点B重合.(1)求△ABC的面积;(2)求矩形DEFG的边DE与EF的长;(3)若矩形DEFG从原地出发,沿x轴的反方向以每秒1个单位长度的速度平移,设移动时间为t(0≤t ≤12)秒,矩形DEFG与△ABC重叠部分的面积为S,求S关于t的函数关系式,并写出相应的t的取值范围.31.如图,直线l的解析式为y=﹣x+4,它与x轴、y轴分别相交于A、B两点,平行于直线l的直线m从原点O出发,沿x轴的正方向以每秒1个单位长度的速度运动,它与x轴、y轴分别相交于M、N两点,运动时间为t秒(0<t≤4)(1)求A、B两点的坐标;(2)用含t的代数式表示△MON的面积S1;(3)以MN为对角线作矩形OMPN,记△MPN和△OAB重合部分的面积为S2;①当2<t≤4时,试探究S2与之间的函数关系;②在直线m的运动过程中,当t为何值时,S2为△OAB的面积的?32.如图,在平面直角坐标系中,两个函数的图象交于点A.动点P从点O开始沿OA 方向以每秒1个单位的速度运动,运动时间是t.作PQ∥X轴交直线BC于点Q,以PQ为一边向下作正方形PQMN,设它与△OAB重叠部分的面积为S,如图1.(1)求点A的坐标.(2)当t 为何值时,正方形PQMN的边MN恰好落在x轴上?如图2.(3)当点P在线段OA上运动时,①求出S与运动时间t(秒)的关系式.②S是否有最大值?若有,求出t为何值时,S有最大值,并求出最大值;若没有,请说明理由.33.如图,直线l1的解析表达式为:y=﹣3x+3,且l1与x轴交于点D,直线l2经过点A,B,直线l1,l2交于点C.(1)求点D的坐标;(2)求直线l2的解析表达式;(3)求△ADC的面积;(4)在直线l2上存在异于点C的另一点P,使得△ADP与△ADC的面积相等,请直接写出点P的坐标.34.如图,直角梯形ABCD中,AB∥CD,∠A=90°,AB=6,AD=4,DC=3,动点P从点A出发,沿A→D →C→B方向移动,动点Q从点A出发,在AB边上移动.设点P移动的路程为x,点Q移动的路程为y,线段PQ平分梯形ABCD的周长.(1)求y与x的函数关系式,并求出x,y的取值范围;(2)当PQ∥AC时,求x,y的值;(3)当P不在BC边上时,线段PQ能否平分梯形ABCD的面积?若能,求出此时x的值;若不能,说明理由.1.【解答】解:(1)解方程组:得:∴A点坐标是(2,3);(2)设P点坐标是(0,y),∵△OAP是以OA为底边的等腰三角形,∴OP=PA,∴22+(3﹣y)2=y2,解得y=,∴P点坐标是(0,),故答案为(0,);(3)存在;由直线y=﹣2x+7可知B(0,7),C(,0),∵S△AOC=××3=<6,S△AOB=×7×2=7>6,∴Q点有两个位置:Q在线段AB上和AC的延长线上,设点Q的坐标是(x,y),当Q点在线段AB上:作QD⊥y轴于点D,如图①,则QD=x,∴S△OBQ=S△OAB﹣S△OAQ=7﹣6=1,∴OB•QD=1,即×7x=1,∴x=,把x=代入y=﹣2x+7,得y=,∴Q的坐标是(,),当Q点在AC的延长线上时,作QD⊥x轴于点D,如图②则QD=﹣y,∴S△OCQ=S△OAQ﹣S△OAC=6﹣=,∴OC•QD=,即××(﹣y)=,∴y=﹣,把y=﹣代入y=﹣2x+7,解得x=,∴Q的坐标是(,﹣),综上所述:点Q是坐标是(,)或(,﹣).2.【解答】解:(1)如图1,∵直线y=﹣2x+4与x轴、y轴分别相交于A、B两点,∴A(2,0),B(0,4),∴OA=2,OB=4.∴S AOB=OA•OB=×2×4=4,即△AOB的面积是4;(2)∵△DOC≌△AOB,∴OD=OA=2,∴D(0,2).故设直线CD的解析式为y=kx+2(k≠0).∵C(﹣4,0)则0=﹣4k+2,解得,k=,∴直线CD的解析式为y=x+2.又∵点P是直线CD与直线AB的交点,∴,解得,∴点P的坐标是(,).(3)如图2,设P(x,y),又∵点C的坐标为(﹣4,0),∴OC=4,∵S△COP=S△AOB,∴OC×|y|=4,即|y|=2,解得,y=±2,∵P是直线AB上一点,∴点P的坐标为:(1,2)或(3,﹣2).3.【解答】解:(1)直线y=kx+3和y轴的交点为C,则点C(0,3),则BC=6,OB=3,则点B(3,0),将点B的坐标代入y=kx+3得:0=3k+3,解得:k=﹣;(2)OA=,OC=3,则AC=2,则∠AOC=30°,∠ACB=∠ACO+∠BCO=∠CBO+∠BCO=90°,∴AC⊥BC;(3)①直线BC的表达式为:y=﹣x+3,则点M(x,﹣x+3),S=×AB×|y M|=4×|﹣x+3|=6±2x,②S=6,解得:x=0,故点M(0,3).4.【解答】解:(1)令x=0,则y=2,令y=0,则x=﹣2,则点A、B的坐标分别为:(0,2)、(﹣1,0),过点C作CH⊥x轴于点H,∵∠HCB+∠CBH=90°,∠CBH+∠ABO=90°,∴∠ABO=∠BCH,∠CHB=∠BOA=90°,BC=BA,∴△CHB≌△BOA(AAS),∴BH=OA=2,CH=OB,则点C(﹣3,1),将点A、C的坐标代入一次函数表达式:y=mx+b得:,解得:,故直线AC的表达式为:y=x+2;(2)同理可得直线CD的表达式为:y=﹣x﹣…①,则点E(0,﹣),直线AD的表达式为:y=﹣3x+2…②,联立①②并解得:x=1,即点D(1,﹣1),点B、E、D的坐标分别为(﹣1,0)、(0,﹣)、(1,﹣1),故点E是BD的中点,即BE=DE;(3)将点BC的坐标代入一次函数表达式并解得:直线BC的表达式为:y=﹣x﹣,将点P坐标代入直线BC的表达式得:k=,直线AC的表达式为:y=x+2,则点M(﹣6,0),S△BMC=MB×y C=×5×1=,S△BPN=S△BCM==NB×k=NB,解得:NB=,故点N(﹣,0)或(,0).5.【解答】解:(1)OB=6,即2﹣2m=±6,解得:m=﹣2或4;(2)y=mx+2﹣2m=m(x﹣2)+2,当x=2时,y=2,故定点坐标为(2,2);(3)存在,理由:OA=||,OB=|2﹣2m|,S△OAB=×OA×OB=||×|2﹣2m|=8,解得:m=﹣1或3+2或3﹣2.6.【解答】解:(1)y=﹣x+8,令x=0,则y=8,令y=0,则x=6,故答案为:(6,0)、(0,8);(2)由题意得:点P(2t,8﹣4t),则x=2t,y=8﹣4t,故点P所在的直线表达式为:y=8﹣2x;(3)①当点Q在AB下方时,将y=3x与y=8﹣2x联立并解得:x=,y=,即点P(,),△ABP的面积等于△BAQ面积时,点Q在过点P且平行于AB的直线上,设过点P且平行于AB的直线表达式为:y=﹣x+b,将点P的坐标代入上式得:=﹣×+b,解得:b=,故函数的表达式为:y=﹣x+,当x=0时,y=,当y=0时,x=,即点Q(0,)或(,0).当点Q在AB上方时,同理可得:点Q的坐标为:(,0)或(0,);综上点Q的坐标为:(0,)或(,0)或(,0)或(0,).7.【解答】解:(1)不变,理由:一次函数y=x+3的函数图象与x轴,y轴分别交于点A,B,则点A、B的坐标分别为(﹣3,0)、(0,3),S△OPB=OB×x P=×3×2=3;(2)S四边形APOB=S△ABO+S△AOP=×AO×BO+AO×(﹣m)=3(3﹣m)=﹣m+,S△ABP=S四边形APOB﹣S△BOP=﹣m+﹣3=6,解得:m=﹣3.8.【解答】解:(1)将点A、B坐标代入一次函数表达式:y=kx+b得:,解得:,故直线AB的表达式为:y=2x﹣4,直线CD的表达式为:y=﹣x+5…①,则点C、D的表达式分别为:(5,0)、(0,5),联立直线AB表达式与直线CD表达式:y=﹣x+5并解得:x=3,故点E(3,2);(2)如图,设点M(m,2m﹣4),过点M作MN⊥CD交于点N,则MN=3,∵MN⊥CD,∴直线MN表达式中的k值为﹣1,设直线MN的表达式为:y=﹣x+b′,将点M坐标代入上式并解得:直线MN的表达式为:y=x+(m﹣4)…②,联立①②并解得:x=,则点N(,),MN2=(m﹣)2+(﹣2m+4)2=(3)2,解得:m=1或5(舍去),故点M(1,﹣2);(3)①如图2(左侧图),当2≤t≤3时,图象到达O′Q′P′A′的位置,OA=2,OB=4,∵GA′∥OB,则=2,则GA′=2AA′则S=AA′×A′G=AA′×AA′tanα=(t﹣2)2;②3<t≤4时,如图3,设A′P′交直线CD于点H,S=S梯形AA′P′Q′﹣S△EHP′=(t+t+2﹣3)×2﹣(t+2﹣3)=t+;③如图4,4<t≤5时,图象到达O′′Q′′P′′A′′的位置,直线BE交O″Q″于点H′,直线CD交A″P″于点G′,则AA″=t,AO″=t﹣2,A″C=3﹣t,H′O″=2AO″=2(t﹣2),G′A″=A″C=3﹣t,S△AO″H′=×AO″×O″H′=(t﹣2)2,同理:S△A″CG′=(3﹣t)2,S=S△ACE﹣S△AO″H′﹣S△A″CG′=3﹣(t﹣2)2﹣(3﹣t)2=﹣t2+7t﹣,故:S=.9.【解答】解:(1)将y1=x和y2=﹣2x+6联立并解得:x=2,故点C(2,2),则OC=2,当x>2时,y2<y1;(2)y1=x,则∠COB=45°,①当CO=CP时,则点C的横坐标对应在x轴上的点为OP的中点,故点P(4,0);②当OC=OP时,PO=OC=2,故点P(2,0);③当OP=CP时,如下图,则OD=CO,OP====2,故点P(2,0);(3)CP将△COB分成的两部分面积之比为1:2,则OP=OB或OB,故点P(1,0)或(2,0).10.【解答】解:(1)由题意得:P(4﹣2t,0),Q(2﹣t,0),∴PQ=2﹣t,∵△OAB∽△QPM,∴=2,∴PM=2PQ=4﹣2t,∴M(4﹣2t,4﹣2t);(2)设l2与AB的交点为C,l1与AB的交点为D,易得直线AB对应的解析式为y=﹣x+1,∴4﹣2t=﹣(4﹣2t)+1,解得:t=;(i)当0<t≤1时,如图1所示,在Rt△OAB中,AB=,由△OAB∽△CQB,得到,∴S=S△CQB=××1×2=;(ii)当1<t<时,如图2所示,PD=2t﹣2,由△OAB∽△PDB,得到PB=t﹣1,∴S=S四边形CQPD=S△CQB﹣S△PDB==•(2t﹣2)•(t﹣1)═﹣+2t﹣1;(iii)当≤t<2时,S=S△PQM=PQ•PM=•(2﹣t)•(4﹣2t)=t2﹣4t+4.11.【解答】解:(1)如图1:(2)如图2:,由折叠的性质,得∠C=∠A=∠COA=45°,AF=BE=CF=t,S△CFG=CF•FG=t2=,解得t=,t=﹣(不符合题意,舍);(3)分两种情况讨论:①当0<t≤3时,如图2:四边形DCFE落在第一象限内的图形是△DFG,∴S=t2,∵S=t2,在t>0时,S随t增大而增大,∴t=3时,S最大=;②当3<t<6时,如图3:,四边形DCFE落在第一象限内的图形是四边形CHOF,∴S四边形CHOF=S△CGF﹣S△HGO,∴S=t2﹣2(2t﹣6)2=﹣t2+12t﹣18=﹣(t﹣4)2+6,∵a=﹣<0,∴S有最大值,∴当t=4时,S最大=6,综上所述,当t=4时,S最大值为6.12.【解答】解:(1)∵点B坐标为(0,8),∴OB=8.∵AD=OB,EF垂直平分AD,∴AE=4.∴BE=t+4.∴点E的坐标为(t+4,8);(2)如图所示;过点D作DH⊥OF,垂足为H.∵AC⊥OA,∴∠OAC=90°.∴∠BAO+∠EAC=90°.又∵∠BOA+∠BAO=90°,∴∠EAC=∠BOA.又∵∠OBA=∠AEC,∴△OBA∽△AEC.∴,即.∴EC=.∴点C的坐标为(t+4,8﹣)∵∠OCD=180°,∴点C在OD上.∵CF∥DH,∴,即解得:,(舍去).所以当t=4﹣4时,∠OCD=180°.(3)当0<t<16时,三角形OCF的面积=×OF•FC=(t+4)(8t)=,当t>16时,三角形OCF的面积=×OF•FC=(t+4)(t﹣8)=,∴s与t的函数关系式为s=.13.【解答】解:(1)令x=0,得y=12,令y=0,得x=9∴与y轴交点B的坐标为(0,12),与x轴交点A的坐标为(9,0);(2)点P在OA上运动的时间为9÷3=3秒,点E在OB上移动的距离为3×=4,点P和点E重合的时间为:3+4÷(4﹣)=秒,当t=秒,点P与点E重合;(3)点P在OA、OB上运动的时间和为9÷3+12÷4=6秒,点E在OB上移动的距离为6×=8,AB==15∵EF∥OA∴△BEF∽△BOA∴=即=解得BF=5,则点F运动的速度为(15﹣5)÷6=个单位/秒,∴点P与点F重合的时间为5÷(5+)+6=秒;(4)∵EF∥OA∴△BEF∽△BOA=即=EF=9﹣t①当点P在OA上运动,即0<t≤3;S=×(9﹣t)×t=﹣t2+6t;②当点P在OB上运动,即3<t<,S=×(9﹣t)×[t﹣4(t﹣3)]=﹣t2﹣18t+54.③当<t<6时,S=×(9﹣t)×[4(t﹣3)﹣t]=t2+18t﹣54.14.【解答】解:(1)在y=﹣2x+8中,令x=0,解得y=8,则A的坐标是(0,8);令y=0,解得x=4,则B的坐标是(4,0);(2)在y=﹣2x+8中令x=m,则y=﹣2m+8则S1=m(﹣2m+8),即S1=﹣2m2+8m,当m=﹣=2时,S1有最大值是﹣2×22+8×2=8,此时P的坐标是(2,4);(3)∵P的坐标是(2,4),∴S矩形PEOF=8,E的坐标是(2,0),F的坐标是(0,4),过F且平行于AB的直线解析式是:y=﹣2x+b,把(0,4)代入得:b=4,则解析式是y=﹣2x+b,在y=﹣2x+4中,令y=0,解得:x=2,则一定经过点E.则当0<a≤4时,直线l扫过矩形PEOF的部分是直角三角形,设向下平移a个单位长度,则直线的解析式是:y=﹣2x+8﹣a,设与PF交于点M,在y=﹣2x+8﹣a中令y=4,解得:x=2﹣a,则M的坐标是(2﹣a,4),则PM=a;设与PE交于点N,在y=﹣2x+8﹣a中令x=2,解得:y=4﹣a,则N的坐标是(2,4﹣a),则PN=a,则S1=PM•PN=×a•a=a2;当4<a≤8时,设直线与y轴交点是G,则OG=8﹣a,设与x轴的交点是H,则OH=(8﹣a)=4﹣a,S△OGH=OG•OH=(8﹣a)•(4﹣a)=(8﹣a)2.则S1=8﹣(8﹣a)2.即S1=﹣a2+4a﹣8.15.【解答】解:(1)∵将△AOD沿AD翻折,使O点落在AB边上的E点处,∴∠OAD=∠EAD=45°,DE=OD,∴OA=OD,∵OA=2,∴OD=2,∴D点坐标是(2,0),DE=OD=2,∴E点坐标是(2,2),故答案为:(2,0),(2,2);(2)存在点M使△CMN为等腰三角形,理由如下:由翻折可知四边形AODE为正方形,过M作MH⊥BC于H,∵∠PDM=∠PMD=45°,则∠NMH=∠MNH=45°,。
上海中考数学第24题分析(上)
上海中考数学压轴题第24题分析(上)前言,成绩优秀的学生,脑子灵活,对数学有兴趣有感觉的同学,他们是特别不喜欢常规套路解题的,他们追求的是方法越巧越妙,方法越省事越舒服;但对大多数同学而言,尤其四认认真真写解答过程的女孩子来说,她们需要的是按部就班的解题步骤和规定约定俗成的烂背于心的解题套路;希望她们在漫漫地求学路上逐步找回数学感觉吧。
一、我们先来复习下二次函数的基本知识: 1、一般式:c bx ax y ++=2;2、顶点式:()k m x a y a b ac a b x a y +-=⇒-+⎪⎭⎫ ⎝⎛+=222442; 3、两根式:()()21x x x x a y --=;4、对称点式:()()m x x x x a y +--=21,其中()m x A ,1,()m x B ,2为二次函数图像的2个对称点。
5、单调性:0>a ,在⎪⎭⎫ ⎝⎛-∞-a b 2,上为减区间,在⎪⎭⎫⎝⎛+∞-,2a b 上为增区间; 6、最值:0<a ,a b ac y 442max-=;0>a ,ab ac y 442min -=。
7、①若0=b ,则对称轴为y 轴;②若0=c ,则过原点;③韦达:a b x x -=+21,acx x =21; ④弦长公式:()()a a ac b a ca b x x x x x x x x AB ∆=-=-⎪⎭⎫ ⎝⎛-=-+=-=-=4442221221221218、快速配方法:aa b c a b x a cx a b x a c bx ax y ⋅⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛+−−−−−−−−−→−+⎪⎭⎫ ⎝⎛+−−−−→−++=⨯-2222222系数常数项平分一次项系数除提二次项系数整理的:a b ac a b x a y 44222-+⎪⎭⎫ ⎝⎛+=; 例:⎪⎭⎫⎝⎛-⋅⎪⎭⎫⎝⎛--⎪⎭⎫ ⎝⎛--=-⎪⎭⎫ ⎝⎛--=-+-=3249149321293213322222x x x x x y ; 由此可得,不怕c b a ,,的系数有多复杂,都可以快速准确的配方。
专题 二次函数与面积有关的问题(知识解读)-中考数学(全国通用)
专题03 二次函数与面积有关的问题(知识解读)【专题说明】二次函数是初中数学的一个重点,一个难点,也是中考数学必考的一个知识点。
特别是在压轴题中,二次函数和几何综合出现的题型,才是最大的区分度。
与面积有关的问题,更是常见。
本节介绍二次函数考试题型种,与面积问题的常用解法。
同学们,只要熟练运用解法,炉火纯青,在考试答题的时候,能够轻松答题。
【知识点梳理】类型一:面积等量关系类型二:面积平分方法一:利用割补将图形割(补)成三角形或梯形面积的和差,其中需使三角形的底边在坐标轴上或平行于坐标轴;(例如以下4、5两图中,连结BD解法不简便。
)方法二: 铅锤法铅锤高水平宽⨯=21S方法三 :其他面积方法如图1,同底等高三角形的面积相等.平行线间的距离处处相等.如图2,同底三角形的面积比等于高的比. 如图3,同高三角形的面积比等于底的比.如图1 如图2 如图3【典例分析】【类型一:面积等量关系】【典例21】(2022•盘锦)如图,抛物线y =x 2+bx +c 与x 轴交于A ,B (4,0)两点(A 在B 的左侧),与y 轴交于点C (0,﹣4).点P 在抛物线上,连接BC ,BP .(1)求抛物线的解析式;(2)如图1,若点P 在第四象限,点D 在线段BC 上,连接PD 并延长交x 轴于点E ,连接CE,记△DCE的面积为S1,△DBP的面积为S2,当S1=S2时,求点P的坐标;【变式1】(2022•泸州)如图,在平面直角坐标系xOy中,已知抛物线y=ax2+x+c经过A (﹣2,0),B(0,4)两点,直线x=3与x轴交于点C.(1)求a,c的值;(2)经过点O的直线分别与线段AB,直线x=3交于点D,E,且△BDO与△OCE的面积相等,求直线DE的解析式;(3)P是抛物线上位于第一象限的一个动点,在线段OC和直线x=3上是否分别存在点F,G,使B,F,G,P为顶点的四边形是以BF为一边的矩形?若存在,求出点F的坐标;若不存在,请说明理由.【类型二:面积平分】【典例2】(2022•沈阳)如图,在平面直角坐标系中,抛物线y=ax2+bx﹣3经过点B(6,0)和点D(4,﹣3),与x轴的另一个交点为A,与y轴交于点C,作直线AD.(1)①求抛物线的函数表达式;②直接写出直线AD的函数表达式;(2)点E是直线AD下方的抛物线上一点,连接BE交AD于点F,连接BD,DE,△BDF的面积记为S1,△DEF的面积记为S2,当S1=2S2时,求点E的坐标;【变式2】(2022•内江)如图,抛物线y=ax2+bx+c与x轴交于A(﹣4,0),B(2,0),与y轴交于点C(0,2).(1)求这条抛物线所对应的函数的表达式;(2)若点D为该抛物线上的一个动点,且在直线AC上方,求点D到直线AC的距离的最大值及此时点D的坐标;(3)点P为抛物线上一点,连接CP,直线CP把四边形CBP A的面积分为1:5两部分,求点P的坐标.【典例3】(深圳)如图抛物线y=ax2+bx+c经过点A(﹣1,0),点C(0,3),且OB =OC.(1)求抛物线的解析式及其对称轴;(2)点P为抛物线上一点,连接CP,直线CP把四边形CBP A的面积分为3:5两部分,求点P的坐标.【变式3】(2021秋•合川区)如图,抛物线y=ax2+bx+6(a≠0)与x轴交于A(﹣1,0),B(6,0),与y轴交于点C,点P为第一象限内抛物线上一动点,过点P作x轴的垂线,交直线BC于点D,交x轴于点E,连接PB.(1)求该抛物线的解析式;(2)当△PBD与△BDE的面积之比为1:2时,求点P的坐标;专题03 二次函数与面积有关的问题(知识解读)【专题说明】二次函数是初中数学的一个重点,一个难点,也是中考数学必考的一个知识点。
上海中考压轴专题复习3(面积问题)
面积问题面积的存在性问题常见题型与解题策略:第一类:先根据几何法确定存在性,再列方程求解,后检验方程的根;第二类:先假设关系存在,再列方程,然后根据方程的解验证假设是否正确。
例题解析:1、如图,AB=16cm,AC=12cm,动点P、Q分别以每秒2cm和1cm的速度同时开始运动,其中点P从点A出发沿AC边一直移到点C为止,点Q从点B出发沿BA边一直移动到点A为止.(1)写出AP的长y1和AQ的长y2关于时间t的函数;(2)经过多少时间后,△APQ与△ABC相似?(3)在整个过程中,是否存在使△APQ的面积恰好为△ABC面积一半的情况?若存在,请问此时点Q运动了多少时间?若不存在,请说明理由.2、如图,抛物线y=ax2+bx+3与x轴交于A(-1,0)、B (3,0)两点,与y轴交于点C,此抛物线的对称轴与抛物线相交于点P,与直线BC相交于点M,连接PB.(1)求点C坐标以及该抛物线的关系式;(2)连接AC,在x轴下方的抛物线上有点D,使S△ABD=S△ABC,求点D的坐标;(3)抛物线上是否存在点Q,使△QMB与△PMB的面积相等?若存在,直接写出点Q的坐标;若不存在,说明理由;(4)在第一象限、对称轴右侧的抛物线上是否存在一点R,使△RPM与△RMB的面积相等?若存在,直接写出点R的坐标;若不存在,说明理由.3、在平面直角坐标系中,O 为原点,直线y =-2x -1与y 轴交于点A ,与直线y =-x 交于点B ,点B 关于原点的对称点为点C .(1)求过A ,B ,C 三点的抛物线的解析式; (2)P 为抛物线上一点,它关于原点的对称点为Q . ①当四边形PBQC 为菱形时,求点P 的坐标;②若点P 的横坐标为t (-1<t <1),当t 为何值时,四边形PBQC 面积最大,并说明理由.由面积产生的函数关系问题解题策略:1、 规则图形的面积用面积公式;2、 不规则图形的面积通过割补进行计算;3、 同高等高(或同底等底)三角形面积比等于对应底边(或高)之比;4、 相似三角形的面积比等于相似比的平方。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ABCDEFx yO压轴之面积问题(09-12各区二模)09奉贤二模.在平面直角坐标系中,矩形ABOC 的边BO 在x 轴正半轴上,边CO 在y 轴的正半轴上,且322==OB AB ,,矩形ABOC 绕点O 逆时针旋转后得到矩形EFOD ,且点A 落在y 轴上的E 点,点B 的对应点为点F ,点C 的对应点为点D . (1)求F 、E 、D 三点的坐标;(2)若抛物线c bx ax y ++=2经过点F 、E 、D , 求此抛物线的解析式;(3)在x 轴上方的抛物线上求点Q 的坐标,使得 三角形QOB 的面积等于矩形ABOC 的面积?09长宁二模.如图,一次函数图像交反比例函数)0(6>=x xy 图像于点M 、N (N 在M 右侧),分别交x 轴、y 轴于点C 、D 。
过点M 、N 作ME 、NF 分别垂直x 轴,垂足为E 、F 。
再过点E 、F 作EG 、FH 平行MN 直线,分别交y 轴于点G 、H ,ME 交FH 于点K 。
(1)如果线段OE 、OF 的长是方程a 2- 4a+3=0的两个根,求该一次函数的解析式;(2)设点M 、N 的横坐标分别为m 、n ,试探索四边形MNFK 面积与四边形HKEG 面积两者的数量关系;(3)求证:MD =CN 。
M N D Cy O x E F H GK09闵行二模如图,在△ABC 中,AB = BC = 5,AC = 6,BO ⊥AC ,垂足为点O .过点A 作射线AE // BC ,点P 是边BC 上任意一点,联结PO 并延长与射线AE 相交于点Q ,设B 、P 两点间的距离为x .(1)如图1,如果四边形ABPQ 是平行四边形,求x 的值; (2)过点Q 作直线BC 的垂线,垂足为点R ,当为何值时,△PQR ∽△CBO ?(3)设△AOQ 的面积为y ,求y 与x 的函数关系式,并写出函数的定义域.09闵行已知二次函数24y x x m =-++的图像经过点M (1,0). (1)求这个二次函数的解析式,并求出函数图像的顶点坐标;(2)已知一次函数2y x b =+的图像分别与x 轴、y 轴相交于点A 、B ,(1)中所求得的二次函数的图像的对称轴与一次函数2y x b =+的图像相交于点C ,并且对称轴与x 轴相交于点D .如果ADC AOB S S ∆∆=41,求b 的值.xyO-1-11109联考已知在正△ABC 中,AB =4,点M 是射线AB 上的任意一点(点M 与点A 、B 不重合),点N 在边BC 的延长线上,且AM = CN .联结MN ,交直线AC 于点D .设AM = x ,CD = y . (1)如图,当点M 在边AB 上时,求y 关于x 的函数解析式,并写出自变量x 的取值范围.(2)当点M 在边AB 上,且四边形BCDM 的面积等于△DCN 面积的4倍时,求x 的值. (3)过点M 作ME ⊥AC ,垂足为点E .当点M 在射线AB 上移动时,线段DE 的长是否会改变?请证明你的结论.09青浦二模如图,正方形ABCD 的边长为8厘米,动点P 从点A 出发沿AB 边由A 向B 以1厘米/秒的速度匀速移动(点P 不与点A 、B 重合),动点Q 从点B 出发沿折线BC-CD 以2厘米/秒的速度匀速移动.点P 、Q 同时出发,当点P 停止运动,点Q 也随之停止.联结AQ ,交BD 于点E.设点P 运动时间为x 秒.(1)当点Q 在线段BC 上运动时,点P 出发多少时间后,∠BEP 和∠BEQ 相等; (2)当点Q 在线段BC 上运动时,求证:∆BQE 的面积是∆APE 的面积的2倍; (3)设APE ∆的面积为y ,试求出y 关于x 的函数解析式,并写出函数的定义域.ABC MND(第25题图)ABCMND(第25题图)DCBA备用图DCBA备用图PDCBA EQ2010宝山二模如图9,矩形ABCD 中,2AB =,点E 是BC 边上的一个动点,联结AE ,过点D 作DF AE ⊥,垂足为点F .(1)设BE x =,ADF ∠的余切值为y ,求y 关于x 的函数解析式; (2)若存在点E ,使得∆ABE 、∆ADF 与四边形CDFE 的面积比是3:4:5,试求矩形ABCD 的面积;2010浦东二模如图,已知在矩形ABCD 中,AB =3,BC =4,P 是边BC 延长线上的一点,联接AP 交边CD 于点E ,把射线AP 沿直线AD 翻折,交射线CD 于点Q ,设CP =x ,DQ =y . (1)求y 关于x 的函数解析式,并写出定义域.(2)当点P 运动时,△APQ 的面积是否会发生变化?如果发生变化,请求出△APQ 的面积S 关于x 的函数解析式,并写出定义域;如果不发生变化,请说明理由.(备用图) DC BAE FDC B AE F (图9) AB C Q DP E2010松江二模如图,正方形ABCD 中, AB =1,点P 是射线DA 上的一动点, DE ⊥CP ,垂足为E , EF ⊥BE 与射线DC 交于点F .(1)若点P 在边DA 上(与点D 、点A 不重合). ①求证:△DEF ∽△CEB ;②设AP =x ,DF =y ,求y 与x 的函数关系式,并写出函数定义域; (2)当E F C B E C S S ∆∆=4时,求AP 的长.2010闵行三模.如图,在直角坐标平面xOy 内,点A 在x 轴的正半轴上,点B 在第一象限内,且∠OAB = 90º,∠BOA = 30º,OB = 4.二次函数2y x b x =-+的图像经过点A ,顶点为点C .(1)求这个二次函数的解析式,并写出顶点C 的坐标;(2)设这个二次函数图像的对称轴l 与OB 相交于点D ,与x 轴相交于点E ,求DEDC的值; (3)设P 是这个二次函数图像的对称轴l 上一点,如果△POA 的面积与△OCE 的面积相等,求点P 的坐标.ABCDABC D EF PyxCBAOl DE(第24题图)2011浦东二模如图,已知在直角坐标平面内,点A 的坐标为(3,0),第一象限内的点P 在直线y =2x 上,∠PAO =45度.(1)求点P 的坐标;(2)如果二次函数的图像经过P 、O 、A 三点,求这个二次函数的解析式,并写出它的图像的顶点坐标M ;(3)如果将第(2)小题中的二次函数的图像向上或向下平移,使它的顶点落在直线y =2x 上的点Q 处,求△APM 与△APQ 的面积之比.2011闵行二模如图,已知:抛物线23y x b x =+-与x 轴相交于A 、B 两点,与y 轴相交于点C ,并且OA = OC .(1)求这条抛物线的解析式;(2)过点C 作CE // x 轴,交抛物线于点E ,设抛物线的顶点为点D ,试判断△CDE 的形状,并说明理由;(3)设点M 在抛物线的对称轴l 上,且△MCD 的面积等于△CDE 的面积,请写出点M 的坐标(无需写出解题步骤).x yO1 2 3 123 (第24题图) xy O B A CDE l2011普陀二模直角三角板ABC 中,∠A =30°,BC =1.将其绕直角顶点C 逆时针旋转一个角α(0120α︒<<︒且α≠ 90°),得到Rt △''A B C , (1)如图9,当''A B 边经过点B 时,求旋转角α的度数;(2)在三角板旋转的过程中,边'A C 与AB 所在直线交于点D ,过点 D 作DE ∥''A B 交'CB 边于点E ,联结BE .①当090α︒<<︒时,设AD x =,BE y =,求y 与x 之间的函数解析式及定义域;②当13BDEABCS S =时,求AD 的长.2011卢湾二模已知:抛物线2y ax bx c =++经过点()0,0O ,()7,4A ,且对称轴l 与x 轴交于点()5,0B .(1)求抛物线的表达式;(2)如图,点E 、F 分别是y 轴、对称轴l 上的点,且四边形EOBF 是矩形,点55,2C ⎛⎫⎪⎝⎭是BF 上一点,将BOC ∆沿着直线OC 翻折,B 点与线段EF 上的D 点重合,求D 点的坐标; (3)在(2)的条件下,点G 是对称轴l 上的点,直线DG 交CO 于点H ,:1:4DOH DHC S S ∆∆=,求G 点坐标.C BAC BA图9备用图备用图OBCDEFxy(第24题图)l2011杨浦二模已知△ABC 中,AB =4,BC =6,AC >AB ,点D 为AC 边上一点,且DC =AB ,E 为BC 边的中点,联结DE ,设AD =x 。
(1) 当DE ⊥BC 时(如图1),求x 的值;(2) 设ABED CDES y S ∆=四边形,求y 关于x 的函数关系式,并写出定义域;2011松江二模如图,在平面直角坐标系xoy 中,直角梯形OABC 的顶点O 为坐标原点,顶点A 、C 分别在x 轴、y 轴的正半轴上,CB ∥OA , OC =4, BC =3,OA =5,点D 在边OC 上,CD =3,过点D 作DB 的垂线DE ,交x 轴于点E . (1)求点E 的坐标;(2)二次函数c bx x y ++-=2的图象经过点B 和点E . ①求二次函数的解析式和它的对称轴; ②如果点M 在它的对称轴上且位于x 轴上方, 满足ABM CEM S S ∆∆=2,求点M 的坐标.DCEBA(图1)ABCDE(备用图)Ay CBD OxE2012松江二模已知直线33-=x y 分别与x 轴、y 轴交于点A ,B ,抛物线c x ax y ++=22经过点A ,B .(1)求该抛物线的表达式,并写出该抛物线的对称轴和顶点坐标;(2)记该抛物线的对称轴为直线l ,点B 关于直线l 的对称点为C ,若点D 在y 轴的正半轴上,且四边形ABCD 为梯形. ①求点D 的坐标;②将此抛物线向右平移,平移后抛物线的顶点为P ,其对称轴与直线33-=x y 交于点E ,若73tan =∠DPE ,求四边形BDEP 的面积.12闵行二模已知:如图,抛物线2y x b x c =-++与x 轴的负半轴相交于点A ,与y 轴相交于点B (0,3),且∠OAB 的余切值为13.(1)求该抛物线的表达式,并写出顶点D 的坐标;(2)设该抛物线的对称轴为直线l ,点B 关于直线l 的对称点为C ,BC 与直线l 相交于点E .点P 在直线l 上,如果点D 是△PBC 的重心,求点P 的坐标;(3)在(2)的条件下,将(1)所求得的抛物线沿y 轴向上或向下平移后顶点为点P ,写出平移后抛物线的表达式.点M 在平移后的抛物线上,且△MPD 的面积等于△BPD 的面积的2倍,求点M 的坐标.O11 xyxyOAB2012宝山二模已知△ABC 中,︒=∠90ACB (如图8),点P 到ACB ∠两边的距离相等,且PA =PB .(1)先用尺规作出符合要求的点P (保留作图痕迹,不需要写作法),然后判断△ABP 的形状,并说明理由;(2)设m PA =,n PC =,试用m 、n 的代数式表示ABC ∆的周长和面积;(3)设CP 与AB 交于点D ,试探索当边AC 、BC 的长度变化时,BC CDAC CD +的值是否发生变化,若不变,试求出这个不变的值,若变化,试说明理由.2012市调研已知:在Rt △ABC 中,∠C =90°,AC =4,∠A =60°,CD 是边AB 上的中线,直线BM ∥AC ,E 是边CA 延长线上一点,ED 交直线BM 于点F ,将△EDC 沿CD 翻折得△DC E ',射线E D '交直线BM 于点G .(1)如图1,当CD ⊥EF 时,求BF 的值; (2)如图2,当点G 在点F 的右侧时;①求证:△BDF ∽△BGD ;②设AE =x ,△DFG 的面积为y ,求y 关于x 的函数解析式,并写出x 的取值范围; (3)如果△DFG 的面积为36,求AE 的长.ABC (图)8 A BC(备用图)(第25题图1) B A C E D F M(第25题图2)B A CE DFMG E '(第25题备用图)BAC D M。