江苏省泰州市姜堰区2015-2016学年八年级下学期第一次月度联考数学试题苏科版

合集下载

2015-2016人教版八年级数学第一学期期末考试试卷及答案

2015-2016人教版八年级数学第一学期期末考试试卷及答案

2015-2016学年度第一学期八年级数学期末考试试卷一、精心选一选(本大题共8小题。

每小题3分,共24分)下面每小题均给出四个选项,请将正确选项的代号填在题后的括号内. 1.下列运算中,计算结果正确的是( ).A. 236a a a ⋅=B. 235()a a =C. 2222()a b a b =D. 3332a a a += 2.23表示( ).A. 2×2×2B. 2×3C. 3×3D. 2+2+2 3.在平面直角坐标系中。

点P (-2,3)关于x 轴的对称点在( ).A. 第一象限B. 第二象限C. 第三象限D. 第四象限 4.等腰但不等边的三角形的角平分线、高线、中线的总条数是( ).A. 3B. 5C. 7D. 95.在如图中,AB = AC 。

BE ⊥AC 于E ,CF ⊥AB 于F ,BE 、CF 交于点D ,则下列结论中不正确的是( ). A. △ABE ≌△ACFB. 点D 在∠BAC 的平分线上C. △BDF ≌△CDED. 点D 是BE的中点 6.在以下四个图形中。

对称轴条数最多的一个图形是( ).7.下列是用同一副七巧板拼成的四幅图案,则与其中三幅图案不同的一幅是( ).D.C.B.A.8.下列四个统计图中,用来表示不同品种的奶牛的平均产奶量最为合适的是( ).FEDC BAA. B. C. D.二、细心填一填(本大题共6小题,每小题3分,共18分)9.若单项式23m a b 与n ab -是同类项,则22m n -= .l0.中国文字中有许多是轴对称图形,请你写出三个具有轴对称图形的汉字 . 11.如图是由三个小正方形组成的图形,请你在图中补画一个小正方形,使补画后的图形为轴对称图形.12.如图,已知方格纸中的每个小方格都是相同的正方形.∠AOB 画在方格纸上,请在小方格的顶点上标出一个点P 。

使点P 落在∠AOB 的平分线上.BOA13.数的运算中有一些有趣的对称,请你仿照等式“12×231=132×21”的形式完成:(1)18×891 = × ;(2)24×231 = × .14.下列图案是由边长相等的灰白两色正方形瓷砖铺设的地面,则按此规律可以得到:(1)第4个图案中白色瓷砖块数是 ; (2)第n 个图案中白色瓷砖块数是 .第1个图案 第2个图案 第3个图案三、耐心求一求(本大题共4小题.每小题6分。

2015-2016学年江苏省泰州市泰兴市西城中学八年级(下)第一次月考数学试卷-含详细解析

2015-2016学年江苏省泰州市泰兴市西城中学八年级(下)第一次月考数学试卷-含详细解析

2015-2016学年江苏省泰州市泰兴市西城中学八年级(下)第一次月考数学试卷副标题一、选择题(本大题共8小题,共16.0分)1.以下是回收、绿色包装、节水、低碳四个标志,其中是中心对称图形的是()A. B. C. D.2.下列调查中,适宜采用全面调查(普查)方式的是()A. 对全国中学生心理健康现状的调查B. 对冷饮市场上冰淇淋质量情况的调查C. 对我市市民实施低碳生活情况的调查D. 对我国首架大型民用直升机各零部件的检查3.今年我市有4万名学生参加中考,为了了解这些考生的数学成绩,从中抽取2000名考生的数学成绩进行统计分析.在这个问题中,下列说法:①这4万名考生的数学中考成绩的全体是总体;②每个考生是个体;③2000名考生是总体的一个样本;④样本容量是2000.其中说法正确的有()A. 4个B. 3个C. 2个D. 1个4.如图,菱形ABCD中,对角线AC、BD相交于点O,H为AD边中点,菱形ABCD的周长为28,则OH的长等于()A. B. 4 C. 7 D. 145.在一个不透明的口袋中装有4个红球和若干个白球,他们除颜色外其他完全相同.通过多次摸球实验后发现,摸到红球的频率稳定在25%附近,则口袋中白球可能有()A. 16个B. 15个C. 13个D. 12个6.如图,AB∥CD,E,F分别为AC,BD的中点,若AB=5,CD=3,则EF的长是()A. 4B. 3C. 2D. 17.如图,P是矩形ABCD的边AD上一个动点,矩形的两条边AB、BC的长分别为3和4,那么点P到矩形的两条对角线AC和BD的距离之和是()A.B.C.D. 不确定8.如图,在△ABC中,AB=3,AC=4,BC=5,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为EF中点,则AM的最小值为()A. 1B.C.D.二、填空题(本大题共10小题,共20.0分)9.随机抽查了某校七年级63名学生的身高(单位:cm),所得到的数据中最大值是172,最小值是149、若取组距为4,则这些数据可分成______ 组.10.把容量是64的样本分成8组,从第1组到第4组的频数分别是5,7,11,13,第5组到第7组的频率是0.125,那么第8组的频数是______.11.六张完全相同的卡片上,分别画有等边三角形、正方形、矩形、平行四边形、圆、菱形,现从中随机抽取一张,卡片上画的恰好既是轴对称图形又是中心对称图形的概率为______.12.平行四边形ABCD的周长是56cm,对角线相交于点O,△BOC的周长比△AOB的周长小8cm,则AB= ______ cm,BC= ______ cm.13.如图,△ABC是等腰直角三角形,BC是斜边,将△ABP绕A逆时针旋转后,能够与△ACP′重合,如果AP=3,那么PP′= ______ .14.如图,矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在点D′处,则重叠部分△AFC的面积为______.15.如图,菱形ABCD的对角线AC,BD相交于点O,AC=16cm,BD=12cm,则菱形边AB上的高DH的长是______ cm.16.如图,在△ABC中,M是BC的中点,AD平分∠BAC,BD⊥AD,AB=12,AC=22,则MD的长为______ .17.已知:如图,在等腰Rt△ABC中,∠ABC=90°,AB=2,D为BC的中点,P为线段AC上任意一点,则PB+PD的最小值为______ .18.如图,在直角坐标系中,菱形ABCD的顶点坐标C(-1,0)、B(0,2),点A在第二象限.直线y=-x+5与x轴、y轴分别交于点N、M.将菱形ABCD沿x轴向右平移m个单位.当点A落在MN上时,则m= ______ .三、解答题(本大题共7小题,共34.0分)19.在读书月活动中,学校准备购买一批课外读物.为使课外读物满足同学们的需求,学校就“我最喜爱的课外读物”从文学、艺术、科普和其他四个类别进行了抽样调查(每位同学只选一类),如图是根据调查结果绘制的两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:(1)本次调查中,一共调查了______名同学;(2)条形统计图中,m=______,n=______;(3)扇形统计图中,艺术类读物所在扇形的圆心角是______度;(4)学校计划购买课外读物6000册,请根据样本数据,估计学校购买其他类读物多少册比较合理?20.如图,在平面直角坐标系中,有一Rt△ABC,且A(-1,3),B(-3,-1),C(-3,3),已知△A1AC1是由△ABC旋转得到的.(1)请写出旋转中心的坐标是______ ,旋转角是______ 度;(2)以(1)中的旋转中心为中心,画出△A1AC1顺时针旋转90°的三角形.21.随着我市社会经济的发展和交通状况的改善,我市的旅游业得到了高速发展,某旅游公司对我市一企业旅游年消费情况进行了问卷调查,随机抽取部分员工,记录每个人消费金额,并将调查数据适当调整,绘制成如图两幅尚不完整的表和图.根据以上信息回答下列问题:(1)a=______,b=______,c=______.并将条形统计图补充完整;(2)这次调查中,个人年消费金额的中位数出现在______组;(3)若这个企业有3000多名员工,请你估计个人旅游年消费金额在6000元以上的人数.22.如图,在△ABC中,D、E分别是AB、AC的中点,过点E作EF∥AB,交BC于点F.试问当△ABC满足什么条件时,四边形DBEF是菱形?为什么?23.如图,在梯形ABCD中,AD∥BC,AB∥DE,AF∥DC,E、F两点在边BC上,且四边形AEFD是平行四边形.(1)AD与BC有何等量关系,请说明理由;(2)当AB=DC时,求证:平行四边形AEFD是矩形.24.如图,平行四边形ABCD中,AB=3cm,BC=5cm,∠B=60°,G是CD的中点,E是边AD上的动点,EG的延长线与BC的延长线交于点F,连结CE,DF.(1)求证:四边形CEDF是平行四边形;(2)①当AE=______cm时,四边形CEDF是矩形;②当AE=______cm时,四边形CEDF是菱形.(直接写出答案,不需要说明理由)25.如图1,等腰直角三角板的一个锐角顶点与正方形ABCD的顶点A重合,将此三角板绕点A旋转,使三角板中该锐角的两条边分别交正方形的两边BC,DC于点E,F,连接EF.(1)猜想BE、EF、DF三条线段之间的数量关系,并证明你的猜想;(2)在图1中,过点A作AM⊥EF于点M,请直接写出AM和AB的数量关系;(3)如图2,将Rt△ABC沿斜边AC翻折得到Rt△ADC,E,F分别是BC,CD边上的点,∠EAF=∠BAD,连接EF,过点A作AM⊥EF于点M,试猜想AM与AB之间的数量关系.并证明你的猜想.答案和解析1.【答案】B【解析】解:A、不是中心对称图形,故本选项错误;B、是中心对称图形,故本选项正确;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误;故选:B.根据中心对称图形的定义,结合选项所给图形进行判断即可.此题主要考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后与原图重合.2.【答案】D【解析】解:A、普查的难度较大,适合用抽样调查的方式,故A错误;B、调查过程带有破坏性,只能采取抽样调查的方式,故B错误;C、普查的难度较大,适合用抽样调查的方式,故C错误;D、事关重大应选用普查,正确.故选:D.根据抽样调查和全面调查的特点即可作出判断.本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.3.【答案】C【解析】解:这4万名考生的数学中考成绩的全体是总体;每个考生的数学中考成绩是个体;2000名考生的中考数学成绩是总体的一个样本,样本容量是2000.故正确的是①④.故选:C.总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象,从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.本题考查了总体、个体、样本、样本容量的概念,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.4.【答案】A【解析】解:∵菱形ABCD的周长为28,∴AB=28÷4=7,OB=OD,∵H为AD边中点,∴OH是△ABD的中位线,∴OH=AB=×7=3.5.故选:A.根据菱形的四条边都相等求出AB,菱形的对角线互相平分可得OB=OD,然后判断出OH是△ABD的中位线,再根据三角形的中位线平行于第三边并且等于第三边的一半可得OH=AB.本题考查了菱形的对角线互相平分的性质,三角形的中位线平行于第三边并且等于第三边的一半,熟记性质与定理是解题的关键.5.【答案】D【解析】解:设白球个数为:x个,∵摸到红色球的频率稳定在25%左右,∴口袋中得到红色球的概率为25%,∴=,解得:x=12,经检验x=12是原方程的根,故白球的个数为12个.故选:D.由摸到红球的频率稳定在25%附近得出口袋中得到红色球的概率,进而求出白球个数即可.此题主要考查了利用频率估计概率,根据大量反复试验下频率稳定值即概率得出是解题关键.6.【答案】D【解析】解:连接DE并延长交AB于H,∵CD∥AB,∴∠C=∠A,∠CDE=∠AHE,∵E是AC中点,∴AE=CE,∴△DCE≌△HAE(AAS),∴DE=HE,DC=AH,∵F是BD中点,∴EF是△DHB的中位线,∴EF=BH,∴BH=AB-AH=AB-DC=2,∴EF=1.故选:D.连接DE并延长交AB于H,由已知条件可判定△DCE≌△HAE,利用全等三角形的性质可得DE=HE,进而得到EF是三角形DHB的中位线,利用中位线性质定理即可求出EF的长.本题考查了全等三角形的判定和性质、三角形的中位线的判定和性质,解题的关键是连接DE和AB相交构造全等三角形,题目设计新颖.7.【答案】A【解析】【分析】此题考查了矩形的性质以及三角形面积问题.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.首先连接OP,由矩形的两条边AB、BC的长分别为3和4,可求得OA=OD=2.5,△AOD的面积,然后由S△AOD=S△AOP+S△DOP=OA•PE+OD•PF求得答案.【解答】解:连接OP,∵矩形的两条边AB、BC的长分别为和4,∴S=AB•BC=12,OA=OC,OB=OD,AC=BD=5,矩形ABCD∴OA=OD=2.5,∴S△ACD=S=6,矩形ABCD∴S△AOD=S△ACD=3,∵S△AOD=S△AOP+S△DOP=OA•PE+OD•PF=×2.5×PE+×2.5×PF=(PE+PF)=3,解得:PE+PF=.故选A.8.【答案】B【解析】解:∵在△ABC中,AB=3,AC=4,BC=5,∴AB2+AC2=BC2,即∠BAC=90°.又PE⊥AB于E,PF⊥AC于F,∴四边形AEPF是矩形,∴EF=AP.∵M是EF的中点,∴AM=EF=AP.因为AP的最小值即为直角三角形ABC斜边上的高,即2.4,∴AM的最小值是1.2.故选:B.根据勾股定理的逆定理可以证明∠BAC=90°;根据直角三角形斜边上的中线等于斜边的一半,则AM=EF,要求AM的最小值,即求EF的最小值;根据三个角都是直角的四边形是矩形,得四边形AEPF是矩形,根据矩形的对角线相等,得EF=AP,则EF的最小值即为AP的最小值,根据垂线段最短,知:AP的最小值即等于直角三角形ABC斜边上的高.此题综合运用了勾股定理的逆定理、矩形的判定及性质、直角三角形的性质.要能够把要求的线段的最小值转换为便于分析其最小值的线段.9.【答案】6【解析】解:(172-149)÷4=23÷4≈6组.故答案为:6.计算最大值与最小值的差,除以组距即可求得.此题考查的是组数的确定方法,组数=极差÷组距.10.【答案】4【解析】解:第5组到第7组的频率是0.125,且容量是64,那么第5组到第7组的频数是64×0.125=8,那么第8组的频数是64-(5+7+11+13+8×3)=4.故答案为:4.求出第5组到第7组的频数,利用总数减去第1组到底7组的频数,即可求得.本题是对频率、频数灵活运用的综合考查,各小组频数之和等于数据总和,各小组频率之和等于1.11.【答案】【解析】解:等边三角形是轴对称图形,不是中心对称图形,正方形是轴对称图形,也是中心对称图形,矩形是轴对称图形,也是中心对称图形,平行四边形不是轴对称图形,是中心对称图形,圆是轴对称图形,也是中心对称图形,菱形是轴对称图形,也是中心对称图形,卡片上画的恰好既是轴对称图形又是中心对称图形的概率为=,故答案为:.根据中心对称图形与轴对称图形的概念进行判断,根据概率的公式计算.本题考查的是概率的计算、中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.12.【答案】18;10【解析】解:∵▱ABCD的周长为56cm,∴BC+AB=28cm,①又∵△BOC的周长比△AOB的周长小8cm,∴AB-BC=8cm,②由①②得AB=18cm,BC=10cm.故答案为:18,10.根据平行四边形的性质可知,平行四边形的对角线互相平分,对边相等,周长是56cm可得BC+AB=28cm,根据由于△BOC的周长比△AOB的周长小8cm,则AB比BC大8cm,继而可求出AB、BC的长度.此题主要考查平行四边的性质:平行四边形的两组对边分别相等且平行四边形的对角线互相平分.13.【答案】18【解析】解:∵△ABP绕A逆时针旋转后,能够得到△ACP′,∴AP=AP′=3,∠PAP′=∠BAC=90°,在Rt△APP′中,由勾股定理,得PP′2=AP2+AP′2=32+32=18,故答案为:18.由旋转的性质可知,AP=AP′=3,∠PAP′=∠BAC=90°,在Rt△APP′中,由勾股定理求PP′2.本题考查了旋转的性质,等腰直角三角形的性质.关键是由旋转的性质得出△APP′为等腰直角三角形.14.【答案】10【解析】解:易证△AFD′≌△CFB,∴D′F=BF,设D′F=x,则AF=8-x,在Rt△AFD′中,(8-x)2=x2+42,解之得:x=3,∴AF=AB-FB=8-3=5,∴S△AFC=•AF•BC=10.故答案为:10.因为BC为AF边上的高,要求△AFC的面积,求得AF即可,求证△AFD′≌△CFB,得BF=D′F,设D′F=x,则在Rt△AFD′中,根据勾股定理求x,∴AF=AB-BF.本题考查了勾股定理的正确运用,本题中设D′F=x,根据直角三角形AFD′中运用勾股定理求x是解题的关键.15.【答案】9.6【解析】【分析】根据菱形的对角线互相垂直平分求出OA、OB,再根据勾股定理列式求出AB,然后利用菱形的面积列式计算即可得解.本题考查了菱形的对角线互相垂直平分的性质,勾股定理,根据菱形的面积的两种表示方法列出方程是解题的关键.【解答】解:在菱形ABCD中,AC⊥BD,∵AC=16cm,BD=12cm,∴OA=AC=×16=8cm,OB=BD=×12=6cm,在Rt△AOB中,AB==10cm,∵DH⊥AB,∴菱形ABCD的面积=AC•BD=AB•DH,即×16×12=10•DH,解得DH=9.6cm.故答案为9.6.16.【答案】5【解析】解:延长BD交AC于N,∵AD是∠BAC的平分线,BD⊥AD,∴BD=DN,AN=AB=12,∵BM=CM,BD=DN,AC=22,∴DM=NC=(AC-AN)=5,则MD的长为5.延长BD交AC于N,根据等腰三角形三线合一得到BD=DN,AN=AB,根据三角形中位线定理得到DM=NC,代入计算即可.本题考查的是三角形中位线定理和等腰三角形的性质的应用,掌握三角形的中位线平行于第三边且等于第三边的一半和等腰三角形三线合一是解题的关键.17.【答案】【解析】解:作点B关于直线AC的对称点C′,连接DC′,交AC于P,连接BP,此时DP+BP=DP+PC′=DC′的值最小.∵D为BC的中点,∴BD=1,DC=1,∴BC=AB=2,连接CC′,由对称性可知∠C′CB=∠BC′C=45°,∴∠BCC′=90°,∴CC′⊥BC,∠CBC′=∠BC′C=45°,∴BC=CC′=2,根据勾股定理可得DC′==.故答案为:.首先确定DC′=DP+PC′=DP+BP的值最小,然后根据勾股定理计算.此题考查了线路最短的问题,确定动点E何位置时,使PB+PD的值最小是关键.18.【答案】3【解析】解:∵菱形ABCD的顶点C(-1,0),点B(0,2),∴点A的坐标为(-1,4),当y=4时,-x+5=4,解得x=2,∴点A向右移动2+1=3时,点A在MN上,∴m的值为3,故答案为3.根据菱形的对角线互相垂直平分表示出点A的坐标,再根据直线解析式求出点A移动到MN上时的x的值,从而得到m的值.本题是一次函数综合题型,主要利用了一次函数图象上点的坐标特征,菱形的性质,平移的性质,比较简单.19.【答案】200 40 60 72【解析】解:(1)根据条形图得出文学类人数为:70,利用扇形图得出文学类所占百分比为:35%,故本次调查中,一共调查了:70÷35%=200人,故答案为:200;(2)根据科普类所占百分比为:30%,则科普类人数为:n=200×30%=60人,m=200-70-30-60=40人,故m=40,n=60;故答案为:40,60;(3)艺术类读物所在扇形的圆心角是:×360°=72°,故答案为:72;(4)由题意,得(册).答:学校购买其他类读物900册比较合理.(1)结合两个统计图,根据条形图得出文学类人数为:70,利用扇形图得出文学类所占百分比为:35%,即可得出总人数;(2)利用科普类所占百分比为:30%,则科普类人数为:n=200×30%=60人,即可得出m的值;(3)根据艺术类读物所在扇形的圆心角是:×360°=72°;(3)根据喜欢其他类读物人数所占的百分比,即可估计6000册中其他读物的数量;此题主要考查了条形图表和扇形统计图综合应用,将条形图与扇形图结合得出正确信息求出调查的总人数是解题关键.20.【答案】(0,0);90【解析】解:(1)旋转中心的坐标是(0,0),旋转角是90°;(2)如图所示,△A1A2C2是△A1AC1以O为旋转中心,顺时针旋转90°的三角形,(1)根据网格结构,找出对应点连线的垂直平分线的交点即为旋转中心,一对对应点与旋转中心连线的夹角即为旋转角;(2)根据网格结构分别找出找出△A1AC1顺时针旋转90°后的对应点的位置,然后顺次连接即可.本题考查了利用旋转变换作图,旋转变换的旋转中心与旋转角的确定,熟练掌握网格结构准确找出对应点的位置是解题的关键.21.【答案】36;0.30;120;C【解析】解:(1)观察频数分布表知:A组有18人,频率为0.15,∴c=18÷0.15=120,∵a=36,∴b=36÷120=0.30;∴C组的频数为120-18-36-24-12=30,补全统计图为:故答案为:36,0.30,120;(2)∵共120人,∴中位数为第60和第61人的平均数,∴中位数应该落在C小组内;(3)个人旅游年消费金额在6000元以上的人数3000×(0.10+0.20)=900人.(1)首先根据A组的人数和所占的百分比确定c的值,然后确定a和b的值;(2)根据样本容量和中位数的定义确定中位数的位置即可;(3)利用样本估计总体即可得到正确的答案.本题考查了统计图的知识,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.理解平均数、中位数和众数的概念,并能根据它们的意义解决问题.22.【答案】解:当AB=BC时,四边形DBFE是菱形.理由如下:∵D、E分别是AB、AC的中点,∴DE是△ABC的中位线,∴DE∥BC,又∵EF∥AB,∴四边形DBFE是平行四边形;∵D是AB的中点,∴BD=AB,∵DE是△ABC的中位线,∴DE=BC,∵AB=BC,∴BD=DE,∴四边形DBFE是菱形.【解析】当AB=BC时,四边形DBFE是菱形.先根据三角形的中位线平行于第三边并且等于第三边的一半可得DE∥BC,然后根据两组对边分别平行的四边形是平行四边形证明四边形DBFE是平行四边形;再根据邻边相等的平行四边形是菱形即可证明结论成立.本题考查了三角形的中位线平行于第三边并且等于第三边的一半,菱形的判定以及菱形与平行四边形的关系,熟记性质与判定方法是解题的关键.23.【答案】(1)解:AD=BC.理由如下:∵AD∥BC,AB∥DE,AF∥DC,∴四边形ABED和四边形AFCD都是平行四边形.∴AD=BE,AD=FC,又∵四边形AEFD是平行四边形,∴AD=EF.∴AD=BE=EF=FC.∴AD=BC.(2)证明:∵四边形ABED和四边形AFCD都是平行四边形,∴DE=AB,AF=DC.∵AB=DC,∴DE=AF.又∵四边形AEFD是平行四边形,∴平行四边形AEFD是矩形.【解析】(1)由题中所给平行线,不难得出四边形ABED和四边形AFCD都是平行四边形,而四边形AEFD也是平行四边形,三个平行四边形都共有一条边AD,所以可得出AD=BC的结论.(2)根据矩形的判定和定义,对角线相等的平行四边形是矩形.只要证明AF=DE即可得出结论.本题考查了梯形、平行四边形的性质和矩形的判定,是一道集众多四边形于一体的小综合题,难度中等稍偏上的考题.有的学生往往因为基础知识不扎实,做到一半就做不下去了,建议老师平时教学中,重视一题多变,适当地变式联系,可以触类旁通.24.【答案】3.5 2【解析】(1)证明:∵四边形ABCD是平行四边形,∴CF∥ED,∴∠FCG=∠EDG,∵G是CD的中点,∴CG=DG,在△FCG和△EDG中,,∴△FCG≌△EDG(ASA)∴FG=EG,∵CG=DG,∴四边形CEDF是平行四边形;(2)①解:当AE=3.5时,平行四边形CEDF是矩形,理由是:过A作AM⊥BC于M,∵∠B=60°,AB=3,∴BM=1.5,∵四边形ABCD是平行四边形,∴∠CDA=∠B=60°,DC=AB=3,BC=AD=5,∵AE=3.5,∴DE=1.5=BM,在△MBA和△EDC中,,∴△MBA≌△EDC(SAS),∴∠CED=∠AMB=90°,∵四边形CEDF是平行四边形,∴四边形CEDF是矩形,故答案为:3.5;②当AE=2时,四边形CEDF是菱形,理由是:∵AD=5,AE=2,∴DE=3,∵CD=3,∠CDE=60°,∴△CDE是等边三角形,∴CE=DE,∵四边形CEDF是平行四边形,∴四边形CEDF是菱形,故答案为:2.(1)证△CFG≌△EDG,推出FG=EG,根据平行四边形的判定推出即可;(2)①求出△MBA≌△EDC,推出∠CED=∠AMB=90°,根据矩形的判定推出即可;②求出△CDE是等边三角形,推出CE=DE,根据菱形的判定推出即可.本题考查了平行四边形的性质和判定,菱形的判定,矩形的判定,等边三角形的性质和判定,全等三角形的性质和判定的应用,注意:有一组邻边相等的平行四边形是菱形,有一个角是直角的平行四边形是矩形.25.【答案】(1)EF=BE+DF,证明:如答图1,延长CB到Q,使BQ=DF,连接AQ,∵四边形ABCD是正方形,∴AD=AB,∠D=∠DAB=∠ABE=∠ABQ=90°,在△ADF和△ABQ中,∴△ADF≌△ABQ(SAS),∴AQ=AF,∠QAB=∠DAF,∵∠DAB=90°,∠FAE=45°,∴∠DAF+∠BAE=45°,∴∠BAE+∠BAQ=45°,即∠EAQ=∠FAE,在△EAQ和△EAF中∴△EAQ≌△EAF,∴EF=EQ=BE+BQ=BE+DF.(2)解:AM=AB,理由是:∵△EAQ≌△EAF,EF=EQ,∴×EQ×AB=×FE×AM,∴AM=AB.(3)AM=AB,证明:如答图2,延长CB到Q,使BQ=DF,连接AQ,∵折叠后B和D重合,∴AD=AB,∠D=∠ABE=90°,∠BAC=∠DAC=∠BAD,在△ADF和△ABQ中,∴△ADF≌△ABQ(SAS),∴AQ=AF,∠QAB=∠DAF,∵∠FAE=∠BAD,∴∠DAF+∠BAE=∠BAE+∠BAQ=∠EAQ=∠BAD,即∠EAQ=∠FAE,在△EAQ和△EAF中,,∴△EAQ≌△EAF(SAS),∴EF=EQ,∵△EAQ≌△EAF,EF=EQ,∴×EQ×AB=×FE×AM,∴AM=AB.【解析】(1)延长CB到Q,使BQ=DF,连接AQ,根据四边形ABCD是正方形求出AD=AB,∠D=∠DAB=∠ABE=∠ABQ=90°,证△ADF≌△ABQ,推出AQ=AF,∠QAB=∠DAF,求出∠EAQ=∠EAF,证△EAQ≌△EAF,推出EF=BQ即可;(2)根据△EAQ≌△EAF,EF=BQ得出×BQ×AB=×FE×AM,求出即可;(3)延长CB到Q,使BQ=DF,连接AQ,根据折叠和已知得出AD=AB,∠D=∠ABE=90°,∠BAC=∠DAC=∠BAD,证△ADF≌△ABQ,推出AQ=AF,∠QAB=∠DAF,求出∠EAQ=∠FAE,证△EAQ≌△EAF,推出EF=EQ即可.本题考查了正方形的性质,全等三角形的性质和判定,折叠的性质的应用,主要考查学生综合运用定理进行推理的能力,题目比较典型,证明过程类似.。

2015-2016学年八年级下学期期末质量检测数学试题带答案

2015-2016学年八年级下学期期末质量检测数学试题带答案

E ODC BA2015-2016学年度第二学期期末质量检测八年级 数学一、选择题(本大题共10题,每题3分,共30分) 1.下列二次根式中,是最简二次根式的是A. B. 0.5 C.50 D.5下列计算正确的是 A.752=+ C. D.4. 若平行四边形中两个内角的度数比为1:2,则其中较大的内角是 A .120° B .90° C .60° D .45°5. 已知一组数据5、3、5、4、6、5、14.关于这组数据的中位数、众数、平均数, 下列说法正确的是A.中位数是4B.众数是14C.中位数和众数都是5D.中位数和平均数都是5 6.如图,在菱形ABCD 中,对角线AC 、BD 相交于点O ,E 为BC 的中点, 则下列式子中,一定成立的是A.OE BC 2=B. OE AC 2=C.OE AD =D.OE OB = 7. 要得到y=2x-4的图象,可把直线y=2xA . 向左平移4个单位 B. 向右平移4个单位 C. 向上平移4个单位 D. 向下平移4个单位 8. 对于函数y=-3x+1,下列结论正确的是A .它的图象必经过点(-1,3)B .它的图象经过第一、二、三象限C .当x >1时,y <0D .y 的值随x 值的增大而增大9.甲、乙两班举行电脑汉字录入比赛,参加学生每分钟录入汉字的个数统计计算后填入下表:某同学根据上表分析得出如下结论:22540=÷15)15(2-=-5112题①甲、乙两班学生成绩的平均水平相同;②乙班优秀的人数多于甲班优秀的人数(每分钟输入汉字数≥150个为优秀); ③甲班的成绩波动情况比乙班的成绩波动大. 其中正确结论的序号是A. ①②③ B .①② C .①③ D .②③10.王老师开车从甲地到相距240千米的乙地,如果油箱剩余油量Y (升)与行驶路程X (千米)之间是一次函数关系,如图,那么到达乙地时油 箱剩余油量是A. 10升B.20升C. 30升D. 40升二.填空题(本大题共6题,每题3分, 共18分)11 .函数3X2X Y +=的自变量X 的取值范围是______________12. 四边形ABCD 是周长为20cm 的菱形,点A 的坐标是则点B 的坐标为___________13.已知样本x 1 ,x 2 , x 3 , x 4的平均数是3,则x 1+3,x 2+3, x 3+3, x 4+3的平均数为 ____14.若一次函数y =(3-k )x -k 的图象经过第二、三、四象限,则k 的取值范围是____15.如图,以Rt △ABC 的三边为斜边分别向外作等 腰直角三角形,若斜边AB =3,则图中阴影部分 的面积为________.16.如图,矩形ABCD 中,AB=3,BC =4,点E 是BC 边上一点,连接AE ,把∠B 沿AE 折叠,使点B落在点B ′处,当△AEB ′为直角三角形时,BE 的长为___三、解答题(本大题共8题,共72分,解答时要写出必要的文字说明,演算步骤或推证过程)17.计算(本题共2小题,每小题5分,共10分) (1) 32)48312123(÷+-(2) (18.(本题满分8分)已知一次函数的图象经过(-2,1)和(1,4)两点, (1)求这个一次函数的解析式; (2)当x =3时,求y 的值。

江苏省泰州市2015-2016学年上学期高一期末数学试卷(解析版)

江苏省泰州市2015-2016学年上学期高一期末数学试卷(解析版)

2015-2016学年江苏省泰州市高一(上)期末数学试卷一、填空题(本大题共14小题,每小题5分,共70分)1.已知集合A={0,1,2},B={1,2,3},则集合A∪B中元素个数为.2.若幂函数y=x a的图象过点(2,),则a=.3.因式分解:x3﹣2x2+x﹣2=.4.将函数y=sinx的图象向右平移个单位后得到的图象对应的函数解析式是.5.若函数f(x)=x3+2x﹣1的零点在区间(k,k+1)(k∈Z)内,则k=.6.化简:+=.7.||=1,||=2,,且,则与的夹角为.8.已知一次函数y=x+1与二次函数y=x2﹣x﹣1的图象交于两点A(x1,y1),B(x2,y2),则+=.9.已知O为坐标原点,A(1,2),B(﹣2,1),若与共线,且⊥(+2),则点C的坐标为.10.若点P(1,﹣1)在角φ(﹣π<φ<0)终边上,则函数y=3cos(x+φ),x∈[0,π]的单调减区间为.11.当x∈{x|(log2x)2﹣log2x﹣2≤0}时,函数y=4x﹣2x+3的最小值是.12.已知定义在R上的奇函数y=f(x)满足:①当x∈(0,1]时,f(x)=()x;②f(x)的图象关于直线x=1对称,则f(﹣log224)=.13.已知函数f(x)=x2+bx,g(x)=|x﹣1|,若对任意x1,x2∈[0,2],当x1<x2时都有f(x1)﹣f(x2)<g(x1)﹣g(x2),则实数b的最小值为.14.已知函数f(x)=sin(πx﹣),若函数y=f(asinx+1),x∈R没有零点,则实数a的取值范围是.二、解答题(本大题共6小题,共90分,解答应写出文字说明、证明过程或演算步骤)15.已知集合A={x|2x>8},B={x|x2﹣3x﹣4<0}.(1)求A,B;(2)设全集U=R,求(∁U A)∩B.16.直线y=1分别与函数f(x)=log2(x+2),g(x)=log a x的图象交于A,B两点,且AB=2.(1)求a的值;(2)解关于x的方程,f(x)+g(x)=3.17.已知函数f(x)=sin(ωx+φ)(ω>0,0≤φ≤π)的图象经过点(0,1),且其相邻两对称轴之间的距离为π.(1)求函数f(x)的解析式;(2)设若sinα+f(α)=,α∈(0,π),求的值.18.现代人对食品安全的要求越来越高,无污染,无化肥农药等残留的有机蔬菜更受市民喜爱,为了适应市场需求,我市决定对有机蔬菜实行政府补贴,规定每种植一亩有机蔬菜性补贴农民x元,经调查,种植亩数与补贴金额x之间的函数关系式为f(x)=8x+800(x≥0),每亩有机蔬菜的收益(元)与补贴金额x之间的函数关系式为g(x)=.(1)在政府未出台补贴措施时,我市种植这种蔬菜的总收益为多少元?(2)求出政府补贴政策实施后,我市有机蔬菜的总收益W(元)与政府补贴数额x之间的函数关系式;(3)要使我市有机蔬菜的总收益W(元)最大,政府应将每亩补贴金额x定为多少元?19.四边形ABCD中,E,F分别为BD,DC的中点,AE=DC=3,BC=2,BD=4.(1)试求,表示;(2)求2+2的值;(3)求的最大值.20.对于函数y=f(x),若x0满足f(x0)=x0,则称x0位函数f(x)的一阶不动点,若x0满足f(f(x0))=x0,则称x0位函数f(x)的二阶不动点,若x0满足f(f(x0))=x0,且f(x0)≠x0,则称x0为函数f (x)的二阶周期点.(1)设f(x)=kx+1.①当k=2时,求函数f(x)的二阶不动点,并判断它是否是函数f(x)的二阶周期点;②已知函数f(x)存在二阶周期点,求k的值;(2)若对任意实数b,函数g(x)=x2+bx+c都存在二阶周期点,求实数c的取值范围.2015-2016学年江苏省泰州市高一(上)期末数学试卷参考答案与试题解析一、填空题(本大题共14小题,每小题5分,共70分)1.已知集合A={0,1,2},B={1,2,3},则集合A∪B中元素个数为4.【考点】并集及其运算.【专题】计算题;集合思想;定义法;集合.【分析】由A与B,求出两集合的并集,找出并集中元素个数即可.【解答】解:∵A={0,1,2},B={1,2,3},∴A∪B={0,1,2,3},则集合A∪B中元素个数为4,故答案为:4.【点评】此题考查了并集及其运算,熟练掌握并集的定义是解本题的关键.2.若幂函数y=x a的图象过点(2,),则a=﹣1.【考点】幂函数的概念、解析式、定义域、值域.【专题】函数思想;综合法;圆锥曲线的定义、性质与方程.【分析】根据题意,将点(2,)的坐标代入y=x a中,可得=2a,解可得a的值,即可得答案.【解答】解:根据题意,点(2,)在幂函数y=x a的图象上,则有=2a,解可得a=﹣1;故答案为:﹣1.【点评】本题考查幂函数解析式的计算,注意幂函数与指数函数的区别.3.因式分解:x3﹣2x2+x﹣2=(x﹣2)(x2+1).【考点】因式分解定理.【专题】计算题;转化思想;函数的性质及应用.【分析】分组提取公因式即可得出.【解答】解:原式=x2(x﹣2)+(x﹣2)=(x﹣2)(x2+1).故答案为:(x﹣2)(x2+1).【点评】本题考查了分组提取公因式法,考查了推理能力与计算能力,属于基础题.4.将函数y=sinx的图象向右平移个单位后得到的图象对应的函数解析式是y=sin(x﹣).【考点】函数y=Asin(ωx+φ)的图象变换.【专题】转化思想.【分析】由函数图象的平移法则,“左加右减,上加下减”,我们可得函数f(x)的图象向右平移a个单位得到函数f(x﹣a)的图象,再根据原函数的解析式为y=sinx,向右平移量为个单位,易得平移后的图象对应的函数解析式.【解答】解:根据函数图象的平移变换的法则故函数y=sinx的图象向右平移个单位后得到的图象对应的函数解析式是y=sin(x﹣)故答案为:y=sin(x﹣)【点评】本题考查的知识点函数y=Asin(ωx+φ)的图象变换,其中熟练掌握函数图象的平移法则,“左加右减,上加下减”,是解答本题的关键.5.若函数f(x)=x3+2x﹣1的零点在区间(k,k+1)(k∈Z)内,则k=0.【考点】二分法求方程的近似解.【专题】计算题;函数思想;定义法;函数的性质及应用.【分析】利用根的存在性确定函数零点所在的区间,然后确定k的值.【解答】解;∵f(x)=x3+2x﹣1,∴f′(x)=3x2+2>0,∴f(x)在R上单调递增,∵f(0)=﹣1<0,f(1)=1+2﹣1>0,∴f(0)f(1)<0,∴函数零点所在的区间为(0,1),∴k=0.故答案为:0.【点评】本题考查函数零点的判定定理的应用,属基础知识、基本运算的考查.6.化简:+=2.【考点】有理数指数幂的化简求值.【专题】计算题;转化思想;综合法;函数的性质及应用.【分析】利用根式与分数指数幂互化公式、性质、运算法则、平方差公式、立方差公式求解.【解答】解:+=+=2.故答案为:2.【点评】本题考查有理数指数幂化简求值,是基础题,解题时要注意根式与分数指数幂互化公式、性质、运算法则、平方差公式、立方差公式的合理运用.7.||=1,||=2,,且,则与的夹角为120°.【考点】数量积表示两个向量的夹角.【专题】计算题.【分析】根据,且可得进而求出=﹣1然后再代入向量的夹角公式cos<>=再结合<>∈[0,π]即可求出<>.【解答】解:∵,且∴∵||=1∴=﹣1∵||=2∴cos<>==﹣∵<>∈[0,π]∴<>=120°故答案为120°【点评】本题主要考查了利用数量积求向量的夹角,属常考题,较易.解题的关键是熟记向量的夹角公式cos<>=同时要注意<>∈[0,π]这一隐含条件!8.已知一次函数y=x+1与二次函数y=x2﹣x﹣1的图象交于两点A(x1,y1),B(x2,y2),则+=﹣1.【考点】函数的图象.【专题】计算题;函数思想;定义法;函数的性质及应用.【分析】联立方程组得,化简得到x2﹣2x﹣2=0,根据韦达定理得到x1+x2=2,x1x2=﹣2,即可求出答案.【解答】解:联立方程组得,∴x2﹣x﹣1=x+1,∴x2﹣2x﹣2=0,∴x1+x2=2,x1x2=﹣2,∴+===﹣1,故答案为:﹣1.【点评】本题考查了函数图象的交点问题,以及韦达定理的应用,属于基础题.9.已知O为坐标原点,A(1,2),B(﹣2,1),若与共线,且⊥(+2),则点C的坐标为(﹣4,﹣3).【考点】平面向量数量积的运算.【专题】计算题;对应思想;向量法;平面向量及应用.【分析】设C的坐标为(x,y),向量的坐标运算和向量共线垂直的条件得到关于x,y的方程组,解得即可.【解答】解:设C的坐标为(x,y),O为坐标原点,A(1,2),B(﹣2,1),∴=(x+2,y﹣1),=(x,y),=(1,2),=(﹣2,1),+2=(﹣3,4),∵与共线,且⊥(+2),解得x=﹣4,y=﹣3,∴点C的坐标为(﹣4,﹣3),故答案为:(﹣4,﹣3)【点评】本题考查了向量的坐标运算和向量共线垂直的条件,属于基础题.10.若点P(1,﹣1)在角φ(﹣π<φ<0)终边上,则函数y=3cos(x+φ),x∈[0,π]的单调减区间为[,π].【考点】余弦函数的图象.【专题】综合题;转化思想;综合法;三角函数的图像与性质.【分析】由条件利用余弦函数的单调性,求得函数y=3cos(x+φ),x∈[0,π]的单调减区间.【解答】解:∵点P(1,﹣1)在角φ(﹣π<φ<0)终边上,∴φ=﹣,函数y=3cos(x+φ)=3cos(x﹣),令2kπ≤x﹣≤2kπ+π,求得2kπ+≤x﹣≤2kπ+.可得函数的减区间为[2kπ+,2kπ+],k∈Z.再结合x∈[0,π],可得函数y=3cos(x+φ)的单调减区间为[,π],故答案为:[,π].【点评】本题主要考查余弦函数的单调性,属于基础题.11.当x∈{x|(log2x)2﹣log2x﹣2≤0}时,函数y=4x﹣2x+3的最小值是5﹣.【考点】指、对数不等式的解法;函数的最值及其几何意义.【专题】函数思想;转化法;函数的性质及应用.【分析】化简集合{x|(log2x)2﹣log2x﹣2≤0},求出x的取值范围,再求函数y的最小值即可.【解答】解:因为{x|(log2x)2﹣log2x﹣2≤0}={x|(log2x+1)(log2x﹣2)≤0}={x|﹣1≤log2x≤2}={x|≤x≤4},且函数y=4x﹣2x+3=22x﹣2x+3=+,所以,当x=时,函数y取得最小值是+=5﹣.故答案为:5﹣.【点评】本题考查了指数与对数不等式的解法与应用问题,解题的关键是转化为等价的不等式,是基础题目.12.已知定义在R上的奇函数y=f(x)满足:①当x∈(0,1]时,f(x)=()x;②f(x)的图象关于直线x=1对称,则f(﹣log224)=.【专题】计算题;函数思想;综合法;函数的性质及应用.【分析】由f(x)的图象关于x=1对称可以得出f(x)=f(x﹣4),从而可以得到f(﹣log224)=﹣f(log224﹣4)=﹣f(log23﹣1),可判断log23﹣1∈(0,1),从而可以求出,这样根据指数式和对数式的互化及指数的运算即可求得答案.【解答】解:f(x)的图象关于x=1对称;∴f(x)=f(2﹣x)=﹣f(x﹣2)=f(x﹣4);即f(x)=f(x﹣4);∴f(﹣log224)=﹣f(log224)=﹣f(log224﹣4)=﹣f(log23﹣1);∵log23﹣1∈(0,1);∴==;∴.故答案为:.【点评】考查奇函数的定义,f(x)关于x=a对称时有f(x)=f(2a﹣x),以及对数的运算,指数的运算,对数式和指数式的互化.13.已知函数f(x)=x2+bx,g(x)=|x﹣1|,若对任意x1,x2∈[0,2],当x1<x2时都有f(x1)﹣f(x2)<g(x1)﹣g(x2),则实数b的最小值为﹣1.【考点】函数的值.【专题】函数思想;综合法;函数的性质及应用.【分析】令h(x)=f(x)﹣g(x),问题转化为满足h(x)在[0,2]上是增函数即可,结合二次函数的性质通过讨论对称轴的位置,解出即可.【解答】解:当x1<x2时都有f(x1)﹣f(x2)<g(x1)﹣g(x2),即x1<x2时都有f(x1)﹣g(x1)<f(x2)﹣g(x2),令h(x)=f(x)﹣g(x)=x2+bx﹣|x﹣1|,故需满足h(x)在[0,2]上是增函数即可,①当0≤x<1时,h(x)=x2+(b+1)x﹣1,对称轴x=﹣≤0,解得:b≥﹣1,②当1≤x≤2时,h(x)=x2+(b﹣1)x+1,对称轴x=﹣≤1,解得:b≥﹣1,综上:b≥﹣1,故答案为:﹣1.【点评】本题考察了二次函数的性质、考察转化思想,是一道中档题.14.已知函数f(x)=sin(πx﹣),若函数y=f(asinx+1),x∈R没有零点,则实数a的取值范围是(﹣,).【考点】正弦函数的图象;函数零点的判定定理.【专题】分类讨论;综合法;三角函数的图像与性质.【分析】由f(x)没有零点求得x的范围,再根据f(asinx+1)没有零点可得asinx+1的范围,根据正弦【解答】解:若函数f(x)=sin(πx﹣)=sinπ(x﹣)没有零点,故0<(x﹣)π<π,或﹣π<(x﹣)π<0,即0<(x﹣)<1,或﹣1<(x﹣)<0,即<x<或﹣<x<.由于函数y=f(asinx+1),x∈R没有零点,则<asinx+1<,或﹣<asinx+1<,当a>0时,∵1﹣a≤asinx+1≤1+a,或,解得0<a<.当a<0时,1+a≤asinx+1≤1﹣a,∴或,求得﹣<a<0.当a=0时,函数y=f(asinx+1)=f(1)=sin=≠0,满足条件.综上可得,a的范围为(﹣,).故答案为:(﹣,).【点评】本题主要考查正弦函数的图象特征,函数的零点的定义,属于中档题.二、解答题(本大题共6小题,共90分,解答应写出文字说明、证明过程或演算步骤) 15.已知集合A={x|2x>8},B={x|x2﹣3x﹣4<0}.(1)求A,B;(2)设全集U=R,求(∁U A)∩B.【考点】交、并、补集的混合运算;集合的表示法.【专题】转化思想;定义法;集合.【分析】(1)根据指数函数的图象与性质,求出集合A,再解一元二次不等式求出集合B;(2)根据补集与交集的定义,求出(∁U A)∩B.【解答】解:(1)∵2x>8=23,且函数y=2x在R上是单调递增,∴x>3,∴A=(3,+∞);又x2﹣3x﹣4<0可化为(x﹣4)(x+1)<0,解得﹣1<x<4,∴B=(﹣1,4);(2)∵全集U=R,A=(3,+∞),A=∞3∴(∁U A)∩B=(﹣1,3].【点评】本题考查了不等式的解法与应用问题,也考查了集合的化简与运算问题,是基础题目.16.直线y=1分别与函数f(x)=log2(x+2),g(x)=log a x的图象交于A,B两点,且AB=2.(1)求a的值;(2)解关于x的方程,f(x)+g(x)=3.【考点】对数函数的图象与性质;函数的图象.【专题】函数思想;综合法;函数的性质及应用.【分析】(1)令f(x)=1解出A点坐标,利用AB=2得出B点坐标,把B点坐标代入g(x)解出a;(2)利用对数的运算性质去掉对数符号列出方程解出x,结合函数的定义域得出x的值.【解答】解:(1)解log2(x+2)=1得x=0,∴A(0,1),∵AB=2,∴B(2,1).把B(2,1)代入g(x)得log a2=1,∴a=2.(2)∵f(x)+g(x)=3,∴log2(x+2)+log2x=log2[x(x+2)]=3,∴x(x+2)=8,解得x=﹣4或x=2.由函数有意义得,解得x>0.∴方程f(x)+g(x)=3的解为x=2.【点评】本题考查了对数函数的图象与性质,对数方程的解法,属于基础题.17.已知函数f(x)=sin(ωx+φ)(ω>0,0≤φ≤π)的图象经过点(0,1),且其相邻两对称轴之间的距离为π.(1)求函数f(x)的解析式;(2)设若sinα+f(α)=,α∈(0,π),求的值.【考点】由y=Asin(ωx+φ)的部分图象确定其解析式;三角函数的化简求值;正弦函数的图象.【专题】转化思想;综合法;三角函数的求值.【分析】(1)根据函数的图象经过点(0,1),求得φ的值,再根据周期性求得ω,可得函数f(x)的解析式.(2)由条件求得sinα+cosα=,平方可得sinαcosα的值,从而求得sinα﹣cosα的值,再利用诱导公式化简要求的式子,可得结果.【解答】解:(1)根据函数f(x)=sin(ωx+φ)(ω>0,0≤φ≤π)的图象经过点(0,1),可得sinφ=1,∴φ=,.∵其相邻两对称轴之间的距离为π,∴=π,求得ω=1,∴f(x)=sin(x+)=cosx.(2)∵sinα+f(α)=,α∈(0,π),即sinα+cosα=,平方可得sinαcosα═﹣,∴α为钝角,sinα﹣cosα==,∴====﹣.【点评】本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,三角函数的化简求值,属于基础题.18.现代人对食品安全的要求越来越高,无污染,无化肥农药等残留的有机蔬菜更受市民喜爱,为了适应市场需求,我市决定对有机蔬菜实行政府补贴,规定每种植一亩有机蔬菜性补贴农民x元,经调查,种植亩数与补贴金额x之间的函数关系式为f(x)=8x+800(x≥0),每亩有机蔬菜的收益(元)与补贴金额x之间的函数关系式为g(x)=.(1)在政府未出台补贴措施时,我市种植这种蔬菜的总收益为多少元?(2)求出政府补贴政策实施后,我市有机蔬菜的总收益W(元)与政府补贴数额x之间的函数关系式;(3)要使我市有机蔬菜的总收益W(元)最大,政府应将每亩补贴金额x定为多少元?【考点】分段函数的应用.【专题】应用题;函数思想;综合法;函数的性质及应用.【分析】(1)在政府未出台补贴措施时,我市种植这种蔬菜的总收益为800×2850=2280000元;(2)政府补贴政策实施后,我市有机蔬菜的总收益W=f(x)g(x);(3)分段求最大值,即可得出结论.【解答】解:(1)在政府未出台补贴措施时,我市种植这种蔬菜的总收益为800×2850=2280000元;(2)政府补贴政策实施后,我市有机蔬菜的总收益W=f(x)g(x)=;(3)x>50,W=﹣24(x+100)(x﹣1050)=﹣24(x﹣475)2+7935000,∴x=475时,W max=7935000;0≤x≤50,W═24(x+100)(x+950)单调递增,∴x=50时,W max=3600000;综上所述,要使我市有机蔬菜的总收益W(元)最大,政府应将每亩补贴金额x定为475元.【点评】本题主要考查了二次函数的应用,二次函数的性质,考查利用数学知识解决实际问题,属于中档题.19.四边形ABCD中,E,F分别为BD,DC的中点,AE=DC=3,BC=2,BD=4.(1)试求,表示;(2)求2+2的值;(3)求的最大值.【考点】平面向量数量积的运算.【专题】计算题;转化思想;向量法;平面向量及应用.【分析】(1)由已知结合共线向量基本定理得答案;(2)由已知结合向量加法、减法的运算法则求解;(3)由向量加法、减法及向量的数量积运算得答案.【解答】解:(1)∵E,F分别为BD,DC的中点,∴,则;(2)=;(3)=,∵=10﹣6cos∠AEF.∴当∠AEF=π时,取得最大值16.∴的最大值为.【点评】本题考查平面向量的数量积运算,考查了向量加法与减法的三角形法则,是中档题.20.对于函数y=f(x),若x0满足f(x0)=x0,则称x0位函数f(x)的一阶不动点,若x0满足f(f(x0))=x0,则称x0位函数f(x)的二阶不动点,若x0满足f(f(x0))=x0,且f(x0)≠x0,则称x0为函数f (x)的二阶周期点.(1)设f(x)=kx+1.①当k=2时,求函数f(x)的二阶不动点,并判断它是否是函数f(x)的二阶周期点;②已知函数f(x)存在二阶周期点,求k的值;(2)若对任意实数b,函数g(x)=x2+bx+c都存在二阶周期点,求实数c的取值范围.【考点】函数恒成立问题;函数的值.【专题】新定义;转化思想;函数的性质及应用.【分析】(1)①当k=2时,f(x)=2x+1,结合二阶不动点和二阶周期点的定义,可得答案;②由二阶周期点的定义,结合f(x)=kx+1,可求出满足条件的k值;(2)若对任意实数b,函数g(x)=x2+bx+c都存在二阶周期点,则函数g(x)=x2+bx+c=x恒有两个不等的实数根,解得答案.【解答】解:(1)①当k=2时,f(x)=2x+1,f(f(x))=2(2x+1)+1=4x+3,解4x+3=x得:x=﹣1,即﹣1为函数f(x)的二阶不动点,时f(﹣1)=﹣1,即﹣1不是函数f(x)的二阶周期点;②∵f(x)=kx+1,∴f(f(x))=k2x+k+1,令f(f(x))=x,则x==,(k≠±1),或x=0,k=﹣1,令f(x)=x,则x=,若函数f(x)存在二阶周期点,则k=﹣1,(2)若x0为函数f(x)的二阶周期点.则f(f(x0))=x0,且f(x0)≠x0,若x1为函数f(x)的二阶不动点,则f(f(x1))=x1,且f(x1)=x1,则f(x0)=f(x1),则x0≠x1,且f(x0)+f(x1)=﹣b,即函数g(x)=x2+bx+c=x恒有两个不等的实数根,故△=(b﹣1)2﹣4c>0恒成立,解得:c<0.【点评】本题以二阶不动点和二阶周期点为载体,考查了二次函数的基本性质,正确理解二阶不动点和二阶周期点的概念是解答的关键.。

江苏省泰州市姜堰区实验初级中学2023-2024学年八年级下学期数学月考题

江苏省泰州市姜堰区实验初级中学2023-2024学年八年级下学期数学月考题

江苏省泰州市姜堰区实验初级中学2023-2024学年八年级下学期数学月考题学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.2.某地区为了解6500名学生参加初中毕业考试数学成绩情况,从中抽取了500名考生的数学成绩进行统计,下列说法中正确的是()A.抽取的500名考生是总体的一个样本B.每个考生是个体C.这6500名学生的数学成绩的全体是总体D.样本容量是65003.下列命题中,不正确的是()A.对角线互相垂直的四边形是平行四边形B.有一组邻边相等的平行四边形是菱形C.有一个角是直角的平行四边形是矩形D.两组对边相等的四边形是平行四边形4.如图,在▱ABCD中,AB=6,BC=8,∠BCD的平分线交AD于点E,交BA的延长线于点F,则AE+AF的值等于()A.2 B.3 C.4 D.6△.若5.如图,在V ABC中,∠BAC=102°,将V ABC绕点A按逆时针方向旋转得到AB C''点B'恰好落在BC边上,且AB'=CB',则∠C'的度数为()A .24°B .26°C .28°D .36°6.如图,在Rt ABC △中,AB CB =,BE AC ⊥,BAC ∠的平分线AD 交BE 于点G ,BO AD ⊥于点O ,交AC 于点F ,连接GF ,DF .下列结论:①67.5BGD ︒∠=;②四边形BDFG 是菱形;③)1CE GE =;④AEG GDFE S S =四边形△.上述结论中正确的序号是( )A .①②③B .②③④C .①②④D .①②③④二、填空题7.在平行四边形ABCD 中,若140A C ∠+∠=︒,则B ∠=.8.一次数学测试后,某班40名学生的成绩被分成5组,第14-组的频数分别为12、10、6、8,则第5组的频率是.9.矩形的面积为602cm ,一条边长为12cm ,则矩形的一条对角线的长为 cm . 10.已知菱形的面积为24,一条对角线长为6,则其周长等于.11.如图,在ABC V 中,64CAB ∠=︒,将ABC V 在平面内绕点A 旋转到AB C ''△的位置,使CC AB '∥,则旋转角的度数为.12.如图,将边长为5的菱形ABCD 放在平面直角坐标系中,点A 在y 轴的正半轴上,BC 边与x 轴重合,且AO :BO =4:3,则CD 所在直线的函数表达式为.13.如图,在ABCD Y 中,ABC ∠的平分线交AD 于点E ,BCD ∠的平分线交AD 于点F ,交BE 于点G ,6AD =,3EF =.则AF =.14.如图,在平面直角坐标系中,三角形的顶点都在格点上,每个小方格都是边长为1的正方形.DEF 是由ABC 旋转得到的,则旋转中心的坐标为.15.如图,直线1l :12y x b =-+分别与x 轴、y 轴交于A 、B 两点,与直线2l :6y kx =-交于点()4,2C .在线段BC 上有一点E ,过点E 作y 轴的平行线交直线2l 于点F ,设点E 的横坐标为m ,当m 的值为,以O 、B 、E 、F 组成的四边形是平行四边形.16.如图,矩形ABCD 的边AB m =,3BC =,E 为AB 上一点,且1AE =,F 为AD 边上的一个动点,连接EF ,若以EF 为腰向右侧作等腰直角三角形EFG ,EF EG =,连接CG ,当CG 的最小值为2时,m 的取值范围是.三、解答题17.ABC V 在平面直角坐标系中的位置如图所示,其中每个小正方形的边长为1个单位长度.(1)在图中画出ABC V 关于原点O 的中心对称图形111A B C △;(2)在图中画出将ABC V 绕点O 顺时针旋转90︒得到的222A B C △;(3)已知点D 是平面内一点,若以A ,B ,C ,D 为顶点的四边形是平行四边形,写出点D 所有可能的坐标.18.如图,在平面直角坐标系中,O 为坐标原点,()3,4A 、()5,0B .仅用无刻度的直尺在给定网格中按下列步骤完成画图,并回答问题:(1)画线段AC ,使AC OB =,且AC OB ∥;(2)连接BC ,四边形AOBC 的形状为;(3)在线段AC 上找出一点D ,使45CBD ∠=︒(保留作图痕迹).19.为弘扬中华传统文化,某校组织八年级800名学生参加汉字听写大赛为了解学生整体听写能力,从中抽取部分学生的成绩(得分取正整数,满分为100分)进行统计分析,得到如下所示的频数分布表:请根据尚未完成的表格,解答下列问题:(1)本次抽样调查的样本容量为___________,表中m =___________,n ___________;(2)补全图中所示的频数分布直方图;(3)若成绩超过80分为优秀,则该校八年级学生中汉字听写能力优秀的约有多少人? 20.如图,在ABCD Y 中,对角线AC BD 、相交于点O ,且6104AC BD AB ===,,. (1)求BAC ∠的度数;(2)求ABCD Y 的面积.21.如图,请在下列四个关系中,选出两个恰当的关系作为条件,推出四边形ABCD 是平行四边形,并予以证明.(写出一种即可)关系:①AD ∥BC ,②AB =CD ,③∠A =∠C ,④∠B +∠C =180°.已知:在四边形ABCD 中,______,______; 求证:四边形ABCD 是平行四边形.22.如图,在ABCD Y 中,过点D 作DE AB ⊥于点E ,点F 在边CD 上,CF AE =,连接AF BF ,.(1)求证:四边形BFDE 是矩形;(2)已知60DAB ∠=︒,AF 是DAB ∠的平分线,若3AD =,求DC 的长度. 23.如图,在矩形ABCD 中,对角线BD 的垂直平分线MN 与AD 相交于点M ,与BD 相交于点O ,与BC 相交于点N ,连接BM 、DN .(1)求证:四边形BMDN 是菱形;(2)若4AB =,8AD =,求MD 的长.24.如图所示,矩形ABCD 中,3040AB AD ==,,P 为BC 上的一动点,过点P 作PM AC ⊥于点M ,PN BD ⊥于点N ,试问当P 点在BC 上运动时,PM PN +的值是否发生变化?若不变,请求出定值.25.如图1,将()R t 90A B C A ∠=︒V 纸片按照下列图示方式折叠:①将ABD △沿BD 折叠,使得点A 落在BC 边上的点M 处,折痕为BD ;②将BEF △沿EF 折叠,使得点B 与点D重合,折痕为EF ;③将DEF V 沿DF 折叠,点E 落在点'E 处,展开后如图2,BD 、PF 、DF 、DP 为图1折叠过程中产生的折痕.(1)求证:DP BC ∥;(2)若'DE 落在DM 的右侧,求C ∠的范围;(3)是否存在C ∠使得DE 与MDC ∠的角平分线重合,如存在,请求C ∠的大小;若不存在,请说明理由.26.如图,在ABCD Y 中,点O 是边AD 的中点,连接BO 并延长,交CD 的延长线于点E ,连接BD 、AE .(1)求证:四边形AEDB 是平行四边形; (2)请在图1中用一把无刻度的直尺画出AB 边的中点F (保留画图痕迹,无需证明过程);(3)若=90BDC ∠︒,4DC =,5BC =,动点P 从点E 出发,以每秒1个单位的速度沿EC CB BA --向终点A 运动,设点P 运动的时间为()0t t >秒. ①若点Q 为直线AB 上的一点,当P 运动时间t 为何值时,以B 、C 、P 、Q 构成的四边形BCPQ 可以是菱形?②在点P 运动过程中,直接写出点P 到四边形AECB 相邻两边距离相等时t 的值.。

八年级数学下第一次月考试卷

八年级数学下第一次月考试卷

八年级数学下第一次月考试卷2017八年级数学下第一次月考试卷数学集中并引导我们地精力、自尊和愿望去认识真理,并由此而生活在上帝地大家庭中。

正如文学诱导人们地情感与了解一样,数学则启发人们地想象与推理。

以下是店铺为大家提供的2017八年级数学下第一次月考试卷,欢迎大家学习参考。

一、选择题1.下列函数y= x,y=2x﹣1,y= ,y=2﹣3x中,是一次函数的有( )A.4个B.3个C.2个D.1个2.下列函数中,y随x的增大而减小的有( )A.y=﹣3x+1B.y=2x﹣1C.y=x﹣1D.y= x﹣53.一次函数y=x+1不经过的象限是( )A.第一象限B.第二象限C.第三象限D.第四象限4.一次函数y=kx+b的图象如图所示,则k、b的符号( )A.k<0,b>0B.k>0,b>0C.k<0,b<0D.k>0,b<05.下面哪个点不在函数y=﹣2x+3的图象上( )A.(﹣5,13)B.(0.5,2)C.(3,0)D.(1,1)6.一次函数y=﹣5x+3的图象经过的象限是( )A.一,二,三B.二,三,四C.一,二,四D.一,三,四7.已知一次函数的图象与直线y=﹣x+1平行,且过点(8,2),那么此一次函数的解析式为( )A.y=﹣x﹣2B.y=﹣x﹣6C.y=﹣x+10D.y=﹣x﹣18.已知关于x的方程mx+x=2无解,那么m的值是( )A.m=0B.m≠0C.m≠﹣1D.m=﹣19.下列方程中,是二项方程的是( )A.x3+2=0B.x3+2x=0C.x4+2x3+1=0D. +5=010.汽车开始行驶时,油箱内有油40升,如果每小时耗油5升,则油箱内余油量Q(升)与行驶时间t(时)的函数关系用图象表示应为( )A. B. C. D.二、填空题11.一次函数y=4x﹣3的截距是.12.已知一次函数y=kx﹣2的图象经过点(﹣1,2),则k= .13.函数y=﹣2x+4与x轴的交点坐标为,与y轴的交点坐标为.14.直线y=3x+2是由直线y=3x﹣5向平移个单位得到的.15.如果一次函数y=(2m+3)x+1的函数值y随着x值增大而减小,那么m的取值范围是.16.函数y=﹣ x+1的图象经过第象限.17.已知点A(﹣1,a),B(2,b)在函数y=﹣3x+4的图象上,则a 与b的大小关系是.18.若直线y=kx+b经过第一、三、四象限,则k 0,b 0.19.在关于x的方程2ax﹣1=0(a≠0)中,把a叫做.20.已知关于x的方程2x2+mx﹣1=0是二项方程,那么m= .三、简答题21.在实数范围内解下列方程(1)x2﹣9=0(2)8(x﹣1)3﹣27=0.22.解下列关于x的方程.(1)a2x+x=1;(2)b(x+3)=4.23.已知等腰三角形的周长为12cm,若底边长为y cm,一腰长为x cm.(1)写出y与x的函数关系式;(2)求自变量x的取值范围.24.已知一次函数图象经过点A(1,3)和B(2,5).求:(1)这个一次函数的解析式.(2)当x=﹣3时,y的值.25.已知函数y=(2m+1)x+m﹣3,(1)若函数图象经过原点,求m的值;(2)若这个函数是一次函数,且y随着x的增大而减小,求m的取值范围.26.已知一次函数y=kx+b的图象如图所示:(1)函数值y随x的增大而;(2)当x 时,y>0;(3)当x<0时,y的取值范围是;(4)根据图象写出一次函数的解析式为.27.某移动公司采用分段计费的方法来计算话费,月通话时间x(分钟)与相应话费y(元)之间的函数图象如图所示:(1)月通话为100分钟时,应交话费元;(2)当x≥100时,求y与x之间的函数关系式;(3)月通话为280分钟时,应交话费多少元?2015-2016学年上海市宝山区XX中学八年级(下)第一次月考数学试卷参考答案与试题解析一、选择题1.下列函数y= x,y=2x﹣1,y= ,y=2﹣3x中,是一次函数的有( )A.4个B.3个C.2个D.1个【考点】一次函数的定义.【分析】根据一次函数的定义进行判断.【解答】解:y= x属于正比例函数,是特殊的一次函数,属于一次函数;y=2x﹣1,y=2﹣3x符合一次函数的定义,属于一次函数,y= 属于反比例函数.综上所述,一次函数的个数是3个.故选:B.【点评】本题考查了一次函数的定义.注意:正比例函数是特殊的一次函数.2.下列函数中,y随x的增大而减小的有( )A.y=﹣3x+1B.y=2x﹣1C.y=x﹣1D.y= x﹣5【考点】一次函数的性质.【分析】根据一次函数的增减性,当k<0时y随x的增大而减小可求得答案.【解答】解:在y=kx+b(k≠0)中,当k<0时,y随x的增大而减小,在四个选项中,只有A选项y=﹣3x+1中的k=﹣3<0,∴在y=﹣3x+1中,y随x的增大而减小,故选A.【点评】本题主要考查一次函数的性质,掌握一次函数的增减性是解题的关键,即在y=kx+b(k≠0)中,当k<0时,y随x的增大而减小,当k>0时,y随x的增大而增大.3.一次函数y=x+1不经过的象限是( )A.第一象限B.第二象限C.第三象限D.第四象限【考点】一次函数图象与系数的关系.【分析】直接根据一次函数的图象与系数的关系求出一次函数y=x+1经过的象限即可.【解答】解:∵一次函数y=x+1中,k=1>0,b=1>0,∴此函数的图象经过一、二、三象限,不经过第四象限.故选D.【点评】本题考查的是一次函数的图象与系数的关系,熟知一次函数y=kx+b(k≠0)中,当k>0,b>0时函数的图象在一、二、三象限是解答此题的关键.4.一次函数y=kx+b的图象如图所示,则k、b的符号( )A.k<0,b>0B.k>0,b>0C.k<0,b<0D.k>0,b<0【考点】一次函数图象与系数的关系.【分析】根据图象在坐标平面内的位置关系确定k,b的取值范围,从而求解.【解答】解:由一次函数y=kx+b的图象经过第一、二、四象限,又有k>0时,直线必经过一、三象限;故知k>0.再由图象过而、四象限,即直线与y轴正半轴相交,所以b>0.则k、b的符号k<0,b>0.故选A.【点评】本题主要考查一次函数图象在坐标平面内的位置与k、b 的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限;k<0时,直线必经过二、四象限;b>0时,直线与y轴正半轴相交;b=0时,直线过原点;b<0时,直线与y轴负半轴相交.5.下面哪个点不在函数y=﹣2x+3的图象上( )A.(﹣5,13)B.(0.5,2)C.(3,0)D.(1,1)【考点】一次函数图象上点的坐标特征.【专题】计算题.【分析】把每个选项中点的横坐标代入函数解析式,判断纵坐标是否相符.【解答】解:A、当x=﹣5时,y=﹣2x+3=13,点在函数图象上;B、当x=0.5时,y=﹣2x+3=2,点在函数图象上;C、当x=3时,y=﹣2x+3=﹣3,点不在函数图象上;D、当x=1时,y=﹣2x+3=1,点在函数图象上;故选C.【点评】本题考查了点的坐标与函数解析式的关系,当点的横纵坐标满足函数解析式时,点在函数图象上.6.一次函数y=﹣5x+3的图象经过的象限是( )A.一,二,三B.二,三,四C.一,二,四D.一,三,四【考点】一次函数的性质.【分析】根据直线解析式知:k<0,b>0.由一次函数的性质可得出答案.【解答】解:∵y=﹣5x+3∴k=﹣5<0,b=3>0∴直线经过第一、二、四象限.故选C.【点评】能够根据k,b的符号正确判断直线所经过的象限.7.已知一次函数的图象与直线y=﹣x+1平行,且过点(8,2),那么此一次函数的解析式为( )A.y=﹣x﹣2B.y=﹣x﹣6C.y=﹣x+10D.y=﹣x﹣1【考点】两条直线相交或平行问题;待定系数法求一次函数解析式.【专题】待定系数法.【分析】根据一次函数的图象与直线y=﹣x+1平行,且过点(8,2),用待定系数法可求出函数关系式.【解答】解:由题意可得出方程组,解得:,那么此一次函数的解析式为:y=﹣x+10.故选:C.【点评】本题考查了两条直线相交或平行问题,由一次函数的一般表达式,根据已知条件,列出方程组,求出未知数的值从而求得其解析式;求直线平移后的解析式时要注意平移时k的值不变,只有b发生变化.8.已知关于x的方程mx+x=2无解,那么m的值是( )A.m=0B.m≠0C.m≠﹣1D.m=﹣1【考点】一元一次方程的解.【分析】根据方程无解可得出m的值.【解答】解:假设mx+x=2有解,则x= ,∵关于x的方程mx+x=2无解,∴m+1=0,∴m=﹣1时,方程无解.故选:D.【点评】本题考查了一元一次方程的解,掌握一元一次方程的解是解题的关键.9.下列方程中,是二项方程的是( )A.x3+2=0B.x3+2x=0C.x4+2x3+1=0D. +5=0【考点】高次方程.【分析】根据二项方程的定义对各选项进行判断.【解答】解:x2+2=0为二项方程;x3+2x=0为三次方程;x4+2x3+1=0为四次方程; +5=0为分式方程.故选A.【点评】本题考查了高次方程:通过适当的方法,把高次方程化为次数较低的方程求解.所以解高次方程一般要降次,即把它转化成二次方程或一次方程.也有的通过因式分解来解.10.汽车开始行驶时,油箱内有油40升,如果每小时耗油5升,则油箱内余油量Q(升)与行驶时间t(时)的函数关系用图象表示应为( )A. B. C. D.【考点】函数的图象.【分析】由已知列出函数解析式,再画出函数图象,注意自变量的取值范围.【解答】解:由题意得函数解析式为:Q=40﹣5t,(0≤t≤8)结合解析式可得出图象.故选:B.【点评】此题主要考查了函数图象中由解析式画函数图象,特别注意自变量的取值范围决定图象的画法.。

精品:江苏省泰州市姜堰区2015-2016学年八年级下学期第一次月度联考数学试题(解析版)

精品:江苏省泰州市姜堰区2015-2016学年八年级下学期第一次月度联考数学试题(解析版)

2015-2016学年度第二学期第一次月度联考八年级数学试题一、选择题(每题3分,共18分)(请将答案填入下列表格中)1.下列既是中心对称图形又是轴对称图形的是()A.平行四边形 B.三角形 C.菱形 D.梯形【答案】C.【解析】试题解析:A、不是轴对称图形,是中心对称图形;B、是轴对称图形,不是中心对称图形;C、是轴对称图形,也是中心对称图形;D、是轴对称图形,不是中心对称图形.故选C.考点:1.中心对称图形;2.轴对称图形.2.下列说法正确的是()A.“购买一张彩票就中奖”是不可能事件;B.“抛掷一枚质地均匀的骰子,向上一面的点数是6”是随机事件;C.了解我国青年人喜欢的电视节目应做普查;D.从扇形统计图中,可以直接得到各部分的具体数值。

【答案】B.【解析】试题解析:“购买一张彩票就中奖”是随机事件,A错误;“抛掷一枚质地均匀的骰子,向上一面的点数是6”是随机事件,B正确;了解我国青年人喜欢的电视节目应做抽样调查,C错误;从扇形统计图中,可以直接得到各部分的百分比,D错误.故选B.考点:1.随机事件;2.全面调查与抽样调查;3.扇形统计图.3.如图,在 ABCD中,下列结论错误..的是()A.∠ABD=∠BDCB.∠BAD=∠BCDC. AB=CDD.AC⊥BD【答案】C .【解析】试题解析:A 、∵四边形ABCD 平行四边形,∴AB ∥CD ,∴∠ABD=∠CDB ,故选项A 正确,不合题意;B 、∵四边形ABCD 平行四边形,∴∠BAD=∠BCD ,故选项B 正确,不合题意;C 、四边形ABCD 平行四边形,无法确定AC ⊥BD ,故选项C 错误,符合题意;D 、∵四边形ABCD 平行四边形,∴AB=CD ,故选项D 正确,不合题意;故选C .考点:平行四边形的性质.4.若反比例函数xk y 的图像经过点(2,-1),则此反比例的图像在( ) A .第一、二象限 B .第一、三象限 C .第二、三象限 D .第二、四象限【答案】D .【解析】试题解析:点(2,-1)在第四象限,则该反比例函数的图象的两个分支在第二、四象限.故选D .考点:反比例函数的性质.5.如图,☐ABCD 的对角线AC,BD 相交于点O ,下列条件可使的☐ABCD 为菱形的是( )A .AC=BDB .∠DAB=∠DCBC . AD=BCD .∠AOD=90º【答案】D .【解析】试题解析:添加∠AOD=90°可根据对角线互相垂直的平行四边形是菱形可证明▱ABCD 为菱形,故选D .考点:菱形的判定.6.如图,一次函数的图像与反比例函数的图像相交于A,B 两点,则图中使反比例函数的值小于一次函数的值的x 的取值范围是 ( )A .x <-1B .x <-1或0<x <2C .x >2D . -1<x <0或x >2【答案】C .【解析】试题解析:由一次函数与反比例函数的图象相交于A 、B 两点,图中使反比例函数的值小于一次函数的值的x 的取值范围是:x <-1,或0<x <2.故选C .考点:反比例函数与一次函数的交点问题.二、填空题(本题每空3分,共30分)7.一次数学测验,100名学生中有25名得了优秀,则优秀人数的频率是 。

江苏省泰州市姜堰区2014-2015学年八年级下学期期中考试数学试题苏科版

江苏省泰州市姜堰区2014-2015学年八年级下学期期中考试数学试题苏科版



y
y
y(km/h) 和行车时间 x(h) 之间的函数图像是
y
y
Ox A
Ox B
O
x
C
Ox D
5.平行四边形 ABCD 中, AC,BD 是两条对角线,如果添加一个条件,即可推出平行四边
形 ABCD 是矩形,那么这个条件是(

A . AB=BC
B. AC=BD
C. AC ⊥ BD
D .AB ⊥ BD
姜堰区 2014-2015 学年度第二学期期中测试
八年级数学试题
一、选择题
1.下面的图形中,是中心对称图形的是(

A.
B.
C.
D.
2.要调查姜堰城区八年级 5000 名学生了解“溱潼会船节” 的情况, 下列调查方式最合适的
是(
)
A .在某校八年级选取 100 名女生;
B .在某校八年级选取 100 名男生;
C.在某校八年级选取 100 名学生;
D.在城区 5000 名八年级学生中随机选取 100 名学生.
3.下列事件是随机事件的是(

A .在一个标准大气压下,加热到 100℃,水沸腾;
B .购买一张福利彩票,中奖;
C. 2 的绝对值小于 0 ;
D .在一个仅装着白球和黑球的袋中摸球,摸出红球.
4.小明乘车从姜堰到泰州,行车的平均速度
k
6.如图,已知双曲线 y
(k 0) 经过直角三角形
Hale Waihona Puke xAB 相交于点 C.若△ AOC 的面积为 9,则 k 的(
A. 4
B. 6
C. 9
D . 12
OAB 斜边 OA 的中点 D,且与直角边 )

八年级上册第一次月考数学试题

八年级上册第一次月考数学试题

2015—2016学年第一学期第一次月考检测八年级数学试题时间:100分钟 分值:120分一. 选择题(本题共12个小题,每小题3分,共36分) 1. 下列图形是轴对称图形的有( )A.2个B.3个C.4个D.5个2.一只小狗正在平面镜前欣赏自己的全身像(如图所示),此时,它所看到的全身像是( )3用直尺和圆规作一个角等于已知角的示意图如下,则说明A O B AOB '''=∠∠的依据是( )A.SSS B.SAS C.ASA D.AAS(第3题图) (第5题图) 4. 下列各组图形中,是全等形的是( )A.两个含60°角的直角三角形B.腰对应相等的两个等腰直角三角形C.边长为3和4的两个等腰三角形D.一个钝角相等的两个等腰三角形 5.如图,∠BAC=130°,若MP 和QN 分别垂直平分AB 和AC,则∠PAQ 等于( )MQA PN CBAO CBDA 'C 'B 'D 'A.50°B.75°C.80°D.105°6.如图在不等边△ABC中,PM⊥AB,垂足为M,PN⊥AC,垂足为N,且PM=PN,Q在AC上,PQ=QA,下列结论:①AN=AM,②QP∥AM,③△BMP≌△QNP,其中正确的个数有()A. 0个B. 1个C. 2个D. 3个(第6题图)(第7题图)(第8题图)7.如图,△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于D,DE⊥AB于E,且AB=6㎝,则△DEB的周长是()A.6㎝B.4㎝C.10㎝D.以上都不对8.如图,直线a,b,c表示三条相互交叉环湖而建的公路,现在建立一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有()A.1个B.2个C.3个D.4个9.到三角形的各顶点距离相等的点是()A.三角形的三条角平分线的交点 C.三角形的三条中线的交点B.三角形的三条高的交点 D.三角形的三边的垂直平分线的交点10.已知∠AOB=30°,点P在∠AOB的内部,P1与P关于OA对称,P2与P关于OB对称,则△P1OP2是()A.含30°角的直角三角形;B.顶角是30的等腰三角形;C.等边三角形D.等腰直角三角形.11平面上有A、B两个点,以线段AB为一边作等腰直角三角形能作( )A.3个 B.4个 C.6个 D.无数个12.等腰三角形一腰上的高与底边所成的角等于()A .顶角B .顶角的一半C .顶角的三分之一D .底角的一半 二. 填空题(本题共5个小题,每小题4分,共20分)13.在△ABC 中,AD 为BC 边上的中线,若AC=5,中线AD=4,则边AB 的取值范围是 . 14.已知点M (a ,-4)与点N (6,b )关于直线2x 对称,那么a -b 等于 . 15.如图,△ABC 中,AD ⊥BC 于D ,BE ⊥AC 于E ,AD 交EF 于F ,若BF=AC ,则∠ABC 等于 .16.等腰三角形的一个外角等于100°,则与它不相邻的两个内角的度数分别为 . 17. 如图,长方形纸片ABCD ,M 为AD 边的中点,将纸片沿BM 、CM 折叠,使A 点落在A 1处,D 点落在D 1处,若∠1=40°,则∠BMC= .(第15题图)三、解答题(共64分)18.(本题12分,每小题6分)作图题:(1)在两条公路的交叉处有两个村庄C 、D ,政府想在交叉处的内部建一座加油站P ,并且使加油站到村庄C 、D 的距离和两条公路的距离相等。

江苏省泰州市姜堰区姜堰区实验初级中学2023-2024学年八年级上学期10月月考数学试题

江苏省泰州市姜堰区姜堰区实验初级中学2023-2024学年八年级上学期10月月考数学试题

江苏省泰州市姜堰区姜堰区实验初级中学2023-2024学年八年级上学期10月月考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.围棋起源于中国,古代称之为“弈”,至今已有四千多年的历史.下列由黑白棋子摆成的图案是轴对称图形的是()A .B .C .D .2.如图,已知AB AD =,那么添加下列一个条件后,仍无法判定ABC ADC △≌△的是()A .CB CD =B .BCA DAC ∠=∠C .BAC DAC∠=∠D .90B D ∠=∠=︒3.如图,在CD 上求一点P ,使它到OA ,OB 的距离相等,则P 点是()A .线段CD 的中点B .OA 与OB 的中垂线的交点C .CD 与AOB ∠的平分线的交点D .OA 与CD 的中垂线的交点4.根据下列条件能画出唯一ABC ∆的是()A .1AB =,2BC =,3CA =B .7AB =,5BC =,30A ∠=︒C .50A ∠=︒,=60B ∠︒,70C ∠=︒D . 3.5AC =, 4.8BC =,70C ∠=︒5.若ABC 与DEF 全等,且6070A B ∠=︒∠=︒,,则D ∠的度数不可能是()A .80︒B .70︒C .60︒D .50︒6.如图,在ABC 中,90BAC ∠=︒,2AB AC =,点D 是线段AB 的中点,将一块锐角为45︒的直角三角板按如图()ADE 放置,使直角三角板斜边的两个端点分别与A 、D 重合,连接BE 、CE ,CE 与AB 交于点.F 下列判断正确的有()①ACE △≌DBE ;②BE CE ⊥;③DE DF =;④DEF ACFS S =A .①②B .①②③C .①②④D .①②③④二、填空题位号码是,该号码实际是11.如图,OA OB =,12.如图所示的网格是正方形网格,13.如图,AE AB ⊥,且计算FH 的长为14.如图,ΔABC 的面积为8cm 2,AP 垂直∠为.15.如图,AD BE ,是ABC 的高线,AD 与的面积为12,则AF 的长度为.16.如图,在ABC 中,若分别以AB AC 、为边作AD AB =,AC AE =,DC BE 、交于点P ,连接含a 的代数式表示).(1)作出与ABC ∆关于MN 对称的图形△(2)若小正方形的边长为1,则18.如图,已知ABC ,Ð离相等。

江苏省泰州市姜堰市_八年级数学下学期期末试卷(含解析)苏科版【含答案】

江苏省泰州市姜堰市_八年级数学下学期期末试卷(含解析)苏科版【含答案】

江苏省泰州市姜堰市2015-2016学年八年级(下)期末数学试卷一、选择题:(本大题共6小题,每小题3分,计18分)1.下列式子中,为最简二次根式的是()A. B.C.D.2.如图图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.3.与分式﹣的值相等的是()A.﹣B.﹣C. D.4.已知实数a<0,则下列事件中是必然事件的是()A.3a>0 B.a﹣3<0 C.a+3>0 D.a3>05.矩形具有而平行四边形不一定具有的性质是()A.对角线互相平分B.两组对角相等C.对角线相等D.两组对边相等6.如图,△ABC的三个顶点分别为A(1,2),B(1,3),C(3,1).若反比例函数在第一象限内的图象与△ABC有公共点,则k的取值范围是()A.2≤k≤3 B.2≤k≤4 C.3≤k≤4 D.2≤k≤3.5二、填空题:(本大题共10小题,每小题3分,计30分)7.使有意义的x的取值范围是______.8.如图,将△ABC绕点A按顺时针方向旋转60°得△ADE,则∠BAD=______度.9.分式的值为0,那么x的值为______.10.若a<b,则可化简为______.11.若一元二次方程ax2+bx﹣2016=0有一根为x=﹣1,则a﹣b的值为______.12.在菱形ABCD中,对角线AC,BD的长分别是6和8,则菱形的周长是______.13.如图,在Rt△ABC中,∠ACB=90°,点D,E,F分别为AB,AC,BC的中点.若CD=5,则EF的长为______.14.某药品2014年价格为每盒120元,经过两年连续降价后,2016价格为每盒76.8元,设这两年该药品价格平均降低率为x,根据题意可列方程为______.15.已知A(m,2)与B(1,m﹣3)是反比例函数图象上的两个点,则m的值为______.16.如图,矩形ABCD中,AB=7cm,BC=3cm,P、Q两点分别从A、B两点同时出发,沿矩形ABCD的边逆时针运动,速度均为1cm/s,当点P到达B点时两点同时停止运动,若PQ长度为5cm时,运动时间为______s.三、解答题:(本大题共10小题,计102分)17.(10分)(2016春•泰州期末)计算:(1)(2).18.(10分)(2016春•泰州期末)解下列一元二次方程:(1)2x2﹣3=3x(用公式法解)(2)(x﹣3)2=3x﹣9.19.先化简,再求值:,其中.20.一个不透明的口袋中有7个红球,5个黄球,4个绿球,这些球除颜色外没有其它区别,现从中任意摸出一球,如果要使摸到绿球的可能性最大,需要在这个口袋中至少再放入多少个绿球?请简要说明理由.21.(10分)(2016春•泰州期末)2016年某校组织学生进行综合实践活动,准备从以下几个景点中选择一处进行参观. A景点:溱潼古镇;B景点:溱湖湿地公园;C景点:“田园牧歌”;D景点:河横生态园,为了解学生最喜爱哪一景点,随机抽取了部分学生进行调查,并绘制了如下不完整的统计图.(1)求本次被调查的学生人数;(2)补全条形统计图;(3)该校共有1200名学生,请估计全校最喜爱溱湖湿地公园的人数是多少?22.(10分)(2016春•泰州期末)如图,等边△ABC的边长是2,D、E分别为AB、AC的中点,过E点作EF∥DC交BC的延长线于点F,连接CD.(1)求证:四边形CDEF是平行四边形;(2)求EF的长.23.(10分)(2016春•泰州期末)已知关于x的方程x2﹣3x+2﹣m2=0(1)求证:对于任意实数m,方程总有两个不相等的实数根;(2)若方程有一个根是﹣1,求m得值及方程的另一个根.24.(10分)(2016春•泰州期末)如图,一块长为20米,宽为8米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为56米2,两块绿地之间及周边留有宽度相等的人形通道.(1)求人行通道的宽度;(2)一名园丁要对这56米2的绿地进行绿化,他在绿化了16米2后将效率提高了25%,结果提前1小时完成任务,求园丁原计划每小时完成多少米2.25.(12分)(2016春•泰州期末)如图,已知▱ABCD和▱ABEF,连接AC、DF、CE、AE,AC 与DF交于点G,若AC=DF=AE.(1)求证:△AEC为等边三角形;(2)求∠AGF的度数;(3)若点F、B、C在同一直线上,求证:四边形ABEF为菱形.26.(14分)(2016春•泰州期末)如图,已知A(﹣4,n),B(3,4)是一次函数y1=kx+b的图象与反比例函数的图象的两个交点,过点D(t,0)(0<t<3)作x轴的垂线,分别交双曲线和直线y1=kx+b于P、Q两点.(1)求反比例函数和一次函数的解析式;(2)当t为何值时,;(3)以PQ为边在直线PQ的右侧作正方形PQMN,试说明:边QM与双曲线(x>0)始终有交点.2015-2016学年江苏省泰州市姜堰市八年级(下)期末数学试卷参考答案与试题解析一、选择题:(本大题共6小题,每小题3分,计18分)1.下列式子中,为最简二次根式的是()A. B.C.D.【考点】最简二次根式.【分析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【解答】解:A、是最简二次根式,正确;B、,被开方数含能开得尽方的因数,不是最简二次根式;C、,被开方数含分母,不是最简二次根式;D、,分母中含有二次根式,不是最简二次根式;故选:A.【点评】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.2.如图图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念进行判断即可.【解答】解:A、是轴对称图形,不是中心对称图形;B、是轴对称图形,是中心对称图形;C、不是轴对称图形,是中心对称图形;D、是轴对称图形,不是中心对称图形.故选:B.【点评】本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.与分式﹣的值相等的是()A.﹣B.﹣C. D.【考点】分式的值.【分析】依据分式的基本性质对分式进行变形即可.【解答】解:﹣ =﹣=.故选:D.【点评】本题主要考查的是分式的值,依据分式的基本性质对分式进行适当变形是解题的关键.4.已知实数a<0,则下列事件中是必然事件的是()A.3a>0 B.a﹣3<0 C.a+3>0 D.a3>0【考点】随机事件.【分析】首先由不等式的性质确定3a<0,a﹣3<0,a3>0;当a<﹣3时,a+3<0,当a=﹣3时,a+3=0,当﹣3<a<0时,a+3>0;然后根据随机事件定义求解即可求得答案.【解答】解:∵a<0,∴3a<0,a﹣3<0,a3>0;当a<﹣3时,a+3<0,当a=﹣3时,a+3=0,当﹣3<a<0时,a+3>0;故A属于不可能事件,B属于必然事件,C属于随机事件,D属于不可能事件.故选B.【点评】此题考查了随机事件的定义.注意理解随机事件的定义是解此题的关键.5.矩形具有而平行四边形不一定具有的性质是()A.对角线互相平分B.两组对角相等C.对角线相等D.两组对边相等【考点】矩形的性质;平行四边形的性质.【分析】根据矩形、平行四边形的性质一一判断即可解决问题.【解答】解:A、错误.对角线互相平分,矩形、平行四边形都具有的性质.B、错误.两组对角相等,矩形、平行四边形都具有的性质.C、正确.对角线相等,矩形具有而平行四边形不一定具有.D、错误.两组对边相等,矩形、平行四边形都具有的性质.故选C.【点评】本题考查矩形的性质、平行四边形的性质,解题的关键是熟练掌握平行四边形、矩形的性质,属于中考常考题型.6.如图,△ABC的三个顶点分别为A(1,2),B(1,3),C(3,1).若反比例函数在第一象限内的图象与△ABC有公共点,则k的取值范围是()A.2≤k≤3 B.2≤k≤4 C.3≤k≤4 D.2≤k≤3.5【考点】反比例函数的性质.【分析】根据△ABC三顶点的坐标可知,当k最小是反比例函数过点A,当k取最大值时,反比例函数与直线相切,且切点在线段BC上,由点A的坐标利用反比例函数图象上点的坐标特征可求出k的最小值,再由点B、C的坐标利用待定系数法求出直线BC的解析式,将其代入反比例函数中,令△=0即可求出k的最大值,从而得出结论.【解答】解:当反比例函数过点A时,k值最小,此时k=1×2=2;∵1×3=3×1,∴反比例函数图象与直线BC的切点在线段BC上,设直线BC的解析式为y=ax+b,∴有,解得:,∴直线BC的解析式为y=﹣x+4,将y=﹣x+4代入y=中,得:﹣x+4=,即x2﹣4x+k=0,∵反比例函数图象与直线BC只有一个交点,∴△=(﹣4)2﹣4k=0,解得:k=4.综上可知:2≤k≤4.故选B.【点评】本题考查了反比例函数图象上点的坐标特征、反比例函数的性质以及根的判别式,解题的关键是求出k的最小值与最大值.本题属于中档题,难度不大,解决该题型题目时,由点的坐标利用待定系数法求出直线解析式,将其代入反比例函数中利用相切求出k值是关键.二、填空题:(本大题共10小题,每小题3分,计30分)7.使有意义的x的取值范围是x≥2 .【考点】二次根式有意义的条件.【分析】当被开方数x﹣2为非负数时,二次根式才有意义,列不等式求解.【解答】解:根据二次根式的意义,得x﹣2≥0,解得x≥2.【点评】主要考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.8.如图,将△ABC绕点A按顺时针方向旋转60°得△ADE,则∠BAD= 60 度.【考点】旋转的性质.【分析】根据旋转的性质:对应点与旋转中心所连线段的夹角等于旋转角,依此即可求解.【解答】解:∵将△ABC绕点A按顺时针方向旋转60°得△ADE,∴∠BAD=60度.故答案为:60.【点评】本题考查了旋转的性质,主要利用了旋转角的确定,熟记旋转变换只改变图形的位置不改变图形的形状与大小是解题的关键.9.分式的值为0,那么x的值为 3 .【考点】分式的值为零的条件.【分析】分式的值为0的条件是:(1)分子为0;(2)分母不为0.两个条件需同时具备,缺一不可.据此可以解答本题.【解答】解:由题意可得:x2﹣9=0且x+3≠0,解得x=3.故答案为:3.【点评】此题主要考查了分式值为零的条件,关键是掌握分式值为零的条件是分子等于零且分母不等于零.注意:“分母不为零”这个条件不能少.10.若a<b,则可化简为b﹣a .【考点】二次根式的性质与化简.【分析】直接根据=﹣a(a<0)化简即可.【解答】解:∵a<b,∴a﹣b<0,∴=b﹣a,故答案为b﹣a.【点评】本题主要考查了二次根式的化简,解题的关键是掌握=a(a≥0),=﹣a (a<0),此题基础题,比较简单.11.若一元二次方程ax2+bx﹣2016=0有一根为x=﹣1,则a﹣b的值为2016 .【考点】一元二次方程的解.【分析】将x=﹣1代入已知一元二次方程,通过移项即可求得(a﹣b)的值.【解答】解:∵关于x的一元二次方程ax2+x﹣b=0的一根为﹣1,∴x=﹣1满足该方程,∴a﹣b﹣2016=0,∴a﹣b=2016.故答案是2016.【点评】本题考查的是一元二次方程的根即方程的解的定义.一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.即用这个数代替未知数所得式子仍然成立.12.在菱形ABCD中,对角线AC,BD的长分别是6和8,则菱形的周长是20 .【考点】菱形的性质.【分析】AC与BD相交于点O,如图,根据菱形的性质得AC⊥BD,OD=OB=BD=4,OA=OC=AC=3,AB=BC=CD=AD,则可在Rt△AOD中,根据勾股定理计算出AD=5,于是可得菱形ABCD的周长为20.【解答】解:AC与BD相交于点O,如图,∵四边形ABCD为菱形,∴AC⊥BD,OD=OB=BD=4,OA=OC=AC=3,AB=BC=CD=AD,在Rt△AOD中,∵OA=3,OB=4,∴AD==5,∴菱形ABCD的周长=4×5=20.故答案为20.【点评】本题考查了菱形的性质:菱形具有平行四边形的一切性质;菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角;菱形是轴对称图形,它有2条对称轴,分别是两条对角线所在直线.13.如图,在Rt△ABC中,∠ACB=90°,点D,E,F分别为AB,AC,BC的中点.若CD=5,则EF的长为 5 .【考点】三角形中位线定理;直角三角形斜边上的中线.【分析】已知CD是Rt△ABC斜边AB的中线,那么AB=2CD;EF是△ABC的中位线,则EF应等于AB的一半.【解答】解:∵△ABC是直角三角形,CD是斜边的中线,∴CD=AB,又∵EF是△ABC的中位线,∴AB=2CD=2×5=10cm,∴EF=×10=5cm.故答案为:5.【点评】此题主要考查了三角形中位线定理以及直角三角形斜边上的中线等知识,用到的知识点为:(1)直角三角形斜边的中线等于斜边的一半;(2)三角形的中位线等于对应边的一半.14.某药品2014年价格为每盒120元,经过两年连续降价后,2016价格为每盒76.8元,设这两年该药品价格平均降低率为x,根据题意可列方程为120(1﹣x)2=76.8 .【考点】由实际问题抽象出一元二次方程.【分析】设这两年该药品价格平均降低率为x,则第一次降价后每盒的价格是原价的1﹣x,第二次降价后每盒的价格是原价的(1﹣x)2,根据题意列方程解答即可.【解答】解:设这两年该药品价格平均降低率为x,根据题意列方程得:120(1﹣x)2=76.8,故答案为:120(1﹣x)2=76.8.【点评】此题考查了由实际问题抽象出一元二次方程,注意第二次降价后的价格是在第一次降价后的价格的基础上进行降价的.找到关键描述语,找到等量关系准确的列出方程是解决问题的关键.15.已知A(m,2)与B(1,m﹣3)是反比例函数图象上的两个点,则m的值为﹣3 .【考点】反比例函数图象上点的坐标特征.【分析】根据反比例函数中,k=xy为定值即可得出结论.【解答】解:∵A(m,2)与B(1,m﹣3)是反比例函数图象上的两个点,∴2m=m﹣3,解得m=﹣3.故答案为﹣3.【点评】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.16.如图,矩形ABCD中,AB=7cm,BC=3cm,P、Q两点分别从A、B两点同时出发,沿矩形ABCD的边逆时针运动,速度均为1cm/s,当点P到达B点时两点同时停止运动,若PQ长度为5cm时,运动时间为3或7 s.【考点】矩形的性质;勾股定理.【分析】根据题意,可以分两种情况讨论,分别求出相应的时间,即可解答本题.【解答】解:当点Q在BC段时,设运动时间为xs,则BQ=x,BP=7﹣x,∴PQ=5时,x2+(7﹣x)2=52,解得,x=3或x=4(舍去),当点Q在CD上时,设运动时间为xs,∴PQ=5时,(7﹣x﹣x+3)2+32=52,解得,x=7或x=3(舍去),故答案为:3或7.【点评】本题考查矩形的性质、勾股定理,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答问题.三、解答题:(本大题共10小题,计102分)17.(10分)(2016春•泰州期末)计算:(1)(2).【考点】二次根式的混合运算;零指数幂.【分析】(1)本题涉及二次根式的化简、去括号、零指数.在计算时,需要针对每个考点分别进行计算,然后根据二次根式的运算法则求得计算结果.(2)关键乘法法则进行计算.【解答】解:(1)原式=2+﹣1+1=;(2)原式=4﹣3=1.【点评】本题考查了零指数、二次根式的混合运算:先把各二次根式化为最简二次根式,在进行二次根式的乘除运算,注意应用乘法公式.18.(10分)(2016春•泰州期末)解下列一元二次方程:(1)2x2﹣3=3x(用公式法解)(2)(x﹣3)2=3x﹣9.【考点】解一元二次方程-因式分解法;解一元二次方程-公式法.【分析】(1)先把方程整理为一元二次方程的一般形式,再用公式法求出x的值即可;(2)先移项,再把方程化为两个因式积的形式,求出x的值即可.【解答】解:(1)原方程可化为2x2﹣3x﹣3=0,∵a=2,b=﹣3,c=﹣3,∴△=(﹣3)2﹣4×2×(﹣3)=9+24=33,∴x=,即x1=,x2=;(2)∵原方程可化为(x﹣3)2﹣3(x﹣3)=0,因式分解得,(x﹣3)(x﹣6)=0,∴x1=3,x2=6.【点评】本题考查的是利用因式分解法及公式法解一元二次方程,在解答此类问题时要根据方程的特点选择适当的方法.19.先化简,再求值:,其中.【考点】分式的化简求值.【分析】先算除法,再算加减,最后把a的值代入进行计算即可.【解答】解:原式=+•=+=,当a=+1时,原式==.【点评】本题考查的是分式的化简求值,分式中的一些特殊求值题并非是一味的化简,代入,求值.许多问题还需运用到常见的数学思想,如化归思想(即转化)、整体思想等,了解这些数学解题思想对于解题技巧的丰富与提高有一定帮助.20.一个不透明的口袋中有7个红球,5个黄球,4个绿球,这些球除颜色外没有其它区别,现从中任意摸出一球,如果要使摸到绿球的可能性最大,需要在这个口袋中至少再放入多少个绿球?请简要说明理由.【考点】可能性的大小.【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.利用要使摸到绿球的可能性最大,即袋中有不少于8个绿球得出答案即可.【解答】解:至少再放入4个绿球,理由:袋中有绿球4个,再至少放入4个绿球后,袋中有不少于8个绿球,数量最多这样摸到绿球的可能性最大.【点评】此题考查了概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.21.(10分)(2016春•泰州期末)2016年某校组织学生进行综合实践活动,准备从以下几个景点中选择一处进行参观. A景点:溱潼古镇;B景点:溱湖湿地公园;C景点:“田园牧歌”;D景点:河横生态园,为了解学生最喜爱哪一景点,随机抽取了部分学生进行调查,并绘制了如下不完整的统计图.(1)求本次被调查的学生人数;(2)补全条形统计图;(3)该校共有1200名学生,请估计全校最喜爱溱湖湿地公园的人数是多少?【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)用A景点人数除以其所占百分比;(2)用总人数乘以B景点的百分比求得其人数,再用总人数减去A、B、C三景点的人数可得D人数,补全条形图;(3)用B景点人数占总人数百分比乘以总体中学生总数即可得.【解答】解:(1)10÷25%=40,故本次被调查的学生人数为40人;(2)B人数为40×30%=12人,D人数为:40﹣10﹣12﹣15=3人,补全条形统计图如下:(3)1200×30%=360(人),答:估计全校最喜爱溱湖湿地公园的人数是360人.【点评】本题考查的是条形统计图和频数分布表的综合运用.读懂统计图表,从不同的统计图表中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.22.(10分)(2016春•泰州期末)如图,等边△ABC的边长是2,D、E分别为AB、AC的中点,过E点作EF∥DC交BC的延长线于点F,连接CD.(1)求证:四边形CDEF是平行四边形;(2)求EF的长.【考点】平行四边形的判定与性质;等边三角形的性质;三角形中位线定理.【分析】(1)直接利用三角形中位线定理得出DE∥BC,再利用平行四边形的判定方法得出答案;(2)利用等边三角形的性质结合平行四边形的性质得出DC=EF,进而求出答案.【解答】(1)证明:∵D、E分别为AB、AC的中点,∴DE是△ABC的中位线,∴DE BC,∵EF∥DC,∴四边形CDEF是平行四边形;(2)解:∵四边形DEFC是平行四边形,∴DC=EF,∵D为AB的中点,等边△ABC的边长是2,∴AD=BD=1,CD⊥AB,BC=2,∴DC=EF=.【点评】此题主要考查了等边三角形的性质以及平行四边形的判定与性质、三角形中位线定理等知识,正确掌握平行四边形的性质是解题关键.23.(10分)(2016春•泰州期末)已知关于x的方程x2﹣3x+2﹣m2=0(1)求证:对于任意实数m,方程总有两个不相等的实数根;(2)若方程有一个根是﹣1,求m得值及方程的另一个根.【考点】根与系数的关系;根的判别式.【分析】(1)若方程有两个不相等的实数根,则应有△=b2﹣4ac>0,故计算方程的根的判别式即可证明方程根的情况;(2)直接代入x=﹣1,求得m的值后,解方程即可求得另一个根.【解答】(1)证明:∵a=1,b=3,c=2﹣m2,∴△=32﹣4×1×(2﹣m2)=4m2+1,∵无论m取何值,m2≥0,∴4m2+1>0,即△>0,∴对于任意实数m,方程总有两个不相等的实数根.(2)解:把x=﹣1代入原方程得1+3+2﹣m2=0解得m=±,故原方程化为x2﹣3x﹣4=0,解得:x1=﹣1,x2=4,即另一个根为x=4.【点评】本题是对根的判别式与根与系数关系的综合考查,一元二次方程根的情况与判别式△的关系:(1)△>0方程有两个不相等的实数根;(2)△=0方程有两个相等的实数根;(3)△<0方程没有实数根.24.(10分)(2016春•泰州期末)如图,一块长为20米,宽为8米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为56米2,两块绿地之间及周边留有宽度相等的人形通道.(1)求人行通道的宽度;(2)一名园丁要对这56米2的绿地进行绿化,他在绿化了16米2后将效率提高了25%,结果提前1小时完成任务,求园丁原计划每小时完成多少米2.【考点】一元二次方程的应用;分式方程的应用.【分析】(1)设人行通道的宽度为x米.将两个绿地平移到一起,然后用含x的是表示绿地的长与宽,最后依据面积为56平方米列方程求解即可;(2)设园丁原计划每小时完成x米2.接下来,依据园丁按计划完成40平方米与时间完成40平方米的时间差为1小时列方程求解即可.【解答】解:(1)设人行通道的宽度为x米.根据题意得:(20﹣3x)(8﹣2x)=56.整理得:3x2﹣32x+52=0.解得:x1=2,x2=29(舍去).答:人行通道的宽2米.(2)设园丁原计划每小时完成x米2.+1.解得:x=8.经检验x=8是原方程的解.答:园丁原计划每小时完成8米2.根据题意得:8米2【点评】本题主要考查的是一元二次方程和分式方程的应用,根据题意列出关于x的方程是解题的关键.25.(12分)(2016春•泰州期末)如图,已知▱ABCD和▱ABEF,连接AC、DF、CE、AE,AC 与DF交于点G,若AC=DF=AE.(1)求证:△AEC为等边三角形;(2)求∠AGF的度数;(3)若点F、B、C在同一直线上,求证:四边形ABEF为菱形.【考点】菱形的判定;等边三角形的判定与性质;平行四边形的性质.【分析】(1)直接利用平行四边形的性质和判定方法得出四边形FDCE是平行四边形,进而得出DF=EC,再利用已知求出答案;(2)利用等边三角形的性质结合平行四边形的性质得出答案;(3)利用等边三角形的性质结合平行四边形的对角线互相平分,进而得出AE⊥BF,即可得出答案.【解答】(1)证明:∵在▱ABCD和▱ABEF中,∴AB EF,AB DC,∴EF DC,∴四边形FDCE是平行四边形,∴FD=EC,∵AC=DF=AE,∴AE=AC=EC,∴△AEC为等边三角形;(2)解:∵△AEC为等边三角形,∴∠ECA=60°,∵四边形FDCE是平行四边形,∴DF∥EC,∴∠FGA=∠ECA=60°;(3)证明:如图所示:连接FB,AE与BF相交于点O,∵四边形ABEF是平行四边形,∴AO=EO,又∵△AEC为等边三角形,点F、B、C在同一直线上,∴CO⊥AE,∴AE⊥BF,∴平行四边形ABEF是菱形.【点评】此题主要考查了平行四边形的判定与性质以及等边三角形的判定与性质,正确应用平行四边形的性质是解题关键.26.(14分)(2016春•泰州期末)如图,已知A(﹣4,n),B(3,4)是一次函数y1=kx+b的图象与反比例函数的图象的两个交点,过点D(t,0)(0<t<3)作x轴的垂线,分别交双曲线和直线y1=kx+b于P、Q两点.(1)求反比例函数和一次函数的解析式;(2)当t为何值时,;(3)以PQ为边在直线PQ的右侧作正方形PQMN,试说明:边QM与双曲线(x>0)始终有交点.【考点】反比例函数与一次函数的交点问题;待定系数法求一次函数解析式;待定系数法求反比例函数解析式;正方形的性质.【分析】(1)根据点B的坐标求得反比例函数解析式,再根据反比例函数求得点A的坐标,最后根据待定系数法求得一次函数解析式即可;(2)△APQ与△BPQ有一条公共边,根据同底的三角形的面积之比等于高之比,列出关于t 的方程进行求解;(3)设直线QM与双曲线交于C点,根据点P、Q、C三点的坐标,用t的代数式表示出QM ﹣QC,再根据t的取值范围判断代数式的值的符号即可.【解答】解:(1)将B(3,4)代入,得m=3×4=12,∴反比例函数解析式为,将A(﹣4,n)代入反比例函数,得n=﹣3,∴A(﹣4,﹣3)∵直线y1=kx+b过点A和点B,∴,解得,∴一次函数的解析式为y=x+1;(2)如图1,∵PQ⊥x轴,∴以PQ为底边时,△APQ与△BPQ的面积之比等于PQ边上的高之比,又∵,∴,∵点D(t,0),A(﹣4,﹣3),B(3,4),∴,即,解得;(3)如图2,设直线QM与双曲线交于C点.依题意可知:P(t,),Q(t,t+1),C(,t+1),∴QM=PQ=,QC=,∴QM﹣QC==,∵0<t<3,∴0<t(t+1)<12,∴>1,即QM﹣QC>0,∴QM>QC,即边QM与双曲线始终有交点.【点评】本题主要考查了一次函数与反比例函数的交点问题,利用定系数法求得函数解析式是解决问题的关键.解此类试题时注意:同底的三角形的面积之比等于高之比;等高的三角形的面积之比等于底边之比.。

2015-2016学年八年级(下)期中数学试卷含答案解析

2015-2016学年八年级(下)期中数学试卷含答案解析

2015-2016学年八年级(下)期中数学试卷一、选择题(本题共10小题,每小题3分,共30分)1.使式子有意义,则x的取值范围是()A.x>5 B.x≠5 C.x≥5 D.x≤52.下列二次根式中,属于最简二次根式的是()A.B.C.D.3.下列运算正确的是()A.()2=4 B. =﹣4 C. =×D.﹣=4.如图,直角三角形的三边长分为a、b、c,下列各式正确的是()A.a2+b2=c2B.b2+c2=a2C.c2+a2=b2D.以上都不对5.一个直角三角形的两边长分别为4cm、3cm,则第三条边长为()A.5cm B.4cm C. cm D.5cm 或cm6.下列各组数中不能作为直角三角形的三边长的是()A.1.5,2,3 B.7,24,25 C.6,8,10 D.9,12,157.如图,在▱ABCD中,已知AD=5cm,AB=3cm,AE平分∠BAD交BC边于点E,则EC等于()A.1cm B.2cm C.3cm D.4cm8.菱形具有而矩形不具有的性质是()A.对角线互相平分B.四条边都相等C.对角相等 D.邻角互补9.两条对角线互相垂直平分且相等的四边形是()A.矩形 B.菱形 C.正方形D.都有可能10.如图,在矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在点D′处,则重叠部分△AFC的面积为()A.6 B.8 C.10 D.12二、填空题(本题共10小题,每小题4分,共40分)11.如图,△ABC中,D、E分别是AB、AC边的中点,且DE=7cm,则BC= cm.12.写出命题“对顶角相等”的逆命题.13.比较大小:.(填“>、<、或=”)14.如果+(b﹣7)2=0,则的值为.15.如图,有两棵树,一棵高10m,另一棵高4m,两树相距8m.一只小鸟从一棵树的树尖飞到另一棵树的树尖,那么这只小鸟至少要飞行m.16.如图,一只蚂蚁从长为7cm、宽为5cm,高是9cm的长方体纸箱的A点沿纸箱爬到B点,那么它所走的最短路线的长是cm.17.若矩形的对角线长为8cm,两条对角线的一个交角为60°,则该矩形的面积为cm2.18.菱形的两条对角线长分别为6和8,则这个菱形的周长为.19.若两对角线长分别为4cm和6cm的菱形的面积与一个正方形的面积相等,那么该正方形的边长为cm.20.如图,在矩形ABCD中,AD=4,AB=3,MN∥BC分别交AB、CD于点M、N,在MN上任取两点P、Q,那么图中阴影部分的面积是.三.解答题(共50分)21.计算:(1)(﹣)2﹣+(2)(3﹣)﹣(+)22.已知a=3+,b=3﹣,分别求下列代数式的值:(1)a2﹣b2(2)a2﹣2ab+b2.23.如图,在四边形ABCD中,∠A=90°,AD=3,AB=4,BC=12,CD=13,试判断△BCD的形状,并说明理由.24.如图,折叠矩形的一边AD,使点D落在BC边的点F处,已知AB=8cm,BC=10cm,求EC的长.25.如图,E、F是平行四边形ABCD的对角线AC上的两点,AE=CF.求证:四边形DEBF是平行四边形.26.如图,四边形ABCD是平行四边形,AB=10,AD=8,AC⊥BC,求AC、OA以及平行四边形ABCD的面积.27.已知:如图,在矩形ABCD中,M,N分别是边AD,BC的中点,E,F分别是线段BM,CM的中点.(1)求证:△ABM≌△DCM;(2)判断四边形MENF是什么特殊四边形,并证明你的结论;(3)当AD:AB= 时,四边形MENF是正方形(只写结论,不需证明).2015-2016学年八年级(下)期中数学试卷参考答案与试题解析一、选择题(本题共10小题,每小题3分,共30分)1.使式子有意义,则x的取值范围是()A.x>5 B.x≠5 C.x≥5 D.x≤5【考点】二次根式有意义的条件.【分析】先根据二次根式有意义的条件列出关于x的不等式,求出x的取值范围即可.【解答】解:∵式子有意义,∴x﹣5≥0,解得x≥5.故选C.【点评】本题考查的是二次根式有意义的条件,熟知二次根式中的被开方数是非负数是解答此题的关键.2.下列二次根式中,属于最简二次根式的是()A.B.C.D.【考点】最简二次根式.【分析】根据最简二次根式的条件进行判断即可.【解答】解: =,被开方数含分母,不是最简二次根式;=,被开方数含分母,不是最简二次根式;=2,被开方数中含能开得尽方的因数,不是最简二次根式;是最简二次根式,故选:D.【点评】本题考查的是最简二次根式的概念,最简二次根式的条件:(1)被开方数的因数是整数或字母,因式是整式;(2)被开方数中不含有可化为平方数或平方式的因数或因式.3.下列运算正确的是()A.()2=4 B. =﹣4 C. =×D.﹣=【考点】二次根式的混合运算.【分析】分别利用二次根式的性质以及结合二次根式混合运算法则化简求出答案.【解答】解:A、()2=4,正确;B、=4,故此选项错误;C、=×,故此选项错误;D、﹣无法计算,故此选项错误;故选:A.【点评】此题主要考查了二次根式的混合运算以及二次根式的化简,正确掌握二次根式的性质是解题关键.4.如图,直角三角形的三边长分为a、b、c,下列各式正确的是()A.a2+b2=c2B.b2+c2=a2C.c2+a2=b2D.以上都不对【考点】勾股定理.【分析】由勾股定理即可得出结论,注意a是斜边长.【解答】解:∵∠A=90°,∴由勾股定理得:b2+c2=a2.故选:B.【点评】本题考查了勾股定理;熟记勾股定理是解决问题的关键.5.一个直角三角形的两边长分别为4cm、3cm,则第三条边长为()A.5cm B.4cm C. cm D.5cm 或cm【考点】勾股定理.【分析】题中没有指明哪个是直角边哪个是斜边,故应该分情况进行分析.【解答】解:(1)当两边均为直角边时,由勾股定理得,第三边为5cm;(2)当4为斜边时,由勾股定理得,第三边为cm;故直角三角形的第三边应该为5cm或cm.故选:D.【点评】此题主要考查学生对勾股定理的运用,注意分情况进行分析.6.下列各组数中不能作为直角三角形的三边长的是()A.1.5,2,3 B.7,24,25 C.6,8,10 D.9,12,15【考点】勾股定理的逆定理.【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个三角形是直角三角形.如果没有这种关系,这个就不是直角三角形.【解答】解:A、1.52+22≠32,不符合勾股定理的逆定理,故正确;B、72+242=252,符合勾股定理的逆定理,故错误;C、62+82=102,符合勾股定理的逆定理,故错误;D、92+122=152,符合勾股定理的逆定理,故错误.故选A.【点评】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.7.如图,在▱ABCD中,已知AD=5cm,AB=3cm,AE平分∠BAD交BC边于点E,则EC等于()A.1cm B.2cm C.3cm D.4cm【考点】平行四边形的性质.【专题】几何图形问题.【分析】根据平行四边形的性质和角平分线的性质可以推导出等角,进而得到等腰三角形,推得AB=BE,所以根据AD、AB的值,求出EC的值.【解答】解:∵AD∥BC,∴∠DAE=∠BEA∵AE平分∠BAD∴∠BAE=∠DAE∴∠BAE=∠BEA∴BE=AB=3∵BC=AD=5∴EC=BC﹣BE=5﹣3=2故选:B.【点评】本题主要考查了平行四边形的性质,在平行四边形中,当出现角平分线时,一般可构造等腰三角形,进而利用等腰三角形的性质解题.8.菱形具有而矩形不具有的性质是()A.对角线互相平分B.四条边都相等C.对角相等 D.邻角互补【考点】矩形的性质;菱形的性质.【专题】证明题.【分析】与平行四边形相比,菱形的四条边相等、对角线互相垂直;矩形四个角是直角,对角线相等.【解答】解:A、对角线互相平分是平行四边形的基本性质,两者都具有,故A不选;B、菱形四条边相等而矩形四条边不一定相等,只有矩形为正方形时才相等,故B符合题意;C、平行四边形对角都相等,故C不选;D、平行四边形邻角互补,故D不选.故选:B.【点评】考查菱形和矩形的基本性质.9.两条对角线互相垂直平分且相等的四边形是()A.矩形 B.菱形 C.正方形D.都有可能【考点】多边形.【分析】如果一个四边形的两条对角线互相垂直平分且相等,那么这个四边形是正方形,理由为:利用对角线互相平分的四边形为平行四边形得到ABCD为平行四边形,再利用对角线互相垂直的平行四边形为菱形,再利用对角线相等的菱形为正方形即可得证.【解答】解:如果一个四边形的两条对角线互相垂直平分且相等,那么这个四边形是正方形,已知:四边形ABCD,AC⊥BD,OA=OC,OB=OD,AC=BD,求证:四边形ABCD为正方形,证明:∵OA=OC,OB=OD,∴四边形ABCD为平行四边形,∵AC⊥BD,∴平行四边形ABCD为菱形,∵AC=BD,∴四边形ABCD为正方形.故选C.【点评】此题考查了正方形的判定,以及角平分线定理,熟练掌握正方形的判定方法是解本题的关键.10.如图,在矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在点D′处,则重叠部分△AFC 的面积为()A.6 B.8 C.10 D.12【考点】翻折变换(折叠问题).【分析】因为BC为AF边上的高,要求△AFC的面积,求得AF即可,求证△AFD′≌△CFB,得BF=D′F,设D′F=x,则在Rt△AFD′中,根据勾股定理求x,于是得到AF=AB﹣BF,即可得到结果.【解答】解:易证△AFD′≌△CFB,∴D′F=BF,设D′F=x,则AF=8﹣x,在Rt△AFD′中,(8﹣x)2=x2+42,解之得:x=3,∴AF=AB﹣FB=8﹣3=5,∴S△AFC=•AF•BC=10.故选C.【点评】本题考查了翻折变换﹣折叠问题,勾股定理的正确运用,本题中设D′F=x,根据直角三角形AFD′中运用勾股定理求x是解题的关键.二、填空题(本题共10小题,每小题4分,共40分)11.如图,△ABC中,D、E分别是AB、AC边的中点,且DE=7cm,则BC= 14 cm.【考点】三角形中位线定理.【分析】根据三角形中位线定理得出BC=2DE,代入求出即可.【解答】解:∵D、E分别是AB、AC边的中点,且DE=7cm,∴BC=2DE=14cm,故答案为:14.【点评】本题考查了三角形中位线定理的应用,能熟记三角形的中位线定理的内容是解此题的关键,注意:三角形的中位线平行于第三边,并且等于第三边的一半.12.写出命题“对顶角相等”的逆命题如果两个角相等,那么这两个角是对顶角.【考点】命题与定理.【分析】根据逆命题的定义可以写出命题“对顶角相等”的逆命题,本题得以解决.【解答】解:命题“对顶角相等”的逆命题是如果两个角相等,那么这两个角是对顶角,故答案为:如果两个角相等,那么这两个角是对顶角.【点评】本题考查命题与定理,解题的关键是明确逆命题的定义,可以写出一个命题的逆命题.13.比较大小:<.(填“>、<、或=”)【考点】实数大小比较.【分析】先把两个实数平方,然后根据实数的大小比较方法即可求解.【解答】解:∵()2=12,(3)2=18,而12<18,∴2<3.故答案为:<.【点评】此题主要考查了实数的大小的比较,比较两个实数的大小,可以采用作差法、取近似值法、比较n次方的方法等.14.如果+(b﹣7)2=0,则的值为 3 .【考点】非负数的性质:算术平方根;非负数的性质:偶次方.【分析】首先利用偶次方的性质以及二次根式的性质进而得出a,b的值,进而求出答案.【解答】解:∵ +(b﹣7)2=0,∴a=2,b=7,则==3.故答案为:3.【点评】此题主要考查了非负数的性质,正确得出a,b的值是解题关键.15.如图,有两棵树,一棵高10m,另一棵高4m,两树相距8m.一只小鸟从一棵树的树尖飞到另一棵树的树尖,那么这只小鸟至少要飞行10 m.【考点】勾股定理的应用.【专题】应用题.【分析】根据“两点之间线段最短”可知:小鸟沿着两棵树的树尖进行直线飞行,所行的路程最短,运用勾股定理可将两点之间的距离求出.【解答】解:两棵树的高度差为6m,间距为8m,根据勾股定理可得:小鸟至少飞行的距离==10m.【点评】本题主要是将现实问题建立数学模型,运用数学知识进行求解.16.如图,一只蚂蚁从长为7cm、宽为5cm,高是9cm的长方体纸箱的A点沿纸箱爬到B点,那么它所走的最短路线的长是15 cm.【考点】平面展开﹣最短路径问题.【专题】推理填空题.【分析】根据题意,可以画出长方体的展开图,根据两点之间线段最短和勾股定理,可以解答本题.【解答】解:如右图所示,点A到B的最短路径是: cm,故答案为:15.【点评】本题考查平面展开﹣最短路径问题,解题的关键是明确两点之间线段最短,能画出图形的平面展开图.17.若矩形的对角线长为8cm,两条对角线的一个交角为60°,则该矩形的面积为cm2.【考点】矩形的性质.【专题】计算题.【分析】根据矩形的性质,画出图形求解.【解答】解:∵ABCD为矩形∴OA=OC=OB=OD∵一个角是60°∴BC=OB=cm∴根据勾股定理==∴面积=BC•CD=4×=cm2.故答案为.【点评】本题考查的知识点有:矩形的性质、勾股定理.18.菱形的两条对角线长分别为6和8,则这个菱形的周长为20 .【考点】菱形的性质;勾股定理.【分析】根据菱形的对角线互相垂直平分的性质,利用对角线的一半,根据勾股定理求出菱形的边长,再根据菱形的四条边相等求出周长即可.【解答】解:如图所示,根据题意得AO=×8=4,BO=×6=3,∵四边形ABCD是菱形,∴AB=BC=CD=DA,AC⊥BD,∴△AOB是直角三角形,∴AB===5,∴此菱形的周长为:5×4=20.故答案为:20.【点评】本题主要考查了菱形的性质,利用勾股定理求出菱形的边长是解题的关键,同学们也要熟练掌握菱形的性质:①菱形的四条边都相等;②菱形的两条对角线互相垂直,并且每一条对角线平分一组对角.19.若两对角线长分别为4cm和6cm的菱形的面积与一个正方形的面积相等,那么该正方形的边长为2cm.【考点】正方形的性质;菱形的性质.【分析】已知对角线的长度,根据菱形的面积计算公式即可计算菱形的面积,进一步开方求得正方形的边长即可.【解答】解:根据对角线的长可以求得菱形的面积,根据S=ab=×4×6=12cm2,∵菱形的面积与正方形的面积相等,∴正方形的边长是=2cm.故答案为:2.【点评】本题考查了菱形的面积和正方形的面积计算的方法,本题中根据菱形对角线求得菱形的面积是解题的关键.20.如图,在矩形ABCD中,AD=4,AB=3,MN∥BC分别交AB、CD于点M、N,在MN上任取两点P、Q,那么图中阴影部分的面积是 6 .【考点】矩形的性质.【分析】用矩形的面积减去△ADQ和△BCP的面积求解即可.【解答】解:∵四边形ABCD为矩形,∴AD=BC=4.S阴影=S矩形ABCD﹣S△BPC﹣S△ADQ=AB•CB﹣BC•MB AD•AM=4×3﹣4×BM﹣×4×AM=12﹣2MB﹣2AM=12﹣2(MB+AM)=12﹣2×3=6.故答案为:6.【点评】本题主要考查的是矩形的性质、三角形的面积公式,将阴影部分的面积转化为S矩形ABCD﹣S△﹣S△ADQ求解是解题的关键.BPC三.解答题(共50分)21.计算:(1)(﹣)2﹣+(2)(3﹣)﹣(+)【考点】二次根式的混合运算.【专题】计算题.【分析】(1)先化简二次根式,再合并同类项即可解答本题;(2)根据去括号的法则去掉括号,然后合并同类项即可解答本题.【解答】解:(1)(﹣)2﹣+=3﹣2+3=4;(2)(3﹣)﹣(+)==.【点评】本题考查二次根式的混合运算,解题的关键是明确二次根式的混合运算的计算方法.22.已知a=3+,b=3﹣,分别求下列代数式的值:(1)a2﹣b2(2)a2﹣2ab+b2.【考点】二次根式的化简求值.【分析】(1)利用平方差公式分解因式后再代入计算;(2)利用完全平方差公式分解因式后再代入计算.【解答】解:当a=3+,b=3﹣时,(1)a2﹣b2,=(a+b)(a﹣b),=(3+3﹣)(3+﹣3+),=6×2,=12;(2)a2﹣2ab+b2,=(a﹣b)2,=(3﹣3+)2,=(2)2,=8.【点评】本题是运用简便方法进行二次根式的化简求值,熟练掌握平方差公式和完全平方公式是解题的关键.23.如图,在四边形ABCD中,∠A=90°,AD=3,AB=4,BC=12,CD=13,试判断△BCD的形状,并说明理由.【考点】勾股定理的逆定理;勾股定理.【分析】先根据勾股定理计算BD的长,再利用勾股定理的逆定理证明∠DBC=90°,所以:△BCD是直角三角形.【解答】解:△BCD是直角三角形,理由是:在△ABD中,∠A=90°,∴BD2=AD2+AB2=32+42=25,在△BCD中,BD2+BC2=52+122=169,CD2=132=169,∴BD2+BC2=CD2,∴∠DBC=90°∴△BCD是直角三角形.【点评】本题考查了勾股定理及其逆定理,熟练掌握定理的内容是关键,注意各自的条件和结论.24.如图,折叠矩形的一边AD,使点D落在BC边的点F处,已知AB=8cm,BC=10cm,求EC的长.【考点】翻折变换(折叠问题).【专题】计算题.【分析】根据矩形的性质得DC=AB=8,AD=BC=10,∠B=∠D=∠C=90°,再根据折叠的性质得AF=AD=10,DE=EF,在Rt△ABF中,利用勾股定理计算出BF=6,则FC=4,设EC=x,则DE=EF=8﹣x,在Rt△EFC 中,根据勾股定理得x2+42=(8﹣x)2,然后解方程即可.【解答】解:∵四边形ABCD为矩形,∴DC=AB=8,AD=BC=10,∠B=∠D=∠C=90°,∵折叠矩形的一边AD,使点D落在BC边的点F处∴AF=AD=10,DE=EF,在Rt△ABF中,BF===6,∴FC=BC﹣BF=4,设EC=x,则DE=8﹣x,EF=8﹣x,在Rt△EFC中,∵EC2+FC2=EF2,∴x2+42=(8﹣x)2,解得x=3,∴EC的长为3cm.【点评】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了勾股定理.25.如图,E、F是平行四边形ABCD的对角线AC上的两点,AE=CF.求证:四边形DEBF是平行四边形.【考点】平行四边形的判定与性质;全等三角形的性质.【专题】证明题;压轴题.【分析】首先连接BD,交AC于点O,由四边形ABCD是平行四边形,根据平行四边形的对角线互相平分,即可求得OA=OC,OB=OD,又由AE=CF,可得OE=OF,然后根据对角线互相相平分的四边形是平行四边形.【解答】证明:连接BD,交AC于点O,∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵AE=CF,∴OA﹣AE=OC﹣CF,即OE=OF,∴四边形DEBF是平行四边形.【点评】此题考查了平行四边形的判定与性质.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.26.如图,四边形ABCD是平行四边形,AB=10,AD=8,AC⊥BC,求AC、OA以及平行四边形ABCD的面积.【考点】平行四边形的性质.【分析】由四边形ABCD是平行四边形,可求得BC=AD=8,又由AC⊥BC,利用勾股定理即可求得AC 的长,然后由平行四边形的对角线互相平分,求得OA的长,继而求得平行四边形ABCD的面积.【解答】解:∵四边形ABCD是平行四边形,∴BC=AD=8,∵AB=10,AC⊥BC,∴AC==6,∴OA=AC=3,∴S平行四边形ABCD=BC•AC=8×6=48.【点评】此题考查了平行四边形的性质以及勾股定理.注意平行四边形的对边相等,对角线互相平分.27.已知:如图,在矩形ABCD中,M,N分别是边AD,BC的中点,E,F分别是线段BM,CM的中点.(1)求证:△ABM≌△DCM;(2)判断四边形MENF是什么特殊四边形,并证明你的结论;(3)当AD:AB= 2:1 时,四边形MENF是正方形(只写结论,不需证明).【考点】矩形的性质;全等三角形的判定与性质;菱形的判定;正方形的判定.【分析】(1)根据矩形的性质可得AB=CD,∠A=∠D=90°,再根据M是AD的中点,可得AM=DM,然后再利用SAS证明△ABM≌△DCM;(2)四边形MENF是菱形.首先根据中位线的性质可证明NE∥MF,NE=MF,可得四边形MENF是平行四边形,再根据△ABM≌△DCM可得BM=CM进而得ME=MF,从而得到四边形MENF是菱形;(3)当AD:AB=2:1时,四边形MENF是正方形,证明∠EMF=90°根据有一个角为直角的菱形是正方形得到结论.【解答】(1)证明:∵四边形ABCD是矩形,∴AB=CD,∠A=∠D=90°,又∵M是AD的中点,∴AM=DM.在△ABM和△DCM中,,∴△ABM≌△DCM(SAS).(2)解:四边形MENF是菱形.证明如下:∵E,F,N分别是BM,CM,CB的中点,∴NE∥MF,NE=MF.∴四边形MENF是平行四边形.由(1),得BM=CM,∴ME=MF.∴四边形MENF是菱形.(3)解:当AD:AB=2:1时,四边形MENF是正方形.理由:∵M为AD中点,∴AD=2AM.∵AD:AB=2:1,∴AM=AB.∵∠A=90,∴∠ABM=∠AMB=45°.同理∠DMC=45°,∴∠EMF=180°﹣45°﹣45°=90°.∵四边形MENF是菱形,∴菱形MENF是正方形.故答案为:2:1.【点评】此题主要考查了矩形的性质,以及菱形的判定和正方形的判定,关键是掌握菱形和正方形的判定方法.。

江苏省泰州市姜堰区2022-2023学年八年级下学期期末数学试题及参考答案

江苏省泰州市姜堰区2022-2023学年八年级下学期期末数学试题及参考答案

2023年春学期期末学情调查八年级数学试题(考试时间:120分钟 总分:150分)请注意:1.所有试题的答案均填写在答题卡上,答案写在试卷上无效.2.作图必须用2B 铅笔,并请加黑加粗.第一部分 选择题(共18分)一、选择题(本大题共有6小题,每小题3分,共18分,在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题..卡相应位置.....上) 1.下列图形中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D .2.下列二次根式中属于最简二次根式的是( )A 8B 13C 22a b +D 23.下列调查中,适宜采用普查的是( )A .查找某书本中的印刷错误B .检测一批灯泡的使用寿命C .了解公民保护环境的意识D .了解长江中现有鱼的种类4.若1x =是方程2230ax x +-=的根,则a 的值为( )A .1a =B .1a =-C .3a =-D .3a =5.要使分式2y x的值扩大4倍,x y 、的取值可以如何变化( ) A .x 的值不变,y 的值扩大4倍 B .y 的值不变,x 的值扩大4倍C .x y 、的值都扩大2倍D .x y 、的值都扩大4倍6.如图,菱形OABC 的边长为m ,点A 在x 轴正半轴上,反比例函数(0)k y x x=>的图像经过点C 和线段AB 的中点M ,且点C 的横坐标为a ,则m 与a 满足的关系为( )A .32m a =B .m a =C .23m a =D .2m a =第二部分 非选择题(共132分)二、填空题(本大题共有10小题,每小题3分,共30分.请把答案直接填写在答题卡相应位置.......上) 7.若二次根式1x -在实数范围内有意义,则x 的取值范围是________________.8.分式256x y 和214xy的最简公分母为________________. 9.如图,一粒杂质从粗细相同且水平放置的“田字型”水管的进水口流入,在A B C 、、三处装有过滤网,该杂质经过________________处过滤网的可能性最大.10.如图,在平行四边形ABCD 中,对角线AC BD 、相交于点,90,3,5O ACD AB BC =︒∠==,则BD =________________.11.实数m 满足21211x m x x -=+++,则m 的值为________________. 12.若0xy <22y x =________________.13.如图,点A 在反比例函数(0)k y k x=>的图像上,过点A 作y 轴的平行线l .已知点A 坐标为()2,1,结合函数图像可知,当2x <时,y 的取值范围是________________.14.若a 和b 是一元二次方程2350x x --=的两个实数根,则22a a b -+=________________.15.在四边形ABCD 中,点E F 、分别为AB CD 、的中点,则EF ________________2AD BC +.(选填“>”、“<”、“=”、“≥”或“≤”) 16.如图,一次函数5y x =-+与反比例函数(0)k y x x =>的图像相交于A B 、两点,且点A 的横坐标为1,该反比例函数的图像关于直线1y x =-对称后的图像经过直线5y x =-+上的点C ,则线段AC 的长度为________________.三、解答题(本大题共10小题,共102分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤)17.(本题满分10分)(1)计算:1321263⎛ ⎝ (2)化简:35222a a a a +⎛⎫÷+- ⎪--⎝⎭18.(本题满分10分)解方程:(1)2216124x x x +-=-- (2)224120x x --= 19.(本题满分10分)某校为了解本校学生对篮球、足球、排球、羽毛球、乒乓球这五种球类运动的喜爱情况,随机抽取一部分学生进行问卷调查,统计整理并绘制了如图两幅不完整的统计图:请根据以上统计图的信息,完成下列问题:(1)抽取的样本容量为________________;(2)补全条形统计图,并求出扇形统计图中“羽毛球”运动所对应的圆心角的度数;(3)该校共有2000名学生,请估计该校喜欢足球运动的人数.20.(本题满分8分)已知:如图,E 是正方形ABCD 对角线BD 上的一点,且,BE BC EF BD =⊥,垂足为E ,交DC 于点F .求证:DE CF =.21.(本题满分8分)问题:“某工程队准备修建一条长3000米的下水管道,由于采用新的施工方式,________________,提前2天完成任务,求原计划每天修建下水管道的长度?” 条件:(1)实际每天修建的长度比原计划多25%;(2)原计划每天修建的长度比实际少75米.在上述的2个条件中选择1个________________(仅填序号)补充在问题的横线上,并完成解答.22.(本题满分10分)已知代数式22253,8A x x B x x =+-=+-.(1)当x 为何值时,代数式A 比B 的值大2;(2)求证:对于任意x 的值,代数式A B -的值恒为正数.23.(本题满分10分)如图,矩形纸片,4,8ABCD AB AD ==,点P 为边AD 上一动点,将矩形纸片ABCD 沿BP 折叠,折叠后BC 与AP 相交于点E .(1)CBP ∠为何值时,点E 与点A 重合;(2)当AP 长为何值时,BEP 的面积最大?并求出面积的最大值.24.(本题满分10分)如图,某可调节亮度的台灯,可通过调节台灯的电阻,控制电流的变化实现亮度的调节.该台灯电流()I A 与电阻()ΩR 的反比例函数图像过点()2200,0.1.(1)求电流I 与电阻R 的函数表达式;(2)若该台灯工作的最小电流为0.05A ,最大电流为0.16A ,则该台灯的电阻的取值范围是?25.(本题满分12分)【问题探究】1.构造多边形比较无理数大小:在图25-1的正方形方格纸中(每个小正方形的边长都为1),线段AB 的长度为5,线段AC 的长度为2. (1)请结合图25-1,试说明215+>;(2)在图25-2中,请尝试构造三角形,比较522+与29的大小;(3)在图25-3中,请尝试构造四边形,比较52217++与34的大小;【迁移运用】2.如图25-4,线段8,AB P =为线段AB 上的任意一点,设线段AP x =.则224(8)16x x ++-+是否有最小值?如果有,请求出最小值,并仅用无刻度的直尺........在图中标出取最小值时点P 的位置;如果没有,请说明理由.26.(本题满分14分)如图,点A 为反比例函数1(0,0)m y m x x=>>的图像上一点,且点A 的横坐标为a ,过点A 作x 轴、y 轴的平行线,分别交反比例函数2(0,0)n y n m x x=>>>的图像于C 、B ,过点C 作y 轴的平行线,交反比例函数1y 的图像于D ,连接AD BC 、.(1)当1,2,1m n a ===时,求线段CD 的长;(2)若2n m =;①若2AC =,求a 的值;②求CD AB的值; (3)当m n 、的值一定时,四边形ABCD 的面积是否随a 的变化而变化?若不变,请用含m n 、的代数式表示四边形ABCD 的面积;若变化,请说明理由.八年级数学参考答案及评分标准一、选择题:1-6:BCAADC二、填空题:7.1x ≤ 8.2212x y 9.B 10. 11.3-12.0 13.0y <或1y > 14.8 15.≤ 16或三、解答题:17.(1)原式=-(2)原式13a =-18.(1)2x =检验:当2x =时,()()220x x +-=原方程无解(2)1211x x ==19.(1)100(2)图略(“篮球”条形图高度35) 36︒(3)36020.连接BF()BEF BCF HL △≌△DE EF CF ==21.选①或②①解:设原计划每天修建下水管道的长度为x 米()300030002125%x x -=+300x =经检验:300x =是所列方程的解答:原计划每天修建下水管道的长度为300米.(2)解:设原计划每天修建下水管道的长度为x 米30003000275x x -=+12300,375x x ==-(舍)经检验:300x =是所列方程的解答:原计划每天修建下水管道的长度为300米.22.(1)121,3x x =-=-(2)略23.(1)45︒(2)当8AP =时,BEP △的面积最大 理由如下: ∵12BEP S EP AB =⋅△,而AB 长度不变 ∴当EP 最大时,BEP △的面积最大 又EP BE =∴当BE 最大时,BEP △的面积最大而在ABE △中,只要当AE 最大时,BE 就最大 ∴当AE 最大时,AP 最大8AD == 设EP x =,则8AE x =-222(8)4x x -+=5x =154102BEP S ∴=⨯⨯=△ 答:当8AP =时,BEP △面积的最大值为10.24.(1)220I R= (2)13754400R ≤≤25.【问题探究】(1)在ABC △中AC BC AB +>而1,AC BC AB ===1>(2)(3)【迁移运用】224(8)16x x +-+理由如下:设AP x =,则8BP x =- 224(8)16x x CP DP +-+=+ 而当C P D 、、三点共线时,CP DP +的值最小 CP DP ∴+的最小值226810CD ==+= 224(8)16x x +-+10.26.(1)12CD =(2)①2a = ②12CD AB = (3)不变()2()S 2n m n m ABCD mn -+=四边形。

度八年级数学上学期第一次月考试题(含解析) 苏科版-苏科版初中八年级全册数学试题

度八年级数学上学期第一次月考试题(含解析) 苏科版-苏科版初中八年级全册数学试题

某某省某某市大丰市三圩中学2015-2016学年度八年级数学上学期第一次月考试题一.选择题(每题3分,共24分)1.下列图形中,是轴对称图形的有()A.0个B.1个C.2个D.3个2.如图,已知△ABC的六个元素,则下面甲、乙、丙三个三角形中和△ABC全等的图形是()A.甲和乙B.乙和丙C.只有乙D.只有丙3.如图,∠MON内有一点P,P点关于OM的轴对称点是G,P点关于ON的轴对称点是H,GH分别交OM、ON于A、B点,若∠MON=35°,则∠GOH=()A.60° B.70° C.80° D.90°4.如图,已知AC=DB,要使△△ABC≌△DCB,只需增加的一个条件是()A.∠A=∠D B.∠ABD=∠DCA C.∠ACB=∠DBC D.∠ABC=∠DCB5.如图所示,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是()A.SSS B.SAS C.AAS D.ASA6.如图是一个风筝设计图,其主体部分(四边形ABCD)关于BD所在的直线对称,AC与BD相交于点O,且AB≠AD,则下列判断不正确的是()A.△ABD≌△CBD B.△ABC≌△ADC C.△AOB≌△COB D.△AOD≌△COD7.如图,在Rt△ABC中,∠C=90°,斜边AB的垂直平分线DE交AB于点D,交BC于点E,且AE平分∠BAC,下列关系式不成立的是()A.AC=2EC B.∠B=∠CAE C.∠DEA=2∠B D.BC=3EC8.将一正方形纸片按图中(1)、(2)的方式依次对折后,再沿(3)中的虚线裁剪,最后将(4)中的纸片打开铺平,所得图案应该是下面图案中的()A.B.C.D.二.填空题(每题3分,共30分)9.△ABC≌△DEF,且△ABC的周长为12,若AB=3,EF=5,则AC=.10.长方形是轴对称图形,它有条对称轴.11.已知△ABC和△DEF关于直线l对称,若△ABC的周长为40cm,则△DEF的周长为.12.从地面小水洼观察到一辆小汽车的车牌号为,它的实际号是.13.一个三角形的三边为2、5、x,另一个三角形的三边为y、2、6,若这两个三角形全等,则x+y=.14.已知,如图,AD=AC,BD=BC,O为AB上一点,那么,图中共有对全等三角形.15.如图,BD是∠ABC的角平分线,DE⊥AB于E,△ABC的面积是36cm2,AB=BC=18cm,则DE=cm.16.如图,在△ABC中,AB=AC,DE是AB的中垂线,△BCE的周长为14,BC=6,则AB的长为.17.如图,Rt△AFC和Rt△AEB关于虚线成轴对称,现给出下列结论:①∠1=∠2;②△ANC≌△AMB;③CD=DN.其中正确的结论是.(填序号)18.如图的2×4的正方形网格中,△ABC的顶点都在小正方形的格点上,这样的三角形称为格点三角形,在网格中与△ABC成轴对称的格点三角形一共有个.二.解答题:(共9题,共96分)19.如图,已知:点B、F、C、E在一条直线上,FB=CE,AC=DF.∠A=∠D=90°;求证:AB∥DE.20.如图,AC与BD交于点E,且AC=DB,AB=DC.求证:∠A=∠D.21.如图,已知OB、OC为△ABC的角平分线,EF∥BC交AB、AC于E、F,△AEF的周长为15,BC长为7,求△ABC的周长.22.已知:如图,B、C、E三点在同一条直线上,AC∥DE,AC=CE,∠ACD=∠B.求证:△ABC≌△CDE.23.如图所示,已知BE⊥AC于E,CF⊥AB于F,BE、CF相交于点D,若BF=CE.求证:AD平分∠BAC.24.如图所示,已知∠AOB和两点M、N,画一点P,使得点P到∠AOB的两边距离相等,且PM=PN.(保留作图痕迹,不写作法.)25.如图,已知△ABC中,AB=AC=20cm,∠ABC=∠ACB,BC=16cm,点D是AB的中点.点P在线段BC 上以6厘米/秒的速度由B点向C点运动,同时点Q在线段CA上由C点向A点运动,且点Q的运动速度与点P的运动速度相等.经过1秒后,△BPD与△CQP是否全等,请说明理由.26.已知:如图,在△AOB和△COD中,OA=OB,OC=OD,∠AOB=∠COD=50°,求证:①AC=BD;②∠APB=50°.27.CD经过∠BCA顶点C的一条直线,CA=CB.E,F分别是直线CD上两点,且∠BEC=∠CFA=∠α.(1)若直线CD经过∠BCA的内部,且E,F在射线CD上,请解决下面两个问题:①如图1,若∠BCA=90°,∠α=90°,则BECF;EF|BE﹣AF|(填“>”,“<”或“=”);②如图2,若0°<∠BCA<180°,请添加一个关于∠α与∠BCA关系的条件,使①中的两个结论仍然成立,并证明两个结论成立.(2)如图3,若直线CD经过∠BCA的外部,∠α=∠BCA,请提出EF,BE,AF三条线段数量关系的合理猜想(不要求证明).某某省某某市大丰市三圩中学2015~2016学年度八年级上学期第一次月考数学试卷参考答案与试题解析一.选择题(每题3分,共24分)1.下列图形中,是轴对称图形的有()A.0个B.1个C.2个D.3个【考点】轴对称图形.【分析】根据轴对称图形的概念求解,如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【解答】解:(1)是轴对称图形;(2)是轴对称图形;(3)是轴对称图形;(4)不是轴对称图形;(5)不是轴对称图形;故轴对称图形有3个.故选:D.【点评】本题考查轴对称的定义,难度不大,掌握轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.如图,已知△ABC的六个元素,则下面甲、乙、丙三个三角形中和△ABC全等的图形是()A.甲和乙B.乙和丙C.只有乙D.只有丙【考点】全等三角形的判定.【分析】全等三角形的判定定理有SAS,ASA,AAS,SSS,根据定理逐个判断即可.【解答】解:图甲不符合三角形全等的判定定理,即图甲和△ABC不全等;图乙符合SAS定理,即图乙和△ABC全等;图丙符合AAS定理,即图丙和△ABC全等;故选B.【点评】本题考查了全等三角形的判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.3.如图,∠MON内有一点P,P点关于OM的轴对称点是G,P点关于ON的轴对称点是H,GH分别交OM、ON于A、B点,若∠MON=35°,则∠GOH=()A.60° B.70° C.80° D.90°【考点】轴对称的性质.【分析】连接OP,根据轴对称的性质可得∠GOM=∠MOP,∠PON=∠NOH,然后求出∠GOH=2∠MON,代入数据计算即可得解.【解答】解:如图,连接OP,∵P点关于OM的轴对称点是G,P点关于ON的轴对称点是H,∴∠GOM=∠MOP,∠PON=∠NOH,∴∠GOH=∠GOM+∠MOP+∠PON+∠NOH=2∠MON,∵∠MON=35°,∴∠GOH=2×35°=70°.故选B.【点评】本题考查了轴对称的性质,熟记性质并确定出相等的角是解题的关键.4.如图,已知AC=DB,要使△△ABC≌△DCB,只需增加的一个条件是()A.∠A=∠D B.∠ABD=∠DCA C.∠ACB=∠DBC D.∠ABC=∠DCB【考点】全等三角形的判定.【分析】由已知AC=DB,且BC=CB,故可增加一组边相等,即AB=DC,可增加∠ACB=∠DBC,可得出答案.【解答】解:由已知AC=DB,且AC=CA,故可增加一组边相等,即AB=DC,也可增加一组角相等,但这组角必须是AC和BC、DB和CB的夹角,即∠ACB=∠DBC,故选C.【点评】本题主要考查全等三角形的判定,掌握SSS、SAS、ASA、AAS和HL这几种全等三角形的判定方法是解题的关键.5.如图所示,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是()A.SSS B.SAS C.AAS D.ASA【考点】全等三角形的应用.【分析】根据图象,三角形有两角和它们的夹边是完整的,所以可以根据“角边角”画出.【解答】解:根据题意,三角形的两角和它们的夹边是完整的,所以可以利用“角边角”定理作出完全一样的三角形.故选D.【点评】本题考查了三角形全等的判定的实际运用,熟练掌握判定定理并灵活运用是解题的关键.6.如图是一个风筝设计图,其主体部分(四边形ABCD)关于BD所在的直线对称,AC与BD相交于点O,且AB≠AD,则下列判断不正确的是()A.△ABD≌△CBD B.△ABC≌△ADC C.△AOB≌△COB D.△AOD≌△COD【考点】全等三角形的判定.【分析】根据轴对称的性质,对折的两部分是完全重合的,结合图形找出全等的三角形,然后即可得解.【解答】解:∵四边形ABCD关于BD所在的直线对称,∴△ABD≌△CBD,△AOB≌△COB,△AOD≌△COD,故A、C、D判断正确;∵AB≠AD,∴△ABC和△ADC不全等,故B判断不正确.故选B.【点评】本题考查了全等三角形的判定,根据对折的两部分是完全重合的找出全等的三角形是解题的关键.7.如图,在Rt△ABC中,∠C=90°,斜边AB的垂直平分线DE交AB于点D,交BC于点E,且AE平分∠BAC,下列关系式不成立的是()A.AC=2EC B.∠B=∠CAE C.∠DEA=2∠B D.BC=3EC【考点】线段垂直平分线的性质;角平分线的性质.【分析】根据线段垂直平分线上的点到线段两端点的距离相等可得AE=BE,根据等边对等角可得∠BAE=∠B,然后利用直角三角形两锐角互余列式求出∠CAE=∠BAE=∠B=30°,根据直角三角形30°角所对的直角边等于斜边的一半可得AE=2CE,BE=2DE,根据角平分线上的点到角的两边的距离相等可得DE=EC,然后对各选项分析判断后利用排除法求解.【解答】解:∵DE是AB的垂直平分线,∴AE=BE,∴∠BAE=∠B,∵AE平分∠BAC,∴∠CAE=∠BAE,∵∠C=90°,∴∠CAE=∠BAE=∠B=30°,A、在Rt△ACE中,AE=2CE,故本选项正确;B、∠B=∠CAE正确,故本选项错误;C、∵∠DEA=90°﹣30°=60°,2∠B=2×30°=60°,∴∠DEA=2∠B,故本选项错误;D、在Rt△BDE中,BE=2DE,∵AE平分∠BAC,∠C=90°,DE⊥AB,∴DE=EC,∴BC=EC+BE=EC+2EC=3EC,故本选项错误.故选A.【点评】本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,角平分线上的点到角的两边的距离相等的性质,等边对等角的性质,以及三角形的内角和定理,熟记各性质是解题的关键.8.将一正方形纸片按图中(1)、(2)的方式依次对折后,再沿(3)中的虚线裁剪,最后将(4)中的纸片打开铺平,所得图案应该是下面图案中的()A.B.C.D.【考点】剪纸问题.【专题】压轴题.【分析】对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现.【解答】解:严格按照图中的顺序向右对折,向上对折,从正方形的上面那个边剪去一个长方形,左下角剪去一个正方形,展开后实际是从大的正方形的中心处剪去一个较小的正方形,从相对的两条边上各剪去两个小正方形得到结论.故选:B.【点评】本题主要考查学生的动手能力及空间想象能力.二.填空题(每题3分,共30分)9.△ABC≌△DEF,且△ABC的周长为12,若AB=3,EF=5,则AC= 4 .【考点】全等三角形的性质.【专题】计算题.【分析】根据全等三角形对应边相等求出BC的长度,然后利用△ABC的周长即可求出AC的长.【解答】解:∵△ABC≌△DEF,EF=5,∴BC=EF=5,∵△ABC的周长为12,AB=3,∴AC=12﹣5﹣3=4.故答案为:4.【点评】本题考查了全等三角形对应边相等的性质,求出BC的长是解题的关键.10.长方形是轴对称图形,它有 2 条对称轴.【考点】轴对称的性质.【分析】根据对称轴的定义,结合长方形的性质;可得长方形有2条对称轴,即一组邻边的垂直平分线.【解答】解:长方形是轴对称图形,它有2条对称轴.【点评】本题考查对称轴的定义,如果一个图形沿着一条直线对折,两侧的图形能完全重合,这个图形就是轴对称图形.折痕所在的这条直线叫做对称轴.11.已知△ABC和△DEF关于直线l对称,若△ABC的周长为40cm,则△DEF的周长为40cm .【考点】轴对称的性质.【分析】根据关于直线轴对称的两个三角形是全等三角形解答.【解答】解:∵△ABC和△DEF关于直线l对称,∴△ABC≌△DEF,∵△ABC的周长为40cm,∴△DEF的周长为40cm.故答案为:40cm.【点评】本题考查了轴对称的性质,熟记关于直线轴对称的两个三角形是全等三角形是解题的关键.12.从地面小水洼观察到一辆小汽车的车牌号为,它的实际号是GFT2567 .【考点】镜面对称.【分析】关于倒影,相应的数字应看成是关于倒影下边某条水平的线对称.【解答】解:实际车牌号是:GFT2567.故答案为:GFT2567.【点评】本题考查了镜面反射的性质;解决本题的关键是得到对称轴,进而得到相应数字.13.一个三角形的三边为2、5、x,另一个三角形的三边为y、2、6,若这两个三角形全等,则x+y= 11 .【考点】全等三角形的性质.【分析】根据已知条件分清对应边,结合全的三角形的性质可得出答案.【解答】解:∵这两个三角形全等,两个三角形中都有2∴长度为2的是对应边,x应是另一个三角形中的边6.同理可得y=5∴x+y=11.故填11.【点评】本题考查了全等三角形的性质及对应边的找法;根据两个三角形中都有2找对对应边是解决本题的关键.14.已知,如图,AD=AC,BD=BC,O为AB上一点,那么,图中共有 3 对全等三角形.【考点】全等三角形的判定.【分析】由已知条件,结合图形可得△ADB≌△ACB,△ACO≌△ADO,△CBO≌△DBO共3对.找寻时要由易到难,逐个验证.【解答】解:∵AD=AC,BD=BC,AB=AB,∴△ADB≌△ACB;∴∠CAO=∠DAO,∠CBO=∠DBO,∵AD=AC,BD=BC,OA=OA,OB=OB∴△ACO≌△ADO,△CBO≌△DBO.∴图中共有3对全等三角形.故答案为:3.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.15.如图,BD是∠ABC的角平分线,DE⊥AB于E,△ABC的面积是36cm2,AB=BC=18cm,则DE= 2 cm.【考点】角平分线的性质.【分析】过D作DF⊥BC于F,根据角平分线性质求出DE=DF,根据三角形的面积公式得出关于DE的方程,求出方程的解即可.【解答】解:过D作DF⊥BC于F,∵BD是∠ABC的角平分线,DE⊥AB,∴DF=DE,∵△ABC的面积是36cm2,AB=BC=18cm,∴×BC×DF+×AB×DE=36,∴×18×DE+×18×DE=36,∴DE=2,故答案为:2.【点评】本题考查了三角形的面积,角平分线性质的应用,注意:角平分线上的点到角的两边的距离相等.16.如图,在△ABC中,AB=AC,DE是AB的中垂线,△BCE的周长为14,BC=6,则AB的长为8 .【考点】线段垂直平分线的性质.【专题】压轴题.【分析】由已知条件,利用线段的垂直平分线和已给的周长的值即可求出.【解答】解:∵DE是AB的中垂线∴AE=BE,∵△BCE的周长为14∴BC+CE+BE=BC+CE+AE=BC+AC=14∵BC=6∴AC=8∴AB=AC=8.故填8.【点评】本题考查了线段垂直平分线的性质;解决本题的关键是利用线段的垂直平分线性质得到相应线段相等并进行等量代换.17.如图,Rt△AFC和Rt△AEB关于虚线成轴对称,现给出下列结论:①∠1=∠2;②△ANC≌△AMB;③CD=DN.其中正确的结论是①②.(填序号)【考点】轴对称的性质.【分析】首先利用轴对称的性质分别判断正误即可.【解答】解:①∵Rt△AFC和Rt△AEB关于虚线成轴对称,∴∠MAD=∠NAD,∠EAD=∠FAD,∴∠EAD﹣∠MAD=∠FAD﹣∠NAD,即:∠1=∠2,故正确;②∵Rt△AFC和Rt△AEB关于虚线成轴对称,∴∠B=∠C,AC=AB,在△ANC与△AMB中,,∴△ANC≌△AMB,故正确;③易得:CD=BD,但在三角形DNB中,DN不一定等于BD,故错误.故答案为:①②.【点评】本题考查轴对称的性质,熟练掌握性质是解题的关键.18.如图的2×4的正方形网格中,△ABC的顶点都在小正方形的格点上,这样的三角形称为格点三角形,在网格中与△ABC成轴对称的格点三角形一共有 3 个.【考点】轴对称的性质.【专题】网格型.【分析】根据题意画出图形,找出对称轴及相应的三角形即可.【解答】解:如图:共3个,故答案为:3.【点评】本题考查的是轴对称图形,根据题意作出图形是解答此题的关键.二.解答题:(共9题,共96分)19.如图,已知:点B、F、C、E在一条直线上,FB=CE,AC=DF.∠A=∠D=90°;求证:AB∥DE.【考点】全等三角形的判定与性质;平行线的判定.【专题】证明题.【分析】欲证明AB∥DE,只需证得∠B=∠FED.由Rt△ABC≌Rt△DEF,根据全等三角形的性质推知该结论即可.【解答】证明:如图,∵FB=CE,∴FB+FC=CE+FC,即BC=EF.又∵∠A=∠D=90°,在Rt△ABC与Rt△DEF中,,∴Rt△ABC≌Rt△DEF(HL),∴∠B=∠FED,∴AB∥DE.【点评】本题主要考查两直线平行的性质,两直线平行的判定定理的熟练应用,要证明AB∥DE,就得先找出判定的条件,如∠B=∠FED.20.如图,AC与BD交于点E,且AC=DB,AB=DC.求证:∠A=∠D.【考点】全等三角形的判定与性质.【专题】证明题.【分析】首先连接BC,由AC=DB,AB=DC,利用SSS,即可证得△ABC≌△DCB,继而可证得:∠A=∠D.【解答】证明:连接BC,在△ABC和△DCB中,,∴△ABC≌△DCB(SSS),∴∠A=∠D.【点评】此题考查了全等三角形的判定与性质.此题难度不大,注意掌握辅助线的作法,注意掌握数形结合思想的应用.21.如图,已知OB、OC为△ABC的角平分线,EF∥BC交AB、AC于E、F,△AEF的周长为15,BC长为7,求△ABC的周长.【考点】等腰三角形的判定与性质;平行线的性质.【分析】根据角平分线的定义可得∠ABO=∠CBO,根据两直线平行,内错角相等可得∠CBO=∠EBO,从而得到∠ABO=∠EOB,根据等角对等边可得BE=OE,同理可证CF=OF,然后求出△AEF的周长=AB+AC,最后根据三角形的周长的定义解答.【解答】解:∵OB平分∠ABC,∴∠ABO=∠CBO,∵EF∥BC,∴∠CBO=∠EBO,∴∠ABO=∠EOB,∴BE=OE,同理可得,CF=OF,∵△AEF的周长为15,∴AE+OE+OF+AF=AE+BE+CF+AF=AB+AC=15,∵BC=7,∴△ABC的周长=15+7=22.【点评】本题考查了等腰三角形的判定与性质,平行线的性质,角平分线的定义,熟记性质并求出△AEF的周长=AB+AC是解题的关键,也是本题的难点.22.已知:如图,B、C、E三点在同一条直线上,AC∥DE,AC=CE,∠ACD=∠B.求证:△ABC≌△CDE.【考点】全等三角形的判定.【专题】证明题.【分析】首先根据AC∥DE,利用平行线的性质可得:∠ACB=∠E,∠ACD=∠D,再根据∠ACD=∠B证出∠D=∠B,再由∠ACB=∠E,AC=CE可根据三角形全等的判定定理AAS证出△ABC≌△CDE.【解答】证明:∵AC∥DE,∴∠ACB=∠E,∠ACD=∠D,∵∠ACD=∠B,∴∠D=∠B,在△ABC和△EDC中,∴△ABC≌△CDE(AAS).【点评】此题主要考查了全等三角形的判定,关键是熟练掌握判定两个三角形全等的方法:SSS、SAS、ASA、AAS,选用哪一种方法,取决于题目中的已知条件,23.如图所示,已知BE⊥AC于E,CF⊥AB于F,BE、CF相交于点D,若BF=CE.求证:AD平分∠BAC.【考点】全等三角形的判定与性质;角平分线的性质.【专题】证明题.【分析】根据垂直定义求出∠BFD=∠CED=90°,根据AAS推出△BFD≌△CED,根据全等三角形的性质推出DF=DE,根据角平分线性质求出即可.【解答】证明:∵BE⊥AC,CF⊥AB,∴∠BFD=∠CED=90°,在△BFD和△CED中∴△BFD≌△CED(AAS),∴DF=DE,∵BE⊥AC,CF⊥AB,∴AD平分∠BAC.【点评】本题考查了全等三角形的性质和判定,角平分线性质的应用,能推出DF=DE是解此题的关键,注意:全等三角形的判定定理有:SAS,ASA,AAS,SSS,全等三角形的对应边相等,对应角相等,角平分线上的点到角的两边的距离相等.24.如图所示,已知∠AOB和两点M、N,画一点P,使得点P到∠AOB的两边距离相等,且PM=PN.(保留作图痕迹,不写作法.)【考点】作图—复杂作图;角平分线的性质;线段垂直平分线的性质.【分析】根据题意得出,点P是∠AOB的平分线与线段MN的中垂线的交点,进而得出即可.【解答】解:如图所示,画法如下:(1)作∠AOB的角平线OC;(2)连结MN,画线段MN的垂直平分线,与OC交于点P,则点P为符合题意的点.【点评】此题主要考查了线段的垂直平分线和角平分线的作法.这些基本作图要熟练掌握,注意保留作图痕迹.25.如图,已知△ABC中,AB=AC=20cm,∠ABC=∠ACB,BC=16cm,点D是AB的中点.点P在线段BC 上以6厘米/秒的速度由B点向C点运动,同时点Q在线段CA上由C点向A点运动,且点Q的运动速度与点P的运动速度相等.经过1秒后,△BPD与△CQP是否全等,请说明理由.【考点】全等三角形的判定;等腰三角形的性质.【专题】动点型.【分析】求出BP=CQ,BD=CP,根据SAS推出两三角形全等即可.【解答】解:经过1秒后,△BPD与△CQP全等,理由是:∵点D是AB的中点,AB=AC=20cm,∴BD=10cm,根据题意得:BP=CQ=6cm,CP=16cm﹣6cm=10cm=BD,在△BPD和△CQP中,,∴△BPD≌△CQP(SAS).【点评】本题考查了全等三角形的性质和判定的应用,全等三角形的判定定理有SAS,ASA,AAS,SSS,全等三角形的对应角相等,对应边相等.26.已知:如图,在△AOB和△COD中,OA=OB,OC=OD,∠AOB=∠COD=50°,求证:①AC=BD;②∠APB=50°.【考点】全等三角形的判定与性质.【专题】证明题.【分析】①根据已知先证明∠AOC=∠BOD,再由SAS证明△AOC≌△BOD,所以AC=BD.②由△AOC≌△BOD,可得∠OAC=∠OBD,再结合图形,利用角的和差,可得∠APB=50°.【解答】证明:①∵∠AOB=∠COD=50°,∴∠AOB+∠BOC=∠COD+∠BOC,∴∠AOC=∠BOD.在△AOC和△BOD中,,∴△AOC≌△BOD(SAS),∴AC=BD;②∵△AOC≌△BOD,∴∠OAC=∠OBD,∴∠OAC+∠AOB=∠OBD+∠APB,∴∠OAC+60°=∠OBD+∠APB,∴∠APB=50°.【点评】本题考查了全等三角形的性质和判定,三角形的内角和定理的应用,注意:①全等三角形的判定定理有SAS,ASA,AAS,SSS,②全等三角形的对应边相等,对应角相等.27.CD经过∠BCA顶点C的一条直线,CA=CB.E,F分别是直线CD上两点,且∠BEC=∠CFA=∠α.(1)若直线CD经过∠BCA的内部,且E,F在射线CD上,请解决下面两个问题:①如图1,若∠BCA=90°,∠α=90°,则BE = CF;EF = |BE﹣AF|(填“>”,“<”或“=”);②如图2,若0°<∠BCA<180°,请添加一个关于∠α与∠BCA关系的条件∠α+∠BCA=180°,使①中的两个结论仍然成立,并证明两个结论成立.(2)如图3,若直线CD经过∠BCA的外部,∠α=∠BCA,请提出EF,BE,AF三条线段数量关系的合理猜想(不要求证明).【考点】直角三角形全等的判定;三角形内角和定理.【专题】几何综合题;压轴题.【分析】由题意推出∠CBE=∠ACF,再由AAS定理证△BCE≌△CAF,继而得答案.【解答】解:(1)①∵∠BCA=90°,∠α=90°,∴∠BCE+∠CBE=90°,∠BCE+∠ACF=90°,∴∠CBE=∠ACF,∵CA=CB,∠BEC=∠CFA;∴△BCE≌△CAF,∴BE=CF;EF=|CF﹣CE|=|BE﹣AF|.②所填的条件是:∠α+∠BCA=180°.证明:在△BCE中,∠CBE+∠BCE=180°﹣∠BEC=180°﹣∠α.∵∠BCA=180°﹣∠α,∴∠CBE+∠BCE=∠BCA.又∵∠ACF+∠BCE=∠BCA,∴∠CBE=∠ACF,又∵BC=CA,∠BEC=∠CFA,∴△BCE≌△CAF(AAS)∴BE=CF,CE=AF,又∵EF=CF﹣CE,∴EF=|BE﹣AF|.(2)猜想:EF=BE+AF.证明过程:∵∠BEC=∠CFA=∠α,∠α=∠BCA,∠BCA+∠BCE+∠ACF=180°,∠CFA+∠CAF+∠ACF=180°,∴∠BCE=∠CAF,又∵BC=CA,∴△BCE≌△CAF(AAS).∴BE=CF,EC=FA,∴EF=EC+CF=BE+AF.【点评】本题综合考查全等三角形、等边三角形和四边形的有关知识.注意对三角形全等,相似的综合应用.。

2015-2016学年江苏省泰州市泰兴市八年级第一学期期末数学试卷带答案

2015-2016学年江苏省泰州市泰兴市八年级第一学期期末数学试卷带答案

2015-2016学年江苏省泰州市泰兴市初二(上)期末数学试卷一.选择题(每题2分,共12分)1.(2分)在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.2.(2分)在下列实数中,无理数是()A.5B.C.0D.3.(2分)下列四组线段中,可以构成直角三角形的是()A.4,5,6B.1.5,2,2.5C.2,3,4D.1,,3 4.(2分)下列各式计算正确的是()A.+=B.4﹣3=1C.2×3=6D.÷=35.(2分)若点A(﹣3,y1),B(2,y2),C(3,y3)是函数y=﹣x+2图象上的点,则()A.y1>y2>y3B.y1<y2<y3C.y1<y3<y2D.y2<y3<y1 6.(2分)如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有()A.1个B.2个C.3个D.4个二.填空题(每题2分,共20分)7.(2分)要使二次根式有意义,则x的取值范围是.8.(2分)地球的半径约为6.4×103km,这个近似数精确到位.9.(2分)等腰三角形两边长分别为4和8,则这个等腰三角形的周长为.10.(2分)如图,已知BC=EC,∠BCE=∠ACD,添加一个条件,使△ABC≌△DEC,你添加的条件是(答案不唯一,只需填一个)11.(2分)将一次函数y=2x的图象向上平移1个单位,所得图象对应的函数表达式为.12.(2分)如图所示的图形中,所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A,B,C,D的面积和是49cm2,则其中最大的正方形S的边长为cm.13.(2分)在△ABC中,AB=4,AC=3,AD是△ABC的角平分线,则△ABD与△ACD的面积之比是.14.(2分)如图,一次函数y1=x+b与一次函数y2=kx+4的图象交于点P(1,3),则关于x的不等式x+b>kx+4的解集是.15.(2分)某地区为了进一步缓解交通拥堵问题,决定修建一条长为6千米的公路,如果平均每天的修建费y(万元)与修建天数x(天)之间在30≤x≤120范围内,具有一次函数的关系,如下表所示.则y关于x的函数解析式为.(写出自变量取值范围)16.(2分)点A、B、C在数轴上对应的数分别为1、3、5,点P在数轴上对应的数是﹣2,点P关于点A的对称点为P1,点P1关于点B的对称点为P2,点P2关于点C的对称点为P3,点P3关于点A的对称点为P4,…,则P1P2016的长度为.二.解答题(共10小题,共68分)17.(6分)计算:(1)(π﹣2016)0+()﹣1﹣×|﹣3|(2)(﹣)2+×3+.18.(6分)求出下列x的值.(1)4x2﹣49=0;(2)(x+1)3=﹣64.19.(6分)已知y与x﹣2成正比例,当x=3时,y=2.(1)求y与x之间的函数关系式;(2)当﹣2<x<3时,求y的范围.20.(4分)已知:实数a,b在数轴上的位置如图所示,化简:﹣|a﹣b|.21.(8分)如图,△ABC三个顶点的坐标分别为A(1,1)、B(4,2)、C(3,4).(1)画出△ABC关于x轴的对称图形△A1B1C1;(2)画出△ABC沿x轴向左平移4个单位得到△A2B2C2;(3)在x轴上求作一点P,使△PAB的周长最小,并直接写出点P的坐标.22.(6分)阅读理解并解答问题如果a、b、c为正整数,且满足a2+b2=c2,那么,a、b、c叫做一组勾股数.(1)请你根据勾股数的意思,说明为什么3、4、5是一组勾股数;(2)写出一组不同于3、4、5的勾股数;(3)如果m表示大于1的整数,且a=2m,b=m2﹣1,c=m2+1,请你根据勾股数的意思,说明a、b、c为勾股数.23.(6分)如图,在△ABC中,∠ACB=90°,∠CAB=30°,以AB为边在△ABC外作等边△ABD,E是AB的中点,连接CE并延长交AD于F.(1)求证:△AEF≌△BEC;(2)连接BF,试判定BF与AD的位置关系,并说明理由.24.(8分)已知在△ABC中,AB=BC=8cm,∠ABC=90°,点E以每秒1cm/s的速度由A向点B运动,ED⊥AC于点D,点M为EC的中点.(1)求证:△BMD为等腰直角三角形;(2)当点E运动多少秒时,△BMD的面积为12.5cm2?25.(8分)高铁的开通,给衢州市民出行带来了极大的方便,“五一”期间,乐乐和颖颖相约到杭州市的某游乐园游玩,乐乐乘私家车从衢州出发1小时后,颖颖乘坐高铁从衢州出发,先到杭州火车站,然后再转车出租车去游乐园(换车时间忽略不计),两人恰好同时到达游乐园,他们离开衢州的距离y(千米)与乘车时间t(小时)的关系如图所示.请结合图象解决下面问题:(1)高铁的平均速度是每小时多少千米?(2)当颖颖达到杭州火车东站时,乐乐距离游乐园还有多少千米?(3)若乐乐要提前18分钟到达游乐园,问私家车的速度必须达到多少千米/小时?26.(10分)如图在平面直角坐标系中,直线l1:y=﹣x+3与x轴交于点A,与y轴交于点B,直线l2:y=kx+2k与x轴交于点C,与直线l1交于点P.(1)直线l2是否经过x轴上一定点?若经过,请直接写出定点坐标;若不经过,请说明理由;=8,求直线l2的函数关系式;(2)若S△ACP(3)过点M(0,6)作平行于x轴的直线l3,点Q为直线l3上一个动点,当△QAB为等腰三角形时,求所有点Q的坐标.2015-2016学年江苏省泰州市泰兴市初二(上)期末数学试卷参考答案与试题解析一.选择题(每题2分,共12分)1.(2分)在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.【解答】解:A、是轴对称图形,故A符合题意;B、不是轴对称图形,故B不符合题意;C、不是轴对称图形,故C不符合题意;D、不是轴对称图形,故D不符合题意.故选:A.2.(2分)在下列实数中,无理数是()A.5B.C.0D.【解答】解:A、5是有理数,故A错误;B、是无理数,故B正确;C、0是有理数,故C错误;D、是有理数,故D错误;故选:B.3.(2分)下列四组线段中,可以构成直角三角形的是()A.4,5,6B.1.5,2,2.5C.2,3,4D.1,,3【解答】解:A、42+52=41≠62,不可以构成直角三角形,故A选项错误;B、1.52+22=6.25=2.52,可以构成直角三角形,故B选项正确;C、22+32=13≠42,不可以构成直角三角形,故C选项错误;D、12+()2=3≠32,不可以构成直角三角形,故D选项错误.故选:B.4.(2分)下列各式计算正确的是()A.+=B.4﹣3=1C.2×3=6D.÷=3【解答】解:A.,无法计算,故此选项错误,B.4﹣3=,故此选项错误,C.2×3=6×3=18,故此选项错误,D.=,此选项正确,故选:D.5.(2分)若点A(﹣3,y1),B(2,y2),C(3,y3)是函数y=﹣x+2图象上的点,则()A.y1>y2>y3B.y1<y2<y3C.y1<y3<y2D.y2<y3<y1【解答】解:∵点A(﹣3,y1),B(2,y2),C(3,y3)都在函数y=﹣x+2的图象上,∴y1=3+2=5,y2=﹣2+2=0,y3=﹣3+2=﹣1,∴y1>y2>y3.故选:A.6.(2分)如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有()A.1个B.2个C.3个D.4个【解答】解:要使△ABP与△ABC全等,点P到AB的距离应该等于点C到AB 的距离,即3个单位长度,故点P的位置可以是P1,P3,P4三个,故选:C.二.填空题(每题2分,共20分)7.(2分)要使二次根式有意义,则x的取值范围是x≥﹣.【解答】解:由题意得,3+2x≥0,解得,x≥﹣,故答案为:x≥﹣.8.(2分)地球的半径约为6.4×103km,这个近似数精确到百位.【解答】解:6.4×103=6400,则这个数近似到百位.故答案是:百.9.(2分)等腰三角形两边长分别为4和8,则这个等腰三角形的周长为20.【解答】解:①若4是腰,则另一腰也是4,底是8,但是4+4=8,故不构成三角形,舍去.②若4是底,则腰是8,8.4+8>8,符合条件.成立.故周长为:4+8+8=20.故答案为:20.10.(2分)如图,已知BC=EC,∠BCE=∠ACD,添加一个条件,使△ABC≌△DEC,你添加的条件是AC=CD(答案不唯一).(答案不唯一,只需填一个)【解答】解:添加条件:AC=CD,∵∠BCE=∠ACD,∴∠ACB=∠DCE,在△ABC和△DEC中,∴△ABC≌△DEC(SAS),故答案为:AC=CD(答案不唯一).11.(2分)将一次函数y=2x的图象向上平移1个单位,所得图象对应的函数表达式为y=2x+1.【解答】解:把一次函数y=2x,向上平移1个单位长度,得到图象解析式是y=2x+1.故答案是:y=2x+1.12.(2分)如图所示的图形中,所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A,B,C,D的面积和是49cm2,则其中最大的正方形S的边长为7cm.【解答】解:根据勾股定理的几何意义,最大的正方形的面积为S=S A+S B+S C+S D=64cm2,则最大的正方形的边长为=7cm.故答案为:7.13.(2分)在△ABC中,AB=4,AC=3,AD是△ABC的角平分线,则△ABD与△ACD的面积之比是4:3.【解答】解:∵AD是△ABC的角平分线,∴设△ABD的边AB上的高与△ACD的AC上的高分别为h1,h2,∴h1=h2,∴△ABD与△ACD的面积之比=AB:AC=4:3,故答案为4:3.14.(2分)如图,一次函数y1=x+b与一次函数y2=kx+4的图象交于点P(1,3),则关于x的不等式x+b>kx+4的解集是x>1.【解答】解:当x>1时,x+b>kx+4,即不等式x+b>kx+4的解集为x>1.故答案为x>1.15.(2分)某地区为了进一步缓解交通拥堵问题,决定修建一条长为6千米的公路,如果平均每天的修建费y(万元)与修建天数x(天)之间在30≤x≤120范围内,具有一次函数的关系,如下表所示.则y关于x的函数解析式为y=﹣x+50(30≤x≤120).(写出自变量取值范围)【解答】解:设y关于x的函数解析式为:y=kx+b,则,解得:,故y关于x的函数解析式为:y=﹣x+50(30≤x≤120).故答案为:y=﹣x+50(30≤x≤120).16.(2分)点A、B、C在数轴上对应的数分别为1、3、5,点P在数轴上对应的数是﹣2,点P关于点A的对称点为P1,点P1关于点B的对称点为P2,点P2关于点C的对称点为P3,点P3关于点A的对称点为P4,…,则P1P2016的长度为6.【解答】解:点P关于点A的对称点P1表示的数是4;点P1关于点B的对称点P2表示的数是2;点P2关于点C的对称点P3表示的数是8;点P3关于点A的对称点P4表示的数是﹣6;点P4关于点B的对称点P5表示的数是12;点P5关于点C的对称点P6表示的数是﹣2;点P6关于点A的对称点P7表示的数是4;…2016÷6=336.∴P2016表示的数为﹣2.∴P1P2016=6.故答案为:6.二.解答题(共10小题,共68分)17.(6分)计算:(1)(π﹣2016)0+()﹣1﹣×|﹣3|(2)(﹣)2+×3+.【解答】解:(1)原式=1+3﹣6=﹣2;(2)原式=5﹣2++3=5+.18.(6分)求出下列x的值.(1)4x2﹣49=0;(2)(x+1)3=﹣64.【解答】解:(1)方程整理得:x2=,开方得:x=±;(2)开立方得:x+1=﹣4,解得:x=﹣5.19.(6分)已知y与x﹣2成正比例,当x=3时,y=2.(1)求y与x之间的函数关系式;(2)当﹣2<x<3时,求y的范围.【解答】解:(1)因为y与x﹣2成正比例,可得:y=k(x﹣2),把x=3,y=2代入y=k(x﹣2),解得:k=2,所以解析式为:y=k(x﹣2)=2x﹣4;(2)把x=﹣2,x=3代入y=2x﹣4,可得:y=﹣8,y=2,所以当﹣2<x<3时,y的范围为﹣8<y<2.20.(4分)已知:实数a,b在数轴上的位置如图所示,化简:﹣|a﹣b|.【解答】解:由数轴上点的位置关系,得﹣1<a<0<b<1.﹣|a﹣b|=a+1+2(1﹣b)﹣(b﹣a)=a+1+2﹣2b﹣b+a=2a﹣3b+3.21.(8分)如图,△ABC三个顶点的坐标分别为A(1,1)、B(4,2)、C(3,4).(1)画出△ABC关于x轴的对称图形△A1B1C1;(2)画出△ABC沿x轴向左平移4个单位得到△A2B2C2;(3)在x轴上求作一点P,使△PAB的周长最小,并直接写出点P的坐标.【解答】解:(1)如图所示:△A1B1C1,即为所求;(2)如图所示:△A2B2C2,即为所求;(3)如图所示:P(2,0).22.(6分)阅读理解并解答问题如果a、b、c为正整数,且满足a2+b2=c2,那么,a、b、c叫做一组勾股数.(1)请你根据勾股数的意思,说明为什么3、4、5是一组勾股数;(2)写出一组不同于3、4、5的勾股数;(3)如果m表示大于1的整数,且a=2m,b=m2﹣1,c=m2+1,请你根据勾股数的意思,说明a、b、c为勾股数.【解答】解:(1)∵3、4、5是正整数,且32+42=52,∴3、4、5是一组勾股数;(2)∵122+162=202,且12,16,20都是正整数,∴一组勾股数可以是12,16,20.答案不唯一;(3)∵m表示大于1的整数,∴由a=2m,b=m2﹣1,c=m2+1得到a、b、c均为正整数;又∵a2+b2=(2m)2+(m2﹣1)2=4m2+m4﹣2m2+1=m4+2m2+1,而c2=(m2+1)2=m4+2m2+1,∴a2+b2=c2,∴a、b、c为勾股数.23.(6分)如图,在△ABC中,∠ACB=90°,∠CAB=30°,以AB为边在△ABC外作等边△ABD,E是AB的中点,连接CE并延长交AD于F.(1)求证:△AEF≌△BEC;(2)连接BF,试判定BF与AD的位置关系,并说明理由.【解答】(1)证明:∵△ABD是等边三角形,∴∠DAB=60°,∵∠CAB=30°,∠ACB=90°,∴∠EBC=180°﹣90°﹣30°=60°,∴∠FAE=∠EBC,∵E为AB的中点,∴AE=BE,在△AEF和△BEC中∴△AEF≌△BEC(ASA);(2)解:BF⊥AD,理由是:∵△AEF≌△BEC,∴EF=EC,∵AE=BE,∴四边形AFBC是平行四边形,∵∠ACB=90°,∴四边形AFBC是矩形,∴∠BFA=90°,∴BF⊥AD.24.(8分)已知在△ABC中,AB=BC=8cm,∠ABC=90°,点E以每秒1cm/s的速度由A向点B运动,ED⊥AC于点D,点M为EC的中点.(1)求证:△BMD为等腰直角三角形;(2)当点E运动多少秒时,△BMD的面积为12.5cm2?【解答】(1)证明:∵∠ABC=90°,DE⊥AC,点M为EC的中点,AB=BC,∴BM=CE=CM,DM=CE=CM,∠BAC=∠ACB=45°,∴BM=DM,∠MBC=∠MCB,∠MDC=∠MCD,∵∠BME=∠MBC+∠MCB,∠DME=∠MDC+∠MCD,∠MCB+∠MCD=∠ACB=45°,∴∠BMD=∠BME+∠DME=45°+45°=90°,∴△BMD为等腰直角三角形;(2)解:由(1)得:△BMD为等腰直角三角形,∴△BMD的面积=BM•DM=BM2=12.5,解得:BM=5,∴CE=2BM=10cm,由勾股定理得:BE==6(cm),∴AE=AB﹣BE=2cm,∴2÷1=2(s),即当点E运动2秒时,△BMD的面积为12.5cm2.25.(8分)高铁的开通,给衢州市民出行带来了极大的方便,“五一”期间,乐乐和颖颖相约到杭州市的某游乐园游玩,乐乐乘私家车从衢州出发1小时后,颖颖乘坐高铁从衢州出发,先到杭州火车站,然后再转车出租车去游乐园(换车时间忽略不计),两人恰好同时到达游乐园,他们离开衢州的距离y(千米)与乘车时间t(小时)的关系如图所示.请结合图象解决下面问题:(1)高铁的平均速度是每小时多少千米?(2)当颖颖达到杭州火车东站时,乐乐距离游乐园还有多少千米?(3)若乐乐要提前18分钟到达游乐园,问私家车的速度必须达到多少千米/小时?【解答】解:(1)v==240.答:高铁的平均速度是每小时240千米;(2)设y=kt+b,当t=1时,y=0,当t=2时,y=240,得:,解得:,故把t=1.5代入y=240t﹣240,得y=120,设y=at,当t=1.5,y=120,得a=80,∴y=80t,当t=2,y=160,216﹣160=56(千米),∴乐乐距离游乐园还有56千米;(3)把y=216代入y=80t,得t=2.7,2.7﹣=2.4(小时),=90(千米/时).∴乐乐要提前18分钟到达游乐园,私家车的速度必须达到90千米/小时.26.(10分)如图在平面直角坐标系中,直线l1:y=﹣x+3与x轴交于点A,与y轴交于点B,直线l2:y=kx+2k与x轴交于点C,与直线l1交于点P.(1)直线l2是否经过x轴上一定点?若经过,请直接写出定点坐标;若不经过,请说明理由;(2)若S=8,求直线l2的函数关系式;△ACP(3)过点M(0,6)作平行于x轴的直线l3,点Q为直线l3上一个动点,当△QAB为等腰三角形时,求所有点Q的坐标.【解答】解:(1)∵y=kx+2k,∴y=k(x+2).∴当x=﹣2时,y=0.∴直线L2经过点(﹣2,0).(2)∵令y1=0得到﹣x+3=0,解得x=6,∴A(6,0).∵由(1)可知:点C的坐标为(﹣2,0).∴AC=8.=8,∵S△ACP∴=8,即=8.解得:P y=2.∵将y=2代入﹣x+3=0得:﹣x+3=2,解得x=2,∴点P的坐标为(2,2).将点P的坐标代入y=kx+2k得:2k+2k=2,解得:k=.∴直线L2的解析式为.(3)∵将x=0代入y=﹣x+3得:y=3,∴点B的坐标为(0,3).设点Q的坐标为(n,6).如下图所示:设点Q的坐标为(n,6).①当QB=QA时,由两点间的距离公式得:n2+(6﹣3)2=(6﹣n)2+(6﹣0)2.解得:n=.∴点Q的坐标为(,6).②当BQ=BA时,如下图所示:由两点间的距离公式得:n2+(6﹣3)2=(6﹣0)2+(3﹣0)2.解得:n=6或n=﹣6.∴点Q的坐标为(6,6)或(﹣6,6).∵将Q(﹣6,6)代入y=﹣得:y=﹣(﹣6)+3=6,∴点Q在直线AB上,此时A、B、Q不能构成三角形.∴Q(﹣6,6)(舍去).∴点Q的坐标为(6,6).③当AB=AQ时,由两点间的距离公式得:(n﹣6)2+(6﹣0)2=(6﹣0)2+(3﹣0)2.解得:n=9或n=3.∴点Q的坐标为(9,6)或(3,6).综上所述,点Q的坐标为(9,6)或(3,6)或(6,6)或().附赠:初中数学考试答题技巧一、答题原则大家拿到考卷后,先看是不是本科考试的试卷,再清点试卷页码是否齐全,检查试卷有无破损或漏印、重印、字迹模糊不清等情况。

姜堰区-第二学期期初联考.docx

姜堰区-第二学期期初联考.docx

姜堰区2015-2016学年第二学期期初联考高三数学(考试时间:120分钟 总分:160分)注意事项:所有试题的答案均填写在答题纸上,答案写在试卷上的无效. 一、填空题:(本大题共14小题,每小题5分,共70分.请将答案填入答题纸填空题的相应答题线上.)1.设U=R,A={x|x<1} 则C U A= .2.计算i+i 3= (i 为虚数单位).3.一个单位共有职工200人,其中不超过45岁的有120人,超过45岁 的有80人,为了调查职工的健康状况,用分层抽样的方法从全体职工 中抽取一个容量为25的样本,应抽取超过45岁的职工 人。

4.如图是一个算法的流程图,最后输出的S =________.5.若以连续掷两次骰子得到的点数m,n 分别作为点P 的横、纵坐标,则 点P 在直线x+y=4上的概率为 .6.函数f(x)=2sinx+3cosx 的极大值为 .7.抛物线y 2=4x 上任一点到定直线l:x=-1的距离与它到定点F 的距离相等,则该定点F 的坐标为 .8.等差数列{a n }的前n 项和记为S n ,满足2n=,则数列{a n }的公差d= .9.函数 f(x)=e x可以表示成一个奇函数 g(x) 与一个偶函数h(x) 之和,则g(x) 。

10.圆C 过点A(2,0),B(4,0),直线l 过原点O ,与圆C 交于P ,Q 两点,则OP ·OQ= 。

11.已知非零向量a b c r r r 、、满足x 2a r +xb r +c r =0,x ∈R .记△=b r 2-4a r c r c ,下列说法正确的是 .(只填序号)①若△=0,则x 有唯一解; ②若△>0,则x 有两解; ③若△<0,则x 无解。

12.定义在R 上的奇函数f(x)满足f(x+4)= f(x),且在[0,2]上f(x)= (1),(01,sin ,(12x x x x x π-≤≤⎧⎨<≤⎩则2941()()46f f +=_______. 13.把正整数按一定的规则排成了如图所示的三角形数表,设a ij (i,j ∈N*)是位于这个三角形数表中从上往下数第i 行,从左 往右数第j 个数,如a 42=8,若a ij =2015,则i+j=14.在平行四边形ABCD 中,∠BAD=60°,AB=1,AD=3,P 为平行四边形内一点,且AP=32,若(,)AP AB AD R λμλμ=+∈u u u r u u u r u u u r ,则3λμ+的最大值为___________.二、解答题:(本大题共6小题,共90分.解答应写出文字说明,证明过程或演算步骤.) 15.(本题满分 14 分)如图,在四棱锥P-ABCD 中,底面 ABCD 是正方形,侧棱PD 底面ABCD ,PD=DC=1,点E 是PC 的中点,作EF PB 交PB 于点F. (Ⅰ)求证:PA ∥平面EBD (Ⅱ)求证:PB 平面EFD 16.(本题满分14分)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,a=btanA ,且B 为钝角. (Ⅰ)证明:B-A=2π; (Ⅱ)求sinA+sinC 的取值范围. 17.(本题满分14分)已知数列{a n }为等差数列,首项a 1=5,公差d= -1,数列{b n }为等 比数列,b 2=1,公比为q (q>0),c n =a n b n ,S n 为{c n }的前n 项和,记S n =c 1+c 2+..+c n . (Ⅰ)求b 1+b 2+b 3的最小值; (Ⅱ)求S 10;(Ⅲ)求出使S n 取得最大的n 的值。

江苏省泰州市姜堰区第一教研站2024-2025学年八年级上学期10月月考数学试题

江苏省泰州市姜堰区第一教研站2024-2025学年八年级上学期10月月考数学试题

江苏省泰州市姜堰区第一教研站2024-2025学年八年级上学期10月月考数学试题一、单选题1.下面四幅作品分别代表“立春”、“芒种”、“白露”、“大雪”四个节气,其中轴对称图形是( ) A . B .C .D .2.如图,A ABC B C '''≌△△,其中36A ∠=︒,24∠︒=C ,则B '∠=( )A .60︒B .100︒C .120︒D .135︒3.如图,某同学不小心把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块完全一样形状的玻璃.那么最省事的办法是带( )A .带③去B .带②去C .带①去D .带①②去 4.如图,若△ABC ≌△ADE ,则下列结论中一定成立的是( )A .AC =DEB .∠BAD =∠CAEC .AB =AED .∠ABC =∠AED5.如图, ,AD BE 是 ABC V 的高线,AD 与BE 相交于点F .若6AD B D == ,且 ACD V 的面积为12,则AF 的长度为( )A .1B .32C .2D .36.如图,已知AD 是△ABC 的中线,E ,F 分别是AD 和AD 延长线上的点,且DE =DF ,连接BF ,CE .下列说法正确的是( )①BD =CD ;②∠BAD =∠CAD ;③△BDF ≌△CDE ;④BF ∥CE ;⑤CE =AEA .①②B .③⑤C .①③④D .①④⑤二、填空题7.如图,这是小明在平面镜里看到的背后墙上电子钟显示的时间,则此刻的实际时间应该是.8.如图,点A 、B 、C 、D 在同一直线上,ACE DBF V V ≌.若3AB =,2BC =.则BD 的长度等于.9.如图,已知AC FE BC DE ==,,点A ,D ,B ,F 在一条直线上,要使得ABC FDE ≌△△,还要添加一个条件,这个条件可以是(只需填写一个即可).10.如图,在33⨯的正方形网格中,则1234∠+∠+∠+∠=︒.11.如下图,地面上有一根旗杆AO ,小明两次拉住从顶端垂下的绳子OB 到OC ,OD 的位置(OC ,OA ,OD 在同一平面内),测得90COD ∠=︒,且C 、D 两点到OA 的水平距离CE 、DF 分别为1.4m 和1.8m ,则F 、E 两点的高度差即FE 的长为m .12.如图,ABC ADE △≌△,42B ∠=︒,30C ∠=︒,50BAD ∠=︒,则BAE ∠=13.如图,在ABC V 中,90C ∠=︒,AC BC =,AD 平分CAB ∠,交BC 于点D ,DE AB ⊥于点E ,且6cm AB =,则DEB V 的周长为.14.请仔细观察用直尺和圆规作一个角A O B '''∠等于已知角AOB ∠的示意图,请你根据图形全等的知识,说明画出A O B AOB '''∠=∠的依据是.(选填SSS 、SAS 、ASA 、AAS )15.如图,4AB =cm ,3AC BD ==cm .CAB DBA ∠=∠,点P 在线段AB 上以1cm /s 的速度由点A 向点B 运动,同时,点Q 在线段BD 上由点B 向点D 运动.设运动时间为t (s ),则当点Q 的运动速度为 cm /s 时,ACP △与BPQ V 全等.16.如图,在ABC V 中,90ABC ∠=︒,过点C 作CD AC ⊥,且CD A C =,连接BD ,若92B C D S =V ,则BC 的长为.三、解答题17.数学活动课上,张老师组织同学们设计多姿多彩的几何图形,下图都是由边长为1的小等边三角形构成的网格,每个网格图中有3个小等边三角形已涂上阴影,请同学们在余下的空白小等边三角形中选取一个涂上阴影,使得4个阴影小等边三角形组成一个轴对称图形,请画出4种不同的设计图形.18.如图所示,在边长为1的小正方形组成的网格中,△ABC 的三个顶点分别在格点上,请在网格中按要求作出下列图形,并标注相应的字母.(1)作△A 1B 1C 1,使得△A 1B 1C 1,与△ABC 关于直线l 1对称;(2)作△A 2B 2C 2,使得△A 2B 2C 2,与△ABC 关于直线l 2对称;(3)求△A 1B 1C 1的面积= (直接写出结果).19.如图,已知AB DC =,ABC DCB ∠=∠,求证:A D ∠=∠.20.如图1是小军制作的燕子风筝,燕子风筝的骨架图如图2所示,AB AE =,AC AD =,BC DE =,48C ∠=︒,求D ∠.21.如图,ABC V 中,,CE AD BF AD ⊥⊥,垂足分别为,E F .(1)能证明BDF V 和CDE V 全等吗?为什么?(2)若不能证明BDF V 和CDE V 全等,在不增加辅助线的情况下,请添加一个适当的条件,使这两个三角形全等,这个条件是______,写出证明过程.22.如图,点,,,A B C D 在同一条直线上,点,E F 分别在直线AB 的两侧,且,,AE BF A B DCE CDF =∠=∠∠=∠.(1)求证:ACE BDF V V ≌;(2)若11,3AB AC ==,求CD 的长.23.八年级数学兴趣小组开展了测量学校教学楼高度AB 的实践活动,测量方案如下表:测量方案示意图请你根据兴趣小组测量方案及数据,计算教学楼高度AB 的值.24.如图,DE AB ⊥于E ,DF AC ⊥于F ,若,B D C D B E CF==,求证:AD 平分BAC ∠.25.如图,AC 平分BAD ∠,CE AB ⊥,CF AD ⊥交AD 的延长线于点F ,在AB 上有一点M ,且CM CD =,(1)若12AF =,4DF =,求AM 的长.(2)试说明CDA ∠与CMA ∠的关系.26.【方法学习】数学兴趣小组活动时,王老师提出了如下问题:如图1,在ABC V 中,7AB =,5AC =,BC 边上的中线AD 的取值范围.小李在组内经过合作交流,得到了如下的解决方法(如图1),①延长AD 到E ,使得DE AD =;②连接BE ,通过三角形全等把AB 、AC 、2AD 转化在ABE V 中;③利用三角形的三边关系可得AE 的取值范围为AB BE AE AB BE -<<+,从而得到AD 的取值范围;方法总结:解题时,条件中若出现“中点”、“中线”字样,可以考虑倍长中线构造全等三角形,把分散的已知条件和所求证的结论集合到同一个三角形中.【问题解决】(1)如图1,请写出AD 的取值范围是 .(2)如图2,OA OB =,OC OD =,AOB ∠与COD ∠互补,连接AC 、BD ,E 是AC 的中点,求证:12OE BD =;【问题拓展】(3)如图3,在四边形ABCD 中,180B D ∠+∠=︒,CB CD =,100BCD ∠=︒以C 为顶点作一个50︒的角,角的两边分别交AB 、AD 于E 、F 两点,连接EF ,探索线段BE ,DF ,EF 之间的数量关系,并说明理由.。

江苏省泰州市姜堰区姜堰区实验初级中学2024-2025学年八年级上学期9月月考数学试题

江苏省泰州市姜堰区姜堰区实验初级中学2024-2025学年八年级上学期9月月考数学试题

江苏省泰州市姜堰区姜堰区实验初级中学2024-2025学年八年级上学期9月月考数学试题一、单选题1.下列常见的微信表情包中,属于轴对称图形的是( )A .B .C .D . 2.如图所示,ABC DEF ≌△△,则C ∠的对应角为( )A .F ∠B .ABC ∠ C .AEF ∠D .D ∠ 3.如图,三角形被挡住了一部分,小明根据所学知识很快就另外画出了一个与原来完全一样的三角形,这两个三角形全等的依据是( )A .SASB .ASAC .AASD .HL4.如图所示,已知在ABC V 中,90C AD AC DE AB ∠=︒=⊥,,交BC 于点E ,若28B ∠=︒,则AEC ∠=( )A .28︒B .59︒C .60︒D .62︒ 5.如图,在33⨯的正方形网格中,每个小正方形的边长都为1,则ABC ∠和DEF ∠的关系为( )A .ABC DEF ∠=∠B .2DEF ABC ∠∠= C .90ABC DEF ∠∠+=oD .180ABC DEF ∠+∠=o6.如图,在ABC V 中,B C ∠=∠,BE CD =,BDE CFD ∠=∠,则A ∠与EDF ∠的关系为( )A .A EDF ∠=∠B .90A EDF ∠+∠=︒C .1902EDF A ∠=︒+∠D .1902EDF A ∠=︒-∠二、填空题7.从镜子中看到汽车的车辆的号码如图所示,则该汽车的号码是.8.如图,ABC ADC ∆≅∆,40BCA ∠=︒,80B ∠=︒,则BAD ∠的度数为.9.如图,AC BC ⊥,BD BC ⊥,垂足分别为C ,B ,要根据“HL ”证明Rt Rt ABC DCB V V ≌,应添加的条件是.10.如图,AB CD ∥,DF EF =,12AB =,9CD =,则AE 等于.11.如图,BC AE 、是锐角ABF △的高,相交于点D ,若A D B F =,7AF =,2CF =,则BD 的长为.12.如图,点,D E 分别在线段,AB AC 上,且,BE CD B C ∠∠==,若4,3A E B D ==,则AC 的长为.13.如图,阴影部分是由3个小正方形组成的一个图形,若在图中剩余的方格中涂黑一个正方形,使整个阴影部分成为轴对称图形,涂法有种.14.如图,在ABC V 中,8BC =,6AC =,将ABC V 沿着直线MN 折叠,点B 恰好与点A 重合,折痕为DF ,则ACF △的周长为.15.如图,已知线段12m,AB MA AB =⊥于点,6m A MA =,射线BD AB ⊥于,B P 点从B 点向A 运动,每秒走1m,Q 点从B 点向D 运动,每秒走3m,,P Q 同时从B 出发,则出发秒后,在线段MA 上有一点C ,使CAP V与PBQ V 全等.16.如图,在ABC V 中,90C ∠=︒,10AB =,6BC =,D 为AC 边上一动点,将BCD △沿着直线BD ,使C 与C '重合,连接AC ',则AC '的最小值为.三、解答题17.如图,在由边长为1个单位长度的小正方形组成的网格中,A ,B ,C 均为格点(网格线的交点).(1)画出ABC V 关于直线l 对称的111A B C △.(2)求ABC V 的面积.18.如图,点A ,F ,B ,E 在同一条直线上,A D ∠=∠,DE BC ∥,AB DE =.求证:C DFE ∠=∠.19.已知:如图,点A B C D 、、、在同一直线上,AE ∥,,DF AB CD AE DF ==,求证:BF ∥CE .20.如图,,12,A B EA EB ∠=∠∠=∠=,求证:AC BD =.21.如图,在Rt ABC △中,90ABC ∠=o ,点D 在BC 的延长线上,且BD AB =.过点B 作BE AC ⊥,与BD 的垂线DE 交于点E .(1)求证:ABC BDE △≌△;(2)若6,4CD DE ==,求AB 的长.22.如图,在ABC V 中,D 为AB 上一点,E 为AC 中点,连接DE 并延长至点F ,使得CF ∥AB ,连接CF .(1)求证:EF ED =;(2)若15,70,35BED A F ∠∠∠=︒=︒=︒,求证:BE AC ⊥.23.已知:如图,点A B C D 、、、在一条直线上,AE BF ∥,从①AB CD =,②AE BF =,③CE DF ∥中选出其中两个作为补充条件,余下的一个作为结论,组成一个真命题,并写出结论成立的证明过程.(1)你选的补充条件是:_____;结论是:______;(均填写序号)(2)证明:24.如图,AD 为ABC V 的边BC 上的中线,过点B 作AD 的垂线,垂足为点E .(1)仅用圆规在线段AD 上找一点F ,使得CF BE ∥(保留作图痕迹,不写作法)(2)在(1)的条件下,若ACF △的面积为8,ABE V 的面积为20,求CFD △的面积.25.如图,ABC V 中,EF 垂直平分AC ,交AC 于点F ,交BC 于点,E AD BC ⊥,垂足为D ,且AB EC =,连接AE .(1)求证:点D 为BE 的中点;(2)若10,AC ABC =V 的周长为26,求CD 的长;(3)若,AC a CD b ==,(其中a b >)求ABC V 的周长.(用含有a b 、的代数式表示)26.如图,在Rt ABC △中,90ACB ∠=︒,D 为AB 边上一动点,E 为ABC V 外一点,且E A 、在线段CD 的两侧,CE CA =,E B ∠=∠.(1)如图2,当CD AB ⊥时,在线段CD 上取一点F ,使CF DE =. ①求证:AF CD =;②若8,16,20DE AD CD ===,求CDE V 的面积;(2)若点A 与点E 关于线段CD 成轴对称,且DE 与ABC V 其中的一条直角边垂直,求ACD ∠的度数.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015~2016学年度第二学期第一次月度联考
八 年 级 数 学 试 题
(考试时间:120分钟,满分:150分) 成绩
每题请将答案填入下列表格中1.下列既是中心对称图形又是轴对称图形的是 ( )
A .平行四边形
B .三角形
C .菱形
D .梯形 2.下列说法正确的是 ( )
A .“购买一张彩票就中奖”是不可能事件;
B .“抛掷一枚质地均匀的骰子,向上一面的点数是6”是随机事件;
C .了解我国青年人喜欢的电视节目应做普查;
D .从扇形统计图中,可以直接得到各部分的具体数值。

3.如图,在☐ABCD 中,下列结论错误..的是( ) A.∠ABD=∠BDC
B.∠BAD=∠BCD
C. AB=CD
D.AC ⊥BD
4. 若反比例函数x
k
y =
的图像经过点(2,-1),则此反比例的图像在( )
A .第一、二象限
B .第一、三象限
C .第二、三象限
D .第二、四象限 5.如图,☐ABCD 的对角线AC,BD 相交于点O ,下列条件可使的☐ABCD 为菱形的是( ) A .AC=BD B .∠DAB=∠DCB C .AD=BC D .∠AOD=90º
6.如图,一次函数的图像与反比例函数的图像相交于A,B 两点,则图中使反比例函数的值小于一次函数的值的x 的取值范围是 ( )
A .x<-1
B .x<-1或0<x<2
C .x>2
D . -1<x<0或x>2
8.当x= 时,分式2
-x 的值为零. 9.函数4-=
x y 中自变量x 的取值范围是 .
班级 姓 学号_________ 座位号_________
密 封 线 内 不 要 答 卷
……………………………………………………装………………订…………………线…………………………………………………………
10.若点P (1,-2)在反比例函数x
k
y =的图像上,则k 的值为 . 11.已知关于x 的方程
11
-=+x m
的解是负数,则m 的取值范围是_________.
12.如图,矩形ABCD 的对角线长为8cm ,E,F,G,H 分别是AB,BC,CD,DA 的
中点,则四边形EFGH 的周长为 cm 。

13.若反比例函数2
3)1(m x
m y -+=的图象在第二、四象限,m 的值为
_______. 14.若关于x 方程
12
4
2+-=-x x a 无解,则a 的值为 . 15.在一个不透明的袋子中装有仅颜色不同的10个小球,其中红球4个,黑球6个,先从袋子取
出m 个红球,再放入m 个一样的黑球并摇匀,随机摸出一个球是黑球的概率等于5
4
,则m 的值 为 . 16.已知,反比例函数x
y 8
-
=,则有①它的图像在一、三象限;②点(-2,4)在它的函数图像上;③当1<x<2时,y 的取值范围是-8<y<-4;④若函数的图像上有两个点A(x 1,y 1),B(x 2,y 2),那么当x 1<x 2时,y 1<y 2。

以上叙述正确的是 ____ _____.
三、解答题(本答题共102分)
17.解方程(本题共10分,每小题5分) ⑴2
1
43=-+x x ⑵
32121---=-x
x
x
18.(本题8分)先化简,在求值:)1(3)1
11(2
+÷-+a a
a ,其中a=4
19.(本题10分)某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需时间
与原计划生产450台机器所需时间相同,则现在平均每天生产多少台机器?
20.(本题10分)如图,在 ABCD 中,过点D 作DE ⊥AB 与点E ,点F 在边CD 上,DF=BE,连接AF,BF
⑴求证:四边形BFDE 是矩形;
⑵若CF=3,BF=4,DF=5,求证:AF 平分∠DAB.
21.(本题10分)某课题组为了解全市八年级学生对数学知识的掌握情况,在一次数学检测中,
从全市24000名八年级考生中随机抽取部分学生的数学成绩进行调查,并将调查结果绘制成 请⑴表中a 和b 所表示的数分别为:a = ,b = ; ⑵请在图中,补全频数分布直方图;
⑶如果把成绩在90分以上(含90分)定为优秀,那么该市24000名八年级考生数学成绩为优秀的学生约有多少名?
22.(本题10分)某乡镇要在生活垃圾存放区建一个老年活动中心,这样必须把1200立方米的生
频数
活垃圾运走:
⑴假如每天能运x 立方米,所需时间为y 天,写出y 与x 之间的函数表达式; ⑵若每辆拖拉机一天能运12立方米,则5辆这样的拖拉机要用多少天才能运完?
⑶在⑵的情况下,运了8天后,剩下的任务要在不超过6天的时间内完成,那么至少需要增加多少辆这样的拖拉机才能按时完成任务?
23.(本题10分)在Rt △ABC 中∠BAC=90º,E,F 分别是BC,AC 的中点,延长BA 到点D ,使AD=
2
1
AB ,连接DE ,DF 。

⑴试说明AF 与DE 互相平分; ⑵若BC=4,求DF 的长。

24.(本题10分)已知反比例函数x
k
y
(k 为常数,k ≠0)的图像经过点A (2,3)。

A
B
D
F
E
C
⑴求这个函数的解析式;
⑵判断点B(-1,6),C(3,2)是否在这个函数图像上; ⑶当-3<x<-1时,求y 的取值范围。

25.(本题12分)在Rt △ABC 中,∠BAC=90º,D 是BC 的中点,E 是AD 的中点,过点A 作AF//BC
交BE 的延长线于点F
⑴求证:△AEF ≌△DEB;
⑵证明:四边形ADCF 是菱形;
⑶若AB=4,AC=5,求菱形ADCF 的面积。

26.(本题12分)如图,A(-4,
21),B(-1,2)是一次函数y=kx+b 的图像与反比例函数x
m y (m ≠0,m<0)的函数图像的两个交点,AC ⊥x 轴于点C ,BD ⊥y 轴于点D
A B D
C F
E
⑴根据函数图像直接回答问题:在第二象限内,当x取何值时,一次函数的值大于反比例函
数的值?
⑵求一次函数的表达式及m的值;
⑶点P是线段AB上一点,连接PC,PD,若△PCA和△PBD的面积相等,求点P的坐标。

2015~2016学年度第二学期第一次月度联考
八 年 级 数 学 答 案
一、选择题
7.0.25; 8. -1; 9. X ≥4; 10.-2 11.m>-1且m ≠0; 12. 16; 13. -2 14. 4; 15. 2; 16. ②③ 三、解答题 17.(1)x=3
2
-; (2)x=2,无解 18.(1)
1
3-a a
(4分) (2)4 (4分) 19.200。

20.略。

21.(1)a=40;b=0.09(4分) (2)略(3分) (3)6960(3分) 22.(1)x
y 1200
=
(3分) (2)20天(3分) (3)5辆(4分) 23.(1)略(5分) (2)DF=2(5分) 24.(1)x
y 6
=
(3分) (2)B 不在;C 在 (4分) (3)-6<y<-2(3分) 25.(1)略(4分) (2)略(4分) (3)10(4分) 26.(1)-4<x<-1(3分) (2)2521+=x y (3分);m=-2(2分) (3)P (25-,4
5)(4分)。

相关文档
最新文档