2011年中考数学试题分类31 平移、旋转与对称
广东2011年中考数学试题分类解析汇编专题5:数量和位置变化
广东2011年中考数学试题分类解析汇编专题5:数量和位置变化一、选择题1.(广州3分)将点A(2,1)向左平移2个单位长度得到点A′,则点A′的坐标是A、(0,1)B、(2,﹣1)C、(4,1)D、(2,3)【答案】A。
【考点】坐标平移。
【分析】根据坐标的平移变化的规律,左右平移只改变点的横坐标,左减右加。
由此将点A 的横坐标减2,纵坐标不变可得A′的坐标(0,1)。
故选A。
2.(广州3分)当实数x的取值使得2x-错误!未找到引用源。
有意义时,函数y=4x+1中y的取值范围是A、y≥﹣7B、y≥9C、y>9D、y≤9【答案】B。
【考点】函数值,二次根式有意义的条件。
【分析】根据二次根式有意义被开方数为非负数的条件,得到x﹣2≥0,即x≥2。
不等式两边乘以4,得4x≥8,不等式两边再加上1,得4x+1≥9,即y≥9。
故选B。
3.(肇庆3分)点M(2-,1)关于x轴对称的点的坐标是A.(2-,—1) B.(2.1) C.(2,1-) D (1.2-)【答案】A。
【考点】轴对称。
【分析】根据直角坐标系中关于x轴对称的点横坐标相同,纵坐标互为相反数的特征,直接得出结果。
故选A。
二、填空题1. (广东省4分)已知反比例函数=kyx 的图象经过(1,-2),则=k______▲______.【答案】-2。
【考点】点的坐标与方程的关系。
【分析】根据点在曲线上,点的坐标满足方程的关系,只要将(1,-2)代入=kyx,即可求出k值。
2. (广东省4分)使2-x 在实数范围内有意义的x 的取值范围是______▲______. 【答案】2x ≥。
【考点】二次根式有意义的条件。
【分析】根据二次根式被开方数必须是非负数的条件,由直接得出结果:202x x -≥⇒≥。
3.(佛山3分)如图物体从点A 出发,按照A B →(第1步)C →(第2步)D A →→E →FG A B →→→→→ 的顺序循环运动,则第2011步到达点 ▲ 处;【答案】D 。
2011年北京中考数学试题+答案+解析
2011年北京中考暂时告一段落。
网校老师对今年的北京中考试题与初三强化提高班的课程、模拟题进行了一些分析和对比。
对比发现:网校课程及讲义与今年中考的考查知识点完全契合,95%左右的题目与课程讲义中给出的题目所考查的知识点完全相同,约有65%的题目与讲义中老师给出的题目只差一些具体数字(解题方法完全相同)。
这其中,函数图像的交点问题、常见辅助线的构造问题、平移旋转问题、中心对称与轴对称问题、二次函数图像与解析式、函数(二次函数)与圆综合题等都结合近年的中考真题做了专题讲解与复习。
可以这样说,学过这个班级的同学,对考题中90%的题目不陌生,甚至个别题目老师还"讲过"。
下面是网校老师对2011年北京中考数学试卷的分析及原题解析,供大家参考。
一、题型、题量及分值比例分布基本涵盖了《考试说明》所要求的所有知识点,如:数与代数、函数、三角形、圆、统计与概率等等。
真题与考试说明相比,题量上有所减少。
共25道题目,共72分。
难度比约为:5:3:2填空题选择题解答题4道16分8道32分13道72分二、总体特点1、重视基础,紧扣教材和考试说明。
绝大多说题目都非常注重对基本知识、方法、思想等的考查,很多题目源于书本或者以书本为基础;此类题目分值约占总分的75%2、理论与实际生活相结合。
真题中出现了人口普查、温度统计、京通公交快速通道、汽车保有量与尾气排放等问题。
3、出现新题型。
第12题是新出现的一个找规律的题目,难度不是很大;4、压轴题相对较难,与2010年相比难度有所下降。
但对同学抽象思维能力、分类讨论思想等的能力要求较高。
里面出现了一个容易被忽略的问题--半圆应该不包括直径。
三、真题详解及讲义相似度对比一、选择题(本题共32分,每小题4分)下面各题均有4个选项,其中只有一个是符合题意的.1、﹣的绝对值是()A、﹣B、C、﹣D、【考点】绝对值。
【难度】容易【解析】解:数轴上某个数与原点的距离叫做这个数的绝对值,在数轴上,点﹣到原点的距离是,所以﹣的绝对值是.故本题答案选D.【点评】本题考查绝对值的基本概念:数轴上某个数与原点的距离叫做这个数的绝对值.本题在北京近年中考一般会考相反数或者绝对值。
新人教版初中数学——图形的轴对称、平移与旋转-知识点归纳及中考典型题解析
新人教版初中数学——图形的轴对称、平移与旋转知识点归纳及中考典型题解析一、轴对称图形与轴对称轴对称图形轴对称图形定义如果一个图形沿着某条直线对折后,直线两旁的部分能够完全重合,那么这个图形就叫做轴对称图形,这条直线叫做对称轴如果两个图形对折后,这两个图形能够完全重合,那么我们就说这两个图形成轴对称,这条直线叫做对称轴性质对应线段相等AB=ACAB=A′B′,BC=B′C′,AC=A′C′对应角相等∠B=∠C∠A=∠A′,∠B=∠B′,∠C=∠C′对应点所连的线段被对称轴垂直平分区别(1)轴对称图形是一个具有特殊形状的图形,只对一个图形而言;(2)对称轴不一定只有一条(1)轴对称是指两个图形的位置关系,必须涉及两个图形;(2)只有一条对称轴关系(1)沿对称轴对折,两部分重合;(2)如果把轴对称图形沿对称轴分成“两个图形”,那么这“两个图形”就关于这条直线成轴对称(1)沿对称轴翻折,两个图形重合;(2)如果把两个成轴对称的图形拼在一起,看成一个整体,那么它就是一个轴对称图形1等腰三角形、矩形、菱形、正方形、圆.2.折叠的性质折叠的实质是轴对称,折叠前后的两图形全等,对应边和对应角相等.【注意】凡是在几何图形中出现“折叠”这个字眼时,第一反应即存在一组全等图形,其次找出与要求几何量相关的条件量.解决折叠问题时,首先清楚折叠和轴对称能够提供我们隐含的且可利用的条件,分析角之间、线段之间的关系,借助勾股定理建立关系式求出答案,所求问题具有不确定性时,常常采用分类讨论的数学思想方法.3.作某点关于某直线的对称点的一般步骤(1)过已知点作已知直线(对称轴)的垂线,标出垂足;(2)在这条直线另一侧从垂足除法截取与已知点到垂足的距离相等的线段,那么截点就是这点关于该直线的对称点.4.作已知图形关于某直线的对称图形的一般步骤(1)作出图形的关键点关于这条直线的对称点;(2)把这些对称点顺次连接起来,就形成了一个符合条件的对称图形.二、图形的平移1.定义在平面内,一个图形由一个位置沿某个方向移动到另一个位置,这样的图形运动叫做平移.平移不改变图形的形状和大小.2.三大要素一是平移的起点,二是平移的方向,三是平移的距离.3.性质(1)平移前后,对应线段平行且相等、对应角相等;(2)各对应点所连接的线段平行(或在同一条直线上)且相等;(3)平移前后的图形全等.4.作图步骤(1)根据题意,确定平移的方向和平移的距离;(2)找出原图形的关键点;(3)按平移方向和平移距离平移各个关键点,得到各关键点的对应点;(4)按原图形依次连接对应点,得到平移后的图形.三、图形的旋转1.定义在平面内,一个图形绕一个定点沿某个方向(顺时针或逆时针)转过一个角度,这样的图形运动叫旋转.这个定点叫做旋转中心,转过的这个角叫做旋转角.2.三大要素旋转中心、旋转方向和旋转角度.3.性质(1)对应点到旋转中心的距离相等;(2)每对对应点与旋转中心所连线段的夹角等于旋转角;(3)旋转前后的图形全等.4.作图步骤(1)根据题意,确定旋转中心、旋转方向及旋转角;(2)找出原图形的关键点;(3)连接关键点与旋转中心,按旋转方向与旋转角将它们旋转,得到各关键点的对应点;(4)按原图形依次连接对应点,得到旋转后的图形.【注意】旋转是一种全等变换,旋转改变的是图形的位置,图形的大小关系不发生改变,所以在解答有关旋转的问题时,要注意挖掘相等线段、角,因此特殊三角形性质的运用、锐角三角函数建立的边角关系起着关键的作用.四、中心对称图形与中心对称中心对称图形中心对称图形定义如果一个图形绕某一点旋转180°后能与它自身重合,我们就把这个图形叫做中心对称图形,这个点叫做它的对称中心如果一个图形绕某点旋转180°后与另一个图形重合,我们就把这两个图形叫做成中心对称性质对应点点A与点C,点B与点D点A与点A′,点B与点B′,点C与点C′对应线段AB=CD,AD=BCAB=A′B′,BC=B′C′,AC=A′C′对应角∠A=∠C∠B=∠D∠A=∠A′,∠B=∠B′,∠C=∠C′区别中心对称图形是指具有某种特性的一个图形中心对称是指两个图形的关系联系把中心对称图形的两个部分看成“两个图形”,则这“两个图形”成中心对称把成中心对称的两个图形看成一个“整体”,则“整体”成为中心对称图形平行四边形、矩形、菱形、正方形、正六边形、圆等.考向一轴对称轴对称图形与轴对称的区别与联系区别:轴对称图形是针对一个图形而言,它是指一个图形所具有的对称性质,而轴对称则是针对两个图形而言的,它描述的是两个图形的一种位置关系,轴对称图形沿对称轴对折后,其自身的一部分与另一部分重合,而成轴对称的两个图形沿对称轴对折后,一个图形与另一个图形重合.联系:把成轴对称的两个图形看成一个整体时,它就成了一个轴对称图形.典例1第24届冬季奥林匹克运动会,将于2022年02月04日~2022年02月20日在中华人民共和国北京市和张家口市联合举行,全国上下掀起喜迎冬奥热潮,下列四个汉字中是轴对称图形的是A.B.C.D.【答案】A【解析】A、是轴对称图形,故此选项正确;B、不是轴对称图形,故此选项错误;C、不是轴对称图形,故此选项错误;D、不是轴对称图形,故此选项错误.故选A.1.下列图形中不是轴对称图形的是A.B.C.D.考向二平移1.平移后,对应线段相等且平行,对应点所连的线段平行(或共线)且相等.2.平移后,对应角相等且对应角的两边分别平行或一条边共线,方向相同.3.平移不改变图形的形状和大小,只改变图形的位置,平移后新旧两图形全等.典例2下列运动中:①荡秋千;②钟摆的摆动;③拉抽屉时的抽屉;④工厂里的输送带上的物品,不属于平移的有A.4个B.3个C.2个D.1个【答案】C【解析】①荡秋千,是旋转,不是平移;②钟摆的摆动,是旋转,不是平移;③拉抽屉时抽屉的运动,是平移;④工厂里的输送带上的物品运动,是平移;故选C.2.下列四组图形都含有两个可以重合的三角形,其中可以通过平移其中一个三角形得到另一个三角形的是A.B.C.D.3.如图,两只蚂蚁以相同的速度沿两条不同的路径,同时从A出发爬到B,则A.乙比甲先到B.甲比乙先到C.甲和乙同时到D.无法确定考向三旋转通过旋转,图形中的每一点都绕着旋转中心沿相同的方向旋转了同样大小的角度,任意一对对应点与旋转中心的连线所成的角都是旋转角,对应点到旋转中心的距离相等,对应线段相等,对应角相等.在旋转过程中,图形的形状与大小都没有发生变化.典例3 如图,在ABC △中,65BAC ∠=︒,以点A 为旋转中心,将ABC △绕点A 逆时针旋转,得AB C ''△,连接BB ',若BB'AC ∥,则BAC '∠的大小是A .15︒B .25︒C .35︒D .45︒【答案】A【解析】∵△ABC 绕点A 逆时针旋转到△AB ′C ′的位置, ∴AB ′=AB ,∠B ′AC ′=∠BAC =65︒, ∴∠AB ′B =∠ABB ′, ∵BB ′∥AC ,∴∠ABB ′=∠CAB =65°, ∴∠AB ′B =∠ABB ′=65°, ∴∠BAB ′=180°–2×65°=50°,∴∠BAC ′=∠B ′AC ′–∠BAB ′=65°–50°=15°, 故选A .4.五角星可以看成由一个四边形旋转若干次而生成的,则每次旋转的度数可以是A .36°B .60°C .72°D .90°5.如图将△ABC 绕点A 顺时针旋转90°得到△AED ,若点B 、D 、E 在同一条直线上,∠BAC =20°,则∠ADB的度数为A.55°B.60°C.65°D.70°考向四中心对称识别轴对称图形与中心对称图形:①识别轴对称图形:轴对称图形是一类具有特殊形状的图形,若把一个图形沿某条直线对称,直线两旁的部分能完全重合,则称该图形为轴对称图形.这条直线为它的一条对称轴.轴对称图形有一条或几条对称轴.②中心对称图形识别:看是否存在一点,把图形绕该点旋转180°后能与原图形重合.典例4下列图形中,既是中心对称图形,又是轴对称图形的是A.B.C.D.【答案】B【解析】A、不是中心对称图形,也不是轴对称图形,故此选项错误;B、是中心对称图形,又是轴对称图形,故此选项正确;C、不是中心对称图形,也不是轴对称图形,故此选项错误;D、不是中心对称图形,也不是轴对称图形,故此选项错误,故选B.6.下列图形中,△A′B′C′与△ABC成中心对称的是A.B.C.D.1.下列四个图形中,不是轴对称图形的是A.B.C.D.2.已知点A的坐标为(3,–2),则点A向右平移3个单位后的坐标为A.(0,–2)B.(6,–2)C.(3,1)D.(3,–5)3.下列说法中正确的有①旋转中心到对应点的距离相等;②对称中心是对称点所连线段的中点;③旋转后的两个图形的对应边所在直线的夹角等于旋转角;④任意一个等边三角形都是中心对称图形.A.1个B.2个C.3个D.4个4.如图,在方格纸中的△ABC经过变换得到△DEF,正确的变换是A.把△ABC向右平移6格B.把△ABC向右平移4格,再向上平移1格C.把△ABC绕着点A顺时针旋转90°,再向右平移6格D.把△ABC绕着点A逆时针旋转90°,再向右平移6格5.如图,已知菱形OABC的顶点O(0,0),B(–2,–2),若菱形绕点O逆时针旋转,每秒旋转45°,则第60秒时,菱形的对角线交点D的坐标为A.(1,–1)B.(–1,–1)C.(1,1)D.(–1,1)6.在菱形ABCD中,AB=2,∠BAD=120°,点E,F分别是边AB,BC边上的动点,沿EF折叠△BEF,使点B的对应点B’始终落在边CD上,则A、E两点之间的最大距离为__________.7.将一张长方形纸条折成如图所示的形状,若∠1=110°,则∠2=__________°.8.如图所示,直线EF过平行四边形ABCD对角线的交点O,且分别交AD、BC于E、F,那么阴影部分的面积是平行四边形ABCD面积的____.9.如图,将矩形ABCD绕点A顺时针旋转到矩形AB′C′D′的位置,旋转角为α(0°<α<90°).若∠1=112°,则∠α=__________°.10.△ABC 在平面直角坐标系xOy 中的位置如图所示.(1)若△A 1B 1C 1与△ABC 关于原点O 成中心对称,则点A 1的坐标为__________; (2)将△ABC 向右平移4个单位长度得到△A 2B 2C 2,则点B 2的坐标为__________; (3)画出△ABC 绕O 点顺时针方向旋转90°得到的△A 3B 3C 3,并求点C 走过的路径长.11.如图,在ABC △中,D 为BC 上任一点,DE AC ∥交AB 于点E DF AB ,∥交AC 于点F ,求证:点E F ,关于AD 的中点对称.12.在如图所示的正方形网格中,每个小正方形的边长都是1,△ABC的顶点都在正方形网格的格点(网格线的交点)上.(1)请在如图所示的网格平面内作出平面直角坐标系,使点A坐标为(1,3),点B坐标为(2,1);(2)请作出△ABC关于y轴对称的△A'B'C',并写出点C'的坐标;(3)判断△ABC的形状.并说明理由.13.如图,已知∠BAC=40°,把△ABC绕着点A顺时针旋转,使得点B与CA的延长线上的点D重合,连接CE.(1)△ABC旋转了多少度?(2)连接CE,试判断△AEC的形状.(3)若∠ACE=20°,求∠AEC的度数.1.下列四个图形中,可以由下图通过平移得到的是A.B.C.D.2.在平面直角坐标系中,将点(2,1)向右平移3个单位长度,则所得的点的坐标是A.(0,5)B.(5,1)C.(2,4)D.(4,2)3.如图,在平面直角坐标系中,已知点A(2,1),点B(3,–1),平移线段AB,使点A落在点A1(–2,2)处,则点B的对应点B1的坐标为A.(–1,–1)B.(1,0)C.(–1,0)D.(3,0)4.把图中的交通标志图案绕着它的中心旋转一定角度后与自身重合,则这个旋转角度至少为A.30°B.90°C.120°D.180°5.如图,在ABCD中,将△ADC沿AC折叠后,点D恰好落在DC的延长线上的点E处.若∠B=60°,AB=3,则△ADE的周长为A.12 B.15 C.18 D.216.如图,将△ABC沿BC边上的中线AD平移到△A′B′C′的位置.已知△ABC的面积为16,阴影部分三角形的面积9.若AA′=1,则A′D等于A.2 B.3 C.4 D.3 27.如图,点E是正方形ABCD的边DC上一点,把△ADE绕点A顺时针旋转90°到△ABF的位置.若四边形AECF的面积为20,DE=2,则AE的长为A.4 B.25C.6 D.268.如图,将等边△AOB放在平面直角坐标系中,点A的坐标为(4,0),点B在第一象限,将等边△AOB 绕点O顺时针旋转180°得到△A′OB′,则点B′的坐标是__________.9.如图,在△ABC中,∠BAC=90°,AB=AC=10 cm,点D为△ABC内一点,∠BAD=15°,AD=6 cm,连接BD,将△ABD绕点A按逆时针方向旋转,使AB与AC重合,点D的对应点为点E,连接DE,DE交AC于点F,则CF的长为__________cm.10.如图,在△ABC中,AB=AC=4,将△ABC绕点A顺时针旋转30°,得到△ACD,延长AD交BC的延长线于点E,则DE的长为__________.11.如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系中,△OAB的三个顶点O(0,0)、A(4,1)、B(4,4)均在格点上.(1)画出△OAB关于y轴对称的△OA1B1,并写出点A1的坐标;(2)画出△OAB绕原点O顺时针旋转90°后得到的△OA2B2,并写出点A2的坐标;(3)在(2)的条件下,求线段OA在旋转过程中扫过的面积(结果保留π).12.如图,在矩形ABCD中,对角线AC的中点为O,点G,H在对角线AC上,AG=CH,直线GH绕点O 逆时针旋转α角,与边AB、CD分别相交于点E、F(点E不与点A、B重合).(1)求证:四边形EHFG是平行四边形;(2)若∠α=90°,AB=9,AD=3,求AE的长.13.在Rt△ABC中,∠ABC=90°,∠ACB=30°,将△ABC绕点A顺时针旋转一定的角度α得到△DEC,点A、B的对应点分别是D、E.(1)当点E恰好在AC上时,如图1,求∠ADE的大小;(2)若α=60°时,点F是边AC中点,如图2,求证:四边形BEDF是平行四边形.变式拓展1.【答案】A【解析】A.不是轴对称图形,故本选项符合题意;B.是轴对称图形,故本选项不符合题意;C.是轴对称图形,故本选项不符合题意;D.是轴对称图形,故本选项不符合题意.故选A.2.【答案】D【解析】A、可以通过轴对称得到,故此选项错误;B、可以通过旋转得到,故此选项错误;C、可以通过轴对称得到,故此选项错误;D、可通过平移得到,故此选项正确;故选D.3.【答案】C【解析】由平移的性质可知,甲、乙两只蚂蚁的行走的路程相同,且两只蚂蚁的速度相同,所以两只蚂蚁同时到达,故选C.4.【答案】C【解析】根据旋转的性质可知,每次旋转的度数可以是360°÷5=72°或72°的倍数.故选C.5.【答案】C【解析】∵将△ABC绕点A顺时针旋转90°得到△AED,∴∠BAC=∠DAE=20°,AB=AE,∠BAE=90°,∴∠BEA=45°,∵∠BDA=∠BEA+∠DAE=45°+20°,∴∠BDA=65°.故选C.6.【答案】A【解析】A、是中心对称图形,故本选项正确;B、是轴对称图形,故本选项错误;C、是旋转变换图形,故本选项错误;D、是旋转变换图形,故本选项错误.1.【答案】C【解析】A、是轴对称图形,故本选项不符合题意;B、是轴对称图形,故本选项不符合题意;C、不是轴对称图形,故本选项符合题意;D、是轴对称图形,故本选项不符合题意;故选C.2.【答案】B【解析】∵将点A(3,–2)向右平移3个单位所得点的坐标为(6,–2),∴正确答案是B选项.故选B.3.【答案】C【解析】①旋转中心到对应点的距离相等,正确;②对称中心是对称点所连线段的中点,正确;③旋转后的两个图形的对应边所在直线的夹角等于旋转角,正确;④任意一个等边三角形都是中心对称图形,错误.说法正确的有3个,故选C.4.【答案】D【解析】根据图象,△ABC 绕着点A 逆时针方向90°旋转与△DEF 形状相同,向右平移6格就可以与△DEF 重合.故选D . 5.【答案】C【解析】菱形OABC 的顶点O (0,0),B (–2,–2), 得D 点坐标为(022-,022-),即(–1,–1). 每秒旋转45°,则第60秒时,得45°×60=2700°,2700°÷360°=7.5周, OD 旋转了7周半,菱形的对角线交点D 的坐标为(1,1); 故选C . 6.【答案】23-【解析】如图,作AH ⊥CD 于H .∵四边形ABCD 是菱形,∠BAD =120°, ∴AB ∥CD ,∴∠D +∠BAD =180°, ∴∠D =60°, ∵AD =AB =2,∴AH =AD ·sin60°3= ∵B ,B ′关于EF 对称, ∴BE =EB ′,当BE 的值最小时,AE 的值最大,根据垂线段最短可知,当EB ′3AH ==时,BE 的值最小, ∴AE 的最大值=23, 故答案为:23. 7.【答案】55【解析】∵1110∠=︒,纸条的两边互相平行,∴3180118011070.∠=︒-∠=︒-︒=︒根据翻折的性质,()()1121803180705522∠=⨯︒-∠=⨯︒-︒=︒.故答案为:55. 8.【答案】14【解析】根据中心对称图形的性质,得AOE COF △≌△,则阴影部分的面积等于BOC △的面积,为平行四边形ABCD 面积的14.故答案为:14. 9.【答案】22【解析】如图,∵21112∠=∠=︒(对顶角相等),∴336090211268.∠=-⨯︒-=︒︒︒ ∴'906822BAB ∠=-=︒︒︒,∴旋转角'22.BAB α∠=∠=︒故答案为:22.10.【解析】(1)若△A 1B 1C 1与△ABC 关于原点O 成中心对称,则点A 1的坐标为(2,–3).(2)将△ABC 向右平移4个单位长度得到△A 2B 2C 2,则点B 2的坐标为(3,1). (3)将△ABC 绕O 点顺时针方向旋转90°,则点C 走过的路径长=90π2180=π.11.【解析】如图,连接EF 交AD 于点O .DE AC ∥交AB 于E DF AB ,∥交AC 于F ,∴四边形AEDF 是平行四边形, ∴点E F ,关于AD 的中点对称.12.【解析】(1)如图所示:(2)如图所示:'''A B C △即为所求:C '的坐标为()55-,; (3)2221454162091625AB AC BC =+==+==+=,,,∴222AB AC BC +=, ∴ABC △是直角三角形.13.【解析】(1)∵∠BAC =40°,∴∠BAD =140°,∴△ABC 旋转了140°.(2)由旋转的性质可知AC =AE ,∴△AEC 是等腰三角形. (3)由旋转的性质可知,∠CAE =∠BAD =140°,又AC =AE , ∴∠AEC =(180°–140°)÷2=20°.1.【答案】D【解析】∵只有D 的图形的形状和大小没有变化,符合平移的性质,属于平移得到; 故选D . 2.【答案】B【解析】将点(2,1)向右平移3个单位长度,则所得的点的坐标横坐标增加3,即(5,1).故选B . 3.【答案】【解析】由点A (2,1)平移后所得的点A 1的坐标为(–2,2),可得坐标的变化规律是:左移4个单位,上移1个单位,∴点B 的对应点B 1的坐标为(–1,0).故选C . 4.【答案】C【解析】∵360°÷3=120°,∴旋转的角度是120°的整数倍,∴旋转的角度至少是120°.故选C . 5.【答案】C【解析】由折叠可得,∠ACD =∠ACE =90°,∴∠BAC =90°, 又∵∠B =60°,∴∠ACB =30°,∴BC =2AB =6,∴AD =6,直通中考由折叠可得,∠E =∠D =∠B =60°,∴∠DAE =60°,∴△ADE 是等边三角形,∴△ADE 的周长为6×3=18,故选C . 6.【答案】B【解析】∵S △ABC =16.S △A ′EF =9,且AD 为BC 边的中线,∴S △A ′DE =12S △A ′EF =92,S △ABD =12S △ABC =8, ∵将△ABC 沿BC 边上的中线AD 平移得到△A 'B 'C ',∴A ′E ∥AB ,∴△DA ′E ∽△DAB , 则2()A'DE ABD S A'D AD S =△△,即299()1816A'D A'D ==+,解得A ′D =3或A ′D =﹣37(舍),故选B . 7.【答案】D【解析】∵△ADE 绕点A 顺时针旋转90°到△ABF 的位置.∴四边形AECF 的面积等于正方形ABCD 的面积等于20,∴AD =DC =2,∵DE =2,∴Rt △ADE 中,AE =22AD DE +=26,故选D .8.【答案】(﹣2,﹣23) 【解析】作BH ⊥y 轴于H ,如图,∵△OAB 为等边三角形,∴OH =AH =2,∠BOA =60°,∴BH =3OH =23,∴B 点坐标为(2,23), ∵等边△AOB 绕点O 顺时针旋转180°得到△A ′OB ′, ∴点B ′的坐标是(﹣2,﹣23). 故答案为:(﹣2,﹣23). 9.【答案】10–26【解析】如图,过点A 作AG ⊥DE 于点G ,由旋转知:AD =AE ,∠DAE =90°,∠CAE =∠BAD =15°,∴∠AED =∠ADG =45°,在△AEF 中,∠AFD =∠AED +∠CAE =60°,在Rt △ADG 中,AG =DG =2AD =32, 在Rt △AFG 中,GF =3AG =6,AF =2FG =26,∴CF =AC –AF =10–26, 故答案为:10–26.10.【答案】23–2【解析】根据旋转过程可知:∠CAD =30°=∠CAB ,AC =AD =4.∴∠BCA =∠ACD =∠ADC =75°.∴∠ECD =180°–2×75°=30°.∴∠E =75°–30°=45°.过点C 作CH ⊥AE 于H 点,在Rt △ACH 中,CH =12AC =2,AH =23. ∴HD =AD –AH =4–23.在Rt △CHE 中,∵∠E =45°,∴EH =CH =2.∴DE =EH –HD =2–(4–23)=23–2.故答案为3–2.11.【解析】(1)如下图所示,点A 1的坐标是(–4,1);(2)如下图所示,点A 2的坐标是(1,–4);(3)∵点A (4,1),∴OA 221417+=∴线段OA 290(17)⨯π⨯=174π.12.【解析】(1)∵对角线AC的中点为O,∴AO=CO,且AG=CH,∴GO=HO,∵四边形ABCD是矩形,∴AD=BC,CD=AB,CD∥AB,∴∠DCA=∠CAB,且CO=AO,∠FOC=∠EOA,∴△COF≌△AOE(ASA),∴FO=EO,且GO=HO,∴四边形EHFG是平行四边形;(2)如图,连接CE,∵∠α=90°,∴EF⊥AC,且AO=CO,∴EF是AC的垂直平分线,∴AE=CE,在Rt△BCE中,CE2=BC2+BE2,∴AE2=(9–AE)2+9,∴AE=5.13.【解析】(1)如图1,∵△ABC绕点A顺时针旋转α得到△DEC,点E恰好在AC上,∴CA=CD,∠ECD=∠BCA=30°,∠DEC=∠ABC=90°,∵CA=CD,∴∠CAD=∠CDA=12(180°–30°)=75°,∴∠ADE=90°–75°=15°;(2)如图2,∵点F是边AC中点,∴BF=12 AC,∵∠ACB=30°,∴AB=12AC,∴BF=AB,∵△ABC绕点A顺时针旋转60得到△DEC,∴∠BCE=∠ACD=60°,CB=CE,DE=AB,∴DE=BF,△ACD和△BCE为等边三角形,∴BE=CB,∵点F为△ACD的边AC的中点,∴DF⊥AC,易证得△CFD≌△ABC,∴DF=BC,∴DF=BE,而BF=DE,∴四边形BEDF是平行四边形.。
广东2011年中考数学试题分类解析汇编专题4:图形的变换
广东2011年中考数学试题分类解析汇编专题4:图形的变换一.选择题1. (广东省3分)将左下图中的箭头缩小到原来的12,得到的图形是【答案】A。
【考点】相似。
【分析】根据形状相同,大小不一定相等的两个图形相似的定义,A符合将图中的箭头缩小到原来的12的条件;B与原图相同;C将图中的箭头扩大到原来的2倍;D只将图中的箭头长度缩小到原来的12,宽度没有改变。
故选A。
2.(佛山3分)一个图形无论经过平移还是旋转,有以下说法①对应线段平行;②对应线段相等;③对应角相等;④图形的形状和大小都没有发生变化A、①②③B、①②④C、①③④D、②③④【答案】D。
【考点】平移的性质,旋转的性质。
【分析】根据平移和旋转的性质知,①一个图形经过旋转,对应线段不一定平行;②一个图形无论经过平移还是旋转,对应线段相等;③一个图形无论经过平移还是旋转,对应角相等;④一个图形无论经过平移还是旋转,图形的形状和大小都没有发生变化。
故选D。
3.(佛山3分)如图,一个小立方块所搭的几何体,从不同的方向看所得到的平面图形中(小正方形中的数字表示在该位置的小立方块的个数),不正确的是12142A12242B1111123C1111123D【答案】B。
【考点】几何体的三视图。
【分析】根据几何体的三视图的视图规则知,A、C、D分别是这个几何体左视图、主视图、俯视图。
故选B。
4.(河源3分)下面是空心圆柱在指定方向上的视图,正确的是【答案】C。
【考点】几何体的三视图。
【分析】圆柱体在指定方向上的视图是长方形,则空心圆柱应是两个长方形,但里面的从指定方向上是看不见的,应是虚线。
故选C。
5.(清远3分)图中几何体的主视图是【答案】C。
【考点】简单几何体的三视图。
【分析】仔细观察图象可知:图1中几何体的主视图下方是三个正方形,上方的左边有一个正方形。
故选C。
6.(深圳3分)如图所示的物体是一个几何体,其主视图是【答案】C。
【考点】简单几何体的三视图。
2011年全国各地100份中考数学试卷分类汇编-直线与圆的位置关系
2011年全国各地100份中考数学试卷分类汇编第33章直线与圆的位置关系一、选择题1. (2011宁波市,11,3分)如图,⊙O1的半径为1,正方形ABCD的边长为6,点O2为正方形ABCD的中心,O1O2垂直AB与P点,O1O2=8.若将⊙O1绕点P按顺时针方向旋转360°,在旋转过程中,⊙O1与正方形ABCD的边只有一个公共点的情况一共出现A.3次B.5次C.6次D.7次【答案】B2. (2011浙江台州,10,4分)如图,⊙O的半径为2,点O到直线l的距离为3,点P是直线l上的一个动点,PB切⊙O于点B,则PB的最小值是()A.13B.5C. 3D.2【答案】B3. (2011浙江温州,10,4分)如图,O是正方形ABCD的对角线BD上一点,⊙O边AB,BC都相切,点E,F分别在边AD,DC上.现将△DEF沿着EF对折,折痕EF与⊙O相切,此时点D恰好落在圆心O处.若DE=2,则正方形ABCD的边长是( )D.22A.3 B.4 C.22【答案】C4. (2011浙江丽水,10,3分)如图,在平面直角坐标系中,过格点A,B,C作一圆弧,点B与下列格点的连线中,能够与该圆弧相切的是()x y110B CAA .点(0,3)B .点(2,3)C .点(5,1)D .点(6,1) 【答案】C5. (2011浙江金华,10,3分)如图,在平面直角坐标系中,过格点A ,B ,C 作一圆弧,点B 与下列格点的连线中,能够与该圆弧相切的是( )xy110B CAA .点(0,3)B .点(2,3)C .点(5,1)D .点(6,1) 【答案】C6. (2011山东日照,11,4分)已知AC ⊥BC 于C ,BC =a ,CA =b ,AB =c ,下列选项中⊙O 的半径为ba ab的是( ) 【答案】C7. (2011湖北鄂州,13,3分)如图,AB 为⊙O 的直径,PD 切⊙O 于点C ,交AB 的延长线于D ,且CO=CD ,则∠PCA=( ) A .30° B .45° C .60° D .67.5°【答案】D8. (2011 浙江湖州,9,3)如图,已知AB 是⊙O 的直径,C 是AB 延长线上一点,BC =OB ,CDAO PB第13题图CE 是⊙O 的切线,切点为D ,过点A 作AE ⊥CE ,垂足为E ,则CD :DE 的值是 A .12B .1C .2D .3【答案】C9. (2011台湾全区,33)如图(十五),AB 为圆O 的直径,在圆O 上取异于A 、B 的一点C ,并连接BC 、AC .若想在AB 上取一点P ,使得P 与直线BC 的距离等于AP 长,判断下列四个作法何者正确?A .作AC 的中垂线,交AB 于P 点 B .作∠ACB 的角平分线,交AB 于P 点C .作∠ABC 的角平分线,交AC 于D 点,过D 作直线BC 的并行线,交AB 于P 点 D .过A 作圆O 的切线,交直线BC 于D 点,作∠ADC 的角平分线,交AB 于P 点 【答案】D10.(2011甘肃兰州,3,4分)如图,AB 是⊙O 的直径,点D 在AB 的延长线上,DC 切⊙O 于点C ,若∠A=25°,则∠D 等于A .20°B .30°C .40°D .50°【答案】C11. (2011四川成都,10,3分)已知⊙O 的面积为29cm π,若点0到直线l 的距离为cm π,则直线l 与⊙O 的位置关系是C(A)相交 (B)相切 (C)相离 (D)无法确定 【答案】CABDOC12. (2011重庆綦江,7,4分) 如图,PA 、PB 是⊙O 的切线,切点是A 、B ,已知∠P =60°,OA =3,那么∠AOB 所对弧的长度为( )A .6лB .5лC .3лD .2л【答案】:D13. (2011湖北黄冈,13,3分)如图,AB 为⊙O 的直径,PD 切⊙O 于点C ,交AB 的延长线于D ,且CO=CD ,则∠PCA=( )[来源:学,科,网Z,X,X,K] A .30° B .45° C .60° D .67.5°【答案】D14. (2011山东东营,12,3分)如图,直线333y x =+与x 轴、y 分别相交与A 、B 两点,圆心P 的坐标为(1,0),圆P 与y 轴相切与点O 。
2011-2012全国各中考数学试题分考点解析汇编图形的平移旋转
2011-2012全国各中考数学试题分考点解析汇编图形的平移旋转一、选择题1.(2011黑龙江大庆3分)在平面直角坐标系中,已知点A(-1,0)和B(1,2),连接AB,平移线段AB得到线段A1B1.若点A的对应点A1的坐标为(2,-1),则点B的对应点B1的坐标为A.(4,3) B.(4,1) C.(-2,3) D.(-2,1)【答案】B。
【考点】坐标与图形的平移变换。
【分析】根据平移的性质,结合已知点A,A1的坐标,知A点的平移方法是:先向右平移3个单位,再向下平移1个单位,得到点A1,则B点经同样的平移方法得到B1(1+3,2-1),即(4,1)。
故选B。
2.(2011广西河池3分)把二次函数2y x=的图象沿着x轴向右平移2个单位,再向上平移3个单位,所得到的图象的函数解析式为A.()223y x=++B.()223y x=-+C.()223y x=+-D.()223y x=--【答案】B。
【考点】二次函数的顶点式,图象的平移。
【分析】图象的平移只要考虑关键点的平移。
根据点的平移变化的规律,左右平移只改变点的横坐标,左减右加。
上下平移只改变点的纵坐标,下减上加。
二次函数2y x=的图象的顶点坐标为(0,0),它沿着x轴向右平移2个单位,再向上平移3个单位,得到新的图象的顶点坐标为(2,3)。
根据二次函数的顶点式得新的图象的函数解析式为()223y x=-+。
故选B。
3.(2011广西河池3分)如图,已知点A(1,0)、B(7,0),⊙A、⊙B的半径分别为1和2,将⊙A沿x轴向右平移3个单位,则此时该圆与⊙B的位置关系是A.外切B.相交识C .内含D .外离【答案】A 。
【考点】点的平移,两圆的位置关系。
【分析】根据两圆的位置关系的判定:外切(两圆圆心距离等于两圆半径之和),内切(两圆圆心距离等于两圆半径之差)相离(两圆圆心距离大于两圆半径之和),相交(两圆圆心距离小于两圆半径之和大于两圆半径之差),内含(两圆圆心距离小于两圆半径之差)。
中考数学考点系统复习 第七章 作图与图形变换 第三节 图形的平移、旋转、对称与位似
图④
图⑤
图⑥
(4)如图⑤,若将△ABD 绕点 A 逆时针旋转至 AB 与 AC 重合,点 D 的对应 点为 E,点 P 为 AC 的中点,连接 PE,则 PE 的最小值为 3 . (5)如图⑥,当点 D 是 BC 边上的中点时,将线段 AD 绕点 A 旋转 60°得到 AD′,连接 CD′,则 CD′=22 7或或2 2.
解:(1)如图所示,△GMH 即为所求. (2)如图所示,△MNH 即为所求. (3)45.
重难点 1:与图形的对称有关的计算
如图,在正方形纸片 ABCD 中,E 是 CD 的中点,将正方形纸片折叠,
点 B 落在线段 AE 上的点 G 处,折痕为 AF,若 AD=4 cm,则 CF 的长为 6-6-2 2 5 cm.
(2)如图③,点 D 为 BC 的中点,将△ACD 绕点 D 逆时针旋转一定角度 α(0<α<90°)得到△ECD.若 CE∥BD,则旋转角度 α=6060°°;
(3)如图④,连接 AD,将△ABD 绕点 A 逆时针旋转至△ACE 的位置,连接 DE,则旋转角度为 6060°°; ①若∠CAD=45°,则∠CAE 的度数为 1 15°5°; ②若 CD=3,则 CE 的长度为 1 1;
(3)如图③,作出△ABC 绕点 O 顺时针旋转 90°的图形△A3B3C3; 解:△A3B3C3 如图所示.
(4)如图④,以点 A 为位似中心,将△ABC 放大为原来的 2 倍,得到△A4B4C4; 解:△A4B4C4 如图所示.
(5)如图⑤,作出以 AB 为对角线的正方形 AEBF,点 E,F 也为格点,正方 形 AEBF 的面积为 10;
解:(1)线段 A1B1如图所示. (2)线段 A2B1 如图所示. (3)20.
2011年中考数学试题分类汇总--坐标单选
1. (2011山东日照,7,3分) 以平行四边形ABCD 的顶点A 为原点,直线AD 为x 轴建立直角坐标系,已知B 、D 点的坐标分别为(1,3),(4,0),把平行四边形向上平移2个单位,那么C 点平移后相应的点的坐标是( )(A )(3,3) (B )(5,3) (C )(3,5) (D )(5,5)【答案】D**********2. (2011山东泰安,12 ,3分)若点A 的坐标为(6,3),O 为坐标原点,将OA 绕点O 按顺时针方向旋转900得到OA ',则点A '的坐标为( )A.(3,-6)B.(-3,6)C.(-3,-6)D.(3,6)【答案】A**********3. (2011宁波市,5,3分)平面直角坐标系中,与点(2,-3)关于原点中心对称的点是A . (-3,2)B . (3,-2)C . (-2,3)D . (2,3)【答案】C*********4. (2011湖南常德,12,3分)在平面直角坐标系中,□ABCD 的顶点A 、B 、C 的坐标分别是(0,0)、(3,0)、(4,2)则顶点D 的坐标为( )A .(7,2) B. (5,4) C.(1,2) D. (2,1)【答案】C*********5. (2011江苏宿迁,2,3分)在平面直角坐标中,点M(-2,3)在( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】B**********6. (2011广东肇庆,6,3分)点M (2-,1)关于x 轴对称的点的坐标是A . (2-,1-)B . (2,1)C .(2,1-)D . (1,2-)【答案】A**********7. (2011湖南永州,16,3分)对点(x ,y )的一次操作变换记为P1(x ,y ),定义其变换法则如下:P1(x ,y )=(y x +,y x -);且规定)),((),(11y x P P y x P n n -=(n 为大于1的整数).如P1(1,2 )=(3,1-),P2(1,2 )= P1(P1(1,2 ))= P1(3,1-)=(2,4),P3(1,2 )= P1(P2(1,2 ))= P1(2,4)=(6,2-).则P2011(1,1-)=( )A .(0,21005 )B .(0,-21005 )C .(0,-21006)D .(0,21006)【答案】D**********8.(20011江苏镇江,7,2分)在平面直角坐标系中,正方形ABCD 的顶点坐标分别为A(1,1),B(1,-1),C(-1,-1),D(-1,1),y 轴上有一点P(0,2).作点P 关于点A 的对称点1P ,作点1P 关于点B 的对称点2P ,作点2P 关于点C 的对称点3P ,作点3P 关于点D 的对称点4P ,作点4P 关于点A 的对称点5P ,作点5P 关于点B 的对称点6P …,按此操作下去,则点2011P 的坐标为( )A.(0,2)B. (2,0)C. (0,-2)D.(-2,0)【答案】D**********9. (2011内蒙古乌兰察布,8,3分)在平面直角坐标系中,已知线段AB 的两个端点分别是A( 4 ,-1).B(1,1) 将线段AB 平移后得到线段A 'B',若点A'的坐标为 (-2 , 2 ) ,则点 B'的坐标为() A . ( -5 , 4 )B . ( 4 , 3 ) C. ( -1 , -2 ) D .(-2,-1) 【答案】A**********。
2011年中考数学试题分类31 平移、旋转与对称
第章 平移、旋转与对称一、选择题. (浙江省舟山,,分)如图,点、、、、都在方格纸的格点上,若△是由△绕点按逆时针方向旋转而得,则旋转的角度为( ) ()°()°()°()°【答案】. (广东广州市,,分)将点(,)向左..平移个单位长度得到点′,则点′的坐标是( ) .(,) .(,-1).(,).(,)【答案】. (广东广州市,,分)如图所示,将矩形纸片先沿虚线按箭头方向向右..对折,接着将对折后的纸片沿虚线向下对折,然后剪下一个小三角形,再将纸片打开,则打开后的展开图是( ). . ..【答案】. (江苏扬州,分)如图,在△中,∠º,∠º,,将△ 绕点按顺时针方向旋转度后,得到△,此时,点在边上,斜边交边于点,则的大小和图中阴影部分的面积分别为( )()图(第题). , , . , . ,【答案】. (山东菏泽,,分)如图所示,已知在三角形纸片中,, ,∠°,在上取一点,以为折痕,使的一部分与重合,与延长线上的点重合,则的长度为 ....【答案】. (山东泰安,,分)下列图形:其中是中心对称图形的个数为( ) 【答案】. (浙江杭州,,)正方形纸片折一次,沿折痕剪开,能剪得的图形是( ).锐角三角形 .钝角三角形 .梯形 .菱形 【答案】. ( 浙江湖州,,)下列各图中,经过折叠不能..围成一个立方体的是【答案】. ( 浙江湖州,,)如图,已知△是正三角形,⊥,,将△绕点按逆时针方向旋转,使得与重合,得到△,则旋转的角度是.°.°.°.°【答案】.(浙江省,,分)下列图形中,既是轴对称图形又是中心对称图形的是()【答案】.(浙江义乌,,分)下列图形中,中心对称图形有().个.个.个.个【答案】. (四川重庆,,分)下列图形中,是中心对称图形的是 ( )....【答案】. (浙江省嘉兴,,分)如图,点、、、、都在方格纸的格点上,若△是由△绕点按逆时针方向旋转而得,则旋转的角度为()()°()°()°()°【答案】. (台湾台北,).坐标平面上有一个线对称图形,、两点在此图形上且互为对称点。
中考数学知识点总结:平移与旋转
中考数学知识点总结:平移与旋转
旋转
1、旋转的定义:
在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动叫做旋转。
2、旋转的*质:
旋转后得到的图形与原图形之间有:对应点到旋转中心的距离相等,旋转角相等。
中心对称
1、中心对称的定义:
如果一个图形绕某一点旋转180度后能与另一个图形重合,那么这两个图形叫做中心对称。
2、中心对称图形的定义:
如果一个图形绕一点旋转180度后能与自身重合,这个图形叫做中心对称图形。
3、中心对称的*质:
在中心对称的两个图形中,连结对称点的线段都经过对称中心,并且被对称中心平分。
轴对称
1、轴对称的定义:
如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。
2、轴对称图形的*质:
①角的平分线上的点到这个角的两边的距离相等。
②线段垂直平分线上的点到这条线段两个端点的距离相等。
③等腰三角形的三线合一。
平移、旋转与对称-历届中考真题汇总专题(含解析答案)(原卷版)
备战2015中考系列:数学2年中考1年模拟第五篇图形的变化专题26 平移、旋转与对称☞解读考点知识点名师点晴图形的平移1.平移的概念知道什么是图形的平移。
2.平移的性质掌握平移的性质。
3.平移的条件了解平移条件。
4.平移作图能准确利用平移作图。
图形的旋转 5.旋转的定义知道什么是旋转。
6.旋转的性质掌握旋转的性质。
7.中心对称及中心对称图形了解中心对称和中心对称图形概念,能区分两个概念。
8.中心对称的性质能掌握中心对称的性质,能正确作图。
图形的轴对称 9.轴对称、轴对称图形的定义能区别两个概念。
10.轴对称的性质能正确应用性质。
11.轴对称作图会正确作出一个图形关于某直线的轴对称图形。
☞2年中考[2014年题组]1. (2014年广西来宾)将点P(﹣2,3)向右平移3个单位得到点P1,点P2与点P1关于原点对称,则P2的坐标是【】A.(﹣5,﹣3)B.(1,﹣3)C.(﹣1,﹣3)D.(5,﹣3)2. (2014年广西玉林、防城港)如图,边长分别为1和2的两个等边三角形,开始它们在左边重合,大三角形固定不动,然后把小三角形自左向右平移直至移出大三角形外停止.设小三角形移动的距离为x ,两个三角形重叠面积为y ,则y 关于x 的函数图象是【 】A .B .C .D .3. (2014年贵州遵义)如图,已知△ABC 中,∠C=90°,AC=BC=,将△ABC 绕点A 顺时针方向旋转60°到△AB′C′的位置,连接C′B ,则C′B 的长为【 】A .22-B .32C .31-D .1 4. (2014年江苏苏州)如图,△AOB 为等腰三角形,顶点A 的坐标为(2,5),底边OB 在x 轴上.将△AOB 绕点B 按顺时针方向旋转一定角度后得△A'O'B ,点A 的对应点A'在x 轴上,则点O'的坐标为【 】A .(203,103) B .(16345) C .(20345) D .(163,35.(2014年贵州黔东南)如图,在矩形ABCD 中,AB=8,BC=16,将矩形ABCD 沿EF 折叠,使点C 与点A 重合,则折痕EF 的长为【 】A.6 B.12 C.25D.456.(2014年湖南邵阳)如图,A点的初始位置位于数轴上的原点,现对A点做如下移动:第1次从原点向右移动1个单位长度至B点,第2次从B点向左移动3个单位长度至C点,第3次从C点向右移动6个单位长度至D点,第4次从D点向左移动9个单位长度至E点,…,依此类推,这样至少移动▲ 次后该点到原点的距离不小于41.7.(2014年黑龙江齐齐哈尔、大兴安岭地区、黑河)如图,在在平面直角坐标系xOy中,有一个等腰直角三角形AOB,∠OAB=90°,直角边AO在x轴上,且AO=1.将Rt△AOB绕原点O顺时针旋转90°得到等腰直角三角形A1OB1,且A1O=2AO,再将Rt△A1OB1绕原点O顺时针旋转90°得到等腰三角形A2OB2,且A2O=2A1O…,依此规律,得到等腰直角三角形A2014OB2014,则点A2014的坐标为▲ .8.(2014年湖南张家界)如图,AB、CD是⊙O两条弦,AB=8,CD=6,MN是直径,AB⊥MN于E,CD⊥MN 于点F,P为EF上任意一点,,则PA+PC的最小值为▲ .9. (2014年江苏连云港)如图1,将正方形纸片ABCD对折,使AB与CD重合,折痕为EF,如图2,展开再折叠一次,使点C与点E重合,折痕为GH,点B的对应点为M,EM交AB于N,则tan∠ANE= ▲ .10.(2014年辽宁本溪)如图,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC+∠EAD=180°,△ABC 不动,△ADE绕点A旋转,连接BE、CD,F为BE的中点,连接AF.(1)如图①,当∠BAE=90°时,求证:CD=2AF;(2)当∠BAE≠90°时,(1)的结论是否成立?请结合图②说明理由.[2013年题组]1. (2013年湖北荆门)如下图所示,已知等腰梯形ABCD,AD∥BC,若动直线l垂直于BC,且向右平移,设扫过的阴影部分的面积为S,BP为x,则S关于x的函数图象大致是【】A.B.C.D.2. (2013年湖北荆州)如图,在平面直角坐标系中,直线y=﹣3x+3与x轴、y轴分别交于A、B两点,以AB为边在第一象限作正方形ABCD,点D在双曲线kyx(k≠0)上.将正方形沿x轴负方向平移a个单位长度后,点C恰好落在该双曲线上,则a的值是【】A.1 B.2 C.3 D.43. (2013年湖北恩施)如图所示,在直角坐标系中放置一个边长为1的正方形ABCD,将正方形ABCD沿x轴的正方向无滑动的在x轴上滚动,当点A离开原点后第一次落在x轴上时,点A运动的路径线与x轴围成的面积为【】A.122π+B.12π+C.1π+D.3-4. (2013年贵州黔东南)如图,直线y=2x与双曲线2yx=在第一象限的交点为A,过点A作AB⊥x轴于B,将△ABO绕点O旋转90°,得到△A′B′O,则点A′的坐标为【】A.(1.0)B.(1.0)或(﹣1.0)C.(2.0)或(0,﹣2)D.(﹣2.1)或(2,﹣1)5. (2013年江苏苏州)如图,在平面直角坐标系中,Rt△OAB的顶点A在x轴的正半轴上,顶点B的坐标为(3,3),点C的坐标为(12,0),点P为斜边OB上的一动点,则PA+PC的最小值为【】A .132B .312 C .3192+ D .276.(2013年湖南岳阳)夏季荷花盛开,为了便于游客领略“人从桥上过,如在河中行”的美好意境,某景点拟在如图所示的矩形荷塘上架设小桥.若荷塘周长为280m ,且桥宽忽略不计,则小桥总长为 ▲ m .7.(2013年黑龙江牡丹江市区)菱形ABCD 在平面直角坐标系中的位置如图所示,A (0,6),D (4,0),将菱形ABCD 先向左平移5个单位长度,再向下平移8个单位长度,然后在坐标平面内绕点O 旋转90°,则边AB 中点的对应点的坐标为 ▲ .8. (2013年河南省)如图,矩形ABCD 中,AB=3,BC=4,点E 是BC 边上一点,连接AE ,把∠B 沿AE 折叠,使点B 落在点B'处,当△CEB '为直角三角形时,BE 的长为 ▲ .9. ( 2013年广西钦州)如图,在正方形ABCD 中,E 是AB 上一点,BE=2,AE=3BE ,P 是AC 上一动点,则PB+PE 的最小值是 ▲ .10.(2013年湖北随州)在平面直角坐标系xOy 中,矩形ABCO 的顶点A 、C 分别在y 轴、x 轴正半轴上,点P 在AB 上,PA=1,AO=2.经过原点的抛物线2y mx x n =-+的对称轴是直线x=2. (1)求出该抛物线的解析式.(2)如图1,将一块两直角边足够长的三角板的直角顶点放在P点处,两直角边恰好分别经过点O和C.现在利用图2进行如下探究:①将三角板从图1中的位置开始,绕点P顺时针旋转,两直角边分别交OA、OC于点E、F,当点E和点A重合时停止旋转.请你观察、猜想,在这个过程中,PEPF的值是否发生变化?若发生变化,说明理由;若不发生变化,求出PEPF的值.②设(1)中的抛物线与x轴的另一个交点为D,顶点为M,在①的旋转过程中,是否存在点F,使△DMF 为等腰三角形?若不存在,请说明理由.☞考点归纳归纳 1:判断图形的平移基础知识归纳:把一个图形整体沿某一方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同,图形的这种移动叫做平移变换,简称平移。
山东省17市2011年中考数学试题分类解析汇编 专题4 图形的变换
山东17市2011年中考数学试题分类解析汇编专题4:图形的变换一、选择题1.(日照3分)如图表示一个由相同小立方块搭成的几何体的俯视图,小正方形中的数字表示该位置上小立方块的个数,那么该几何体的主视图为【答案】 C 。
【考点】由三视图判断几何体。
【分析】俯视图中的每个数字是该位置小立方体的个数,从而从正面看可看到3列从左到右的列数分别是2,2,1,故选C 。
3.(滨州3分)如图.在△ABC 中,∠B=90°,∠A=30°,AC =4cm ,将△ABC 绕顶点C 顺时针方向旋转至△A'B'C 的位置,且A 、C 、B'三点在同一条直线上,则点A 所经过的最短路线的长为A 、B 、8cm 8cmC 、163cm π D 、83cm π【答案】D 。
【考点】旋转的性质,弧长的计算。
【分析】点A 所经过的最短路线是以C 为圆心、CA 为半径的一段弧线,运用弧长公式计算求解:∵∠B=90°,∠A=30°,A 、C 、B'三点在同一条直线上,∴∠ACA′=120°。
又∵AC=4,∴ ()120481803'AAL cm ππ⋅⋅==。
故选D 。
4.(滨州3分)如图,在一张△ABC 纸片中,∠C=90°,∠B=60°,DE 是中位线,现把纸片沿中位线DE 剪开,计划拼出以下四个图形:①邻边不等的矩形;②等腰梯形;③有一个角为锐角的菱形;④正方形.那么以上图形一定能被拼成的个数为A 、1B 、2C 、3D 、4【答案】C 。
【考点】三角形中位线定理,图形的拼接。
【分析】将该三角形剪成两部分,拼图使得△ADE和直角梯形BCDE不同的边重合,即可解题:①使得CE与AE重合,即可构成邻边不等的矩形,如图1,∴BD≠BC;② 使得BD与AD重合,即可构成等腰梯形,如图2:③使得BD与DE重合,即可构成有一个角为锐角的菱形,如图3:故可拼出①②③.故选C。
2011中考数学真题解析83 旋转,旋转对称,中心对称,中心对称图形(含答案)
(2012年1月最新最细)2011全国中考真题解析120考点汇编旋转,旋转对称,中心对称,中心对称图形一、选择题1.(2011•南通)下面的图形中,既是轴对称图形又是中心对称图形的是()A、B、C、D、考点:中心对称图形;轴对称图形。
分析:结合轴对称图形与中心对称图形的定义进行分析解答:解:A项是中心对称图形,不是轴对称图形,故本项错误,B项为中心对称图形,不是轴对称图形,故本项错误,C项为中心对称图形,也是轴对称图形,故本项正确,D项为轴对称图形,不是中心对称图形,故本项错误故答案选择C.点评:本题主要考察轴对称图象的定义和中心对称图形的定义,解题的关键是找到图形是否符合轴对称图形和中心对称图形的定义2.(2011江苏扬州,8,3分)如图,在Rt△ABC中,∠ACB=90º,∠A=30º,BC=2,将△ABC绕点C按顺时针方向旋转n度后,得到△EDC,此时,点D在AB边上,斜边DE交AC边于点F,则n的大小和图中阴影部分的面积分别为()A. 30,2B.60,2C. 60,D. 60,3考点:旋转的性质;含30度角的直角三角形。
专题:创新题型;探究型。
分析:先根据已知条件求出AC的长及∠B的度数,再根据图形旋转的性质及等边三角形的判定定理判断出△BCD的形状,进而得出∠DCF的度数,由直角三角形的性质可判断出DF是△ABC的中位线,由三角形的面积公式即可得出结论.解答:解:∵△ABC 是直角三角形,,∠ACB=90°,∠A=30°,BC=2,∴∠B=60°,AC=BC×cot ∠A=2×3=23,AB=2BC=4,∵△EDC 是△ABC 旋转而成,∴BC=CD=BD=21AB=2, ∵∠B=60°,∴△BCD 是等边三角形,∴∠BCD=60°,∴∠DCB=30°,∠DFC=90°,即DE ⊥AC ,∴DE ∥BC ,∵BD=21AB=2, ∴DF 是△ABC 的中位线,∴DF=21BC=21×2=1,CF=21AC=21×23=3,∴S 阴影=21DF×CF=21×3=. 故选C .点评:本题考查的是图形旋转的性质及直角三角形的性质、三角形中位线定理及三角形的面积公式,熟知图形旋转的性质是解答此题的关键,即:①对应点到旋转中心的距离相等;②对应点与旋转中心所连线段的夹角等于旋转角;③旋转前、后的图形全等.3. (2011•宁夏,8,3分)如图,△ABO 的顶点坐标分别为A (1,4)、B (2,1)、O (0,0),如果将△ABO 绕点O 按逆时针方向旋转90°,得到△A′B′O′,那么点A′、B′的对应点的坐标是( )A 、A′(﹣4,2),B′(﹣1,1)B 、A′(﹣4,1),B′(﹣1,2)C 、A′(﹣4,1),B′(﹣1,1)D 、A′(﹣4,2),B′(﹣1,2)考点:坐标与图形变化-旋转。
中考数学专题复习卷:轴对称、平移与旋转(含解析)
轴对称、平移与旋转一、选择题1.下列图形中一定是轴对称图形的是()A. B. C. D.【答案】D【解析】A、40°的直角三角形不是轴对称图形,故不符合题意;B、两个角是直角的四边形不一定是轴对称图形,故不符合题意;C、平行四边形是中心对称图形不是轴对称图形,故不符合题意;D、矩形是轴对称图形,有两条对称轴,故符合题意,故答案为:D.【分析】把一个图形沿着一条直线折叠,直线两旁的部分能完全重合的图形就是轴对称图形;根据轴对称图形的定义,再一一判断即可。
2.下列图形中,是轴对称图形但不是中心对称图形的是()A. 正三角形B. 菱形C. 直角梯形D. 正六边形【答案】C【解析】:A.正三角形是轴对称图形,不是中心对称图形,故正确,A符合题意;B.菱形既是轴对称图形,又是中心对称图形,故错误,B不符合题意;C.直角梯形既不是轴对称图形,也不是中心对称图形,故错误,C不符合题意;D.正六边形既是轴对称图形,又是中心对称图形,故错误,D不符合题意;故答案为:A.【分析】根据轴对称图形和中心对称图形定义一一判断对错即可得出答案.3.将抛物线y=-5x +l向左平移1个单位长度,再向下平移2个单位长度,所得到的抛物线为().A. y=-5(x+1) -1B. y=-5(x-1) -1C. y=-5(x+1) +3D. y=-5(x-1) +3【答案】A【解析】:将抛物线y=-5x+l向左平移1个单位长度,得到的抛物线解析式为:y=-5(x+1)2+1再向下平移2个单位长度得到的抛物线为:y=-5(x-1)+1-2即y=-5(x+1)-1故答案为:A【分析】根据二次函数图像的平移规律:上加下减,左加右减,将抛物线y=ax2向上或向下平移m个单位,再向左或向右平移n个单位即得到y=a(x±n)2±m。
根据平移规则即可得出平移后的抛物线的解析式。
即可求解。
4.在平面直角坐标系中,点关于原点对称的点的坐标是()A.B.C.D.【答案】C【解析】:点关于原点对称的点的坐标为(3,5)故答案为:C【分析】根据关于原点对称点的坐标特点是横纵坐标都互为相反数,就可得出答案。
中考数学轴对称平移与旋转
(2)图形的平移 ①通过具体实例认识平移,探 索它的基本性质,理解对应点连 线平行且相等的性质。 ②能按要求作出简单平面图形 平移后的图形。 ③利用平移进行图案设计,认 识和欣赏平移在现实生活中的应 用。
(3)图形的旋转
①通过具体实例认识旋转 , 探索它的基本 性质 , 理解对应点到旋转中心的距离相等、 对应点与旋转中心连线所成的角彼此相等的 性质。 ②了解平行四边形、圆是中心对称图形。 ④欣赏旋转在现实生活中的应用。 ⑤探索图形之间的变换关系 ( 轴对称、平 移、旋转及其组合)。[参见例2和例3] ⑥灵活运用轴对称、平移和旋转的组合进 行图案设计。
•1.轴对称图形: •如果一个图形沿一条直线折叠后,直线两 旁的部分能够互相重合,那么这个图形叫做 轴对称图形,这条直线叫做对称轴. •2. 性质: •①两个图形全等. •②对称轴垂直平分两个对应点所连的线段. •③两个对应点所连的线段平行(或相交).
一、对称
•4.常见轴对称图形填表:
图形 角 对称轴
⑤通过典型实例观察和认识现实生活 中物体的相似,利用图形的相似解决一 些实际问题 ( 如利用相似测量旗杆的高 度) 。 ⑥通过实例认识锐角三角函数 (sinA , cosA , tanA) ,知道 300 , 450 , 600 角的 三角函数值;会使用计算器由已知锐角 求它的三角函数值,由已知三角函数值 求它对应的锐角。 ⑦运用三角函数解决与直角三角形有 关的简单实际问题。
角平分线所在的直线
相关性质
角平分线上的点到这个角的两边的距 离相等
线段
等腰三角形 等边三角形
线段所在的直线和线 段的垂直平分线
线段垂直平分线上的点到这条线段两 个端点的距离相等
正方形 矩形 菱形
2011年中考数学试题分类汇总单选:二次函数单选
一、选择题1. (2011山东滨州,7,3分)抛物线()223y x =+-可以由抛物线2y x =平移得到,则下列平移过程正确的是( )A.先向左平移2个单位,再向上平移3个单位B.先向左平移2个单位,再向下平移3个单位C.先向右平移2个单位,再向下平移3个单位D.先向右平移2个单位,再向上平移3个单位 【答案】B2. (2011广东广州市,5,3分)下列函数中,当x>0时y 值随x 值增大而减小的是( ). A .y = x2 B .y = x -1C . y = 34xD .y = 1x【答案】D4. (2011山东德州6,3分)已知函数))((b x a x y --=(其中a b >)的图象 如下面右图所示,则函数b ax y +=的图象可能正确的是【答案】D5. (2011山东菏泽,8,3分)如图为抛物线2y ax bx c =++的图像,A 、B 、C 为抛物线与坐标轴的交点,且OA=OC=1,则下列关系中正确的是A .a +b=-1B . a -b=-1C . b<2aD .ac<0【答案】B6. (2011山东泰安,20 ,3分)若二次函数y=ax2+bx+c 的x 与y 的部分对应值如下表:第6题图X -7 -6 -5 -4 -3 -2y -27 -13 -3 3 5 3则当x=1时,y 的值为A.5B.-3C.-13D.-27 【答案】D7. (2011山东威海,7,3分)二次函数223y x x =--的图象如图所示.当y <0时,自变量x 的取值范围是( ).A .-1<x <3B .x <-1C . x >3D .x <-1或x >3【答案】A8. (2011山东烟台,10,4分)如图,平面直角坐标系中,两条抛物线有相同的对称轴,则下列关系正确的是( )A .m =n ,k >hB .m =n ,k <hC .m >n ,k =hD .m <n ,k =h【答案】A9. (2011浙江温州,9,4分)已知二次函数的图象(0≤x≤3)如图所示.关于该函数在所给自变量取值范围内,下列说法正确的是( )A .有最小值0,有最大值3B .有最小值-1,有最大值0C .有最小值-1,有最大值3D .有最小值-1,无最大值【答案】D 10.(2011四川重庆,7,4分)已知抛物线y =ax2+bx +c(a≠0)在平面直角坐标系中的位置如图所示,则下列结论中正确的是( )A . a>0B . b <0C . c <0D . a +b +c>0 【答案】D11. (2011台湾台北,6)若下列有一图形为二次函数y =2x2-8x +6的图形,则此图为何?【答案】A13. (2011台湾全区,28)图(十二)为坐标平面上二次函数c bx ax y ++=2的图形,且此图形通(-1 , 1)、(2 ,-1)两点.下列关于此二次函数的叙述,何者正确?A .y 的最大值小于0B .当x =0时,y 的值大于1C .当x =1时,y 的值大于1D .当x =3时,y 的值小于0 【答案】D14. (2011甘肃兰州,5,4分)抛物线221y x x =-+的顶点坐标是 A .(1,0)B .(-1,0)C .(-2,1)D .(2,-1)【答案】A15. (2011甘肃兰州,9,4分)如图所示的二次函数2y ax bx c =++的图象中,刘星同学观察得出了下面四条信息:(1)240b ac ->;(2)c>1;(3)2a -b<0;(4)a+b+c<0。
2011年莱芜市中考数学试卷及解析
2011年山东省莱芜市中考数学试卷一、选择题(本大题共12小题,每小题3分,满分36分)1.(3分)(2011•嘉兴)﹣6的绝对值是()A.﹣6 B.6C.D.2.(3分)(2011•莱芜)以下多边形中,既是轴对称图形又是中心对称图形的是()A.正五边形B.矩形C.等边三角形D.平行四边形3.(3分)(2011•莱芜)下列计算正确的是()A.B.C.(﹣a2)3=a6D.a6÷(a2)=2a44.(3分)(2011•莱芜)观察如图,在下列四种图形变换中,该图案不包含的变换是()A.平移B.轴对称C.旋转D.位似5.(3分)(2011•莱芜)某校合唱团共有40名学生,他们的年龄如下表所示:年龄/岁11 12 13 14人数/人8 12 17 3则合唱团成员年龄的众数和中位数分别是()A.13,12.5 B.13,12 C.12,13 D.12,12.56.(3分)(2011•莱芜)如图所示是由几个相同的小正方体搭成的几何体的三视图,则搭成这个几何体的小正方体的个数是()A.3B.4C.5D.67.(3分)(2011•莱芜)如图,是两个可以自由转动的均匀圆盘A和B,A、B分别被均匀的分成三等份和四等份.同时自由转动圆盘A和B,圆盘停止后,指针分别指向的两个数字的积为偶数的概率是()A.B.C.D.8.(3分)(2011•莱芜)下列说法正确的是()A.的算术平方根是4B.方程﹣x2+5x﹣1=0的两根之和是﹣5C.任意八边形的内角和等于1080°D.当两圆只有一个公共点时,两圆外切9.(3分)(2011•莱芜)如图,在平面直角坐标系中,长、宽分别为2和1的矩形ABCD的边上有一动点P,沿A→B→C →D→A运动一周,则点P的纵坐标y与P 所走过的路程S之间的函数关系用图象表示大致是()A.B.C.D.10.(3分)(2011•莱芜)如图,E、F、G、H分别是BD、BC、AC 、AD的中点,且AB=CD.下列结论:①EG⊥FH,②四边形EFGH是矩形,③HF平分∠EHG,④EG=(BC﹣AD),⑤四边形EFGH是菱形.其中正确的个数是()A.1B.2C.3D.411.(3分)(2011•莱芜)将一个圆心角是90°的扇形围成一个圆锥的侧面,则该圆锥的侧面积S侧和底面积S底的关系是()A.S=S底B.S侧=2S底C.S侧=3S底D.S侧=4S底侧12.(3分)(2011•莱芜)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则正比例函数y=(b+c)x的图象与反比例函数y=的图象在同一坐标系中大致是()A.B.C.D.二、填空题(本大题共5小题,每小题4分,满分20分)13.(4分)(2011•莱芜)近年来,莱芜市旅游产业高歌猛进,全市去年接待国内游客达527.2万人次,创历史新高.将527.2万保留两位有效数字并用科学记数法表示为_________.14.(4分)(2011•莱芜)分解因式:(a+b)3﹣4(a+b)=_________.15.(4分)(2011•莱芜)如图,在△ABC中,AB=BC,∠B=120°,AB的垂直平分线交AC于点D.若AC=6cm,则AD=_________cm.16.(4分)(2011•莱芜)若a=3﹣tan60°,则÷=_________.17.(4分)(2011•莱芜)如图①,在△AOB中,∠AOB=90°,OA=3,OB=4.将△AOB沿x轴依次以点A、B、O为旋转中心顺时针旋转,分别得到图②、图③、…,则旋转得到的图⑩的直角顶点的坐标为_________.三、解答题(本大题共7小题,满分64分)18.(6分)(2011•莱芜)解不等式组:.19.(8分)(2011•莱芜)为迎接建党90周年,我市某中学拟组织学生开展唱红歌比赛活动.为此,校团委对初四一班会唱红歌的学生进行了统计(甲:会唱1首,乙:会唱2首,丙:会唱3首,丁:会唱4首以上),并绘制了如下两幅不完整的统计图.请你根据图中提供的信息解答以下问题:(1)在条形统计图中,将会唱4首以上的部分补充完整;(2)求该班会唱1首的学生人数占全班人数的百分比;(3)在扇形统计图中,计算出会唱3首的部分所对应的圆心角的度数;(4)若该校初四共有350人,请你估计会唱3首红歌的学生约有多少人?20.(9分)(2011•莱芜)莱芜某大型超市为缓解停车难问题,建筑设计师提供了楼顶停车场的设计示意图.按规定,停车场坡道口上坡要张贴限高标志,以便告知车辆能否安全驶入.请根据如图,求出汽车通过坡道口的限高DF的长(结果精确到0.1m,sin28°≈0.47,cos28°≈0.88,tan28°≈0.53).21.(9分)(2011•莱芜)已知矩形纸片ABCD中,AB=2,BC=3.操作:将矩形纸片沿EF折叠,使点B落在边CD上.探究:(1)如图1,若点B与点D重合,你认为△EDA1和△FDC全等吗?如果全等给出证明,如果不全等请说明理由;(2)如图2,若点B与CD的中点重合,求△FCB1和△B1DG的周长之比.22.(10分)(2011•莱芜)莱芜盛产生姜,去年某生产合作社共收获生姜200吨,计划采用批发和零售两种方式销售.经市场调查,批发每天售出6吨.(1)受天气、场地等各种因素的影响,需要提前完成销售任务.在平均每天批发量不变的情况下,实际平均每天的零售量比原计划增加了2吨,结果提前5天完成销售任务.那么原计划零售平均每天售出多少吨?(2)在(1)的条件下,若批发每吨获得利润为2000元,零售每吨获得利润为2200元,计算实际获得的总利润.23.(10分)(2011•莱芜)如图,AB是⊙O的直径,弦DE垂直平分半径OA,C为垂足,DE=3,连接BD,过点E作EM∥BD,交BA的延长线于点M.(1)求⊙O的半径;(2)求证:EM是⊙O的切线;(3)若弦DF与直径AB相交于点P,当∠APD=45°时,求图中阴影部分的面积.24.(12分)(2011•莱芜)如图,在平面直角坐标系中,已知点A(﹣2,﹣4),OB=2,抛物线y=ax2+bx+c经过点A、O、B三点.(1)求抛物线的函数表达式;(2)若点M是抛物线对称轴上一点,试求AM+OM的最小值;(3)在此抛物线上,是否存在点P,使得以点P与点O、A、B为顶点的四边形是梯形?若存在,求点P的坐标;若不存在,请说明理由.2011年山东省莱芜市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,满分36分)1.(3分)(2011•嘉兴)﹣6的绝对值是()A.﹣6 B.6C.D.考点:绝对值.专题:计算题.分析:根据绝对值的性质,当a是负有理数时,a的绝对值是它的相反数﹣a,解答即可;解答:解:根据绝对值的性质,|﹣6|=6.故选B.点评:本题考查了绝对值的性质,熟记:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.(3分)(2011•莱芜)以下多边形中,既是轴对称图形又是中心对称图形的是()A.正五边形B.矩形C.等边三角形D.平行四边形考点:中心对称图形;轴对称图形.专题:几何图形问题.分析:根据轴对称图形与中心对称图形的概念求解.解答:解:A、是轴对称图形,不是中心对称图形;B、是中心对称图形,也是轴对称图形;C、不是中心对称图形,是轴对称图形.D、是中心对称图形,不是轴对称图形;故选B.点评:本题考查了中心对称图形与轴对称图形的概念.判断轴对称图形的关键是寻找对称轴,图形两部分沿对称折叠后可重合,判断中心对称图形的关键是要寻找对称中心,旋转180度后与原图重合.3.(3分)(2011•莱芜)下列计算正确的是()A.B.C.(﹣a2)3=a6D.a6÷(a2)=2a4考点:整式的除法;幂的乘方与积的乘方;负整数指数幂;二次根式的性质与化简.分析:A、首先计算出(﹣3)2的结果,再开方判断;B、根据负整数指数幂:a﹣p=(a≠0,p为正整数)计算可判断;C、首先看准底数,判断符号,再利用幂的乘方法则:底数不变,指数相乘计算即可判断;D、根据单项式除以单项式法则:把系数,同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同他的指数一起作为商的一个因式计算即可判断.解答:解:A、==3,故此选项错误;B、==9,故此选项错误;C、(﹣a2)3=﹣a6,故此选项错误;D、a6÷(a2)=(1)(a6÷a2)=2a4,故此选项正确.故选:D.点评:此题主要考查了二次根式的开方,负整数指数幂,幂的乘方,单项式除以单项式,关键是准确把握各种计算法则.4.(3分)(2011•莱芜)观察如图,在下列四种图形变换中,该图案不包含的变换是()A.平移B.轴对称C.旋转D.位似考点:几何变换的类型.分析:观察本题中图案的特点,根据对称、平移、旋转、位似的定义作答.解答:解:A、图形的方向发生了改变,不符合平移的定义,本题图案不包含平移变换,故本选项符合题意;B、有8条对称轴,本题图案包含轴对称变换,故本选项不符合题意;C、将图形绕着中心点旋转22.5°的整数倍后均能与原图形重合,本题图案包含旋转变换,故本选项不符合题意;D、符合位似图形的定义,本题图案包含位似变换,故本选项不符合题意.故选A.点评:考查图形的四种变换方式:对称、平移、旋转、位似.对称有轴对称和中心对称,轴对称的特点是一个图形绕着一条直线对折,直线两旁的图形能够完全重合;中心对称的特点是一个图形绕着一点旋转180°后与另一个图形完全重合,它是旋转变换的一种特殊情况.平移是将一个图形沿某一直线方向移动,得到的新图形与原图形的形状、大小和方向完全相同.旋转是指将一个图形绕着一点转动一个角度的变换.位似的特点是几个相似图形的对应点所在的直线交于一点.观察时要紧扣图形变换特点,认真判断.5.(3分)(2011•莱芜)某校合唱团共有40名学生,他们的年龄如下表所示:年龄/岁11 12 13 14人数/人8 12 17 3则合唱团成员年龄的众数和中位数分别是()A.13,12.5 B.13,12 C.12,13 D.12,12.5考点:众数;中位数.专题:计算题.分析:找中位数要把数据按从小到大的顺序排列,这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.众数是一组数据中出现次数最多的数据.解答:解:根据众数的定义在这组数据中13出现次数最多,则众数为13,则中位数是(12+13)÷2=12.5,∴合唱团成员年龄的众数和中位数分别为13,12.5.故选A.点评:本题属于基础题,考查了确定一组数据的中位数和众数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.6.(3分)(2011•莱芜)如图所示是由几个相同的小正方体搭成的几何体的三视图,则搭成这个几何体的小正方体的个数是()A.3B.4C.5D.6考点:由三视图判断几何体.分析:根据三视图,该几何体的主视图以及俯视图可确定该几何体共有两行三列,故可得出该几何体的小正方体的个数.解答:解:综合三视图可知,这个几何体的底层应该有3+1=4个小正方体,第二层应该有1个小正方体,因此搭成这个几何体所用小正方体的个数是4+1=5个.故选:C.点评:此题主要考查了学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.7.(3分)(2011•莱芜)如图,是两个可以自由转动的均匀圆盘A和B,A、B分别被均匀的分成三等份和四等份.同时自由转动圆盘A和B,圆盘停止后,指针分别指向的两个数字的积为偶数的概率是()A.B.C.D.考点:列表法与树状图法.专题:计算题.分析:先利用树状图展示所有12种等可能的结果,其中积为偶数的有8种可能,然后根据概率的概念求解即可.解答:解:画树状图如下:共有12种等可能的结果,其中积为偶数的有8种可能,∴指针分别指向的两个数字的积为偶数的概率==.故选B.点评:本题考查了利用列表法与树状图法求概率的方法:先利用树状图展示所有等可能的结果数n,然后找出其中某事件所包含的结果数m,再根据概率的概念计算出这个事件的概率=.8.(3分)(2011•莱芜)下列说法正确的是()A.的算术平方根是4B.方程﹣x2+5x﹣1=0的两根之和是﹣5C.任意八边形的内角和等于1080°D.当两圆只有一个公共点时,两圆外切考点:圆与圆的位置关系;算术平方根;根与系数的关系;多边形内角与外角.分析:根据算术平方根的定义,一元二次方程根与系数的关系,多边形内角和的求解方法以及圆与圆的位置关系的性质即可求得答案,注意排除法在解选择题中的应用.解答:解:A、的算术平方根是2,故本选项错误;B、方程﹣x2+5x﹣1=0的两根之和是5,故本选项错误;C、任意八边形的内角和等于1080°,故本选项正确;D、当两圆只有一个公共点时,两圆外切或内切,故本选项错误.故选C.点评:此题考查了算术平方根的定义,一元二次方程根与系数的关系,多边形内角和的求解方法以及圆与圆的位置关系的性质.此题比较简单,解题的关键是熟记公式与性质.9.(3分)(2011•莱芜)如图,在平面直角坐标系中,长、宽分别为2和1的矩形ABCD的边上有一动点P,沿A→B→C→D→A运动一周,则点P的纵坐标y 与P所走过的路程S之间的函数关系用图象表示大致是()A.B.C.D.考点:动点问题的函数图象.分析:根据则点P的纵坐标y随点P走过的路程s之间的函数关系图象可以分为4部分,当P点在AB上,当P 点在BC上,当P点在CD上,点P在AD上即可得出图象.解答:解:∵长、宽分别为2和1的矩形ABCD的边上有一动点P,沿A→B→C→D→A运动一周,则点P的纵坐标y随点P走过的路程s之间的函数关系图象可以分为4部分,∴P点在AB上,此时纵坐标越来越小,最小值是1,P点在BC上,此时纵坐标为定值1.当P点在CD上,此时纵坐标越来越大,最大值是2,P点在AD上,此时纵坐标为定值2.故选D.点评:此题主要考查了动点问题的函数图象问题,解决问题的关键是分解函数得出不同位置时的函数关系,进而得出图象.10.(3分)(2011•莱芜)如图,E、F、G、H分别是BD、BC、AC、AD的中点,且AB=CD.下列结论:①EG⊥FH,②四边形EFGH 是矩形,③HF平分∠EHG,④EG=(BC﹣AD),⑤四边形EFGH是菱形.其中正确的个数是()A.1B.2C.3D.4考点:三角形中位线定理;菱形的判定与性质.专题:推理填空题.分析:根据三角形的中位线平行于第三边并且等于第三边的一半与AB=CD可得四边形EFGH是菱形,然后根据菱形的对角线互相垂直平分,并且平分每一组对角的性质对各小题进行判断.解答:解:∵E、F、G、H分别是BD、BC、AC、AD的中点,∴EF=CD,FG=AB,GH=CD,HE=AB,∵AB=CD,∴EF=FG=GH=HE,∴四边形EFGH是菱形,∴①EG⊥FH,正确;②四边形EFGH是矩形,错误;③HF平分∠EHG,正确;④当AD∥BC,如图所示:E,G分别为BD,AC中点,∴连接CD,延长EG到CD上一点N,∴EN=BC,GN=AD,∴EG=(BC﹣AD),只有AD∥BC是才可以成立,而本题AD与BC很显然不平行,故本小题错误;⑤四边形EFGH是菱形,正确.综上所述,①③⑤共3个正确.故选C.点评:本题考查了三角形中位线定理与菱形的判定与菱形的性质,根据三角形的中位线定理与AB=CD判定四边形EFGH是菱形是解答本题的关键.11.(3分)(2011•莱芜)将一个圆心角是90°的扇形围成一个圆锥的侧面,则该圆锥的侧面积S侧和底面积S底的关系是()A.S=S底B.S侧=2S底C.S侧=3S底D.S侧=4S底侧考点:圆锥的计算.分析:设圆锥的侧面展开扇形的半径为R,分别计算其侧面积和底面积后即可得到答案.解答:解:设扇形的半径为R,围成的圆锥的底面半径为r,∴=2πr,∴R=4r,∴S侧===4πr2,S底=πr2,∴S侧=4S底.故选D.点评:本题考查了圆锥的计算,解题的关键是正确的理解圆锥的侧面与底面的关系.12.(3分)(2011•莱芜)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则正比例函数y=(b+c)x的图象与反比例函数y=的图象在同一坐标系中大致是()A.B .C .D.考点:二次函数的图象;正比例函数的图象;反比例函数的图象.分析:由已知二次函数y=ax2+bx+c的图象开口方向可以知道a的取值范围,对称轴可以确定b的取值范围,再利用f(0)和f(1)的值即可确定c的取值,然后就可以确定反比例函数与正比例函数y=(b+c)x在同一坐标系内的大致图象.解答:解:∵二次函数y=ax2+bx+c的图象开口方向向下,∴a<0,对称轴在y轴的右边,∴x=﹣>0,∴b>0,当x=0时,y=c=0,当x=1时,a+b+c>0,∵a<0,∴b+c >0,∴反比例函数的图象在第二四象限,正比例函数y=(b+c)x的图象在第一三象限.故选A.点评:本题主要考查函数图象的知识点,此题从图象上把握有用的条件,准确选择数量关系解得a的值,简单的图象最少能反映出2个条件:开口向下a<0;对称轴的位置即可确定b的值及f(0)和f(1)的值确定c 的取值范围.二、填空题(本大题共5小题,每小题4分,满分20分)13.(4分)(2011•莱芜)近年来,莱芜市旅游产业高歌猛进,全市去年接待国内游客达527.2万人次,创历史新高.将527.2万保留两位有效数字并用科学记数法表示为 5.3×106.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于527.2万有7位整数,所以可以确定n=7﹣1=6.有效数字的计算方法是:从左边第一个不是0的数字起,后面所有的数字都是有效数字.用科学记数法表示的数的有效数字只与前面的a有关,与10的多少次方无关.解答:解:527.2万=5 272 000=5.272×106≈5.3×106.故答案为:5.3×106.点评:此题考查科学记数法表示较大的数的方法,准确确定n值是关键.14.(4分)(2011•莱芜)分解因式:(a+b)3﹣4(a+b)=(a+b)(a+b+2)(a+b﹣2).考点:提公因式法与公式法的综合运用.分析:先提取公因式(a+b),再根据平方差公式进行二次分解即可求得答案,注意整体思想的应用.解答:解:(a+b)3﹣4(a+b)=(a+b)[(a+b)2﹣4]=(a+b)(a+b+2)(a+b﹣2).故答案为:(a+b)(a+b+2)(a+b﹣2).点评:本题考查了提公因式法,公式法分解因式.此题比较简单,解题的关键是注意掌握因式分解的步骤:先提公因式,再利用公式法分解,注意分解要彻底.15.(4分)(2011•莱芜)如图,在△ABC中,AB=BC,∠B=120°,AB的垂直平分线交AC于点D.若AC=6cm,则AD=2cm.考点:线段垂直平分线的性质;三角形内角和定理;等腰三角形的性质;含30度角的直角三角形.专题:计算题.分析:连接BD,根据三角形的内角和定理和等腰三角形性质求出DC=2BD,根据线段垂直平分线的性质求出AD=BD,即可求出答案.解答:解:连接BD.∵AB=BC,∠ABC=120°,∴∠A=∠C=(180°﹣∠ABC)=30°,∴DC=2BD,∵AB的垂直平分线是DE,∴AD=BD,∴DC=2AD,∵AC=6,∴AD=×6=2,故答案为:2.点评:本题主要考查对等腰三角形的性质,含30度角的直角三角形,线段的垂直平分线,三角形的内角和定理等知识点的理解和掌握,能求出AD=BD和DC=2BD是解此题的关键.16.(4分)(2011•莱芜)若a=3﹣tan60°,则÷=.考点:分式的化简求值;分式的基本性质;约分;通分;最简分式;最简公分母;分式的乘除法;分式的加减法;特殊角的三角函数值.专题:计算题.分析:求出a的值,把分式进行计算,先算括号里面的减法,把除法转化成乘法,再进行约分即可.解答:解:a=3﹣tan60°=3﹣,∴原式=×===﹣=﹣.故答案为:﹣.点评:本题主要考查对分式的基本性质,约分、通分,最简分式,最简公分母,分式的加减、乘除运算,特殊角的三角函数值等知识点的理解和掌握,综合运用这些法则进行计算是解此题的关键.17.(4分)(2011•莱芜)如图①,在△AOB中,∠AOB=90°,OA=3,OB=4.将△AOB沿x轴依次以点A、B、O为旋转中心顺时针旋转,分别得到图②、图③、…,则旋转得到的图⑩的直角顶点的坐标为(36,0).考点:旋转的性质;坐标与图形性质;勾股定理.专题:规律型.分析:如图,在△AOB中,∠AOB=90°,OA=3,OB=4,则AB=5,每旋转3次为一循环,则图③、④的直角顶点坐标为(12,0),图⑥、⑦的直角顶点坐标为(24,0),所以,图⑨、⑩10的直角顶点为(36,0).解答:解:∵在△AOB中,∠AOB=90°,OA=3,OB=4,∴AB=5,∴图③、④的直角顶点坐标为(12,0),∵每旋转3次为一循环,∴图⑥、⑦的直角顶点坐标为(24,0),∴图⑨、⑩的直角顶点为(36,0).故答案为:(36,0).点评:本题主要考查了旋转的性质、坐标与图形的性质及勾股定理,找出图形旋转的规律“旋转3次为一循环”,是解答本题的关键.三、解答题(本大题共7小题,满分64分)18.(6分)(2011•莱芜)解不等式组:.考点:解一元一次不等式组.专题:计算题.分析:由不等式组中第一个不等式两边同时乘以3,去分母后利用去括号法则:括号前面是负号,去掉负号和括号,括号里各项都变号,合并后在不等式两边同时除以﹣1即可求出第一个不等式的解集;把第二个不等式去括号后,合并即可求出解集,把求出的两解集表示在数轴上,根据图形即可求出不等式组的解集.解答:解:,由①去分母得:3﹣(x﹣1)≥0,化简得:﹣x≥﹣4,解得:x≤4;由②去括号得:3﹣(2x﹣2)<3x,即3﹣2x+2<3x,解得:x>1,把两解集表示在数轴上,如图所示:∴不等式组的解集为1<x≤4.点评:此题考查了一元一次不等式组的解法,解不等式组是以解一元一次不等式为基础,一般步骤是:去分母,去括号,移项,合并同类项,系数化为“1”,特别注意不等式的两边同时乘以或除以同一个负数时要改变不等号的方向,然后取解集的方法是:同大取大,同小取小,大小小大取中间,大大小小无解.19.(8分)(2011•莱芜)为迎接建党90周年,我市某中学拟组织学生开展唱红歌比赛活动.为此,校团委对初四一班会唱红歌的学生进行了统计(甲:会唱1首,乙:会唱2首,丙:会唱3首,丁:会唱4首以上),并绘制了如下两幅不完整的统计图.请你根据图中提供的信息解答以下问题:(1)在条形统计图中,将会唱4首以上的部分补充完整;(2)求该班会唱1首的学生人数占全班人数的百分比;(3)在扇形统计图中,计算出会唱3首的部分所对应的圆心角的度数;(4)若该校初四共有350人,请你估计会唱3首红歌的学生约有多少人?考点:条形统计图;用样本估计总体;扇形统计图.专题:应用题.分析:(1)根据乙18人占总体的30%,可以求出总人数,结合条形统计图进一步求得丁的人数,再把条形统计图补充完整即可;(2)根据(1)中得出的总人数,以及甲的人数即可得出会唱1首的学生人数占全班人数的百分比;(3)先得出丙占的百分比,所对应的圆心角的度数为百分比×360°;(4)根据丙占得百分比乘以总人数即可得出答案.解答:解:(1)由18÷30%=60 可知,全班共有60人,则会唱4首以上共有60﹣6﹣18﹣24=12人.补全条形统计图如图:(2);(3)会唱3首的部分所对应的圆心角的度数为;(4)会唱3首红歌的学生约有人.点评:本题主要考查了条形统计图和扇形统计图的综合运用,读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图能够清楚地表示各部分所占的百分比,难度适中.20.(9分)(2011•莱芜)莱芜某大型超市为缓解停车难问题,建筑设计师提供了楼顶停车场的设计示意图.按规定,停车场坡道口上坡要张贴限高标志,以便告知车辆能否安全驶入.请根据如图,求出汽车通过坡道口的限高DF的长(结果精确到0.1m,sin28°≈0.47,cos28°≈0.88,tan28°≈0.53).考点:解直角三角形的应用.分析:根据锐角三角函数的定义,可在Rt△ABC中解得BC的值,进而求得BD的大小;在Rt△BDF中,利用余弦的定义,即可求得DF的值.解答:解:在Rt△ABC中,∠A=28°,AC=9,∴BC=ACtan28°≈9×0.53=4.77,∴BD=BC﹣CD=4.77﹣0.5=4.27,∴在Rt△BDF中,∠BDF=∠A=28°,BD=4.27,∴DF=BDcos28°≈4.27×0.88=3.7576≈3.8,答:坡道口的限高DF的长是3.8m.点评:本题考查了解直角三角形的应用,坡面坡角问题和勾股定理,解题的关键是坡度等于坡角的正切值.21.(9分)(2011•莱芜)已知矩形纸片ABCD中,AB=2,BC=3.操作:将矩形纸片沿EF折叠,使点B落在边CD上.探究:(1)如图1,若点B与点D重合,你认为△EDA1和△FDC全等吗?如果全等给出证明,如果不全等请说明理由;(2)如图2,若点B与CD的中点重合,求△FCB1和△B1DG的周长之比.考点:翻折变换(折叠问题);全等三角形的判定与性质;矩形的性质;相似三角形的判定与性质.分析:(1)根据ASA可以证明两个三角形全等;(2)设CF=x,则BF=3﹣x,根据折叠的性质得B1F=BF=3﹣x,再进一步根据勾股定理求得x的值;根据相似三角形的判定可以证明△FCB1和△B1DG相似,再根据相似三角形的周长的比等于相似比进行求解.解答:解:(1)全等.理由如下:∵四边形ABCD是矩形,∴∠A=∠B=∠C=∠ADC=90°,AB=CD,由题意知:∠A=∠A1,∠B=∠A1DF=90°,AB=A1D∴∠A1=∠C=90°,∠CDF+∠EDF=90°,∴∠A1DE=∠CDF,∴△EDA1≌△FDC(ASA);(2)∵∠DG B1+∠D B1G=90°,∠D B1G+∠C B1F=90°,∴∠DG B1=∠C B1F,∵∠D=∠C=90°,∴△FC B1∽△B1DG.设FC=x,则B1F=BF=3﹣x,B1C=DC=1,∴x2+12=(3﹣x)2,∴,∵△FCB1∽△B1DG,∴.点评:此题综合运用了全等三角形的判定、相似三角形的判定及性质,综合性较强.22.(10分)(2011•莱芜)莱芜盛产生姜,去年某生产合作社共收获生姜200吨,计划采用批发和零售两种方式销售.经市场调查,批发每天售出6吨.(1)受天气、场地等各种因素的影响,需要提前完成销售任务.在平均每天批发量不变的情况下,实际平均每天的零售量比原计划增加了2吨,结果提前5天完成销售任务.那么原计划零售平均每天售出多少吨?(2)在(1)的条件下,若批发每吨获得利润为2000元,零售每吨获得利润为2200元,计算实际获得的总利润.考点:分式方程的应用.分析:(1)设原计划零售平均每天售出x吨,根据去年某生产合作社共收获生姜200吨,计划采用批发和零售两种方式销售.经市场调查,批发每天售出6吨,在平均每天批发量不变的情况下,实际平均每天的零售量比原计划增加了2吨,结果提前5天完成销售任务可列方程求解.(2)求出实际销售了多少天,根据每天批发和零售多少吨,以及批发每吨获得利润为2000元,零售每吨获得利润为2200元,可求得利润.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第31章 平移、旋转与对称一、选择题1. (2011浙江省舟山,3,3分)如图,点A 、B 、C 、D 、O 都在方格纸的格点上,若△COD 是由△AOB 绕点O 按逆时针方向旋转而得,则旋转的角度为( ) (A )30°(B )45°(C )90°(D )135°【答案】C2. (2011广东广州市,4,3分)将点A (2,1)向左..平移2个单位长度得到点A ′,则点A ′的坐标是( ) A .(0,1) B.(2,-1)C.(4,1)D.(2,3)【答案】A3. (2011广东广州市,8,3分)如图1所示,将矩形纸片先沿虚线AB 按箭头方向向右..对折,接着将对折后的纸片沿虚线CD 向下对折,然后剪下一个小三角形,再将纸片打开,则打开后的展开图是( )A .B .C .D .【答案】D4. (2011江苏扬州,8,3分)如图,在Rt △ABC 中,∠ACB=90º,∠A=30º,BC=2,将△ABCB 图1ABOCD (第3题)绕点C 按顺时针方向旋转n 度后,得到△EDC ,此时,点D 在AB 边上,斜边DE 交AC 边于点F ,则n 的大小和图中阴影部分的面积分别为( )A. 30,2B.60,2C. 60,23D. 60,3 【答案】C5. (2011山东菏泽,5,3分)如图所示,已知在三角形纸片ABC 中,BC =3, AB =6,∠BCA =90°,在AC 上取一点E ,以BE 为折痕,使AB 的一部分与BC 重合,A 与BC 延长线上的点D 重合,则DE 的长度为 A .6B .3C .D .【答案】C6. (2011山东泰安,3,3分)下列图形:其中是中心对称图形的个数为( )A.1B.2C.3D.4 【答案】B7. (2011浙江杭州,2,3)正方形纸片折一次,沿折痕剪开,能剪得的图形是( ) A .锐角三角形 B .钝角三角形 C .梯形 D .菱形 【答案】CAC8. (2011 浙江湖州,7,3)下列各图中,经过折叠不能..围成一个立方体的是【答案】D9. (2011 浙江湖州,8,3)如图,已知△OAB是正三角形,OC⊥OB,OC=OB,将△OAB绕点O按逆时针方向旋转,使得OA与OC重合,得到△OCD,则旋转的角度是A.150°B.120°C.90°D.60°【答案】A10.(2011浙江省,2,3分)下列图形中,既是轴对称图形又是中心对称图形的是()【答案】D11.(2011浙江义乌,6,3分)下列图形中,中心对称图形有()A.4个B.3个C.2个D.1个【答案】B12. (2011四川重庆,3,4分)下列图形中,是中心对称图形的是( )A.B.C.D.【答案】B13. (2011浙江省嘉兴,3,4分)如图,点A、B、C、D、O都在方格纸的格点上,若△COD是由△AOB 绕点O 按逆时针方向旋转而得,则旋转的角度为( ) (A )30°(B )45°(C )90°(D )135°【答案】C14. (2011台湾台北,21)21.坐标平面上有一个线对称图形,)25,3(-A 、)211,3(-B 两点在此图形上且互为对称点。
若此图形上有一点)9,2(--C ,则C 的对称点坐标为何? A .)1,2(- B .)23,2(-- C .)9,23(-- D .)9,8( 【答案】A15. (2011台湾全区,4)下列有一面国旗是线对称图形,根据选项中的图形,判断此国旗为何?A .B .C .D .【答案】D16. (2011山东济宁,9,3分)如图,△ABC 的周长为30cm ,把△ABC 的边AC 对折,使顶点C 和点A 重合,折痕交BC 边于点D ,交AC 边于点E ,连接AD ,若AE =4cm ,则△ABD 的周长是A .22cmB .20 cmC .18cmD .15cmBCAD E第9题ABOCD (第3题)【答案】A17. (2011台湾全区,26)如图(七),将某四边形纸片ABCD的AB向BC方向折过去(其中AB<BC),使得A点落在BC上,展开后出现折线BD,如图(八).将B点折向D,使得B、D两点重迭,如图(九), 展开后出现折线CE,如图(十).根据图(十),判断下列关系何者正确?A.AD//BC B.AB//CD C.∠ADB=∠BDC D.∠ADB>∠BDC 【答案】B18. (2011湖南邵阳,3,3分)下列图形不是轴对称图形的是()【答案】C.19. (2011湖南益阳,3,4分)小华将一张如图1所示矩形纸片沿对角线剪开,他利用所得的两个直角三角形通过图形变换构成了下列四个图形,这四个图形中不是..轴对称图形的是【答案】A20.(2011广东株洲,6,3分)右图是一个由7个同样的立方体叠成的几何体.请问下列选项中,既是中心对称图形,又是这个几何体的三视图之一的是( )【答案】B21. (2011山东潍坊,4,3分)如图,阴影部分是由5个小正方形涂黑组成的一个直角图形,再将方格内空白的两个小正方形涂黑,得到新的图形(阴影部分),其中不.是.轴对称图形的是( )【答案】D22. (2011四川广安,5,3分)下列几何图形:①角 ②平行四边形 ③扇形 ④正方形,其中轴对称图形是( )A.①②③B.②③④C.①③④D.①②③④ 【答案】C23. (2011四川内江,4,3分)下列几何图形中,一定是轴对称图形的有扇形等腰梯形菱形直角三角形 A .1个B .2个C .3个D .4个【答案】B24. (2011江苏淮安,2,3分)下列交通标志是轴对称图形的是( )AB DCA. B.C. D.【答案】D25. (2011江苏南京,5,2分)如图是一个三棱柱,下列图形中,能通过折叠围成一个三棱柱的是【答案】B26. (2011江苏南通,2,2分)下面的图形中,既是轴对称图形又是中心对称图形的是【答案】C27. (2011四川乐山7,3分)直角三角板ABC 的斜边AB=12㎝,∠A=30°,将三角板ABC 绕C 顺时针旋转90°至三角板A B C '''的位置后,再沿CB 方向向左平移,使点B '落在原三角板ABC 的斜边AB 上,则三角板A B C '''平移的距离为A .6㎝B . 4㎝C .(6-)㎝ D .()㎝ 【答案】 C28. (2011湖北黄冈,14,3分)如图,把Rt △ABC 放在直角坐标系内,其中∠CAB=90°,A .B .CD .(第5题)BC=5,点A 、B 的坐标分别为(1,0)、(4,0),将△ABC 沿x 轴向右平移,当点C 落在直线y=2x -6上时,线段BC 扫过的面积为( ) A .4B .8C .16D.【答案】C29. (2011湖北黄石,4,3分)有如下图:①函数y=x -1的图象②函数y=x1的图象③一段圆弧④平行四边形,其中一定 是轴对称图形的有A. 1个B. 2个C. 3个D. 4个 【答案】C30. (2011湖南衡阳,4,3分)下列几个图形是国际通用的交通标志,其中不是中心对称图形的是( )A .B .C .D .【答案】D31. (2011湖南邵阳,3,3分)下列图形不是轴对称图形的是( )【答案】C.32. (2011湖北襄阳,5,3分)下列图形是中心对称图形而不是轴对称图形的是【答案】A33. (2011内蒙古乌兰察布,4,3分)下列图形既是轴对称图形,又是中心对称图形的是( )【答案】D34. (2011内蒙古乌兰察布,11,3分)将正方体骰子(相对面上的点数分别为 I 和 6 、 2和 5 、 3 和 4 )放置于水平桌面上 ,如图 ① .在图 ② 中,将骰子向右翻滚90︒,然后在桌面上按逆时针方向旋转90︒,则完成一次变换.若骰子的初始位置为图①所示的状态,那么按上述规则连续完成10次变换后,骰子朝上一面的点数是( )A . 6B . 5C . 3D . 2 【答案】B35. (2011广东湛江6,3分)在下列图形中,既是轴对称图形,又是中心对称图形的是直角三角形 正五边形 正方形 等腰梯形 A B C D第11题图第4题图【答案】C36. (2011河北,6,2分)将图2—1围成图2—2的正方体,则图2—1中的红心“ ”标志所在的正方形是正方体中的( ) A .面CDHEB .面BCEFC .面ABFGD .面ADHG图2—2图2—1CA【答案】A37. (2011山东枣庄,3,3分)下列图形中,既是轴对称图形,又是中心对称图形的是( )【答案】B38. (2011湖北荆州,2,3分)下列四个图案中,轴对称图形的个数是 A .1B .2C .3D .4第2题图 【答案】C 二、填空题1. (2011山东济宁,13,3分)如图,PQR ∆是ABC ∆经过某种变换后得到的图形.如果ABC ∆ 中任意一点M 的坐标为(a ,b ),那么它的对应点N 的坐标为 .A BC D【答案】(a -,b -);2. (2011福建泉州,11,4分)如图所示,以点O 为旋转中心,将1∠按顺时针方向旋转110︒得到2∠,若1∠=40︒,则2∠的余角为度.【答案】50;3. (2011福建泉州,13,4分)等边三角形、平行四边形、矩形、圆 四个图形中,既是轴对称图形又是中心对称图形的是 . 【答案】圆、矩形;4. (2011福建泉州,附加题2,5分)如图,点A 、B 、C 、D 、O 都在方格纸的格点上,若△COD 是由△AOB 绕点O 按逆时针方向旋转而得,则旋转的角度为【答案】45度5. (2011湖南益阳,10,4分)如图4,将∆ABC 沿直线AB 向右平移后到达∆BDE 的位置,若∠CAB =50°,∠ABC =100°,则∠CBE 的度数为 .ABOCD (第2题)(第13题)图4【答案】30︒6. (2011江苏宿迁,11,3分)将一块直角三角形纸片ABC 折叠,使点A 与点C 重合,展开后平铺在桌面上(如图所示).若∠C =90°,BC =8cm ,则折痕DE 的长度是 ▲ cm .【答案】47. (2011江苏泰州,16,3分)如图,△ABC 的三个顶点都在5×5的网格(每个小正方形的边长均为1个单位长度)的格点上,将△ABC 点B 顺时针旋转到△ABC 的位置,且点A 、C 仍落在格点上,则线段AB 扫过的图形的面积是 平方单位(结果保留π).CA【答案】413π8. (2011四川成都,14,4分)如图,在Rt △ABC 中,∠ACB =90°,AC =BC =1,将Rt △ABC绕A 点逆时针旋转30°后得到R t△ADE ,点B 经过的路径为 BD,则图中阴影部分的面积是___________.【答案】π61.ED CBA(第11题)9. (2011四川成都,24,4分)在三角形纸片ABC 中,已知∠ABC =90°,AB =6,BC =8.过点A 作直线l 平行于BC ,折叠三角形纸片ABC ,使直角顶点B 落在直线l 上的T 处,折痕为MN .当点T 在直线l 上移动时,折痕的端点M 、N 也随之移动.若限定端点M 、N 分别在AB 、BC 边上移动,则线段AT 长度的最大值与最小值之和为_________ (计算结果不取近似值). 【答案】7214-.10.(2011四川宜宾,16,3分)如图,在△ABC 中,AB=BC ,将△ABC 绕点B 顺时针旋转α度,得到△A 1BC 1,A 1B 交AC 于点E ,A 1C 1分别交AC 、BC 于点D 、F ,下列结论:①∠CDF=α,②A 1E=CF ,③DF=FC ,④AD=CE ,⑤A 1F=CE .其中正确的是___________________(写出正确结论的序号).【答案】①②⑤11. (2011湖南怀化,10,3分)如图5,∠A=30°,∠C′=60°,△ABC 与△A′B′C′关于直线l 对称,则∠B=_______________.(第16题图)【答案】90°12. (2011江苏南京,14,2分)如图,E、F分别是正方形ABCD的边BC、CD上的点,BE=CF,连接AE、BF,将△ABE绕正方形的中心按逆时针方向转到△BCF,旋转角为a(0°<a <180°),则∠a=______.【答案】9013. (2011上海,18,4分)Rt△ABC中,已知∠C=90°,∠B=50°,点D在边BC上,BD=2CD.把△ABC绕着点D逆时针旋转m(0<m<180)度后,如果点B恰好落在初始Rt△ABC的边上,那么m=_________.【答案】80和12014. (2011湖南永州,4,3分)永州市新田县的龙家大院至今已有930多年历史,因该村拥有保存完好的“三堂九井二十四巷四十八栋”明清建筑,而申报为中国历史文化名村.如图是龙家大院的一个窗花图案,它具有很好的对称美,这个图案是由:①正六边形;②正三角形;③等腰梯形;④直角梯形等几何图形构成,在这四种几何图形中既是轴对称图形又是中心对称图形的是___________(只填序号).【答案】①(第4题)B(第14题)AB CDF15. (20011江苏镇江,17,4分)把棱长为4的正方体分割成29个棱长为整数的正方体(且没有剩余),其中棱长为1的正方体的个数为_________.答案:2416. (2011重庆市潼南,14,4分)如图,在△ABC中, C=90 ,点D在AC上,,将△BCD沿着直线BD翻折,使点C落在斜边AB上的点E处,DC=5cm,则点D到斜边AB的距离是cm..【答案】517. (2011河北,17,3分)如图8—1,两个等边△ABD,△CBD的边长均为1,将△ABD沿AC方向向右平移到△A′B′D′的位置,得到图8—2,则阴影部分的周长为__.图8—2图8—1【答案】218. (2011湖北宜昌,1,3分)如图,用数学的眼光欣赏这个蝴蝶图案,它的一种数学美体现在蝴蝶图案的().A .轴对称性B .用字母表示数C .随机性D .数形结合【答案】A14题图A B CDE。