江苏省苏州市中考数学专题训练(一)数与式的运算与求值

合集下载

苏州初三数学试题及答案

苏州初三数学试题及答案

苏州初三数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是不等式2x - 5 > 3的解集?A. x > 4B. x < 4C. x ≥ 4D. x ≤ 4答案:A2. 如果一个圆的半径是5,那么它的面积是多少?A. 25πB. 50πC. 100πD. 200π答案:B3. 一个数的平方根是2,那么这个数是多少?A. 4B. -4C. 2D. -2答案:A4. 函数y = 2x + 3的图像经过点(1,5),那么这个函数的斜率是多少?A. 2B. 3C. 5D. 1答案:A5. 下列哪个选项是方程x^2 - 4x + 4 = 0的根?A. 2B. -2C. 1D. -1答案:A6. 一个等腰三角形的两边长分别为3和4,那么它的周长是多少?A. 10B. 11C. 14D. 15答案:B7. 一个数的倒数是1/2,那么这个数是多少?A. 2B. 1/2C. 1D. 0答案:A8. 一个矩形的长是宽的两倍,如果宽是4,那么它的面积是多少?A. 16B. 32C. 64D. 128答案:B9. 下列哪个选项是方程2x - 3y = 6的解?A. (3,0)B. (0,2)C. (2,1)D. (1,3)答案:C10. 一个数的立方是27,那么这个数是多少?A. 3B. -3C. 9D. -9答案:A二、填空题(每题4分,共20分)11. 如果一个数的绝对值是5,那么这个数可以是______或______。

答案:5,-512. 一个数的相反数是-8,那么这个数是______。

答案:813. 一个数的立方根是2,那么这个数是______。

答案:814. 如果一个角是直角的一半,那么这个角的度数是______。

答案:45°15. 一个数的平方是16,那么这个数可以是______或______。

答案:4,-4三、解答题(每题10分,共50分)16. 解方程:3x + 5 = 14。

中考数学数与式专题训练50题(含答案)

中考数学数与式专题训练50题(含答案)

中考数学数与式专题知识训练50题含答案 (有理数、实数、代数、因式分解、二次根式)一、单选题1.下列运算正确的是( ) A .()328-=B .33--=C .()326-=-D .()239--=-2.下列说法正确的是( ) A .1的立方根是它本身 B .4的平方根是2 C .9的立方根是3D .0没有算术平方根3.比﹣2小的数是( ) A .﹣1B .﹣3C .0D .﹣124.下列计算正确的是( ) A .236a a a ⋅=B .22325a b 3ab 3a b -⋅=C .0(π 3.14) 3.14π-=-D .3262(a b)a b =5.长城总长约为670000米,用科学记数法表示为( ) A .56.710⨯米 B .50.6710⨯米 C .46.710⨯米D .60.6710⨯米6.下列计算正确的是( ) A .x 2+x 3=x 5B .x 2•x 3=x 6C .(x 2)3=x 5D .x 5÷x 3=x 27.一定相等的是( ) A .a 2+a 2与a 4B .(a 3)3与a 9C .a 2﹣a 2与2a 2D .a 6÷a 2与a 38.对于有理数a ,b 定义2a b a b =-,则()3x y x +化简后得( )A .2x y +B .2x y -+C .52x y +D .52x y -+9.下列运算正确的是( )A B .2=C .22=D 4=±10.N 是一个单项式,且22223N x y ax y ⋅=(-)-,则N 等于( ) A .32ayB .3ay -C .32xy -D .12axy11.下列计算正确的是( ) A .()235a a =B .()23624m m -=C .623a a a ÷=D .()222a b a b +=+ 12.( )A .2B .C .D .13.下列计算中,结果正确的是( ) A .a 3 +a =2a 4B .a 3•a 2=a 6C .2a 6÷a 2 =2a 3D .(a 2)4 =a 814.下列各组代数式中没有公因式的是 ( ) A .4a 2bc 与8abc 2 B .a 3b 2+1与a 2b 3–1 C .b (a –2b )2与a (2b –a )2 D .x +1与x 2–115.下列计算正确的是( )A 3=±B 3=-C .(23= D .23=-161m -,则m 的取值范围是( ) A .1m >B .1m <C .m 1≥D .1m17.下列运算中,计算结果正确的是( ) A .a2•a3=a6B .a2+a3=a5C .(a2)3=a6D .a12÷a6=a218.下列运算正确的是( )A .824x x x ÷=B =C .()32628aa -=-D .11(1)32-⎛⎫--=- ⎪⎝⎭19的正确结果是( )A .(m ﹣5)5m -B .(5﹣m)5m -C .m ﹣5()5m --D .5﹣m 5m -二、填空题20.已知某种感冒病毒的直径是-0.000000012米,那么这个数可用科学记数法表示为____________. 21.45--=______. 22.2018年我省夏粮总产量达到2299000吨,将数据“2299000吨”用科学记数法表示为__________.23叫做二次根式. 24.2015的相反数为____.25.把202100000用科学记数法表示为______.260,则xzy=_______.27______=______.28.写出一个..绝对值大于2且小于3的无理数____________.29.当2a =+2943a a -+的值等于___.30.将数67500用科学记数法表示为____________.31有意义,则x 的取值范围是___________________. 32.有一个数值转换器,原理如下:当输入的x 为64时,输出的y 是___________.33.213-的倒数是_____,213-的相反数是_____.34.“皮克定理”是用来计算顶点在格点(即图中虚线的交点,如图中的小黑点)上的多边形的面积公式,公式为S = a +2b-1.小明只记得公式中的表示多边形的面积,a和 b 中有一个表示多边形边上(含多边形顶点)的格点个数,另一个表示多边形内部的格点个数,但记不清楚究竟是哪一个表示多边形内部的格点个数,请你利用图 1 探究并运用探究的结果求图 2 中多边形的面积是____.35.若a +b =8,ab =15,则a 2+ab +b 2=________.36.已知甲数是719的平方根,乙数是338的立方根,则甲、乙两个数的积是__.37.分解因式:2244x y y -+-=__________.38.我国古代数学的许多创新与发展都曾居世界前列,其中“杨辉三角”(如图)就是一例,它的发现比欧洲早五百年左右.杨辉三角两腰上的数都是1,其余每个数为它的上方(左右)两数之和.事实上,这个三角形给出了()na b +(n =1,2,3,4,5,6)的展开式(按a 的次数由大到小的顺序排列)的系数规律. 例如,在三角形中第三行的三个数1,2,1,恰好对应着222()2a b a ab b +=++展开式中各项的系数;第四行的四个数1,3,3,1,恰好对应着+=+++33223()33a b a a b ab b 展开式中各项的系数,等等. (1)当n =4时,4()a b +的展开式中第3项的系数是_________;(2)人们发现,当n 是大于6的自然数时,这个规律依然成立,那么7()a b +的展开式中各项的系数的和为_________.三、解答题39.计算:20220(1)1)-+︒. 40.计算:(1)()232()nn m mn m -⋅÷(2)解不等式组: 10223x x x +>⎧⎪-⎨≤+⎪⎩41.在平面直角坐标系中,已知点P (3,-1)关于原点对称的点Q 的坐标是(),1a b b +-,求b a 的值.42.(1)计算:﹣32+(π﹣2021)0﹣|1|.(2)解不等式组:3(1)25322x xxx-≥-⎧⎪⎨+<⎪⎩①②.43.计算:(1)(﹣1)3+(π+2022)0+(12)﹣2;(2)(-a)3•a2﹣(2a4)2÷a3.44.计算下列各式:(1)(2)45.已知2a-l的算术平方根为3,3a+b-1的算术平方根为4,求a+2b的平方根.46.(1)计算:0112sin3022π-⎛⎫⎛⎫-︒⎪ ⎪⎝⎭⎝⎭;(2)化简:2(21)(1)(1)x x x--+-.47.已知a,b,c在数轴上对应点的位置如图所示,化简||||||a ab b c-+-.48.观察以下等式:第1个等式:211111=+第2个等式:211326=+第3个等式:2115315=+第4个等式:2117428=+第5个等式:2119545=+按照以上规律,解决下列问题:(1)写出第7个等式:;(2)写出你猜想的第n个等式:(用含n的等式表示),并证明.参考答案:1.D【分析】根据乘方运算、绝对值及相反数的意义,逐个运算得结论.【详解】解:(-2)3=-8,故选项A、C错误;-|-3|=-3,故选项B错误;-(-3)2=-9,故选项D正确.故选:D.【点睛】本题考查了乘方运算,绝对值、相反数的意义.题目相对简单.负数的偶次方是正,负数的奇数次方为负.2.A【分析】根据立方根与平方根的定义即可求出答案.【详解】解:A、1的立方根是它本身,故此选项符合题意;B、4的平方根是2 ,故此选项不符合题意;C、9D、0的算术平方根是0,故此选项不符合题意.故选:A.【点睛】本题考查平方根与立方根,解题的关键是正确理解立方根与平方根的定义.3.B【分析】对于正数绝对值大的数就大;对于负数绝对值大的反而小;负数小于0,0小于正数;【详解】解:A,是个负数绝对值比2小,﹣1>﹣2;B,是个负数绝对值比2大,﹣3<﹣2;C,0比负数大;D,是个负数绝对值比2小,﹣1>﹣2;2故答案选:B【点睛】本题考查有理数大小的判断,先比正负,再比绝对值.4.D【分析】直接利用同底数幂的乘除运算法则以及积的乘方运算法则、零指数幂的性质分别判断得出答案.【详解】解:A 、a 2•a 3=a 5,故此选项错误; B 、-a 2b 2•3ab 3=-3a 3b 5,故此选项错误; C 、(π-3.14)0=1,故此选项错误; D 、(a 3b 2)2=a 6b 4,正确. 故选D .【点睛】考查了同底数幂的乘除运算以及积的乘方运算等知识,正确掌握相关运算法则是解题关键. 5.A【分析】根据科学记数法的定义即可得. 【详解】解:670000米56.710=⨯米, 故选:A .【点睛】本题考查了科学记数法,熟记科学记数法的定义(将一个数表示成10n a ⨯的形式,其中110a ≤<,n 为整数,这种记数的方法叫做科学记数法)是解题关键.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同. 6.D【详解】试题分析:A .2x+3x 已经为最简式.B .x 2•x 3=x 5同底数幂相乘,指数相加. C .(x 2)3=x 6求幂的乘方,指数相乘.故只有D 正确 考点:整式运算点评:本题难度较低,主要考查学生对整式运算知识点的掌握.注意同底数幂相乘,指数相加.幂的乘方,指数相乘. 7.B【分析】A .根据整式的加法运算合并同类项即可; B .运用幂的乘法公式,底数不变,指数相乘,化简即可; C .根据整式的减法运算合并同类项即可;D .根据同底数幂的除法,底数不变,指数相减即可得出结论. 【详解】解:A .22242a a a a +=≠,故选项不合题意; B .()339a a =,故选项符合题意;C .22202a a a -=≠,故选项不合题意;D .624a a a ÷=,故选项不合题意; 故选:B .【点睛】本题考查整式的混合运算,熟练掌握每个计算的运算法则是解题的关键. 8.B【分析】根据新定义运算可直接进行求解. 【详解】解:∵2a b a b =-,∵()3x y x +()23x y x =+-223x y x =+-2x y =-+.故选:B .【点睛】本题主要考查整式的加减运算,熟练掌握整式的加减运算是解题的关键. 9.A【分析】根据二次根式的性质以及二次根式的混合运算逐项计算分析判断即可求解.【详解】解:A 、=B 、2C 、253=+-D 4=,故该选项不正确,不符合题意. 故选:A .【点睛】此题主要考查了二次根式的性质以及二次根式的混合运算,掌握二次根式的性质以及运算法则是解题关键. 10.A【分析】利用单项式与单项式除法,把他们的系数,相同字母分别相除,对于只在一个单项式里含有的字母,则连同它的指数作为商的一个因式,进而得出即可. 【详解】解:∵N •(-2x 2y )=-3ax 2y 2, ∵N =-3ax 2y 2÷(-2x 2y )=32ay .故选:A .【点睛】此题主要考查了单项式除以单项式,熟练掌握运算法则是解题关键. 11.B【分析】分别根据幂的乘方运算法则,积的乘方运算法则,同底数幂的除法法则以及完全平方公式逐一进行判断即可得出正确选项. 【详解】A. ()236a a =,故本选项不符合题意;B. ()23624m m -=,正确;C. 624a a a ÷=,故本选项不符合题意;D. ()2222a b a ab b +=++,故本选项不符合题意. 故选:B.【点睛】本题主要考查了同底数幂的除法,完全平方公式以及幂的乘方与积的乘方,熟记幂的运算法则是解答本题的关键. 12.B【详解】试题分析:10099100991009912()22222--⨯-=-⨯=-=-.故选B.考点: 1.负整数指数幂;2.积的乘方. 13.D【分析】分别计算后判断即可.【详解】解:A.不是同类项不能合并,故该选项计算错误; B. a 3•a 2=a 5,故该选项计算错误; C. 2a 6÷a 2 =2a 4,故该选项计算错误; D.(a 2)4 =a 8,故该选项计算正确. 故选:D .【点睛】本题考查合并同类项、同底数幂乘法、单项式除单项式、幂的乘方.掌握相关运算法则是解题关键. 14.B【分析】分别分析各选项中的代数式,能因式分解的先进行因式分解,再确定没有公因式的选项即可.【详解】A 、4a 2bc 与8abc 2有公因式4abc ,故该选项不满足题意;B、a3b2+1与a2b3–1,没有共公因式,故该选项满足题意;C、b(a–2b)2与a(2b–a)2有公因式()2a b-,故该选项不满足题意;2D、x+1与x2–1有公因式x+1,故该选项不满足题意;故选:B.【点睛】本题主要考查公因式的确定,熟练掌握因式分解是解决本题的关键.15.C【分析】根据二次根式的性质即可求出答案.【详解】A. 3=,故原选项错误;B. 3,故原选项错误;C. (23=,正确;D. D错误故选:C.【点睛】本题考查二次根式,解题的关键是熟练运用二次根式的性质,本题属于基础题型.16.D=进行化简,再根据绝对值的意义列出不等式,求解即可.a=-=-,m m11∵1-m≥0,∵m≤1故选:Da二者是等价的,故二者可以互化.17.C【分析】根据同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相减;同底数幂相除,底数不变指数相减对各选项分析判断即可得解.【详解】A、a2•a3=a2+3=a5,故本选项错误;B、a2+a3不能进行运算,故本选项错误;C、(a2)3=a2×3=a6,故本选项正确;D、a12÷a6=a12﹣6=a6,故本选项错误.故选C.【点睛】本题考查了同底数幂的乘法、幂的乘方、同底数幂的除法,熟练掌握运算法则是解题的关键.18.C【分析】分别根据同底数幂的除法法则,二次根式的加法法则,积的乘方运算法则以及零指数幂、负整数指数幂的运算法则逐一判断即可.【详解】A、826x x x÷=原计算错误,不符合题意;B、235=+=≠C、()32628a a-=-正确,符合题意;D、11(1)1212-⎛⎫--=-=-⎪⎝⎭原计算错误,不符合题意;故选:C.【点睛】本题主要考查了同底数幂的除法,幂的乘方与积的乘方,二次根式的运算,零指数幂、负整数指数幂的运算,熟记二次根式的运算、幂的运算法则是解答本题的关键.19.B【详解】试题解析:50m∴-≥,即5m≤,∵原式(5m=-故选B.20.-1.2×10-8【详解】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于1时,n是正数;当原数的绝对值小于1时,n是负数.0.000000012用科学记数法表示为21.4 -5【分析】先求出有理数的绝对值,再求相反数,即可得到答案.【详解】∵45--=45-, 故答案是: 45-. 【点睛】本题主要考查有理数的绝对值法则和相反数的概念,掌握有理数的绝对值法则和相反数的概念是解题的关键.22.2.299×106吨【分析】根据科学记数法的形式为10n a ⨯,其中110a ≤<,n 是原数的整数位数减1,可得出答案.【详解】2299000吨=2.299×106吨,故答案为2.299×106吨.【点睛】本题考查科学记数法,其形式为10n a ⨯,其中110a ≤<,n 是整数,关键是确定a 和n 的值.23.0a ≥【分析】根据二次根式的非负性解题即可.【详解】解:∵0a ≥,故答案为:0a ≥.【点睛】本题主要考查二次根式的定义,能够熟记定义是解题关键.24.-2015.【详解】试题解析:2015的相反数是-2015.考点:相反数.25.82.02110⨯【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数;当原数的绝对值<1时,n 是负整数.【详解】解:202100000=2.021×108.故答案为:82.02110⨯.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要确定a 的值以及n 的值.26.52【分析】根据根式有意义的条件可知2x+3_≥0,4y-6x_≥0,x+y+z_≥0,再根据已知条件可得到2x+3=0,4y-6x=0,x+y+z=0;通过解方程组即可求出x 、y 、z 的值,即可xz y的值.0=可得2304600x y x x y z +=⎧⎪-=⎨⎪++=⎩, 解得3294154x y z ⎧=-⎪⎪⎪=-⎨⎪⎪=⎪⎩, 将x 、x 、z 的值代入xzy 可得3152494-⨯-=52, 所以xz y 的值为52. 故答案为52. 【点睛】此题考查二次根式有意义的条件,解题关键在于利用其性质进行解答. 27.【分析】(1)根据二次根式的性质即可求解.(2)根据最简二次根式的化简即可求解.=;=;【点睛】此题主要考查二次根式的性质,解题的关键是熟知二次根式的运算法则与性质. 28【分析】根据算术平方根的性质可以把2和3写成带根号的形式,再进一步写出一个被开方数介于两者之间的数即可.∵写出一个大于2小于3.【点睛】本题考查了无理数的估算,估算无理数大小要用逼近法.用有理数逼近无理数,求无理数的近似值.29.92【分析】由2a =2a -=241a a -=-,整体代入即可求解.【详解】解:∵2a =∵2a -=()223a -=,∵2443a a -+=,即241a a -=-, ∵299943132a a ==-+-+. 故答案为:92. 【点睛】本题考查了分式的化简求值,二次根式的性质,掌握整体代入法是解题的关键. 30.46.7510⨯【分析】科学记数法的表示形式为ax10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.【详解】解:67500=46.7510⨯,即答案为:46.7510⨯.【点睛】本题考查用科学记数法表示较大的数,一般形式为ax10n ,其中1≤al<10,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.31.x≤且x≠0【详解】试题分析:当x 满足条件120{0x x -≥≠时,式子有意义,解得x≤且x≠0.考点:代数式有意义的条件.32【分析】直接根据题意列式计算即可.2是有理数,即输出的y【点睛】本题考查了求算术平方根和立方根即根据图片列式计算,能够根据图片正确列出算式是解题的关键.33. ﹣3553 【详解】试题解析:根据乘积为1的两个数互为倒数,可得一个数的倒数;根据只有符号不同的两个数互为相反数,可得一个数的相反数,故:213-的倒数是-35,213-的相反数是213 34.10.【分析】分别找到图1中图形内的格点数和图形上的格点数后,再与公式比较,即可发现表示图上的格点数对应的字母和图形内的格点数对应的字母,再利用图2中的有关数据代入公式即可求得图形的面积.【详解】解:根据图1可得,∵矩形内由2个格点,边上有10个格点,面积为6, 即106=2+12-; 正方形内由1个格点,边上有8个格点,面积为4, 即84=1+12-; ∵公式中表示多边形内部整点个数的字母是a ;表示多边形边上(含多边形顶点)的格点个数为b ,由图2得:8,6,a b ==6=18110.22b S a ∴+-=+-= 故答案为:10.【点睛】本题考查了新定义型的图形的变化类问题,解题的关键是能够仔细弄懂题意,弄懂公式中代数式的含义,根据题意进行探究,找到规律,再利用规律解决问题. 35.49【分析】首先配方得出a 2+ab+b 2=(a+b )2-ab 进而得出答案.【详解】解:∵a+b=8,ab=15,则a 2+ab+b 2=(a+b )2-ab=82-15=49.故答案为49.【点睛】此题主要考查了配方法的应用,正确配方是解题关键.36.2±.【分析】分别根据平方根、立方根的定义可以求出甲数、乙数,进而即可求得题目结果. 【详解】甲数是719的平方根 ∴甲数等于43±; 乙数是338的立方根, ∴乙数等于32. ∵43=232⨯ ∴甲、乙两个数的积是2±.故答案:2±.【点睛】此题主要考查了立方根、平方根的定义,解题的关键是根据平方根和立方根的定义求出甲数和乙数.37.(2)(2)x y x y +--+##(x -y +2)(x +y -2)【分析】先分组成22(44)x y y -+-,再利用完全平方公式化为22(2)x y --,最后利用平方差公式解答.【详解】解:2244x y y -+-22(44)x y y =--+22(2)x y =--(2)(2)x y x y =+--+故答案为:(2)(2)x y x y +--+.【点睛】本题考查因式分解,涉及分组分解法、完全平方公式、平方差公式等知识,是重要考点,掌握相关知识是解题的关键.38. 6 128【分析】(1)当n=4时,4()a b +的展开式的系数恰好对应的是第五行的数,根据第五行的数即刻得出答案;(2)7()a b +的展开式的系数恰好对应第八行的数,据图写出第八行的数求和即可.【详解】解:(1)4()a b +的展开式的系数恰好对应的是第五行的数,为:1,4,6,4,1,故4()a b +的展开式中第3项的系数是6;(2)据题可知第八行的数为:1,7,21,35,35,21,7,1.故7()a b +的展开式中各项的系数的和为:1+7+21+35+35+21+7+1=128.故答案为:(1)6;(2)128.【点睛】本题考查完全平方公式,探索与表达规律.(1)能找出()n a b +的展开式的系数与杨辉三角中行数之间的关系是解题关键;(2)中能依据“杨辉三角两腰上的数都是1,其余每个数为它的上方(左右)两数之和”写出“杨辉三角”的第八行数是解题关键.39.1【分析】根据数的乘方、零指数幂、开方法则进行计算,在加上特殊角的三角函数值,即可求解.【详解】解:原式=1+1-2=1121+-+=1.【点睛】本题考查实数的混合运算,熟练掌握实数的运算法则和熟记特殊角的三角函数值是解题的关键.40.(1)53n m n +;(2)- 12x <≤【分析】(1)运用整式的乘法法则计算即可;(2)根据不等式的运算求得解后再联立求解集即可.【详解】解:(1)原式 233253n n n m n m m n +-+=÷= (2)10223x x x +>⎧⎪⎨-≤+⎪⎩①② 解∵的1x >-,解∵得x 2≤,不等式组的解集为- 12x <≤【点睛】本题主要考查整式的乘法法则以及解一元一次不等式组,解题的关键是熟练地掌握整式的乘法的乘法法则以及解一元一次不等式组的解题步骤和方法即可.41.25 【详解】解:点(3,1)P -与点(,1)Q a b b +-关于原点对称,3a b ∴+=-,11b -=,解得:2,5b a ==-,2(5)25b a ∴=-=.42.(1)﹣7;(2)﹣2≤x <1【分析】(1)根据有理数的乘方、零指数幂、绝对值的意义进行化简即可;(2)先分别解不等式,再根据不等式组解集的规律写出解集即可.【详解】(1)原式=﹣9+11)=﹣9+1=﹣7(2)3(1)25322x x x x -≥-⎧⎪⎨+<⎪⎩①②, 解不等式∵,得x ≥﹣2,解不等式∵,得x <1,∵不等式组的解集为﹣2≤x <1.【点睛】本题考查了实数的混合运算和解不等式组,掌握实数的运算法则和解不等式组的步骤是解题的关键.43.(1)4(2)-5a 5【分析】(1)根据有理数的乘方,零指数幂,负整数指数幂分别进行计算即可; (2)根据同底数幂的乘法,积的乘方,单项式除以单项式分别进行计算即可.(1)解:原式=-1+1+4=4;(2)原式=-a3•a2﹣4a8÷a3=-a5-4a5=-5a5.【点睛】本题考查有理数的乘方、零指数幂、负整数指数幂、同底数幂的乘法、积的乘方、单项式除以单项式,解题关键是掌握相关的运算法则.44.2【分析】(1)运用分配律计算即可;(2)先将二次根式化简,然后去括号计算即可.【详解】(1)解:=2(2)==【点睛】题目主要考查二次根式的运算,掌握二次根式的运算法则是解题关键.45.3±【分析】利用平方根及算术平方根的定义列出方程,得到a与b的值,确定出a+2b的值,即可求出平方根.【详解】解:由题意得2a-1=9,3a+b-1=16,解得:a=5,b=2,则a+2b=9,∵a+2b的平方根是3±.【点睛】此题考查了平方根,以及算术平方根,熟练掌握各自的定义是解本题的关键.46.(1)4;(2)2-+.x x342【分析】(1)根据零指数幂,特殊角的三角函数值,算术平方根,负整数指数幂计算即可;(2)利用完全平方公式和平方差公式展开,化简即可.【详解】(1)原式112222=-⨯++ 1122=-++4=;(2)原式()224411x x x =-+--224411x x x =-+-+2342x x =-+.【点睛】本题考查了零指数幂,特殊角的三角函数值,算术平方根,负整数指数幂,完全平方公式和平方差公式,注意第(2)个小题平方差公式展开要加括号.47.-a +2c .【分析】根据已知判断出a +b ,c -a 及b -c 的符号,进而确定出二次根式、绝对值里边式子的符号,利用绝对值的代数意义化简,去括号合并即可得到结果.【详解】解:∵a <b <0<c ,a +b <0,c -a >0,b -c <0.∵||||||a a b b c -+-||||||||a a b c a b c =-++-+-=-a +(a +b )+(c -a )+(c -b )=-a +a +b +c -a +c -b=-a +2c .【点睛】此题考查了二次根式的性质与化简,整式的加减,以及绝对值的性质,去括号法则,以及合并同类项法则.正确得出各项符号是解题关键.48.(1)21113791=+ (2)21121(21)n n n n =+--;证明见解析 【分析】(1)观察前几个等式即可写出第7个等式;(2)结合(1)观察数字的变化规律即可写出第n 个等式,并进行证明.【详解】解:观察以下等式:第1个等式:211111=+, 第2个等式:211326=+,答案第16页,共16页 第3个等式:2115315=+, 第4个等式:2117428=+, 第5个等式:2119545=+, ……按照以上规律, (1)第7个等式:21113791=+; 故答案为:21113791=+; (2)第n 个等式:21121(21)n n n n =+-- 证明:∵等式右边11(21)n n n =+- 21122(21)(21)(21)21n n n n n n n n n -=+==---- ∵左边=右边∵猜想得证. 故答案为:21121(21)n n n n =+-- 【点睛】本题考查了规律型:数字的变化类、列代数式,解决本题的关键是观察数字的变化寻找规律.。

初中数学中考一轮复习专题1数与式重点、考点知识、方法总结及真题练习

初中数学中考一轮复习专题1数与式重点、考点知识、方法总结及真题练习

在实数范围内,正数和零统称为非负数.我们已经学习过的非负数有如下三种形式:
(1)仸何一个实数 a 的绝对值是非负数,即| a |≥0; (2)仸何一个实数 a 的平方是非负数,即 a2 ≥0; (3)仸何非负数的算术平方根是非负数,即 a 0 ( a 0 ).
非负数具有以下性质: (1)非负数有最小值零; (2)有限个非负数乊和仍是非负数; (3)几个非负数乊和等于 0,则每个非负数都等于 0. 4.实数的运算
a a (a 0, b 0) bb
②.加减法
将二次根式化为最简二次根式后,将同类二次根式的系数相加减,被开方数和根指数丌变,
即合并同类二次根式.
【典例】
1.计算:5 +
﹣×+ ÷.
【答案】 【解析】解:原式= + ﹣
+3 ÷
=2 ﹣1+3
=2 +2.
x xy xy y
2.若 x 0 ,化简
注:单独一个字母戒一个数也是代数式.
2.代数式的分类:
3.代数式的书写规则: (1)数字不字母相乘戒字母不字母相乘,通常把乘号写作“ ”戒省略丌写,字母乊间的
顺序可以交换,但一般按字母表中的先后顺序写.数字应在字母乊前.如: 3b 丌要写成 b3 (2)在代数式中出现除法运算时,一般都变成分数和乘法来计算.如: 2a b 写成 2a
x
2
0

x
1 且x 2
2
.
【难度】易
【结束】
2.若
,则 ( )
A. b>3B. b<3C. b≥3D. b≤3
【答案】D.
【解析】
3 b = 3 b ,所以 3 b ≥0,即 b 3 .

2022年江苏苏州中考数学试题及答案详解

2022年江苏苏州中考数学试题及答案详解

2022年江苏苏州中考数学试题及答案详解(试题部分)一、选择题:本大题共8小题,每小题3分,共24分。

在每小题所给出的四个选项中,只有一项是符合题目要求的。

1.下列实数中,比3大的数是()A.5B.1C.0D.-22. 2022年1月17日,国务院新闻办公室公布:截至2021年末全国人口总数为141 260万,比上年末增加48万人,中国人口的增长逐渐缓慢。

141 260用科学记数法可表示为()A.0.141 26×106B.1.412 6×106C.1.412 6×105D.14.126×1043.下列运算正确的是()=9 C.2a+2b=2ab D.2a·3b=5abA.√(−7)2=-7B.6÷234.为迎接党的二十大胜利召开,某校开展了“学党史,悟初心”系列活动。

学校对学生参加各项活动的人数进行了调查,并将数据绘制成如下统计图。

若参加“书法”的人数为80,则参加“大合唱”的人数为()A.60B.100C.160D.4005.如图,直线AB与CD相交于点O,∠AOC=75°,∠1=25°,则∠2的度数是()A.25°B.30°C.40°D.50°6.如图,在5×6的长方形网格飞镖游戏板中,每块小正方形除颜色外都相同,小正方形的顶点称为格点,扇形OAB的圆心及弧的两端均为格点。

假设飞镖击中每一块小正方形是等可能的(击中扇形的边界或没有击中游戏板,则重投1次),任意投掷飞镖1次,飞镖击中扇形OAB (阴影部分)的概率是( )A.π12B.π24C.√10π60D.√5π607. 《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架.它的代数成就主要包括开方术、正负术和方程术,其中方程术是其最高的代数成就.《九章算术》中有这样一个问题:“今有善行者行一百步,不善行者行六十步。

2024年江苏省苏州市中考真题数学试卷含答案解析

2024年江苏省苏州市中考真题数学试卷含答案解析

2024年江苏省苏州市中考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.用数轴上的点表示下列各数,其中与原点距离最近的是()A.3-B.1C.2D.32.下列图案中,是轴对称图形的是()A.B.C.D.【答案】A【分析】此题主要考查轴对称图形的概念,掌握轴对称图形的概念是解题的关键.根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【详解】解:A、是轴对称图形,故此选项正确;B、不是轴对称图形,故此选项错误;C、不是轴对称图形,故此选项错误;D、不是轴对称图形,故此选项错误.故选:A.3.苏州市统计局公布,2023年苏州市全年实现地区生产总值约为2.47万亿元,被誉为“最强地级市”.数据“2470000000000”用科学记数法可表示为()A.102.4710⨯D.1224710⨯⨯C.12247102.4710⨯B.10【答案】C【分析】本题考查的是科学记数法-表示较大的数,把一个大于10的数记成10na⨯的形式,其中a 是整数数位只有一位的数,n 是正整数,这种记数法叫做科学记数法.根据科学记数法-表示较大的数的方法解答.【详解】解:122470000000000 2.4710=⨯,故选:C .4.若1a b >-,则下列结论一定正确的是( )A .1a b+<B .1a b -<C .a b >D .1a b+>【答案】D【分析】本题主要考查不等式的性质,掌握不等式的性质是解题的关键.不等式的性质:不等式的两边同时加上或减去同一个数或字母,不等号方向不变;不等式的两边同时乘以或除以同一个正数,不等号方向不变;不等式的两边同时乘以或除以同一个负数,不等号方向改变.直接利用不等式的性质逐一判断即可.【详解】解:1a b >-,A 、1a b +>,故错误,该选项不合题意;B 、12a b ->-,故错误,该选项不合题意;C 、无法得出a b >,故错误,该选项不合题意;D 、1a b +>,故正确,该选项符合题意;故选:D .5.如图,AB CD ,若165∠=︒,2120∠=︒,则3∠的度数为( )A .45︒B .55︒C .60︒D .65︒【答案】B 【分析】题目主要考查平行线的性质求角度,根据题意得出60BAD ∠=︒,再由平角即可得出结果,熟练掌握平行线的性质是解题关键【详解】解:∵AB CD ,2120∠=︒,∴2180BAD ∠+∠=︒,∴60BAD ∠=︒,∴3180155BAD ∠=︒-∠-∠=︒,故选:B6.某公司拟推出由7个盲盒组成的套装产品,现有10个盲盒可供选择,统计这10个盲盒的质量如图所示.序号为1到5号的盲盒已选定,这5个盲盒质量的中位数恰好为100,6号盲盒从甲、乙、丙中选择1个,7号盲盒从丁、戊中选择1个,使选定7个盲盒质量的中位数仍为100,可以选择( )A .甲、丁B .乙、戊C .丙、丁D .丙、戊【答案】C 【分析】本题主要考查了用中位数做决策,由图像可知,要使选定7个盲盒质量的中位数仍为100,则需要选择100克以上的一个盲盒和100克以下的盲盒一个,根据选项即可得出正确的答案.【详解】解:由图像可知,要使选定7个盲盒质量的中位数仍为100,则需要从第6号盲盒和第7号盲盒里选择100克以上的一个盲盒和100克以下的盲盒一个,因此可排除甲、丁,乙、戊,丙、戊故选:C .7.如图,点A 为反比例函数()10y x x =-<图象上的一点,连接AO ,过点O 作OA 的垂线与反比例()40y x x =>的图象交于点B ,则AO BO 的值为( )A .12B .14C D .13∴11122ACO S=⨯-= ,142BDO S =⨯= ∵OA OB ⊥,∴90AOC OBD BOD ∠=∠=︒-∠,∴AOC OBD △∽△,8.如图,矩形ABCD 中,AB ,1BC =,动点E ,F 分别从点A ,C 同时出发,以每秒1个单位长度的速度沿AB ,CD 向终点B ,D 运动,过点E ,F 作直线l ,过点A 作直线l 的垂线,垂足为G ,则AG 的最大值为( )A B 2C .2D .1【答案】D 【分析】连接AC ,BD 交于点O ,取OA 中点H ,连接GH ,根据直角三角形斜边中线的性质,可以得出G 的轨迹,从而求出AG 的最大值.∵四边形ABCD 是矩形,∴90ABC ∠=︒,OA OC =,AB ∴在Rt ABC △中,AC AB =∴112OA OC AC ===,二、填空题9.计算:32x x ⋅= .【答案】5x 【分析】利用同底数幂的乘法解题即可.【详解】解:32325x x x x +⋅==,故答案为:5x .【点睛】本题考查了同底数幂的乘法,掌握相应的运算法则是解题的关键.10.若2a b =+,则()2b a -= .【答案】4【分析】本题考查了求代数式的值,把2a b =+整体代入化简计算即可.【详解】解:∵2a b =+,∴()2b a -()22b b ⎡⎤=-+⎣⎦()22b b =--()22=-4=,故答案为:4.11.如图,正八边形转盘被分成八个面积相等的三角形,任意转动这个转盘一次,当转盘停止转动时,指针落在阴影部分的概率是 .12.如图,ABC 是O 的内接三角形,若28OBC ∠=︒,则A ∠= .∵OB OC =,OBC ∠∴OCB OBC ∠=∠∴801OC OC B ∠∠=︒-113.直线1:1l y x =-与x 轴交于点A ,将直线1l 绕点A 逆时针旋转15︒,得到直线2l ,则直线2l 对应的函数表达式是 .设1l 与y 轴的交点为点B ,令0x =,得1y =-;令y =∴()1,0A ,()0,1B - ,∴1OA =,1OB =,即45OAB OBA ∠=∠=︒14.铁艺花窗是园林设计中常见的装饰元素.如图是一个花瓣造型的花窗示意图,由六条等弧连接而成,六条弧所对应的弦构成一个正六边形,中心为点O , AB 所在圆的圆心C 恰好是ABO 的内心,若AB == .(结果保留π)∵六条弧所对应的弦构成一个正六边形,∴60,AOB OA ∠=︒=∴AOB 为等边三角形,∵圆心C 恰好是ABO 15.二次函数()20y ax bx c a =++≠的图象过点()0,A m ,()1,B m -,()2,C n ,()3,D m -,其中m ,n 为常数,则mn的值为 .16.如图,ABC ,90ACB ∠=︒,5CB =,10CA =,点D ,E 分别在AC AB ,边上,AE ,连接DE ,将ADE V 沿DE 翻折,得到FDE V ,连接CE ,CF .若CEF △的面积是BEC 面积的2倍,则AD = .则90AHE ACB ︒∠=∠=,又∴AHE ACB ∽,三、解答题17.计算:()042-+-.【答案】2【分析】本题考查了实数的运算,利用绝对值的意义,零指数幂的意义,算术平方根的定义化简计算即可.【详解】解:原式413=+-2=.18.解方程组:27233x y x y +=⎧⎨-=⎩.【答案】31x y =⎧⎨=⎩【分析】本题考查的是解二元一次方程组,解题的关键是掌握加减消元法求解.根据加减消元法解二元一次方程组即可.【详解】解:27233x y x y +=⎧⎨-=⎩①②-①②得,44y =,解得,1y =.将1y =代入①得3x =.∴方程组的解是31x y =⎧⎨=⎩19.先化简,再求值:2212124x x x x x +-⎛⎫+÷ ⎪--.其中3x =-.20.如图,ABC 中,AB AC =,分别以B ,C 为圆心,大于12BC 长为半径画弧,两弧交于点D ,连接BD ,CD ,AD ,AD 与BC 交于点E .(1)求证:ABD ACD △≌△;(2)若2BD =,120BDC ∠=︒,求BC 的长.21.一个不透明的盒子里装有4张书签,分别描绘“春”,“夏”,“秋”,“冬”四个季节,书签除图案外都相同,并将4张书签充分搅匀.(1)若从盒子中任意抽取1张书签,恰好抽到“夏”的概率为______;(2)若从盒子中任意抽取2张书签(先抽取1张书签,且这张书签不放回,再抽取1张书签),求抽取的书签恰好1张为“春”,1张为“秋”的概率.(请用画树状图或列表等方法说明理由)等可能的结果:(春,夏),(春,秋),(春,冬),(夏,春)春),(秋,夏),(秋,冬),(冬,春),(冬,夏),(冬,秋)在12个等可能的结果中,抽取的书签1张为“春”,1张为122.某校计划在七年级开展阳光体育锻炼活动,开设以下五个球类项目:A(羽毛球),B (乒乓球),C(篮球),D(排球),E(足球),要求每位学生必须参加,且只能选择其中一个项目.为了了解学生对这五个项目的选择情况,学校从七年级全体学生中随机抽取部分学生进行问卷调查,对调查所得到的数据进行整理、描述和分析,部分信息如下:根据以上信息,解决下列问题:(1)将图①中的条形统计图补充完整(画图并标注相应数据);(2)图②中项目E对应的圆心角的度数为______°;(3)根据抽样调查结果,请估计本校七年级800名学生中选择项目B(乒乓球)的人数.【答案】(1)见解析(2)72(3)本校七年级800名学生中选择项目B(乒乓球)的人数约为240人【分析】本题考查扇形统计图、条形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.(1)利用C组的人数除以所占百分比求出总人数,然后用总人数减去A、B、C、E组的人数,最后补图即可;(2)用360︒乘以E组所占百分比即可;(3)用800乘以B组所占百分比即可.÷=,【详解】(1)解:总人数为915%60D组人数为6061891215----=,补图如下:(2)解:123607260︒⨯=︒,故答案为:72;(3)解:1880024060⨯=(人).答:本校七年级800名学生中选择项目23.图①是某种可调节支撑架,BC 为水平固定杆,竖直固定杆AB BC ⊥,活动杆AD 可绕点A 旋转,CD 为液压可伸缩支撑杆,已知10cm AB =,20cm BC =,50cm AD =.(1)如图②,当活动杆AD 处于水平状态时,求可伸缩支撑杆CD 的长度(结果保留根号);(2)如图③,当活动杆AD 绕点A 由水平状态按逆时针方向旋转角度α,且3tan 4α=(α为锐角),求此时可伸缩支撑杆CD 的长度(结果保留根号).由题意可知,90B A ∠=∠=︒,又CE AD ⊥ ,∴四边形ABCE 为矩形.20BC =由题意可知,四边形ABFG 为矩形,90AGD ∴=︒△.在Rt AGD 中,tan DG AG α==34DG AG ∴=.24.如图,ABC 中,AC BC =,90ACB ∠=︒,()2,0A -,()6,0C ,反比例函数()0,0k y k x x=≠>的图象与AB 交于点(),4D m ,与BC 交于点E .(1)求m ,k 的值;(2)点P 为反比例函数()0,0k y k x x=≠>图象上一动点(点P 在D ,E 之间运动,不与D ,E 重合),过点P 作PM AB ∥,交y 轴于点M ,过点P 作PN x ∥轴,交BC 于点N ,连接MN ,求PMN 面积的最大值,并求出此时点P 的坐标.45∴∠=︒.BAC∥轴,PN x∴∠=∠=︒,∠NQM BLN BAC4525.如图,ABC 中,AB =D 为AB 中点,BAC BCD ∠=∠,cos ADC ∠=,O 是ACD 的外接圆.(1)求BC 的长;(2)求O 的半径.又22,AD=DE=∴.1∴在Rt AED△中,22=-=AE AD DEBAC BCD△∽△,26.某条城际铁路线共有A,B,C三个车站,每日上午均有两班次列车从A站驶往C站,其中D 1001次列车从A 站始发,经停B 站后到达C 站,G 1002次列车从A 站始发,直达C 站,两个车次的列车在行驶过程中保持各自的行驶速度不变.某校数学学习小组对列车运行情况进行研究,收集到列车运行信息如下表所示.列车运行时刻表A 站B 站C 站车次发车时刻到站时刻发车时刻到站时刻D 10018:009:309:5010:50G 10028:25途经B 站,不停车10:30请根据表格中的信息,解答下列问题:(1)D 1001次列车从A 站到B 站行驶了______分钟,从B 站到C 站行驶了______分钟;(2)记D 1001次列车的行驶速度为1v ,离A 站的路程为1d ;G 1002次列车的行驶速度为2v ,离A 站的路程为2d .①12v v =______;②从上午8:00开始计时,时长记为t 分钟(如:上午9:15,则75t =),已知1240v =千米/小时(可换算为4千米/分钟),在G 1002次列车的行驶过程中()25150t ≤≤,若1260d d -=,求t 的值.27.如图①,二次函数2y x bx c =++的图象1C 与开口向下的二次函数图象2C 均过点()1,0A -,()3,0B .(1)求图象1C 对应的函数表达式;(2)若图象2C 过点()0,6C ,点P 位于第一象限,且在图象2C 上,直线l 过点P 且与x 轴平行,与图象2C 的另一个交点为Q (Q 在P 左侧),直线l 与图象1C 的交点为M ,N (N 在M 左侧).当PQ MP QN =+时,求点P 的坐标;(3)如图②,D ,E 分别为二次函数图象1C ,2C 的顶点,连接AD ,过点A 作AF AD ⊥.交图象2C 于点F ,连接EF ,当EF AD ∥时,求图象2C 对应的函数表达式.由二次函数的对称性得,∴PM NQ =.又PQ MP QN =+ ,而PQ PH PM ∴=.设()02PH t t =<<,则点将1x t =+代入(2y x =-+将21x t =+代入()(1y x =+P M y y = ,()(22t t ∴-+∴四边形IGJF 为矩形,IF GJ ∴=,IG FJ =.设2C 对应的函数表达式为 点D ,E 分别为二次函数图象将1x =分别代入22y x =-得4,4D E y y a =-=-,∴()1,4D -,()1,4E a -,4DG ∴=,2AG =,EG =。

专题1.数与式(解析版)

专题1.数与式(解析版)

2019年中考数学典题精选系列专题01 数与式1.3月30日,我区航空经济产业功能区2019年一季度重大项目集中开工仪式在电子科大产业园四期项目用地举行.参加此次集中开工仪式项目共计71个,总投资超过249亿元,未来随着这一波又一波项目的建成投产,必将为双流航空经济插上腾飞之翼,助力双流打造中国航空经济之都.用科学记数法表示249亿元为()A.249×108元B.24.9×109元C.2.49×1010元D.0.249×1011元【答案】C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】将249亿用科学记数法可表示为2.49×1010.故选C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.实数a,b在数轴上的对应点的位置如图所示,把﹣a,﹣b,0按照从小到大的顺序排列,正确的是()A.﹣a<0<﹣b B.0<﹣a<﹣b C.﹣b<0<﹣a D.0<﹣b<﹣a【答案】C.3.按如图所示的运算程序运算,能使输出的结果为7的一组x,y的值是()A.x=1,y=2 B.x=﹣2,y=1 C.x=2,y=1 D.x=﹣3,y=1【答案】C【解析】【分析】将各项中的x与y代入程序计算,即可得到结果.【详解】A、当x=1,y=2时,原式=2﹣2=0,不符合题意;B、当x=﹣2,y=1时,原式=8+1=9,不符合题意;C、当x=2,y=1时,原式=8﹣1=7,符合题意;D、当x=﹣3,y=1时,原式=18+1=19,不符合题意,故选:C.【点睛】本题考查代数式求值,熟练掌握运算法则是解题关键.4.下列整数中,比小的数是()A.B.C.D.【答案】D【解析】【分析】可根据有理数大小比较的方法:正数>0>负数,两个负数比较大小,绝对值越大的反而越小.通过比较直接得出.【详解】∵-3>-π,0>-π,1>-π,-4<-π故选D.【点睛】本题考查有理数比大小,深刻理解有理数中正数>0>负数,两个负数比较大小,绝对值越大的反而越小.5.已知23ab=,则代数式a ba+的值为()A.52B.53C.23D.32【答案】B【解析】由23ab=得到:a=23b,则代入可得2533b ba bb b++==.故选:B.6.下列运算正确的是()A .B .C .D .【答案】D【解析】【分析】根据合并同类项法则,有理数的混合运算,负整数指数幂,二次根式的混合运算求出每个式子的值,再根据结果判断即可.【详解】A 、与不是同类项,故本选项错误;B 、,故本选项错误;C 、,故本选项正确;D 、,故本选项正确.故选D.【点睛】本题考查了合并同类项法则,有理数的混合运算,负整数指数幂,二次根式的混合运算等知识点,主要考查学生的计算能力和辨析能力,题目比较好,但是一道比较容易出错的题目.7.一列数a1,a2,a3,…,其中a1=,a n =(n为不小于2的整数),则a100=()A .B.2 C.﹣1 D.﹣2【答案】A【解析】根据表达式求出前几个数后发现:每三个数为一个循环组.用100除以3,根据商和余数的情况确定a100的值即可.解:根据题意得,a 2==2,a 3==﹣1,a 4==,a 5==2,…,依此类推,每三个数为一个循环组依次循环, ∵100÷3=33…1,∴a 100是第34个循环组的第一个数,与a 1相同, 即a 100=.故选A .8.已知a ﹣b=3,则代数式a 2﹣b 2﹣6b 的值为( ) A .3 B .6 C .9 D .12 【答案】C .【解析】由a ﹣b=3,得到a=b+3,则原式=(b+3)2﹣b 2﹣6b=b 2+6b+9﹣b 2﹣6b=9.故选C .学科*网 9.我们知道,一元二次方程21x =-没有实数根,即不存在一个实数的平方等于-1,若我们规定一个“新数”,使其满足(即方程有一个根为i ),并且进一步规定:一切实数可以与新数进行四则运算,且原有的运算律和运算法则仍然成立,于是有,从而对任意正整数n ,我们可得到同理可得那么, 23420162017••••••i i i i i i ++++++。

2022年江苏省苏州市中考数学真题(解析版)

2022年江苏省苏州市中考数学真题(解析版)

2022年苏州市初中学业水平考试试卷数学一、选择题:本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将选择题的答案用2B 铅笔涂在答题卡相应位置上.1. 下列实数中,比3大的数是( )A. 5B. 1C. 0D. -2【答案】A【解析】【分析】根据有理数的大小比较法则比较即可.【详解】解:因为-2<0<1<3<5,所以比3大的数是5,故选:A .【点睛】本题考查了有理数的大小比较法则,能熟记有理数的大小比较法则的内容是解此题的关键.2. 2022年1月17日,国务院新闻办公室公布:截至2021年末全国人口总数为141260万,比上年末增加48万人,中国人口的增长逐渐缓慢.141260用科学记数法可表示为( )A. 60.1412610´ B. 61.412610´ C. 51.412610´ D. 414.12610´【答案】C【解析】【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数;当原数的绝对值<1时,n 是负整数.【详解】解:141260=51.412610´,故选:C .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.3. 下列运算正确的是( )A. 7=-B. 2693¸=C. 222a b ab +=D. 235a b ab×=【答案】B 【解析】a =,判断A 选项不正确;C 选项中2a 、2b 不是同类项,不能合并;D 选项中,单项式与单项式法则:把单项式的系数、相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式;B 选项正确.【详解】A. 7==,故A 不正确;B. 2366932¸=´=,故B 正确;C. 222a b ab +¹,故C 不正确;D. 236a b ab ×=,故D 不正确;故选B .【点睛】本题考查二次根式的性质、有理数的除法及整式的运算,灵活运用相应运算法则是解题的关键.4. 为迎接党的二十大胜利召开,某校开展了“学党史,悟初心”系列活动.学校对学生参加各项活动的人数进行了调查,并将数据绘制成如下统计图.若参加“书法”的人数为80人,则参加“大合唱”的人数为( )A. 60人B. 100人C. 160人D. 400人【答案】C【解析】【分析】根据参加“书法”的人数为80人,占比为20%,可得总人数,根据总人数乘以125%15%20%---即可求解.【详解】解:总人数为8020%400¸=.则参加“大合唱”的人数为()400125%15%20%160´---=人.故选C .【点睛】本题考查了扇形统计图,从统计图获取信息是解题的关键.5. 如图,直线AB 与CD 相交于点O ,75AOC Ð=°,125Ð=°,则2Ð的度数是( )A. 25°B. 30°C. 40°D. 50°【答案】D【解析】【分析】根据对顶角相等可得75BOD Ð=°,之后根据125Ð=°,即可求出2Ð.【详解】解:由题可知75BOD AOC Ð=Ð=°,125Ð=°Q ,217525BOD \Ð=Ð-Ð=°-°=50°.故选:D .【点睛】本题主要考查对顶角和角的和与差,掌握对顶角相等是解决问题的关键.6. 如图,在56´的长方形网格飞镖游戏板中,每块小正方形除颜色外都相同,小正方形的顶点称为格点,扇形OAB 的圆心及弧的两端均为格点.假设飞镖击中每一块小正方形是等可能的(击中扇形的边界或没有击中游戏板,则重投1次),任意投掷飞镖1次,飞镖击中扇形OAB (阴影部分)的概率是( )A. 12pB. 24pC.D. 【答案】A【解析】【分析】根据几何概率的求法:飞镖落在阴影部分的概率就是阴影区域的面积与总面积的比值.【详解】解:由图可知,总面积为:5×6=30,OB ==,∴阴影部分面积为:90105= 3602p p´g,∴飞镖击中扇形OAB(阴影部分)的概率是52= 3012pp,故选:A.【点睛】本题考查几何概率的求法:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件;然后计算阴影区域的面积在总面积中占的比例,这个比例即事件发生的概率.7. 《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架.它的代数成就主要包括开方术、正负术和方程术,其中方程术是其最高的代数成就.《九章算术》中有这样一个问题:“今有善行者行一百步,不善行者行六十步.今不善行者先行一百步,善行者追之,问几何步及之?”译文:“相同时间内,走路快的人走100步,走路慢的人只走60步.若走路慢的人先走100步,走路快的人要走多少步才能追上?(注:步为长度单位)”设走路快的人要走x步才能追上,根据题意可列出的方程是()A.60100100x x=- B.60100100x x=+ C.10010060x x=+ D.10010060x x=-【答案】B【解析】【分析】根据题意,先令在相同时间t内走路快的人走100步,走路慢的人只走60步,从而得到走路快的人的速度100t,走路慢的人的速度60t,再根据题意设未知数,列方程即可【详解】解:令在相同时间t内走路快的人走100步,走路慢的人只走60步,从而得到走路快的人的速度100 t ,走路慢的人的速度60t,设走路快的人要走x步才能追上,根据题意可得60100100xxtt=+´,\根据题意可列出的方程是60100100x x =+,故选:B.【点睛】本题考查应用一元一次方程解决数学史问题,读懂题意,找准等量关系列方程是解决问题的关键.8. 如图,点A的坐标为()0,2,点B是x轴正半轴上的一点,将线段AB绕点A按逆时针方向旋转60°得到线段AC.若点C的坐标为(),3m,则m的值为()A. B. C. D.【答案】C【解析】【分析】过C作CD⊥x轴于D,CE⊥y轴于E,根据将线段AB绕点A按逆时针方向旋转60°得到线段AC,可得△ABC是等边三角形,又A(0,2),C(m,3),即得AC BC AB===,可得=,即可解BD==OB==m得m=.【详解】解:过C作CD⊥x轴于D,CE⊥y轴于E,如图所示:∵CD⊥x轴,CE⊥y轴,∴∠CDO=∠CEO=∠DOE=90°,∴四边形EODC是矩形,∵将线段AB绕点A按逆时针方向旋转60°得到线段AC,∴AB=AC,∠BAC=60°,∴△ABC是等边三角形,∴AB=AC=BC,∵A(0,2),C(m,3),∴CE=m=OD,CD=3,OA=2,∴AE=OE−OA=CD−OA=1,∴AC BC AB====,在Rt△BCD中,BD==在Rt△AOB中,OB==∵OB+BD=OD=m,=,m化简变形得:3m4−22m2−25=0,解得:m=或m=(舍去),∴m=,故C正确.故选:C.【点睛】本题考查直角坐标系中的旋转变换,解题的关键是熟练应用勾股定理,用含m的代数式表示相关线段的长度.二、填空题:本大题共8小题,每小题3分,共24分.把答案直接填在答题卡相应位置上.a a×=_______.9. 计算:3【答案】a4【解析】【分析】本题须根据同底数幂乘法,底数不变指数相加,即可求出答案.【详解】解:a3•a,=a3+1,=a4.故答案为:a4.【点睛】本题主要考查了同底数幂的乘法,在解题时要能灵活应用同底数幂的乘法法则,熟练掌握运算性质是解题的关键.10. 已知4x y +=,6-=x y ,则22x y -=______.【答案】24【解析】【分析】根据平方差公式计算即可.详解】解:∵4x y +=,6-=x y ,∴22()()4624x y x y x y -=+-=´=,故答案为:24.【点睛】本题考查因式分解的应用,先根据平方差公式进行因式分解再整体代入求值是解题的关键.11. 化简2222x x x x ---的结果是______.【答案】x【解析】【分析】根据分式的减法进行计算即可求解.【详解】解:原式=()22222x x x x x x x --==--.故答案为:x .【点睛】本题考查了分式的减法,正确的计算是解题的关键.12. 定义:一个三角形的一边长是另一边长的2倍,这样的三角形叫做“倍长三角形”.若等腰△ABC 是“倍长三角形”,底边BC 的长为3,则腰AB 的长为______.【答案】6【解析】【分析】分类讨论:AB =AC =2BC 或BC =2AB =2AC ,然后根据三角形三边关系即可得出结果.【详解】解:∵△ABC 是等腰三角形,底边BC =3∴AB =AC当AB =AC =2BC 时,△ABC 是“倍长三角形”;当BC =2AB =2AC 时,AB +AC =BC ,根据三角形三边关系,此时A 、B 、C 不构成三角形,不符合题意;所以当等腰△ABC 是“倍长三角形”,底边BC 的长为3,则腰AB 的长为6.故答案为6.【点睛】本题考查等腰三角形,三角形的三边关系,涉及分类讨论思想,结合三角形三边关系,灵活运用【分类讨论思想是解题的关键.13. 如图,AB 是O e 的直径,弦CD 交AB 于点E ,连接AC ,AD .若28BAC Ð=°,则D Ð=______°【答案】62【解析】【分析】连接BD ,根据直径所对的圆周角是90°,可得90ADB Ð=°,由 CBCB =,可得BAC BDC Ð=Ð,进而可得90ADC BDC Ð=°-Ð.【详解】解:连接BD ,∵AB 是O e 的直径,∴90ADB Ð=°,Q CB CB=,\28BAC BDC Ð==а,\90ADC BDC Ð=°-Ð62=°故答案为:62【点睛】本题考查了同弧所对的圆周角相等,直径所对的圆周角是直角,掌握圆周角定理是解题的关键.14. 如图,在平行四边形ABCD 中,AB AC ^,3AB =,4AC =,分别以A ,C 为圆心,大于12AC 的长为半径画弧,两弧相交于点M ,N ,过M ,N 两点作直线,与BC 交于点E ,与AD 交于点F ,连接AE ,CF ,则四边形AEC F 的周长为______.【答案】10【解析】【分析】根据作图可得MN AC ^,且平分AC ,设AC 与MN 的交点为O ,证明四边形AECF 为菱形,根据平行线分线段成比例可得AE 为ABC V 的中线,然后勾股定理求得BC ,根据直角三角形中斜边上的中线等于斜边的一半可得AE 的长,进而根据菱形的性质即可求解.【详解】解:如图,设AC 与MN 的交点为O ,根据作图可得MN AC ^,且平分AC ,AO OC \=,Q 四边形ABCD 是平行四边形,AD BC \∥,FAO OCE \Ð=Ð,又AOF COE Ð=ÐQ ,AO CO = ,AOF COE \V V ≌,AF EC \=,AF CE ∥Q ,\四边形AECF 是平行四边形,MN Q 垂直平分AC ,EA EC \=,\四边形AECF 是菱形,Q AB AC ^,MN AC ^,EF AB \∥,1EC OC BE AO \==,E \为BC 中点,Rt ABC △中, 3AB =,4AC =,5BC \==,1522AE BC ==,\四边形AEC F 的周长为410AE =.故答案为:10.【点睛】本题考查了垂直平分线的性质,菱形的性质与判定,勾股定理,平行线分线段成比例,平行四边形的性质与判定,综合运用以上知识是解题的关键.15. 一个装有进水管和出水管的容器,开始时,先打开进水管注水,3分钟时,再打开出水管排水,8分钟时,关闭进水管,直至容器中的水全部排完.在整个过程中,容器中的水量y (升)与时间x (分钟)之间的函数关系如图所示,则图中a 的值为______.【答案】293【解析】【分析】根据函数图像,结合题意分析分别求得进水速度和出水速度,即可求解.【详解】解:依题意,3分钟进水30升,则进水速度为30103=升/分钟,Q 3分钟时,再打开出水管排水,8分钟时,关闭进水管,直至容器中的水全部排完直至容器中的水全部排完,则排水速度为810201283´-=-升/分钟,\20812a -=,解得293a =.的故答案为:293.【点睛】本题考查了函数图象问题,从函数图象获取信息是解题的关键.16. 如图,在矩形ABCD 中23=AB BC .动点M 从点A 出发,沿边AD 向点D 匀速运动,动点N 从点B 出发,沿边BC 向点C 匀速运动,连接MN .动点M ,N 同时出发,点M 运动的速度为1v ,点N 运动的速度为2v ,且12v v <.当点N 到达点C 时,M ,N 两点同时停止运动.在运动过程中,将四边形MABN 沿MN 翻折,得到四边形MA B N ¢¢.若在某一时刻,点B 的对应点B ¢恰好在CD 的中点重合,则12v v 的值为______.【答案】35【解析】【分析】在矩形ABCD 中23=AB BC ,设2,3AB a BC a ==,运动时间为t ,得到212,3,,CD AB a AD BC a BN v t AM v t ======,利用翻折及中点性质,在Rt B CN ¢D 中利用勾股定理得到253v t a BN ==,然后利用EDB B CN ¢¢D D :得到34DE a A E ¢==,在根据判定的A EM ¢D ()DEB ASA ¢@D 得到1AM v t a ==,从而代值求解即可.【详解】解:如图所示:在矩形ABCD 中23=AB BC ,设2,3AB a BC a ==,运动时间为t,212,3,,CD AB a AD BC a BN v t AM v t \======,在运动过程中,将四边形MABN 沿MN 翻折,得到四边形MA B N ¢¢,21,B N BN v t A M AM v t ¢¢\====,若在某一时刻,点B 的对应点B ¢恰好在CD 的中点重合,DB B C a ¢¢\==,在Rt B CN ¢D 中,2290,,,3C B C a B N v t CN a v t ¢¢Ð=°===-,则253v t a BN ==,90A B N B Ð=Ð=°¢¢Q ,90A B D CB N ¢¢¢\Ð+Ð=°,90CNB CB N ¢¢Ð+Ð=°Q ,A B D CNB ¢¢¢\Ð=Ð,EDB B CN ¢¢\D D :,35433DE B C B C a DB CN BC BN a a ¢¢\====¢--,DB B C a ¢¢==Q ,3344DE DB a ¢\==,则54B E a ¢===,53244A E A B B E a a a ¢¢¢¢\=-=-=,即34DE a A E ¢==,在A EM ¢D 和DEB ¢D 中,90A D A E DEA EM DEB Ð=Ð=°ìï=íïТ=Т¢î¢ \A EM ¢D ()DEB ASA ¢@D ,A MB D a ¢¢\==,即1AM v t a ==,11223553v v t AM a v v t BN a \====,故答案为:35.【点睛】本题属于矩形背景下的动点问题,涉及到矩形的性质、对称性质、中点性质、两个三角形相似的判定与性质、勾股定理及两个三角形全等的判定与性质等知识点,熟练掌握相关性质及判定,求出相应线段长是解决问题的关键.三、解答题:本大题共11小题,共82分.把解答过程写在答题卡相应位置上,解答时应写出必要的计算过程、推演步骤或文字说明.作图时用2B 铅笔或黑色墨水签字笔.17. 计算:)2321-+-.【答案】6【解析】【分析】先化简各式,然后再进行计算即可;【详解】解:原式341=+-6=【点睛】本题考查了零指数幂、绝对值、平方,准确化简式子是解题的关键.18. 解方程:311x x x +=+.【答案】32x =-【解析】【分析】根据解分式方程的步骤求出解,再检验即可.【详解】方程两边同乘以()1x x +,得()()2311x x x x ++=+.解方程,得32x =-.经检验,32x =-是原方程的解.【点睛】本题主要考查了解分式方程,掌握解分式方程的步骤是解题的关键.即去分母,去括号,移项,合并同类项,系数化为1,检验.19. 已知23230x x --=,求()2213x x x æö-++ç÷èø的值.【答案】24213x x -+,3【解析】【分析】先将代数式化简,根据23230x x --=可得2213x x -=,整体代入即可求解.【详解】原式222213x x x x =-+++24213x x =-+.∵23230x x --=,∴2213x x -=.∴原式22213x x æö=-+ç÷èø211=´+3=.【点睛】本题考查了整式的乘法运算,代数式化简求值,整体代入是解题的关键.20. 一只不透明的袋子中装有1个白球,3个红球,这些球除颜色外都相同.(1)搅匀后从中任意摸出1个球,这个球是白球的概率为______;(2)搅匀后从中任意摸出1个球,记录颜色后放回,搅匀,再从中任意摸出1个球,求2次摸到的球恰好是1个白球和1个红球的概率.(请用画树状图或列表等方法说明理由)【答案】(1)14(2)2次摸到的球恰好是1个白球和1个红球的概率为38【解析】【分析】(1)直接利用概率公式求解即可求得答案;(2)画树状图表示所有等可能出现的情况,从中找出两个球颜色不同的结果数,进而求出概率.【小问1详解】解:∵一只不透明的袋子中装有1个白球和3个红球,这些球除颜色外都相同,∴搅匀后从中任意摸出1个球,则摸出白球的概率为:11134=+ .故答案为:14;【小问2详解】解: 画树状图,如图所示:共有16种不同的结果数,其中两个球颜色不同的有6种,∴2次摸到的球恰好是1个白球和1个红球的概率为38.【点睛】考查列表法或树状图法求等可能事件发生的概率,使用此方法一定注意每一种结果出现的可能性是均等的,即为等可能事件.21. 如图,将矩形ABCD 沿对角线AC 折叠,点B 的对应点为E ,AE 与CD 交于点F .(1)求证:DAF ECF △≌△;(2)若40FCE Ð=°,求CAB Ð度数.【答案】(1)见解析 (2)25CAB Ð=°【解析】【分析】(1)由矩形与折叠的性质可得AD BC EC ==,90D B E Ð=Ð=Ð=°,从而可得结论;(2)先证明40DAF ECF Ð=Ð=°,再求解904050EAB DAB DAF Ð=Ð-Ð=°-°=°, 结合对折的性质可得答案.【小问1详解】证明:将矩形ABCD 沿对角线AC 折叠,则AD BC EC ==,90D B E Ð=Ð=Ð=°.在△DAF 和△ECF 中,DFA EFC D E DA EC Ð=ÐìïÐ=Ðíï=î,,, ∴DAF ECF △≌△.【小问2详解】解:∵DAF ECF △≌△,∴40DAF ECF Ð=Ð=°.∵四边形ABCD 是矩形,∴90DAB Ð=°.∴904050EAB DAB DAF Ð=Ð-Ð=°-°=°, ∵FAC CAB Ð=Ð,∴25CAB Ð=°.【点睛】本题考查的是全等三角形的判定与性质,轴对称的性质,矩形的性质,熟练的运用轴对称的性质证明边与角的相等是解本题的关键.的22. 某校九年级640名学生在“信息素养提升”培训前、后各参加了一次水平相同的测试,并以同一标准折算成“6分”、“7分”、“8分”、“9分”、“10分”5个成绩.为了解培训效果,用抽样调查的方式从中抽取了32名学生的2次测试成绩,并用划记法制成了如下表格:成绩(分)678910划记正正正正培训前人数(人)124754成绩(分)678910划记一正正正正培训后人数(人)413915(1)这32名学生2次测试成绩中,培训前测试成绩的中位数是m ,培训后测试成绩的中位数是n ,则m ______n ;(填“>”、“<”或“=”)(2)这32名学生经过培训,测试成绩为“6分”的百分比比培训前减少了多少?(3)估计该校九年级640名学生经过培训,测试成绩为“10分”的学生增加了多少人?【答案】(1)<(2)测试成绩为“6分”的百分比比培训前减少了25%(3)测试成绩为“10分”的学生增加了220人【解析】【分析】(1)先分别求解培训前与培训后的中位数,从而可得答案;(2)分别求解培训前与培训后得6分的人数所占的百分比,再作差即可;(3)分别计算培训前与培训后得满分的人数,再作差即可.【小问1详解】解:由频数分布表可得:培训前的中位数为:787.5,2m +== 培训后的中位数为:9+9=9,2n = 所以,m n < 故答案为:<;【小问2详解】124100%100%25%,3232´-´=答:测试成绩为“6分”的百分比比培训前减少了25%.【小问3详解】培训前:46408032´=,培训后:1564030032´=,30080220-=.答:测试成绩为“10分”的学生增加了220人.【点睛】本题考查的是频数分布表,中位数的含义,利用样本估计总体,理解题意,从频数分布表中获取信息是解本题的关键.23. 如图,一次函数()20y kx k =+¹的图像与反比例函数()0,0my m x x=¹>的图像交于点()2,A n ,与y 轴交于点B ,与x 轴交于点()4,0C -.(1)求k 与m 的值;(2)(),0P a 为x 轴上的一动点,当△APB 的面积为72时,求a 的值.【答案】(1)k 的值为12,m 的值为6 (2)3a =或11a =-【解析】【分析】(1)把()4,0C -代入2y kx =+,先求解k 的值,再求解A 的坐标,再代入反比例函数的解析式可得答案;(2)先求解()0,2B .由(),0P a 为x 轴上的一动点,可得4PC a =+.由CAP ABP CBP S S S =+△△△,建立方程求解即可.【小问1详解】解:把()4,0C -代入2y kx =+,得12k =.∴122y x =+.把()2,A n 代入122y x =+,得3n =.∴()2,3A .把()2,3A 代入m y x=,得6m =.∴k 的值为12,m 的值为6.【小问2详解】当0x =时,2y =.∴()0,2B .∵(),0P a 为x 轴上的一动点,∴4PC a =+.∴1142422CBP S PC OB a a =×=´+´=+△,113434222CAPA S PC y a a =×=´+´=+△.∵CAP ABP CBP S S S =+△△△,∴374422a a +=++.∴3a =或11a =-.【点睛】本题考查的是利用待定系数法求解反比例函数与一次函数的解析式,坐标与图形面积,利用数形结合的思想,建立方程都是解本题的关键.24. 如图,AB 是O e 的直径,AC 是弦,D 是 AB 的中点,CD 与AB 交于点E .F 是AB 延长线上的一点,且CF EF =.(1)求证:CF 为O e 的切线;(2)连接BD ,取BD 的中点G ,连接AG .若4CF =,2BF =,求AG 的长.【答案】(1)见解析 (2)AG =【解析】【分析】(1)方法一:如图1,连接OC ,OD .由OCD ODC Ð=Ð,FC FE =,可得OED FCE Ð=Ð,由AB 是O e 的直径,D 是 AB 的中点,90DOE Ð=°,进而可得90OCF Ð=°,即可证明CF 为O e 的切线;方法二:如图2,连接OC ,BC .设CAB x Ð=°.同方法一证明90OCF Ð=°,即可证明CF 为O e 的切线;(2)方法一:如图3,过G 作GH AB ^,垂足为H .设O e 的半径为r ,则2OF r =+.在Rt △OCF 中,勾股定理求得3r =,证明GH DO ∥,得出BHG BOD V ∽,根据BH BGBO BD=,求得,BH GH ,进而求得AH ,根据勾股定理即可求得AG ;方法二:如图4,连接AD .由方法一,得3r =.6AB =,D 是 AB的中点,可得AD BD ==,根据勾股定理即可求得AG .小问1详解】(1)方法一:如图1,连接OC ,OD .∵OC OD =,∴OCD ODC Ð=Ð.∵FC FE =,∴FCE FEC Ð=Ð. ∵OED FEC Ð=Ð,【∴OED FCE Ð=Ð.∵AB 是O e 的直径,D 是 AB 的中点,∴90DOE Ð=°.∴90OED ODC Ð+Ð=°.∴90FCE OCD Ð+Ð=°,即90OCF Ð=°.∴OC CF ^.∴CF 为O e 的切线.方法二:如图2,连接OC ,BC .设CAB x Ð=°.∵AB 是O e 的直径,D 是 AB 的中点,∴45ACD DCB Ð=Ð=°.∴()45CEF CAB ACD x Ð=Ð+Ð=+°.∵FC FE =,∴()45FCE FEC x Ð=Ð=+°. ∴BCF x Ð=°.∵OA OC =,∴ACO OAC x Ð=Ð=°.∴BCF ACO Ð=Ð.∵AB 是O e 的直径,∴90ACB Ð=°.∴90OCB ACO Ð+Ð=°.∴90OCB BCF Ð+Ð=°,即90OCF Ð=°.∴OC CF ^.∴CF 为O e 的切线.【小问2详解】解:方法一:如图3,过G 作GH AB ^,垂足为H .设O e 的半径为r ,则2OF r =+.在Rt △OCF 中,()22242r r +=+,解之得3r =.∵GH AB ^,∴90GHB Ð=°.∵90DOE Ð=°,∴GHB DOE Ð=Ð.∴GH DO ∥.BHG BOD\V ∽∴BH BG BO BD=.∵G 为BD 中点,∴12BG BD =.∴1322BH BO ==,1322GH OD ==.∴6AH AB BH =-=-∴AG ==.方法二:如图4,连接AD .由方法一,得3r =.∵AB 是O e 的直径,∴90ADB Ð=°.∵6AB =,D 是 AB 的中点,∴AD BD ==∵G 为BD 中点,∴12DG BD ==∴AG ===【点睛】本题考查了切线的判定,勾股定理,相似三角形的性质与判定,综合运用以上知识是解题的关键.25. 某水果店经销甲、乙两种水果,两次购进水果的情况如下表所示:进货批次甲种水果质量(单位:千克)乙种水果质量(单位:千克)总费用(单位:元)第一次60401520第二次30501360(1)求甲、乙两种水果的进价;(2)销售完前两次购进的水果后,该水果店决定回馈顾客,开展促销活动.第三次购进甲、乙两种水果共200千克,且投入的资金不超过3360元.将其中的m 千克甲种水果和3m 千克乙种水果按进价销售,剩余的甲种水果以每千克17元、乙种水果以每千克30元的价格销售.若第三次购进的200千克水果全部售出后,获得的最大利润不低于800元,求正整数m 的最大值.【答案】(1)甲种水果的进价为每千克12元,乙种水果的进价为每千克20元(2)正整数m 的最大值为22【解析】【分析】(1)设甲种水果的进价为每千克a 元,乙种水果的进价为每千克b 元,根据总费用列方程组即可;(2)设水果店第三次购进x 千克甲种水果,根据题意先求出x 的取值范围,再表示出总利润w 与x 的关系式,根据一次函数的性质判断即可.【小问1详解】设甲种水果进价为每千克a 元,乙种水果的进价为每千克b 元.根据题意,得60401520,30501360.a b a b +=ìí+=î解方程组,得12,20.a b =ìí=î答:甲种水果的进价为每千克12元,乙种水果的进价为每千克20元.【小问2详解】设水果店第三次购进x 千克甲种水果,则购进()200x -千克乙种水果,根据题意,得()12202003360x x +-£.解这个不等式,得80x ³.设获得的利润为w 元,根据题意,得()()()()1712302020035352000w x m x m x m =-´-+-´--=--+.的∵50-<,∴w 随x 的增大而减小.∴当80x =时,w 的最大值为351600m -+.根据题意,得351600800m -+³.解这个不等式,得1607m £.∴正整数m 的最大值为22.【点睛】本题考查一次函数的应用、二元一次方程组的应用、解一元一次不等式,解答本题的关键是明确题意,找出等量关系,列出相应的二元一次方程,写出相应的函数解析式,利用一次函数的性质求最值.26. 如图,在二次函数2221y x mx m =-+++(m 是常数,且0m >)的图像与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,顶点为D .其对称轴与线段BC 交于点E ,与x 轴交于点F .连接AC ,BD .(1)求A ,B ,C 三点的坐标(用数字或含m 的式子表示),并求OBC Ð的度数;(2)若ACO CBD Ð=Ð,求m 的值;(3)若在第四象限内二次函数2221y x mx m =-+++(m 是常数,且0m >)的图像上,始终存在一点P ,使得75ACP Ð=°,请结合函数的图像,直接写出m 的取值范围.【答案】(1)A (-1,0);B (2m +1,0);C (0,2m +1);45OBC Ð=°(2)1m =(3)0m <<【解析】【分析】(1)分别令,x y 等于0,即可求得,,A B C 的坐标,根据,90OC OB BOC =Ð=°,即可求得45OBC Ð=°;(2)方法一:如图1,连接AE .由解析式分别求得()21DF m =+,OF m =,1BF m =+.根据轴对称的性质,可得AE BE =,由1tan AE BE BF m ACE CE CE OF m+Ð====,建立方程,解方程即可求解.方法二:如图2,过点D 作DH BC ^交BC 于点H .由方法一,得()21DF m =+,1BF EF m ==+.证明AOC DHB ∽△△,根据相似三角形的性质建立方程,解方程即可求解;(3)设PC 与x 轴交于点Q ,当P 在第四象限时,点Q 总在点B 的左侧,此时CQA CBA Ð>Ð,即45CQA Ð>°.【小问1详解】当0y =时,22210x mx m -+++=.解方程,得11x =-,221x m =+.∵点A 在点B 的左侧,且0m >,∴()1,0A -,()21,0B m +.当0x =时,21=+y m .∴()0,21C m +.∴21OB OC m ==+.∵90BOC Ð=°,∴45OBC Ð=°.【小问2详解】方法一:如图1,连接AE .∵()()2222211y x mx m x m m =-+++=--++,∴()()2,1D m m +,(),0F m .∴()21DF m =+,OF m =,1BF m =+.∵点A ,点B 关于对称轴对称,∴AE BE =.∴45EAB OCB Ð=Ð=°.∴90CEA Ð=°.∵ACO CBD Ð=Ð,OCB OBC Ð=Ð,∴ACO OCB CBD OBC Ð+Ð=Ð+Ð,即ACE DBF Ð=Ð.∵EF OC ∥,∴1tan AE BE BF m ACE CE CE OF m+Ð====.∴()2111m m m m ++=+.∵0m >,∴解方程,得1m =.方法二:如图2,过点D 作DH BC ^交BC 于点H .由方法一,得()21DF m =+,1BF EF m ==+.∴2DE m m =+.∵45DEH BEF Ð=Ð=°,∴)2DH EH m m ===+,)1BE m ==+.∴)232BH BE HE m m =+=++.∵ACO CBD Ð=Ð,90AOC BHD Ð=Ð=°,∴AOC DHB ∽△△.∴OA DH OC BH =.∴121m =+,即1212m m m =++.∵0m >,∴解方程,得1m =.【小问3详解】0m <<设PC 与x 轴交于点Q ,当P 在第四象限时,点Q 总在点B 的左侧,此时CQA CBA Ð>Ð,即45CQA Ð>°.∵75ACQ Ð=°,∴60CAO Ð<°.tan CAO \Ð<,21OC m =+Q ,∴21m +<解得m <,又0m >,∴0m <<【点睛】本题考查了二次函数综合,求二次函数与坐标轴的交点,角度问题,解直角三角形,相似三角形的性质,三角形内角和定理,综合运用以上知识是解题的关键.27. (1)如图1,在△ABC 中,2ACB B Ð=Ð,CD 平分ACB Ð,交AB 于点D ,DE //AC ,交BC 于点E .①若1DE =,32BD =,求BC 的长;②试探究AB BE AD DE-是否为定值.如果是,请求出这个定值;如果不是,请说明理由.(2)如图2,CBG Ð和BCF Ð是△ABC 的2个外角,2BCF CBG Ð=Ð,CD 平分BCF Ð,交AB 的延长线于点D ,DE //AC ,交CB 的延长线于点E .记△ACD 的面积为1S ,△CDE 的面积为2S ,△BDE 的面积为3S .若2132916S S S ×=,求cos CBD Ð的值.【答案】(1)①94BC =;②AB BE AD DE -是定值,定值为1;(2)3cos 8CBD Ð=【解析】【分析】(1)①证明CED CDB V V ∽,根据相似三角形的性质求解即可;②由DE AC ∥,可得AB BC AD DE =,由①同理可得CE DE =,计算AB BE AD DE-1=;(2)根据平行线的性质、相似三角形的性质可得12S AC BC S DE BE ==,又32S BE S CE =,则1322S S BC S CE ×=,可得916BC CE =,设9BC x =,则16CE x =.证明CDB CED ∽△△,可得12CD x =,过点D 作DH BC ^于H .分别求得BD BH ,,进而根据余弦的定义即可求解.【详解】(1)①∵CD 平分ACB Ð,∴12ACD DCB ACB Ð=Ð=Ð.∵2ACB B Ð=Ð,∴ACD DCB B Ð=Ð=Ð.∴32CD BD ==.∵DE AC ∥,∴ACD EDC Ð=Ð.∴EDC DCB B Ð=Ð=Ð.∴1CE DE ==.∴CED CDB V V ∽.∴CE CD =CD CB.∴94BC =.②∵DE AC ∥,∴AB BC AD CE=.由①可得CE DE =,∴AB BC AD DE=.∴1AB BE BC BE CE AD DE DE DE DE -=-==.∴AB BE AD DE -是定值,定值为1.(2)∵DE AC ∥,BDE BAC\∽△△BC AB AC BE BD DE\==∴12S AC BC S DE BE==.∵32S BE S CE=,∴1322S S BC S CE×=.又∵2132916S S S ×=,∴916BC CE =.设9BC x =,则16CE x =.∵CD 平分BCF Ð,∴12ECD FCD BCF Ð=Ð=Ð.∵2BCF CBG Ð=Ð,∴ECD FCD CBD Ð=Ð=Ð.∴BD CD =.∵DE AC ∥,∴EDC FCD Ð=Ð.∴EDC CBD ECD Ð=Ð=Ð.∴CE DE =.∵DCB ECD Ð=Ð,∴CDB CED ∽△△.∴CD CB CE CD=.∴22144CD CB CE x =×=.∴12CD x =.如图,过点D 作DH BC ^于H .∵12BD CD x ==,∴1922BH BC x ==.∴932cos 128x BH CBD BD x Ð===.【点睛】本题考查了相似三角形的性质与判定,求余弦,掌握相似三角形的性质与判定是解题的关键.。

中考数学数与式针对训练(学生版)

中考数学数与式针对训练(学生版)

“数与式”针对性训练(学生版)第一部分 关于概念的考查1.(2010江苏苏州)32的倒数是 A .32 B .23 C .32- D .23-2. (2010 福建三明)如果□,1)23(=-⨯则□内应填的实数是( )A .23-B .32- C .23 D .323.(2010江苏苏州)据报道,2010年苏州市政府有关部门将在市区完成130万平方米老住宅小区综合整治工作.130万(即1 300 000)这个数用科学记数法可表示为A .1.3×104B .1.3×105C .1.3×106D .1.3×1074.(2010山东青岛)由四舍五入法得到的近似数8.8×103,下列说法中正确的是( ). A .精确到十分位,有2个有效数字 B .精确到个位,有2个有效数字 C .精确到百位,有2个有效数字 D .精确到千位,有4个有效数字 5.(10湖南益阳)数轴上的点A 到原点的距离是6,则点A 表示的数为A. 6或6-B. 6C. 6-D. 3或3- 6.(2010浙江金华)如图,若A 是实数a 在数轴上对应的点,则关于a ,-a ,1的大小关系表示正确的是( ) A .a <1<-aB .a <-a <1C .1<-a <aD .-a <a <17.(2010 山东济南)某市2009年元旦的最高气温为2℃,最低气温为-8℃,那么这天的最高气温比最低气温高 ( ) A .-10℃ B.-6℃ C.6℃ D.10℃8. (2010山东济宁)把代数式 322363x x y xy -+分解因式,结果正确的是 A .(3)(3)x x y x y +- B .223(2)x x xy y -+ C .2(3)x x y - D .23()x x y - 9.(2010浙江绍兴)因式分解:y y x 92-=_______________.10.(2010山东潍坊)分解因式:xy 2-2xy +2y -4= . 11.(2010四川乐山)下列因式分解:①324(4)x x x x -=-;②232(2)(1)a a a a -+=--;③222(2)2a a a a --=--;④2211()42x x x ++=+. 01A(第9题图)其中正确的是_______.(只填序号) 12.(2010新疆维吾尔自治区新疆建设兵团)利用1个a ×a 的正方形,1个b ×b 的正方形和2个a ×b 的矩形可拼成一个正方形(如图所示),从而可得到因式分解的公式________。

江苏省苏州市中考数学专题训练(一)数与式的运算与求值

江苏省苏州市中考数学专题训练(一)数与式的运算与求值

2017中考数学专题训练(一)数与式的运算与求值本专题主要考查实数的运算、整式与分式的化简与求值,纵观5年中考往往以计算题、化简求值题的形式出现,属基础题.复习时要熟练掌握实数的各种运算,并注意混合运算中的符号与运算顺序;在整式化简时要灵活运用乘法公式及运算律;在分式的化简时要灵活运用因式分解知识,分式的化简求值,还应注意整体思想和各种解题技巧.类型1 实数的运算【例1】计算:|-3|+2sin 45°+tan 60°-(-13)-1-12+(π-3)0.【解析】先理清和熟悉每项小单元的运算方法,把握运算的符号技巧. 【学生解答】原式=3+2×22+3-(-3)-23+1=3+1+3+3-23+1=5. 针对练习1.(2016莆田中考)计算:|2-3|-16+⎝ ⎛⎭⎪⎫130. 解:原式=3-2-4+1=- 2.2.(2016丹东中考)计算:4sin 60°+|3-12|-⎝ ⎛⎭⎪⎫12-1+(π-2 016)0.解:原式=4×32+ (23-3)-2+1 =23+23-3-2+1 =43-4.3.(2016茂名中考)计算:(-1)2 016+8-|-2|-(π-3.14)0.解:原式=1+22-2-1 =22- 2 = 2.4.(2016岳阳中考)计算:⎝ ⎛⎭⎪⎫13-1-12+2tan 60°-(2-3)0.解:原式=3-23+23-1=2.类型2 整式的运算与求法【例2】先化简,再求值:(x +y )(x -y )-(4x 3y -8xy 3)÷2xy ,其中x =-1,y =33. 【解析】认真观察式子特点,灵活运用乘法公式化简,再考虑代入求值. 【学生解答】原式=x 2-y 2-2x 2+4y 2=-x 2+3y 2,当x =-1,y =33时,原式=-1+1=0. 针对练习5.(2016茂名中考)先化简,再求值:x (x -2)+(x +1)2,其中x =1. 解:原式=x 2-2x +x 2+2x +1=2x 2+1.当x =1时,原式=2×12+1=3.6.(2016吉林中考)先化简,再求值(x +2)(x -2)+x (4-x ),其中x =14.解:原式=x 2-4+4x -x 2=4x -4.当x =14时,原式=4×14-4=-3.7.已知x 2-4x -1=0,求代数式(2x -3)2-(x +y )(x -y )-y 2的值.解:原式=4x 2-12x +9-x 2+y 2-y 2=3x 2-12x +9=3(x 2-4x +3),∵x 2-4x -1=0,即x 2-4x =1,∴原式=12.8.已知多项式A =(x +2)2+(1-x )(2+x )-3. (1)化简多项式A ;(2)若(x +1)2=6,求A 的值.解:(1)A =x 2+4x +4+2-2x +x -x 2-3=3x +3;(2)(x +1)2=6,则x +1=±6,∴A =3x +3=3(x +1)=±3 6.类型3 分式的化简求值【例3】已知x 2-4x +1=0,求2(x -1)x -4-x +6x的值.【解析】先化简所求式子,再看其结果与已知条件之间的联系,能否整体代入.【学生解答】原式=2x (x -1)-(x -4)(x +6)x (x -4)=x 2-4x +24x 2-4x ,∵x 2-4x +1=0,∴x 2-4x =-1.原式=-1+24-1=-23. 针对练习9.(2016随州中考)先化简,再求值:⎝ ⎛⎭⎪⎫3x +1-x +1÷x 2+4x +4x +1,其中x =2-2.解:原式=⎣⎢⎡⎦⎥⎤3x +1-(x +1)(x -1)x +1·x +1(x +2)2=-(x +2)(x -2)x +1·x +1(x +2)2=2-x x +2,当x =2-2时,原式=2-2+22-2+2=4-22=22-1.10.先化简代数式 (3a a -2-a a +2)÷aa 2-4,再从0,1,2三个数中选择适当的数作为a 的值代入求值.解:原式=3a (a +2)-a (a -2)(a +2)(a -2)·(a +2)(a -2)a =2a 2+8a (a +2)(a -2)·(a +2)(a -2)a =2a (a +4)a=2a +8.当a =1时,2a +8=10.11.先化简,再求值:(a +1a +2)÷(a -2+3a +2),其中a 满足a -2=0.解:原式=a (a +2)+1a +2÷a 2-4+3a +2=(a +1)2a +2·a +2(a +1)(a -1)=a +1a -1,当a -2=0,即a =2时,原式=312.(2016烟台中考)先化简,再求值:⎝ ⎛⎭⎪⎫x 2-y x -x -1÷x 2-y 2x 2-2xy +y 2,其中x =2,y = 6.解:原式=⎝ ⎛⎭⎪⎫x 2-y x -x 2x -x x ×(x -y )2(x +y )(x -y )=-y -x x ×x -y x +y =-x -y x ,把x =2,y =6代入得:原式=-2-62=-1+ 3.13.(2016张家界中考)先化简,后求值:⎝⎛⎭⎪⎫x x -2-4x 2-2x ÷x +2x 2-x,其中x 满足x 2-x -2=0.解:原式=x 2-4x (x -2)·x (x -1)x +2=(x +2)(x -2)x (x -2)·x (x -1)x +2=x -1,解方程x 2-x -2=0,得x 1=-1,x 2=2,当x =2时,原分式无意义,所以当x =-1时,原式=-1-1=-2.14.(2016河南中考)先化简,再求值:⎝ ⎛⎭⎪⎫x x 2+x -1÷x 2-1x 2+2x +1,其中x 的值从不等式组⎩⎪⎨⎪⎧-x≤1,2x -1<4的整数解中选取.解:原式=x -x 2-x x (x +1)·x +1x -1=-x x +1·x +1x -1=x 1-x ,解不等式组⎩⎪⎨⎪⎧-x≤1,2x -1<4得-1≤x <52,当x =2时,原式=21-2=-2.。

江苏省苏州市2012-中考数学试题分类解析汇编专题1:代数问题

江苏省苏州市2012-中考数学试题分类解析汇编专题1:代数问题

苏州市2012-2014年中考数学试题分类解析汇编专题1:代数问题一、选择题1.(3分)(2014•苏州)(﹣3)×3的结果是()A.﹣9 B.0C.9D.﹣6考点:有理数的乘法.分析:根据两数相乘,异号得负,可得答案.解答:解:原式=﹣3×3=﹣9,故选:A.点评:本题考查了有理数的乘法,先确定积的符号,再进行绝对值得运算.2.(3分)(2014•苏州)若式子在实数范围内有意义,则x的取值范围是()A.x≤﹣4 B.x≥﹣4 C.x≤4 D.x≥4考点:二次根式有意义的条件.分析:二次根式有意义,被开方数是非负数.解答:解:依题意知,x﹣4≥0,解得x≥4.故选:D.点评:考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.3.(3分)(2014•苏州)下列关于x的方程有实数根的是()A.x2﹣x+1=0 B.x2+x+1=0 C.(x﹣1)(x+2)=0 D.(x﹣1)2+1=0考点:根的判别式.专题:计算题.分析:分别计算A、B中的判别式的值;根据判别式的意义进行判断;利用因式分解法对C 进行判断;根据非负数的性质对D进行判断.解答:解:A、△=(﹣1)2﹣4×1×1=﹣3<0,方程没有实数根,所以A选项错误;B、△=12﹣4×1×1=﹣3<0,方程没有实数根,所以B选项错误;C、x﹣1=0或x+2=0,则x1=1,x2=﹣2,所以C选项正确;D、(x﹣1)2=﹣1,方程左边为非负数,方程右边为0,所以方程没有实数根,所以D选项错误.故选C.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.4.(3分)(2013•苏州)|﹣2|等于()A.2B.﹣2 C.D.考点:绝对值.分析:根据绝对值的性质可直接求出答案.解答:解:根据绝对值的性质可知:|﹣2|=2.故选A.点评:此题考查了绝对值的性质,要求掌握绝对值的性质及其定义,并能熟练运用到实际运算当中.绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.5.(3分)(2013•苏州)计算﹣2x2+3x2的结果为()A.﹣5x2B.5x2C.﹣x2D.x2考点:合并同类项.分析:根据合并同类项的法则,即系数相加作为系数,字母和字母的指数不变即可求解.解答:解:原式=(﹣2+3)x2=x2,故选D.点评:本题主要考查合并同类项得法则.即系数相加作为系数,字母和字母的指数不变.6.(3分)(2013•苏州)若式子在实数范围内有意义,则x的取值范围是()A.x>1 B.x<1 C.x≥1 D.x≤1考点:二次根式有意义的条件.分析:根据二次根式有意义的条件可得x﹣1≥0,再解不等式即可.解答:解:由题意得:x﹣1≥0,解得:x≥1,故选:C.点评:此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.7.(3分)(2013•苏州)世界文化遗产长城总长约为6700000m,若将6700000用科学记数法表示为6.7×10n(n是正整数),则n的值为()A.5B.6C.7D.8考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将6700000用科学记数法表示为6.7×106,故n=6.故选B.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.8.(3分)(2013•苏州)已知x﹣=3,则4﹣x2+x的值为()A.1B.C.D.考点:代数式求值;分式的混合运算.专题:计算题.分析:所求式子后两项提取公因式变形后,将已知等式去分母变形后代入计算即可求出值.解答:解:∵x﹣=3,即x2﹣3x=1,∴原式=4﹣(x2﹣3x)=4﹣=.故选D.点评:此题考查了代数式求值,将已知与所求式子进行适当的变形是解本题的关键.9.(3分)(2012•苏州)2的相反数是()A.﹣2 B.2C.﹣D.考点:相反数。

中考数学专题复习《数与式》测试卷(附带答案)

中考数学专题复习《数与式》测试卷(附带答案)

中考数学专题复习《数与式》测试卷(附带答案) 学校:___________班级:___________姓名:___________考号:___________一.科学记数法—表示较大的数(共13小题)1.(2024•平谷区一模)从水利部长江水利委员会获悉,截止2024年3月24日,南水北调中线一期工程自2014年12月全面通水以来,已累计调水700亿立方米.其中70000000000用科学记数法表示为()A.7×108B.7×109C.7×1010D.7×10112.(2024•房山区一模)据中国国家铁路集团有限公司消息:在2024年为期40天的春运期间,全国铁路累计发送旅客4.84亿人次,日均发送12089000人次.将12089000用科学记数法表示应为()A.12.089×106B.1.2089×106C.1.2089×107D.0.12089×1083.(2024•石景山区一模)2023年10月26日,搭载神舟十七号载人飞船的长征二号F摇十七运载火箭在酒泉卫星发射中心成功发射.长征二号F(代号:CZ﹣2F,简称:长二F,绰号:神箭)主要用于发射神舟飞船和大型目标飞行器到近地轨道,其近地轨道运载能力是8500千克.将8500用科学记数法表示应为()A.85×102B.8.5×102C.8.5×103D.0.85×1044.(2024•通州区一模)2024年政府工作报告中提出“大力推进现代化产业体系建设,加快发展新质生产力”.北京正在建设国际科技创新中心,人工智能产业是北京的主导产业之一.目前,人工智能相关企业数量约2200家,全国40%人工智能企业聚集于此.2023年,北京在人工智能领域融资总额约223亿元,约占全国四分之一.数据22300000000用科学记数法表示应为()A.0.223×1011B.2.23×1010C.22.3×109D.223×1085.(2024•北京一模)2023年,我国共授权发明专利92.1万件,同比增长15.4%.将921000用科学记数法表示应为()A.92.1×104B.9.21×104C.9.21×105D.0.921×1066.(2024•西城区一模)2024年5.5G技术正式开始商用,它的数据下载的最高速率从5G初期的1Gbps 提升到10Gbps,给我们的智慧生活“提速”.其中10Gbps表示每秒传输10000000000位(bit)的数据.将10000000000用科学记数法表示应为()A.0.1×1011B.1×1010C.1×1011D.10×1097.(2024•朝阳区一模)2024年1月21日北京市第十六届人民代表大会第二次会议开幕,在政府工作报告中提到,2023年北京向天津、河北输出技术合同成交额74870000000元,将74870000000用科学记数法表示应为()A.74.87×109B.7.487×1010C.7.487×109D.0.7487×10118.(2024•大兴区一模)2024年是京津冀协同发展十周年,高标准建设雄安新区成效显著.从新区设立至2023年底,累计开发面积184平方公里,4017栋楼宇拔地而起,总建筑面积4370万平方米.将43700000用科学记数法表示应为()A.43.7×106B.4.37×107C.4.37×108D.0.437×1099.(2024•海淀区一模)据报道,2024年春节假期北京接待游客约1750万人次,旅游收入同比增长近四成.将17500000用科学记数法表示应为()A.175×105B.1.75×106C.1.75×107D.0.175×10810.(2024•东城区一模)2024年2月29日,在国家统计局发布的《中华人民共和国2023年国民经济和社会发展统计公报》中,2023年全年完成造林面积400万公顷,其中人工造林面积133万公顷.将数字1330000用科学记数法表示应为()A.1.33×107B.13.3×105C.1.33×106D.0.13×10711.(2024•丰台区一模)2023年5月28日,我国自主研发的C919国产大飞机商业首航取得圆满成功.一架C919飞机最大储油量超过19000千克.将数据19000用科学记数法表示为()A.0.19×105B.1.9×104C.1.9×103D.19×10312.(2024•顺义区一模)全国绿化委员会办公室发布的《2023年中国国土绿化状况公报》显示,2023年全国完成国土绿化任务超800万公顷,其中造林3998000公顷.将3998000用科学记数法表示应为()A.3.998×107B.3.998×106C.3998×103D.3.998×10313.(2024•门头沟区一模)近几年全国各省市都在发展旅游业,让游客充分感受地域文化,据统计,某市2023年的游客接待量为210000000人次,将210000000用科学记数法表示为()A.2.1×107B.2.1×108C.2.1×109D.2.1×1010二.实数与数轴(共4小题)14.(2024•大兴区一模)实数a,b,c在数轴上的对应点的位置如图所示,下列结论中正确的是()A.b﹣c>0B.ac>0C.b+c<0D.ab<115.(2024•海淀区一模)实数a在数轴上的对应点的位置如图所示,下列结论中正确的是()A.a≥﹣2B.a<﹣3C.﹣a>2D.﹣a≥316.(2024•东城区一模)若实数a,b在数轴上的对应点的位置如图所示,在下列结论中,正确的是()A.|a|<|b|B.a+1<b+1C.a2<b2D.a>﹣b17.(2024•顺义区一模)实数a,b在数轴上对应点的位置如图所示,下列结论正确的是()A.a>﹣1B.b>1C.﹣a<b D.﹣b>a三.估算无理数的大小(共1小题)18.(2024•平谷区一模)写出一个大于1且小于4的无理数.(答案不唯一)四.实数的运算(共12小题)19.(2024•平谷区一模)计算:2cos30°+()﹣1+|﹣1|﹣.20.(2024•房山区一模)计算:.21.(2024•石景山区一模)计算:.22.(2024•通州区一模)计算:.23.(2024•北京一模)计算:4sin45°+|﹣2|﹣+()﹣1.24.(2024•西城区一模)计算:|﹣|﹣()﹣1+2sin60°﹣.25.(2024•朝阳区一模)计算:+|1﹣|+(2﹣π)0﹣2sin45°.26.(2024•大兴区一模)计算:.27.(2024•海淀区一模)计算:2sin60°+|﹣1|+()﹣1﹣.28.(2024•东城区一模)计算:.29.(2024•丰台区一模)计算:|﹣3|+2cos30°﹣.30.(2024•顺义区一模)计算:.五.整式的混合运算—化简求值(共5小题)31.(2024•通州区一模)已知2x2﹣x﹣1=0,求代数式4x(x﹣1)+(2x+1)(2x﹣1)的值.31.(2024•北京一模)已知2x2﹣x﹣1=0,求代数式(3x+2)(3x﹣2)﹣3x(x+1)的值.32.(2024•西城区一模)已知x2﹣x﹣4=0,求代数式(x﹣2)2+(x﹣1)(x+3)的值.33.(2024•大兴区一模)已知a2+3a﹣1=0,求代数式(a+1)2+a(a+4)﹣2的值.34.(2024•顺义区一模)已知x2+2x=1,求代数式4(x+1)+(x﹣1)2的值.六.提公因式法与公式法的综合运用(共11小题)36.(2024•平谷区一模)分解因式:ax2+2ax+a=.37.(2024•房山区一模)分解因式:x2y﹣4y=.38.(2024•石景山区一模)分解因式:xy2﹣4x=.39.(2024•北京一模)分解因式:8a2﹣8b2=.40.(2024•西城区一模)分解因式:x2y﹣12xy+36y=.41.(2024•朝阳区一模)分解因式:3x2+6xy+3y2=.42.(2024•大兴区一模)分解因式:ax2﹣4a=.43.(2024•海淀区一模)分解因式:a3﹣4a=.44.(2024•东城区一模)因式分解:2xy2﹣18x=.45.(2024•丰台区一模)分解因式:ax2﹣4ay2=.46.(2024•顺义区一模)分解因式:4m2﹣4=.七.分式有意义的条件(共3小题)47.(2024•房山区一模)若代数式有意义,则实数x的取值范围是.48.(2024•丰台区一模)若代数式有意义,则实数x的取值范围是.49.(2024•顺义区一模)代数式有意义,则实数x的取值范围是.八.分式的值(共2小题)50.(2024•海淀区一模)已知b2﹣4a=0,求代数式的值.51.(2024•东城区一模)已知2x﹣y﹣9=0,求代数式的值.九.分式的加减法(共1小题)52.(2024•平谷区一模)化简:的结果为.一十.分式的化简求值(共2小题)52.(2024•石景山区一模)已知x2﹣3x﹣6=0,求代数式的值.53.(2024•丰台区一模)已知x﹣3y﹣2=0,求代数式的值.一十一.二次根式有意义的条件(共6小题)55.(2024•平谷区一模)若代数式有意义,则实数x的取值范围是.56.(2024•石景山区一模)若在实数范围内有意义,则实数x的取值范围是.57.(2024•通州区一模)若在实数范围内有意义,则实数x的取值范围为.58.(2024•朝阳区一模)若式子在实数范围内有意义,则x的取值范围是.59.(2024•海淀区一模)代数式在实数范围内有意义,则x的取值范围是.60.(2024•东城区一模)若二次根式有意义,则实数x的取值范围是.参考答案与试题解析一.科学记数法—表示较大的数(共13小题)1.(2024•平谷区一模)从水利部长江水利委员会获悉,截止2024年3月24日,南水北调中线一期工程自2014年12月全面通水以来,已累计调水700亿立方米.其中70000000000用科学记数法表示为()A.7×108B.7×109C.7×1010D.7×1011【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正数;当原数的绝对值<1时,n是负数.【解答】解:70000000000=7×1010.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.(2024•房山区一模)据中国国家铁路集团有限公司消息:在2024年为期40天的春运期间,全国铁路累计发送旅客4.84亿人次,日均发送12089000人次.将12089000用科学记数法表示应为()A.12.089×106B.1.2089×106C.1.2089×107D.0.12089×108【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数;当原数的绝对值<1时,n是负整数.【解答】解:12089000=1.2089×107故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(2024•石景山区一模)2023年10月26日,搭载神舟十七号载人飞船的长征二号F摇十七运载火箭在酒泉卫星发射中心成功发射.长征二号F(代号:CZ﹣2F,简称:长二F,绰号:神箭)主要用于发射神舟飞船和大型目标飞行器到近地轨道,其近地轨道运载能力是8500千克.将8500用科学记数法表示应为()A.85×102B.8.5×102C.8.5×103D.0.85×104【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数;当原数的绝对值<1时,n是负整数.【解答】解:8500=8.5×103故选:C.【点评】本题考查了科学记数法表示绝对值较大的数的方法,掌握科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数是关键.4.(2024•通州区一模)2024年政府工作报告中提出“大力推进现代化产业体系建设,加快发展新质生产力”.北京正在建设国际科技创新中心,人工智能产业是北京的主导产业之一.目前,人工智能相关企业数量约2200家,全国40%人工智能企业聚集于此.2023年,北京在人工智能领域融资总额约223亿元,约占全国四分之一.数据22300000000用科学记数法表示应为()A.0.223×1011B.2.23×1010C.22.3×109D.223×108【分析】将一个数表示成a×10n的形式,其中1≤|a|<10,n为整数,这种记数方法叫做科学记数法,据此即可求得答案.【解答】解:22300000000=2.23×1010故选:B.【点评】本题考查科学记数法表示较大的数,熟练掌握其定义是解题的关键.5.(2024•北京一模)2023年,我国共授权发明专利92.1万件,同比增长15.4%.将921000用科学记数法表示应为()A.92.1×104B.9.21×104C.9.21×105D.0.921×106【分析】将一个数表示成a×10n的形式,其中1≤|a|<10,n为整数,这种记数方法叫做科学记数法,据此即可求得答案.【解答】解:921000=9.21×105故选:C.【点评】本题考查科学记数法表示较大的数,熟练掌握其定义是解题的关键.6.(2024•西城区一模)2024年5.5G技术正式开始商用,它的数据下载的最高速率从5G初期的1Gbps 提升到10Gbps,给我们的智慧生活“提速”.其中10Gbps表示每秒传输10000000000位(bit)的数据.将10000000000用科学记数法表示应为()A.0.1×1011B.1×1010C.1×1011D.10×109【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数,当原数绝对值<1时,n是负整数.【解答】解:10000000000=1×1010.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.7.(2024•朝阳区一模)2024年1月21日北京市第十六届人民代表大会第二次会议开幕,在政府工作报告中提到,2023年北京向天津、河北输出技术合同成交额74870000000元,将74870000000用科学记数法表示应为()A.74.87×109B.7.487×1010C.7.487×109D.0.7487×1011【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数;当原数的绝对值<1时,n是负整数.【解答】解:74870000000=7.487×1010故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.8.(2024•大兴区一模)2024年是京津冀协同发展十周年,高标准建设雄安新区成效显著.从新区设立至2023年底,累计开发面积184平方公里,4017栋楼宇拔地而起,总建筑面积4370万平方米.将43700000用科学记数法表示应为()A.43.7×106B.4.37×107C.4.37×108D.0.437×109【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【解答】解:43700000=4.37×107.故选:B.【点评】此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.9.(2024•海淀区一模)据报道,2024年春节假期北京接待游客约1750万人次,旅游收入同比增长近四成.将17500000用科学记数法表示应为()A.175×105B.1.75×106C.1.75×107D.0.175×108【分析】根据科学记数法的规则进行作答即可.【解答】解:17500000=1.75×107.故选:C.【点评】本题主要考查科学记数法,解题的关键是熟练掌握科学记数法的规则.10.(2024•东城区一模)2024年2月29日,在国家统计局发布的《中华人民共和国2023年国民经济和社会发展统计公报》中,2023年全年完成造林面积400万公顷,其中人工造林面积133万公顷.将数字1330000用科学记数法表示应为()A.1.33×107B.13.3×105C.1.33×106D.0.13×107【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数,当原数绝对值<1时,n是负整数.【解答】解:1330000=1.33×106.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.11.(2024•丰台区一模)2023年5月28日,我国自主研发的C919国产大飞机商业首航取得圆满成功.一架C919飞机最大储油量超过19000千克.将数据19000用科学记数法表示为()A.0.19×105B.1.9×104C.1.9×103D.19×103【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数,当原数绝对值<1时,n是负整数.【解答】解:19000=1.9×104.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.(2024•顺义区一模)全国绿化委员会办公室发布的《2023年中国国土绿化状况公报》显示,2023年全国完成国土绿化任务超800万公顷,其中造林3998000公顷.将3998000用科学记数法表示应为()A.3.998×107B.3.998×106C.3998×103D.3.998×103【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数,当原数绝对值<1时,n是负整数.【解答】解:3998000=3.998×106.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.13.(2024•门头沟区一模)近几年全国各省市都在发展旅游业,让游客充分感受地域文化,据统计,某市2023年的游客接待量为210000000人次,将210000000用科学记数法表示为()A.2.1×107B.2.1×108C.2.1×109D.2.1×1010【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数;当原数的绝对值<1时,n是负整数.【解答】解:210000000=2.1×108故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.二.实数与数轴(共4小题)14.(2024•大兴区一模)实数a,b,c在数轴上的对应点的位置如图所示,下列结论中正确的是()A.b﹣c>0B.ac>0C.b+c<0D.ab<1【分析】根据数轴可知:﹣3<a<﹣2<b<﹣1<0<c<1,由此逐一判断各选项即可.【解答】解:由数轴可知:﹣3<a<﹣2<b<﹣1<0<c<1A、∵﹣2<b<﹣1,0<c<1,∴b﹣c<0,故选项A不符合题意;B、∵﹣3<a<﹣2,0<c<1,∴ac<0,故选项B不符合题意;C、∵﹣2<b<﹣1,0<c<1,∴b+c<0,故选项C符合题意;D、∵﹣3<a<﹣2<b<﹣1,∴ab>1,故选项D不符合题意;故选:C.【点评】本题考查的是实数与数轴,熟悉数轴上各点的分布特点是解题的关键.15.(2024•海淀区一模)实数a在数轴上的对应点的位置如图所示,下列结论中正确的是()A.a≥﹣2B.a<﹣3C.﹣a>2D.﹣a≥3【分析】由数轴可知,﹣3<a<﹣2,由此逐一判断各选项即可.【解答】解:由数轴可知,﹣3<a<﹣2A、﹣3<a<﹣2,故选项A不符合题意;B、﹣3<a<﹣2,故选项B不符合题意;C、∵﹣3<a<﹣2,∴2<﹣a<3,故选项C符合题意;D、∵﹣3<a<﹣2,∴2<﹣a<3,故选项D不符合题意;故选:C.【点评】本题考查的是实数与数轴,从题目中提取已知条件是解题的关键.16.(2024•东城区一模)若实数a,b在数轴上的对应点的位置如图所示,在下列结论中,正确的是()A.|a|<|b|B.a+1<b+1C.a2<b2D.a>﹣b【分析】根据图示,可得﹣2<a<﹣1,0<b<1,据此逐项判断即可.【解答】解:根据图示,可得﹣2<a<﹣1,0<b<1∵﹣2<a<﹣1,0<b<1∴1<|a|<2,0<|b|<1∴|a|>|b|∴选项A不符合题意;∵﹣2<a<﹣1,0<b<1∴a<b∴a+1<b+1∴选项B符合题意;∵﹣2<a<﹣1,0<b<1∴1<a2<4,0<b2<1∴a2>b2∴选项C不符合题意;∵0<b<1∴﹣1<﹣b<0∵﹣2<a<﹣1∴a<﹣b∴选项D不符合题意.故选:B.【点评】此题主要考查了实数大小比较的方法,以及数轴的特征:一般来说,当数轴正方向朝右时,右边的数总比左边的数大.17.(2024•顺义区一模)实数a,b在数轴上对应点的位置如图所示,下列结论正确的是()A.a>﹣1B.b>1C.﹣a<b D.﹣b>a【分析】根据图示,可得﹣2<a<﹣1,0<b<1,据此逐项判断即可.【解答】解:根据图示,可得﹣2<a<﹣1,0<b<1∵a<﹣1∴选项A不符合题意;∵b<1∴选项B不符合题意;∵﹣2<a<﹣1∴1<﹣a<2∵0<b<1∴﹣a>b∴选项C不符合题意;∵0<b<1∴﹣1<﹣b<0∵﹣2<a<﹣1∴﹣b>a∴选项D符合题意.故选:D.【点评】此题主要考查了实数大小比较的方法,以及数轴的特征:一般来说,当数轴正方向朝右时,右边的数总比左边的数大.三.估算无理数的大小(共1小题)18.(2024•平谷区一模)写出一个大于1且小于4的无理数π.(答案不唯一)【分析】由于开方开不尽的数是无理数,然后确定的所求数的范围即可求解.【解答】解:∵1=,4=∴只要是被开方数大于1而小于16,且不是完全平方数的都可.同时π也符合条件.【点评】此题主要考查了无理数的大小的比较,其中无理数包括开方开不尽的数,和π有关的数,有规律的无限不循环小数.四.实数的运算(共12小题)19.(2024•平谷区一模)计算:2cos30°+()﹣1+|﹣1|﹣.【分析】根据特殊角的三角函数值、负整数指数幂、绝对值、二次根式的化简分别计算即可.【解答】解:2cos30°+()﹣1+|﹣1|﹣===1.【点评】本题考查了实数的运算,熟练掌握特殊角的三角函数值、负整数指数幂、绝对值、二次根式的化简是解题的关键.20.(2024•房山区一模)计算:.【分析】利用特殊锐角三角函数值,负整数指数幂,绝对值的性质,二次根式的性质计算即可.【解答】解:原式=6×+2+3﹣3=3+2+3﹣3=5.【点评】本题考查实数的运算,熟练掌握相关运算法则是解题的关键.21.(2024•石景山区一模)计算:.【分析】利用绝对值的性质,二次根式的性质,特殊锐角三角函数值及负整数指数幂计算即可.【解答】解:原式=2﹣+2﹣2×+5=2﹣+2﹣+5=7.【点评】本题考查实数的运算,熟练掌握相关运算法则是解题的关键.22.(2024•通州区一模)计算:.【分析】直接利用特殊角的三角函数值以及零指数幂的性质和负整数指数幂的性质分别化简得出答案.【解答】解:原式=4×=2+4+1=5.【点评】此题主要考查了实数运算,正确化简各数是解题关键.23.(2024•北京一模)计算:4sin45°+|﹣2|﹣+()﹣1.【分析】sin45°=,再根据实数和指数幂的运算法则计算即可.【解答】解:原式=4×+2﹣3+2=2﹣3+4=4.【点评】本题考查的是实数的运算,指数幂和特殊角的三角函数值,熟练掌握上述知识点是解题的关键.24.(2024•西城区一模)计算:|﹣|﹣()﹣1+2sin60°﹣.【分析】利用特殊角的三角函数值及绝对值的代数意义化简,计算即可得到结果.【解答】解:原式===﹣.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.25.(2024•朝阳区一模)计算:+|1﹣|+(2﹣π)0﹣2sin45°.【分析】分别根据绝对值、零指数幂及特殊角的三角函数值计算出各数,再根据实数混合运算的法则进行计算即可.【解答】解:原式=2=3=2.【点评】本题考查的是实数的运算,熟知绝对值、零指数幂的运算法则,熟记特殊角的三角函数值是解答此题的关键.26.(2024•大兴区一模)计算:.【分析】cos45°=,再根据实数和指数幂的运算法则计算即可.【解答】解:原式==.【点评】本题考查的是实数的运算,指数幂和特殊角的三角函数值,熟练掌握上述知识点是解题的关键.27.(2024•海淀区一模)计算:2sin60°+|﹣1|+()﹣1﹣.【分析】根据实数的运算法则、负整数指数幂和特殊角的三角函数值的定义进行计算.【解答】解:原式=2×+1+2﹣2=+1+2﹣2=3﹣.【点评】本题考查了实数的运算法则、负整数指数幂和特殊角的三角函数值,掌握实数的运算法则、负整数指数幂和特殊角的三角函数值的定义是关键.28.(2024•东城区一模)计算:.【分析】利用二次根式的性质,特殊锐角三角函数值,零指数幂,绝对值的性质计算即可.【解答】解:原式=4﹣2×+1﹣2=4﹣+1﹣2=3﹣1.【点评】本题考查实数的运算,熟练掌握相关运算法则是解题的关键.29.(2024•丰台区一模)计算:|﹣3|+2cos30°﹣.【分析】直接利用特殊角的三角函数值、负整数指数幂的性质、二次根式的性质、绝对值的性质分别化简,进而计算得出答案.【解答】解:原式=3+2×﹣3﹣2=3+﹣3﹣2=﹣.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.30.(2024•顺义区一模)计算:.【分析】利用负整数指数幂,特殊锐角三角函数值,二次根式的性质,零指数幂计算即可.【解答】解:原式=﹣4×+2+1=﹣2+2+1=.【点评】本题考查实数的运算,熟练掌握相关运算法则是解题的关键.五.整式的混合运算—化简求值(共5小题)31.(2024•通州区一模)已知2x2﹣x﹣1=0,求代数式4x(x﹣1)+(2x+1)(2x﹣1)的值.【分析】利用平方差公式,单项式乘多项式的法则进行计算,然后把2x2﹣x=1代入化简后的式子进行计算,即可解答.【解答】解:4x(x﹣1)+(2x+1)(2x﹣1)=4x2﹣4x+4x2﹣1=8x2﹣4x﹣1∵2x2﹣x﹣1=0∴2x2﹣x=1∴当2x2﹣x=1时,原式=4(2x2﹣x)﹣1=4×1﹣1=4﹣1=3.【点评】本题考查了整式的混合运算﹣化简求值,平方差公式,准确熟练地进行计算是解题的关键.32.(2024•北京一模)已知2x2﹣x﹣1=0,求代数式(3x+2)(3x﹣2)﹣3x(x+1)的值.【分析】利用平方差公式,单项式乘多项式的法则进行计算,然后把2x2﹣x=1代入化简后的式子进行计算,即可解答.【解答】解:(3x+2)(3x﹣2)﹣3x(x+1)=9x2﹣4﹣3x2﹣3x=6x2﹣3x﹣4∵2x2﹣x﹣1=0∴2x2﹣x=1当2x2﹣x=1时,原式=3(2x2﹣x)﹣4=3×1﹣4=3﹣4=﹣1.【点评】本题考查了整式的混合运算﹣化简求值,平方差公式,准确熟练地进行计算是解题的关键.33.(2024•西城区一模)已知x2﹣x﹣4=0,求代数式(x﹣2)2+(x﹣1)(x+3)的值.【分析】利用完全平方公式,多项式乘多项式的法则进行计算,然后把x2﹣x=4代入化简后的式子进行计算,即可解答.【解答】解:(x﹣2)2+(x﹣1)(x+3)=x2﹣4x+4+x2+3x﹣x﹣3=2x2﹣2x+1∵x2﹣x﹣4=0∴x2﹣x=4∴当x2﹣x=4时,原式=2(x2﹣x)+1=2×4+1=8+1=9.【点评】本题考查了整式的混合运算﹣化简求值,完全平方公式,准确熟练地进行计算是解题的关键.34.(2024•大兴区一模)已知a2+3a﹣1=0,求代数式(a+1)2+a(a+4)﹣2的值.【分析】利用完全平方公式,单项式乘多项式法则进行计算,然后把a2+3a=1代入化简后的式子进行计算即可解答.【解答】解:(a+1)2+a(a+4)﹣2=a2+2a+1+a2+4a﹣2=a2+a2+2a+4a+1﹣2=2a2+6a﹣1∵a2+3a﹣1=0∴a2+3a=1当a2+3a=1时,原式=2(a2+3a)﹣1=2×1﹣1=2﹣1=1.【点评】本题考查了整式的混合运算﹣化简求值,完全平方公式,准确熟练地进行计算是解题的关键.35.(2024•顺义区一模)已知x2+2x=1,求代数式4(x+1)+(x﹣1)2的值.【分析】利用完全平方公式,单项式乘多项式的法则进行计算,然后把x2+2x=1代入化简后的式子进行计算,即可解答.【解答】解:4(x+1)+(x﹣1)2=4x+4+x2﹣2x+1=x2+2x+5当x2+2x=1时,原式=1+5=6.【点评】本题考查了整式的混合运算﹣化简求值,代数式求值,完全平方公式,准确熟练地进行计算是解题的关键.六.提公因式法与公式法的综合运用(共11小题)【分析】先提取公因式,再根据完全平方公式进行二次分解.完全平方公式:a2±2ab+b2=(a±b)2.【解答】解:ax2+2ax+a=a(x2+2x+1)﹣﹣(提取公因式)=a(x+1)2.﹣﹣(完全平方公式)【点评】本题考查了提公因式法与公式法分解因式,提取公因式后利用完全平方公式进行二次分解,注意要分解彻底.37.(2024•房山区一模)分解因式:x2y﹣4y=y(x+2)(x﹣2).【分析】先提公因式,再利用平方差公式继续分解即可解答.【解答】解:x2y﹣4y=y(x2﹣4)=y(x+2)(x﹣2)故答案为:y(x+2)(x﹣2).【点评】本题考查了提公因式法与公式法的综合运用,一定要注意如果多项式的各项含有公因式,必须先提公因式.38.(2024•石景山区一模)分解因式:xy2﹣4x=x(y+2)(y﹣2).【分析】原式提取x,再利用平方差公式分解即可.【解答】解:原式=x(y2﹣4)=x(y+2)(y﹣2)故答案为:x(y+2)(y﹣2)【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.39.(2024•北京一模)分解因式:8a2﹣8b2=8(a+b)(a﹣b).【分析】提公因式后利用平方差公式因式分解即可.【解答】解:原式=8(a2﹣b2)=8(a+b)(a﹣b)故答案为:8(a+b)(a﹣b).【点评】本题考查因式分解,熟练掌握因式分解的方法是解题的关键.40.(2024•西城区一模)分解因式:x2y﹣12xy+36y=y(x﹣6)2.【分析】提取公因式后用完全平方公式分解即可.【解答】解:x2y﹣12xy+36y=y(x2﹣12x+36)=y(x﹣6)2故答案为:y(x﹣6)2.【点评】本题考查了因式分解,熟练掌握提取公因式和公式法分解因式是关键.【分析】先利用提取公因式法提取数字3,再利用完全平方公式继续进行分解.【解答】解:3x2+6xy+3y2=3(x2+2xy+y2)=3(x+y)2【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.42.(2024•大兴区一模)分解因式:ax2﹣4a=a(x+2)(x﹣2).【分析】先提取公因式a,再对余下的多项式利用平方差公式继续分解.【解答】解:ax2﹣4a=a(x2﹣4)=a(x+2)(x﹣2).【点评】本题考查用提公因式法和公式法进行因式分解的能力,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.43.(2024•海淀区一模)分解因式:a3﹣4a=a(a+2)(a﹣2).【分析】原式提取a,再利用平方差公式分解即可.【解答】解:原式=a(a2﹣4)=a(a+2)(a﹣2).故答案为:a(a+2)(a﹣2)【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.44.(2024•东城区一模)因式分解:2xy2﹣18x=2x(y+3)(y﹣3).【分析】提取公因式后再用平方差公式分解即可.【解答】解:2xy2﹣18x=2x(y2﹣9)=2x(y+3)(y﹣3).故答案为:2x(y+3)(y﹣3).【点评】本题考查了因式分解,熟练掌握公式法和提取公因式法是关键.45.(2024•丰台区一模)分解因式:ax2﹣4ay2=a(x+2y)(x﹣2y).【分析】观察原式ax2﹣4ay2,找到公因式a,提出公因式后发现x2﹣4y2符合平方差公式,利用平方差公式继续分解可得.【解答】解:ax2﹣4ay2=a(x2﹣4y2)。

初中数学专题1:数与式分式化简求值

初中数学专题1:数与式分式化简求值

数学中考专题一:分式化简求值一、考纲要求(分值范围17-20分)(一)、有理数部分1.了解部分:|a|的含义。

2.理解部分:有理数的概念、相反数、绝对值、乘方的意义、有理数的混合运算、有理数的运算律。

3.掌握部分:用数轴上的点表示有理数、比较有理数的大小、相反数、绝对值、有理数的加减乘除乘方运算、有理数的混合运算、有理数的运算律。

4.运用部分:相反数、绝对值、理数的混合运算、有理数的运算律。

(二)、实数部分1.了解部分:平方根、算术平方根、立方根的概念、利用乘方和开方互逆求百以内整数的平方根和立方根、无理数和实数的概念及其与数轴上的点的对应关系、近似数的概念、二次根式及最简二次根式的概念、二次根式(根号下仅限于数)加减乘除及四则运算法则。

2.理解部分:平方根、算术平方根、立方根的概念、利用乘方和开方互逆求百以内整数的平方根和立方根。

3.掌握部分:求实数的相反数与绝对值、用有理数估计一个无理数的大致范围、用计算机进行近似计算。

4.运用部分:二次根式(根号下仅限于数)加减乘除及四则运算法则(三)、代数式1.了解部分:无。

2.理解部分:用字母表示数的意义、求代数式的值。

3.掌握部分:简单数量关系的分析与表示、求代数式的值。

4.运用部分:求代数式的值。

(四)、整式与分式1.了解部分:整数指数幂的意义和基本性质、分式和最简分式的概念。

2.理解部分:科学记数法、整式的概念、乘法公式(平方差和完全平方公式)3.掌握部分:整式的加减乘法(多项式限一次与二次式)运算、乘法公式(平方差和完全平方公式)、用提公因式法公式法(直接用公式不超过两次)进行因式分解、公式的基本性质、约分和通分、分式的加减乘除运算。

4.运用部分:科学记数法、乘法公式(平方差和完全平方公式)、用提公因式法公式法(直接用公式不超过两次)进行因式分解、公式的基本性质。

5.经历部分:乘法公式(平方差和完全平方公式)。

6.探索部分:乘法公式(平方差和完全平方公式)。

专题01数与式问题-备战2021年中考数学经典题型讲练案(解析版)【江苏专用】

专题01数与式问题-备战2021年中考数学经典题型讲练案(解析版)【江苏专用】

专题01数与式问题【方法指导】1.实数运算:实数的分类及无理数在段考,以及中考中均有出现,主要考查的是无理数的判别、实数的简单运算等。

单独考查时,题型以选择、填空为主。

在解答题中融合分式、整式进行求值计算。

2.整式的化简求值:给出整式中字母的值,求整式的值的问题,一般要先化简,再把给定字母的值代入计算,得出整式的值,不能把数值直接代入整式中计算,常涉及到整体思想和乘法公式的灵活应用.3.因式分解:因式分解在求代数式值中的应用常有代数式求值问题、证明问题、利用因式分解简化计算等.因式分解是研究代数式的基础,通过因式分解将多项式合理变形,是求代数式值的常用解题方法,具体做法是:根据题目的特点,先通过因式分解将式子变形,然后再进行整体代入.因式分解常用的方法有:提公因式法、公式法、分组分解法、十字相乘法等.3.分式的化简求值问题:在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.分式化简求值时需注意的问题。

学@科网(1)化简求值,一般是先化简为最简分式或整式,再代入求值.化简时不能跨度太大,而缺少必要的步骤,代入求值的模式一般为“当…时,原式=…”.(2)代入求值时,有直接代入法,整体代入法等常用方法.解题时可根据题目的具体条件选择合适的方法.当未知数的值没有明确给出时,所选取的未知数的值必须使原式中的各分式都有意义,且除数不能为0.4.二次根式的计算:(1)在运算中每个根式可以看做是一个“单项式“,多个不同类的二次根式的和可以看作“多项式“.(2)二次根式的运算结果要化为最简二次根式.学@科网(3)在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍【题型剖析】【类型1】实数的有关概念【例1】(2020•江苏常州)8的立方根为( )A.B.±C.2D.±2【解析】82,故选:C.【变式1.1】(2020•江苏南京)3的平方根是( )A.9B C.D.【分析】如果一个数的平方等于a,那么这个数就叫做a的平方根,也叫做a的二次方根.一个正数有正、负两个平方根,它们互相为相反数;零的平方根是零,负数没有平方根.【解析】∵(±2=3,∴3的平方根故选:D.【变式1.2】(2020•江苏连云港)3的绝对值是( )A.﹣3B.3C D.1 3【分析】根据绝对值的意义,可得答案.【解析】|3|=3,故选:B.【类型2】实数与数轴【例2】(2020•江苏盐城)实数a,b在数轴上表示的位置如图所示,则( )A.a>0B.a>b C.a<b D.|a|<|b|【分析】根据在数轴上表示的两个实数,右边的总比左边的大,即可判断.【解析】根据实数a,b在数轴上表示的位置可知:a<0,b>0,∴a<b.故选:C.【变式2.1】(2020•江苏福建)如图,数轴上两点M,N所对应的实数分别为m,n,则m﹣n的结果可能是( )A.﹣1B.1C.2D.3【分析】根据在数轴上表示的两个实数,右边的总比左边的大可得﹣2<n<﹣1<0<m<1,m﹣n的结果可能是2.【解析】∵M,N所对应的实数分别为m,n,∴﹣2<n<﹣1<0<m<1,∴m﹣n的结果可能是2.故选:C.【变式2.2】(2020•江苏海门市二模)若a=a在数轴上对应的点P的大致位置是( )A.B.C.D.∴23,故选:B.【类型3】整式的求值【例3】(2020•江苏宿迁)已知a+b=3,a2+b2=5,则ab= .【分析】根据完全平方公式变形求解即可.【解析】∵a+b=3,a2+b2=5,∴(a+b)2﹣(a2+b2)=2ab=32﹣5=4,∴ab=2.故答案为:2.【变式3.1】(2019•徐州)若a=b+2,则代数式a2﹣2ab+b2的值为 .【分析】由a=b+2,可得a﹣b=2,代入所求代数式即可.【解析】∵a=b+2,∴a﹣b=2,∴a2﹣2ab+b2=(a﹣b)2=22=4.故答案为:4【变式3.2】(2019•常州)如果a﹣b﹣2=0,那么代数式1+2a﹣2b的值是 .【分析】将所求式子化简后再将已知条件中a﹣b=2整体代入即可求值;【解析】∵a﹣b﹣2=0,∴a﹣b=2,∴1+2a﹣2b=1+2(a﹣b)=1+4=5;故答案为5.【变式3.3】(2020•江苏连云港)按照如图所示的计算程序,若x=2,则输出的结果是 .【分析】把x=2代入程序中计算,当其值小于0时将所得结果输出即可.【解析】把x=2代入程序中得:10﹣22=10﹣4=6>0,把x=6代入程序中得:10﹣62=10﹣36=﹣26<0,∴最后输出的结果是﹣26.故答案为:﹣26.【类型4】因式分解【例4】(2020•江苏南通)分解因式:xy﹣2y2= .【分析】用提公因式法进行因式分解即可.【解析】xy﹣2y2=y(x﹣2y),故答案为:y(x﹣2y).【变式4.1】(2020•江苏无锡)因式分解:ab2﹣2ab+a= a(b﹣1)2 .【分析】原式提取a,再运用完全平方公式分解即可.【解析】原式=a(b2﹣2b+1)=a(b﹣1)2;故答案为:a(b﹣1)2.【变式4.2】(2020•江苏泰州)因式分解:x2﹣4= (x+2)(x﹣2) .【分析】直接利用平方差公式分解因式得出答案.【解析】x2﹣4=(x+2)(x﹣2).故答案为:(x+2)(x﹣2).【变式4.3】(2020•江苏盐城)因式分解:x 2﹣y 2= (x ﹣y )(x +y ) .【分析】直接利用平方差公式分解因式得出即可.【解析】x 2﹣y 2=(x +y )(x ﹣y ).故答案为:(x +y )(x ﹣y ).【类型5】实数的运算【例5】(2020•江苏宿迁)计算:(﹣2)0+(13)﹣1【分析】根据负整数指数幂、零次幂以及二次根式的化简方法进行计算即可.【解析】(﹣2)0+(13)﹣1=1+3﹣3,=1.【变式5.1】(2020•江苏盐城)计算:23―(23―π)0.【分析】先求出23(23―π)0的值,再加减即可.【解析】原式=8﹣2+1=7.【变式5.2】(2020•江苏连云港)计算(﹣1)2020+(15)﹣1―【分析】先计算乘方、负整数指数幂、立方根,再计算加减可得.【解析】原式=1+5﹣4=2.【变式5.3】(2020•+(﹣2)2﹣(π﹣3)0.【分析】根据实数的计算法则进行计算即可,任何不为0的零次幂为1.(﹣2)2﹣(π﹣3)0.=3+4﹣1,=6.【类型6】整式的运算【例6】(2020•江苏常州)先化简,再求值:(x +1)2﹣x (x +1),其中x =2.【分析】先根据完全平方公式和单项式乘以多项式法则算乘法,再合并同类项,最后代入求出即可.【解析】(x +1)2﹣x (x +1)=x 2+2x +1﹣x 2﹣x=x+1,当x=2时,原式=2+1=3.【变式6.1】(2020•江苏无锡模拟)(1)计算:(―12)﹣2+(π﹣2017)0﹣2sin60°(2)化简:(2x﹣3)(x﹣2)﹣(x﹣1)2【分析】(1)先根据负整数指数幂,零指数幂,特殊角的三角函数值进行计算,再求出即可;(2)先根据多项式乘以多项式和完全平方公式算乘法,再合并同类项即可.【解析】(1)原式=4+1﹣2×=4+1―=5―(2)原式=2x2﹣7x+6﹣x2+2x﹣1=x2﹣5x+5.【变式6.2】(2020•江苏盐城模拟)先化简,再求值:a(a+2b)﹣(a﹣2b)2,其中a=12,b=2.【分析】先算乘法,再合并同类项,最后代入求出即可.【解析】a(a+2b)﹣(a﹣2b)2,=a2+2ab﹣a2+4ab﹣4b2=6ab﹣4b2,当a=12,b=2时,原式=6×12×2﹣4×22=6﹣16=﹣10.【变式6.3】(2020•江苏建邺区一模)已知:2a2+3a﹣6=0,求代数式3a(2a+1)﹣(2a+1)(2a﹣1)的值.【分析】原式利用单项式乘以多项式,以及平方差公式化简,去括号合并得到最简结果,把已知等式变形代入计算即可求出值.【解析】由2a2+3a﹣6=0得:2a2+3a=6,原式=6a2+3a﹣4a2+1=2a2+3a+1=6+1=7.【类型7】分式的化简求值【例7】(2020•江苏南通)计算:(1)(2m+3n)2﹣(2m+n)(2m﹣n);(2)x yx÷(x+y22xyx).【分析】(1)先利用完全平方公式和平方差公式计算,再去括号、合并同类项即可得;(2)先计算括号内分式的加法,再将除法转化为乘法,最后约分即可得.【解析】(1)原式=4m2+12mn+9n2﹣(4m2﹣n2)=4m2+12mn+9n2﹣4m2+n2=12mn+10n2;(2)原式=x yx÷(x2x+y22xyx)=x yx÷x22xy y2x=x yx•x(x y)2=1x y.【变式7.1】(2020•江苏宿迁)先化简,再求值:x2x÷(x―4x),其中x=―2.【分析】先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得.【解析】原式=x2x÷(x2x―4x)=x2x÷(x2)(x2)x=x2x•x(x2)(x2)=1x2,当x―2时,原式=12=12.【变式7.2】(2020•江苏盐城)先化简,再求值:mm29÷(1+3m3),其中m=﹣2.【分析】先根据分式的混合运算顺序和运算法则化简原式,再将m的值代入计算可得.【解析】原式=m(m3)(m3)÷(m3m3+3m3)=m(m3)(m3)÷mm3=m(m3)(m3)•m3m=1m3,当m=﹣2时,原式=123=1.【变式7.3】(2020•江苏南京)计算(a﹣1+1a1)÷a22aa1.【分析】先计算括号内异分母分式的加法、将除式分子因式分解,再将除法转化为乘法,最后约分即可得.【解析】原式=(a21a1+1a1)÷a(a2)a1=a2a1•a1a(a2)=aa2.【类型8】规律变化型问题【例8】(2020•江苏滨湖区一模)当n≥2时,设1+2+3+…+n的末位数字为a n,比如1+2=3,末位数字为3,故a2=3,又如1+2+3+4=10,末位数字为0,故a4=0,则a2+a3+…+a888的末位数字为( )A.0B.5C.6D.9【分析】根据题意,可得a2的末位数字为3,a3的末位数字为6,a4的末位数字为0,a5的末位数字为5,a6的末位数字为1,a7的末位数字为8,a8的末位数字为6,a9的末位数字为5,a10的末位数字为5,a11的末位数字为6,a12的末位数字8,a13的末位数字为1,a14的末位数字为5,a15的末位数字为0,a16的末位数字为6,a17的末位数字为3,a18的末位数字为1,a19的末位数字为0,a20的末位数字为0,a21的末位数字为1,a22的末位数字为3,…,末位数字从a2开始20个一循环,用888÷20,根据余数即可求解.【解析】a2的末位数字为3,a3的末位数字为6,a4的末位数字为0,a5的末位数字为5,a6的末位数字为1,a7的末位数字为8,a8的末位数字为6,a9的末位数字为5,a10的末位数字为5,a11的末位数字为6,a12的末位数字8,a13的末位数字为1,a14的末位数字为5,a15的末位数字为0,a16的末位数字为6,a17的末位数字为3,a18的末位数字为1,a19的末位数字为0,a20的末位数字为0,a21的末位数字为1,a22的末位数字为3,…,末位数字从a2开始20个一循环,888÷20=44…8,3+6+0+5+1+8+6+5+5+6+8+1+5+0+6+3+1+0+0+1=70,3+6+0+5+1+8+6=29.则a2+a3+…+a888的末位数字为9.故选:D.【变式8.1】(2020•江苏海安市模拟)若x1=a+1(a不取0和﹣1),x2=11x1,x3=11x2,…,x n=11x n―1,则x2020等于( )A.a+1B.aa1C.―1aD.a【分析】根据题意对前面几个数进行计算,直到结果出现重复现象,由此得出规律,再按规律解答便可.【解析】∵x1=a+1,∴x2=11x1=11a1=―1a,x3=11x2=1=aa1,x4=11x3=11aa1=a+1=x1,…由上可知,x1,x2,x3,…,x n,这列数依次按a+1,―1a,aa1三个结果进行循环,∵2020÷3=673…1,∴x2020=x1=a+1,故选:A.【变式8.2】(2019秋•海州区校级期末)找出以如图形变化的规律,则第2020个图形中黑色正方形的数量是( )A.3030B.3029C.2020D.2019【分析】仔细观察图形并从中找到规律,然后利用找到的规律即可得到答案.【解析】∵当n为偶数时第n个图形中黑色正方形的数量为n+12n个;当n为奇数时第n个图形中黑色正方形的数量为n+12(n+1)个,∴当n=2020时,黑色正方形的个数为2020+1010=3030个.故选:A .【达标检测】一.选择题(共10小题)1.(2020•江苏省天宁区校级月考)下列说法正确的是( )A .有理数a 的倒数是1aB .任何正数大于它的倒数C .小于1的数的倒数一定大于1D .若非0两数互为相反数,则这两数的商为﹣1【分析】根据倒数定义以及相反数的定义举反例,对各选项分析判断后利用排除法求解.【解答】解:A 、若有理数a =0,则a 没有倒数,故本选项不合题意;B 、正数0.1的倒数是10,0.1<10,故本选项不合题意;C 、小于1的数的倒数一定大于1错误,因为0没有倒数,故本选项不合题意;D 、若非0两数互为相反数,则这两数的商为﹣1,说法正确,故本选项符合题意.故选:D .2.(2020•江苏省天宁区月考)数轴上表示整数的点称为整点,某数轴的单位长度为1cm ,若在数轴上画出一条长2020cm 的线段AB ,则线段AB 盖住的整点个数是( )A .2020B .2021C .2020或2021D .2019或2020【分析】某数轴的单位长度是1厘米,若在这个数轴上随意画出一条长为2020cm 的线段AB ,则线段AB 盖住的整点的个数可能正好是2021个,也可能不是整数,而是有两个半数那就是2020个.【解答】解:依题意得:①当线段AB 起点在整点时覆盖2021个数,②当线段AB 起点不在整点,即在两个整点之间时覆盖2020个数,综上所述,盖住的点为:2020或2021.故选:C .3.(2020•江苏省江宁区月考)下列代数式中能用平方差公式计算的是( )A .(x +y )(x +y )B .(2x ﹣y )(y +2x )C .(x +12y)(y ―12x)D .(﹣x +y )(y ﹣x )【分析】平方差公式为:(a +b )(a ﹣b )=a 2﹣b 2,即一个数与另一个数的和乘以这个数与另一个数的差,等于相同数字的平方减去相反数字的平方.据此分析即可.【解答】解:A 、两个括号内的数字完全相同,不符合平方差公式,故不符合题意;B 、两个括号内的相同数字是2x ,相反数字是(﹣y )与y ,故可用平方差公式计算,该选项符合题意;C 、没有完全相同的数字,也没有完全相反的数字,故不符合题意;D 、两个括号内只有相同项,没有相反项,故不符合题意.故选:B .4.(2020•江苏省高新区期中)如图,将一张正方形纸片剪出一个边长为m 的正方形之后,剩余部分可剪拼成一个矩形(不重叠无缝隙),若拼成的矩形一边长为3,另一边为2m +3,则原正方形边长是( )A .m +6B .m +3C .2m +3D .2m +6【分析】根据大小正方形的边长,与拼成的长方形的长、宽的关系得出答案.【解答】解:设原正方形的边长为x ,则x ﹣m =3,解得,x =m +3,故选:B .5.(2020•江苏省惠山区校级月考)下列语句正确的是( )A .10的平方根是100B .100的平方根是10C .﹣2是﹣4的平方根D .49的平方根是±23【分析】根据一个正数的平方根有两个,且互为相反数可对A 、B 、D 进行判断;根据负数没有平方根可对C 进行判断.【解答】解:A 、10A 选项错误;B 、100的平方根是±10,所以B 选项错误;C 、﹣4没有平方根,所以C 选项错误;D 、49的平方根为±23,所以D 选项正确.故选:D .6.(2020•江苏省淮阴区模拟)某种鞋子进价为每双a 元,销售利润率为20%,则这种鞋子的销售价格为( )A.20%a B.80%a C.a(120%)D.120%a【分析】根据题意列出代数式即可.【解答】解:根据题意得:(1+20%)a=120%a,则这种鞋子的销售价格为120%a.故选:D.7.(2020•江苏省南通模拟)下列各式子中,为最简二次根式的( )A B C D【分析】利用最简二次根式定义判断即可.【解答】解:A、原式=B、原式为最简二次根式,符合题意;C、原式D、原式5,不符合题意.故选:B.8.(2020•江苏省泰兴市一模)已知m2=4n+a,n2=4m+a,m≠n,则m2+2mn+n2的值为( )A.16B.12C.10D.无法确定【分析】将m2=4n+a与n2=4m+a相减可得(m﹣n)(m+n+4)=0,根据m≠n,可得m+n+4=0,即m+n=﹣4,再将m2+2mn+n2变形为(m+n)2,整体代入即可求解.【解答】解:将m2=4n+a与n2=4m+a相减得m2﹣n2=4n﹣4m,(m+n)(m﹣n)=﹣4(m﹣n),(m﹣n)(m+n+4)=0,∵m≠n,∴m+n+4=0,即m+n=﹣4,∴m2+2mn+n2=(m+n)2=(﹣4)2=16.故选:A.9.(2020•江苏省海门市校级模拟)一组数:2,1,3,x,7,y,23,…,满足“前两个数依次为a、b,紧随其后的第三个数是2a﹣b”,例如这组数中的第三个数“3”是由“2×2﹣1”得到的,那么这组数中y 表示的数为( )A.9B.﹣9C.8D.﹣8【分析】根据“从第三个数起,前两个数依次为a 、b ,紧随其后的数就是2a ﹣b ”,首先建立方程2×3﹣x =7,求得x ,进一步利用此规定求得y 即可.【解答】解:解法一:常规解法∵从第三个数起,前两个数依次为a 、b ,紧随其后的数就是2a ﹣b ,∴2×3﹣x =7,∴x =﹣1,则2×(﹣1)﹣7=y ,解得y =﹣9.解法二:技巧型∵从第三个数起,前两个数依次为a 、b ,紧随其后的数就是2a ﹣b ,∴7×2﹣y =23,∴y =﹣9.故选:B .10.(2019•江苏省海宁市一模)希腊人常用小石子在沙滩上摆成各种形状来研究数.例如:他们研究过图1中的1,3,6,10,…,由于这些数能够表示成三角形,将其称为三角形数;类似地,称图2中的1,4,9,16…这样的数成为正方形数.下列数中既是三角形数又是正方形数的是( )A .289B .1024C .1225D .1378【分析】由题意可知:三角形数的第n 个为1+2+3+4+…+n =12n (n +1),正方形数的第n 个为n 2,由此逐一验证得出答案即可.【解答】解:由于三角形数的第n 个为1+2+3+4+…+n =12n (n +1),正方形数的第n 个为n 2,A 、12n (n +1)=289无整数解,不合题意;B 、12n (n +1)=1024,不合题意;C 、12n (n +1)=1225,解得n =49,符合题意;D 、12n (n +1)=1378,无整数解,不合题意.故选:C .二.填空题(共8小题)11.(2020•江苏省惠山区校级二模)无锡近年来经济快速发展,2019年GDP 超过1180000000000元,将1180000000000科学记数法表示为 1.18×1012 .【分析】把数记成a ×10n 的形式,其中a 是整数数位只有一位的数,n 是正整数的形式.【解答】解:1 1800 0000 0000=1.18×1012,故答案为:1.18×1012.12.(2020•江苏省姑苏区校级二模)若a ﹣3b =﹣1,则代数式a 2﹣3ab +3b 的值为 1 .【分析】把前两项分解因式后,整体代入,化简求值即可.【解答】解:∵a ﹣3b =﹣1,∴a 2﹣3ab +3b=a (a ﹣3b )+3b=﹣a +3b=1,故答案为:1.13.(2020•江苏省玄武区二模)计算:|﹣5|= 5 ;= 5 .【分析】直接利用绝对值的性质以及二次根式的性质分别化简得出答案.【解答】解:|﹣5|=5;=5.故答案为:5,5.14.(2020•江苏省玄武区二模)计算4―【分析】直接利用二次根式的性质分别化简得出答案.【解答】解:原式―==﹣故答案为:﹣15.(2020•江苏省盐都区三模)观察如图数据排列规律,则第n行从左向右第(n+1)个数为 【分析】观察不难发现,每一行的数字的个数为连续的偶数,且被开方数为相应的序数,然后求解即可.【解答】解:由图可知,前n行数的个数为2+4+6+…+2n=12n(2+2n)=n2+n,则前(n﹣1)行的个数为(n﹣1)2+(n﹣1)=n2﹣n,∴第n行从左向右第(n+116.(2020•江苏省张家港市模拟)若分式4x1x21的值为0,则x= 14 .【分析】分式的值为零时,分子等于零,即4x﹣1=0.【解答】解:由题意知,4x﹣1=0.解得x=1 4.此时分母x2+1=1716≠0,符合题意.故答案是:1 4.17.(2020•江苏省玄武区一模)分解因式a(x﹣1)2﹣a(x﹣1)的结果是 a(x﹣1)(x﹣2) .【分析】直接找出公因式进而提取分解因式即可.【解答】解:a(x﹣1)2﹣a(x﹣1)=a(x﹣1)(x﹣1﹣1)=a(x﹣1)(x﹣2).故答案为:a(x﹣1)(x﹣2).18.(2020•江苏省鼓楼区二模)点O、A、B、C在数轴上的位置如图所示,O为原点,BC=3,OA=OC,若B 表示的数为x ,则A 表示的数为 ﹣x ﹣3 .(用含x 的代数式表示)【分析】首先根据BC =3,B 点所表示的数为x ,求出C 表示的数是多少,然后根据OA =OC ,求出A 点所表示的数是多少即可.【解答】解:∵BC =3,B 表示的数为x ,O 为原点,∴C 表示的数为x +3,∵OA =OC ,∴A 点表示的数为﹣x ﹣3.故答案为:﹣x ﹣3.三.解答题(共6小题)19.(2020•江苏省南通模拟)(1)计算:(12)﹣28cos60°﹣(π+3)0;(2)化简求值:(a ﹣2)2+b (b ﹣2a )+4(a ﹣1),已知a ﹣b =【分析】(1)原式利用零指数幂、负整数指数幂法则,以及特殊角的三角函数值计算即可求出值;(2)原式利用完全平方公式,单项式乘以多项式法则计算,去括号合并得到最简结果,把a ﹣b 的值代入计算即可求出值.【解答】解:(1)原式=8×12―1=―4﹣1=1;(2)原式=a 2﹣4a +4+b 2﹣2ab +4a ﹣4=a 2+b 2﹣2ab=(a ﹣b )2,当a ﹣b =2=2.20.(2020•江苏省锡山区校级模拟)计算题(1)(π﹣3.14)0﹣(12)﹣2+(2)(2x ﹣y )2﹣(x +y )(x ﹣y ).【分析】(1)直接利用零指数幂的性质以及负整数指数幂的性质、立方根的性质分别化简得出答案;(2)直接利用乘法公式化简,再合并同类项得出答案.【解答】解:(1)(π﹣3.14)0﹣(12)﹣2+=1﹣4+3=0;(2)(2x ﹣y )2﹣(x +y )(x ﹣y )=4x 2﹣4xy +y 2﹣(x 2﹣y 2)=4x 2﹣4xy +y 2﹣x 2+y 2=3x 2﹣4xy +2y 2.21.(2020•江苏省海陵区校级三模)(1)计算:﹣32+2tan60°―(3﹣π)0;(2)化简:a 2a 1÷(a 22a 1a 21―1a 1).【分析】(1)根据实数的运算法则即可求出答案.(2)根据分式的运算法则即可求出答案.【解答】解:(1)原式=﹣+1=﹣8.(2)原式=a 2a 1•a 1a=a .22.(2020•江苏省仪征市一模)(1)计算:2)0﹣(﹣1)2020+1―sin45°; (2)化简:x 1x 2x ÷(1x 1―1x ).【分析】(1)根据零指数幂、负整数指数幂、特殊角的三角函数值和分母有理化进行计算;(2)先把括号内通分,再把除法运算化为乘法运算,然后把分子分母因式分解后约分即可.【解答】解:(1)原式=1﹣1―2=0;(2)原式=x 1x(x 1)÷x (x 1)x(x 1)=x 1x(x 1)•x (x ﹣1)=x +1.23.(2019•江苏省海陵区校级三模)(1)计算:|﹣1|―12(5―π)0+4cos45°(2)化简:a 2a 1÷(a 22a 1a 21―1a 1)【分析】(1)根据零指数幂的意义和特殊角的三角函数值进行计算;(2)先把括号内的分式约分,再进行括号的分式的减法运算,然后把除法运算转化为乘法运算后约分即可.【解答】解:(1)原式=1―1+4=1―=(2)原式=a2a1÷[(a1)2(a1)(a1)―1a1]=a2a1÷[a1a1―1a1]=a2a1÷aa1=a2a1•a1a=a.24.(2020•江苏省海门市校级模拟)用黑白棋子摆出下列一组图形,根据规律可知.(1)在第n个图中,白棋共有 12n(n+1) 枚,黑棋共有 (3n+6) 枚;(2)在第几个图形中,白棋共有300枚;(3)白棋的个数能否与黑棋的个数相等?若能,求出是第几个图形,若不能,说明理由.【分析】依据题意求出白棋和黑棋的表达式即可求解.【解答】解:(1)由题意得:在第n个图中,白棋共有12n(n+1)枚,黑棋共有(3n+6)枚;故答案为:12n(n+1),(3n+6);(2)12n(n+1)=300,解得:n=24(已舍去负值)故在第24个图形中,白棋共有300枚;(3)12n(n+1)=3n+6,解得:n=。

苏科版中考数学专题测试01:实数的有关概念及运算((有答案))

苏科版中考数学专题测试01:实数的有关概念及运算((有答案))

专题01 实数的有关概念及运算学校:___________姓名:___________班级:___________1.【江苏省苏州市吴中、相城、吴江区2015届九年级中考一模数学试题】化简|-2|的结果是( )A .一2B .2C . 12D .±2 【答案】B 【解析】根据绝对值的定义,可直接得出-2的绝对值.|-2|=2,故答案选B.【考点定位】绝对值.2.【江苏省南京市鼓楼区2015届九年级下学期中考二模考试数学试题】下列算式结果为-3的是( )A.-|-3|B.(-3)0C.-(-3)D.(-3)-1【答案】A .【考点定位】负整数指数幂;相反数;绝对值;零指数幂.3.【江苏省南京市2015年中考数学试题】估计12介于( ) A .0.4与0.5之间 B .0.5与0.6之间 C .0.6与0.7之间 D .0.7与0.8之间【答案】C .【解析】 2.235,∴1≈1.235,≈0.617,0.6与0.7之间,故选C . 【考点定位】估算无理数的大小.4.【江苏省常州市2015年中考数学试题】已知a =22,b =33,c =55,则下列大小关系正确的是( ) A .a >b >c B .c >b >a C .b >a >c D .a >c >b【答案】A . 【解析】2122==a ,3133==b ,5155==c ,且532<<,513121>>∴,即c b a >>,故选A.【考点定位】实数大小比较.5.【江苏省苏州市吴中、相城、吴江区2015届九年级中考一模数学试题】已知1nm 等于0.000001mm ,则0.000001用科学记数法可表示为 .【答案】1×10-6.【考点定位】科学记数法—表示较小的数. 6.【江苏省常州市2015年中考数学试题】计算102)1(-+-π= . 【答案】32. 【解析】原式=23211=+.故答案为:23. 【考点定位】1.负整数指数幂;2.零指数幂.7.【江苏省南京市2015年中考数学试题】4的平方根是 ,算术平方根是 .【答案】±2;2.【解析】4的平方根是24±=±,算术平方根是24=.故答案为:2±;2. 【考点定位】1.算术平方根;2.平方根.8.【江苏省江阴市华士实验中学2015届九年级下学期期中考试数学试题】观察下面一列数:−1,2,−3,4,−5,6,−7…,将这列数排成下列形式:记ij a 为第i 行第j 列的数,如23a =4,那么87a 是 .【答案】56.【解析】观察数列可得,每一个奇数都是负数,每一个偶数都为正数,每一行的最后一个数为-1,4,-9,16,…,根据这个规律可得第n 行的最后一个数为(-1)n ×n 2,所以第7行的最后一个数据为-49,所以可得第8行的第7个数为56.故答案为:56.【考点定位】规律探究题.9.【江苏省徐州市市区、铜山县2015届九年级中考模拟数学试题】计算:﹣1201412)﹣1; 【答案】0.【考点定位】1.实数的运算;2.负整数指数幂;10.【江苏省徐州市2015年中考数学试题】计算:()21032120154-⎪⎭⎫ ⎝⎛+---; 【答案】2.【解析】利用绝对值的代数意义、零指数幂法则、负整数指数幂法则、算术平方根的定义计算即可得到结果.原式=4-1+2-3=2.【考点定位】1.实数的运算;2.零指数幂;3.负整数指数幂.。

江苏省中考数学复习 专题1 计算与化简求值 解答题30题专项提分计划解析版

江苏省中考数学复习 专题1 计算与化简求值 解答题30题专项提分计划解析版

【大题精编】2023届江苏省中考数学复习专题1计算与化简求值解答题30题专项提分计划(江苏省通用)1.(2022·江苏盐城·校考三模)计算:2sin 602︒+-2.(2022·江苏盐城·校考三模)计算:43⎛⎫-- ⎪⎝⎭.【答案】8-【分析】先去绝对值,开立方,计算负整数指数幂,再进行加减运算即可.【详解】原式()2433=+--439=--8=-.【点睛】开题考查负整数指数幂,以及实数的混合运算.熟练掌握去绝对值,负整数指数幂的运算法则,以及求一个数的立方根,是解题的关键.3.(2022·江苏盐城·校考一模)先化简,再求值:(1)(3)(3)a a a a +--+,其中2a =.【答案】9a +,11【分析】先去括号,再合并同类项,然后把a 的值代入化简后的式子进行计算即可解答.【详解】解:(1)(3)(3)a a a a +--+229a a a =+-+9a =+,当2a =时,原式2911=+=.【点睛】此题考查了整式的混合运算和化简求值,熟练掌握运算法则是解题的关键.4.(2022·江苏苏州·模拟预测)计算:32260()(2022)x y x π----÷-【答案】4y 【分析】根据幂的运算法则即可求出答案.【详解】解:32260()(2022)xy x π----÷-6461x y x --=÷⨯4y =【点睛】本题主要考查了幂的运算法则,解本题的要点在于注意任何非零实数的零次幂为1.5.(2022·江苏盐城·11sin 45tan 452-⎛⎫︒-︒+- ⎪⎝⎭.(2)解不等式组()3281522x x x x ⎧--≤⎪⎨->⎪⎩.7.(2022·江苏镇江·统考一模)(1)计算:32sin 451π--︒+;(2)化简:()2111x x x ⎛⎫--÷- ⎪⎝⎭.8.(2022·江苏盐城·校考三模)先化简,再求值:521144x x x x -+⎛⎫-÷++⎝⎭,其中x 满足2120x x +-=.9.(2022·江苏苏州·苏州市振华中学校校考模拟预测)先化简,再求值:223m m m ⎛⎫++⋅⎪--⎝⎭,其中m∴2,3,4m =,又∵分式中,2,3m ≠,∴4m =,∴2624614m --=-⨯-=-.【点睛】本题考查了分式的化简求值,二次根式有意义的条件,解不等式组,求不等式组的整数解,正确的计算是解题的关键.10.(2022·江苏扬州·校考三模)先化简,再求值:2221133a ab b a b a b -+⎛⎫÷- ⎪-⎝⎭,其中1a =,1b =.(1)计算:()234sin60--⨯+︒+.(2)化简:244222a aa a a++---.12.(2022·江苏淮安·模拟预测)先化简再求值:1x x -+⎛⎫-÷ ⎪⎝⎭,其中x(1)0213(2021)()3π---+;(2)解方程:542332x x x+=--.预测)化简求值:()()()3222484x y x y xy x y xy +-+-÷,其中11x y ==-,.【答案】222x y y x -+-,3-【分析】先根据平方差公式及多项式除以单项式法则去括号,再代入字母的值计算即可.【详解】解:原式222x y y x =-+-,当1,1x y ==-时,原式()22111213=----⨯=-.【点睛】此题考查了整式的化简求值,正确掌握整式的混合运算法则,及平方差公式及多项式除以单项式法则是解题的关键.15.(2022·江苏无锡·无锡市天一实验学校校考模拟预测)计算:(1)2cos 30tan 45sin 30︒+︒︒ ;(2)()2012014sin 6023π-⎛⎫+-+︒+ ⎪⎝⎭;(3)若α是锐角,()sin 15α+︒=()1014cos 3.14tan 3απα-⎛⎫--++ ⎪⎝⎭的值.预测)计算:(1)201()(2022)2.3π-+-+.(1)计算:02cos 45(3)π+- ;(2)化简:2(3)(1)(2)x x x --+-.(1)()()2212324-⎛⎫-+⨯-- ⎪⎝⎭(2)化简,再求值()()()2222x x x -+--+,其中3x =.【答案】(1)18-(2)48x -,4【分析】(1)先根据乘方、负整数次幂进行计算,然后再进行计算即可;(2)先用平方差公式和完全平方公式进行计算,然后再合并同类项即可.19.(2022·江苏扬州·校考二模)(1)计算:0112|2020(2sin 603--+--+︒(2)化简:32(1)11a a a a --+÷++20.(2022·江苏苏州·校考一模)先化简再求值:21x x x---÷+,其中2x =.21.(2021·江苏泰州·统考模拟预测)先化简,再求值:2222a ab b b a a ab⎛⎫-+÷ ⎪-+--⎝⎭,其中a ,b 0b -.【点睛】本题考查了分式的化简求值,正确地把所求的代数式化简是解题的关键.22.(2022·江苏扬州·校联考三模)先化简,再求值:2344111a a a a a -+⎛⎫--÷ ⎪--⎝⎭,其中a 是4的平方根23.(2022·江苏南京·南京市花园中学校考模拟预测)分式化简:2933a a a ⎛⎫+-++-÷ ⎪-+-⎝⎭.24.(2022·江苏苏州·苏州市平江中学校校联考二模)先化简,再求值:2()111a a a -÷+-+,其中1a =.25.(2022·江苏南通·统考二模)(1)解方程:42x x =--;(2)先化简,再求值:()()()32248422ab a b ab a b a b -÷++-,其中2a =,1b =-.【答案】(1)6x =;(2)242a ab -;20【分析】(1)先去分母化为整式方程,然后解方程,再验根即可;(2)利用多项式除以单项式法则和平方差公式计算,然后合并同类项,代入字母的值计算即可.【详解】解:(1)去分母,两边同时乘以()()42x x --,得()224x x -=-,解得6x =,检验:当6x =时,()()4280x x --=≠.∴方程的解为6x =.(2)()()()32248422ab a b ab a b a b -÷++-22224b ab a b =-+-242a ab =-;当2a =,1b =-时,原式()242221=⨯-⨯⨯-164=+20=.【点睛】本题考查可化为一元一次方程的分式方程的解法,整式的混合运算,代数式的值,掌握可化为一元一次方程的分式方程的解法,整式的混合运算法则,准确求代数式的值是解题关键.26.(2021·江苏扬州·校考一模)(1)计算:2sin600(13)-2;(2)先化简,再求值:(m +2-52m -)·243m m--,其中m =-12.27.(2022·江苏淮安·统考一模)化简并求值:22a b a b a b⎛⎫-÷ ⎪-+-⎝⎭,其中11a b ==,.28.(2022·江苏扬州·统考二模)先化简,再求值:2211a a +-+⎛⎫-÷ ⎪--⎝⎭,其中3a =.29.(2022·江苏苏州·模拟预测)先化简再求值:21221121a a a a a a a ⎛⎫-÷ ⎪+++⎝⎭,其中2a =-.30.(2022·江苏盐城·滨海县第一初级中学校考三模)先化简,再求值:21442x x x ⎛⎫÷+ ⎪-+-⎝⎭,其中tan 602x =︒+.。

2021年江苏中考数学:数与式

2021年江苏中考数学:数与式

2021年江苏中考数学:数与式一.选择题(共10小题)1.(﹣3)0等于()A.0B.1C.3D.﹣32.的倒数是()A.2B.﹣2C.D.﹣3.﹣的相反数是()A.﹣B.C.3D.﹣34.据报道:今年“五一”期间,苏通大桥、崇启大桥、沪苏通大桥三座跨江大桥车流量约1370000辆次.将1370000用科学记数法表示为()A.0.137×107B.1.37×107C.0.137×106D.1.37×1065.下列计算正确的是()A.a3+a3=a6B.a3•a3=a6C.(a2)3=a5D.(ab)3=ab3 6.下列无理数,与3最接近的是()A.B.C.D.7.计算(m2)3的结果是()A.m5B.m6C.m8D.m98.下列运算正确的是()A.a2+a=a3B.(a2)3=a5C.a8÷a2=a4D.a2•a3=a59.下列各组二次根式中,化简后是同类二次根式的是()A.与B.与C.与D.与10.下列计算正确的是()A.(a3)3=a9B.a3•a4=a12C.a2+a3=a5D.a6÷a2=a3二.填空题(共10小题)11.分解因式:2x3﹣8x=.12.2021年5月,中国首个火星车“祝融号”成功降落在火星上直径为3200km的乌托邦平原.把数据3200用科学记数法表示为.13.我市2020年常住人口约9080000人,该人口数用科学记数法可表示为人.14.若有意义,则x的取值范围是.15.计算:2a2﹣(a2+2)=.16.近年来,5G在全球发展迅猛,中国成为这一领域基础设施建设、技术与应用落地的一大推动者.截至2021年3月底,中国已建成约819000座5G基站,占全球70%以上.数据819000用科学记数法表示为.17.2021年5月15日我国天问一号探测器在火星预选着陆区着陆,在火星上首次留下中国印迹,迈出我国星际探测征程的重要一步.目前探测器距离地球约320000000千米,320000000这个数据用科学记数法可表示为.18.分解因式:x2﹣9y2=.19.化简:=.20.分解因式:x2﹣4y2=.三.解答题(共10小题)21.计算:()﹣1+(﹣1)0﹣.22.计算:(1)|﹣|﹣(﹣2)3+sin30°;(2)﹣.23.先化简,再求值:(1+)•,其中x=﹣1.24.(1)化简求值:(2x﹣1)2+(x+6)(x﹣2),其中x=﹣;(2)解方程﹣=0.25.计算:﹣(﹣1)2﹣(π﹣1)0+2﹣1.26.计算或化简:(1)(﹣)0+|﹣3|+tan60°.(2)(a+b)÷(+).27.计算:4sin45°.28.计算.29.计算:(1)|﹣2|﹣20210+﹣()﹣1;(2)(1+)÷.30.先化简,再求值:(1+)•,其中m=2.2021年江苏中考数学:数与式答案一.选择题(共10小题)1.(﹣3)0等于()A.0B.1C.3D.﹣3【考点】零指数幂.【专题】实数;符号意识.【分析】直接利用零指数幂:a0=1(a≠0),化简进而得出答案.【解答】解:(﹣3)0=1.故选:B.【点评】此题主要考查了零指数幂,正确掌握零指数幂的性质是解题关键.2.的倒数是()A.2B.﹣2C.D.﹣【考点】倒数.【分析】根据乘积为1的两个数互为倒数,可得一个数的倒数.【解答】解:的倒数是2,故选:A.【点评】本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.3.﹣的相反数是()A.﹣B.C.3D.﹣3【考点】相反数.【分析】求一个数的相反数就是在这个数前面添上“﹣”号.【解答】解:﹣的相反数是.故选:B.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号.一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.学生易把相反数的意义与倒数的意义混淆.4.据报道:今年“五一”期间,苏通大桥、崇启大桥、沪苏通大桥三座跨江大桥车流量约1370000辆次.将1370000用科学记数法表示为()A.0.137×107B.1.37×107C.0.137×106D.1.37×106【考点】科学记数法—表示较大的数.【专题】实数;数感.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.【解答】解:将1370000用科学记数法表示为:1.37×106.故选:D.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.下列计算正确的是()A.a3+a3=a6B.a3•a3=a6C.(a2)3=a5D.(ab)3=ab3【考点】合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【专题】整式;运算能力.【分析】分别根据合并同类项法则,同底数幂的乘法法则,幂的乘方运算法则以及积的乘方运算法则逐一判断即可.【解答】解:A.a3+a3=2a3,故本选项不合题意;B.a3•a3=a6,故本选项符合题意;C.(a2)3=a6,故本选项不合题意;D.(ab)3=a3b3,故本选项不合题意;故选:B.【点评】本题考查了合并同类项,同底数幂的乘法,幂的乘方与积的乘方,掌握相关运算法则是解答本题的关键.6.下列无理数,与3最接近的是()A.B.C.D.【考点】估算无理数的大小.【专题】实数;数感.【分析】用逼近法估算无理数大小即可解答问题.【解答】解:∵()2=6,()2=7,()2=10,()2=11,32=9,∴与3最接近的是.故选:C.【点评】本题考查了估算无理数大小,选用夹逼法和平方法是此类问题解题的关键.7.计算(m2)3的结果是()A.m5B.m6C.m8D.m9【考点】幂的乘方与积的乘方.【专题】整式;运算能力.【分析】幂的乘方,底数不变,指数相乘.据此计算即可.【解答】解:(m2)3=m2×3=m6.故选:B.【点评】本题考查了幂的乘方,掌握幂的运算法则是解答本题的关键.8.下列运算正确的是()A.a2+a=a3B.(a2)3=a5C.a8÷a2=a4D.a2•a3=a5【考点】合并同类项;同底数幂的乘法;幂的乘方与积的乘方;同底数幂的除法.【专题】整式;运算能力.【分析】直接利用合并同类项法则以及幂的乘方运算法则、同底数幂的乘法、除法运算法则计算得出答案.【解答】解:A.a2+a,不是同类项,无法合并,故此选项不合题意;B.(a2)3=a6,故此选项不合题意;C.a8÷a2=a6,故此选项不合题意;D.a2•a3=a5,故此选项符合题意.故选:D.【点评】此题主要考查了合并同类项以及幂的乘方运算、同底数幂的乘法、除法运算法则等知识,正确掌握相关运算法则是解题关键.9.下列各组二次根式中,化简后是同类二次根式的是()A.与B.与C.与D.与【考点】二次根式的性质与化简;同类二次根式.【专题】二次根式;运算能力.【分析】一般地,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式.先将各选项进行化简,再根据被开方数是否相同进行判断即可.【解答】解:A、=2和不是同类二次根式,本选项不合题意;B、=2与不是同类二次根式,本选项不合题意;C、与不是同类二次根式,本选项不合题意;D、=5,=3是同类二次根式,本选项符合题意.故选:D.【点评】本题考查了同类二次根式,解答本题的关键在于熟练掌握二次根式的化简及同类二次根式的概念.10.下列计算正确的是()A.(a3)3=a9B.a3•a4=a12C.a2+a3=a5D.a6÷a2=a3【考点】合并同类项;同底数幂的乘法;幂的乘方与积的乘方;同底数幂的除法.【专题】整式;运算能力.【分析】运用同底数幂乘除法法则、幂的乘方进行计算.【解答】解:A.(a3)3=a9,故A正确,本选项符合题意;B.a3•a4=a7,故B错误,选项不符合题意;C.a2+a3不能合并,故C错误,选项不符合题意;D.a6÷a2=a4,故D错误,选项不符合题意.故选:A.【点评】本题考查了整式的运算,正确利用幂的运算法则进行计算是解题的关键.二.填空题(共10小题)11.分解因式:2x3﹣8x=2x(x﹣2)(x+2).【考点】提公因式法与公式法的综合运用.【分析】先提取公因式2x,再对余下的项利用平方差公式分解因式.【解答】解:2x3﹣8x,=2x(x2﹣4),=2x(x+2)(x﹣2).【点评】本题考查因式分解,因式分解的步骤为:一提公因式;二看公式.运用平方差公式进行因式分解的多项式的特征:(1)二项式;(2)两项的符号相反;(3)每项都能化成平方的形式.12.2021年5月,中国首个火星车“祝融号”成功降落在火星上直径为3200km的乌托邦平原.把数据3200用科学记数法表示为 3.2×103.【考点】科学记数法—表示较大的数.【专题】实数;数感.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.【解答】解:3200=3.2×103.故答案为:3.2×103.【点评】本题考查了用科学记数法表示较大的数.掌握用科学记数法表示较大数的方法是解决本题的关键.13.我市2020年常住人口约9080000人,该人口数用科学记数法可表示为9.08×106人.【考点】科学记数法—表示较大的数.【专题】实数;数感.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:9080000人用科学记数法可表示为9.08×106人.故答案为:9.08×106.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.14.若有意义,则x的取值范围是x≥1.【考点】二次根式有意义的条件.【专题】二次根式;运算能力.【分析】根据二次根式的被开方数是非负数列出不等式x﹣1≥0,解不等式即可求得x 的取值范围.【解答】解:根据题意得x﹣1≥0,解得x≥1.故答案为:x≥1.【点评】本题考查了二次根式有意义的条件,利用被开方数是非负数得出不等式是解题关键.15.计算:2a2﹣(a2+2)=a2﹣2.【考点】整式的加减.【专题】计算题;整式;运算能力.【分析】整式的加减混合运算,先去括号,然后合并同类项进行化简.【解答】解:原式=2a2﹣a2﹣2=a2﹣2,故答案为:a2﹣2.【点评】本题考查整式的加减运算,掌握去括号法则是解题基础.16.近年来,5G在全球发展迅猛,中国成为这一领域基础设施建设、技术与应用落地的一大推动者.截至2021年3月底,中国已建成约819000座5G基站,占全球70%以上.数据819000用科学记数法表示为8.19×105.【考点】科学记数法—表示较大的数.【专题】实数;数感.【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,且n比原来的整数位数少1,据此判断即可.【解答】解:819000=8.19×105.故答案是:8.19×105.【点评】此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.17.2021年5月15日我国天问一号探测器在火星预选着陆区着陆,在火星上首次留下中国印迹,迈出我国星际探测征程的重要一步.目前探测器距离地球约320000000千米,320000000这个数据用科学记数法可表示为 3.2×108.【考点】科学记数法—表示较大的数.【专题】实数;数感.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【解答】解:320000000=3.2×108,故选:3.2×108.【点评】此题考查科学记数法的表示方法,关键是确定a的值以及n的值.18.分解因式:x2﹣9y2=(x+3y)(x﹣3y).【考点】因式分解﹣运用公式法.【分析】直接利用平方差公式分解即可.【解答】解:x2﹣9y2=(x+3y)(x﹣3y).【点评】本题主要考查利用平方差公式分解因式,熟记公式结构是解题的关键.19.化简:=3.【考点】立方根.【分析】33=27,根据立方根的定义即可求出结果.【解答】解:∵33=27,∴;故答案为:3.【点评】本题考查了立方根的定义;掌握开立方和立方互为逆运算是解题的关键.20.分解因式:x2﹣4y2=(x+2y)(x﹣2y).【考点】因式分解﹣运用公式法.【分析】直接利用平方差公式分解因式得出答案.【解答】解:x2﹣4y2=(x+2y)(x﹣2y).故答案为:(x+2y)(x﹣2y).【点评】此题主要考查了公式法分解因式,熟练应用平方差公式是解题关键.三.解答题(共10小题)21.计算:()﹣1+(﹣1)0﹣.【考点】实数的运算;零指数幂;负整数指数幂.【专题】计算题;数感.【分析】利用负整数指数幂,零指数幂和算术平方根计算.【解答】解:原式=3+1﹣2=2.【点评】本题考查了负整数指数幂,零指数幂和算术平方根.在计算的时候要注意负整数指数幂取的是对应的正整数指数幂的倒数,即:(a≠0).22.计算:(1)|﹣|﹣(﹣2)3+sin30°;(2)﹣.【考点】实数的运算;分式的加减法;特殊角的三角函数值.【专题】实数;分式;运算能力.【分析】(1)根据绝对值的意义,乘方的意义以及特殊角的锐角三角函数的值即可求出答案.(2)根据分式的加减运算法则即可求出答案.【解答】解:(1)原式=+8+=1+8=9.(2)原式=﹣==.【点评】本题考查分式的运算以及实数的运算,解题的关键是熟练运用分式的加减运算以及绝对值的意义,乘方的意义和特殊角的锐角三角函数的值,本题属于基础题型.23.先化简,再求值:(1+)•,其中x=﹣1.【考点】分式的化简求值.【专题】分式;运算能力.【分析】根据分式的加法和乘法可以化简题目中的式子,然后将x的值代入化简后的式子即可解答本题.【解答】解:(1+)•=•=•=x+1,当x=﹣1时,原式=﹣1+1=.【点评】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.24.(1)化简求值:(2x﹣1)2+(x+6)(x﹣2),其中x=﹣;(2)解方程﹣=0.【考点】整式的混合运算—化简求值;解分式方程.【专题】整式;分式方程及应用;运算能力.【分析】(1)根据整式的加减运算以及乘除运算法则进行化简,然后将x的值代入原式即可求出答案.(2)根据分式的方程的解法即可求出答案.【解答】解:(1)原式=4x2﹣4x+1+x2+4x﹣12=5x2﹣11,当x=﹣时,原式=5×3﹣11=15﹣11=4.(2)﹣=0,=,2x=3x﹣9,x=9,检验:将x=9代入x(x﹣3)≠0,∴x=9是原方程的解.【点评】本题考查整式的运算以及分式方程,解题的关键是熟练运用整式的加减运算以及乘除运算,分式方程的解法,本题属于基础题型.25.计算:﹣(﹣1)2﹣(π﹣1)0+2﹣1.【考点】实数的运算;零指数幂;负整数指数幂.【专题】实数;运算能力.【分析】直接利用零指数幂的性质以及负整数指数幂的性质、算术平方根、有理数的乘方运算法则分别化简得出答案.【解答】解:原式=2﹣1﹣1+=.【点评】此题主要考查了零指数幂的性质以及负整数指数幂的性质、算术平方根、有理数的乘方运算等知识,正确化简各数是解题关键.26.计算或化简:(1)(﹣)0+|﹣3|+tan60°.(2)(a+b)÷(+).【考点】绝对值;实数的运算;分式的混合运算;零指数幂;特殊角的三角函数值.【专题】计算题;分式;运算能力.【分析】(1)分别化简各数,再作加减法;(2)先通分,计算加法,再将除法转化为乘法,最后约分计算.【解答】解:(1)原式==4;(2)原式===ab.【点评】本题考查了实数的混合运算,特殊角的三角函数值,零指数幂,分式的混合运算,解题的关键是熟练掌握运算法则.27.计算:4sin45°.【考点】实数的运算;零指数幂;特殊角的三角函数值.【专题】实数;运算能力.【分析】根据负指数幂、二次根式的化简、零指数幂、特殊角三角函数值的性质进行化简,然后根据实数运算法则进行计算即可得出答案.【解答】解:原式=1+2﹣4×=1+2﹣2=1.【点评】本题主要考查了实数混合运算,特殊角三角函数值,正确化简各数是解决本题的关键.28.计算.【考点】分式的混合运算.【专题】分式;运算能力.【分析】根据分式的加减法和除法可以解答本题.【解答】解:=[﹣+]===.【点评】本题考查分式的混合运算,解答本题的关键是明确分式混合运算的计算方法.29.计算:(1)|﹣2|﹣20210+﹣()﹣1;(2)(1+)÷.【考点】实数的运算;分式的混合运算;零指数幂;负整数指数幂.【专题】计算题;实数;分式;运算能力.【分析】(1)先分别化简绝对值,零指数幂,立方根,负整数指数幂,然后再计算;(2)分式的混合运算,先算小括号里面的,然后算括号外面的.【解答】解:(1)原式=2﹣1+2﹣2=1;(2)原式===.【点评】本题考查实数的混合运算,零指数幂,负整数指数幂,分式的混合运算,掌握运算顺序和计算法则是解题基础.30.先化简,再求值:(1+)•,其中m=2.【考点】分式的化简求值.【专题】分式;运算能力.【分析】先将括号内两式通分化简,括号外分子因式分解,然后约分代入m的值求解.【解答】解:原式=()•,=•,=m+1,∵m=2,∴m+1=2+1=3.【点评】本题考查分式的化简求值,熟练掌握因式分解方法及分式运算法则是解题关键.。

专题01数与式的计算-2023年中考数学大题高分秘籍【江苏专用】(原卷版+解析)

专题01数与式的计算-2023年中考数学大题高分秘籍【江苏专用】(原卷版+解析)

2023年中考数学大题高分秘籍(江苏专用)专题01数与式的计算(1)实数的运算和在有理数范围内一样,值得一提的是,实数既可以进行加、减、乘、除、乘方运算,又可以进行开方运算,其中正实数可以开平方.(2)在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.(3)实数运算的“三个关键”①运算法则:乘方和开方运算、幂的运算、指数(特别是负整数指数,0指数)运算、根式运算、特殊三角函数值的计算以及绝对值的化简等.②运算顺序:先乘方,再乘除,后加减,有括号的先算括号里面的,在同一级运算中要从左到右依次运算,无论何种运算,都要注意先定符号后运算.③运算律的使用:使用运算律可以简化运算,提高运算速度和准确度.2.(1)有乘方、乘除的混合运算中,要按照先乘方后乘除的顺序运算,其运算顺序和有理数的混合运算顺序相似.(2)“整体”思想在整式运算中较为常见,适时采用整体思想可使问题简单化,并且迅速地解决相关问题,此时应注意被看做整体的代数式通常要用括号括起来.(3)整式的化简求值:先按运算顺序把整式化简,再把对应字母的值代入求整式的值.有乘方、乘除的混合运算中,要按照先乘方后乘除的顺序运算,其运算顺序和有理数的混合运算顺序相似.3.(1)分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序;先乘方,再乘除,然后加减,有括号的先算括号里面的.最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.分式的混合运算,一般按常规运算顺序,但有时应先根据题目的特点,运用乘法的运算律进行灵活运算.(2)分式的化简求值:先把分式化简后,再把分式中未知数对应的值代入求出分式的值.在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.二次根式的混合运算是二次根式乘法、除法及加减法运算法则的综合运用.学习二次根式的混合运算应注意以下几点:①与有理数的混合运算一致,运算顺序先乘方再乘除,最后加减,有括号的先算括号里面的.②在运算中每个根式可以看做是一个“单项式“,多个不同类的二次根式的和可以看作“多项式“. ③二次根式的运算结果要化为最简二次根式.④在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.一.解答题(共14小题)1.(2022•淮安)(1)计算:|﹣5|+(3−√2)0﹣2tan45°;(2)化简:aa 2−9÷(1+3a−3). 2.(2022•徐州)计算:(1)(﹣1)2022+|√3−3|﹣(13)﹣1+√9; (2)(1+2x )÷x 2+4x+4x 2. 3.(2022•镇江)(1)计算:(12)﹣1﹣tan45°+|√2−1|;(2)化简:(1−1a )÷(a −1a ).4.(2022•南通)(1)计算:2aa 2−4⋅a−2a +aa+2;(2)解不等式组:{2x −1>x +14x −1≥x +8. 5.(2022•常州)计算:(1)(√2)2﹣(π﹣3)0+3﹣1; (2)(x +1)2﹣(x ﹣1)(x +1).6.(2022•无锡)计算:(1)|−12|×(−√3)2﹣cos60°;(2)a (a +2)﹣(a +b )(a ﹣b )﹣b (b ﹣3).7.(2022•扬州)计算:(1)2cos45°+(π−√3)0−√8;(2)(2m−1+1)÷2m+2m 2−2m+1. 8.(2021•无锡)计算:(1)(13)﹣2+√27−|﹣4|; (2)x+1x 2−2x+1÷(1−21−x ). 9.(2021•镇江)(1)计算:(1−√2)0﹣2sin45°+√2;(2)化简:(x 2﹣1)÷(1−1x )﹣x .10.(2021•南通)(1)化简求值:(2x ﹣1)2+(x +6)(x ﹣2),其中x =−√3;(2)解方程2x−3−3x =0.11.(2021•徐州)计算:(1)|﹣2|﹣20210+√83−(12)﹣1;(2)(1+2a+1a 2)÷a+1a .12.(2021•无锡)计算:(1)|−12|﹣(﹣2)3+sin30°;(2)4a −a+82a .13.(2021•扬州)计算或化简:(1)(−13)0+|√3−3|+tan60°.(2)(a +b )÷(1a +1b ).14.(2022•泰州)(1)计算:√18−√3×√23;(2)按要求填空:小王计算2xx 2−4−1x+2的过程如下:解:2x x 2−4−1x+2=2x (x+2)(x−2)−1x+2⋯⋯第一步=2x (x+2)(x−2)−x−2(x+2)(x−2)⋯⋯第二步=2x−x−2⋯⋯第三步(x+2)(x−2)=x−2⋯⋯第四步(x+2)(x−2)=1x+2.……第五步小王计算的第一步是(填“整式乘法”或“因式分解”),计算过程的第步出现错误.直接写出正确的计算结果是.一.解答题(共30小题)1.(2022•靖江市校级模拟)计算与化简:(1)√27−2cos30°+(12)﹣2﹣|1−√3|. (2)先化简,再求值:m 2−4m+4m−1÷(3m−1−m −1),其中m =√3−2.2.(2022•海陵区校级三模)(1)计算:(2+√3)0+3tan30°﹣|√3−2|+(12)﹣1;(2)先化简,再求值:(1+1x+1)÷x 2−42x+2,其中x =1. 3.(2022•亭湖区校级三模)计算:(1)2sin30°+|﹣2|+(√2−1)0−√4;(2)(x ﹣1)(x +1)﹣(x ﹣2)2.4.(2022•泉山区校级三模)(1)计算(π−3.14)0+(13)−2−(−2)3;(2)化简:(1a+1−1a 2−1)÷a−3a+1. 5.(2022•天宁区校级二模)计算:(1)(−2)2+3×(−2)−(14)−2;(2)化简,再求值(x ﹣2)(x +2)﹣(﹣x +2)2,其中x =3.6.(2022•丹徒区模拟)(1)计算:|3﹣π|﹣2sin45°+(1−√2)0;(2)化简:x ﹣(x 2﹣1)÷(1−1x ).7.(2022•邗江区二模)(1)计算:2cos45°+|2−√2|−(2022)0;(2)化简:x 2−1x ÷(1x +1). 8.(2022•海门市二模)(1)先化简,再求值:(a +1)(2﹣a )+(a +3)2,其中a =﹣1;(2)解方程:x+1x−1−4x 2−1=1.9.(2022•鼓楼区校级二模)计算:(1)|−4|−20220+√273−(13)−1;(2)(a +2a+1a )÷a 2−1a .10.(2022•鼓楼区校级三模)计算:(1)20220﹣(−12)﹣1﹣|3−√8|; (2)(1+1x−2)÷x−1x−2.11.(2022•淮安模拟)(1)计算:√4−(√2−1)0﹣|√3−2|+4cos60°;(2)化简:mm 2−9÷(1+3m−3). 12.(2022•高邮市模拟)(1)计算:cos60°+(﹣2)﹣1−|1−√13|;(2)化简:(a −1−a−1a )÷a 2−1a . 13.(2022•江都区二模)计算或化简:(1)−16×(34−18)+(−2)3÷4;(2)(a −1a )×a 2a−1. 14.(2022•启东市二模)(1)计算:(a −1+2a+1)÷(a 2+1); (2)解不等式组:{x 2+1>02(x −1)+3≥3x .15.(2022•如皋市二模)(1)解方程:1x−4=2x−2;(2)先化简,再求值:(4ab 3﹣8a 2b 2)÷4ab +(2a +b )(2a ﹣b ),其中a =2,b =﹣1.16.(2022•海陵区二模)(1)计算:(4﹣π)0+(13)﹣1﹣2cos45°; (2)化简:(1+1x−1)÷x x 2−1. 17.(2022•丰县二模)计算:(1)(﹣1)2022+|﹣4|+(12)﹣1−√273; (2)(1−1a )÷a 2−2a+1a. 18.(2022•淮阴区模拟)先化简,再求值:x 2x 2−4x+4÷(1+2x−2),其中x =12. 19.(2022•常州一模)计算与化简.(1)计第:π0+(12)−1−(√3)2; (2)先化简,再求值:(x +1)2﹣x (x +1),其中x =2.20.(2022•仪征市二模)计算:(1)|√2−2|+2sin45°−(12)−1;(2)m m−n +n n−m .21.(2022•天宁区校级二模)计算:√9+(13)−1−2cos45°+|1−√2|.22.(2022•盐城一模)如果m 2﹣4m ﹣7=0,求代数式(m 2−m−4m+3+1)÷m+1m 2−9的值. 23.(2022•盐城一模)计算:√−273+|1−tan60°|+(−12)−2.24.(2022•广陵区一模)(1)计算:√12−3tan30°−(12)−2;(2)化简:x−3x−2÷(x +2−5x−2).25.(2022•江都区校级模拟)计算或化简:(1)(π−3.14)0+2cos30°+|√3−2|;(2)x+3x+1÷x 2+6x+9x 2−1.26.(2022•姜堰区二模)(1)计算:2a 2b 2•ab 4+(﹣3ab 2)3;(2)化简:1−m−2m ÷m 2−4m 2+m. 27.(2022•泰兴市一模)(1)计算:(12)−1−(√2+1)0+cos60°;(2)先化简:(x+1x−1−11−x )÷2+x x 2−x ,然后从﹣3<x <0的范围内选取一个合适的整数作为x 的值代入求值.28.(2022•新吴区二模)计算:(1)|−3|−(12)−2+(√3−π)0;(2)(x ﹣1)2﹣2(x +1).29.(2022•江阴市模拟)计算:(1)2﹣1+|﹣1|﹣(√3−π)0; (2)a 2a−1+11−a .30.(2022•徐州二模)(1)计算:(12)−2−tan45°−(π−3)0+√4;(2)化简:(1−1x+2)÷x 2−1x+2.2023年中考数学大题高分秘籍(江苏专用)实数既可以进行加、减、乘、除、乘方运算,又可以进行开方运算,其中正实数可以开平方.(2)在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.(3)实数运算的“三个关键”①运算法则:乘方和开方运算、幂的运算、指数(特别是负整数指数,0指数)运算、根式运算、特殊三角函数值的计算以及绝对值的化简等.②运算顺序:先乘方,再乘除,后加减,有括号的先算括号里面的,在同一级运算中要从左到右依次运算,无论何种运算,都要注意先定符号后运算.③运算律的使用:使用运算律可以简化运算,提高运算速度和准确度.4.(的混合运算顺序相似.(2)“整体”思想在整式运算中较为常见,适时采用整体思想可使问题简单化,并且迅速地解决相关问题,此时应注意被看做整体的代数式通常要用括号括起来.(3)整式的化简求值:先按运算顺序把整式化简,再把对应字母的值代入求整式的值.有乘方、乘除的混合运算中,要按照先乘方后乘除的顺序运算,其运算顺序和有理数的混合运算顺序相似.5.(式与数有相同的混合运算顺序;先乘方,再乘除,然后加减,有括号的先算括号里面的.最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.分式的混合运算,一般按常规运算顺序,但有时应先根据题目的特点,运用乘法的运算律进行灵活运算.(2)分式的化简求值:先把分式化简后,再把分式中未知数对应的值代入求出分式的值.在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.除法及加减法运算法则的综合运用.学习二次根式的混合运算应注意以下几点:①与有理数的混合运算一致,运算顺序先乘方再乘除,最后加减,有括号的先算括号里面的.②在运算中每个根式可以看做是一个“单项式“,多个不同类的二次根式的和可以看作“多项式“.③二次根式的运算结果要化为最简二次根式.④在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.1.(2022•淮安)(1)计算:|﹣5|+(3−√2)0﹣2tan45°;(2)化简:aa2−9÷(1+3a−3).【分析】(1)先计算零次幂、代入特殊角的函数值,再化简绝对值,最后算加法;(2)先通分计算括号里面的,再把除法转化为乘法.【解析】(1)原式=5+1﹣2×1=5+1﹣2=4;(2)原式=a(a+3)(a−3)÷a a−3=a(a+3)(a−3)×a−3a =1a+3.2.(2022•徐州)计算:(1)(﹣1)2022+|√3−3|﹣(13)﹣1+√9;(2)(1+2x)÷x2+4x+4x2.【分析】(1)根据有理数的乘方、绝对值和负整数指数幂可以解答本题;(2)先算括号内的式子,然后计算括号外的除法即可.【解析】(1)(﹣1)2022+|√3−3|﹣(13)﹣1+√9=1+3−√3−3+3=4−√3;(2)(1+2x)÷x2+4x+4x2=x+2x•x2 (x+2)2=x x+2.3.(2022•镇江)(1)计算:(12)﹣1﹣tan45°+|√2−1|; (2)化简:(1−1a )÷(a −1a ).【分析】(1)利用负整数指数幂的运算、特殊角的三角函数值、去绝对值的法则计算即可;(2)利用分式的混合运算来做即可.【解析】(1)原式=2﹣1+√2−1=√2;(2)原式=(a a −1a )÷(a 2a −1a ) =a−1a ×a a 2−1=a−1(a−1)(a+1)=1a+1.4.(2022•南通)(1)计算:2aa 2−4⋅a−2a +a a+2;(2)解不等式组:{2x −1>x +14x −1≥x +8. 【分析】(1)利用分式的混合运算法则运算即可;(2)分别求得不等式组中两个不等式的解集,取它们的公共部分即可得出结论.【解析】(1)原式=2a (a+2)(a−2)⋅a−2a +a a+2=2a+2+a a+2=a+2a+2 =1;(2)不等式2x ﹣1>x +1的解集为:x >2,不等式4x ﹣1≥x +8的解集为:x ≥3,它们的解集在数轴上表示为:∴不等式组的解集为:x ≥3.5.(2022•常州)计算:(1)(√2)2﹣(π﹣3)0+3﹣1; (2)(x +1)2﹣(x ﹣1)(x +1).【分析】(1)利用实数的运算法则、零指数幂的性质、负整数指数幂的性质分别化简得出答案;(2)利用完全平方公式,以及平方差公式化简,去括号合并即可得出答案.【解析】(1)原式=2﹣1+1 3=43;(2)原式=(x2+2x+1)﹣(x2﹣1)=x2+2x+1﹣x2+1=2x+2.6.(2022•无锡)计算:(1)|−12|×(−√3)2﹣cos60°;(2)a(a+2)﹣(a+b)(a﹣b)﹣b(b﹣3).【分析】(1)根据绝对值,二次根式的性质,特殊角的三角函数值计算即可;(2)根据单项式乘多项式,平方差公式化简,去括号,合并同类项即可.【解析】(1)原式=12×3−12=32−12=1;(2)原式=a2+2a﹣(a2﹣b2)﹣b2+3b =a2+2a﹣a2+b2﹣b2+3b=2a+3b.7.(2022•扬州)计算:(1)2cos45°+(π−√3)0−√8;(2)(2m−1+1)÷2m+2m2−2m+1.【分析】(1)根据特殊角的三角函数值、零指数幂、二次根式的性质计算即可;(2)根据分式的混合运算法则计算.【解析】(1)原式=2×√22+1﹣2√2=√2+1﹣2√2=1−√2;(2)原式=(2m−1+m−1m−1)•(m−1)22(m+1)=m+1 m−1•(m−1)2 2(m+1)=m−12.8.(2021•无锡)计算:(1)(13)﹣2+√27−|﹣4|; (2)x+1x 2−2x+1÷(1−21−x ). 【分析】(1)根据负整数指数幂的、二次根式的性质以及绝对值的性质即可求出答案.(2)根据分式的加减运算以及分式的乘除运算即可求出答案.【解析】(1)原式=9+3√3−4=5+3√3.(2)原式=x+1(x−1)2÷1−x−21−x =x+1(x−1)2÷x+1x−1 =x+1(x−1)2•x−1x+1=1x−1.9.(2021•镇江)(1)计算:(1−√2)0﹣2sin45°+√2;(2)化简:(x 2﹣1)÷(1−1x )﹣x .【分析】(1)根据零指数幂的意义、特殊角的锐角三角函数值即可求出答案.(2)根据分式的加减运算以及乘除运算法则即可求出答案.【解析】(1)原式=1﹣2×√22+√2=1.(2)原式=(x +1)(x ﹣1)÷x−1x −x =(x +1)(x ﹣1)•x x−1−x=x (x +1)﹣x=x (x +1﹣1)=x 2. 10.(2021•南通)(1)化简求值:(2x ﹣1)2+(x +6)(x ﹣2),其中x =−√3;(2)解方程2x−3−3x =0.【分析】(1)根据整式的加减运算以及乘除运算法则进行化简,然后将x 的值代入原式即可求出答案.(2)根据分式的方程的解法即可求出答案.【解析】(1)原式=4x 2﹣4x +1+x 2+4x ﹣12=5x 2﹣11,当x =−√3时,原式=5×3﹣11=15﹣11=4.(2)2x−3−3x =0, 2x−3=3x ,2x =3x ﹣9,x =9,检验:将x =9代入x (x ﹣3)≠0,∴x =9是原方程的解.11.(2021•徐州)计算:(1)|﹣2|﹣20210+√83−(12)﹣1; (2)(1+2a+1a 2)÷a+1a . 【分析】(1)先分别化简绝对值,零指数幂,立方根,负整数指数幂,然后再计算;(2)分式的混合运算,先算小括号里面的,然后算括号外面的.【解析】(1)原式=2﹣1+2﹣2=1;(2)原式=a 2+2a+1a 2÷a+1a =(a+1)2a 2⋅a a+1 =a+1a . 12.(2021•无锡)计算:(1)|−12|﹣(﹣2)3+sin30°;(2)4a −a+82a .【分析】(1)根据绝对值的意义,乘方的意义以及特殊角的锐角三角函数的值即可求出答案.(2)根据分式的加减运算法则即可求出答案.【解析】(1)原式=12+8+12=1+8=9.(2)原式=82a−a+82a=−a2a=−12.13.(2021•扬州)计算或化简:(1)(−13)0+|√3−3|+tan60°.(2)(a+b)÷(1a +1b).【分析】(1)分别化简各数,再作加减法;(2)先通分,计算加法,再将除法转化为乘法,最后约分计算.【解析】(1)原式=1+3−√3+√3=4;(2)原式=(a+b)÷a+b ab=(a+b)×aba+b =ab.14.(2022•泰州)(1)计算:√18−√3×√2 3;(2)按要求填空:小王计算2xx2−4−1x+2的过程如下:解:2xx2−4−1 x+2=2x(x+2)(x−2)−1x+2⋯⋯第一步=2x(x+2)(x−2)−x−2(x+2)(x−2)⋯⋯第二步=2x−x−2(x+2)(x−2)⋯⋯第三步=x−2(x+2)(x−2)⋯⋯第四步=1x+2.……第五步小王计算的第一步是因式分解(填“整式乘法”或“因式分解”),计算过程的第三步出现错误.直接写出正确的计算结果是1x−2.【分析】(1)原式利用二次根式乘法法则计算,合并即可得到结果;(2)观察解题的过程,分析第一步变形的依据,找出出错的步骤,计算出正确的结果即可.【解析】(1)原式=3√2−√3×23=3√2−√2=2√2;(2)2xx 2−4−1x+2 =2x (x+2)(x−2)−1x+2 =2x (x+2)(x−2)−x−2(x+2)(x−2)=2x−(x−2)(x+2)(x−2)=2x−x+2(x+2)(x−2) =x+2(x+2)(x−2)=1x−2,小王计算的第一步是因式分解,计算过程的第三步出现错误.直接写出正确的计算结果是1x−2.故答案为:因式分解,三,1x−2.(1)√27−2cos30°+(12)﹣2﹣|1−√3|. (2)先化简,再求值:m 2−4m+4m−1÷(3m−1−m −1),其中m =√3−2.【分析】(1)先算二次根式的化简,特殊角的三角函数值,负整数指数幂,绝对值,再算加减即可;(2)先通分,再把除法转为乘法,把能进行分解的因式进行分解,最后约分,把相应的值代入运算即可.【解析】(1)√27−2cos30°+(12)﹣2﹣|1−√3| =3√3−2×√32+4﹣(√3−1) =3√3−√3+4−√3+1=√3+5;(2)m 2−4m+4m−1÷(3m−1−m −1)=(m−2)2m−1÷(3m−1−m2−1m−1)=(m−2)2m−1÷4−m2m−1=(2−m)2m−1⋅m−1 (2−m)(2+m)=2−m2+m,当m=√3−2时,原式=2−(√3−2) 2+√3−2=4−√3√3=4√3−33.2.(2022•海陵区校级三模)(1)计算:(2+√3)0+3tan30°﹣|√3−2|+(12)﹣1;(2)先化简,再求值:(1+1x+1)÷x2−42x+2,其中x=1.【分析】(1)先算零指数幂,特殊角的三角函数值,绝对值,负整数指数幂,再算加减即可;(2)先通分,把除法转为乘法,把能分解的因式进行分解,最后约分,再把相应的值代入运算即可.【解析】(1)(2+√3)0+3tan30°﹣|√3−2|+(12)﹣1=1+3×√33−(2−√3)+2=1+√3−2+√3+2 =2√3+1;(2)(1+1x+1)÷x2−42x+2=x+2 x+1⋅2(x+1) (x−2)(x+2)=2x−2,当x=1时,原式=2 1−2=﹣2.3.(2022•亭湖区校级三模)计算:(1)2sin30°+|﹣2|+(√2−1)0−√4;(2)(x﹣1)(x+1)﹣(x﹣2)2.【分析】(1)根据特殊锐角三角函数值,代入计算即可;(2)根据平方差公式、完全平方公式进行计算即可.【解析】(1)原式=2×12+2+1﹣2=1+2+1﹣2=2;(2)原式=x2﹣1﹣x2+4x﹣4=4x﹣5.4.(2022•泉山区校级三模)(1)计算(π−3.14)0+(13)−2−(−2)3;(2)化简:(1a+1−1a2−1)÷a−3a+1.【分析】(1)根据零指数幂、负整数指数幂和有理数的乘方计算即可;(2)先算括号内的式子,再计算括号外的除法即可.【解析】(1)(π−3.14)0+(13)−2−(−2)3=1+9﹣(﹣8)=1+9+8=18;(2)(1a+1−1a2−1)÷a−3a+1=a−1−1 (a+1)(a−1)•a+1 a−3=a−2(a−1)(a−3)=a−2a2−4a+3.5.(2022•天宁区校级二模)计算:(1)(−2)2+3×(−2)−(14)−2;(2)化简,再求值(x﹣2)(x+2)﹣(﹣x+2)2,其中x=3.【分析】1)先根据乘方、负整数次幂进行计算,然后再进行计算即可;(2)先用平方差公式和完全平方公式进行计算,然后再合并同类项即可.【解答】((1)解:(−2)2+3×(−2)−(14)−2=4+3×(﹣2)﹣16=4﹣6﹣16=﹣18.(2)解:(x﹣2)(x+2)﹣(﹣x+2)2=x2﹣4﹣(x2﹣4x+4)=x2﹣4﹣x2+4x﹣4=4x ﹣8当x=3时,原式=4x﹣8=4×3﹣8=4.6.(2022•丹徒区模拟)(1)计算:|3﹣π|﹣2sin45°+(1−√2)0;(2)化简:x﹣(x2﹣1)÷(1−1 x).【分析】(1)根据绝对值的性质,特殊角的锐角三角函数,零指数幂的意义即可求出答案.(2)根据分式的加减运算法则以及乘除运算法则即可求出答案.【解析】(1)原式=π﹣3﹣2×√22+1=π﹣3−√2+1=π﹣2−√2.(2)原式=x ﹣(x +1)(x ﹣1)•x x−1 =x ﹣x (x +1)=x ﹣x 2﹣x=﹣x 2.7.(2022•邗江区二模)(1)计算:2cos45°+|2−√2|−(2022)0;(2)化简:x 2−1x ÷(1x +1). 【分析】(1)先计算零指数幂,并把特殊角的三角函数值代入,化简绝对值符号,再计算加减即可;(2)先按分式加法计算括号内的式子,再按分式除法法则计算即可.【解析】(1)原式=2×√22+2−√2−1=√2+2−√2−1=1;(2)原式=(x+1)(x−1)x ÷1+x x =(x+1)(x−1)x⋅x x+1 =x ﹣1.8.(2022•海门市二模)(1)先化简,再求值:(a +1)(2﹣a )+(a +3)2,其中a =﹣1;(2)解方程:x+1x−1−4x 2−1=1.【分析】(1)先根据多项式乘多项式和完全平方公式进行计算,再合并同类项,最后代入求出答案即可;(2)方程两边都乘(x +1)(x ﹣1)得出(x +1)2﹣4=(x +1)(x ﹣1),求出方程的解,再进行检验即可.【解析】(1)(a +1)(2﹣a )+(a +3)2=2a ﹣a 2+2﹣a +a 2+6a +9=7a +11,当a =﹣1时,原式=7×(﹣1)+11=﹣7+11=4;(2)x+1x−1−4x 2−1=1,方程两边都乘(x +1)(x ﹣1),得(x +1)2﹣4=(x +1)(x ﹣1), 解得:x =1,检验:当x =1时,(x +1)(x ﹣1)=0,所以x =1是增根,即原方程无解.9.(2022•鼓楼区校级二模)计算:(1)|−4|−20220+√273−(13)−1; (2)(a +2a+1a )÷a 2−1a . 【分析】(1)先化简各式,然后再进行计算即可解答;(2)先利用异分母分式加减法计算括号里,再算括号外,即可解答.【解析】(1)|−4|−20220+√273−(13)−1=4﹣1+3﹣3=3;(2)(a +2a+1a )÷a 2−1a=a 2+2a+1a •a (a+1)(a−1)=(a+1)2a •a (a+1)(a−1) =a+1a−1. 10.(2022•鼓楼区校级三模)计算:(1)20220﹣(−12)﹣1﹣|3−√8|;(2)(1+1x−2)÷x−1x−2.【分析】(1)先算零指数幂,负整数指数幂,绝对值,再算加减即可;(2)先通分,把能分解的进行分解,除法转为乘法,最后约分即可.【解析】(1)20220﹣(−12)﹣1﹣|3−√8| =1﹣(﹣2)﹣(3﹣2√2)=1+2﹣3+2√2=2√2;(2)(1+1x−2)÷x−1x−2=x−1x−2⋅x−2x−1=1.11.(2022•淮安模拟)(1)计算:√4−(√2−1)0﹣|√3−2|+4cos60°;(2)化简:mm 2−9÷(1+3m−3). 【分析】(1)应用算术平方根,零指数幂,绝对值,特殊角三角函数值进行计算即可得出答案;(2)应用分式的混合运算法则进行计算即可得出答案.【解析】(1)原式=2﹣1﹣(2−√3)+4×12=1﹣2+√3+2=1+√3;(2)原式=m (m+3)(m−3)÷(m−3m−3+3m−3) =m (m+3)(m−3)×m−3m =1m+3. 12.(2022•高邮市模拟)(1)计算:cos60°+(﹣2)﹣1−|1−√13|;(2)化简:(a −1−a−1a )÷a 2−1a . 【分析】(1)应用特殊角三角函数值,负整数指数幂,绝对值的运算法则进行计算即可得出答案;(2)应用分式的混合运算法则进行计算即可得出答案.【解析】(1)原式=12+1(−2)−(1−√33)=12−12−1+√33=﹣1+√33;(2)原式=(a(a−1)a −a−1a ]×a (a+1)(a−1)=a 2−2a+1a ×a (a+1)(a−1)=(a−1)2a ×a (a+1)(a−1) =a−1a+1.13.(2022•江都区二模)计算或化简:(1)−16×(34−18)+(−2)3÷4;(2)(a −1a )×a 2a−1.【分析】(1)先算乘方,再算乘除,后算加减,即可解答;(2)先算括号里,再算括号外,即可解答.【解析】(1)−16×(34−18)+(−2)3÷4=﹣16×58+(﹣8)÷4=﹣10+(﹣2)=﹣12;(2)(a −1a )×a 2a−1=a 2−1a •a 2a−1=(a+1)(a−1)a •a 2a−1 =a (a +1)=a 2+a .14.(2022•启东市二模)(1)计算:(a −1+2a+1)÷(a 2+1);(2)解不等式组:{x 2+1>02(x −1)+3≥3x .【分析】(1)先算括号内的式子,然后计算括号外的除法即可;(2)先解出每个不等式的解集,即可得到不等式组的解集.【解析】(1)(a −1+2a+1)÷(a 2+1)=(a−1)(a+1)+2a+1•1a 2+1 =a 2−1+2a+1•1a 2+1=a 2+1a+1•1a 2+1=1a+1; (2){x 2+1>0①2(x −1)+3≥3x ②, 解不等式①,得:x >﹣2,解不等式②,得:x ≤1,故原不等式组的解集是﹣2<x ≤1.15.(2022•如皋市二模)(1)解方程:1x−4=2x−2;(2)先化简,再求值:(4ab 3﹣8a 2b 2)÷4ab +(2a +b )(2a ﹣b ),其中a =2,b =﹣1.【分析】(1)根据分式方程的解法即可求出答案.(2)根据整式的乘除运算以及加减运算进行化简,然后将a 与b 的值代入原式即可求出答案.【解析】(1)1x−4=2x−2,x ﹣2=2(x ﹣4),x ﹣2=2x ﹣8,x ﹣2x =2﹣8,x =6,经检验:x =6是原分式方程的解.(2)原式=b 2﹣2ab +4a 2﹣b 2=4a 2﹣2ab ,当a =2,b =﹣1时,原式=4×4﹣2×2×(﹣1)=16+4=20.16.(2022•海陵区二模)(1)计算:(4﹣π)0+(13)﹣1﹣2cos45°; (2)化简:(1+1x−1)÷x x 2−1. 【分析】(1)根据零指数幂的意义、负整数指数幂的意义以及特殊角的锐角三角函数值即可求出答案(2)根据分式的加减运算以及乘除运算即可求出答案.【解析】(1)原式=1+3﹣2×√22=4−√2.(2)原式=x−1+1x−1•(x+1)(x−1)x =x x−1•(x+1)(x−1)x=x +1.17.(2022•丰县二模)计算:(1)(﹣1)2022+|﹣4|+(12)﹣1−√273; (2)(1−1a )÷a 2−2a+1a. 【分析】(1)根据有理数的乘方、绝对值、负整数指数幂和立方很可以解答本题;(2)先算括号内的式子,然后计算括号外的除法即可.【解析】(1)(﹣1)2022+|﹣4|+(12)﹣1−√273 =1+4+2﹣3=4;(2)(1−1a )÷a 2−2a+1a=a−1a ⋅a (a−1)2=1a−1.18.(2022•淮阴区模拟)先化简,再求值:x 2x 2−4x+4÷(1+2x−2),其中x =12. 【分析】先算括号内的加法,再算括号外的除法,然后将x 的值代入化简后的式子计算即可.【解析】x 2x 2−4x+4÷(1+2x−2) =x 2(x−2)2÷x−2+2x−2 =x 2(x−2)2⋅x−2x =x x−2,当x =12时,原式=1212−2=−13.19.(2022•常州一模)计算与化简.(1)计第:π0+(12)−1−(√3)2;(2)先化简,再求值:(x +1)2﹣x (x +1),其中x =2.【分析】(1)根据零指数幂的意义、负整数指数幂的意义以及二次根式的性质即可求出答案.(2)先根据整式的加减运算以及乘除运算法则,然后将x 的值代入原式即可求出答案.【解析】(1)原式=1+2﹣3=3﹣3=0.(2)原式=x 2+2x +1﹣x 2﹣x=x +1,当x =2时,原式=2+1=3.20.(2022•仪征市二模)计算:(1)|√2−2|+2sin45°−(12)−1;(2)m m−n +n n−m .【分析】(1)原式利用绝对值的代数意义,特殊角的三角函数值,以及负整数指数幂法则计算即可求出值;(2)原式变形后,利用同分母分式的减法法则计算即可求出值.【解析】(1)原式=2−√2+2×√22−2=2−√2+√2−2=0;(2)原式=m m−n −n m−n=m−n m−n=1. 21.(2022•天宁区校级二模)计算:√9+(13)−1−2cos45°+|1−√2|.【分析】直接利用负整数指数幂的性质以及特殊角的三角函数值、绝对值的性质、二次根式的性质分别化简,进而合并得出答案.【解析】原式=3+3﹣2×√22+√2−1=3+3−√2+√2−1=5.22.(2022•盐城一模)如果m 2﹣4m ﹣7=0,求代数式(m 2−m−4m+3+1)÷m+1m 2−9的值. 【分析】先通分算括号内的,把除化为乘,把分式化简后再整体代入求值.【解析】原式=m 2−m−4+m+3m+3•(m+3)(m−3)m+1=(m+1)(m−1)m+3•(m+3)(m−3)m+1=(m ﹣1)(m ﹣3)=m 2﹣4m +3,∵m 2﹣4m ﹣7=0,∴m 2﹣4m =7,∴原式=7+3=10.23.(2022•盐城一模)计算:√−273+|1−tan60°|+(−12)−2.【分析】直接利用负整数指数幂的性质以及绝对值的性质、特殊角的三角函数值、立方根的性质分别化简,进而合并得出答案.【解析】原式=﹣3+|1−√3|+4=﹣3+√3−1+4=√3.24.(2022•广陵区一模)(1)计算:√12−3tan30°−(12)−2;(2)化简:x−3x−2÷(x +2−5x−2).【分析】(1)根据算术平方根、特殊角的三角函数值、负整数指数幂可以解答本题;(2)先算括号内的式子,然后计算括号外的除法即可.【解析】(1)√12−3tan30°−(12)−2=2√3−3×√33−4=2√3−√3−4=√3−4;(2)x−3x−2÷(x +2−5x−2) =x−3x−2÷(x+2)(x−2)−5x−2=x−3x−2•x−2x 2−9=x−3x−2•x−2(x+3)(x−3) =1x+3. 25.(2022•江都区校级模拟)计算或化简:(1)(π−3.14)0+2cos30°+|√3−2|;(2)x+3x+1÷x 2+6x+9x 2−1.【分析】(1)根据零指数幂的意义、特殊角的锐角三角函数值、绝对值的性质即可求出答案.(2)根据分式的乘除运算法则即可求出答案.【解析】(1)原式=1+2×√32+2−√3=1+√3+2−√3=3.(2)原式=x+3x+1÷(x+3)2(x+1)(x−1)=x+3 x+1•(x+1)(x−1) (x+3)2=x−1x+3.26.(2022•姜堰区二模)(1)计算:2a2b2•ab4+(﹣3ab2)3;(2)化简:1−m−2m÷m2−4m2+m.【分析】(1)先算乘方,再算单项式乘单项式,然后合并同类项即可;(2)先算除法,再算减法即可.【解析】(1)2a2b2•ab4+(﹣3ab2)3=2a2b2•ab4+(﹣27a3b6)=2a3b6+(﹣27a3b6)=﹣25a3b6;(2)1−m−2m÷m2−4m2+m=1−m−2m⋅m(m+1)(m+2)(m−2)=1−m+1 m+2=m+2−m−1m+2=1m+2.27.(2022•泰兴市一模)(1)计算:(12)−1−(√2+1)0+cos60°;(2)先化简:(x+1x−1−11−x)÷2+xx2−x,然后从﹣3<x<0的范围内选取一个合适的整数作为x的值代入求值.【分析】(1)先根据负整数指数幂,零指数幂和特殊角的三角函数值进行计算,再算加减即可;(2)先变形,再根据分式的加法法则算括号里面的,再根据分式的除法法则把除法变成乘法,算乘法,根据分式有意义的条件求出x不能为1,﹣2,0,根据x满足﹣3<x<0取x=﹣1,最后代入求出答案即可.【解析】(1)(12)−1−(√2+1)0+cos60°=2﹣1+1 2=32;(2)(x+1x−1−11−x)÷2+xx2−x=(x+1x−1+1x−1)÷x+2x(x−1) =x+1+1x−1•x(x−1)x+2 =x+2x−1•x(x−1)x+2=x ,要使分式(x+1x−1−11−x )÷2+x x 2−x有意义,x ﹣1≠0且x +2≠0且x ≠0, 即x 不能为1,﹣2,0,∵x 满足﹣3<x <0,∴取x =﹣1,当x =﹣1时,原式=﹣1.28.(2022•新吴区二模)计算:(1)|−3|−(12)−2+(√3−π)0;(2)(x ﹣1)2﹣2(x +1).【分析】(1)先化简绝对值,计算负指数幂和零指数幂,再进行有理数加减混合运算;(2)先利用完全平方公式和单项式乘以多项式法则计算,再合并同类项即可解答.【解析】(1))|−3|−(12)−2+(√3−π)0=3﹣4+1=0;(2))(x ﹣1)2﹣2(x +1)=x 2﹣2x +1﹣2x ﹣2=x 2﹣4x ﹣1.29.(2022•江阴市模拟)计算:(1)2﹣1+|﹣1|﹣(√3−π)0; (2)a 2a−1+11−a .【分析】(1)根据负整数指数幂,绝对值,零指数幂的定义计算即可.(2)根据同分母分式加减法法法则计算即可.【解析】(1)原式=12+1−1=12.(2)原式=a 2a−1−1a−1 =a 2−1a−1=(a−1)(a+1)a−1=a +1.30.(2022•徐州二模)(1)计算:(12)−2−tan45°−(π−3)0+√4;(2)化简:(1−1x+2)÷x2−1x+2.【分析】(1)先算负整数指数幂,零指数幂,算术平方根,把特殊角三角函数值代入,再合并即可;(2)先通分算括号内的,把除化为乘,再约分即可.【解析】(1)原式=4﹣1﹣1+2=4;(2)原式=x+2−1x+2•x+2(x+1)(x−1)=x+1 x+2•x+2 (x+1)(x−1)=1x−1.。

苏州市2019年中考数学《实数》专题练习(1)含答案

苏州市2019年中考数学《实数》专题练习(1)含答案

2019年中考数学专题练习1《实数》【知识归纳】1、有理数:像3、53-、119……这样的 或 。

2、数轴:规定了 、 和 的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。

3、相反数:只有 不同的两个数,如a 的相反数是 ,0的相反数仍是 。

若a 与b 互为相反数,则 .4、绝对值:正数的绝对值是它 ,负数的绝对值是它的 ,0的绝对值是0.任何实数的绝对值都是 ,a ≧0.互为相反数的两个数的绝对值相等,a =a -。

5、倒数: 没有倒数。

正数的倒数是正数,负数的倒数是负数。

若a 与b 互为倒数,则 .6、有理数的四则混合运算:(1)先乘方,再乘除,最后加减; (2)同级运算,从左到右进行;(4)如有括号,先做括号内的运算,按 ,中括号, 依次进行。

7、乘方:求n 个 的积的运算,叫做乘方,乘方的结果叫做 。

在a n 中,a 叫做 ,n 叫做 。

8、科学记数法:把一个数写做 的形式,其中101<≤a ,n 是整数,这种记数法叫做科学记数法。

9、平方根:如果一个数的平方等a ,那么这个数叫做a 的 或 ,0的平方根是0,负数 平方根。

a 的平方根记为a ±(a ≧0),读作“正负根号a ”,a 叫做被开方数。

10、算术平方根:如果一个正数的平方等于a ,那么这个正数叫做a 的 ,0的算术平方根为0。

a 的算术平方根记为a (a ≧0),读作“根号a ”,a 叫做被开方数。

11、立方根:如果一个数的立方等于a ,那么这个数叫做a 的 或 ,0的立方根是0,正数的立方根是正数,负数的立方根是负数。

3a -=的立方根记为3a ,读作“三次根号a ”,a 叫做 ,3是 。

12、无理数:像2、33、……这样的 。

13、实数: 和 统称为实数。

实数与数轴上的点 。

【基础检测】1.(2019·成都)在-3,-1,1,3四个数中,比-2小的数是( )A .-3B .-1C .1D .32.(2019·南京)数轴上点A 、B 表示的数分别是5,-3,它们之间的距离可以表示为( )A .-3+5B .-3-5C .|-3+5|D .|-3-5|3.(2019·毕节)下列说法正确的是( )A .一个数的绝对值一定比0大B .一个数的相反数一定比它本身小C .绝对值等于它本身的数一定是正数D .最小的正整数是14.(2019·宁夏)实数a 在数轴上的位置如图,则|a -3|=__ __.5.(2019·十堰)计算:|38 -4|-(12)-2=__ __. 6.|-5|+327-(13)-1; 【达标检测】一、选择题:1.(2019•南充)如果向右走5步记为+5,那么向左走3步记为( )A .+3B .﹣3C .+D .﹣2.(2019•攀枝花)下列各数中,不是负数的是( )A .﹣2B .3C .﹣D .﹣0.103.(2019•德州)2的相反数是( )A .B .C .﹣2D .2 4.(2019南宁)据《南国早报》报道:2019年广西高考报名人数约为332000人,创历史新高,其中数据332000用科学记数法表示为( )A .0.332×106B .3.32×105C .3.32×104D .33.2×1045.(2019河北)点A ,B 在数轴上的位置如图所示,其对应的数分别是a 和b.对于以下结论:第11题图甲:b-a<0; 乙:a+b>0;丙:|a|<|b|; 丁:0b a. 其中正确的是( )A .甲乙B .丙丁C .甲丙D .乙丁6.(2019·福建龙岩)(﹣2)3=( )A .﹣6B .6 C.﹣8 D .87.(2019·山东菏泽)当1<a <2时,代数式|a ﹣2|+|1﹣a|的值是( )A .﹣1B .1C .3D .﹣38. (2019•河北,第7题3分)在数轴上标注了四段范围,如图,则表示的点落在( )A . 段① B. 段② C. 段③ D. 段④二、填空题:9.(2019·重庆市)在﹣,0,﹣1,1这四个数中,最小的数是 .10.(2019·湖北武汉)计算5+(-3)的结果为_______.11.(2019•河北)计算:3﹣2×(﹣1)=( )12.(2019·青海西宁)青海日报讯:十五年免费教育政策已覆盖我省所有贫困家庭,首批惠及学生近86.1万人.将86.1万用科学记数法表示为 .13.(2019•广东东莞)观察下列一组数:,…,根据该组数的排列规律,可推出第10个数是 .三、解答题:14.(2019·宜昌)计算:(-2)2×(1-34).15.(2019·杭州)计算:6÷(-12+13). 方方同学的计算过程如下:原式=6÷(-12)+6÷13=-12+18=6.请你判断方方的计算过程是否正确,若不正确,请你写出正确的计算过程.16. (2019·厦门)计算:10+8×(-12)2-2÷15.17.(2019•茂名)为了求1+3+32+33+…+3100的值,可令M=1+3+32+33+…+3100,则3M=3+32+33+34+…+3101,因此,3M ﹣M=3101﹣1,所以M=,即1+3+32+33+…+3100=,仿照以上推理计算:1+5+52+53+…+52019的值.参考答案【知识归纳】1、有限小数或无限循环小数。

江苏省苏州市2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类

江苏省苏州市2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类

江苏省苏州市2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类一.实数的运算(共2小题)1.(2023•苏州)计算:|﹣2|﹣+32.2.(2021•苏州)计算:+|﹣2|﹣32.二.代数式求值(共1小题)3.(2022•苏州)已知3x2﹣2x﹣3=0,求(x﹣1)2+x(x+)的值.三.分式的化简求值(共2小题)4.(2021•苏州)先化简,再求值:(1+)•,其中x=﹣1.5.(2023•苏州)先化简,再求值:•﹣,其中a=.四.零指数幂(共1小题)6.(2022•苏州)计算:|﹣3|+22﹣(﹣1)0.五.解二元一次方程组(共1小题)7.(2021•苏州)解方程组:.六.解分式方程(共1小题)8.(2022•苏州)解方程:+=1.七.解一元一次不等式组(共1小题)9.(2023•苏州)解不等式组:.八.反比例函数图象上点的坐标特征(共1小题)10.(2021•苏州)如图,在平面直角坐标系中,四边形OABC为矩形,点C,A分别在x轴和y轴的正半轴上,点D为AB的中点.已知实数k≠0,一次函数y=﹣3x+k的图象经过点C、D,反比例函数y=(x>0)的图象经过点B,求k的值.九.反比例函数与一次函数的交点问题(共1小题)11.(2023•苏州)如图,一次函数y=2x的图象与反比例函数y=(x>0)的图象交于点A (4,n).将点A沿x轴正方向平移m个单位长度得到点B,D为x轴正半轴上的点,点B的横坐标大于点D的横坐标,连接BD,BD的中点C在反比例函数y=(x>0)的图象上.(1)求n,k的值;(2)当m为何值时,AB•OD的值最大?最大值是多少?一十.全等三角形的判定与性质(共1小题)12.(2023•苏州)如图,在△ABC中,AB=AC,AD为△ABC的角平分线.以点A圆心,AD 长为半径画弧,与AB,AC分别交于点E,F,连接DE,DF.(1)求证:△ADE≌△ADF;(2)若∠BAC=80°,求∠BDE的度数.一十一.圆内接四边形的性质(共1小题)13.(2021•苏州)如图,四边形ABCD 内接于⊙O ,∠1=∠2,延长BC 到点E ,使得CE =AB ,连接ED .(1)求证:BD =ED ;(2)若AB =4,BC =6,∠ABC =60°,求tan ∠DCB 的值.一十二.用样本估计总体(共1小题)14.(2022•苏州)某校九年级640名学生在“信息素养提升”培训前、后各参加了一次水平相同的测试,并以同一标准折算成“6分”、“7分”、“8分”、“9分”、“10分”5个成绩.为了解培训效果,用抽样调查的方式从中抽取了32名学生的2次测试成绩,并用划记法制成了如表表格:成绩(分)678910划记正正正正训前人数(人)124754成绩(分)678910划记一正正正正培训后人数(人)413915(1)这32名学生2次测试成绩中,培训前测试成绩的中位数是m ,培训后测试成绩的中位数是n,则m n;(填“>”、“<”或“=”)(2)这32名学生经过培训,测试成绩为“6分”的百分比比培训前减少了多少?(3)估计该校九年级640名学生经过培训,测试成绩为“10分”的学生增加了多少人?一十三.条形统计图(共2小题)15.(2023•苏州)某初中学校为加强劳动教育,开设了劳动技能培训课程.为了解培训效果,学校对七年级320名学生在培训前和培训后各进行一次劳动技能检测,两次检测项目相同,评委依据同一标准进行现场评估,分成“合格”、“良好”、“优秀”3个等级,依次记为2分、6分、8分(比如,某同学检测等级为“优秀”,即得8分).学校随机抽取32名学生的2次检测等级作为样本,绘制成下面的条形统计图:(1)这32名学生在培训前得分的中位数对应等级应为 ;(填“合格”、“良好”或“优秀”)(2)求这32名学生培训后比培训前的平均分提高了多少?(3)利用样本估计该校七年级学生中,培训后检测等级为“良好”与“优秀”的学生人数之和是多少?16.(2021•苏州)某学校计划在八年级开设“折扇”、“刺绣”、“剪纸”、“陶艺”四门校本课程,要求每人必须参加,并且只能选择其中一门课程,为了解学生对这四门课程的选择情况,学校从八年级全体学生中随机抽取部分学生进行问卷调查,并根据调查结果绘制成如图所示的条形统计图和扇形统计图(部分信息未给出).请你根据以上信息解决下列问题:(1)参加问卷调查的学生人数为 名,补全条形统计图(画图并标注相应数据);(2)在扇形统计图中,选择“陶艺”课程的学生占 %;(3)若该校八年级一共有1000名学生,试估计选择“刺绣”课程的学生有多少名?一十四.列表法与树状图法(共1小题)17.(2022•苏州)一只不透明的袋子中装有1个白球,3个红球,这些球除颜色外都相同.(1)搅匀后从中任意摸出1个球,这个球是白球的概率为 ;(2)搅匀后从中任意摸出1个球,记录颜色后放回,搅匀,再从中任意摸出1个球,求2次摸到的球恰好是1个白球和1个红球的概率.(请用画树状图或列表等方法说明理由)一十五.游戏公平性(共1小题)18.(2021•苏州)4张相同的卡片上分别写有数字0、1、﹣2、3,将卡片的背面朝上,洗匀后从中任意抽取1张,将卡片上的数字记录下来;再从余下的3张卡片中任意抽取1张,同样将卡片上的数字记录下来.(1)第一次抽取的卡片上数字是负数的概率为 ;(2)小敏设计了如下游戏规则:当第一次记录下来的数字减去第二次记录下来的数字所得结果为非负数时,甲获胜;否则,乙获胜.小敏设计的游戏规则公平吗?为什么?(请用树状图或列表等方法说明理由)江苏省苏州市2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类参考答案与试题解析一.实数的运算(共2小题)1.(2023•苏州)计算:|﹣2|﹣+32.【答案】9.【解答】解:原式=2﹣2+9=0+9=9.2.(2021•苏州)计算:+|﹣2|﹣32.【答案】﹣5.【解答】解:原式=2+2﹣9=﹣5.二.代数式求值(共1小题)3.(2022•苏州)已知3x2﹣2x﹣3=0,求(x﹣1)2+x(x+)的值.【答案】3.【解答】解:原式=x2﹣2x+1+x2+x=2x2﹣x+1,∵3x2﹣2x﹣3=0,∴x2﹣x=1,∴原式=2(x2﹣x)+1=2×1+1=3.三.分式的化简求值(共2小题)4.(2021•苏州)先化简,再求值:(1+)•,其中x=﹣1.【答案】x+1,.【解答】解:(1+)•=•=•=x+1,当x=﹣1时,原式=﹣1+1=.5.(2023•苏州)先化简,再求值:•﹣,其中a=.【答案】,﹣1.【解答】解:原式=•﹣=﹣==,当a=时,原式==﹣1.四.零指数幂(共1小题)6.(2022•苏州)计算:|﹣3|+22﹣(﹣1)0.【答案】6.【解答】解:原式=3+4﹣1=6.五.解二元一次方程组(共1小题)7.(2021•苏州)解方程组:.【答案】见试题解答内容【解答】解:由①式得y=3x+4,代入②式得x﹣2(3x+4)=﹣3解得x=﹣1将x=﹣1代入②式得﹣1﹣2y=﹣3,得y=1∴方程组解为六.解分式方程(共1小题)8.(2022•苏州)解方程:+=1.【答案】x=﹣.【解答】解:方程两边同乘以x(x+1)得:x2+3(x+1)=x(x+1),解整式方程得:x=﹣,经检验,x=﹣是原方程的解,∴原方程的解为x=﹣.七.解一元一次不等式组(共1小题)9.(2023•苏州)解不等式组:.【答案】.【解答】解:解不等式2x+1>0得x>﹣,解不等式得x<2.∴不等式组的解集是.八.反比例函数图象上点的坐标特征(共1小题)10.(2021•苏州)如图,在平面直角坐标系中,四边形OABC为矩形,点C,A分别在x轴和y轴的正半轴上,点D为AB的中点.已知实数k≠0,一次函数y=﹣3x+k的图象经过点C、D,反比例函数y=(x>0)的图象经过点B,求k的值.【答案】见试题解答内容【解答】解:把y=0代入y=﹣3x+k,得x=,∴C(,0),.∵BC⊥x轴,∴点B横坐标为,把x=代入y=,得y=3,∴B(,3),∵点D为AB的中点,∴AD=BD.∴D(,3),∵点D在直线y=﹣3x+k上,∴3=﹣3×+k,∴k=6.九.反比例函数与一次函数的交点问题(共1小题)11.(2023•苏州)如图,一次函数y=2x的图象与反比例函数y=(x>0)的图象交于点A (4,n).将点A沿x轴正方向平移m个单位长度得到点B,D为x轴正半轴上的点,点B的横坐标大于点D的横坐标,连接BD,BD的中点C在反比例函数y=(x>0)的图象上.(1)求n,k的值;(2)当m为何值时,AB•OD的值最大?最大值是多少?【答案】(1)8,32;(2)6,36.【解答】解:(1)将点A(4,n)代入y=2x,得:n=8,∴点A的坐标为(4,8),将点A(4,8)代入,得:k=32.(2)∵点B的横坐标大于点D的横坐标,∴点B在点D的右侧.过点C作直线EF⊥x轴于F,交AB于E,由平移的性质得:AB∥x轴,AB=m,∴∠B=∠CDF,∵点C为BD的中点,∴BC=DC,在△ECB和△FCD中,,∴△ECB≌△FCD(ASA),∴BE=DF,CE=CF.∵AB∥x轴,点A的坐标为(4,8),∴EF=8,∴CE=CF=4,∴点C的纵坐标为4,由(1)知:反比例函数的解析式为:,∴当y=4时,x=8,∴点C的坐标为(8,4),∴点E的坐标为(8,8),点F的坐标为(8,0),∵点A(4,8),AB=m,AB∥x轴,∴点B的坐标为(m+4,8),∴BE=m+4﹣8=m﹣4,∴DF=BE=m﹣4,∴OD=8﹣(m﹣4)=12﹣mAB•OD=m(12﹣m)=﹣(m﹣6)2+36∴当m=6时,AB•OD取得最大值,最大值为36.一十.全等三角形的判定与性质(共1小题)12.(2023•苏州)如图,在△ABC中,AB=AC,AD为△ABC的角平分线.以点A圆心,AD 长为半径画弧,与AB,AC分别交于点E,F,连接DE,DF.(1)求证:△ADE≌△ADF;(2)若∠BAC=80°,求∠BDE的度数.【答案】(1)证明见解析;(2)20°.【解答】(1)证明:∵AD是△ABC的角平分线,∴∠BAD=∠CAD.由作图知:AE=AF.在△ADE和△ADF中,,∴△ADE≌△ADF(SAS);(2)解:∵∠BAC=80°,AD为△ABC的角平分线,∴∠EAD=∠BAC=40°,由作图知:AE=AD.∴∠AED=∠ADE,∴∠ADE=×(180°﹣40°)=70°,∵AB=AC,AD为△ABC的角平分线,∴AD⊥BC.∴∠BDE=90°﹣∠ADE=20°.一十一.圆内接四边形的性质(共1小题)13.(2021•苏州)如图,四边形ABCD内接于⊙O,∠1=∠2,延长BC到点E,使得CE=AB,连接ED.(1)求证:BD=ED;(2)若AB=4,BC=6,∠ABC=60°,求tan∠DCB的值.【答案】(1)证明见解答过程;(2).【解答】(1)证明:∵四边形ABCD内接于⊙O,∴∠A=∠DCE,∵∠1=∠2,∴=,∴AD=DC,在△ABD和△DCE中,,∴△ABD≌△CED(SAS),∴BD=ED;(2)解:过点D作DM⊥BE于M,∵AB=4,BC=6,CE=AB,∴BE=BC+EC=10,∵BD=ED,DM⊥BE,∴BM=ME=BE=5,∴CM=BC﹣BM=1,∵∠ABC=60°,∠1=∠2,∴∠2=30°,∴DM=BM•tan∠2=5×=,∴tan∠DCB==.一十二.用样本估计总体(共1小题)14.(2022•苏州)某校九年级640名学生在“信息素养提升”培训前、后各参加了一次水平相同的测试,并以同一标准折算成“6分”、“7分”、“8分”、“9分”、“10分”5个成绩.为了解培训效果,用抽样调查的方式从中抽取了32名学生的2次测试成绩,并用划记法制成了如表表格:成绩(分)678910划记正正正正训前人数(人)124754成绩(分)678910划记一正正正正培训后人数(人)413915(1)这32名学生2次测试成绩中,培训前测试成绩的中位数是m ,培训后测试成绩的中位数是n ,则m < n ;(填“>”、“<”或“=”)(2)这32名学生经过培训,测试成绩为“6分”的百分比比培训前减少了多少?(3)估计该校九年级640名学生经过培训,测试成绩为“10分”的学生增加了多少人?【答案】(1)<;(2)25%;(3)220人.【解答】解:∵培训前测试成绩的中位数m ==7.5,培训后测试成绩的中位数n ==9,∴m <n ;故答案为:<;(2)培训前:×100%,培训后:×100%,×100%﹣×100%=25%,答:测试成绩为“6分”的百分比比培训前减少了25%;(3)培训前:640×=80,培训后:640×=300,300﹣80=220,答:测试成绩为“10分”的学生增加了220人.一十三.条形统计图(共2小题)15.(2023•苏州)某初中学校为加强劳动教育,开设了劳动技能培训课程.为了解培训效果,学校对七年级320名学生在培训前和培训后各进行一次劳动技能检测,两次检测项目相同,评委依据同一标准进行现场评估,分成“合格”、“良好”、“优秀”3个等级,依次记为2分、6分、8分(比如,某同学检测等级为“优秀”,即得8分).学校随机抽取32名学生的2次检测等级作为样本,绘制成下面的条形统计图:(1)这32名学生在培训前得分的中位数对应等级应为 合格 ;(填“合格”、“良好”或“优秀”)(2)求这32名学生培训后比培训前的平均分提高了多少?(3)利用样本估计该校七年级学生中,培训后检测等级为“良好”与“优秀”的学生人数之和是多少?【答案】(1)合格;(2)提高2.5分;(3)240名.【解答】解:(1)由题意得,这32名学生在培训前得分的中位数对应等级应为合格,故答案为:合格;(2)培训前的平均分为:(25×2+5×6+2×8)÷32=3(分),培调后的平均分为:(8×2+16×6+8×8)÷32=5.5(分),培训后比培训前的平均分提高2.5分;(3)解法示例:样本中培训后“良好”的比例为:=0.50,样本中培训后“优秀”的比例为:==0.25,∴培训后考分等级为“合格”与“优秀”的学生共有320×75%=240(名).16.(2021•苏州)某学校计划在八年级开设“折扇”、“刺绣”、“剪纸”、“陶艺”四门校本课程,要求每人必须参加,并且只能选择其中一门课程,为了解学生对这四门课程的选择情况,学校从八年级全体学生中随机抽取部分学生进行问卷调查,并根据调查结果绘制成如图所示的条形统计图和扇形统计图(部分信息未给出).请你根据以上信息解决下列问题:(1)参加问卷调查的学生人数为 50 名,补全条形统计图(画图并标注相应数据);(2)在扇形统计图中,选择“陶艺”课程的学生占 10 %;(3)若该校八年级一共有1000名学生,试估计选择“刺绣”课程的学生有多少名?【答案】(1)50名,20名,补图见解答;(2)10%;(3)200名.【解答】解:(1)参加问卷调查的学生人数为=50(名),剪纸的人数有:50﹣15﹣10﹣5=20(名),补全统计图如下:故答案为:50;(2)在扇形统计图中,选择“陶艺”课程的学生所占的百分比是:×100%=10%.故答案为:10;(3)1000×=200(名),答:估计选择“刺绣”课程的学生有200名.一十四.列表法与树状图法(共1小题)17.(2022•苏州)一只不透明的袋子中装有1个白球,3个红球,这些球除颜色外都相同.(1)搅匀后从中任意摸出1个球,这个球是白球的概率为 ;(2)搅匀后从中任意摸出1个球,记录颜色后放回,搅匀,再从中任意摸出1个球,求2次摸到的球恰好是1个白球和1个红球的概率.(请用画树状图或列表等方法说明理由)【答案】(1);(2).【解答】解:(1)∵一只不透明的袋子中装有1个白球和3个红球,这些球除颜色外都相同,∴搅匀后从中任意摸出1个球,则摸出白球的概率为:=.故答案为:;(2)画树状图如图所示:共有16种不同的结果数,其中两个球颜色不同的有6种,∴2次摸到的球恰好是1个白球和1个红球的概率为=.一十五.游戏公平性(共1小题)18.(2021•苏州)4张相同的卡片上分别写有数字0、1、﹣2、3,将卡片的背面朝上,洗匀后从中任意抽取1张,将卡片上的数字记录下来;再从余下的3张卡片中任意抽取1张,同样将卡片上的数字记录下来.(1)第一次抽取的卡片上数字是负数的概率为 ;(2)小敏设计了如下游戏规则:当第一次记录下来的数字减去第二次记录下来的数字所得结果为非负数时,甲获胜;否则,乙获胜.小敏设计的游戏规则公平吗?为什么?(请用树状图或列表等方法说明理由)【答案】(1);(2)公平.【解答】解:(1)第一次抽取的卡片上数字是负数的概率为,故答案为:.(2)列表如下:01﹣23 01﹣231﹣1﹣32﹣22353﹣3﹣2﹣5由表可知,共有12种等可能结果,其中结果为非负数的有6种结果,结果为负数的有6种结果,所以甲获胜的概率=乙获胜的概率==,∴此游戏公平.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017中考数学专题训练(一)数与式的运算与求值
本专题主要考查实数的运算、整式与分式的化简与求值,纵观5年中考往往以计算题、化简求值题的形式出现,属基础题.复习时要熟练掌握实数的各种运算,并注意混合运算中的符号与运算顺序;在整式化简时要灵活运用乘法公式及运算律;在分式的化简时要灵活运用因式分解知识,分式的化简求值,还应注意整体思想和各种解题技巧.
类型1 实数的运算
【例1】计算:|-3|+2sin 45°+tan 60°-(-13)-1-12+(π-3)0.
【解析】先理清和熟悉每项小单元的运算方法,把握运算的符号技巧. 【学生解答】原式=3+2×2
2
+3-(-3)-23+1=3+1+3+3-23+1=5. 针对练习
1.(2016莆田中考)计算:|2-3|-16+⎝ ⎛⎭
⎪⎫130
. 解:原式=3-2-4+1=- 2.
2.(2016丹东中考)计算:4sin 60°+|3-12|-⎝ ⎛⎭
⎪⎫12-1
+(π-2 016)0
.
解:原式=4×
3
2
+ (23-3)-2+1 =23+23-3-2+1 =43-4.
3.(2016茂名中考)计算:(-1)2 016
+8-|-2|-(π-3.14)0
.
解:原式=1+22-2-1 =22- 2 = 2.
4.(2016岳阳中考)计算:⎝ ⎛⎭
⎪⎫13-1
-12+2tan 60°-(2-3)0
.
解:原式=3-23+23-1=2.
类型2 整式的运算与求法
【例2】先化简,再求值:(x +y )(x -y )-(4x 3y -8xy 3
)÷2xy ,其中x =-1,y =3
3
. 【解析】认真观察式子特点,灵活运用乘法公式化简,再考虑代入求值. 【学生解答】原式=x 2
-y 2
-2x 2
+4y 2
=-x 2
+3y 2
,当x =-1,y =3
3
时,原式=-1+1=0. 针对练习
5.(2016茂名中考)先化简,再求值:x (x -2)+(x +1)2
,其中x =1. 解:原式=x 2
-2x +x 2
+2x +1=2x 2
+1.当x =1时,原式=2×12
+1=3.
6.(2016吉林中考)先化简,再求值(x +2)(x -2)+x (4-x ),其中x =1
4.
解:原式=x 2-4+4x -x 2
=4x -4.当x =14时,原式=4×14-4=-3.
7.已知x 2
-4x -1=0,求代数式(2x -3)2
-(x +y )(x -y )-y 2
的值.
解:原式=4x 2-12x +9-x 2+y 2-y 2=3x 2-12x +9=3(x 2-4x +3),∵x 2-4x -1=0,即x 2
-4x =1,∴原式=12.
8.已知多项式A =(x +2)2
+(1-x )(2+x )-3. (1)化简多项式A ;
(2)若(x +1)2
=6,求A 的值.
解:(1)A =x 2
+4x +4+2-2x +x -x 2
-3=3x +3;(2)(x +1)2
=6,则x +1=±6,∴A =3x +3=3(x +1)=±3 6.
类型3 分式的化简求值
【例3】已知x 2
-4x +1=0,求2(x -1)x -4-x +6x
的值.
【解析】先化简所求式子,再看其结果与已知条件之间的联系,能否整体代入.
【学生解答】原式=2x (x -1)-(x -4)(x +6)x (x -4)=x 2
-4x +24x 2-4x ,∵x 2-4x +1=0,∴x 2
-4x =-1.原式=
-1+24
-1
=-23. 针对练习
9.(2016随州中考)先化简,再求值:⎝ ⎛⎭
⎪⎫3x +1-x +1÷x 2
+4x +4x +1,其中x =2-2.
解:原式=⎣⎢
⎡⎦
⎥⎤3x +1-(x +1)(x -1)x +1·x +1(x +2)2=-(x +2)(x -2)x +1·x +1(x +2)2
=2-x x +2,当x =2-2
时,原式=2-2+22-2+2=4-2
2
=22-1.
10.先化简代数式 (3a a -2-a a +2)÷a
a 2-4,再从0,1,2三个数中选择适当的数作为a 的值代入求值.
解:原式=3a (a +2)-a (a -2)(a +2)(a -2)·(a +2)(a -2)a =2a 2
+8a (a +2)(a -2)·(a +2)(a -2)
a =
2a (a +4)
a
=2a +8.当a =1时,2a +8=10.
11.先化简,再求值:(a +1a +2)÷(a -2+3
a +2
),其中a 满足a -2=0.
解:原式=a (a +2)+1a +2÷a 2
-4+3a +2=(a +1)2
a +2·a +2(a +1)(a -1)=a +1
a -1,当a -2=0,即a =2时,原式
=3
12.(2016烟台中考)先化简,再求值:⎝ ⎛⎭
⎪⎫x 2-y x -x -1÷x 2-y 2
x 2-2xy +y 2
,其中x =2,y = 6.
解:原式=⎝ ⎛⎭⎪⎫x 2
-y x -x 2
x -x x ×
(x -y )2
(x +y )(x -y )=-y -x x ×x -y x +y =-x -y x ,把x =2,y =6代入得:原式=-
2-6
2=-1+ 3.
13.(2016张家界中考)先化简,后求值:⎝
⎛⎭⎪
⎫x x -2-4x 2-2x ÷x +2x 2-x
,其中x 满足x 2-x -2=0.
解:原式=x 2-4x (x -2)·x (x -1)x +2=(x +2)(x -2)x (x -2)·x (x -1)x +2
=x -1,解方程x 2
-x -2=0,得x 1=-1,
x 2=2,当x =2时,原分式无意义,所以当x =-1时,原式=-1-1=-2.
14.(2016河南中考)先化简,再求值:⎝ ⎛⎭⎪⎫x x 2+x -1÷x 2
-1x 2+2x +1,其中x 的值从不等式组⎩⎪⎨⎪⎧-x≤1,2x -1<4
的整数解中
选取.
解:原式=x -x 2
-x x (x +1)·x +1x -1=-x x +1·x +1x -1=x 1-x ,解不等式组⎩⎪⎨⎪⎧-x≤1,2x -1<4
得-1≤x <52,当x =2时,原式=
2
1-2=-2.。

相关文档
最新文档