2018年春七年级沪科版数学下册 7.3 一元一次不等式组 第1课时
沪科版 数学七年级下册课时练 第7章 7.2 第3课时 一元一次不等式的实际应用
沪科版数学七年级下册第7章一元一次不等式与不等式组7.2一元一次不等式第3课时一元一次不等式的实际应用1.小丽同学准备用自己的零花钱购买一台学生平板电脑,她原有750元,计划从本月起每月存入30元,直到她至少存有1 080元.设x个月后小丽至少有1 080元,则可列不等式为(D)A.3x+750>1 080B.30x-750≥1 080C.30x-750<1 080D.3x+750≥1 0802.光明文具店销售某品牌钢笔,当它的售价为14元/支时,月销量为180支,若每支钢笔的售价每涨价1元,月销量就相应减少15支.设每支钢笔涨价后的售价为x元,若使该种钢笔的月销量不低于105支,则x应满足的不等式为(D)A.180-15x≥105 B.180-(x-14)≤105C.180+15(x+14)≥105 D.180-15(x-14)≥1053.小红读一本400页的书,计划10天内读完,前5天因种种原因只读了100页,为了按计划读完,则从第6天起平均每天至少要读(B)A.50页B.60页C.80页D.100页4.(2019·山西太原期末)某社区超市以4元/瓶从厂家购进一批饮料,以6元/瓶销售.近期计划进行打折销售,若这批饮料的销售利润不低于20%,则最多可打(D)A.六折B.七折C.七五折D.八折5.小丽种了一棵高75 cm的小树,假设小树平均每周长高3 cm,x周后这棵小树的高度不超过100 cm,所列不等式为__75+3x≤100__.6.小明用30元钱购买矿泉水和冰激凌,每瓶矿泉水2元,每支冰激凌3.5元,他买了6瓶矿泉水和若干支冰激凌,他最多能买__5__支冰激凌.7.(教材P33,习题7.2,T9改编)某次知识竞赛试卷有20道题,评分办法是答对1道题记5分,不答记0分,答错1道题扣2分.小明有3道题没答,但成绩超过60分,则小明至少答对了__14__道题.8.(2018·山西中考)2018年国内航空公司规定:旅客乘机时,免费携带行李箱的长、宽、高之和不超过115 cm.某厂家生产符合该规定的行李箱,已知行李箱的宽为20 cm,长与高的比为8∶11,则符合此规定的行李箱的高的最大值为__55__cm.9.学校准备用2 000元购买名著和词典作为艺术节奖品,其中名著每套65元,词典每本40元.现已购买名著20套,问最多还能买词典多少本?解:设还能买词典x本,根据题意,得20×65+40x≤2 000,解得x≤171 2.因为x为整数,所以x的最大值是17.答:最多还能买词典17本.10.某国有企业在“一带一路”倡议中,向东南亚销售A,B两种外贸产品共6万吨.已知A种外贸产品每吨800元,B种外贸产品每吨400元,若A,B两种外贸产品的销售额不低于3 200万元,则至少销售A种外贸产品多少万吨?解:设销售A种外贸产品x万吨,则销售B种外贸产品(6-x)万吨.依题意,得800x+400(6-x)≥3 200,解得x≥2.答:至少销售A种外贸产品2万吨.11.小兰准备用30元买钢笔和笔记本,已知一支钢笔4.5元,一本笔记本3元.如果她钢笔和笔记本共买了8件,每种至少买1件,则她有多少种购买方案?解:设她买了x支钢笔,则买了(8-x)本笔记本.由题意得4.5x+3(8-x)≤30,解得x≤4.又因为x≥1,所以x可取1,2,3,4,所以共有4种购买方案.12.(2019·安徽淮北五校联考)某品牌智能手机的标价比成本价高a %,根据市场需求,该手机需降价x %,若不亏本,则x 应满足( C ) A .x ≤a100+aB .x ≤a100-a C .x ≤100a100+aD .x ≤100a100-a13.(2019·浙江衢州一模)小菲受《乌鸦喝水》故事的启发,利用量筒和体积相同的小球进行了如图所示的操作.请根据图中给出的信息,量筒中至少放入__10__个球时有水溢出.14.(2019·安徽淮北五校联考)为保护生态环境,甲、乙两村各自清理所属区域的养鱼网箱和养虾网箱,每村参加清理的人数及总开支如下表所示:村庄 清理养鱼网箱人数/人清理养虾网箱人数/人总支出/元 甲 12 8 18 400 乙9513 000(1)出费用各是多少元?(2)在人均支出费用不变的情况下,为节约开支,两村准备协调32人共同清理养鱼网箱和养虾网箱.要使总支出不超过28 800元,则至多安排多少人清理养鱼网箱? 解:(1)设清理养鱼网箱和养虾网箱的人均支出费用分别为x 元和y 元. 根据题意,得⎩⎨⎧12x +8y =18 400,9x +5y =13 000,解得⎩⎨⎧x =1 000,y =800.答:清理养鱼网箱的人均支出费用为1 000元,清理养虾网箱的人均支出费用为800元. (2)设安排a 人清理养鱼网箱,则安排(32-a )人清理养虾网箱. 根据题意,得1 000a +800(32-a )≤28 800,解得a ≤16. 答:至多安排16人清理养鱼网箱.15.(2019·内蒙古赤峰中考)某校开展校园艺术节系列活动,派小明到文体超市购买若干个文具袋作为奖品.这种文具袋标价每个10元,请认真阅读结账时老板与小明的对话:(1)结合两人的对话内容,求小明原计划购买文具袋多少个;(2)学校决定,再次购买钢笔和签字笔共50支作为补充奖品,两次购买奖品总支出不超过400元,其中钢笔标价每支8元,签字笔标价每支6元.经过沟通,这次老板给予八折优惠,那么小明最多可购买钢笔多少支?解:(1)设小明原计划购买文具袋x个,则实际购买了(x+1)个.依题意得10(x+1)×0.85=10x-17,解得x=17,答:小明原计划购买文具袋17个.(2)设小明可购买钢笔y支,则购买签字笔(50-y)支.依题意得[8y+6(50-y)]×80%≤400,解得y≤100.答:小明最多可购买钢笔100支.16.某体育用品商场采购员到厂家批发购进篮球和排球共100只,付款总额不得超过11 800元,已知厂家的批发价和商场的零售价如下表,设商场采购员到厂家购进x只篮球,试解答下列问题.品名厂家的批发价/(元/只)商场的零售价/(元/只)篮球130160排球100120(1)(2)若商场把100只球全部售出,为使商场的利润不低于2 580元,采购员有哪几种采购方案?哪种方案商场获利最多?解:(1)设采购员购进篮球x只,根据题意得130x+100(100-x)≤11 800,解得x≤60,所以x的最大值是60.答:采购员最多购进篮球60只.(2)设采购员购进篮球y只,根据题意得(160-130)y+(120-100)(100-y)≥2 580,解得y≥58.综合(1),得58≤y≤60.所以采购员有三种采购方案:方案一:购进篮球58只,排球42只,获利30×58+20×42=2 580(元);方案二:购进篮球59只,排球41只,获利30×59+20×41=2 590(元);方案三:购进篮球60只,排球40只,获利30×60+20×40=2 600(元).因为2 600>2 590>2 580,所以方案三使商场获利最多.答:采购员有三种采购方案,分别是方案一:购进篮球58只,排球42只;方案二:购进篮球59只,排球41只;方案三:购进篮球60只,排球40只.方案三使商场获利最多.。
沪科版七年级数学下册导学案 7.2一元一次不等式(3)
课题:一元一次不等式与不等式组一元一次不等式(3)主备人:杨明 时间:2011年2月 日年级 班 姓名:学习目标:1.会从实际问题中抽象出数学模型,会用一元一次不等式解决实际问题.2.经历从实际中抽象出数学模型的过程,积累利用一元一次不等式解决实际问题的经验,渗透分类讨论思想,感知方程与不等式的内在联系. 学习重点:一元一次不等式在实际问题中的应用学习难点:挖掘题目中不等的数量关系,正确列出不等式。
一、学前准备1.试用不等式表示下列关系:(a) 某天的气温不低于8度 ________________________________;(b)初一(A) 班的男生不小于25人 ________________________________; (c)汽车在行程过程中,速度一般不超过80km/h ______________________; (d)试用不等式表示下列问题:某次数学竞赛, 试题都是选择题, 答对一题得5分,不答或答错不得分也不扣分,小张在本次竞赛中想得分不低于80分。
请问他至少应该答对多少题? ________________________________ 。
2.列方程解应用题的一般步骤?3.x 取何值时,代数式:x 的值823 ① 大于7-x ②小于7-x ③不大于7-x ④不小于7-x预习疑难摘要: . 二、探究活动(一)师生探究·合作交流1.某学校计划购买若干台电脑,现从两家商店了解到同一型号的电脑每台报价均为6000元,并且多买都有一定的优惠.甲商场的优惠条件是:第一台按原报价收款,其余每台优惠25%;乙商场的优惠条件是:每台优惠20%.如果你是校长,你该怎么考虑,如何选择?分析:(1)、先独立思考,理解题意;再交流,发表自己的观点.(2)、充分发表意见的基础上,归纳出以下三种采购方案:①什么情况下,到甲商场购买更优惠?②什么情况下,到乙商场购买更优惠?③什么情况下,两个商场收费相同?(3)、我们先来考虑方案:设购买x台电脑,如果到甲商场购买更优惠.问题1:如何列不等式?问题2:如何解这个不等式?解:设购买x台电脑,如果到甲商场购买更优惠,则6000+6000(1-25%)(x-1)<6000(1-20%)x去括号,得:6000+4500x-4500<4800x移项且合并,得:-300x<-1500不等式两边同除以-300,得:x>5答:购买5台以上电脑时,甲商场更优惠.请同学们自己完成方案(2)与方案(3),并做出全面的回答。
人教版七年级数学下册《一元一次不等式》PPT优质教学课件
(4)解:解出所列的不等式的解集; (5)验:检验所得结果是否正确,考虑所得的解是否符合问题的 实际意义; (6)答:写出答案.
对点训练
1.“一方有难,八方支援”.某学校计划购买84消毒液和75%酒精 消毒水共4 000瓶,用于支援武汉抗击“新冠肺炎疫情”,已知84 消毒液的单价为3元/瓶,75%酒精消毒水的单价为13元/瓶,若 购买这批物资的总费用不超过28 000元,至少可以购买84消毒 液多少瓶?
解:(1)设购进A种树苗x棵,则购进B种树苗(17-x)棵, 根据题意得80x+60(17-x)=1 220, 解得x=10,∴17-x=7. 答:购进A种树苗10棵,B种树苗7棵.
(2)设购进 A 种树苗 y 棵,则购进 B 种树苗(17-y)棵,
根据题意得 17-y<y,解得 y>81.
2
购进两种树苗所需费用为80y+60(17-y)=20y+1 020, 费用最省需y取最小整数9,此时17-y=8, 这时所需费用为20×9+1 020=1 200(元). 答:费用最省方案为:购进A种树苗9棵,B种树苗8棵.这时所需 费用为1 200元.
解:(1)设每只努比亚黑山羊每天需要草料 x kg,每头西门塔尔牛
每天需要草料 y kg.
根据题意,得 60x+15y=330
,解得
x=3 .
(25+60)x+(15+5)y=455
y=10
答:每只努比亚黑山羊每天需要草料 3 kg,每头西门塔尔牛每天
需要草料 10 kg.
(2)设卖出a头牛,则卖出(10-a)只羊,根据题意,得 10(20-a)+3(85-10+a)≤390,解得a≥5. 答:至少卖出5头牛才能保证每天草料够用.
变式练习
4.某种商品的进价为320元,为了吸引顾客,按标价的八折出售, 这时仍可盈利至少25%,则这种商品的标价最低是多少元? 解:设这种商品的标价是x元,由题意得 x×80%-320≥25%×320,解得x≥500. 答:这种商品的标价最低是500元.
一元一次不等式(1)一元一次不等式的解法课件人教版数学七年级下册
9.2 一元一次不等式
一元一次不等式的解法
自主导学
一
1
x<a
x>a
x>33 x>75
x≥-3
探究学习
一元一次不等式的概念
解析:可根据一元一次不等式的概念进行判断,因为B选项中未知数 的次数为2,所以不是一元一次不等式;因为C选项中不含未知数,所以 不是一元一次不等式;因为D选项中不等号左边不是整式,所以不是一 元一次不等式;只有A选项含有一个未知数且未知数的次数是1,是一元 一次不等式.
解:去分母,得4(2-x)+12≤3(x+2). 去括号,得8-4x+12≤3x+6. 移项,得-4x-3x≤6-8-12. 合并同类项,得-7x≤-14. 系数化为1,得x≥2.
技巧点拨:解不等式时应注意以下几点. (1)在去分母时,不要漏乘不含分母的项; (2)因为分数线具有括号的作用,所以去分母后,整个分子要用括号括 起来; (3)在系数化为1时,若系数为负数,则不等号要改变方向.
把
B.a≤3
C.a≥3
D.a≥2
C 0
m≥5
解:10-2(2-3x)<5(1+x) 10-4+6x<5+5x x<-1
图略
解:26-3x+6≥2x-18+40 -5x≥-10 x≤2
图略
解:6(x-2)>5(2x+4) 6x-12>10x+20 x<-8
图略
解:2(4x-1)-3(3x+6)≤12 8x-2-9x-18≤12 x≥-32
跟踪训练 2.(1)解不等式:5(x-2)+8<6(x-1)+7;
解:5x-10+8<6x-6+7 x>-3
(2)若(1)中的不等式的最小整数解是关于x的一元一次方程2x-ax=3 的解,求a的值.
初中数学《一元一次不等式和一元一次不等式组》单元教学设计以及思维导图
一元一次不等式和一元一次不等式组
主题单元学习目标
知识与技能:
1、经历将一些实际问题抽象成不等式的过程,体会不等式也是刻画现实世界中量与量之间关系的有效数学模型进一步发展符号感。
2、能够根据具体问题中的大小关系了解不等式的意义。
3、掌握不等式的基本性质。
4、理解不等式组的解及解集的含义,会解简单的一元一次不等式并能在数轴上表示一元一次不等式的解集,会解一元一次不等式组并会在数轴上确定其解集,初步体会数形结合的思想。
其他:纸、笔
学习活动设计
活动一、
如下图,正方形的边长和圆的直径都是acm。
1、如果要使正方形的周长不大于25cm,那么 a 应满足怎样的关系式?
2、如果要使圆的周长不小于100cm,那么a 应满足怎样的关系式?
3、当 a= 8 时,正方形和圆的周长哪个大?a = 12 呢?
4、你能得到什么猜想?改变a的取值再试一试。
观察由上述问题得到的关系式,它们有什么共同特点?
由4a 4a4a≤25, πa ≥100 ,3x+5>240得,这些关系式都是用不等号连接的式子.由此
一般地,用符号“<”(或“≤”),“>”(或“≥”)连接的式子叫做不等式
活动二、。
人教版七年级数学下册《一元一次不等式第1课时:一元一次不等式的概念和解法》精品教学课件
概念:含有一个未知数,未知数的次数是1的不等式,叫做一元一 次不等式(linear inequality in one unknown).
一
元
解一元一次不等式的步骤:
一
去分母:不等号两边各项都乘所有分母的最小公倍数.
次
去括号:当括号前是“–”时,要注意括号内各项变号.
不
移项:从不等号的一边移到另一边,注意变号.
=
2x–1 3
.
如上解何表:在示去数呢分轴?母,得:3(2+x)= 2(2x–1).
去括号,得:6+3x=4x–2.
移项,得:3x – 4x≥–2– 6.
移项,得:3x – 4x= –2– 6.
合并同类项,得:– x ≥ –8. 系数化为1,得:x≤8.
合并同类项,得: – x = –8. 0 系数化为8 1,得:x = 8.
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
探究
解下列不等式,并在数轴上表示解集: (1) 2(1+ x)<3; (2)22+x≥2x3–1 .
总结一下,解一元 一次不等式的解题
步骤是什么?
解:(1) 2(1+ x)<3; 去括号,得:2+2x< 3.
(2)22+x≥2x3–1 . 去分母,得:3(2+x)≥ 2(2x–1).
配套人教版
9.2 一元一次不等式
一元一次不等式
学习目标
1.了解一元一次不等式的概念.
一
2.掌握一元一次不等式的解法.
元
3.能通过类比解一元一次方程的过程,获得解一元一次不等式的思路,即依据
一
次
一元一次不等式的性质,将一元一次不等式化简为x>a或x<a的形式.
解一元一次不等式(第1课时)(课件)七年级数学下册精品课件(苏科版)
新知归纳 一元一次不等式的概念
只含有一个未知数,并且未知数的次数都是1,系数不等于0. 像这样的不等式,叫做一元一次不等式.
新知巩固
1.判断下列各式是否是一元一次不等式? 否 否 是 否
x>0 是
8>4 否
新知巩固
2.已知3x2-m +70>100是关于x的一元一次不等式,则m=__1__. 解:2-m=1,m=1.
解:因为(m-1)x|m|+3>0是关于x的一元一次不等式, 所以m-1≠0,|m|=1,解得m=-1.
课堂检测
6. 若不等式ax-2>0的解集为x<-2,则关于y的方程ay+2=0 的解为___y_=__2____.
7. 用※定义一种新运算:对于任意数m和n,规定m※n=m2n-mn-3n. 如1※2=12×2-1×2-3×2=-6. 若3※k≥-6,则k的取值范围 是__2__.
将m=1代入不等式,得3x +70>100
如何解这个 不等式呢?
知识回顾
解一元一次方程的一般步骤和依据是什么?
解一元一次方程的一般步骤是: 去分母,去括号,移项,合并同类项,系数化为1.
解一元一次方程的依据是等式的性质.
新知探索
解一元一次不等式能不能采取类似的步骤呢?
请你类比一元一次方程的解法,探索如何解元一次不等式 3x +70>100?说出每一步变形的依据.
0
-6 0
新知巩固
2.当x取什么值时,代数式2x-4的值大于代数式3x+1的值? 解:根据题意,得 2x-4>3x+1 2x-3x>1+4 -x>5 x<-5 当x<-5时,代数式2x-4的值大于代数式3x+1的值.
新知巩固
3.求一元一次不等式10(x+4)+x ≤73的非负整数解. 解: 10x+40+x≤73 11x≤33 x≤3
沪科版数学七年级下册7.2《一元一次不等式》教学设计
沪科版数学七年级下册7.2《一元一次不等式》教学设计一. 教材分析《一元一次不等式》是沪科版数学七年级下册第七章第二节的内容。
这一节主要介绍了一元一次不等式的概念、性质和求解方法。
通过本节课的学习,学生能够理解一元一次不等式的定义,掌握一元一次不等式的解法,并能运用不等式解决实际问题。
教材通过丰富的例题和练习题,帮助学生巩固所学知识,提高解题能力。
二. 学情分析七年级的学生已经学习了代数基础知识和一元一次方程,他们对代数概念有一定的理解。
但是,对于不等式的概念和性质,他们可能还比较陌生。
因此,在教学过程中,需要引导学生从已有的知识出发,逐步理解和掌握一元一次不等式的相关概念和解法。
同时,学生需要通过大量的练习,提高解题技能。
三. 教学目标1.知识与技能:使学生理解一元一次不等式的定义,掌握一元一次不等式的解法,能够运用不等式解决实际问题。
2.过程与方法:通过观察、分析和归纳,培养学生发现和解决问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的自主学习能力。
四. 教学重难点1.重点:一元一次不等式的定义和求解方法。
2.难点:一元一次不等式的应用和求解过程。
五. 教学方法1.讲授法:通过讲解一元一次不等式的定义和性质,使学生掌握基本概念。
2.引导法:通过引导学生观察、分析和归纳,培养学生发现和解决问题的能力。
3.实践法:通过大量的练习题,提高学生的解题技能。
六. 教学准备1.教学PPT:制作精美的PPT,展示一元一次不等式的定义、性质和求解方法。
2.练习题:准备适量的一元一次不等式练习题,包括基础题和提高题。
3.教学素材:收集一些与一元一次不等式相关的实际问题,用于课堂拓展。
七. 教学过程1.导入(5分钟)利用PPT展示一些与不等式相关的生活实例,引导学生关注不等式在现实生活中的应用。
提出问题,让学生思考:如何用数学语言来表示这些不等关系?2.呈现(10分钟)讲解一元一次不等式的定义和性质,通过PPT展示相关知识点,引导学生理解和掌握。
七年级数学下册解一元一次不等式3解一元一次不等式第1课时一元一次不等式及其解法习题课件新版华东师大版
解,则a可取的最小正整数为( D )
A.2 B.3 C.4
D.5
8.【中考·荆门】已知关于x的不等式3x-m+1>0的最小
整数解为2,则m的取值范围是( A )
A.4≤m<7
B.4<m<7
C.4≤m≤7
D.4<m≤7
*9.【中考·天水】若关于x的不等式3x+a≤2只有2个正整数 解,则a的取值范围为( ) A.-7<a<-4 B.-7≤a≤-4 C.-7≤a<-4 D.-7<a≤-4
4.【中考·嘉兴】不等式3(1-x)>2-4x的解集在数轴上 表示正确的是( A )
*5.【中考·呼和浩特】若不等式2x+ 3 5-1≤2-x 的解集中 x 的每一个值,都能使关 x 的不等式 3(x-1)+5>5x+
2(m+x)成立,则 m 的取值范围是( )
A.m>-35 C.m<-35
B.m<-15 D.m>-15
(3)解决问题: ①|x-4|+|x+2|的最小值是____6____; ②如图②,利用上述思想方法解不等式:|x+3|+|x- 1|>4; 解:如图,可知不等式|x+3|+|x-1|>4的解集为x< -3或x>1.
③当a为何值时,式子|x+a|+|x-3|的最小值是2. 解:当a为-1或-5时, 式子|x+a|+|x-3|的最小值是2.
【点拨】去分母时不要漏乘项,不等式两边同乘(或 除以)负数时,不等号改变方向.
解:错误的是①②⑤. 正确解法:去分母,得3(1+x)-2(2x+1)≤6. 去括号,得3+3x-4x-2≤6. 移项,得3x-4x≤6-3+2. 合并同类项,得-x≤5. 两边都除以-1,得x≥-5.
12.【中考·淮安】解不等式 2x-1>3x-2 1. 解:去分母,得 2(2x-1)>3x-1.
7-3一元一次不等式组(1) 2022-2023学年沪科版七年级下册
x>3
░░░░░░
(1) x>7
03
7
原不等式组的解集为: x>7
同
x>-5 (2) x>-2
░░░░░░
-5 -2 0 原不等式组的解集为:
x>-2
大 取 大
(3)
x>4 x>-1
░░░░░░
-1 0
4
原不等式组的解集为: x>4
例题解析 例2. 求下列不等式组的解集:在同一数轴上表示出
两个不等式的解集,并写出不等式组的解集.
2x+3> 0 ①
例1.解不等式组 3+x<3x-1 ②
解:解不等式①,得 解不等式②,得
x>-1.5
x>2
x-3x<-1-3 -2x<-4 x>2
在数轴上分别表示这两个不等式的解集:
-1.5 0
░░░░░░░░░░
2
原不等式组的解集为:x>2.
课堂练习 •解下列不等式组,•并把解集在数轴上表示出来:
2x-1<x+1 ①
5x+6> 4 ①
(1) x+8<4x+1 ②
(2) 15+9x<10-4x ②
解:(1) 解不等式①,得 x<2
解不等式②,得
x>
7 3
在数轴上分别表示这两个不等式的解集:
0
2
原不等式组无解.
课堂练习 •解下列不等式组,•并把解集在数轴上表示出来:
2x-1<x+1 ① (1) x+8<4x+1 ②
两个不等式的解集,并写出不等式组的解集.
x>7
大
(1) x<3
03
7
原不等式组无解.
于 大
,
x>-2 (2)
-5 -2 0
x<-5 原不等式组无解.
七年级数学知识点归纳下册
七年级数学知识点归纳下册第五章相交线与平行线。
1. 相交线。
- 邻补角:两个角有一条公共边,它们的另一边互为反向延长线,具有这种关系的两个角,互为邻补角。
邻补角的和为180°。
- 对顶角:一个角的两边分别是另一个角两边的反向延长线,具有这种关系的两个角互为对顶角。
对顶角相等。
- 垂直:当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。
- 垂线段:过直线外一点作已知直线的垂线,这点和垂足之间的线段叫做垂线段。
垂线段最短,简单说成:垂线段最短。
2. 平行线及其判定。
- 平行线:在同一平面内,不相交的两条直线叫做平行线。
- 平行公理:经过直线外一点,有且只有一条直线与这条直线平行。
- 判定方法:- 同位角相等,两直线平行。
- 内错角相等,两直线平行。
- 同旁内角互补,两直线平行。
3. 平行线的性质。
- 两直线平行,同位角相等。
- 两直线平行,内错角相等。
- 两直线平行,同旁内角互补。
4. 命题、定理、证明。
- 命题:判断一件事情的语句,叫做命题。
命题由题设和结论两部分组成。
题设是已知事项,结论是由已知事项推出的事项。
- 真命题:如果题设成立,那么结论一定成立,这样的命题叫做真命题。
- 假命题:如果题设成立时,不能保证结论一定成立,这样的命题叫做假命题。
- 定理:经过推理证实得到的真命题叫做定理。
- 证明:在很多情况下,一个命题的正确性需要经过推理,才能作出判断,这个推理过程叫做证明。
第六章实数。
1. 平方根。
- 算术平方根:如果一个正数x的平方等于a,即x^2=a,那么这个正数x叫做a的算术平方根,记作√(a),0的算术平方根是0。
- 平方根:如果一个数x的平方等于a,即x^2=a,那么这个数x叫做a的平方根或二次方根。
一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根。
2. 立方根。
- 如果一个数x的立方等于a,即x^3=a,那么这个数x叫做a的立方根或三次方根。
七年级下册数学课件(沪科版)一元一次不等式 第一课时
画一画: 利用数轴来表示下列不等式的解集.
(1) x>-1;
(2)
x<
1 2
.
-1 0
01
用数轴表示不等式的解集,应记住下面的规律: 大于向右画,小于向左画; >,<画空心圆.
典例精析
例5 解不等式12-6x≥2(1-2x),并把它的解集在数上 表示出来.
解 去括号,得 12 -6x ≥ 2-4x 首先将括号去掉 移项,得 -6x+4x ≥2-12 将同类项放在一起
(1)
x的
1 2
大于或等于2;
解:
1 2
x
≥
2,
解得 x ≥ 4 .
不等式的解集在数轴上表示为
-1 0 1 2 3 4 5
(2) x与2的和不小于1;
解:
x+2 ≥ 1,
解得 x ≥ -1.
不等式的解集在数轴上表示为
-1 0 1 2 3 4 5
(3) y与1的差不大于0;
解:
y-1 ≤ 0
解得
y≤1
例4 已知不等式 x+8>4x+m (m是常数)的解集是 x<3,求 m.
解:因为 x+8>4x+m, 所以 x-4x>m-8, 即-3x>m-8,
x 1 (m 8). 3
因为其解集为x<3, 所以 1 (m 8) 3 . 解得 m=3-1.
方法总结:已知解集求字母系数的值,通常是先解含有字 母的不等式,再利用解集唯一性列方程求字母的值.解题 过程体现了方程思想.
四 在数轴上表示不等式的解集
如何在数轴上表示出不等式3x>6的解集呢?
则 都 表容示点大因示易的A于此3x解右>数2可,6得边都以的而不所小像解点等有于图集A式的2那x左>3点样2x边.>表表所6示的有的解的数集点是xA表>示2画把. 解成表集空示不心2包圆的括圈点2,.
沪科版七年级数学下册第七章不等式及不等式组单元试题含答案解析
沪科版七年级数学下册第七章不等式及不等式组单元试题含答案解析一、选择题(本大题共10小题,共30分)1.下列不等式中,是一元一次不等式的是()A. 2x−1>0B. −1<2C. 3x−2y≤−1D. y2+3>52.已知x>y,则下列不等式成立的是()A. x−1<y−1B. 3x<3yC. −x<−yD. x2<y23.不等式4−2x>0的解集在数轴上表示为()A. B.C. D.4.不等式组{x<4x≥3的解集在数轴上表示为()A. B. C. D.5.设三角形三边之长分别为3,8,1−2a,则a的取值范围为()A. −6<a<−3B. −5<a<−2C. −2<a<5D. a<−5或a>26.不等式3x−1≤2(x+2)的正整数解有几个().A. 3B. 4C. 5D. 67.如果不等式组{x<7x>m有解,那么m的取值范围是()A. m>7B. m≥7C. m<7D. m≤78.已知关于不等式2<(1−a)x的解集为x<21−a,则a的取值范围是()A. a>1B. a>0C. a<0D. a<19.若关于x的不等式组{x−m<07−2x≤1的整数解共有4个,则m的取值范围是()A. 6<m<7B. 6≤m<7C. 6<m≤7D. 3≤m<410.将一箱苹果分给若干个小朋友,若每位小朋友分5个苹果,则还剩12个苹果;若每位小朋友分8个苹果,则有一个小朋友分到苹果但不到8个苹果.求这一箱苹果的个数与小朋友的人数.若设有x人,则可列不等式为()A. 8(x−1)<5x+12<8B. 0<5x+12<8(x−1)C. 0<5x+12−8(x−1)<8D. 8x<5x+12<8二、填空题(本大题共4小题,共12分)11.x的3倍与5的和大于8,用不等式表示为______.12.若a<b,那么−2a+9______−2b+9(填“>”“<”或“=”).13.当x______ 时,代数式x4−2的值不小于x2+2的值.14.如果不等式(a+1)x<a+1的解集为x>1,那么a的取值范围是______.三、计算题(本大题共5小题,共30分)15. 解不等式23(x −1)≤x +1,并把它的解集在数轴上表示出来.16. 解不等式:2x−13−10−x 2≤14x .17. 求不等式组{1−x ≤0x+12<3的解集.18. {x −3(x −2)≤42x−15>x+12.19. 已知关于x 的方程2x+m x−2=3的解是正数,求m 的取值范围.四、解答题(本大题共3小题,共28分)20.【提出问题】已知x−y=2,且x>1,y<0,试确定x+y的取值范围.【分析问题】先根据已知条件用一个量如y去表示另一个量如x,然后根据题中已知量x的取值范围,构建另一量y的不等式,从而确定该量y的取值范围,同理再确定另一未知量x的取值范围,最后利用不等式性质即可获解.【解决问题】解:∵x−y=2,∴x=y+2.又∵x>1,∴y+2>1,∴y>−1.又∵y<0,∴−1<y<0,①同理得1<x<2.②由①+②得−1+1<y+x<0+2,∴x+y的取值范围是0<x+y<2.【尝试应用】已知x−y=−3,且x<−1,y>1,求x+y的取值范围.21.已知购买1个足球和1个篮球共需130元,购买2个足球和1个篮球共需180元.(1)求每个足球和每个篮球的售价;(2)如果某校计划购买这两种球共54个,总费用不超过4000元,问最多可买多少个篮球?22.某校5名教师要带若干名学生到外地参加一次科技活动.已知每张车票价格是120元,购车票时,车站提出两种优惠方案供学校选择.甲种方案是教师按车票价格付款,学生按车票价格的60%付款;乙种方案是师生都按车票价格的70%付款.设一共有x名学生,请问选择哪种方案合算?答案和解析1.【答案】A【解析】【分析】本题考查一元一次不等式的定义中的含有一个未知数,且未知数的最高次数为1次.根据一元一次不等式的定义作答. 【解答】解:A.是一元一次不等式; B .不含未知数,不符合定义;C .含有两个未知数,不符合定义;D .未知数的次数是2,不符合定义. 故选A . 2.【答案】C【解析】【分析】本题主要考查不等式的性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变; (2)不等式两边乘(或除以)同一个正数,不等号的方向不变; (3)不等式两边乘(或除以)同一个负数,不等号的方向改变. 根据不等式的性质逐项分析即可. 【解答】解:A 、根据不等式的基本性质不等式两边加(或减)同一个数(或式子),不等号的方向不变,故本选项错误; B 、不等式两边乘(或除以)同一个正数,不等号的方向不变,故本选项错误; C 、不等式两边乘(或除以)同一个负数,不等号的方向改变,正确;D 、不等式两边乘(或除以)同一个正数,不等号方向不变.故本选项错误. 故选:C . 3.【答案】D【解析】解:移项,得:−2x >−4, 系数化为1,得:x <2, 故选:D .根据解一元一次不等式基本步骤:移项、系数化为1可得.本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变. 4.【答案】B【解析】解:不等式组{x <4x ≥3的解集在数轴上表示为:.故选:B .直接把各不等式的解集在数轴上表示出来即可.本题考查的是在数轴上表示不等式组的解集,熟知:“小于向左,大于向右”是解答此题的关键. 5.【答案】B【解析】【分析】本题考查了根据三角形三边关系建立不等式组解实际问题的运用,不等式组的解法的运用,解答时根据三角形的三边关系建立不等式组是关键.根据三角形的三边关系,两边之和大于第三边和两边之差小于第三边列出不等式组求出其解即可. 【解答】解:由题意,得8−3<1−2a <8+3, 即5<1−2a <11, 解得−5<a <−2. 故选B . 6.【答案】C【解析】【分析】本题考查了一元一次不等式的正整数解,正确解不等式是关键.首先去括号、然后移项、合并同类项求得不等式的解集,然后确定正整数解. 【解答】解:去括号,得3x −1≤2x +4, 移项,得3x −2x ≤4+1, 合并同类项得x ≤5.则正整数解是1,2,3,4,5共5个. 故选C . 7.【答案】C【解析】解:由(1)得x <7, 由(2)得x >m , ∵不等式组{x <7x >m 有解,∴m <x <7; ∴m <7, 故选:C .解出不等式组的解集,与不等式组{x <7x >m有解相比较,得到m 的取值范围.本题是已知不等式组的解集,求不等式中另一未知数的问题.可以先将另一未知数当作已知处理,求出解集与已知解集比较,进而求得另一个未知数. 8.【答案】A【解析】解:由题意可得1−a <0, 移项得−a <−1, 化系数为1得a >1. 故选:A .因为不等式的两边同时除以1−a ,不等号的方向发生了改变,所以1−a <0,再根据不等式的基本性质便可求出不等式的解集.本题考查了同学们解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.9.【答案】C【解析】解:{x−m<0⋯ ①7−2x≤1⋯ ②,解①得x<m,解②得x≥3.则不等式组的解集是3≤x<m.∵不等式组有4个整数解,∴不等式组的整数解是3,4,5,6.∴6<m≤7.首先解不等式组,利用m表示出不等式组的解集,然后根据不等式组只有1个整数解即可求得m的范围.本题考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.10.【答案】C【解析】解:设有x人,则苹果有(5x+12)个,由题意得:0<5x+12−8(x−1)<8,故选:C.设有x人,由于每位小朋友分5个苹果,则还剩12个苹果,则苹果有(5x+12)个;若每位小朋友分8个苹果,则有一个小朋友分不到8个苹果,就是苹果数5x+12−8(x−1)大于0,并且小于8,根据不等关系就可以列出不等式.此题主要考查由实际问题抽象出一元一次不等式组,关键是正确理解题意,找出题目中的不等关系.11.【答案】3x+5>8【解析】【分析】本题考查由实际问题抽象出一元一次不等式,用不等式表示出不等关系是本题的关键.根据关键词语,弄清运算的先后顺序和不等关系,把文字语言的不等关系转化为用数学符号表示的不等式.【解答】解:根据题意可列不等式:3x+5>8,故答案为3x+5>8;12.【答案】>【解析】解:∵a<b,∴−2a>−2b,∴−2a+9>−2b+9不等式两边加或减某个数或式子,乘或除以同一个正数,不等号的方向不变;不等式两边乘或除以一个负数,不等号的方向改变.能够通过观察理解由已知变化到所要比较的式子,是如何的得到的是解题的关键.13.【答案】≤−16【解析】【分析】本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.解不等式要依据不等式的基本性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.先根据“代数式x4−2的值不小于x2+2的值”,列出不等式,再解不等式即可.【解答】解:由题意,得x4−2≥x2+2,去分母,得x−8≥2x+8,移项、合并同类项,得−x≥16,系数化为1,得x≤−16.故答案为≤−16.14.【答案】a<−1【解析】【分析】此题主要考查了不等式的解集,关键是掌握不等式的性质.根据不等式的性质:不等式的两边同时乘以或除以同一个负数,不等号的方向改变可得a+1<0,再解即可.【解答】解:∵不等式(a+1)x<a+1的解集为x>1,∴a+1<0,解得:a<−1,故答案为a<−1.15.【答案】解:去分母得2x−2≤3x+3,移项得2x−3x≤3+2,合并得−x≤5,系数化为1得x≥−5,不等式的解集在数轴上表示如下:【解析】本题考查了解一元一次不等式:解一元一次不等式的一般步骤为:先去括号,再移项,接着合并同类项,然后把系数化为1.也考查了在数轴上表示不等式的解集.先去分母、移项得到2x−3x≤3+2,然后合并后把x的系数化为1即可得到不等式的解集,再利用数轴表示解集.16.【答案】解:去分母得:4(2x−1)−6(10−x)≤3x,去括号得:8x−4−60+6x≤3x,移项合并得:11x≤64,解得:x≤6411.【解析】此题考查了解一元一次不等式,其步骤为:去分母,去括号,移项合并,将x系数化为1,求出解集.不等式去分母,去括号,移项合并,将x系数化为1,即可求出解集.17.【答案】解:{1−x≤0①x+12<3②,解不等式①,得x≥1.解不等式②,得x<5.所以,不等式组的解集是1≤x<5.【解析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分即可.本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x>较小的数、<较大的数,那么解集为x介于两数之间.18.【答案】解:{x−3(x−2)≤4①2x−15>x+12②,由①得:x≥1,由②得:x<−7,∴不等式组的解集是空集.【解析】根据不等式性质求出不等式的解集,根据找不等式组解集的规律找出即可.本题主要考查对不等式的性质,解一元一次不等式(组)等知识点的理解和掌握,能根据不等式的解集找出不等式组的解集是解此题的关键.19.【答案】解:原方程整理得:2x+m=3x−6,解得:x=m+6.因为x>0,所以m+6>0,即m>−6.①又因为原式是分式方程,所以x≠2,即m+6≠2,所以m≠−4.②由①②可得,m的取值范围为m>−6且m≠−4.【解析】先解关于x的分式方程,求得x的值,然后再依据“解是正数”建立不等式求m的取值范围.本题主要考查了分式方程的解法及其增根产生的原因.解答本题时,易漏掉m≠4,这是因为忽略了x−2≠0这个隐含的条件而造成的,这应引起同学们的足够重视.20.【答案】解:∵x−y=−3,∴x=y−3.又∵x<−1,∴y−3<−1,∴y<2.又∵y>1,∴1<y<2,…①同理得−2<x<−1.…②由①+②得1−2<y+x<2−1,∴x+y的取值范围是−1<x+y<1.【解析】先根据已知条件用一个量如y去表示另一个量如x,然后根据题中已知量x的取值范围,构建另一量y的不等式,从而确定该量y的取值范围,同理再确定另一未知量x的取值范围,最后利用不等式性质即可获解.此题主要考查了不等式的基本性质:(1)不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;(2)不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变;(3)不等式的两边同时加上(或减去)同一个数或式子,不等号的方向不变.21.【答案】解:(1)设每个篮球x 元,每个足球y 元, 由题意得,{x +y =130x +2y =180,解得:{x =80y =50,答:每个篮球80元,每个足球50元;(2)设买m 个篮球,则购买(54−m)个足球, 由题意得,80m +50(54−m)≤4000, 解得:m ≤4313,∵m 为整数, ∴m 最大取43,答:最多可以买43个篮球.【解析】(1)设每个篮球x 元,每个足球y 元,利用购买1个足球和1个篮球共需130元,购买2个足球和1个篮球共需180元得出等式求出答案;(2)根据题意表示出总费用得出不等式求出答案.此题主要考查了二元一次方程组的应用以及一元一次不等式的应用,正确得出不等关系是解题关键.22.【答案】【解答】解:设每张车票的原价为a 元,按第一种方案购票应付款y 1元,按第二种方案购票应付款y 2元, 依题意得:y 1=5a +a ×60%⋅x ,y 2=(x +5)⋅a ⋅70%, ①当y 2>y 1时,(x +5)⋅a ⋅70%>5a +a ×60%⋅x , 解得x >15,②当y 2=y 1时,(x +5)⋅a ⋅70%=5a +a ×60%⋅x , 解得:x =15,③当y 2<y 1时,(x +5)⋅a ⋅70%<5a +a ×60%x , 解得:x <15.答:当学生多于15人时,按第一种方案;当学生等于15人时,两种方案都可以;当学生少于15人时,按第二种方案.【解析】【分析】设每张车票的原价为a 元,分别表示出第一种方案及第二种方案需要的付款,然后比较即可.本题考查的是一元一次不等式的应用,此类题目贴近生活,有利于培养学生应用数学解决生活中实际问题的能力,解题关键是要读懂题目的意思.。
沪科版数学七年级下册同步课件:7.3 一元一次不等式组 第1课时
• 将不等式的解集表示在数轴上时,要注 意:
1)指示线的方向,“>”向右,“<”向左. 2)有“=”用实心点,没有“=”用空心圈.
-3 -2 -1 0 1 2 3 4 5 6 7 8
-3 -2-1 0 1 2 3 4 5 6 7 8
根据不等式的基本性质求不等式的解集,
并把解集表示在数轴上. (1)x-2≥ -4
(2)2x ≤ 8
解:两边同时加2得:
解:两边同时除以2得:
x ≥ -2
x ≤4
-3 -2 -1 0 1 2
(3)-2x-2 > -10
解:两边同时加2得: -2x > -8 两边同时除以-2得: x<4
-1 0 1 2 3 4 -1 0 1 2 3 4
课堂练习
• 1 判断正误:
• (1)不等式x-1>0有无数个解 ( √ )
• (2)不等式2x-3 ≤0的解集为 x ≥ 2/3
•
()
×
2 将下列不等式的解集分别表
• (1)x>4
示在数轴上:
-3 -2 -1 0 1 2 3 4 5 6 7 8
•(2)x<-1 -3 -2 -1 0 1 2 3 4 5 6 7 8
•(3)x≥-2 -3 -2 -1 0 1 2 3 4 5 6 7 8
点燃导火线后要在燃放前转移到10米以外的
安全区域.已知导火线的燃烧速度为0.02m/s,
人离开的速度为4m/s,那么导火线的长度应
为多少厘米?
设导火线的长度应为xcm,根据题意得
x
0.02100
10 4
即
x>5
你能找出不等式3×4 + 2x≤30的解吗?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
-2 -1 0 1 2 3 4 5 6 7 8 9 10
-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
-2 -1 0 1 2 3 4 5 6 7 8 9 10
4.将下列不等式的解集分别表示在数轴上 (1) x>a(a>0) 0 0 0 0 a a
1 0 ,4 ,3 ,3 , .4 ______________ 是不等式x+4≥0的解 5
5 ,10 ______________ 是不等式x+4<0的解
3.将下列不等式的解集分别表示在数轴上
(1) x>4 (3) x≥-2 (1) (2) (3) (4)
(2) x<-1 (4) x≤6
生活中的数学 燃放各种礼花炮时,为了确保安全,人 在点燃导火线后要在燃放前转移到10米以外 的安全区域.已知导火线的燃烧速度为 0.02m/s,人离开的速度为4m/s,那么导火线的 长度应为多少厘米?
设导火线的长度应为xcm,根据题意得
x 0.02100
10 即 4
X>5
你能找出不等式3×4 + 2X≤30的解吗?
解:两边同时加2得: -2x > -8 两边同时除以-2得: x<4
-1
0 1
2
3
4
课堂练习
1.判断正误: (1)不等式x-1>0有无数个解;
√ ×
2 2不等式2 x 3 0的解集为x 3 1 2.在0 ,4 ,3 ,3 , . 5 ,4 ,10中. 5
4 ______________ 是方程x+4=0的解.
x>5
-1 0 1 2 3 4 5 6 7 8 9 10 11 12 13
x≤4
-1
0 1
2 3 4 5
6 7 8 9 10 11 12 13
将不等式的解集表示在数轴上时,要注 意:
1)指示线的方向,“>”向右,“<”向左. 2)有“=”用实心点,没有“=”用空心圈.
-3 -2 -1 0 1 2 3 4 5 6 7 8
在某次数学竞赛中,老师对优秀学生给予 奖励,花了30元买了3个笔记本和若干支笔,已 知笔记本每本4元,笔每支2元,问最多能买多 少支笔?
解:设至多可买X支笔,则有:
3×4 + 2X ≤ 30
∴ X≤9 而X为整数,因此X最多为9支.
表示不等式的解集 你能用什么办法把不等式 x>5的解集和 不等式x-5≤-1的解集表示在数轴上?
x 3× 4 + 2x … -2 -1 0 0.5 2 3 … 9
8Hale Waihona Puke 10121316 18
30
1.能使不等式成立的未知数的值,叫做不等式 的解。不等式的解有时有无数个,有时有有限 个,有时无解. 2.一个含有未知数的不等式的所有解,组成这 个不等式的解集。 3.求不等式解集的过程叫做解不等式.
生活中的数学
(2) x<a(a>0)
(3) x≥a(a>0)
a
(4) x≤a(a>0)
a
课后小结
1.不等式的解,不等式的解 集,解不等式.
2.会用两种方法表示不等 式的解集
沪科版 七年级 下册
第七章
一元一次不等式与 不等式组
7.3 一元一次不等式组(第1课时)
复习旧知
不等式的基本性质1:不等式两边同时加上 (或减去)同一个整式,不等号的方向不变.
不等式的基本性质2:不等式两边同时乘以 (或除以)同一个正数,不等号的方向不变. 不等式的基本性质3:不等式两边同时乘以 (或除以)同一个负数,不等号的方向改变.
1.什么叫数轴?数轴的三要素是什么?
原点 正方向 单位长度
2.画出数轴,并在数轴上找到表示-4,-0.5,1,5的点.
-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
讲授新课
1.将下列不等式化成“x>a”或 “x<a”的形式: 1.5x+3<3x-1.5
2.已知关于x的不等式(1-a)x>2化简得到 x<2/(x-a),试化简∣a-1∣+∣a+2∣ 3.当k为何值时,方程3x-2k=4(x-k)+1的 解是非正数
-3 -2-1 0 1 2 3 4 5 6 7 8
根据不等式的基本性质求不等式的解集, 并把解集表示在数轴上. (2)2x ≤ 8 (1)x-2≥ -4 解:两边同时除以2得: 解:两边同时加2得:
x ≥ -2
-3 -2 -1 0 1 2
x ≤4
-1 0 1 2 3 4
(3)-2x-2 > -10