分类计数原理 (1)
计数原理
计数原理一、知识导学1.分类计数原理:完成一件事,有n类办法,在第1类办法中,有1m 种不同的方法,在第2类办法中,有2m 种不同的方法,……在第n类办法中,有n m 种不同的方法,那么完成这件事共有N =1m +2m +……+n m 种不同的方法.注:“完成一件事,有n类办法”这是对完成这件事的所有办法的一个分类.分类时,首先要根据问题的特点,确定一个适合它的分类标准,然后在这个标准下进行分类,其次,分类时要注意满足两条基本原则:第一,完成这件事的任何一种方法必须属于某一类;第二,分别属于不同类的两种方法是不同的方法.前者保证完成这件事的立法不遗漏,后者保证不重复.2. 分步计数原理:完成一件事,需要分成n个步骤,做第1步,有1m 种不同的方法,做第2步,有2m 种不同的方法,……做第n步,有n m 种不同的方法,那么完成这件事共有N =1m ×2m ×…×n m 种不同的方法. 注:“完成一件事,需要分成n个步骤”这就是说完成这件事的任何一种方法,都要完成这n个步骤.分步时,首先要根据问题的特点确定一个可行的分步标准,其次,步骤的设置要满足完成这件事必须并且只需连续完成这n个步骤,这件事才算最终完成.注:分类计数原理又称加法原理 分步计数原理又称乘法原理二、典型习题导练1.有5本不同的中文书,4本不同的数学书,3本不同的英语书,每次取一本,不同的取法有( )种..A 3 .B 12 .C 60 .D 不同于以上的答案2.体育场南侧有4个大门,北侧有3个大门,某学生到该体育场练跑步,则他进出门的方案有 ( ) A .12 种 B .7种 C .24种 D .49种3.从6人中选4人分别到巴黎、伦敦、悉尼、莫斯科四个城市游览,要求每个城市有一人游览,每人只游览一个城市,且这6人中甲、乙两人不去巴黎游览,则不同的选择方案共有 ( ).A 300种 .B 240种 .C 144种 .D 96种4.同室4人各写一张贺年卡,先集中起来,然后每人从中拿1张别人送出的贺年卡,则4张贺年卡不同的分配方式有 ( ).A 23种 .B 11种 .C 9种 .D 6种5.设集合{}54321,,,,=I ,选择I 的两个非空子集A 和B ,要使B 中最小的数大于A 中最大的数,则不同的选择方法共有( ).A 50种 .B 49种 .C 48种 .D 47种6.从1,2,3,…,10中选出3个不同的数,使这三个数构成等差数列,则这样的数列共有____个7三张卡片的正反面分别写有1和2,3和4,5和6,若将三张卡片并列,可得到_______个不同的三位数(6不能作9用).8集合A={1,2,3,4},集合B={-1,-2},可建立______个以A为定义域B为值域的不同函数9. 用0,1,2,3,4,5这六个数字,(1)可以组成多少个数字不重复的三位数?(2)可以组成多少个数字允许重复的三位数?(3)可以组成多少个数字不重复的三位奇数?(4)可以组成多少个数字不重复的小于1000的自然数?(5)可以组成多少个数字不重复的大于3000,小于5421的四位数?答案:1 解析每次取一本书分三类:取一本中文书有5种,取一本数学书有4种,取一本英语书有3种,共有5+4+3=12种. 答案B2解析:学生进门有7种选择,同样出门也有7种选择,由分步计数原理,该学生的进出门方案有7×7=49种. ∴应选D.3 解析能去巴黎的有4个人,依次能去伦敦、悉尼、莫斯科的有5个、4个、3个,∴不同的选择方案有:4×5×4×3=240种,∴选.B4 解析设4人为甲、乙、丙、丁分步进行,第一步,让甲拿,有三种方法,第二步,没拿到卡片的人去拿,有三种方法,剩余两人只有一种拿法,所以共有3×3=9种方法.答案C5 答案B6解析:根据构成的等差数列的公差,分为公差为±1、±2、±3、±4四类.公差为±1时,有8×2=16个;公差为±2时,满足要求的数列共6×2=12个;公差为±3时,有4×2=8个;公差为±4时,只有2×2=4个.由分类计数原理可知,共构成了不同的等差数列16+12+8+4=40个7解析:解法一第一步,选数字.每张卡片有两个数字供选择,故选出3个数字,共有32=8种选法.第二步,排数字.要排好一个三位数,又要分三步,首先排百位,有3种选择,由于排出的三位数各位上的数字不可能相同,因而排十位时有2种选择,排个位只有一种选择.故能排出3×2×1=6个不同的三位数.由分步计数原理,共可得到8×6=48个不同的三位数.解法二:第一步,排百位有6种选择,第二步,排十位有4种选择,第三步,排个位有2种选择.根据分步计数原理,共可得到6×4×2=48个不同的三位数.注:如果6能当作9用,解法1仍可行.8解析:函数是特殊的映射,可建立映射模型解决.B从集合A 到集合B 的映射共有42=16个,只有都与-1,或-2对映的两个映射不符合题意,故以A 为定义域B 为值域的不同函数共有16-2=14个.9解析:(1)分三步:①先选百位数字,由于0不能作为百位数,因此有5种选法;②十位数字有5种选法;③个位数字有4种选法.由分步计数原理知所求三位数共有5×5×4=100个.(2)分三步:①先选百位数字,由于0不能作为百位数,因此有5种选法;②十位数字有6种选法;③个位数字有6种选法.由分步计数原理知所求三位数共有5×6×6=180个.(3)分三步:①先选个位数字,由于组成的三位数是奇数,因此有3种选法;②再选百位数字有4种选法;③个位数字也有4种选法.由分步计数原理知所求三位数共有3×4×4=48个.(4)分三类:①一位数,共有6个;②两位数,共有5×5=25个;③三位数,共有5×5×4=100个.因此,比1000小的自然数共有6+25+100=131个(5)分四类:①千位数字为3,4之一时,共有2×5×4×3=120个;②千位数字为5,百位数字为0,1,2,3之一时,共有4×4×3=48个;③千位数字为5,百位数字是4,十位数字为0,1之一时,共有2×3=6个;④还有5420也是满足条件的1个.故所求自然数共120+48+6+1=175个评注:排数字问题是最常见的一种题型,要特别注意首位不能排0.非常规计数方法 一.数形结合思想例1.如下图所示,有5横8竖构成的方格图,从A 到B 只能上行或右行共有多少条不同的路线?二.分类讨论思想 例2.在六个空格里涂上红黄蓝三种颜色,每种颜色只能涂两次,要求相邻不同色,请问一共有多少种涂法。
分类计数原理
分类计数原理
分类计数原理是一种处理统计数据的方法,用于确定不同类别的个数。
该原理可以应用于各种问题,例如统计某一事件发生的概率、分析产品销售情况以及研究人口特征等。
通过分类计数原理,我们可以更好地理解数据,找出规律,并支持决策制定。
分类计数原理的核心思想是将数据按照不同的特征或属性进行分类,并计算每个类别的个数。
通过对不同类别进行统计,我们可以获取各个类别的数量,并据此进行进一步分析。
具体而言,分类计数原理通常遵循以下步骤:
1. 确定数据的特征或属性:首先,我们需要确定要统计的数据的特征或属性。
这可以是任何可以区分不同类别的特征,例如产品类型、地区、性别等。
2. 创建分类标准:根据确定的特征或属性,我们可以创建相应的分类标准。
例如,如果我们要统计不同产品类型的销售数量,可以创建以产品类型为标准的分类。
3. 进行分类计数:根据分类标准,我们对数据进行分类,并计算每个类别的个数。
这可以通过手工计数或使用计算机软件进行自动计数完成。
4. 分析和应用结果:根据分类计数的结果,我们可以进行进一步的数据分析和应用。
例如,我们可以比较不同类别之间的数
量差异,分析不同类别的趋势,或者根据统计结果做出相关决策。
总的来说,分类计数原理是一种简单有效的统计方法,可以帮助我们更好地理解和处理数据。
通过应用该原理,我们可以获得对数据的清晰概览,并从中找到有价值的信息,支持我们做出准确的分析和决策。
分类分步计数原理
示例2:使用排列组合进行计 数
在某些情况下,我们可以使用排列组合来进行计数。
通过确定问题中的不同元素的排列顺序或组合方式,我们可以得到问题的计 数结果。
分类分步计数的应用领域
分类分步计数在许多领域都有广泛的应用。 下面是一些应用领域的示例:
示例1:组合数学问题
在组合数学中,分类分步计数经常用于解决排列组合问题。 通过将问题分解为不同情况,并对每种情况进行计数,我们可以得到问题的 总计数。
分类分步计数是一种通过将问题分解为多个子问题来解决复杂题的方法。 通过对每个子问题进行计数,然后将计数结果组合起来,我们可以得出最终 的计数结果。
示例1:将问题转化为多个子 问题
一个常见的分类分步计数方法是将问题转化为多个相对简单的子问题。
通过解决这些子问题,并将它们的计数结果相乘或相加,我们可以得到整个 问题的计数结果。
总结和要点
分类分步计数是一种解决复杂问题的方法,通过将问题分解为多个子问题, 并使用排列组合等方法进行计数,可以得出最后的结果。
它在组合数学、概率统计和离散数学等领域有着广泛的应用。
通过使用分类分步计数,我们可以更好地理解问题,并找到解决问题的有效 方法。
分类分步计数原理
分类分步计数是一种解决复杂问题的方法,它通过将问题分解为多个子问题 并使用排列组合等方法进行计数,从而得出最后的结果。
在许多领域,分类分步计数都有很广泛的应用,例如组合数学、概率统计和 离散数学等。
在本次演示中,我们将介绍分类分步计数的基本原理、示例以及应用领域。
分类分步计数的基本原理
示例2:概率统计问题
在概率统计中,分类分步计数常用于计算事件发生的可能性。 通过将问题分解为几个独立的步骤,并计算每个步骤的可能性,我们可以得 到整个事件发生的可能性。
分类计数原理和分步计数原理
拓展应用:离散数学、计算机科学
离散数学
分类计数和分步计数原理在离散数学中被广泛应用 于组合问题、图论、递归和算法等领域。
计算机科学
分类计数和分步计数原理在计算机科学中被用于解 决计算复杂性、优化问题和算法设计等。
总结和应用建议
分类计数原理和分步计数原理是数学和计算机科学中重要的计数方法。了解 它们的定义、应用和联系,可以帮助我们解决各种计数问题。
2 区别
分类计数原理是将问题分为不同的分类进行计数,而分步计数原理是将问题分解为多个 步骤进行计数。
实例应用:组合、排列、二项式定理等
1ቤተ መጻሕፍቲ ባይዱ
组合
通过分类计数,可以计算出从给定集合
排列
2
中选择不同元素的组合数。
使用分步计数,可以计算出在给定元素
集合中选择和排序元素的排列数。
3
二项式定理
通过应用分步计数原理,可以推导出二 项式定理,用于展开二次方和三次方的 多项式。
分类计数原理的定义和应用
分类计数原理是一种通过将问题分成不同分类的方式来计数。它在组合数学、离散数学和计算机科学中被广泛 应用。
分步计数原理的定义和应用
分步计数原理是一种通过将问题分解为多个步骤来计数的方法。它通常在组合数学和排列问题中使用。
分类计数原理和分步计数原理的联系 和区别
1 联系
两种原理都可以用于解决计数问题,但是采用不同的分解方式。
分类计数原理和分步计数 原理
本演示将介绍分类计数原理和分步计数原理。了解基本概念、定义、应用、 联系和区别,并深入探讨实例应用以及拓展领域。最后进行总结和应用建议。
基本概念
分类计数原理
通过将问题分解为各个独立分类,然后对每个 分类进行计数,得到最终的计数结果。
分类计数原理
分类计数原理分类计数原理是指在统计学中,对一组数据进行分类并计数的原理。
通过分类计数,我们可以更清晰地了解数据的分布情况,从而为后续的分析和决策提供依据。
分类计数原理在日常生活和各个领域的数据分析中都有着广泛的应用,下面我们将详细介绍分类计数原理的相关内容。
一、分类计数的基本概念。
在进行分类计数之前,首先需要了解一些基本概念。
分类是指根据某种特征或属性将数据分成若干组,而计数则是对每一组中的数据个数进行统计。
在分类计数中,我们需要确定分类的标准和方法,以及统计的规则和要求。
二、分类计数的步骤。
进行分类计数时,一般可以按照以下步骤进行:1.确定分类标准,根据数据的特点和需要,确定分类的标准和方法,可以是按照数量、时间、地区、属性等进行分类。
2.建立分类表,根据分类标准,建立分类表格或图表,将数据进行分类整理。
3.进行计数统计,对每一组数据进行计数统计,得出每一组的数据个数。
4.分析和解释,根据分类计数的结果,进行数据分析和解释,了解数据的分布规律和特点。
三、分类计数的应用。
分类计数原理在实际应用中有着广泛的应用,例如:1.市场调研,对消费者的年龄、性别、收入等进行分类计数,了解消费群体的特点和需求。
2.学生考试成绩分析,对学生的考试成绩进行分类计数,了解各个分数段的人数分布情况。
3.生产质量管理,对产品的质量进行分类计数,了解各个质量等级的产品数量,进行质量控制和改进。
4.社会调查,对人口的年龄、职业、教育程度等进行分类计数,了解社会结构和变化。
四、分类计数的注意事项。
在进行分类计数时,需要注意以下几点:1.分类标准的确定要合理和准确,不能过于主观或随意。
2.分类表的建立要清晰和规范,便于数据整理和分析。
3.计数统计要准确和完整,不能遗漏或重复统计数据。
4.数据分析要客观和全面,不能片面解释或误导结论。
五、总结。
分类计数原理是统计学中的重要概念,通过分类计数可以更清晰地了解数据的分布情况,为后续的分析和决策提供依据。
全国新课标卷1、卷2:【概率问题一轮复习】全方位总结复习资料,含详细解析
分类计数原理与分步计数原理(一)主要知识:1. 分类计数原理:做一件事情,完成它可以有n 类办法,在第一类办法中有1m 种不同的方法,在第二类办法中有2m 种不同的方法,……,在第n 类办法中有n m 种不同的方法12n N m m m =+++ 种不同的方法2. 分步计数原理:做一件事情,完成它需要分成n 个步骤,做第一步有1m 种不同的方法,做第二步有2m 种不同的方法,……,做第n 步有n m 种不同的方法,那么完成这件事有12n N m m m =⨯⨯⨯ 不同的方法3. 两个基本原理的作用:计算做一件事完成它的所有不同的方法种数4. 两个基本原理的区别:一个与分类有关,一个与分步有关;加法原理是“分类完成”,乘法原理是“分步完成”(二)主要方法:1. 分类计数原理和分步计数原理是解决排列、组合问题的理论基础.这两个原理的本质区别在于分类与分步,分类用分类计数原理,分步用分步计数原理.2. 元素能重复的问题往往用计数原理.(三)典例分析:例1. 电视台在“欢乐今宵”节目中拿出两个信箱,其中存放着先后两次竞猜中成绩优秀的观众来信,甲信箱中有30封,乙信箱中有20封.现由主持人抽奖确定幸运观众,若先确定一名幸运之星,再从两信箱中各确定一名幸运伙伴,有多少种不同的结果?解:分两类:(1)在甲箱中抽,再在两箱中各定一名幸运伙伴,有30×29×20=17400种结果;(2)在乙箱中抽,同理有20×19×30=11400种结果.因此共有17400+11400=28800种不同结果.【思维点拨】 在综合运用两个原理时,既要合理分类,又要合理分步,一般情况是先分类再分步.例2. 从集合{1,2,3,…,10}中,选出由5个数组成的子集,使得这5个数中的任何两个数的和不等于11,这样的子集共有多少个?解:和为11的数共有5组:1与10,2与9,3与8,4与7,5与6,子集中的元素不能取自同一组中的两数,即子集中的元素取自5个组中的一个数.而每个数的取法有2种,所以子集的个数为2×2×2×2×2=25=32.【思维点拨】 解本题的关键是找出和为11的5组数,然后再用分步计数原理求解.例3. (1) 从长度分别为1、2、3、4的四条线段中,任取三条的不同取法共有n 种.在这些取法中,以取出的三条线段为边可组成的三角形的个数为m ,则nm等于 A.0B.41 C.21D.43解析:n =C 34=4,在“1、2、3、4”四条线段中,由三角形的性质“两边之和大于第三边,两边之差小于第三边”知可组成三角形的有“2、3、4”,m =1.∴nm = 41.答案:B(2) 某班新年联欢会原定的6个节目已排成节目单,开演前又增加了3个新节目,如果将这3个节目插入节目单中,那么不同的插法种数为 A.504 B.210 C.336 D.120解析:三个新节目一个一个插入节目单中,分别有7、8、9种方法.∴插法种数为7×8×9=504或A 99÷A 66=504. 答案:A(3) 从图中的12个点中任取3个点作为一组,其中可构成三角形的组数是 ( ) A.208 B.204 C.200 D.196解析:在12个点中任取3个点的组合数为C 312,在同一直线上的3点的组数为20,则可构成三角形的组数为C 312-20=200. 答案:C(4)从1到10的正整数中,任意抽取两个相加,所得和为奇数的不同情形有______种.解析:当且仅当偶数加上奇数后和为奇数,从而不同情形有5×5=25种. 答案:25(5)4棵柳树和4棵杨树栽成一行,柳树、杨树逐一相间的栽法有_____________种.解析:2A44·A44=1152种. 答案:1152(6)某餐厅供应客饭,每位顾客可以在餐厅提供的菜肴中任选2菜2素共4种不同的品种.现在餐厅准备了5种不同的荤菜,若要保证每位顾客有200种以上的不同选择,则餐厅至少还需要不同的素菜品种_____________种.(结果用数值表示)解析:设素菜n种,则C25·C2n≥200 n(n-1)≥40,所以n的最小值为7.答案:7例4.某城市在中心广场建造一个花圃,花圃分为6个部分(如下图).现要栽种4种不同颜色的花,每部分栽种一种且相邻部分不能栽种同样颜色的花,不同的栽种方法有_____________种.(以数字作答)123456解法一:从题意来看6部分种4种颜色的花,又从图形看知必有2组同颜色的花,从同颜色的花入手分类求.(1)②与⑤同色,则③⑥也同色或④⑥也同色,所以共有N1=4×3×2×2×1=48种;(2)③与⑤同色,则②④或⑥④同色,所以共有N2=4×3×2×2×1=48种;(3)②与④且③与⑥同色,则共有N3=4×3×2×1=24种.所以,共有N=N1+N2+N3=48+48+24=120种.解法二:记颜色为A、B、C、D四色,先安排1、2、3有A34种不同的栽法,不妨设1、2、3已分别栽种A、B、C,则4、5、6栽种方法共5种,由以下树状图清晰可见.根据分步计数原理,不同栽种方法有N=A34×5=120.答案:120例5. 设有编号为1,2,3,4,5的五个球和编号为1,2,3,4,5的五个盒子.现将这五个球投放入这五个盒子内,要求每个盒子内投放一球,并且恰好有两个球的编号与盒子的编号相同,则这样的投放方法有多少种? 分析:五个球分别投放到五个盒子内,恰好有两个球的编号与盒子的编号相同,则其他三个球必不能投放到与球的编号相同的盒子内,此时,这三个球与对应的三个盒子,就成了受限的特殊元素与特殊位置.解:先在五个球中任选两个球投放到与球编号相同的盒子内,有C25种;剩下的三个球,不失一般性,不妨设编号为3,4,5,投放3号球的方法数为C12,则投放4,5号球的方法只有一种,根据分步计数原理共有C25·C12=20种.【思维点拨】本题投放球有两种方法,一种是投入到与编号相同的盒子内,另一种是投入到与编号不同的盒子内,故应分步完成. 例6.五名学生报名参加四项体育比赛,每人限报一项,报名方法的种数为多少?又他们争夺这四项比赛的冠军,获得冠军的可能性有多少种?解:(1)5名学生中任一名均可报其中的任一项,因此每个学生都有4种报名方法,5名学生都报了项目才能算完成这一事件.故报名方法种数为4×4×4×4×4=45种.(3)每个项目只有一个冠军,每一名学生都可能获得其中的一项获军,因此每个项目获冠军的可能性有5种.故有n=5×5×5×5=54种.例7.球台上有4个黄球,6个红球,击黄球入袋记2分,击红球入袋记1分,欲将此十球中的4球击入袋中,但总分不低于5分,击球方法有几种?解:设击入黄球x 个,红球y 个符合要求,则有 x +y =4,2x +y ≥5(x 、y ∈N ),得1≤x ≤4. ∴⎩⎨⎧==⎩⎨⎧==⎩⎨⎧==⎩⎨⎧==.0,4;1,3;2,2;3,1y x y x y x y x 相应每组解(x ,y ),击球方法数分别为C 14C 36,C 24C 26,C 34C 16,C 44C 06.共有不同击球方法数为C 14C 36+C 24C 26+C 34C 16+C 44C 06=195.(四)巩固练习:1. 十字路口来往的车辆,如果不允许回头,共有____ C ____种行车路线.A.24B.16C.12D.102. 从正方体的6个面中选取3个面,其中有2个面不相邻的选法共有 ( B )A.8种B.12种C.16种D.20种3. 某城市的电话号码,由六位升为七位(首位数字均不为零),则该城市可增加的电话部数是( D )A.9×8×7×6×5×4×3B.8×96C.9×106D.81×1054. 72的正约数(包括1和72)共有___12__个.5. 从-1,0,1,2这四个数中选三个不同的数作为函数f (x )=ax 2+bx +c 的系数,可组成不同的二次函数共有___18___个,其中不同的偶函数共有__6__个.(用数字作答)(五)知识小结: 弄清两个原理的区别与联系,是正确使用这两个原理的前提和条件.这两个原理都是指完成一件事而言的.其区别在于:(1)分类计数原理是“分类”,分步计数原理是“分步”;(2)分类计数原理中每类办法中的每一种方法都能独立完成一件事,分步计数原理中每步中每种方法都只能做这件事的一步,不能独立完成这件事.排列组合(一)主要知识:1. 排列、组合都是研究事物在某种给定的模式下所有可能的配置的数目问题,它们之间的主要区别在于是否要考虑选出元素的先后顺序,不需要考虑顺序的是组合问题,需要考虑顺序的是排列问题,排列是在组合的基础上对入选的元素进行排队,因此,分析解决排列组合问题的基本思维是“先组,后排”.2. 解排列组合的应用题,要注意四点:(1)仔细审题,判断是组合问题还是排列问题;要按元素的性质分类,按事件发生的过程进行分步.(2)深入分析、严密周详,注意分清是乘.还是加.,既不少也不多,辩证思维,多角度分析,全面考虑,这不仅有助于提高逻辑推理能力,也尽可能地避免出错.(3)对于附有条件的比较复杂的排列组合应用题,要周密分析,设计出合理的方案,把复杂问题分解成若干简单的基本问题后应用分类计数原理或分步计数原理来解决.(4)由于排列组合问题的答案一般数目较大,不易验证,因此在检查结果时,应着重检查所设计的解决问题的方案是否完备,有无重复或遗漏,也可采用多种不同的方法求解,,看看是否相同.在对排列组合问题分类时,分类标准应统一,否则易出现遗漏或重复.(二)主要方法:解决排列组合问题的策略和方法1. 对无限制条件的:直接法2. 有限制条件的:(1)每个元素都有附加条件的:列表法或树图法;(2)有特殊元素或特殊位置:优先排列法。
分类计数原理和分步计数原理
分步计数原理的核心思想是“分步”,即根据事件的某些特征将 其分成不同的步骤,然后分别计算每一步中的方法数,最后将这 些方法数相乘得到复杂事件的总方法数。
两者关系与区别
关系
分类计数原理和分步计数原理都是解决复杂事件计数问题的方法,它们的核心思想都是将复杂事件进行分解,然 后分别进行计算。
04 计数原理在算法中的应 用
动态规划算法
最优子结构
动态规划算法通过把原问题分解为若干个子问题,并求解子 问题的最优解,进而得到原问题的最优解。这种通过子问题 的最优解来推导原问题最优解的方法体现了分类计数原理的 思想。
状态转移方程
动态规划算法中,通常定义一个状态转移方程来描述子问题 之间的关系。这个方程可以帮助我们计算出每个子问题的最 优解,并最终得到原问题的最优解。状态转移方程的构建和 求解过程体现了分步计数原理的思想。
路线规划问题
从起点到终点需要经过三个城市,每两个城市之间都有多 条路线可选。根据加法原理和乘法原理,可以计算出从起 点到终点所有可能的路线组合数。
彩票选号问题
一张彩票需要选择7个号码,每个号码可以是1~49中的任 意一个。根据乘法原理,共有 $49 times 48 times 47 times 46 times 45 times 44 times 43 $ 种不同的选号方 式。
组合问题
排列与组合的区别
排列是把元素按顺序排列,而组合是 把元素无顺序地组合起来。
从n个不同元素中取出m个元素( m≤n)的所有排列的个数,叫做从n 个元素中取出m个元素的组合数。
概率统计问题
古典概型
如果每个样本点发生的可能性相 等,则事件A发生的概率等于事件 A包含的样本点个数与样本空间包
分类计数原理与分步计数原理例题
分类计数原理与分步计数原理例题一、分类计数原理例题1:有4个不同的苹果和3个不同的橘子,请问由这些水果组成一串长度为7的水果串有多少种情况?解析:根据分类计数原理,我们可以将问题分解为两个步骤来考虑。
首先,我们要确定苹果的数量,假设苹果的数量为0、1、2、3或4,那么橘子的数量就是7减去苹果的数量。
1.当苹果数量为0时,橘子数量为7,这种情况只有1种。
2.当苹果数量为1时,橘子数量为6,这种情况有3种。
3.当苹果数量为2时,橘子数量为5,这种情况有3*2=6种。
4.当苹果数量为3时,橘子数量为4,这种情况有3*2*1=6种。
5.当苹果数量为4时,橘子数量为3,这种情况有3*2*1*1=6种。
所以,组成一串长度为7的水果串的种类总数为1+3+6+6+6=22种。
二、分步计数原理分步计数原理是将大问题分解为若干个小问题,然后将小问题的计数结果相乘得到最终的结果。
例题2:假设John有3个不同的帽子和4个不同的围巾,他每天只能戴一个帽子和一条围巾,请问他有多少种不同的搭配方式?解析:根据分步计数原理,我们可以将问题分解为两个小问题。
首先,我们可以计算帽子和围巾的搭配方式数量:-帽子的选择有3种,围巾的选择有4种,因此搭配方式数量为3*4=12种。
所以,John有12种不同的搭配方式。
例题3:旅行团计划去三个不同的城市,在每个城市停留的天数分别为4天、5天和6天,且天数的顺序不限,请问旅行团一共有多少种行程方案?解析:根据分步计数原理,我们可以将问题分解为三个小问题。
首先,我们可以计算每个城市的行程天数的选择数量:-第一个城市的停留天数有4天、5天和6天三种选择,第二个城市的停留天数有3种选择,第三个城市的停留天数有2种选择。
所以,旅行团一共有3*3*2=18种行程方案。
综上所述,分类计数原理和分步计数原理是解决组合问题常用的两种计数方法。
通过分解大问题为小问题,我们可以更方便地解决组合计数问题。
这两种方法可以相互结合使用,也可以单独使用,取决于具体的问题。
分类计数原理的实例
分类计数原理的实例
分类计数原理(也称为分步计数原理)是数学中用于计算多个步骤中不同选项的总数的方法。
它表达为:如果一件事情可以分解为若干个相互独立的步骤,而每个步骤都有若干个选项,那么整个事情的总数就是每个步骤选项的乘积。
以下是一些分类计数原理的实例:
例子1:顾客点餐
假设一家餐馆有3种主菜、4种汤和2种甜点,顾客可以选择其中一种主菜、一种汤和一种甜点。
使用分类计数原理,我们可以计算所有不同点餐组合的总数为3 ×4 ×2 = 24。
例子2:密码锁
假设一个密码锁有3个拨盘,每个拨盘上有10个数字(0-9)。
使用分类计数原理,我们可以计算所有不同的密码组合总数为10 ×10 ×10 = 1000。
例子3:组队比赛
假设有8个人参加篮球比赛,其中4个人要组成一个队伍。
使用分类计数原理,我们可以计算不同的队伍组合总数为C(8,4) = 8! / (4! ×(8-4)!) = 70。
例子4:排列组合
假设有5个人参加比赛,奖牌分为金牌、银牌和铜牌。
使用分类计数原理,我们
可以计算不同的奖牌排列组合总数为P(3,3) = 3! = 6。
这些例子展示了在不同情境下如何使用分类计数原理来计算不同选项的总数。
通过将复杂问题分解为简单的步骤,并使用乘法原理将这些步骤组合起来,我们可以更有效地计算结果。
分类计数原理、分步计数原理
分类计数原理、分步计数原理授课难点:1.解决学生思考过程中对加法,分步计数原理理解产生的误区。
2.帮助学生找到“重”,“漏”产生的原因。
一、概念与规律1.分类计数原理:做一件事,完成它可以有n类办法。
在第一类办法中有m1种不同方法,在第二类办法中m2种不同的方法,……,第n类办法中有m n种不同方法。
那么完成这件事共有N=m1+m2+……+m n种不同的方法。
2.分步计数原理:做一件事,完成它需要分成n个步骤,做第一步有m1种不同的方法,做第二步有m2种不同的方法,……,做第n步有m n种不同的方法。
那么完成这件事共有N=m1·m2·……m n种不同的方法。
3.分类计数原理和分步计数原理的共同点是,它们都是研究完成一件事情,共有多少种不同的方法;不同点在于完成一件事情的方式不同,分类计数原理是在“分类完成”,即任何一类办法中任何一种方法都能独立完成这种事。
分步计数原理是在“分步完成”,即这些方法需要分步,各个步骤顺次相依,且每一步都完成了,才能完成这件事情。
二、例题讲解例1.一个口袋内装有5个小球,另一个口袋装有4个小球,所有这些小球的颜色互不相同。
(1)从两个口袋内任取1个小球,有多少种不同的取法?(2)从两个口袋内各取1个4球,有多少种不同的取法。
解:(1)从两个口袋中任取一个小球,有两类办法:第一类办法是从第一个口袋内任取1个小球,从5个小球中任取1个,有5种方法;第二类办法是从第二个口袋内任取1个,有4种方法,根据分类计数原理,得到不同的取法的种数是N=m1+m2=5+4=9(种)。
(2)从两个口袋内各取1个小球,可以分成两个步骤来完成:第一步从第一个口袋内取1个小球,有5种方法;第二步在第二个口袋内取1个小球,有4种方法。
根据分步计数原理,得到不同的取法种数是N=m1×m2=5×4=20(种)。
即:从两个口袋内任取1个小球,有9种不同的取法;从两个口袋内各取1个小球,有20种不同取法。
分类计数原理与分步计数原理
【例2】一城市的电话号码都由8位数字组成, 其中前4位数字是统一的,后4位数字都是0到9 之间的一个数字,那么不同的电话号码可有多 少个? 【引申1】4封信全部投入10个不同的信箱 中,有多少种不同的投法?
【引申2】A集合中有4个元素,B集合中有10 个元素,问:可以建立多少个从A到B的映射?
【引申3】运动会上4位同学报名参加10个项目, 每人必须且只能报一项,有多少种报名方法?
”智深道:“洒家也不杀你,只要问你买酒吃。”那汉子见不是头,挑了担桶便走。智深赶下亭子来,双手拿住匾担,只一脚,交裆踢着,那汉子双手掩着,做一堆蹲在地下,半日起不得。智深把那两桶酒都提在亭子上,地下拾起旋子,开了桶盖,只顾舀冷酒吃。无移时,两大桶酒吃了 一桶。智深道:“汉子,明日来寺里讨钱。”那汉子方才疼止,又怕寺里长老得知,坏了衣饭,忍气吞声,那里敢讨钱?把酒分做两半桶挑了,拿了旋子,飞也似下山去了。 只说鲁智深在亭子上坐了半日,酒却上来。下得亭子,松树根边又坐了半歇,酒越涌上来。智深把皂直裰褪膊下 来,把两只袖子缠在腰里,露出脊背上花绣来,扇着两个膀子上山来。但见:头重脚轻,眼红面赤;前合后仰,东倒西歪。踉踉跄跄上山来,似当风之鹤;摆摆摇摇回寺去,如出水之蛇。指定天宫,叫骂天蓬元帅;踏开地府,要拿催命判官。裸形赤体醉魔君,放火杀人花和尚。鲁达看看 来到山门下,两个门子远远望见,拿着竹篦来到山门下,拦住鲁智深便喝道:“你是佛家弟子,如何噇得烂醉了上山来?你须不瞎,也见库局里贴的晓示:但凡和尚破戒吃酒,决打四十竹篦,赶出寺去,如门子纵容醉的僧人入寺,也吃十下。你快下山去,饶你几下竹篦。” 鲁智深一者 初做和尚,二来旧性未改,睁起双眼骂道:“直娘贼!你两个要打洒家,俺便和你厮打。”门子见势头不好,一个飞也似入来报监寺,一个虚拖竹篦拦他。智深用手隔过,揸开五指,去那门子脸上只一掌,打得踉踉跄跄;却待挣扎,智深再复一拳,打倒在山门下,只是叫苦。智深道:“ 洒家饶你这厮。”踉踉跄跄,攧入寺里来。监寺听得门子报说,叫起老郎、火工、直厅、轿夫,三二十人,各执白木棍棒,从西廊下抢出来,却好迎着智深。智深望见大吼了一声,却似嘴边起个霹雳,大踏步抢入来。众人初时不知他是军官出身,次后见他行得凶了,慌忙都退入藏殿里去 ,便把亮槅关上。智深抢入阶来,一拳一脚,打开亮槅,三二十人都赶得没路,夺条棒从藏殿里打将出来。 监寺慌忙报知长老,长老听得,急引了三五个侍者直来廊下,喝道:“智深不得无礼!”智深虽然酒醉,却认得是长老,撇了棒,向前来打个问讯,指着廊下对长老道:“智深吃 了两碗酒,又不曾撩拨他们,他众人又引人来打洒家。”长老道:“你看我面快去睡了,明日却说。”鲁智深道:“俺不看长老面,洒家直打死你那几个秃驴!”长老叫侍者扶智深到禅床上,扑地便倒了,齁齁地睡了。 (1)在空格内依次填写一个动词。概括文中鲁智深与酒的几件事。 想酒~买酒~抢酒~闹酒 (2)文中汉子的唱词有哪些作用? (3)结合水浒传,完成下面题目 ①鲁智深在上五台山之前所做的义事是A A拳打镇关西 B大闹桃花村 C火烧瓦官寺 D大闹野猪林 ②鲁智深为何被称作花和尚 ③与林冲和李逵相比,鲁智深的性格有什么特别之处,请举例具体 分析。 【考点】9E:小说阅读综合. 【分析】本文主要描述了鲁智深大闹五台山的故事.第一段写鲁智深来到五台山几个月没喝酒,正想着酒,外面传来了卖酒的歌声;第二段写鲁智深想买酒遭拒,就开始动手抢酒,吓跑了卖酒的汉子;第三至五段,写鲁智深喝完,酒劲上来看返回寺 院,门子见状阻拦,鲁智深反打门子,惊扰到长老送至房间便酒意大发睡去了. 【解答】(1)本题考查主要内容的概括.解答此题明确本文的写作线索为“酒”,按写作的顺序找出事件,然后分别用两个字来概括即可.文章第一段写鲁知深想到了喝酒,第二段写鲁智深想买酒遭到了拒 绝,便开始抢酒;第三至五段,主要写他喝酒后回寺大闹寺院.可分别概括为:想酒、买酒、抢酒和闹酒. (2)本题考查内容的理解与分析.唱词与战争、项羽相关,结合前文情节我们知道,鲁智深曾经作过提辖,这个唱词则触发了鲁智深的英雄豪情,想起自己此时却在寺院中为僧, 这样就刺激了他的酒瘾,从而引发了下面的情节. (3)本题考查名著情节的识记与人物形象的对比分析.解答此题关键在于平时的阅读与积累.①鲁智深上山之前是提辖,因为救助金氏父女而拳打镇关西,为了逃脱人命官司而来到了这里.故选A.②鲁智深上山为僧,但他的脊背上有 花绣,又因为他不守戒律,喝酒吃肉打人,所以得名“花和尚”. ③林冲在《水浒传》中一开始的性格是软弱的,就因为一再的忍让才被害.李逵的勇猛和鲁智深很相似,但李逵有勇无谋,没有头脑.而鲁智深有智慧,如拳打镇关西至他于死地时,用郑屠的装死来骗众人,取得逃跑的 时间等情节就能体现出来. 代谢: (1)买 抢 闹(共3分,每空1分) (2)汉子的唱词进一步触发了曾为军官的鲁智深的豪情和他对当时处境的不满,更刺激了他的酒瘾. (3)①A ②因为他出家为僧,且脊背上有花绣,也因为他喝酒吃肉打人,不守戒律. ③示例:与林冲相比,鲁 智深办事更加果断干脆.例如,林冲在被奸人高俅陷害后一再隐忍退让,而鲁智深为解救金氏父女,直接痛打了恶人郑屠. (2017安徽)【二】(21分) 扁担的一生 范宇 ①在村庄的记忆里,几乎任何时间、任何角落都能见到扁担的身影。挑粪、挑种子、挑谷子、挑土豆、挑橘子…… 农人在土地上的所有倾注与收获,都与扁担密不可分。扁担就是农人的精神脊梁,让他们挑起一个家庭重担的同时,也挑起了一个村庄沉重的历史与殷殷期盼。 ② 。母亲嫁给父亲时,半背篼谷子便是全部的家当。泥墙茅顶的房子破败不堪,常常在狂风骤雨中摇摇欲坠,只有立于墙角略 弯的扁担显得精神抖擞,给人信心与希望。或许,母亲嫁给父亲的勇气,有几分便来自于扁担的抖擞精神。总之,在昼夜有序更替的村庄里,父母用扁担慢慢挑起了生活的担子,就像蚂蚁搬家一样,虽然缓慢,却渐渐挑出了一个家庭的崭新面貌。 ③ 。 ④20年前,父亲从山里找到一截 不错的木材,正想着用来做点什么呢。身为木匠的舅舅几乎脱口而出——扁担。对,扁担!父亲也认为,只有改成一根扁担,才不辜负这上好的木材。说干就干,粗糙的木材到了舅舅手里,不用半天,就变成了一根笔直的扁担。扁担不能太直,太直则易伤肩头和腰。因此,还得将扁担以 火烤之后,用外力将之略微压弯成弓形。可这根扁担实在太有骨气了,即便火烤、重压,仍然笔直,没有半点屈服。 ⑤这根扁担挑起来更吃力,父亲却爱不释手。之后的许多年里,父亲无论挑什么,都用她。有次在挑玉米时,父亲不小心闪了腰,疼了好长一段时间。但父亲并没有放弃 她,用汗水和心血一点点浸润着她,渐渐地,她坚硬的心被融化了,挺直的腰板,也弯了下来。父亲挑起扁担来越来越有默契,像与母亲的婚姻一样,虽偶有磕磕绊绊,感情却越来越深厚。她也没有辜负父亲的良苦用心,苦心经营,以顶天立地般的气慨,让一个家庭从贫穷落后走向富足 安逸。 ⑥可这样的日子并没有持续多少年。越来越多的人开始离开村庄,离开赖以生存的土地,扁担也渐渐地走向了落寞。不少人再也没有回来,在城里买了房子,过上了舒坦的日子。这也让父亲坚信一根扁担能够挑出一个未来的信念,逐渐土崩瓦解。或许,这背后更多是村庄现实的 无奈。 ⑦无论如何,父亲最终选择了离开。 ⑧曾经朝夕相对的扁担被搁置在了一个冰冷的墙角,孤零零的。说来也奇怪,没有了重压,扁担却一天比一天更弯,弯得像一个苟延残喘的暮年老者。或许,再过几年,抑或十余年,她便将走完一生,彻底告别深爱了一生也奋斗了一生的村庄 。 ⑨这也是农人的一生。 ⑩九月,村庄又迎来冷冷清清的收获季节。我返城时,碰见正挑着谷子从田边迎面走来的大伯。大伯今年已60余岁了,还在田间劳作着。他也曾短暂离开过村庄,却始终没能走出像扁担一样的命运。他仍然坚信着,只要村庄还在,扁担还在,就一定能够扛起生 活的重担。甚至,在人烟越来越少的村庄里,不少死守的农人还是坚信——一根扁担仍能挑起一个村庄。 ?这是一种可贵精神,或许它与现实追求早已背道而驰,却让人肃然起敬。 (选自《襄阳晚报》2016年3月3日,有删改) 10、根据上下文,将下面两个句子分别填入文章②③两段横 线处,第②段应填( ),第③段应填( )。(4分) A、这让我有了探索一根扁担一生的浓厚兴趣。 B、我的家也是扁担挑起来的。 11、阅读文章④—⑥段,概括补充扁担经历的主要变化过程。(每空不超过5个字)(4分) 上好的木材→ →渐弯的扁担→ 12、作者提到“扁担”,多 次使用第三人称“她”,有何表达效果?(3分) 13、联系上下文,简要分析第⑩段画线句子蕴含了作者怎样的情感。(4分) 14、“扁担”在文中有着丰富的内涵,请结合全文谈谈你的理解。(6分)[来源:学科网 代谢:【二】 10. (4分)B A 11. (4分)不屈的扁担 落寞的扁担 12.(3分) 运用拟人化的手法,把扁担当成了与自己家庭命运休戚相关的一员,抒发了对扁担对既往岁月的无限怀念留恋之情,同时也表达了对父亲对家庭的热爱之情。 13.(4分) 表达了对大伯不能与时俱进,还固守着旧有的生活方式,希望能用一根扁担扛起生活重担精神的钦佩与 惋惜之情 14.(4分)扁担是农人的希望,是农人精神脊梁;扁担也是父亲的命运与精神的反映 。扁担有着不屈的精神,挑起过生活的重担,创造过富足安逸,也有着英雄暮年的孤寂衰老,它的一生也反映了人的一生;在一定程度上,扁担也是落后生活方式的代表。 (2017浙江温州)4 . 天道立秋 张承志 (1)1990年立秋日,是个神秘的日子。 (2)年复一年地,代谢人渐浙开始从春末就恐怖地等着入伏。一天天地熬,直到今年是一刻刻地熬。长长无尽的代谢苦夏,在这一回简直到了极致。 (3)一点一点地挨着时间;无法读书,无法伏案。不仅是在白昼,夜也是 潮闷难言,漆黑中的灼烤实在是太可怕了。 (4)我有时独自坐在这种黑热里,像一块熄了不多时的炉膛里的烧烬。心尖有一块红红的煤火,永无停止地折磨着自己。似乎又全靠着它,人才能与这巨大的黑热抗衡。久久坐着,像是对峙。 (5)天亮以后几个时辰,大地便又堕入凶狠的爆 烤。有谁能尽知我们的苦夏呢? (6)街上老外,满脸汗水。 (7)度夏的滋味、中国人是说不出的。 (8)后来愈热愈烈,我几乎绝望。再这样热下去,连我也怀疑没有天理了。 (9)可是,那一天是立秋。上午我麻木地走进太班有男生30人, 女生24人,要从中选一人参加学校会议,问: 总共有多少种选法?
分类计数原理
例1 在填写高考志愿表时,一名高中毕业生了解到A、B两 所大学各有一些自己感兴趣的强项专业,具体情况如下:
A大学 生物学 化学 医学 物理学
B大学 数学 会计学 信息技术学 法学
工程学 如果这名同学只能选一个专业,那么他共有多少种选择呢?
二、分步计数原理
完成一件事,需要分成n个步骤。做第1步有m1 种不同的方法,做第2步有m2种不同的方法, ……, 做第n步有mn种不同的方法,则完成这件事共有
N= m1×m2×… ×mn种不同的方法
说明
1)各个步骤相互依存,只有各个步骤都完成了,这件事 才算完成,将各个步骤的方法数相乘得到完成这件事的 方法总数,又称乘法原理
解:这名同学在A大学中有5种专业选择,在B大学中有4种专业选择。 根据分类计数原理:这名同学可能的专业选择共有5+4=9种。
思考?
用前6个大写英文字母和1~9九个 阿拉伯数字,以A1,A2,···,B1, B2,···的方式给教室里的座位编号,总 共能编出多少个不同的号码?
分析:由于前6个英文字母中的任意一个都能 与9个数字中的任何一个组成一个号码,而且 它们各个不同,因此共有6×9=54个不同的 号码。
3、将4封信投入3个不同的邮筒,有多少种不 同的投法?
4、已知 a { 3 ,4 ,6 } ,b { 1 ,2 ,7 ,8 } ,r { 8 ,9 }
则方程 (xa)2பைடு நூலகம்yb)2r2可表示不同的圆的 个数有多少?
课堂练习
5、已知二次函数 yax2 bxc. 若
a ,b ,c { 3 , 2 ,0 ,1 ,2 ,3 } .则可以得到多少个
计数原理
第一章.计数原理一.两个基本计数原理分类计数原理(加法原理):完成一件事,有n类方式,在第1类方式中有m1种不同的方法,在第2类方式中有m2种不同的方法,…..在第n类方式中有mn种不同的方法,那么完成这件事共有N=m1+m2+….mn种不同的方法。
分布计数原理(乘法原理):完成一件事,需要分成n个步骤,做第1个有m1种不同的方法,做第2步有m2种不同的方法,….做第n步有mn种不同的方法,那么完成这件事共有N=m1+m2+….+mn种不同的方法。
二.排列一般的,从n个不同的元素中取出m(m≦n)个元素,按照一定的顺序排成一列,叫做从n个元素中取出m个元素的一个排列。
排列数三.组合一般的,从n个不同的元素中取出m(m≦n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合。
组合数㈠简单问题直接法例一.某班级有男生40人,女生20人,⑴从中任选一人去领奖,有多少种不同的选法?60⑵从中任选男女各一人去参加座谈会,有多少种不同的选法?800例二.五名学生报名参加思想体育比赛,每人限报一项,报名方法的种数为多少?1024例三.七个人做两排座位,第一排坐3人,第二排坐4人,有多少种不同的坐法?5040㈡相邻问题捆绑法例一.七个小孩拍照留念,其中三个是女孩,四个是男孩,⑴若三个女孩要站在一起,有多少种不同的排法720⑵若三个女孩要站在一起,四个男孩也要站在一起,则有多少种排法288㈢不相邻问题插空法例一.七个小孩拍照留念,其中三个是女孩,四个是男孩,⑴若三个女孩要互不相邻,有多少种排法1440⑵若三个女孩互不相邻,四个男孩也互不相邻,有多少种排法144例二.8张椅子排成一排,有四个人就坐,每个人一个座位,恰有3个连续的空位的做法共有几种480例三.5名学生和2位老师站成一排合影,2位老师不相邻的排法有几种例四.七人排成一排,甲乙两人必须相邻,且甲乙都不与丙相邻,则有不同的排法几种?960㈣特殊元素或特殊位置的优先考虑例一.4个男生,3个女生排队,⑴甲不站中间也不站两端,共有多少种排法?2880⑵甲乙中间至少有2个人,有多少种排法2400⑶甲必须在已的右边,有多少种排法2520例二.从6人中选出4人分别到莨山,韶山,衡山,张家界4个旅游景点游览,要求每个景点只有一人游览,每人只游览一个景点,且这6人中甲不去衡山景点,乙不去韶山景点,则不同的安排方法有几种252例三.从6名运动员中选出4人参加4*100米接力,⑴若甲不跑第一棒,乙不跑第四棒,则有多少种排法252⑵若甲乙都不跑第一棒,则有多少种排法240⑶若甲乙不跑中间两棒,则有多少种排法144例四.将五列车停在5条不同的轨道上,其中a列车不停在第一轨道,b列车不停在第二轨道,那么不同的停车方法有几种78例五.要排出某一天中语文,数学,政治,英语,体育,艺术,6门课各一节的课程表,要求数学课排在前三节,英语课不排在第六节,则不同的排法有几种?288㈤涂色问题例一.在矩形的绿地四角各方一盆花,现有6种不同颜色的花,若要求同一边的两端摆放不同的颜色,则不同的摆放方式有多少种630例二.将三种作物种在5块试验田里,每块种植一种作物,且相邻的试验田不能种植同一作物,不同的种植方法有多少种□□□□□42例三.在田字格中用四种颜色涂,要求相邻的格子颜色不能相同,有多少种不同的涂法㈥几何问题例一.平面内有12个点,任何3点不在同一直线上,以每3点为顶点画一个三角形,一共可画多少个三角形220例二.平面内有12个点,其中有4个点共线,此外再无任何3点共线,以这些点为顶点,可得到多少个不同的三角形216例三.∠A的两条边除A点分别有3给点和四个点,则有这些点,共能构成多少个不同的三角形42例四.从正方体的八个顶点中任取三个点为顶点作为三角形,其中直角三角形有多少个?48例五.共有11层台阶,一个人可以一次走一个台阶或两个台阶,⑴若他恰在第七步走完,共可以有多少种走法35⑵若他要在7步内走完,共可以有多少种走法41例六.甲乙丙3人到共有7级的台阶上,若每级台阶最多站2人,同一级台阶上得人不区分站的位置,则不同的站法有几种?例七.某市有7条南北向街道,5条东西向街道,⑴图中共有多少个矩形210⑵从A点到B点最短路线的走法有多少种?210㈦分组分配例一.对某种产品的6件不同的正品和4件不同的次品,一一进行测试,至区分出所有次品为止,若所有次品恰好在第5次测试时全部发现,则这样的测试方法有几种可能576例二.某校高二年级共有六个班级,现从外地转入4名学生,要安排到该年级的两个班级,且每班安排两名,则不同的安排方案有几种?90例三.从7名男运动员和5名女运动员中,选出4名进行男女混合双打乒乓球比赛,则不同的配组方法有几种420例四.共有8个人,其中6个人会英语,有5个人会法语,现从中选出6个人,3个人翻译英语,3个人翻译法语,共有多少种可能?55例五.若7个人身高都不同,从中取出6人,站成2排,每排3人,要求每一列前排比后排的人矮,共有几种站法?630㈦至多至少恰好间接法例一.袋中有5双不同的鞋子,从中取出4只⑴恰好有2双,共有几种可能?10⑵恰好有2只成双,共有几种可能120⑶至少有2只成双,有几种可能130⑷每只都不成双,有几种可能?80例二.将7名学生分配到甲乙两个宿舍,每个宿舍至少安排2名学生,那么互不相同的分配方式有几种?112例三.设有编号12345的五个球和编号为12345的五个盒子,现将五个球放入盒子内,要求每个盒子内放一个球,⑴若恰有两个球的编号与盒子编号相同,则这样的投放方法有几种20⑵若至多有两个球的编号与盒子相同,则这样的投放方法有多少种?109三个人站成一排,要调整位置,每个人都不站在自己的位置上,有2种方法。
10.1分类计数原理与分步计数原理(1)
例2.书架的第一层有6本不同的数学书,第二层有7本 不同的英语书,第三层有10本不同的语文书,现从书 架第一层、第二层、第三层各取一本书,共有多少种 不同的方法?
问题剖析 要我们做什么事情
(2)
从书架上每层拿一本书 有三个步骤 不能 6种、7种、10种 6×7×10=420种
完成这个事情有几个步骤 每个步骤能否独立完成这件事情
⑥用0,1,2,……,9可以组成多少个有两个重复数字的4位整 整数个数 数等等.
有0
0重复9×8×6
无0 9×8×7×3×3
0不重复3×3×9×8
例10.自然数2520有多少个约数? 解:2520=23×32×5×7 分四步完成: 第一步:取20,21,22,23,24有4种; 第二步:取30,31,32有3种; 第三步:取50,51有2种; 第四步:取70,71有2种。 由分步计数原理,共有4×3×2×2=48种 练习:5张1元币,4张1角币,1张5分币,2张2分币,可组成 多少种不同的币值?(1张不取,即0元0分0角不计在内) 元:0,1,2,3,4,5 角:0,1,2,3,4 分:0,2,4,5,7,9 6×5×6-1=179
每个步骤中分别有几种不同的方法 完成这件事情共有多少种不同的方法
例3.书架的第一层有6本不同的数学书,第二层有7本 不同的英语书,第三层有10本不同的语文书,现想现 从1,2,3层中某两层,各取一本,有多少种不同 方法?
6×7+6×10+7×10=172 注意:有些较复杂的问题往往不是单纯的“分类”“分步” 可以解决的,而要将“分类”“分步”结合起来运用.一般 是先“分类”,然后再在每一类中“分步”,综合应用分类 计数原理和分步计数原理.
5 种 方
a3 a4 a5
分类计数原理与分步计数原理的区别
分类计数原理与分步计数原理的区别下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!分类计数原理与分步计数原理的区别在组合数学中,分类计数原理和分步计数原理是解决计数问题的两种常用方法。
分类计数原理和分步计数原理
应用这两个原理的关键是看完成这件 事情是“分类”还是“分步”。 例1、某班共有男生28名、女生20名, 从该班选出学生代表参加校学代会。 (1)若学校分配给该班1名代表,有多少种 不同的选法? ( 2) 若学校分配给该班2名代表,且男女生代表 各1名,有多少种不同的选法?
例2、在下面两个图中,使电路接通的 不同方法各有多少种? A
B
A
B ( 2)
( 1)
例3、为了确保电子信箱的安全,在注册 时,通常要设置电子信箱密码。在某网站设 置的信箱中, (1)密码为4位,每位均为0到9这10个数字 中的一个数字,这样的密码共有多少个? (2)密码为4位,每位均为0到9这10个数字 中的一个,或是从A到Z这26个英文字母中的1 个。这样的密码共有多少个? (3)密码为4到6位,每位均为0到9这10个数 字中的一个。这样的密码共有多少个?
N m1 m2 mn
种不同的方法。分类计数原理又 Nhomakorabea为加法原理。
问题二:从甲地到乙地,要从甲地选乘火 车到丙地,再于次日从丙地乘汽车到乙地。一 天中,火车有3班,汽车有2班。那么两天中, 从甲地到乙地共有多少种不同的走法?
这个问题与前一个问题有什么区别?
在前一个问题中,采用乘火车或汽车中的 任何一种方式,都可以从甲地到乙地;而在这 个问题中,必须经过先乘火车、后乘汽车两个 步骤,才能从甲地到乙地.
4、(1)8张卡片上写着0,1,2,…,7共8 个数字,取其中的三张卡片排放在一起,可 组成多少个不同的三位数?
(2)4张卡片的正、反面分别写有0与1、 2与3、4与5、6与7,将其中的3张卡片排放在 一起,共有多少个不同的三位数? 5、自然数2520有多少个正约数? 6、书架上原来并排放着5本不同的书, 现要插入三本不同的书,那么不同的插法有 多少种?
分类记数原理和分步记数原理
分类法计数原理
分类法计数原理
分类法计数是从抽样过程中产生的数据进行分析和统计的一种
方法。
它是建立在抽样数据上的一种重要统计方法,它可以使用有限的数据来推断一个有限的集合的大致性质,以此分析抽样数据。
分类计数是一种依据类别特征对被调查对象进行计数的方法。
它被广泛应用在不同学科领域,如农业、流行病学、社会统计、经济等领域,可以用来收集数据并进行分析。
分类法计数的主要原理是:通过将总体中的每一个个体按其属性进行分类,根据其中各类别中的个体数,就可以求出每类的各类特征的个体数,以及总体中特定特征的比例。
从而获得总体的统计特征,反映总体的一般规律和特征。
分类法计数的基本步骤是:首先,在计数前,要明确被调查对象的基本属性,并给出计数要求;其次,要确定分类标准,把总体中的每一个个体按照分类标准分为若干类;第三,对各类进行计数,记录其统计量;最后,进行统计计算和分析处理,得到总体特征。
分类法计数的优势在于它能够收集和分析更多的信息,同时又能提高整体的可理解性和可比性。
它也有一定的缺点,包括误差的放大、统计量计算上的问题和数据一致性的缺失等。
总而言之,分类法计数是一种有效的统计技术,它可以从有限数据中推断出整体性质,有助于我们更好地掌握数据的状况,从而有效地指导决策。
因而,分类计数方法受到了广泛的应用,成为统计学的重要工具。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分析:
二、分步计数原理 完成一件事,需要分成n个步骤。做第1步有m1 种不同的方法,做第2步有m2种不同的方法, ……, 做第n步有mn种不同的方法,则完成这件事共有
说明
N= m1×m2×… ×mn种不同的方法
1)各个步骤相互依存,只有各个步骤都完成了,这件事 才算完成,将各个步骤的方法数相乘得到完成这件事的 方法总数,又称乘法原理 2)首先要根据具体问题的特点确定一个分步的标准, 然后对每步方法计数.
例2、设某班有男生30名,女生24名。现要从中选出 男、女生各一名代表班级参加比赛,共有多少种不 同的选法? 例3、浦江县的部分电话号码是05798415××××,后 面每个数字来自0~9这10个数,问可以产生多少个不同 的电话号码?
05798415
10×10× 10× 10=104 10× 9 × 8 × 7=5040
( A )种 A. 510 B. 105 C. 50 D. 以上都不对
课堂练习
如图,从甲地到乙地有2条路,从乙地到丁地 有3条路;从甲地到丙地有4条路可以走,从丙 地到丁地有2条路。从甲地到丁地共有多少种 不同地走法?
甲地
乙地 N1=2×3=6
N2=4×2=8 N= N1+N2 =14
丙地 丁地
2.如图,该电
一、分类计数原理 完成一件事,有n类办法. 在第1类办法中有 m1种不同的方法,在第2类方法中有m2种不同的 方法,……,在第n类方法中有mn种不同的方法, 则完成这件事共有
说明
N= m1+m2+… + mn 种不同的方法
1)各类办法之间相互独立,都能独立的完成这件事,要 计算方法种数,只需将各类方法数相加,因此分类计数原 理又称加法原理 2)首先要根据具体的问题确定一个分类标准,在分 类标准下进行分类,然后对每类方法计数.
字母
数字
1 2 3 4
得到的号码
A1 A2
A3
A4
A
5
6
A5
A6
7
树形图 8ຫໍສະໝຸດ A7A89A9
问题 2. 如图,由A村去B村的道路有3条,
由B村去C村的道路有2条。从A村经B村去 C村,共有多少种不同的走法?
北 A村 北 B村 C村
中
南 南
从A村经 B村去C村有2步, 第一步, 由A村去B村有3种方法, 第二步, 由B村去C村有3种方法, 所以 从A村经 B村去C村共有 3 ×2 = 6 种 不同的方法。
变式: 若要求最后4个数字不重复,则又有多少种不同 的电话号码?
例4、 书架上第1层放有4本不同的计算机书,第 2层放有3本不同的文艺书,第3层放有2本不同的 体育杂志. (1)从书架上任取1本书,有多少种不同的取法?
N=4+3+2=9
(2)从书架的第1、 2、 3层各取1本书,有多少种 不同取法?
在解题有时既要分类又要分步。
分类计数与分步计数原理的区别和联系: 加法原理 乘法原理
分类计数原理和分步计数原理,回答的都是关于 完成一件事情的不同方法的种数的问题。 完成一件事情共有n类 完成一件事情,共分n个 办法,关键词是“分类” 步骤,关键词是“分步”
联系
区别一
区别二
每一步得到的只是中间结果, 任何一步都不能能独立完成 每类办法都能独立完成 这件事情,缺少任何一步也 这件事情。 不能完成这件事情,只有每 个步骤完成了,才能完成这 件事情。
N=4 ×3×2=24
(3)从书架上任取两本不同学科的书,有多少种方法
例5、要从甲、乙、丙3幅不同的画中选出2幅, 分别挂在左右两边墙上的指定位置,问共有多 少种不同的挂法?
例6:给程序模块命名,需要用3个字符,其 中首字符要求用字母A~G或U~Z,后两个要求 用数字1~9,问最多可以给多少程序命名?
路,从A到B共 有多少条不 同的线路可 通电?
A
B
解: 从总体上看由A到B的通电线路可分三类,
第一类, m1 = 3 条 第二类, m2 = 1 条 第三类, m3 = 2×2 = 4, 条 所以, 根据分类原理, 从A到B共有 N=3+1+4=8 条不同的线路可通电。
类题1: 有数字 1,2,3,4,5 可以组成多少个三位数 (各位上的数字许重复)?
解:要组成一个三位数可以分成三个步骤完成: 第一步确定百位上的数字,从5个数字中任选一个数字,共有5 种选法; 第二步确定十位上的数字,由于数字允许重复,这仍有5种选 法; 第二步确定十位上的数字,同理,它也有5种选法。 根据乘法原理,得到组成的三位数的个数是:
例7:
• 核糖核酸(RNA)分子是在生物细胞中发现的化学成分。 一个RNA分子是一个有着数百个甚至数千个位置的长链, 长链中每一个位置都有一种称为碱基的化学成分占据,总共 有4种不同的碱基,分别用A,C,G,U表示。在一个RNA分子 中,各个碱基能够以任意次序出现,所以在任意一个位置上 的碱基与其它位置上的碱基无关。假设有一类RNA分子有 100个碱基组成,那么能有多少种不同的RNA分子?
例1 在填写高考志愿表时,一名高中毕业生了解到A、B两 所大学各有一些自己感兴趣的强项专业,具体情况如下: A大学 生物学 化学 医学 物理学 B大学 数学 会计学 信息技术学 法学
工程学 如果这名同学只能选一个专业,那么他共有多少种选择呢?
解:这名同学在A大学中有5种专业选择,在B大学中有4种专业选择。
1.1.1分类计数原理
与分步计数原理
思考?
用一个大写的的英文字母或一个阿拉伯 数字给教室里的座位编号,总共能够编出多 少种不同的号码?
26+10=36
问题 1. 从甲地到乙地,可以乘火车,也
可以乘汽车,还可以乘轮船。一天中,火 车有4 班, 汽车有2班,轮船有3班。那么一 天中乘坐这些交通工具从甲地到乙地共有 多少种不同的走法? 分析: 从甲地到乙地有3类方法, 第一类方法, 乘火车,有4种方法; 第二类方法, 乘汽车,有2种方法; 第三类方法, 乘轮船, 有3种方法; 所以 从甲地到乙地共有 4 + 2 + 3 = 9 种方法。
N = 5 ×5 ×5 = 53 = 125
答:可以组成125个三位数。
练习1:
1. 一件工作可以用两种方法完成。有5人会用第一种方 法完成,另有4人会用第二种方法完成。选出一个人来 完成这件工作,共有多少种选法?
4 + 5 = 9
3本文艺术里任选一本,共有多少种不同的选法?
2. 在读书活动中,一个学生要从2本科技书,2本政治书,
2 + 2 + 3 = 7
3.乘积( a1+ a 2+ a 3 )( b1 + b 2 + b3 + b4 )(c1 + c2 + c3 + c4 +
c5 )展开后共有项? 3×4×5=60
练习题2:
1
书架的上层放有 5 本不同的数学书,中层放有6本不同的语文书, 下层放有4本不同的英语书,从中任取1 本书的不同取法的种数 是(A) A. 5 + 6+4 = 15 B. 1 C. 6×5×4 = 120 D. 3
根据分类计数原理:这名同学可能的专业选择共有5+4=9种。
思考?
用前6个大写英文字母和1~9九个阿 拉伯数字,以A1,A2,· · · ,B1, B2,· · · 的 方式给教室里的座位编号,总共能编出 多少个不同的号码?
分析:由于前6个英文字母中的任意一个都能 与9个数字中的任何一个组成一个号码,而且 它们各个不同,因此共有6×9=54个不同的 号码。
2
在上题中,如果从中任取3本,数学,语文,英语各一本,则不同取法的 种数是 ( C ) A. 1 + 1 + 1 = 3 B.5 + 6 + 4 =15 C. 5×6×4 = 120 C ) D. 1 把四封信任意投入三个信箱中,不同投法种数是 (
3
A. 12
B.64
C.81
D.7
4 火车上有10名乘客,沿途有5个车站,乘客下车的可能方式有
区别三
各类办法是互斥的、 并列的、独立的
各步之间是相关联的