相似多边形的性质2
相似多边形的性质
24.4 相似多边形的性质学习目标要求1、掌握相似多边形的性质。
2、会利用相似多边形的性质解决问题。
教材内容点拨知识点1:相似多边形边、角的性质:根据相似多边形的定义,可知当两个多边形相似时,它们的对应角相等,对应边对应成比例,其比叫做相似多边形的相似比。
知识点2:相似多边形的周长、面积的性质:相似多边形的周长比等于相似比,面积比等于相似比的平方。
由于从多边形的一个顶点出发,可引出(n-3)条对角线,这(n-3)条对角线将多边形分成了(n-2)个三角形,所以相似多边形具有与相似三角形相类似的性质,诸如相似多边形的周长比等于相似比,面积比等于相似比的平方。
典型例题点拨例1、已知图中的两个四边形相似,找出图中的成比例线段,并用比例式表示。
点拨:根据条件:“图中的两个四边形相似”,利用相似多边形的定义求解。
解答:∵四边形ABCD∽四边形EFGH,且∠A=∠E、∠B=∠F,∴。
例2、如图,在 ABCD中,延长AB到E,使,延长CD到F,使交BC于G,交AD于H,则的周长与的周长的比为_________。
点拨:在 ABCD中,AB∥CD,所以△CBE与△CFG相似,要求的周长与的周长的比,即是求这两个三角形的相似比。
解答:1:4。
例3、如图,将的高AD三等分,这样把三角形分成三部分,设三部分的面积为,则。
点拨:利用相似三角形的面积比等于相似比的性质,先求出△ADE、△AFG、△ABC这三个三角形面积之间的关系,进而求出之间的关系。
解答:∵平行线段DEFGBC将三角形的高三等分,∴,∴。
例4、如图,在梯形ABCD中,是AB上一点,,并且EF将梯形ABCD分成的两个梯形AEFD、EBCF相似,若,求。
点拨:根据相似多边形的定义,对应边成比例,可得AD、EF、BC之间的关系式,解得EF,从而得解。
解答:∵EF将梯形ABCD分成的两个梯形AEFD、EBCF相似,∴,即,解得EF=6,∴。
考点考题点拨1、中考导航中考中相似多边形的考察基本是通过选择题和填空题的形式出现,但近来也出现了不少考察相似多边形的综合题,往往与平行四边形和梯形相结合。
相似知识总结讲解
相似知识总结知识点一:放缩与相似形1图形的放大或缩小,称为图形的放缩运动。
2、把形状相同的两个图形说成是相似的图形,或者就说是相似性。
注意:⑴、相似图形强调图形形状相同,与它们的位置、颜色、大小无关。
⑵、相似图形不仅仅指平面图形,也包括立体图形相似的情况。
⑶、我们可以这样理解相似形:两个图形相似,其中一个图形可以看作是由另一个图形放大或缩小得到的.⑷、若两个图形形状与大小都相同,这时是相似图形的一种特例一一全等形.1. 相似多边形的性质:如果两个多边形是相似形,那么这两个多边形的对应角相等,对应边的长度成比例。
注意:当两个相似的多边形是全等形时,他们的对应边的长度的比值是 1.知识点二:比例线段有关概念及性质(1 )有关概念1、比:选用同一长度单位量得两条线段。
a、b的长度分别是m n,那么就说这两条线段的比是a:b= m: n (或—m)b n2、比的前项,比的后项:两条线段的比a:b中。
a叫做比的前项,b叫做比的后项。
说明:求两条线段的比时,对这两条线段要用同一单位长度。
3、比例:两个比相等的式子叫做比例,女口a -b d4、比例外项:a在比例一c(或a:b = c:d)中a、d叫做比例外项。
b d5、比例内项:在比例- c(或a:b = c:d)中b、c叫做比例内项。
b d6、第四比例项:在比例a■—(或a:b = c:d)中, d叫a、b、c的第四比例项。
b da b7、比例中项:如果比例中两个比例内项相等,即比例为(或a:b = b:d时,我们把bb d叫做a和d的比例中项。
8、比例线段:对于四条线段a、b、c、d,如果其中两条线段的长度的比与另两条线段的长a c度的比相等,即一一(或a:b=c: d),那么,这四条线段叫做成比例线段,简称比例线b d段。
(注意:在求线段比时,线段单位要统一,单位不统一应先化成同一单位)4、合比性质:--b d a b~b~ (分子加(减)分母,分母不变)1)定义:在线段AB上,点C把线段AB分成两条线段AC 和BC(AC >BC),如果ACABBCAC,(2 )比例性质1、基本性质:a:bc d ad bc (两外项的积等于两内项积)2、反比性质:a c b d一(把比的前项、后项交换)b d a c3、更比性质(交换比例的内项或外项):a-,(交换内项)c dd -,(交换外项)b ad b•(同时交换内外项)c a注意:实际上,比例的合比性质可扩展为:比例式中等号左右两个比的前项,后项之间b a d c发生同样和差变化比例仍成立•如:a cb d a a bc cd 'a b c d5、等比性质: (分子分母分别相加,比值不变.)a c如果_ —b d 邑m(b df nf n 0),a书[7 Ac e m a那么b d f n b注意:(1)、此性质的证明运用了“设k法”,这种方法是有关比例计算,变形中一种常用方法;(2)、应用等比性质时,要考虑到分母是否为零;(3)、可利用分式性质将连等式的每一个比的前项与后项同时乘以一个数,再利用等比性质也成立.知识点三:黄金分割即AC2=AB X BC,那么称线段AB被点C黄金分割,点C叫做线段AB的黄金分割点,ACU5 1与AB的比叫做黄金比。
多边形的相似性与性质解析
多边形的相似性与性质解析多边形是几何学中常见的图形,而相似性是指两个或多个图形的形状相似。
本文将探讨多边形的相似性及其性质,帮助读者更好地理解和应用于实际问题中。
一、相似性的概念多边形的相似性是指两个多边形的对应边成比例,对应角相等。
具体来说,当两个多边形的所有对应边长度之比相等,且对应角度相等时,它们被认为是相似的。
二、相似性的判定条件在判定两个多边形是否相似时,我们可以根据以下条件进行分析:1. 角对应判定:两个多边形的对应角相等。
2. 边对应判定:两个多边形的对应边成比例。
这些判定条件是判断两个多边形相似的基本依据。
三、相似性的性质相似的多边形具有一些重要的性质,接下来我们将介绍其中几个:1. 周长比:相似的多边形的周长比等于任意一条对应边的长度比。
举个例子,若两个三角形相似,它们的周长比等于对应边的长度比。
2. 面积比:相似的多边形的面积比等于任意一条对应边长度的平方比。
对于两个相似的三角形,它们的面积比等于对应边长度的平方比。
3. 高度比:相似三角形的高度比等于对应边长度的比。
4. 布尔斯公式:布尔斯公式是用来计算三角形面积的公式,根据布尔斯公式,相似三角形的面积比等于对应边长度的平方比。
四、应用举例相似性在几何学中有着广泛的应用,特别是在测量和建模方面。
以下是一些应用举例:1. 比例尺计算:根据多边形的相似性,可以利用已知边长比例尺计算未知边长的长度。
2. 面积估算:通过相似多边形的面积比例,可以估算未知多边形的面积。
3. 空间几何建模:多边形的相似性可用于构建三维物体的模型,从而进行工程计算和设计。
五、总结多边形的相似性是几何学中重要的概念,通过判断角对应和边对应的比例关系,我们可以确定多边形之间是否相似。
相似性具有周长比、面积比和高度比等重要性质,并可以应用于测量和建模等实际问题中。
熟练掌握多边形的相似性与性质,对于解决几何问题将大有裨益。
八年级数学下册 相似多边形的性质(2)导学案 北师大版
相似多边形的性质(2)八年级数学导学案相似多边形的性质(2)当堂检测题(10分钟)姓名:得分:1、判断正误:(1分×4=4分)1)相似三角形周长的比等于对应中线的比,面积比等于对应中线的比的平方。
()2)比例尺可以看作相似图形的相似比。
()3)如果把一个三角形的三边同时扩大为原来的10倍,那么它的周长也扩大为原来的10倍。
()4)如果把一个三角形的面积扩大为原来的9倍,那么它三边的长都扩大为原来的9倍。
()2、如果两三角形对应角平分线的比为9:16,则它们的面积比为(2分)3、如果两三角形对应边的比为2:7,周长的和为180cm,则它们的周长分别为、。
(2分)4、在一张1:100的地图上,1cm2的面积表示的实际面积为 m2.(2分)5、在相似多边形的面积比为5,周长之比为m,则5÷m= (2分)6、在⊿ABC中,DE∥BC,且AD:DB=1:2,则S⊿ADE: S四边形DBCE= (2分)相似多边形的性质(2)当堂检测题(10分钟)姓名:得分:1、判断正误:(1分×4=4分)1)相似三角形周长的比等于对应中线的比,面积比等于对应中线的比的平方。
()2)比例尺可以看作相似图形的相似比。
()3)如果把一个三角形的三边同时扩大为原来的10倍,那么它的周长也扩大为原来的10倍。
()4)如果把一个三角形的面积扩大为原来的9倍,那么它三边的长都扩大为原来的9倍。
()2、如果两三角形对应角平分线的比为9:16,则它们的面积比为(2分)3、如果两三角形对应边的比为2:7,周长的和为180cm,则它们的周长分别为、。
(2分)4、在一张1:100的地图上,1cm2的面积表示的实际面积为 m2.(2分)5、在相似多边形的面积比为5,周长之比为m,则5÷m= (2分)6、在⊿ABC中,DE∥BC,且AD:DB=1:2,则S⊿ADE: S四边形DBCE= (2分)AB CD EAB CD E。
第2课 相似多边形的性质及判定
A__B___B_C_ __C_D_ __A_D__.
相似图形_对___应__边__的比叫做相似比,记作k.
1.(例1)如图,已知四边形ABCD∽四边形A′B′C′D′. (1)求∠A,∠D′的度数和x,y的长;
1
(2)相似比k=____2____.
PPT课程
主讲老师:
第二十七章 相 似
第2课 相似多边形的性质及判定 一、新课学习
知识点1:相似多边形的性质: 对应角___相__等___,对应边的比___相__等___. 几何语言 ∵__四__边__形__A_B_C_D__∽__四__边__形__A_'__B_'__C__'__D' , ∴∠__A__=_∠__A_'__,_∠__B_=__∠__B_'__,_∠__C_=__∠__C_'__,_∠__D__=_∠_ D'
第3关 11.如图,E,F分别是矩形ABCD的边BC,AD的中点,若矩形
ABEF与矩形ABCD相似,AB=4,则AD=____4__2__.
设
AD=BC=x,则AF=
1 2
x
∵矩形ABEF∽矩形BCDA
∴ AB = AF
∴4 =
1 2
x
BC BA
x4
∴x=4 2 ∴AD=4 2
12.如图,矩形草坪ABCD中,AD=5 m,AB=3 m,沿草坪四周 外围有1 m宽的环形小路,小路内外边缘所成的两个矩形相似 吗?为什么? 不相似,由题意得AB=CD=3 cm
形的最长边的长为 21,则最短边的长为( C )
A .15
B .10
C .9
D .3
第2关 9.已知A,B两地的实际距离是250 m,若在地图上的距离是
相似多边形的性质二ppt
D C
B
A'
D'
B'
C'
2、ΔABC~ΔA`B`C`,CD、C`D`是高,相似比为 3:4。 1. 成比例的线段有哪些? 2.Δ ABC和Δ A`B`C`周长比是多少?
3.△ABC的面积如何表示?△A1B1C1的面积呢? △ABC与△A1B1C1的面积比是多少?
结合1,如果△ABC∽△A1B1C1,相似比为k,则 △ABC与△A1B1C1周长比和面积比分别是多少?
A1 B1
B2
3)设△A1B1C1,△A1C1D1,△A2B2C2,△A2C2D2
的面积分别是S△A1B1C1, S△A1C1D1 , S△A2B2C2, S△A2C2D2,那么 S A1B1C1 , S A1C1D1 各是多少? S A2 B2C2 S A2C2 D2
4)四边形A1B1C1D1与四边形A2B2C2D2的面积 比是多少?
2: 在设计图上,某城市中心有一个矩形广场, 设计图的比例尺是1:10000。图上矩形 与实际矩形相似吗?如果相似,它们的相 似比是多少?图上矩形与实际矩形的周长 比是多少?面积比呢? 3:如图3,若DE∥BC,AD:BD=2:1, A 求S△ADE:S△ABC
D B E C
4、老师在电脑上画了一个六边形,上课时发现, 原来一条5厘米的边在电视屏幕上变成了15厘 米,那么电视屏幕的放大比例是(1:3 ), 这个六边形的面积扩大为原来的( 9 )倍。
课堂小结
通过本堂课的学习 我学会了… … 我体会到… … 我感到困惑的是… …
北师大版
八年级
下册(第四章)
(第二课时)
相似三角形的性质
相似三角形对应高的比,对应中线的比, 对应角平分线的比都等于 。 相似比
4.8相似多边形的性质(2)
4.8相似三角形的性质(2) 学前准备 重点:相似多边形周长的比、面积的比与相似比的关系的理解和应用。
难点:相似多边形周长的比、面积的比与相似比的关系的推导和应用。
学习准备1. 怎样求三角形的周长和面积?2. 相似三角形有哪些性质?比例有哪些基本性质? 课中导学 阅读感知阅读课本149页想一想及上面的内容,思考下列问题:1. 在求两个相似三角形的周长比时,我们会应用研究比例的哪个基本性质?2. 求相似三角形的面积的比的基本思路是什么?3. 若△ABC ~△A ’B ’C ’,相似比为K ,那么△ABC 和△A ’B ’C ’周长 的比为 ,面积的比为 。
这个结论是否可以据推广?合作探究 探究1.相似三角形的周长的比与相似比的关系 例1. 已知,如图△ABC ~△A ’B ’C ’,探究下列问题:(1) △ABC 与△A ’B ’C ’的对应边有什么关系?(2) 若'''''',''''''C A C B B A ACBC AB k C A AC C B BC B A AB ++++===则的比值是否等于k ,试说明理由。
(3) 若四边形ABCD ~四边形A ’B ’C ’D ’,,''''''''k D C CDD A AD C B BC B A AB ==== ''''''''D C D A C B B A CDAD BC AB ++++++则的比值是否等于k ,试说明理由。
总结:相似三角形的周长的比等于相似比。
探究2。
相似三角形的面积比与相似比的关系 例2 已知,如图, △ABC ~△A ’B ’C ’,AD 、A ’D ’是△ABC 和△A ’B ’C ’的高,探究下列问题,(1) 请你写出图中的一对相似三角形(△ABC ~△A ’B ’C ’除外)(2) 相似三角形的对应高的比与相似比有什么关系,请用数学式子写出来。
多边形的相似性质
多边形的相似性质在几何学中,多边形是由连续的直线段组成的封闭图形,它是我们研究的重要对象之一。
在多边形的研究中,相似性质是一个关键概念,它描述了在一些特定条件下,两个多边形之间的形状和大小的关系。
本文将介绍多边形相似性质的定义、判定方法以及相关的应用。
一、多边形的相似性质定义在几何学中,两个多边形被认为是相似的,当且仅当它们每两个对应边的长度之比相等,并且对应的角度也相等。
简而言之,两个多边形相似意味着它们具有相似的形状,只是尺寸不同。
例如,在图形学中,我们常常遇到的问题是,如何判断两个多边形是否相似,并且根据相似性质进行进一步的推导和计算。
二、多边形的相似性质判定判断两个多边形是否相似的一种常用方法是通过比较它们的对应边的长度之比,并且对应的角度是否相等。
如果两个多边形的边长比和角度比都相等,那么它们就是相似的。
具体来说,可以通过以下步骤进行判定:1. 确定两个多边形的对应边;2. 计算对应边的长度之比;3. 计算对应角度之间的差值;4. 比较长度之比和角度差值是否满足相似性质。
三、多边形的相似性质应用多边形的相似性质在现实生活和各个学科中有广泛应用。
以下是一些具体的例子:1.建筑设计:在建筑设计中,多边形的相似性质可以应用于模型放大缩小、结构设计等方面,从而实现建筑设计的灵活性和优化效果;2.地图制作:在地图制作中,多边形的相似性质可以用于测量和推算地理距离、比例尺等,从而准确地绘制地理形状和位置;3.工程测量:在工程测量中,多边形的相似性质可以应用于实际测量,通过已知的尺寸计算未知的尺寸;4.数学推导:在数学推导中,多边形的相似性质可以用于证明几何定理和解决几何问题。
总结:多边形的相似性质是几何学中重要的概念,它描述了两个多边形之间的形状和大小的关系。
判断多边形的相似性质可以通过比较对应边的长度之比和对应角度之间的差值。
多边形的相似性质在实际应用中具有广泛的应用,涉及建筑设计、地图制作、工程测量等多个领域。
相似多边形的性质
相似多边形的性质相似多边形是指具有相同形状但尺寸不同的多边形。
在几何学中,相似多边形具有一些独特的性质和特征。
本文将探讨相似多边形的性质,并展示一些相关的数学应用和实际问题。
1. 相似多边形的定义相似多边形是指具有相同形状但尺寸不同的多边形。
两个多边形相似的条件是它们的对应角度相等,并且对应边的比例相等。
由此定义可知,如果两个多边形相似,它们的边长比例是相等的。
2. 相似多边形的比例关系对于相似多边形,存在着一种特殊的比例关系。
设两个相似多边形的对应边长分别为a和b,对应的面积分别为A和B。
根据相似多边形的性质,可以得出以下结论:- 边长比例:a:b = A:B- 面积比例:A:B = (a^2):(b^2)这些比例关系对于解决与相似多边形有关的数学问题非常重要。
3. 相似多边形的角度关系对于相似多边形,其对应角度是相等的。
这意味着,如果我们知道一个相似多边形的对应角度,就可以确定其他相似多边形的对应角度。
这对于计算多边形的角度和解决三角学问题非常有用。
4. 相似多边形的周长和面积由于相似多边形的边长比例相等,所以它们的周长比例也相等。
假设两个相似多边形的边长比例为m:n,那么它们的周长比例也为m:n。
同样地,由于相似多边形的面积比例为(a^2):(b^2),所以它们的面积比例也为(a^2):(b^2)。
5. 相似三角形的应用相似多边形的性质在实际问题中有着广泛的应用。
其中最常见的应用是解决相似三角形问题。
通过利用相似三角形的角度和边长关系,我们可以确定无法直接测量的距离和高度。
例如,在地理测量中,我们可以利用相似三角形的性质来测算高山的高度或者海洋的深度。
6. 相似多边形与比例的关系相似多边形的性质与比例密切相关。
相似多边形利用比例关系来描述形状的相似性,从而在数学和实际问题中提供了有用的工具和方法。
比例的概念在解决与相似多边形有关的计算问题中起着关键作用。
综上所述,相似多边形具有一些独特的性质和特征。
相似多边形的性质课件
三边对应成比例判定定理
总结词
通过两个多边形的三边对应成比例,可以判定两个多 边形相似。
详细描述
三边对应成比例判定定理是相似多边形判定定理的一 种,它基于两个多边形的三边对应成比例,从而判定 两个多边形相似。这个定理在实际应用中非常有用, 因为它只需要比较三个边的长度就可以判断两个多边 形是否相似,相对于其他判定定理更为简便。然而, 需要注意的是,这个定理只适用于三边对应成比例的 情况,对于更多边的多边形,需要使用其他判定定理 进行判断。
总结词
通过比较相似多边形的面积和相似比, 证明面积比等于相似比的平方。
详细描述
首先,计算两个相似多边形的面积。 然后,计算它们的相似比。最后,比 较面积和相似比的关系,如果面积比 等于相似比的平方,则证明了面积比 等于相似比的平方。
THANKS
感谢观看
多边形相似。
02
相似多边形的性质
相似多边形的对应角相等
总结词
相似多边形的对应角是相等的,这是相似多边形的基本性质之一。
详细描述
根据相似多边形的定义,如果两个多边形相似,则它们的对应角必定相等。这 意味着无论多边形的大小如何变化,只要它们是相似的,它们的对应角就会保 持不变。
相似多边形的对应边成比例
角-角-边判定定理
总结词
通过两个多边形的对应角相等,且对应边成比例,可以判定两个多边形相似。
详细描述
角-角-边且对应边成比例,从而判定 两个多边形相似。在几何学中,这个定理是非常重要的,因为它提供了一种简单而有效的方法来判断两个多边形 是否相似。
相似多边形的性质
相似多边形的面积之 比等于对应边长的平 方之比。
相似多边形的对应角 相等,对应边成比例。
相似多边形的性质2上课课件
S A1C1D1 S A2C2 D2
k 2, S四边形A1 B1C1 D1 k ,即 k 2. S四边形A2 B2C2 D2
2
S A1B1C1 S A1C1D1 S A2 B2C2 S A2C2 D2
合作、交流、探究
如图,四边形 A1B1C1D1∽四边形A2 B2C2 D2,相似比为 k.
合作、交流、探究
在上图中,ABC ∽ ABC,相似比为k, 那么ABC与ABC的周长比和面积比分别 是多少?
AB BC AC k AB BC AC
S ABC 2 (k) . S ABC
相似三角形的周长比等于相似比,面积比等于相似比的平方.
合作、交流、探究
如图,四边形 A1B1C1D1∽四边形A2 B2C2 D2,相似比为 k.
(1)四边形A1B1C1D1与四边形A2 B2C2 D2的周长比是多少?
应用等比性质,可得它们的周长比为: A1 B1 B1C1 A1C1 C1 D1 k A2 B2 B2C2 A2C2 C2 D2
AB BC AC CD AD BD 3 (1) AB BC AC C D AD BD 4
合作、交流、探究
3 在上图中,ABC ∽ A B C ,相似比为 , 4 (1)请你写出图中所有成 比例的线段. (2)ABC与ABC 的周长比是多少?你是 怎么做的? (3)ABC的面积如何表示? ABC 的面积呢? ABC与ABC 的面积比是多少?与同 伴交流.
第四章 相似图形
相似多边形的性质 (二)
合作、交流、探究
3 在上图中,ABC ∽ A B C ,相似比为 , 4 (1)请你写出图中所有成 比例的线段. (2)ABC与ABC 的周长比是多少?你是 怎么做的? (3)ABC的面积如何表示? ABC 的面积呢? ABC与ABC 的面积比是多少?与同 伴交流.
相似多边形判定相似多边形的性质相似多边形面积比和边长比的关系
一、相似多边形判定
如果对应角相等,对应边成比例的多边形是相似多边形.
如果所有对应边成比例,那么这两个多边形相似
(1)相似多边形的对应角相等,对应边的比相等。
相似比:把相似多边形对应边的比称为相似比。
(2)相似多边形的周长比等于相似比;
(3)相似多边形的面积比等于相似比的平方。
二、相似多边形的性质:
相似多边形的性质定理1:相似多边形周长比等于相似比。
相似多边形的性质定理2:相似多边形对应对角线的比等于相似比。
相似多边形的性质定理3:相似多边形中的对应三角形相似,其相似比等于相似多边形的相似比。
相似多边形的性质定理4:相似多边形面积的比等于相似比的平方。
相似多边形的性质定理5:若相似比为1,则全等。
相似多边形的性质定理6:相似三角形的对应线段(边、高、中线、角平分线)成比例。
相似多边形的性质定理7:相似三角形的对应角相等,对应边成比例。
相似多边形的性质定理主要根据它的定义:对应角相等,对应边成比例。
三、相似多边形:
如果两个边数相同的多边形的对应角相等,对应边成比例,这两个或多个多边形叫做相似多边形,相似多边形对应边的比叫做相似比。
(或相似系数)
相似的两个多边形称为相似多边形。
两个多边形的对应边成比例、对应角相等时,它们相似。
两个边数相等的正凸多边形一定相似。
两个相似多边形的周长的比等于它们的相似比,面积的比等于相似比的平方。
四、相似三角形判定定理
1、两角对应相等,则两个三角形相似。
2、两边对应成比例,及两边夹角相等,则两个三角形相似。
3、三边对应成比例,则两个三角形相似。
相似多边形的性质与判定
相似多边形的性质与判定相似多边形是指具有相同形状但可能不同大小的多边形。
在几何学中,相似多边形具有一些独特的性质和判定条件。
本文将探讨相似多边形的性质与判定方法。
一、相似多边形的性质1. 对应角相等:如果两个多边形的对应角相等,则这两个多边形是相似的。
对应角是指两个多边形中,对应边之间的角度大小。
2. 对应边成比例:相似多边形的对应边的长度成比例。
具体而言,如果两个多边形的对应边长之比恒定,则这两个多边形是相似的。
3. 相似比例:两个相似多边形的边长比例被称为相似比例。
如果两个多边形的对应边长度比恒定,那么这个比例称为相似比例。
4. 面积比例:两个相似多边形的面积比等于它们对应边长度比的平方。
具体而言,如果两个多边形的长度比为k,面积比为k²。
二、相似多边形的判定方法1. 角-边-角判定法:如果两个多边形的两组对应角相等,并且两个多边形的一对对应边成比例,则这两个多边形是相似的。
2. 边-边-边判定法:如果两个多边形的三对对应边成比例,则这两个多边形是相似的。
3. SSS判定法:如果两个多边形的三对对应边长度比恒定,则这两个多边形是相似的。
4. AA判定法:如果两个多边形的两组对应角相等,则这两个多边形是相似的。
5. SAS判定法:如果两个多边形的一对对应边成比例,并且对应边间的夹角相等,则这两个多边形是相似的。
三、例题解析假设有一个三角形ABC,边长分别为AB=6cm,BC=9cm,AC=12cm。
现在构造一个相似三角形DEF,要求DEF的周长是ABC的周长的一半。
解题步骤如下:1. 首先,根据周长的要求,DEF的周长应为ABC的一半,即(AB+BC+AC)/2 = (DE+EF+FD)/2。
代入AB=6cm,BC=9cm,AC=12cm,得到6+9+12 = DE+EF+FD。
2. 其次,根据相似多边形的性质,我们需要找到相似比例。
由于DEF与ABC相似,我们可以设DE与AB的长度比为k,EF与BC的长度比为k,FD与AC的长度比为k。
几何形的相似性质
几何形的相似性质几何学是研究形状、大小和相对位置的数学学科。
在几何学中,相似性质是一个重要的概念,它描述了两个或多个几何形的部分相似的关系。
本文将探讨几何形的相似性质及其应用。
一、相似三角形的性质相似三角形是指具有相似性质的三角形,它们的形状相似,但可能尺寸不同。
相似三角形有以下性质:1. AA相似性质:如果两个三角形的对应角度相等,则它们是相似的。
这是相似三角形的基本相似性质之一。
2. SSS相似性质:如果两个三角形的对应边长成比例,则它们是相似的。
这个性质表明,对于两个相似三角形,它们的对应边长之比保持不变。
3. SAS相似性质:如果两个三角形的两条边成比例,并且它们的夹角相等,则它们是相似的。
这是判定两个三角形相似的常用方法。
相似三角形的性质使得我们能够通过已知的尺寸计算未知的尺寸,或者在不同尺度下构建相似的几何形。
我们可以利用相似三角形的性质解决实际问题,例如测量高楼的高度、计算不可直接测量的长度等。
二、相似多边形的性质除了三角形,相似性质也适用于其他多边形。
相似多边形是指具有相似性质的多边形,它们的内部角度相等,而各边长成比例。
相似多边形的性质包括:1. AA相似性质:如果两个多边形的对应角度相等,则它们是相似的。
这个性质与相似三角形的AA相似性质类似。
2. SSS相似性质:如果两个多边形的对应边长成比例,则它们是相似的。
这个性质与相似三角形的SSS相似性质类似。
3. 对称性:如果两个多边形分别与一相似中心相似,并且对应边的比值相等,则它们是相似的。
这个性质常用于判断并构造相似多边形。
相似多边形的性质使得我们能够在不同比例下保持形状的相似几何形。
使用相似多边形的性质,我们可以通过已知的尺寸计算未知的尺寸,或者在不同比例下构建相似的多边形。
三、应用举例几何形的相似性质在许多实际问题中都能够得到应用。
以下是一些例子:1. 地图测量:地图通常是在比例尺下绘制的,根据相似几何形的性质,我们可以通过测量地图上的一些长度或角度,计算实际距离或角度。
4.8 相似多边形的性质(2)同步练习及答案
4.8相似多边形的性质(2)同步练习相似多边形的周长比和面积比一、请你填一填(1)若△ABC ∽△A ′B ′C ′,AB =4,BC =5,AC =6,△A ′B ′C ′的最大边长为15,那么它们的相似比是________,△A ′B ′C ′的周长是________.图4—8—1 图4—8—2(2)两个相似三角形的相似比为2∶3,它们周长的差是25,那么较大三角形的周长是________.(3)如图4—8—1,在ABCD 中,延长AB 到E ,使BE =21AB ,延长CD 到F ,使DF =DC ,EF 交BC 于G ,交AD 于H ,则△BEG 与△CFG 的面积之比是________.(4)把一个三角形改做成和它相似的三角形,如果面积缩小到原来的21倍,那么边长应缩小到原来的________倍.二、认真选一选(1)如图4—8—2,把一个矩形纸片ABCD 沿AD 和BC 的中点连线EF 对折,要使矩形AEFB与原矩形相似,则原矩形长与宽的比为( ) A.2∶1 B.3∶1 C.2∶1 D.4∶1(2)如图4—8—3,在△ABC 中,D 、E 分别是边AB 、AC 的中点,△ADE 和四边形BCED 的面积分别记为S 1、S 2,那么21S S 的值为( ) A.21 B.41 C.31 D.32图4—8—3 图4—8—4(3)如图4—8—4,在Rt △ABC 中,AD 为斜边BC 上的高,若S △CAD =3S △ABD ,则AB ∶AC 等于()A.1∶3B.1∶4C.1∶3D.1∶2(4)顺次连结三角形三边的中点,所成的三角形与原三角形对应高的比是()A.1∶4B.1∶3C.1∶2D.1∶2三、灵机一动!哇……某生活小区开辟了一块矩形绿草地,并画了甲、乙两张规划图,其比例尺分别为1∶200和1∶500,求这块矩形草地在甲、乙两张图纸上的面积比.四、用数学眼光看世界如图4—8—5,△ABC是一块锐角三角形余料,其中BC=12 cm,高AD=8 cm,现在要把它裁剪成一个正方形材料备用,使正方形的一边在BC上,其余两个顶点分别在AB、AC 上,问这个正方形材料的边长是多少?图4—8—5参考答案一、(1)2∶5 37.5 (2)75 (3)1∶16 (4)22 二、(1)C (2)C (3)C (4)D三、解:设这块矩形绿地的面积为S ,在甲、乙两张规划图上的面积分别为S 1、S 2 则S S 1=(2001)2,SS 2=(5001)2 ∴S 1=40000S ,S 2=250000S ∴S 1∶S 2=40000S ∶250000S =41∶251=25∶4 即:这块草地在甲、乙两张图上的面积比为25∶4四、解:设这个正方形材料的边长为x cm则△P AN 的边PN 上的高为(8-x ) cm∵由已知得:△APN ∽△ABC ∴BC PN =AD x -8,即12x =88x -解得:x =4.8 答:这个正方形材料的边长为4.8 cm.。
相似多边形的性质(二)
榆林八中学生自主学习方案 八年级: 姓名:一、课前热身:⒈两个相似三角形的对应高之比1∶2那么它们对应中线的比为 ( )A 、1∶2B 、1∶3C 、 1∶4 D、 1∶8⒉如果ΔABC ∽ΔDEF,且AB=3cm,它的对应边DE=5cm,那么ΔABC 与ΔDEF 的对应高的比是____,对应中线的比是____,对应角平分线的比是_____。
3.如图:CD 是直角三角形ABC 斜边AB 上的高,⑴则图中有几对相似三角形?⑵若AD=9㎝,CD=6㎝,求:BD=?⑶若AB=25㎝,BC=15㎝求:BD=? 二、探究新知:探究1如图所示,△ABC ∽△A ′B ′C ′,相似比为43⑴请写出图中所有成比例的线段。
⑵△ABC与△A′B′C′的周长比是多少?你是怎么做的?⑶△ABC的面积如何表示?△A′B′C′的面积呢?△ABC与△A′B′C′的面积比是多少?探究2如图所示,四边形A1B1C1D1∽四边形A2B2C2D2,相似比为k.。
⑴四边形A1B1C1D1与四边形A2B2C2D2的周长比是多少?⑵连接相应的对角线A1C1,A2C2,所得的△A1B1C1与△A2B2C2相似吗?△A1C1D1与△A2C2D2呢?如果相似,它们的相似各是多少?为什么?⑶设△A1B1C1,△A1C1D1,△A2B2C2,△A2C2D2的面积分别是S△A1B1C1 ,S △A1C1D1,S△A2B2C2 , S△A2C2D2那么S△A1B1C1∶S△A2B2C2和S△A1C1D1∶S△A2C2D2各是多少?⑷四边形A1B1C1D1与四边形A2B2C2D2的面积比是多少?⑸如果把四边形换成五边形,那么结论又如何呢?三、巩固新知⒈相似三角形中对应线段之比等于_______;周长比等于________;面积比等于___________________。
⒉相似多边形的周长比等于_______;面积比等于__________________。
相似多边形的性质2 2
相似图形
AB C
探索新知
在上图中,△ABC (1)请你写出图中所有成比例的线段. (2)△ ABC与△ABC 的周长比是多少?你怎么做? (3)△ ABC的面积如何表示?△ABC的面积呢? △ ABC与△ABC 的面积比是多少?与同伴交流.
3 ∽△ABC,相似比为 4 ,
A M (1)
D
C
课堂小结
相似多边形的性质: 相似三角形对应高的比,对应角平分线的比,对应中线 的比,对应周长的比都等于相似比. 相似三角形面积的比等于相似比的平方. 相似多边形对应对角线的比等于相似比. 相似多边形对应三角形相似,且相似比等于相似多边 形的相似比. 相似多边形对应三角形面积的比等于相似多边形的 相似比的平方. 相似多边形面积的比等于相似比的平方.
仔细解答
解:(1)量出图上距离约为20 cm,则
实际长度约为20千米. (2)图上区域围成的面积约为23.7 cm2.根据相似多边形面积的比等于相似 比1∶100000的平方,则实际区域的面 积约为23.7平方千米.
独立练习
(1)在比例尺为1∶5000的地图上,量得甲、乙两地的距离 为25cm,则甲、乙两地间的实际距离是( ). (A) 1250km (B)125km (C) 12.5km (D)1.25km (2)已知相似多边形的相似比为9∶4,那么这两个三角形 的周长比为( ). (A) 9∶4 (B) 4∶9 (C) 3∶2 (D)81∶16 3.两个相似三角形的面积比为4:9,那么它们周长的比为 _____
探索新知
如图, 四边形 A1B1C1D1 ∽四边形A2B2C2D2,相
似比为k,分组讨论它们的周长和面积有 何关系.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 AB CD S AB CD AB CD 3 3 9 2 S ' 1 A' B'C ' D' A' B'C ' D' A' B' C ' D' 4 4 16 2
(3)△ABC的面积如何表示?△A′B′C′的面 积呢?△ABC与△A′B′C′的面积比是多少? 1 1 与同伴交流。 S AB CD S ' A' B'C' D' 2 2
54
1、判断正误:
(1)如果把一个三角形三边的长同时扩大为 原来的10倍,那么它的周长扩大为原来的10倍; ( ) √ (2)如果把一个三角形的面积扩大为原来的9 倍,那么它三边的长都扩大为原来的9倍。 ( ×)
2、如图,在△ABC和△DEF中,点G,H分别是边 BC,EF的中点,已知AB=2|DE,AC=2DF, ∠BAC=∠EDF。 (1)中线AG与DH的比是多少? (2)△ABC与△DEF的面积比是多少?
相似,相似比是1:10000 周长比是1:10000
面积比是1:100000000
2、如果两个相似三角形的相似比是1:2,那么 它们的面积比是( B )
A、1:2 B、1:4 C、 : 2 1 D、2:1
3、△ABC三边长分别是3,4,5,与其相似的 △A′B′C′的最长边长是15,则△A′B′C′ 的面积是
5、小明同学把一幅矩形图片放大欣赏,经测 量其中一条边有10cm变成了40cm,那么放大的 比例是多少?这幅画的面积发生了怎样的变化?
放大的比例是1:4
这幅画的面积扩大了16倍。
6、一个小风筝与一个大风筝形状相同,它们的形状 如图所示,其中对角线AC⊥BD。已知它们的对应边之 比为1:3,小风筝两条对角线的长分别为12cm和14cm。 (1)小风筝的面积是多少?
图中是城 市地图的一部 分,比例尺为 1:100000。
(1)设法求 出图上环形快 速路的总长度, 并由此求出环 形快速路的实 际长度。
(2)估计环 形快速路所 围成的区域 的面积。你 是怎么做的? 与同伴交流。
1、在设计图上,某城市中心有一个矩形广场, 设计图的比例尺是1:10000.图上矩形与实际矩 形相似吗?如果相似,它们的相似比是多少? 图上矩形与实际矩形的周长比是多少?面积比 呢?
4.8 相似多边形的性质 (2)
广武一中 张水亭
1、相似三角形的性质有哪些?
①相似三角形的对应角相等,对应边成比例; ②相似三角形对应高的比、对应角平分线的比 和对应中线的比都等于相似比。
2、什么叫相似比?
相似多边形对应边的比叫做相似比。
3 在图中,△ABC∽△A′B′C′,相似比为 4
(1)请你写出图中所有成比例的线段。
(2)如果在大风筝内装设一个连接对角顶点的十字 交叉形的支撑架,那么至少需要用多长的材料?(不 计损耗) (3)大风筝要用彩纸覆盖,而彩色纸是从一张刚好 覆盖整个风筝的矩形彩色纸(如图中虚线所示)裁剪 下来的,那么从四个角裁剪下来废弃不用的彩色纸的 面积是多少?
习题4.11 2、3、4
△A1B1C1与△A2 B2C2 的相似吗? △A1C1D1与△A 2C2 D2 呢?如果相似,它们的相
似比各是多少?为什么?
都相似,相似比是k
(3)设 △A1B1C1,△A1C1D1,△A2 B2C2 ,△A2C2 D2
S1 S 2 的面积分别是 S1 , S2 , S3 , S4 , 那么 , 各是 S3 S 4 多少?
如果△ABC∽△A′B′C′,相似比为k,那 么△ABC与△A′B′C′的周长比和面积比分别 是多少?
周长比为k , 面积比为k
2
如图, 四边形A1B1C1D1 ∽四边形A2 B2C2 D2 , 相似比为k。
四边形A1B1C1D1与四边形A2 B2C2 D2 的周 (1) 长比是多少?
k
(2)连接相应的对角线 A1C1 , A2C2 ,所得
AB BC AC CD BD AD A' B' B' C ' A' C ' C ' D' B' D' A' D'
(2)△ABC与△A′B′C′的周长比是多少? 你是怎么做的?
AB BC AC 3 ∵ A' B ' B ' C ' A' C ' 4
∴
AB BC AC 3 A' B ' B ' C ' A' C ' 4
3、如图,Rt△ABC∽Rt△EFG,EF=2AB,BD,EF 是它们的中线,△BDC与△FHG是否相似,如果 相似,试确定其周长比和面积比?
4、如图,将△ABC沿BC方向平移得到 △A′B′C′,已知BC= 2cm ,△ABC与 △A′B′C′重合部分(图中阴影部分)的面 积是△ABC面积的一半,求△ABC平移的距离。
k
2
A (4)四边形A1B1C1D1与四边形 2 B2C2 D2 的面 积比是多少? 2
k
如果把四边形换成五边形,那么 结论又如何? 结论仍然成立
①相似三角形的对应角相等,对应边成比 例; ②相似三角形对应高的比、对应角平分线 的比和对应中线的比都等于相似比。
③相似多边形的周长比等于相似比,面积 比等于相似比的平方。