多粘类芽孢杆菌絮凝印度高灰煤
多粘类芽孢杆菌研究进展
多粘类芽孢杆菌研究进展作者:田宇曦闵勇杨自文来源:《湖北农业科学》2017年第18期摘要:多粘类芽孢杆菌(Paenibacillus polymyxa)是重要的根际有益生物,也被用于生物医药、流程制造、生物修复等方面,具有较大利用价值。
综述了多粘类芽孢杆菌的菌株新特性和基因组特点、诸多功能领域的研究和产业化应用、分子操作系统、菌株的选育以及发酵技术的优化。
关键词:多粘类芽孢杆菌(Paenibacillus polymyxa);功能;产业化应用;分子操作系统;菌株选育;发酵条件优化中图分类号:S917.1 文献标识码:A 文章编号:0439-8114(2017)18-3401-04DOI:10.14088/ki.issn0439-8114.2017.18.001Abstract: Paenibacillus polymyxa is an important beneficial rhizosphere organism, which may also be applied in biomedical industry, process manufacturing, bioremediation and so on,with great value of utilization. The new characteristics of bacterial strain and genome, study and industrial application in many functional areas,molecular operating system,breeding of strain and optimization of fermentation technology of Paenibacillus polymyxa were summarized.Key words: Paenibacillus polymyxa; function; industrial application; molecular operating system; breeding of strain; optimization of fermentation condition类芽孢杆菌属(Paenibacillus)是广泛存在于自然界的一类好氧-兼性厌氧、可产生内生孢子的杆状细菌。
多粘类芽孢杆菌的研究进展_苍桂璐
基金项目 作者简介
收稿日期
辽宁省教育厅科学技术研究项目( 2009A164) ; 大连市科学 技术基金( 2010J21DW107) 。 苍桂璐( 1986 - ) ,女,黑龙江双城人,硕士研究生,研究方 向: 海洋微生物资源的综合利用。* 通讯作者,副教授,博 士,硕士生导师,从事海洋微生物活性物质开发利用以及水 产品、农产品贮藏技术方面的研究,E-mail: zhangfuyun2002 @ yahoo. com. cn。 2012-11-13
李伟研究表明一株分离自海胆的多粘好的防治效果芽孢杆菌的发酵液对真菌菌丝孢子萌发有明显的抑制作用其中对苹果粉红的菌丝抑制率达92对西瓜枯萎的孢子萌发抑制率达89对部分植物病害有很好抑制作用17
安徽农业科学,Journal of Anhui Agri. Sci. 2013,41( 2) : 487 - 489
农业部免作安全鉴定一级菌种——多粘类芽孢杆菌简述
胞膜的渗透性,造成细菌内含物的流失,最终导致 细 菌 死 亡。 ② 作 用 于 真 菌 细 胞 壁, 多 粘 芽 孢 杆 菌 产 生 的 拮 抗 蛋 白 质 大 多 数 为 细 胞 壁 降 解 酶 类, 如 β-1,3- 葡聚糖酶、几丁质酶等。β-1,3- 葡聚糖酶 可水解 β-1,3- 葡聚糖中的 β-1,3- 糖苷键,从而 抑制植物病原真菌的生长与增殖。同时,分泌的核 苷类抗菌素多氧霉素作用于病原真菌细胞壁,能引 起真菌生长时的菌丝尖端形成膨胀泡而破裂。③活 菌体直接抑制,多粘类芽孢杆菌活菌体能抑制镰刀 菌的生长,而无菌滤液对镰刀菌无作用。这说明这 株多粘类芽孢杆菌对镰刀菌的抑制是活菌体直接起 抑制作用。④保护作用,多粘类芽孢杆菌可以产生 胞外多糖,保护植物免受病原体侵害;该菌和植物 根系的相互作用也会导致根毛发生物理变化。 3. 诱导作用:多粘类芽孢杆菌不仅能直接杀死 病原菌,还能通过与植物之间的互作来起到抗病效 果。诱导植物系统抗性是植物被环境中的非生物或 生物因子激活产生的对随后的病原菌侵染具有抵抗 性的特征。 4. 提供营养:多粘类芽孢杆菌能够通过固氮和 溶磷为植物提供植物自身难以吸收的氮源和磷肥养 料。多粘类芽孢杆菌能在植物根尖定殖并形成生物
农化科技
农业部免作安全鉴定一级菌种 ——多粘类芽孢杆菌简述
多 粘 类 芽 孢 杆 菌(Paenibacillus polymyxa Ash, Priest & Collins)是一种产芽孢、具有固 氮能力的革兰氏阳性细菌,多粘类芽孢杆菌及其代 谢产物广泛应用于农业、医学、工矿业及废水处理 等方面,美国环境保护署(EPA)已将其列为可商业 上应用的微生物种类之一,此外我国农业农村部也 将其列为免做安全鉴定的一级菌种。
多粘类芽孢杆菌 (1)
多粘类芽孢杆菌1.基本特性1.1中文通用名称:多粘类芽孢杆菌1.2英文通用名称(或拉丁名称):Paenibacillus polymyxa1.3毒性:低毒1.4应用作物:棉花、玉米、水稻、花生、马铃薯、黄瓜、青椒1.5防治对象:棉花黄萎、黑根腐、炭疽病、赤霉病;玉米全蚀病;水稻白叶枯病;花生青枯病;马铃薯软腐病;黄瓜角斑;青椒疮痂1.6生防特点:多粘类芽孢杆菌(Paenibacillus polymyxa)对植物黄萎病、鹰嘴豆枯萎病、油菜腐烂病、黑松根腐病等多种植物病害均具有一定的控制作用。
美国环境保护署(EPA)已将其列为可商业上应用的微生物种类之一。
无论是采用HY96-2(P. polymyxa)发酵液,还是由HY96-2制成的细粒剂(KDLD),在温室内和田间都取得了稳定的防治效果,并且KDLD细粒剂在田间表现的效果更为突出。
2.定性鉴别试验2.1菌株的形态及培养特征类芽孢杆菌属。
菌株接种于 LB固体培养基上,28ºC培养 18~24 h,观察其菌落形态。
利用光学显微镜观察在LB培养基上生长菌体形状和革兰氏染色情况,利用电镜观察菌体大小、荚膜和鞭毛着生情况。
菌体大小为(0.6~ 0.8) μm ×(2.0~5.0) μm,革兰氏阳性、阴性或可变,兼性厌氧,杆状,产芽孢,芽孢椭圆形,端生,膨大,有荚膜,鞭毛侧生或周生。
在 PDA平板上,菌落较小、白色或淡黄色、圆形、菌面稍凸或不凸起,边缘整齐,表面有光泽、光滑、湿润、半透明到不透明;在肉汁琼脂培养基上生长菌落较薄,无菌膜,液体澄清;在斜面培养基上生长良好,菌苔线状、扁平,表面光滑、半透明。
最适合生长温度30-35 ºC表1 菌株在不同培养基中的培养特征(30ºC ,2天)培养特性LB琼脂营养琼脂酵母浸膏琼脂牛肉汁琼脂菌落颜色乳白色杏仁白色淡黄白色灰白色菌落形状湿润光滑粘稠状有小突起,粘性湿润光滑菌落直径mm 2.5 2.8 3 2.62.2生理生化特征由表2可知,菌株的接触酶、厌氧生长、酪朊水解、淀粉水解、V—P反应和硝酸盐还原均为阳性;氧化酶、酪氨酸水解、脲酶、卵黄卵磷脂水解、吲哚产生、柠檬酸盐利用均为阴性;可利用D葡萄糖、D一木糖、D一甘露醇、甘油,且均产酸、产气。
多粘类芽孢杆菌
多粘类芽孢杆菌Bacillus polymyxa(Paenibacillus polymyxa)产品性能:本品属微生物农药(多粘类芽孢杆菌专利产品:已获得中国发明专利授权(ZL02151019.9))是通过有效成分-多粘类芽孢杆菌产生的抗菌物质和位点竞争的作用方式,杀死和控制病原菌,从而达到防治病害的目的,同时对初发病的青枯病,具有一定的治疗作用。
Properties of products:•This product belongs to the microbicides (Paenibacillus polymyxa is a patented product: ithas been obtained patent for an invention(ZL02151019.9) ), It reach to the purpose of prevention and treatment of diseases by their active ingredient syetem-antimicrobial substance that(Paenibacillus polymyxa) generated and the way of site competition to kill and control pathogenic bacteria, and it has some therapeutic functions to bacterial and fungal wilt that at the initial stage of diseaseoccoured使用技术和使用方法:注意事项:1、青枯病等土传病害的防治,应以预防为主,苗期用药,不仅可提高防效而且还具有防治苗期病害及壮苗作用,切勿省略;若病害较重,可在登记范围内加大用药量,效果更佳。
2、施药应选在早晨或傍晚进行,若施药后24小时内遇大雨天气,天晴后应补灌一次。
浅谈科诺公司新型生物农药多粘类芽孢杆菌
INNOVATION创 新242019.03中国农药1 科诺公司及多粘类芽孢杆菌基本介绍武汉科诺生物科技股份有限公司,是一家主要以高效、产品安全、资源节约、环境友好为目标,研发、生产和销售生物农药、生物肥料、微生物饲料添加剂原药及其制剂的高新技术企业。
具有自主进出口经营权,所从事的产业符合国家“十三五”战略型新兴产业发展规划中“加速生物农业产业化发展”的现代农业领域。
科诺公司拥有世界一流的微生物发酵技术,公司拥有完善的微生物发酵研究开发平台以及微生物发酵中试平台。
公司于2012年申报获批湖北省芽胞杆菌制剂工程技术研究中心和湖北省企业技术中心,包括菌种筛选和选育平台、发酵小试平台、发酵中试平台、后处理工艺优化平台、剂型研究平台、养虫与生物检测平台、化学检测平台、微生物检测和菌种鉴定平台共8个子平台。
公司目前拥有自主知识产权的国家专利技术申请40件,授权专利26件(其中发明专利16件),10年独占许可实施发明专利3件;申请商标264件,其中驰名商标1件,省著名商标1件,市著名商标2件;成果鉴定8个;科技成果奖励12个。
农药登记证37个,肥料登记证13个,饲料添加剂(包含混合型)12个。
素有植物“癌症”之称的植物青枯病和枯萎病是危害最大、损失最重、分布最广的世界性土传病害,目前国内外尚无能同时防治青枯病、枯萎病等细菌性和真菌性土传病害的有效农药,更无可同时防治细菌性和真菌性土传病害及叶部病害的微生物杀菌剂。
植物青枯病、枯萎病等土传病害的防治一直是世界性难题,早期国内外专家们在抗病品种选育、化学防治、农业防治等方面进行了大量的研究,但由于抗病品种抗性低且抗性容易丧失,化学药剂的后期防效差且病菌易产生抗药性而不能最终控制青枯病的发生,农业措施如水旱轮作受地域条件限制而难于大面积推广,迄今尚未研究出十分理想、有效的防治技术。
于是生防技术的研究和开发成为目前防治青枯病的重点和热点。
生物防治是指利用有益微生物杀灭或压低病原生物数量以控制植物病害发生、发展的一类措施。
多粘类芽孢杆菌(Paenibacillus polymyxa)XZ-2发酵条件优化的研究
江西农业学报㊀2018,30(11):57 61ActaAgriculturaeJiangxi㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀http://www.jxnyxb.comDOI:10.19386/j.cnki.jxnyxb.2018.11.13多粘类芽孢杆菌(Paenibacilluspolymyxa)XZ-2发酵条件优化的研究王波,王幸,周兴根∗,黄忠勤,丁震乾,常勇,周涧楠,苏在兴㊀㊀收稿日期:2018-06-12基金项目:国家现代农业产业技术体系建设专项(CARS-04-CES22);优质多抗超高产麦稻新品种徐麦31㊁徐68优201产业化(BA2014074)㊂作者简介:王波(1982─),男,江苏徐州人,助理研究员,硕士,主要从事植物病理学研究㊂∗通讯作者:周兴根㊂(江苏徐淮地区徐州农业科学研究所,江苏徐州221131)摘㊀要:采用单因素实验和正交实验相结合的方法,对多粘类芽孢杆菌菌株XZ-2的培养基配方及发酵培养条件进行了优化研究㊂实验结果表明:该菌株的最佳培养基配方为蔗糖15g/L,蛋白胨15g/L,硫酸镁5g/L,氯化钙3g/L;最佳培养条件为初始pH值8,发酵温度30ħ,发酵时间24h,装液量80mL/250mL,接种量3%(体积分数),转速180r/min㊂关键词:多粘类芽孢杆菌;培养基;配方;发酵条件;优化中图分类号:TQ920.6㊀文献标志码:A㊀文章编号:1001-8581(2018)11-0057-05ResearchonOptimizationofFermentationConditionsforPaenibacilluspolymyxaStrainXZ-2WANGBo,WANGXing,ZHOUXing-gen∗,HUANGZhong-qin,DINGZhen-qian,CHANGYong,ZHOUJian-nan,SUZai-xing(XuzhouInstituteofAgriculturalSciencesinXu-HuaiRegionofJiangsu,Xuzhou221131,China)Abstract:Single-factorexperimentandorthogonalexperimentwereconductedtooptimizethemediacomponentsandfer⁃mentationconditionsforPaenibacilluspolymyxastrainXZ-2.Theexperimentalresultsshowedthat:thebestmediacomponentsforXZ-2were15g/Lsucrose,15g/Lpeptone,5g/Lmagnesiumsulfate,and3g/Lcalciumchloride;theoptimumfermentationconditionsforthisstrainwereinitialpH-valueofmediumat8,fermentationtemperatureat30ħ,fermentationtimefor24h,liquid-loadingvolume80mL/250mL,inoculumsize3%(volumefraction),androtatespeedat180r/min.Keywords:Paenibacilluspolymyxa;Medium;Formula;Fermentationcondition;Optimization㊀㊀多粘类芽孢杆菌(Paenibacilluspolymyxa)是一种产芽孢的G+细菌,由于其具有植物病害防治㊁促进植物生长㊁对人和动植物无致病性并且无污染等优点而受到重视,美国环保署(EPA)将其列为可在商业上推广应用的微生物之一[1],我国农业部也将其列为免做安全鉴定的一级菌种[2]㊂近年来,关于多粘类芽孢杆菌用于植物病害生物防治的报道越来越多,例如:胡飞等研究发现多粘类芽孢杆菌对水稻纹枯病有较好的防治效果[3];李峰等筛选到1株对小麦赤霉病菌有抑制作用的多粘类芽孢杆菌菌株[4];林营志等筛选并鉴定了4株生防多粘类芽孢杆菌,其中菌株FJAT-4539对香蕉枯萎病有很强的抑制作用[5];宋顺华等发现多粘类芽孢杆菌对西瓜枯萎病具有较好的防治效果[6-7]㊂多粘类芽孢杆菌XZ-2是本课题组从江苏省徐州市铜山区班井村大豆植株中分离筛选出的,该菌株具有广谱抗真菌活性,对多种病原菌如大蒜叶枯病菌[Pleosporaherbarum(Pers.exFr.)Rabenk]㊁黄瓜灰霉病菌(Botrytiscinerea)㊁甘薯黑斑病菌(CeratocystisfimbriataEllisetHalsted)㊁丝瓜炭疽病菌(Colletotrichumorbiculare)㊁甜瓜枯萎病菌[Fusar⁃iumoxysporum(Schl.)f.sp.melonis]㊁小麦赤霉病菌(Fusariumgraminearum)㊁小麦纹枯病菌(RhizoctoniacerealisVanderHoeven)㊁棉花黄萎病菌(VerticilliumdahliaeKleb)㊁大豆疫霉病原菌(Phytophthorasojae)㊁大豆炭疽病原菌(Soybeananthracnose)㊁大豆菌核病原菌[Sclerotiniasclerotiorum(Lib.)deBary]等均具有较强的抑菌活性(另文发表)㊂基于该菌株的广谱抗菌活性,我们初步认为该生防菌株具有较好的应用前景㊂本文采用单因素实验设计和正交实验设计相结合的方法,对多粘类芽孢杆菌菌株XZ-2的培养基配方及培养条件进行了优化研究,以期为该生防菌株的大规模生产奠定理论基础㊂1㊀材料与方法1.1㊀供试菌株多粘类芽孢杆菌XZ-2从江苏省徐州市铜山区班井村大豆植株中分离,经江苏徐淮地区徐州农业科学研究所大豆课题组筛选鉴定后保存于-20ħ冰箱中待用㊂1.2㊀培养基多粘类芽孢杆菌XZ-2菌株发酵基础培养基使用LB液体培养基(胰蛋白胨10.0g/L㊁酵母提取物5.0g/L㊁氯化钠10.0g/L㊁蒸馏水1000mL,pH7.0),在121ħ高压蒸汽下灭菌20min㊂菌株活化采用LBA固体培养基(上述LB液体培养基+琼脂粉15g/L)㊂1.3㊀菌体生物量的测定采用酶标仪(ThermoMultiskanGO,USA),取300μL发酵液于酶标板中,以LB液体培养基为对照,测定OD600值,以OD600值作为判断菌体生物量大小的标准,OD600值大则菌量大[8]㊂1.4㊀培养基成分的优化碳源:以LB液体培养基为基础培养基,分别用酵母提取物㊁蔗糖㊁葡萄糖㊁麦芽糖和可溶性淀粉作为碳源,制成含有10g/L单一碳源的LB液体培养基(100mL/250mL)㊂将活化后的菌悬液以5%(体积分数)分别接种到不同碳源的液体培养基中,置于28ħ㊁180r/min转速摇床中培养24h后取出,在酶标仪上测定OD600值,每个处理3次重复㊂氮源:采用赖氨酸㊁蛋白胨㊁磷酸二氢铵㊁氯化铵和L-天冬酰胺,分别制成含10g/L单一氮源的LB液体培养基;其他接种㊁培养和测定方法同上,每个处理3次重复㊂无机盐:分别向LB液体基础培养基中加5g/L的硫酸锌㊁硫酸镁㊁硫酸锰㊁氯化钙㊁氯化钾;其他接种㊁培养和测定方法同上,每个处理3次重复㊂多因素正交实验:以单因素实验筛选出的最佳碳源蔗糖㊁最佳氮源蛋白胨以及无机盐硫酸镁和氯化钙等4个变异因素,采用如表1所示的L9(34)正交表进行培养基优化试验,培养基pH值为7.0,在发酵温度为28ħ㊁转速为180r/min的摇床中振荡培养24h,以OD600值分析4因素3水平对菌体生物量的影响,确定培养基的最佳配方,每个处理3次重复[9]㊂㊀㊀㊀㊀㊀表1㊀L9(34)正交实验设计因素g/L水平蔗糖蛋白胨硫酸镁氯化钙15533210105531515771.5㊀发酵条件优化单因素实验设计参考赵爽等的设计方法[10-12],在优化得到的培养基基础上,分别对培养基的初始pH值㊁发酵温度㊁发酵时间㊁摇床转速㊁装液量以及接种量进行进一步优化㊂用0.1mol/L的HCl和0.1mol/L的NaOH将培养基的初始pH值调成4㊁5㊁6㊁7㊁8㊁9,每个处理装液量为150mL,然后接种5%的菌悬液,在转速180r/min㊁发酵温度28ħ条件下摇培24h后测定OD600值㊂将发酵温度设置为20㊁25㊁30㊁35㊁40㊁45ħ,接种量㊁转速和培养时间等其他条件及测定方法同上㊂将发酵时间设置为12㊁24㊁36㊁48㊁60㊁72h,其他培养条件不变㊂将转速设置为90㊁120㊁150㊁180㊁210㊁240r/min,其他培养条件不变㊂在250mL三角瓶中分别装培养基40㊁60㊁80㊁100㊁120㊁140mL,其他培养条件不变㊂按体积分数将接种量设置为1%㊁3%㊁5%㊁7%㊁9%㊁11%,其他培养条件不变,分别测定OD600值,每组试验设置3次重复㊂1.6㊀数据统计分析采用Excel软件处理实验数据和作图,采用生物统计分析软件DPS进行差异显著性分析㊂2㊀结果与分析2.1㊀多粘类芽孢杆菌XZ-2的培养基优化分别以酵母提取物㊁葡萄糖㊁麦芽糖㊁蔗糖和可溶性淀粉作为碳源,研究它们对多粘类芽孢杆菌XZ-2生物量的影响㊂结果如图1所示,在供试的5种碳源中,蔗糖作为碳源时XZ-2的生长量最大,其发酵液OD600值达到0.805,与其他4种碳源培养基上得到的生物量呈极显著差异;其次是葡萄糖和可溶性淀粉,其OD600值分别为0.626和0.586;以麦芽糖和酵母提取物作为碳源的培养基上得到的生物量较小,其OD600值分别为0.428和0.327㊂因此选取蔗糖作为最佳碳源㊂图中不同大写字母表示1%极显著水平差异㊂下同㊂图1㊀不同碳源对多粘类芽孢杆菌XZ-2生长的影响㊀㊀由于有机氮源成本较高,因此本研究以无机氮源为主,结果如图2所示㊂菌株XZ-2在以蛋白胨作为培养基的氮源时生物量最大,其OD600值为0.677,与其85江㊀西㊀农㊀业㊀学㊀报㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀30卷他4种氮源条件下培养获得的生物量呈极显著差异;其次为磷酸二氢铵和氯化铵,其获得的OD600值分别为0.423和0.286;而在以L-天冬酰胺和赖氨酸为氮源的培养基上获得的生物量较小,其OD600值分别为0.139和0.053㊂因此选取蛋白胨作为培养基的最佳氮源㊂图2㊀不同氮源对多粘类芽孢杆菌XZ-2生长的影响㊀㊀分别以硫酸镁㊁氯化钙等5种无机盐制备培养基,发酵结果如图3所示㊂以硫酸镁和氯化钙为培养基的无机盐时OD600值较高,分别为0.568和0.553,与其他3种无机盐培养基培养获得的生物量呈极显著差异;以硫酸锌和硫酸锰为培养基的无机盐时,OD600值很小,菌株生长非常缓慢㊂由于以硫酸镁和氯化钙作为无机盐的条件下该菌株的生长量没有极显著差异,因此下一步采用硫酸镁和氯化钙作为培养基的复合无机盐㊂图3㊀不同无机盐对多粘类芽孢杆菌XZ-2生长的影响2.2㊀正交实验培养基成分优化从表2㊁表3中可以看出:不同水平的蔗糖和蛋白胨对XZ-2的生长量有一定的影响,具体表现为蔗糖和蛋白胨的浓度越高,XZ-2的生长量越高,极差分别为0.141和0.088;不同水平的硫酸镁对XZ-2的生长量也有一定的影响,XZ-2的生长量随着硫酸镁浓度从3g/L增加到5g/L而不断增加,但当硫酸镁浓度从5g/L增加到7g/L时XZ-2的生长量反而下降,极差为0.073;不同水平的氯化钙对XZ-2生长量的影响表现为随着浓度升高而下降,极差为0.051㊂结合正交实验结果,确定该菌株的最适发酵培养基成分为:蔗糖15g/L,蛋白胨15g/L,硫酸镁5g/L和氯化钙3g/L㊂表2㊀培养基组分正交实验统计结果处理蔗糖蛋白胨硫酸镁氯化钙OD600值11(5)1(5)1(3)1(3)0.571ʃ0.006E21(5)2(10)2(5)2(5)0.631ʃ0.008D31(5)3(15)3(7)3(7)0.649ʃ0.007D42(10)1(5)2(5)3(7)0.628ʃ0.006D52(10)2(10)3(7)1(3)0.677ʃ0.006C62(10)3(15)1(3)2(5)0.649ʃ0.004D73(15)1(5)3(7)2(5)0.710ʃ0.005B83(15)2(10)1(3)3(7)0.692ʃ0.005BC93(15)3(15)2(5)1(3)0.873ʃ0.006A㊀注:括号外为设计的水平值,括号内为设计的实际浓度值(计量单位为g/L)㊂表3㊀培养基组分正交实验评价结果(发酵液的OD600值)项目蔗糖蛋白胨硫酸镁氯化钙K10.6170.6360.6370.707K20.6510.6670.7110.663K30.7580.7240.6790.656极差R0.1410.0880.0730.051㊀注:K1㊁K2㊁K3分别代表蔗糖㊁蛋白胨㊁硫酸镁和氯化钙的3种水平与其他因素组合时XZ-2发酵液的OD600值㊂2.3㊀XZ-2培养条件的优化2.3.1㊀初始pH值的优化㊀由图4a可见,不同初始pH条件对多粘类芽孢杆菌XZ-2的发酵有一定的影响㊂具体来说:当pH值为4 8时,XZ-2菌株的生长量呈上升趋势;当pH值为8时,XZ-2发酵液的OD600最大,达到0.727;但pH值在6 8条件下发酵液的OD600值差异较小;当培养基初始pH值为9时,该菌株的生长量极低㊂因此,多粘类芽孢杆菌XZ-2发酵培养基的最佳初始pH值为8㊂2.3.2㊀培养温度的优化㊀图4b表明温度对多粘类芽孢杆菌XZ-2的生长有较大的影响㊂当温度为20 30ħ时,随着温度的升高菌株XZ-2的生长量快速升高;当温度为30ħ时,XZ-2发酵液的OD600值达到最大,为0.784;当发酵温度在30 45ħ时,随着温度升高菌株的生长量逐渐降低,且在45ħ条件下生长量极低㊂因此,确定30ħ为该菌株的最佳发酵95㊀11期㊀㊀㊀㊀㊀㊀㊀㊀王波等:多粘类芽孢杆菌(Paenibacilluspolymyxa)XZ-2发酵条件优化的研究温度㊂2.3.3㊀培养时间的优化㊀由图4c可见:XZ-2菌株在培养时间为12 24h时,发酵液的OD600值显著升高,摇培24h时发酵液的OD600值高达0.715;继续摇培后发现菌株的生长量逐渐下降㊂由此,我们认为该菌株的最佳发酵时间为24h,该结果与菌株XZ-2的生长曲线结果一致㊂2.3.4㊀装液量的优化㊀不同的装液量对菌株XZ-2的发酵有一定的影响,结果如图4d所示,在250mL三角瓶中,XZ-2的生长量随着装液量的增加而增加,当装液量达到80mL时,XZ-2发酵液的OD600值最高,为0.811;随着装液量继续增加,XZ-2发酵液的OD600值逐渐下降,但下降趋势较小㊂因此,选择250mL三角瓶装液80mL为菌株XZ-2的最佳装液量㊂2.3.5㊀接种量的优化㊀接种量对菌株XZ-2发酵的影响如图4e所示,当接种量从1%增加到3%时,XZ-2发酵液的OD600值快速升高,当接种量在3%时,XZ-2发酵液的OD600值最大,为0.818;随着接种量继续增加,XZ-2发酵液的OD600值逐渐下降㊂说明高接种量和低接种量都不利于该菌株的生长,因此确定该菌株的最佳接种量为3%㊂2.3.6㊀转速的优化㊀从图4f可以看出,摇床转速对XZ-2的生长影响较大㊂当转速在90 180r/min之间时,随着转速的升高,该菌株的生长量逐渐升高;当转速为180r/min时OD600最大,为0.723;当转速继续升高时,菌株发酵液的OD600值则逐渐下降,因此认为180r/min为菌株XZ-2发酵培养的最佳转速㊂图4㊀不同发酵条件对多粘类芽孢杆菌XZ-2生长的影响3㊀讨论与结论单因素试验是在假设不同因素间不存在相互作用的前提下,通过一次只改变一个因素而其他因素维持不变,研究不同因素对结果的影响,是试验中最常用的优化策略之一[12]㊂然而,大部分培养基成分复杂,仅通过单因素试验往往无法获得准确的结果,特别是在试验因素较多的情况下,需要进行较多的试验次数和试验周期才能完成各因素的逐个优化筛选[13-14]㊂因此,单因素试验经常被用在正交试验之前或与正交试验相结合使用㊂正交试验是利用一套表格,设计多因素㊁多指标㊁多因素间存在交互作用而具有随机误差的试验,并利用普通的统计分析方法来分析试验结果[15]㊂本文采用单因素实验设计和正交实验设计相结合的方法,对XZ-2的发酵培养基配方和发酵条件进行了优化㊂单因素实验结果表明XZ-2的最佳碳源为蔗糖,最佳氮源为蛋白胨,最佳无机盐为硫酸镁和氯化钙;结合单因素实验结果开展正交实验,结果显示该菌株的最佳培养基组分为蔗糖15g/L,蛋白胨15g/L,硫酸镁5g/L,氯化钙3g/L㊂同时,通过研究优化了菌株XZ-2的发酵条件:培养基初始pH值8,发酵温度30ħ,发酵时间24h,装液量80mL/250mL,接种量3%,转速180r/min㊂近年来,关于多粘类芽孢杆菌发酵条件优化的相关报道有很多,如陈小煌等研究发现:多粘类芽孢杆菌菌株B-306的最适培养基为:碳源可溶性淀粉17.5g/L㊁氮源蛋白胨25.0g/L㊁无机盐NaCl1.25g/06江㊀西㊀农㊀业㊀学㊀报㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀30卷L㊁Na2HPO40.5g/L㊁CaCl21.0g/L;最适发酵条件为:初始pH值7.5,培养温度30ħ,转速170r/min,装液量80mL/250mL,接种量10%[7]㊂金莉萍等对多粘类芽孢杆菌CF05的发酵条件进行优化,结果筛选出碳源豆粕10g/L和鱼粉10g/L,氮源玉米粉20g/L,无机盐MgSO40.5g/L和CaCl20.5g/L为最适培养基配方,且初始pH值7.2㊁培养温度30ħ㊁接种量2%为该菌株的最适发酵条件[16]㊂林茂兹等研究表明多粘类芽孢杆菌S960的最佳发酵条件是:初始pH值7.0,转速150r/min,装液量25mL/250mL,接种量2%[17]㊂王智文等对Cp-S316菌株抗真菌活性物质的发酵培养基成分及培养条件进行了优化,发现最佳培养基配方为土豆100g㊁乳糖40g㊁蛋白胨15g㊁硝酸钠0.5g㊁硫酸镁2g㊁水1L,最佳培养条件为培养基初始pH值6.3 6.5,培养温度30ħ,接种量2%,装液量100mL/500mL[18]㊂对比以上研究结果和本文研究结论,我们发现不同多粘类芽孢杆菌菌株的培养基配方及发酵条件之间存在差异,这可能与菌株的地理来源和采集环境相关㊂对此,我们应根据菌株差异选择相应的培养基成分和发酵条件,使该菌株的生长和防治效果得到最佳发挥㊂以后,我们还将进一步研究培养基成分及发酵条件对XZ-2发酵液抑菌活性的影响,为该菌株的开发应用提供理论依据㊂参考文献:[1]WangZW,LiuXL.MediumoptimizationforantifungalactivesubstancesproductionfromanewlyisolatedPaenibacillussp.usingresponsesurfacemethodology[J].BioresourceTechnol⁃ogy,2008,99(17):8245-8251.[2]杨少波,刘训理.多粘类芽孢杆菌及其产生的生物活性物质研究进展[J].微生物学通报,2008,35(10):1621-1625.[3]胡飞,李昌春.多粘类芽孢杆菌DN-1防治水稻纹枯病初步研究[J].中国生物防治学报,2015,31(4):524-528.[4]李峰,徐大勇.一株拮抗赤霉病的小麦内生细菌的筛选和抑菌活性[J].生态学杂志,2011,30(8):1738-1743.[5]林营志,刘国红.香蕉枯萎病芽孢杆菌生防菌的筛选及其抑菌特性研究[J].福建农业学报,2011,26(6):1007-1015.[6]宋顺华,吴萍.多粘类芽孢杆菌WY110对西瓜枯萎病的控制作用[J].植物保护学报,2011,38(6):571-572.[7]陈小煌,李自然.多粘类芽孢杆菌培养条件优化研究[J].福州大学学报:自然科学版,2013,41(5):947-954.[8]胡亮亮,徐汉虹,廖美德.胶冻样类芽孢杆菌PS04产抗真菌物质培养条件的优化[J].华中农业大学学报,2011,30(3):276-279.[9]王卉,游成真,秦宇轩.解淀粉芽孢杆菌L-S60生物学特性及其固态发酵工艺研究[J].中国农业大学学报,2016,21(9):133-142.[10]赵爽,刘伟成,周立刚,等.多粘类芽孢杆菌抗菌物质和防病机制之研究进展[J].中国农学通报,2008,24(7):347-349.[11]赵爽.多粘类芽孢杆菌T99生防作用及其抗菌蛋白的初步研究[D].北京:中国农业大学,2008:23-30.[12]赵丽坤,郭会灿.微生物培养基优化方法概述[J].石家庄职业技术学院学报,2008,20(4):50-51.[13]DanY,ZhiNX,PeiLC.Mediumoptimizationforenhancedproductionofcytosine-substitutedmildiomycinanalogue(MIL-C)byStreptoverticilliumrimofaciensZJU5119[J].ZhejiangUnivSciB,2008,9(1):77-84.[14]LiuC,RuanH,ShenH,etal.Optimizationofthefermenta⁃tionmediumforalpha-galactosidaseproductionfromAspergil⁃lusfoetidusZU-GIusingresponsesurfacemethodology[J].JFoodSci,2007,72(4):120-125.[15]肖怀秋,李玉珍.微生物培养基优化方法研究进展[J].酿酒科技,2010(1):90-94.[16]金莉萍.多粘类芽孢杆菌促生机制研究及发酵条件的优化[D].杭州:浙江农林大学,2016.[17]林茂兹,金美芳.多粘类芽孢杆菌S960菌株发酵条件优化[J].福建师大福清分校学报,2015(5):6-11.[18]王智文.多粘类芽孢杆菌(Paenibacilluspolymyxa)Cp-S316抗真菌活性物质的发酵㊁分离纯化与性质研究[D].泰安:山东农业大学,2007.(责任编辑:黄荣华)16㊀11期㊀㊀㊀㊀㊀㊀㊀㊀王波等:多粘类芽孢杆菌(Paenibacilluspolymyxa)XZ-2发酵条件优化的研究。
一种多粘类芽孢杆菌Lla-02及其应用[发明专利]
专利名称:一种多粘类芽孢杆菌Lla-02及其应用
专利类型:发明专利
发明人:薛静,张秀海,车云林,陈绪清,刘敬振,杨凤萍,张国宁,张铭芳,杜运鹏,高俊莲
申请号:CN201911281263.3
申请日:20191213
公开号:CN110938570A
公开日:
20200331
专利内容由知识产权出版社提供
摘要:本发明公开了一种多粘类芽孢杆菌Lla‑02(Paenibacillus polymyxa),保藏号CGMCC NO.18753,保藏日期:2019年10月28日。
所述多粘类芽孢杆菌Lla‑02对尖孢镰刀菌、灰霉葡孢、百合枯萎病菌、葡萄座腔菌、大肠杆菌、金黄色葡萄球菌、沙门氏菌均具有抑菌活性。
所述多粘类芽孢杆菌Lla‑02能够使‘穿梭’的株高、叶片长度和根长得到显著提高,使‘白天堂’的株高、鳞茎重和根长得到显著提高。
申请人:北京农业生物技术研究中心
地址:100097 北京市海淀区曙光花园中路9号
国籍:CN
代理机构:北京律恒立业知识产权代理事务所(特殊普通合伙)
代理人:庞立岩
更多信息请下载全文后查看。
一种多粘类芽孢杆菌及其应用[发明专利]
专利名称:一种多粘类芽孢杆菌及其应用
专利类型:发明专利
发明人:张震,柴荣耀,邱海萍,王教瑜,毛雪琴,郝中娜,王艳丽,孙国昌
申请号:CN201810696230.4
申请日:20180629
公开号:CN108865932A
公开日:
20181123
专利内容由知识产权出版社提供
摘要:一种多粘类芽孢杆菌及其应用,属于微生物技术领域。
本发明一方面提供了一种新的多粘类芽孢杆菌()hzz1501;另一方面提供了该菌株的应用。
本发明的多粘类芽孢杆菌对小麦赤霉病菌、茭白胡麻斑病菌、番茄早疫病菌、水稻稻瘟病菌菌丝有抑制生长作用,可有效防治小麦赤霉病、茭白胡麻斑病、番茄早疫病和水稻稻瘟病,且防效高,克服了化学杀菌剂容易产生抗性的弊端。
申请人:浙江省农业科学院
地址:310021 浙江省杭州市江干区石桥路198号
国籍:CN
代理机构:杭州浙科专利事务所(普通合伙)
代理人:沈渊琪
更多信息请下载全文后查看。
多黏芽孢杆菌功能简介
多战芽孢杆菌
又名:多粘类芽孢杆菌
【适用范围】生物肥料、生物农药、水产养殖的应用。
【产品特点】
多粘芽孢杆菌是重要的植物生防细菌和根际促生菌,我国农业部将其列为免做安全鉴定的一级菌种。
1、有效预防细菌性土传病害。
多粘芽孢杆菌产生的多粘菌素A—E具有相似的抗菌谱,对多种革兰氏阴性菌具有强烈的杀菌作用。
多粘不仅可通过灌根有效防治植物细菌性和真菌性土传病害,而且可以通过喷雾减少植物细菌和真菌性的叶部病害。
对青枯病、枯萎病、角斑病、炭疽病、软腐病、根腐病、猝倒病、立枯病等具有较好的防治作用。
2、对植物具有明显的促生长、增产作用。
多粘芽孢杆菌可产生吲哚乙酸、生长素、双萜化合物类的赤霉素、腺嘌呤衍生物类的细胞分裂素、乙烯等植物激素,这些植物激素可以促进植物生长。
3、提高作物的抗病性。
多粘芽孢杆菌通过与植物之间的互作,诱导植物体产生更多抵抗病原菌侵染的能力,来起到抗病效果。
4、提供营养。
多粘芽孢杆菌能够通过固氮和溶磷为植物提供植物自身难以吸收的氮源和磷肥养料。
能在植物根尖定植并形成生物膜,并且在根部维管柱外的细胞内空间积累,产生的生物膜能够大大加速植物吸收营养物质的过程。
【主要成分】多粘芽孢杆菌活芽孢、发酵代谢产物、固态发酵基质。
多粘类芽孢杆菌 原料
多粘类芽孢杆菌原料
多粘类芽孢杆菌又称多细胞类芽孢杆菌,是一种常见的细菌。
它具有较大的细胞体,通常呈杆状或椭圆形,并具有多个环节。
多粘类芽孢杆菌广泛存在于自然界中,可以在土壤、水体、植物和动物体内找到。
多粘类芽孢杆菌具有多个特点,使其在应用领域具有广泛的潜力。
首先,它能够产生多种生物活性物质,如抗菌物质和抗肿瘤物质,对病原微生物和恶性肿瘤具有一定的抑制作用。
其次,多粘类芽孢杆菌在生物修复领域也有重要应用,可以通过分解有机废物和吸附重金属等方式帮助净化环境。
此外,多粘类芽孢杆菌还能够促进植物生长,并提高植物的抗逆性。
为了充分发掘多粘类芽孢杆菌的应用潜力,科学家们正在进行深入研究。
他们通过分离和鉴定,筛选出高产特性的菌株,并优化培养条件,提高产量。
同时,还开展了基因工程的研究,通过基因的改造和表达,使多粘类芽孢杆菌产生更多、更强的生物活性物质。
综上所述,多粘类芽孢杆菌作为一种常见的细菌,在生物技术和生物医药等领域具有广泛的应用前景。
科学家将继续探索其潜力,并努力推动其产业化和应用化进程,以促进人类社会的可持续发展。
多粘类芽孢杆菌标准
多粘类芽孢杆菌标准多粘类芽孢杆菌(Bacillus subtilis)是一种广泛存在于自然环境中的革兰氏阳性细菌,属于杆菌科,可以产生多种有益物质和酶。
由于其对环境友好、易于培养和培养基制备成本低等优点,多粘类芽孢杆菌已成为许多研究领域和应用领域的重要模式生物和工业微生物。
一、基本信息多粘类芽孢杆菌的形态特征为直杆状,大小约为1-2微米×4-8微米。
菌体质地坚韧,具有黏附作用。
芽孢是其最典型的特征之一,芽孢具有抵抗外界环境的能力,在极端条件下也能存活。
二、培养条件1. 基本培养基:以肉汤-蛋白胨培养基为基础,可加入适量的葡萄糖、淀粉等碳源,适量的无机盐和适宜的pH值。
2. 温度:多粘类芽孢杆菌为嗜温菌,适宜生长温度为30-40℃,最适温度为37℃。
3. pH值:多粘类芽孢杆菌能适应较宽的pH范围,但最适pH为6-8。
4. 氧气条件:多粘类芽孢杆菌为厌氧菌,对氧气耐受能力较强。
三、生物学特性1. 产孢性:多粘类芽孢杆菌产孢能力很强,芽孢可以在环境中长时间存活。
2. 生长速度:多粘类芽孢杆菌生长速度较快,平均每递增20分钟分裂一次。
3. 酶的产生:多粘类芽孢杆菌可以产生多种酶,如蛋白酶、淀粉酶、纤维素酶、脂肪酶等。
4. 干旱抗性:多粘类芽孢杆菌对干旱有很强的抵抗能力,能在干燥环境下存活。
四、应用领域1. 农业领域:多粘类芽孢杆菌在农业生产中有广泛应用,可用于提高作物的营养吸收、防治植物病害、增强植物抗逆性。
2. 生物农药制备:多粘类芽孢杆菌对许多农业害虫有杀灭作用,可制备成生物农药用于害虫防治。
3. 饲料添加剂:多粘类芽孢杆菌可以促进动物的消化吸收能力,提高饲料利用率,可作为饲料添加剂使用。
4. 工业微生物:多粘类芽孢杆菌可以产生多种酶和有益物质,可用于食品、医药、生物燃料等工业领域。
五、实验操作1. 菌体培养:将多粘类芽孢杆菌接种于含有适宜培养基的培养皿中,经过适当的培养条件,利用摇床或恒温培养箱进行培养。
一种多粘类芽孢杆菌、应用及微生物菌剂、粉剂和颗粒剂[发明专利]
专利名称:一种多粘类芽孢杆菌、应用及微生物菌剂、粉剂和颗粒剂
专利类型:发明专利
发明人:郝志敏,王会敏,董金皋,梁海龙,申珅,曾凡力
申请号:CN201811452399.1
申请日:20181130
公开号:CN109456921A
公开日:
20190312
专利内容由知识产权出版社提供
摘要:本发明提供了一种多粘类芽孢杆菌、应用及微生物菌剂、粉剂和颗粒剂,其从玉米茎中分离得到,该菌株对多种植物真菌病害,尤其是禾谷镰孢、层出镰孢或拟轮枝镰孢等真菌病害具有良好的防治效果,不污染环境,生态安全,遗传稳定,且不容易产生抗性;本发明可以与植物生长所需有机、无机营养成分混合制备成微生物菌剂灌根、粉剂拌种以及颗粒剂,使作物的抗真菌病害能力明显增强。
申请人:郝志敏
地址:071001 河北省保定市乐凯南大街2596号河北农业大学西校区B座2617
国籍:CN
代理机构:北京汇信合知识产权代理有限公司
代理人:戴凤仪
更多信息请下载全文后查看。
多粘类芽孢杆菌 (1)
多粘类芽孢杆菌1.基本特性1.1中文通用名称:多粘类芽孢杆菌1.2英文通用名称(或拉丁名称):Paenibacillus polymyxa1.3毒性:低毒1.4应用作物:棉花、玉米、水稻、花生、马铃薯、黄瓜、青椒1.5防治对象:棉花黄萎、黑根腐、炭疽病、赤霉病;玉米全蚀病;水稻白叶枯病;花生青枯病;马铃薯软腐病;黄瓜角斑;青椒疮痂1.6生防特点:多粘类芽孢杆菌(Paenibacillus polymyxa)对植物黄萎病、鹰嘴豆枯萎病、油菜腐烂病、黑松根腐病等多种植物病害均具有一定的控制作用。
美国环境保护署(EPA)已将其列为可商业上应用的微生物种类之一。
无论是采用HY96-2(P. polymyxa)发酵液,还是由HY96-2制成的细粒剂(KDLD),在温室内和田间都取得了稳定的防治效果,并且KDLD细粒剂在田间表现的效果更为突出。
2.定性鉴别试验2.1菌株的形态及培养特征类芽孢杆菌属。
菌株接种于 LB固体培养基上,28ºC培养 18~24 h,观察其菌落形态。
利用光学显微镜观察在LB培养基上生长菌体形状和革兰氏染色情况,利用电镜观察菌体大小、荚膜和鞭毛着生情况。
菌体大小为(0.6~ 0.8) μm ×(2.0~5.0) μm,革兰氏阳性、阴性或可变,兼性厌氧,杆状,产芽孢,芽孢椭圆形,端生,膨大,有荚膜,鞭毛侧生或周生。
在 PDA平板上,菌落较小、白色或淡黄色、圆形、菌面稍凸或不凸起,边缘整齐,表面有光泽、光滑、湿润、半透明到不透明;在肉汁琼脂培养基上生长菌落较薄,无菌膜,液体澄清;在斜面培养基上生长良好,菌苔线状、扁平,表面光滑、半透明。
最适合生长温度30-35 ºC表1 菌株在不同培养基中的培养特征(30ºC ,2天)培养特性LB琼脂营养琼脂酵母浸膏琼脂牛肉汁琼脂菌落颜色乳白色杏仁白色淡黄白色灰白色菌落形状湿润光滑粘稠状有小突起,粘性湿润光滑菌落直径mm 2.5 2.8 3 2.62.2生理生化特征由表2可知,菌株的接触酶、厌氧生长、酪朊水解、淀粉水解、V—P反应和硝酸盐还原均为阳性;氧化酶、酪氨酸水解、脲酶、卵黄卵磷脂水解、吲哚产生、柠檬酸盐利用均为阴性;可利用D葡萄糖、D一木糖、D一甘露醇、甘油,且均产酸、产气。
多粘适用的指标
多粘适用的指标
多粘适用的指标:有效活菌数:≥2.0亿/克
多粘类芽孢杆菌(Paenibacillus polymyxa)对植物黄萎病、鹰嘴豆枯萎病、油菜腐烂病、黑松根腐病等多种植物病害均具有一定的控制作用。
多粘类芽孢杆菌(Paenibacillus polymyxa)对植物黄萎病、鹰嘴豆枯萎病、油菜腐烂病、黑松根腐病等多种植物病害均具有一定的控制作用。
美国环境保护署(EPA)已将其列为可商业上应用的微生物种类之一。
无论是采用HY96-2(P. polymyxa)发酵液,还是由HY96-2制成的细粒剂(KDLD),在温室内和田间都取得了稳定的防治效果,并且KDLD细粒剂在田间表
现的效果更为突出。
在试验过程中,特别注意了生防菌株发酵液的使用。
新鲜的发酵液在防治试验中表现出稳定的防治效果,而放置一段时间的发酵液,防治效果会出现较大差异,不同批次的试验效果不稳定。
我们认为,放置一段时间的发酵液的活菌含量、活力及代谢产物都会发生变化,这种变化会对防治试验产生较大的影响。
因此,使用新鲜的发酵液或制成稳定的制剂开展田间防治试验,是我们开展菌株筛选和应用研究必须注意的一个关键问题。
多年的试验示范结果表明,多粘类芽孢杆菌具有两大功能:(1)
通过灌根可有效防治植物细菌性和真菌性土传病害,同时可使植物叶部的细菌和真菌病害明显减少;(2)对植物具有明显的促生长、增产作用。
1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Bioflocculation of high-ash Indian coals usingPaenibacillus polymyxaS.P.Vijayalakshmi,A.M.Raichur *Department of Metallurgy,Indian Institute of Science,Bangalore 560012,IndiaReceived 13September 2001;received in revised form 26April 2002;accepted 26April 2002AbstractMost Indian coals have high ash content of the order of 25–35%.High ash in the coal not only reduces the thermal value of coal but also leads to production of fly ash,which is a major environmental problem.Cleaning with gravity concentration techniques is ineffective and more efficient techniques need to be developed.In recent times,bioflocculation as an alternative preparation method has been reported for a number of mineral systems including high-sulfur coals.In this paper,bioflocculation of high-ash Indian coals has been studied using Paenibacillus polymyxa for two coal samples.A quartz sample was used for comparison purposes.Zeta-potential measurements showed that coal samples and the bacterium were negatively charged over most of the pH range with a point-of-zero-charge (PZC)around pH 2–3.Surface free energy,determined through contact angle measurements,showed that the coal samples were hydrophobic while the bacterium was hydrophilic.Among the coal samples,the coal with the lower ash content exhibited greater hydrophobicity.Adhesion tests revealed that adhesion took place in about 25min and that maximum adhesion occurred around pH 2.Similarly,flocculation tests showed that the bacterium flocculated coal effectively and efficiently with the best results around pH 2.More than 90%of the coal flocculated in about a minute in the presence of the bacterium while compared to about 20–30%in the absence of the bacterium.Flocculation of quartz was retarded under the same conditions,indicating that it is dispersed.Ash analysis of the flocculated portion showed a decrease in ash by 60%thereby suggesting that selective flocculation of coal is possible.D 2002Elsevier Science B.V .All rights reserved.Keywords:coal;ash;adhesion;surface free energy;Paenibacillus polymyxa0301-7516/02/$-see front matter D 2002Elsevier Science B.V .All rights reserved.PII:S 0301-7516(02)00044-3*Corresponding author.Tel.:+91-80-3608025;fax:+91-80-3600472.E-mail address:amr@metalrg.iisc.ernet.in (A.M.Raichur)./locate/ijminproInt.J.Miner.Process.67(2002)199–2101.IntroductionSeparation of unwanted mineral matter from coal to produce clean coal of high BTU value is a problem faced worldwide.Generally,gravity concentration techniques are used in most preparation plants to remove mineral matter from coal.In case the mineral matter is finely disseminated in coal,then gravity concentration techniques are not efficient.In such cases,methods such as flotation (Aplan,1976;Klimpel,1988;Misra and Anazia,1987),flocculation (Attia,1985;Palmes and Laskowski,1993),agglomeration (Drzymala and Wheelock,1993)and coagulation (Honaker et al.,1991)have been shown to be effective in removing mineral matter to low levels.In the past decade,bioprocessing of coal as an alternative to conventional processes listed above has been shown to have a great potential for cleaning coal.Attia et al.(1993)showed that enhanced pyrite separation from coal by flotation is possible with biosurface modification using Thiobacillus ferrooxidans .Similarly,desulphurization of coal using various strains of T.ferrooxidans by column flotation has been reported (Ohmura and Saiki,1994).Selective flocculation of fine coal using the bacterium Mycobacterium phlei has been reported and shown to be very effective in reducing both ash and pyritic sulphur content (Misra et al.,1993;Raichur et al.,1996).The selectively is based on the differential adhesion of bacteria to coal and its associated minerals (Raichur et al,1995).It has also been shown that flocculants of biological origin are more effective than synthetic ones (Raichur et al.,1997).In the above studies,the difference in surface properties of coal and its associated minerals has been the primary reason for selective adhesion of the bacteria,thus leading to selective flocculation or flotation.The surface properties of coal also vary depending on the composition and rank of coal.Flocculation with synthetic flocculants is very much dependent of the type of coal,which in turn affects the separation of mineral matter from coal (Palmes and Laskowski,1993).So far,no studies have been reported on how the type or source of coal affects the adhesion of bacteria to its surface and hence bioflocculation.The microorganism Paenibacillus polymyxa has been used for flocculation and flotation of various minerals including hematite (Deo and Natarajan,1998),pyrite and chalcopyrite (Sharma et al.,2001).In this paper,an attempt has been made to study the adhesion of the bacteria P .polymyxa on to two types of coal and its consequent effect on flocculation and deashing.The effect of time,pH and surface properties,i.e.zeta potential and surface free energy on adhesion and flocculation,have been investigated in detail.A pure quartz sample has also been used for comparison purposes.2.Materials and methods2.1.Culture of microorganismA pure culture of the microorganism P .polymyxa was used in this study.The organism was cultured using Bromfield medium.The microorganism was harvested by centrifugation and the pellet was washed several times before the bacterium wasS.P .Vijayalakshmi,A.M.Raichur /Int.J.Miner.Process.67(2002)199–210200resuspended in distilled water.This suspension was used in further studies.The cell count was monitored as a function of time by counting the cells using a Petroff–Hausser counter.The growth characteristics of P.polymyxa have been reported elsewhere (Shashikala and Raichur,2001).The microorganism is about 1.5A m in length and about 0.6A m in diameter and a scanning electron micrograph is shown in Fig.1.2.2.Coal samplesTwo coal samples were obtained for this study and the source and analysis of the coals are shown in Table 1.As can be seen,both the coals are high in ash and volatile matter.The samples were ground in a dry mill and then packed and stored.The ground samples were used for adhesion tests and zeta-potential measurements.Some large lumps were broken down to pieces of approximately 2Â2Â1in.size,which were used for contact angle measurements.X-ray diffraction studies showed the presenceof Fig.1.Scanning electron micrograph of P .polymyxa .Table 1Proximate analysis of coal samplesCompositionN-coal (%)M-coal (%)Moisture1.080.66Ash23.533.33V olatiles27.3920.89Fixed carbon 48.0345.12S.P .Vijayalakshmi,A.M.Raichur /Int.J.Miner.Process.67(2002)199–210201various minerals such as SiO 2,Al 2O 3,and oxides of iron,which contribute towards the ash formation.2.3.Zeta-potential measurementsZeta potential of the coal samples,quartz and the bacterium was measured using a Zeta-Meter 3.0system.About 1g of the mineral sample was added to 50ml of 1Â10À2M KNO 3solution.The suspension was conditioned using magnetic stirrer until the pH stabilized.Then,the pH was adjusted to the required value using dilute HNO 3or NaOH and further conditioned until the pH stabilized.The suspension was allowed to stand for a couple of minutes before the supernatant was transferred to the electrophoresis cell for measurements.About 10separate readings were taken and the average value is reported here.In case of the bacterium,a 50ml suspension was made in distilled water to which another 50ml of KNO 3solution was added so that the required electrolyte concentration was obtained.Then the conditioning was done as described above.2.4.Contact angle measurementsContact angle measurements were performed using a contact angle goniometer (Rame´-Hart,NJ,USA).The coal samples were first molded in epoxy resin with one flat surface being exposed for contact angle measurements.The surface of each sample was polished using 1000and 4000grit SiC paper.Final polishing was carried out with 0.05A m alumina suspension.The samples were thoroughly washed with distilled water before making the measurements.In case of the bacterium,the suspension containing the microorganism was filtered using a 0.2A m Millipore filter paper as described by van der Mei et al.(1991).Enough bacteria were filtered so that a uniform layer is formed on the filter paper.This bacterial lawn was used for contact angle measurements.Contact angles were measured using the sessile drop technique.A 2A l drop was placed onto the surface and measurements were made within 2–3min of placing the drop.Angles on both sides of the droplet were measured.The average of about eight readings is reported here.The contact angles could be reproduced with an accuracy of F 2j .2.5.Adhesion testsAdhesion tests were performed in shake flasks and the change in cell number was monitored by counting using a Petroff–Hausser counter.About 1g of coal sample was conditioned in 50ml of distilled water at the required pH.Similarly,the bacterial suspension was conditioned in 50ml of distilled water of the same pH as that of the mineral suspension.After a few minutes,the two suspensions were mixed and the time from that point was taken into account.The effect of conditioning time and pH on adhesion were studied.2.6.Flocculation testsFlocculation tests were carried out in 100ml graduated cylinder.The coal and bacterium were mixed in a beaker for about 25min and the required pH and thenS.P .Vijayalakshmi,A.M.Raichur /Int.J.Miner.Process.67(2002)199–210202transferred to the graduated cylinder.The amount of coal settled after 1min was determined at different pH values.The flocculated coal was analyzed for ash.Ash was determined as per the ASTM method D-3174.3.Results and discussion3.1.Zeta-potential studiesThe surface charge of all the surfaces was determined by measuring the zeta potential as a function of pH at 1Â10À2M KNO 3and the results are presentedin Fig.2.Zeta potential of minerals and the bacterium in 1Â10À2M KNO 3solution.Table 2Measured values of the contact angle on all surfaces with different diagnostic liquidsh waterh formamide h diiodomethane N-coal794957M-coal705558Quartz392842P .polymyxa 4254.566S.P .Vijayalakshmi,A.M.Raichur /Int.J.Miner.Process.67(2002)199–210203Fig.2.It can be seen that all the coal samples exhibited similar change in zeta potential with increase in pH and had a point-of-zero-charge (PZC)in the pH range of 2–3.Generally,coal samples have a PZC around pH 5–6,while in this case,it is much lower.This may be due to the presence of high amounts of ash forming minerals,which probably change the PZC to lower values.The zeta-potential curve of the quartz sample supports this reasoning.The surface charge of P .polymyxa was also determined and is plotted in Fig.2.The bacterium had a PZC around pH 2and the zeta potential became more negative with increase in pH.It is interesting to note that the mineral samples and the bacterium exhibit aTable 3The surface free energy components of different surfaces (mJ/m 2)c s LW c s +c s Àc s AB c sN-coal 31.450.94 5.86 4.7036.15M-coal 34.830.0615.87 1.8736.7Quartz 38.59 1.13536.012.7851.37P .polymyxa 25.130.28654.707.9133.04Fig.3.Adhesion kinetics of P .polymyxa onto coal and quartz.S.P .Vijayalakshmi,A.M.Raichur /Int.J.Miner.Process.67(2002)199–210204very similar change in zeta potential with change in pH and are negatively charged over most of the pH range.3.2.Surface free energy calculationsThe contact angle measurements were carried out to determine the surface free energy parameters for the mineral samples as well as the bacterium by the van Oss(1994) technique.Three diagnostic liquids,viz.water,diiodomethane and formamide,were used in this study and the measured contact angles are shown in Table2.It can be seen that the contact angle of water is high for the coal with lower ash content(N-coal)followed by M-coal.Quartz and the bacterium had the lowest contact angle.However,the contact angle of water alone does not yield complete information about the ing the van Oss technique,the surface free energy parameters were calculated and are tabulated in Table3. The Lifshitz–van der Waals component was found to be independent of the type of coal. This is consistent with the observations of Parekh and Aplan(1978)where it was reported that critical surface tension of wetting of coal is independent of rank of coal.It should be noted that the critical surface tension of wetting is a very close estimate of the Lifshitz–van der Waals component of surface free energy.The electron acceptor component oftheFig.4.Adhesion of P.polymyxa onto coal and quartz as a function of pH.S.P.Vijayalakshmi,A.M.Raichur/Int.J.Miner.Process.67(2002)199–210205solid surface free energy (c s +)did not vary significantly for both the coal samples.But the electron donor component (c s À)changes with coal type.The electron donor component is high for the M-coal,which has about 33%ash.This means that the bulk composition of coal has a direct role in determining the surface free energy components.Even though the value of c s Àincreases,it is still below the value of 28.8mJ/m 2,indicating that the coal samples are hydrophobic (van Oss,1994).On the other hand,quartz and the bacterium were found to be hydrophilic with c s Àvalues greater than 28.8mJ/m 2.3.3.Adhesion measurementsAdhesion of the bacterium on to the solid surfaces was carried out as a function of time and pH.The kinetics of adhesion (Fig.3)revealed that most of the adhesion took place in about 25min.The interesting thing to note is the amount of bacterium adhering to the different surfaces.Maximum adhesion took place onto the N-coal followed by M-coal while the lowest amount of bacteria adhered to quartz surface.The effect of pH on adhesion is shown in Fig.4.All the surfaces exhibited similar behavior,i.e.maximum adhesion occurred around pH 2and then decreased with increase in pH.As can be seen,maximum adhesion occurs near the PZC of the mineral and the bacterium.As pH is increased,both the surfaces become more and more negatively charged,thus decreasing the amount of bacterium adhering to the surface.The most important thing to be noted is that adhesion does occur in spite of both surfaces being negatively charged.This means that the surface hydrophobicity may be more dominant in determining the adhesion of bacterium to coal and its associated impurities.Coal is hydrophobic while quartz is hydrophilic.The difference between coal and quartz in adhesion is quiteobvious.Fig.5.Scanning electron micrograph of P .polymyxa adhering to coal surface.S.P .Vijayalakshmi,A.M.Raichur /Int.J.Miner.Process.67(2002)199–210206Moreover,the difference in adhesion between the two coal samples can be attributed to the difference in hydrophobicities indicated by the difference in the c sÀvalues as described in the previous section.After adhesion,the samples were washed with water to determine the nature of adhesion. It was observed that bacterium adhered to coal tenaciously and no cells were removed.The micrograph of P.polymyxa adhering to coal surface is shown in Fig.5.A uniform layer of the bacterium is formed on the surface of the coal.In case of quartz,some cells were removed with each washing,indicating that the bonding was not as strong as with coal.3.4.Flocculation testsFlocculation tests were conducted in the absence and presence of the bacterium and the amount of material settled was determined.The results of these tests are presented in Figs.6and7in the absence and presence of P.polymyxa,respectively.In the absence of bacterium,quartz settles much quicker compared to coal,which is due to the effect of density.Also,coal is hydrophobic and it takes time to be wet by water.In the presenceof the bacterium,coal flocculated and settled at a very high rate as compared toquartz.Fig.6.Flocculation of coal and quartz as a function of pH in the absence of the bacterium.S.P.Vijayalakshmi,A.M.Raichur/Int.J.Miner.Process.67(2002)199–210207Most of the material had settled in the first minute itself and maximum flocculation occurred in the acidic pH range of 2–4.This corresponds well with the adhesion tests where maximum adhesion of the bacterium was observed in the same pH range.As the pH was increased,the amount settled decreased steadily with both the coal samples and quartz.Again,the difference in settling behavior between the two coal samples can be attributed to the surface hydrophobicities.The most significant result is that the settling rate of the quartz in the presence of the bacterium was less when compared to in the absence of the bacterium.This means that quartz particles are getting stabilized in the suspension and settle at slower rates,which means that coal and quartz can be selectively separated by bioflocculation.The flocculated and unflocculated coal samples were separated and dried and analyzed for ash and the results are tabulated in Table 4.With both the coal samples,themaximum Fig.7.Flocculation of coal and quartz as a function of pH in the presence of the bacterium.Table 4Percentage ash rejected from flocculated coal (%)pH2.14.08 6.158.2N-coal61.7057.4450.025.10M-coal 54.5045.038.223.19S.P .Vijayalakshmi,A.M.Raichur /Int.J.Miner.Process.67(2002)199–210208S.P.Vijayalakshmi,A.M.Raichur/Int.J.Miner.Process.67(2002)199–210209 amount of ash rejection was at pH2and decreased with increase in pH.For N-coal,the maximum ash rejected was about62%while for M-coal,it was around55%.This clearly demonstrates that bioflocculation can be used for cleaning coal from high-ash coals.The amount of ash rejected can be increased with some more optimization studies that are underway.4.ConclusionsThe following conclusions can be arrived at from this study:(1)Zeta-potential studies showed that both the coal samples exhibited a PZC in the pH range of2–3.The negative charge on the coal samples over most of the pH range can be attributed to the high ash content of the coal samples and is supported by the zeta-potential curve of quartz.The bacterium P.polymyxa also had a very similar zeta-potential profile.(2)Surface free energy calculations showed that as the ash content of coal increased the electron donor component of surface free energy increased.This also means that coal becomes less hydrophobic with increase in ash content.Quartz and the bacterium were found to be hydrophilic.(3)Kinetics of adhesion of P.polymyxa on to coal and quartz showed that maximum adhesion is achieved in about25–30min.(4)Studies on effect of pH showed that maximum adhesion occurs at pH2,which is close to the PZC of the coal samples and that of the bacterium.Hydrophobicity of the solid surface appears to be the primary criteria for determining adhesion of bacterium to mineral surfaces.(5)At any given time and pH,the bacterium adhered more on to the coal with the least ash content and highest hydrophobicity.The amount adhering decreased with increase in ash content and a decrease in hydrophobicity.(6)Flocculation studies demonstrated that the bacterium flocculates coal effectively while the settling of quartz is retarded,thus indicating that selective flocculation is possible.Nearly55–60%of the ash could be removed in a single-stage flocculation experiment with both the coal samples,thus demonstrating the potential for biofloccula-tion in deashing of high-ash Indian coals.AcknowledgementsThe authors wish to acknowledge the financial support provided by the Council of Scientific and Industrial Research,India for carrying out this work.ReferencesAplan,F.F.,1976.Coal flotation.In:Fuerstenau,M.C.(Ed.),Flotation—A.M.Gaudin Memorial V olume.SME, Littleton,CO,USA,pp.1235–1264.Attia,Y.A.,1985.Cleaning and desulfurization of coal suspensions by selective flocculation.In:Attia,Y.A.(Ed.), Processing and Utilization of High Sulfur Coals.Elsevier,Amsterdam,pp.267–285.Attia,Y .A.,Elseky,M.,Ismail,M.,1993.Enhanced separation of pyrite from oxidized coal by froth flotationusing biosurface modification.International Journal of Mineral Processing 37,61–71.Deo,N.,Natarajan,K.A.,1998.Studies on interaction of Paenibacillus polymyxa with iron ore minerals inrelation to beneficiation.International Journal of Mineral Processing 55,41–60.Drzymala,J.,Wheelock,T.D.,anic thiols as pyrite depressants in oil agglomeration of coal.CoalPreparation 13,53–62.Honaker,R.Q.,Luttrell,G.H.,Yoon,R.-H.,1991.The application of hydrophobic coagulation for upgradingultrafine coal.SME Preprint No.91–149.SME,Littleton,CO.Klimpel,R.R.,1988.The industrial coal flotation system.In:Klimpel,R.R.,Luckie,P.T.(Eds.),IndustrialPractice of Fine Coal Processing.SME,Littleton,CO,USA,pp.113–127.Misra,M.,Anazia,I.,1987.Ultrafine coal flotation by gas phase transport of atomized reagents.Minerals &Metallurgical Processing 4,233–236.Misra,M.,Smith,R.W.,Dubel,J.,Chen,S.,1993.Selective flocculation of coal using hydrophobic Mycobacte-rium phlei .Minerals &Metallurgical Processing 10,20–23.Ohmura,N.,Saiki,H.,1994.Desulfurization of coal by microbial column flotation.Biotechnology and Bioen-gineering 44,125–131.Palmes,J.R.,Laskowski,J.S.,1993.Effect of the properties of coal surface and flocculant type on the flocculationof fine coal.Minerals &Metallurgical Processing 10,218–221.Parekh,B.K.,Aplan,F.F.,1978.Chap.9:The critical surface tension of wetting of coal.In:Li,N.N.,Long,R.B.,Stern,S.A.,Somasundaran,P.(Eds.),Recent Developments in Separation Science.CRC Press,Cleveland,OH,pp.107–113.Raichur,A.M.,Misra,M.,Smith,R.W.,1995.Differential adhesion of a hydrophobic bacterium onto coal and itsassociated impurities.Coal Preparation 16,51–63.Raichur,A.M.,Misra,M.,Smith,R.W.,1996.Flocculation and flotation of fine coal by adhesion of hydrophobicMycobacterium phlei .Colloids and Surfaces,B:Biointerfaces 8,13–24.Raichur,A.M.,Misra,M.,Davis,S.A.,Smith,R.W.,1997.Flocculation of fine coal using synthetic and bio-logically derived flocculants.Minerals &Metallurgical Processing 14,22–26.Sharma,P.K.,Hanumantha Rao,K.,Forssberg,K.S.E.,Natarajan,K.A.,2001.Surface chemical characterizationof Paenibacillus polymyxa before and after adaptation to sulfide minerals.International Journal of Mineral Processing 62,3–25.Shashikala,A.R.,Raichur,A.M.,2001.Role of interfacial phenomena in determining adsorption of Bacilluspolymyxa on to hematite and quartz.Colloids and Surfaces,B:Biointerfaces 24,11–20.van der Mei,H.C.,Rosenberg,M.,Busscher,H.J.,1991.Chap.10:Assessment of microbial cell surface hydro-phobicity.In:Mozes,N.,Handley,P.S.,Busscher,H.J.,Rouxhet,P.G.(Eds.),Microbial Cell Surface Anal-ysis:Structural and Physicochemical Methods.VCH Publishers,New York,pp.263–287.van Oss,C.J.,1994.Interfacial Forces in Aqueous Media.Marcel-Dekker,New York.S.P .Vijayalakshmi,A.M.Raichur /Int.J.Miner.Process.67(2002)199–210210。