圆锥曲线学生版 苏教版
高二数学选修1-1 圆锥曲线及轨迹-苏教版 教案
高二数学选修1-1 圆锥曲线及轨迹-苏教版一、复习的目标、重点1、通过用平面截圆锥面,经历从具体情境中抽象出圆锥曲线的过程,掌握它的定义。
2、通过用平面截圆锥面,感受、了解双曲线、抛物线的定义。
3、理解圆锥曲线的统一定义4、理解曲线与方程的关系,掌握求轨迹方程的一般方法和步骤。
二、知识结构1、圆锥曲线的定义,并利用定义解决有关问题。
2、求轨迹方程并判断是什么曲线 三、基础训练1、设定点F 1(0,-3),F 2(0,3),动点P(x ,y )满足条件|PF 1|+|PF 2|=a (a >0),则动点P 的轨迹是 椭圆或线段或不存在2、已知A 、B 两地相距800m ,在A 地听到炮弹爆炸声比在B 地晚2s ,且声速为340m /s ,则炮弹爆炸点的所在曲线为 双曲线的一支3、如果M(x ,y )在运动过程中,总满足关系式10)3()3(2222=-++++y x y x ,则M 的轨迹是 椭圆4、若动圆与定圆(x -2)2+y 2=1外切,又与直线x +1=0相切,则动圆圆心的轨迹是 抛物线5、“点M 在曲线y 2=4x 上”是“点M 的坐标满足方程y =x 2-”的 必要不充分 条件6、若P(2,-3)在曲线x 2-ay 2=1上,则a 的值为31四、典例选讲例1、若一个动点P(x ,y )到两个定点F 1(-1,0)、F 2(1,0)的距离之差的绝对值为定值a (0≤a ≤2),试探求点P 的轨迹。
解:当a =0时,|PF 1-PF 2|=0,从而PF 1=PF 2,所以点P 的轨迹为直线:x =0 当a =2时,|PF 1-PF 2|=2=F 1F 2,点P 的轨迹为两条射线:y =0(|x |≥1)当0<a <2时,|PF 1-PF 2|=a <F 1F 2,点P 的轨迹是以F 1、F 2为焦点,a 为实轴长的双曲线。
例2、已知圆C 1:(x +3)2+y 2=1和圆C 2:(x -3)2+y 2=9,动圆M 同时与圆C 1及圆C 2相外切,求动圆圆心M 的轨迹。
苏教版高中数学选修2-1第2章 圆锥曲线与方程.docx
第2章 圆锥曲线与方程§2.1 圆锥曲线 课时目标 1.理解三种圆锥曲线的定义.2.能根据圆锥曲线的定义判断轨迹的形状.1.圆锥面可看成一条直线绕着与它相交的另一条直线l(两条直线不互相垂直)旋转一周所形成的曲面.其中直线l 叫做圆锥面的轴.2.圆锥面的截线的形状在两个对顶的圆锥面中,若圆锥面的母线与轴所成的角为θ,不过圆锥顶点的截面与轴所成的角为α,则α=π2时,截线的形状是圆;当θ<α<π2时,截线的形状是椭圆;0≤α≤θ时,截线的形状是双曲线;当α=θ时,截线的形状是抛物线.3.椭圆的定义平面内到______________________________等于常数(大于F 1F 2)的点的轨迹叫做椭圆,两个定点F 1,F 2叫做椭圆的________.两焦点间的距离叫做椭圆的________.4.双曲线的定义平面内到____________________________________________等于常数(小于F 1F 2的正数)的点的轨迹叫做双曲线,两个定点F 1,F 2叫做双曲线的________,两焦点间的距离叫做双曲线的________.5.抛物线的定义平面内__________________________________________________________的轨迹叫做抛物线,________叫做抛物线的焦点,__________叫做抛物线的准线.6.椭圆、双曲线、抛物线统称为____________.一、填空题1.已知A ⎝⎛⎭⎫-12,0,B 是圆F :⎝⎛⎭⎫x -122+y 2=4 (F 为圆心)上一动点,线段AB 的垂直平分线交BF 于P ,则动点P 的轨迹为________.2.方程5(x +2)2+(y -1)2=|3x +4y -12|所表示的曲线是________.3.F 1、F 2是椭圆的两个焦点,M 是椭圆上任一点,从焦点F 2向△F 1MF 2顶点M 的外角平分线引垂线,垂足为P ,延长F 2P 交F 1M 的延长线于G ,则P 点的轨迹为__________(写出所有正确的序号).①圆;②椭圆;③双曲线;④抛物线.4.已知一个圆的圆心为坐标原点,半径为2,从这个圆上任意一点P 向x 轴作垂线段PP ′,则线段PP ′的中点M 的轨迹是____________.5.一圆形纸片的圆心为O ,点Q 是圆内异于O 点的一定点,点A 是圆周上一点,把纸片折叠使点A 与点Q 重合,然后抹平纸片,折痕CD 与OA 交于P 点.当点A 运动时点P 的轨迹是________.6.若点P 到F(4,0)的距离比它到直线x +5=0的距离小1,则点P 的轨迹表示的曲线是________.7.已知两点F 1(-5,0),F 2(5,0),到它们的距离的差的绝对值是6的点M 的轨迹是__________.8.一动圆与⊙C 1:x 2+y 2=1外切,与⊙C 2:x 2+y 2-8x +12=0内切,则动圆圆心的轨迹为______________.二、解答题9.已知圆A :(x +3)2+y 2=100,圆A 内一定点B(3,0),动圆P 过B 点且与圆A 内切,求证:圆心P 的轨迹是椭圆.10.已知△ABC 中,BC =2,且sin B -sin C =12sin A ,求△ABC 的顶点A 的轨迹.能力提升11.如图所示,在正方体ABCD—A1B1C1D1中,P是侧面BB1C1C内一动点,若P到直线BC与直线C1D1的距离相等,则动点P的轨迹所在的曲线是________(写出正确的所有序号).①直线;②圆;③双曲线;④抛物线.12.如图所示,已知点P为圆R:(x+c)2+y2=4a2上一动点,Q(c,0)为定点(c>a>0,为常数),O为坐标原点,求线段PQ的垂直平分线与直线RP的交点M的轨迹.1.椭圆定义中,常数>F 1F 2不可忽视,若常数<F 1F 2,则这样的点不存在;若常数=F 1F 2,则动点的轨迹是线段F 1F 2.2.双曲线定义中,若常数>F 1F 2,则这样的点不存在;若常数=F 1F 2,则动点的轨迹是以F 1、F 2为端点的两条射线.3.抛物线定义中F ∉l ,若F ∈l ,则点的轨迹是经过点F ,且垂直于l 的直线. 第2章 圆锥曲线与方程§2.1 圆锥曲线知识梳理3.两个定点F 1,F 2的距离的和 焦点 焦距4.两个定点F 1,F 2距离的差的绝对值 焦点 焦距5.到一个定点F 和一条定直线l(F 不在l 上)的距离相等的点 定点F 定直线l6.圆锥曲线作业设计1.椭圆解析 由已知,得PA =PB ,PF +BP =2,∴PA +PF =2,且PA +PF>AF ,即动点P 的轨迹是以A 、F 为焦点的椭圆.2.抛物线解析 由题意知(x +2)2+(y -1)2=|3x +4y -12|5. 左侧表示(x ,y)到定点(-2,1)的距离,右侧表示(x ,y)到定直线3x +4y -12=0的距离,故动点轨迹为抛物线.3.①解析∵∠F 2MP =∠GMP ,且F 2P ⊥MP ,∴F 2P =GP ,MG =MF 2.取F 1F 2中点O ,连结OP ,则OP 为△GF 1F 2的中位线.∴OP =12F 1G =12(F 1M +MG) =12(F 1M +MF 2). 又M 在椭圆上,∴MF 1+MF 2=常数,设常数为2a ,则OP =a ,即P 在以F 1F 2的中点为圆心,a 为半径的圆上.4.椭圆5.椭圆6.抛物线解析 由题意知P 到F 的距离与到直线x =-4的距离相等,所以点P 的轨迹是抛物线.7.双曲线8.双曲线的一支9.证明 设PB =r.∵圆P 与圆A 内切,圆A 的半径为10,∴两圆的圆心距PA =10-r ,即PA +PB =10(大于AB).∴点P 的轨迹是以A 、B 两点为焦点的椭圆.10.解 由正弦定理得:sin A =a 2R ,sin B =b 2R ,sin C =c 2R. 代入sin B -sin C =12sin A 得:b -c =12a ,即b -c =1, 即AC -AB =1 (<BC)∴A 的轨迹是以B 、C 为焦点且靠近B 的双曲线的一支,并去掉与BC 的交点.11.④解析 ∵D 1C 1⊥面BCC 1B 1,C 1P ⊂平面BCC 1B 1,∴D 1C 1⊥C 1P ,∴点P 到直线C 1D 1的距离即为C 1P 的长度,由题意知,点P 到点C 1的距离与点P 到直线BC 的距离相等,这恰符合抛物线的定义.12.解 由题意,得MP =MQ ,RP =2a.MR -MQ =MR -MP =RP =2a<RQ =2c.∴点M 的轨迹是以R 、Q 为两焦点,实轴长为2a 的双曲线右支.。
数学选修2-1苏教版:第2章 圆锥曲线与方程 2.2.2(一)
2.2.2 椭圆的几何性质(一)学习目标 1.根据椭圆的方程研究曲线的几何性质,并正确地画出它的图形.2.根据几何条件求出曲线方程,并利用曲线的方程研究它的性质、图形.知识点一 椭圆的范围、对称性和顶点坐标思考 观察椭圆x 2a 2+y 2b 2=1(a >b >0)的形状(如图),你能从图中看出它的范围吗?它具有怎样的对称性?椭圆上哪些点比较特殊?答案 (1)范围:-a ≤x ≤a ,-b ≤y ≤b ; (2)对称性:椭圆关于x 轴、y 轴、原点都对称;(3)特殊点:顶点A 1(-a,0),A 2(a,0),B 1(0,-b ),B 2(0,b ). 梳理 椭圆的几何性质知识点二 椭圆的离心率 思考 如何刻画椭圆的扁圆程度?答案 用离心率刻画扁圆程度,e 越接近于0,椭圆越接近于圆,反之,越扁. 梳理 (1)焦距与长轴长的比ca 称为椭圆的离心率.记为:e =ca.(2)对于x 2a 2+y 2b 2=1,b 越小,对应的椭圆越扁,反之,e 越接近于0,c 就越接近于0,从而b越接近于a ,这时椭圆越接近于圆,于是,当且仅当a =b 时,c =0,两焦点重合,图形变成圆,方程变为x 2+y 2=a 2.(如图)1.椭圆x 2a 2+y 2b 2=1(a >b >0)的长轴长是a .(×)2.椭圆的离心率e 越大,椭圆就越圆.(×)3.若椭圆的对称轴为坐标轴,长轴长与短轴长分别为10,8,则椭圆的方程为x 225+y 216=1.(×)4.设F 为椭圆x 2a 2+y 2b 2=1(a >b >0)的一个焦点,M 为其上任一点,则MF 的最大值为a +c .(c为椭圆的半焦距)(√)类型一 由椭圆方程研究其几何性质例1 求椭圆9x 2+16y 2=144的长轴长、短轴长、离心率、焦点和顶点坐标. 解 已知方程化成标准方程为x 216+y 29=1,于是a =4,b =3,c =16-9=7,∴椭圆的长轴长和短轴长分别是2a =8和2b =6, 离心率e =c a =74,又知焦点在x 轴上,∴两个焦点坐标分别是(-7,0)和(7,0),四个顶点坐标分别是(-4,0),(4,0),(0,-3)和(0,3). 引申探究本例中若把椭圆方程改为“9x 2+16y 2=1”,求其长轴长、短轴长、离心率、焦点和顶点坐标.解 由已知得椭圆标准方程为x 219+y 2116=1,于是a =13,b =14,c =19-116=712. ∴长轴长2a =23,短轴长2b =12,离心率e =c a =74.焦点坐标为⎝⎛⎭⎫-712,0和⎝⎛⎭⎫712,0, 顶点坐标为⎝⎛⎭⎫±13,0,⎝⎛⎭⎫0,±14. 反思与感悟 解决由椭圆方程研究其几何性质的问题的方法是将所给方程先化为标准形式,然后根据方程判断出椭圆的焦点在哪个坐标轴上,再利用a ,b ,c 之间的关系和定义,求椭圆的基本量.跟踪训练1 求椭圆9x 2+y 2=81的长轴长、短轴长、焦点坐标、顶点坐标和离心率. 解 椭圆的标准方程为x 29+y 281=1,则a =9,b =3,c =a 2-b 2=62,长轴长2a =18,短轴长2b =6,焦点坐标为(0,62),(0,-62),顶点坐标为(0,9),(0,-9),(3,0),(-3,0). 离心率e =c a =223.类型二 椭圆几何性质的简单应用命题角度1 依据椭圆的几何性质求标准方程 例2 求满足下列各条件的椭圆的标准方程.(1)已知椭圆的中心在原点,焦点在y 轴上,其离心率为12,焦距为8;(2)已知椭圆的离心率为e =23,短轴长为8 5.解 (1)由题意知,2c =8,∴c =4, ∴e =c a =4a =12,∴a =8,从而b 2=a 2-c 2=48,∴椭圆的标准方程是y 264+x 248=1.(2)由e =c a =23得c =23a ,又2b =85,a 2=b 2+c 2,所以a 2=144,b 2=80, 所以椭圆的标准方程为x 2144+y 280=1或x 280+y 2144=1.反思与感悟 依据椭圆的几何性质求标准方程问题应由所给的几何性质充分找出a ,b ,c 所应满足的关系式,进而求出a ,b ,在求解时,需注意椭圆的焦点位置. 跟踪训练2 根据下列条件,求中心在原点,对称轴在坐标轴上的椭圆方程: (1)长轴长是短轴长的2倍,且过点(2,-6);(2)焦点在x 轴上,一个焦点与短轴的两端点连线互相垂直,且焦距为12. 解 (1)当焦点在x 轴上时,设椭圆方程为x 2a 2+y 2b 2=1(a >b >0).依题意有⎩⎪⎨⎪⎧2b =a ,4a 2+36b2=1,解得⎩⎨⎧a =237,b =37,∴椭圆方程为x 2148+y 237=1.同样地可求出当焦点在y 轴上时, 椭圆方程为x 213+y 252=1.故所求椭圆的方程为x 2148+y 237=1或x 213+y 252=1.(2)依题意有⎩⎪⎨⎪⎧b =c ,2c =12,∴b =c =6,∴a 2=b 2+c 2=72,∴所求的椭圆方程为x 272+y 236=1.命题角度2 最值问题例3 椭圆的中心是坐标原点,长轴在x 轴上,离心率e =32,已知点P ⎝⎛⎭⎫0,32到椭圆上的点的最远距离是7,求这个椭圆的方程. 解 设所求椭圆方程为x 2a 2+y 2b 2=1(a >b >0).∵b a=a 2-c 2a 2=1-e 2=12,∴a =2b . ∴椭圆方程为x 24b 2+y 2b2=1.设椭圆上点M (x ,y )到点P ⎝⎛⎭⎫0,32的距离为d , 则d 2=x 2+⎝⎛⎭⎫y -322=4b 2⎝⎛⎭⎫1-y 2b 2+y 2-3y +94=-3⎝⎛⎭⎫y +122+4b 2+3, 令f (y )=-3⎝⎛⎭⎫y +122+4b 2+3. 当-b ≤-12,即b ≥12时,d 2max=f ⎝⎛⎭⎫-12=4b 2+3=7, 解得b =1,∴椭圆方程为x 24+y 2=1.当-12<-b ,即0<b <12时,d 2max =f (-b )=7, 解得b =-32±7,与0<b <12矛盾.综上所述,所求椭圆方程为x 24+y 2=1.反思与感悟 求解椭圆的最值问题的基本方法有两种(1)几何法:若题目的条件和结论能明显体现几何特征及意义,则考虑利用图形性质来解决,这就是几何法.解题的关键是能够准确分析出最值问题所隐含的几何意义,并能借助相应曲线的定义及对称知识求解.(2)代数法:若题目的条件和结论能体现一种明确的函数,则可首先建立起目标函数,再根据函数式的特征选用适当的方法求解目标函数的最值.常用方法有配方法、判别式法、重要不等式法及函数的单调性法等.跟踪训练3 已知点F 1,F 2是椭圆x 2+2y 2=2的左,右焦点,点P 是该椭圆上的一个动点,那么|PF 1→+PF 2→|的最小值是________. 答案 2解析 设P (x 0,y 0),则PF 1→=(-1-x 0,-y 0), PF 2→=(1-x 0,-y 0),∴PF 1→+PF 2→=(-2x 0,-2y 0), ∴|PF 1→+PF 2→|=4x 20+4y 20=22-2y 20+y 20=2-y 20+2.∵点P 在椭圆上,∴0≤y 20≤1, ∴当y 20=1时,|PF 1→+PF 2→|取最小值2.类型三 求椭圆的离心率例4 如图所示,F 1,F 2分别为椭圆的左,右焦点,椭圆上的点M 的横坐标等于右焦点的横坐标,其纵坐标等于短半轴长的23,求椭圆的离心率.解 设椭圆的长半轴长、短半轴长、半焦距长分别为a ,b ,c . 则焦点为F 1(-c,0),F 2(c,0),M 点的坐标为⎝⎛⎭⎫c ,23b , 且△MF 1F 2为直角三角形.在Rt △MF 1F 2中,F 1F 22+MF 22=MF 21,即4c 2+49b 2=MF 21. 而MF 1+MF 2=4c 2+49b 2+23b =2a ,整理得3c 2=3a 2-2ab .又c 2=a 2-b 2,所以3b =2a .所以b 2a 2=49.所以e 2=c 2a 2=a 2-b 2a 2=1-b 2a 2=59,所以e =53.反思与感悟 求椭圆离心率的方法(1)直接求出a 和c ,再求e =ca,也可利用e =1-b 2a2求解. (2)若a 和c 不能直接求出,则看是否可利用条件得到a 和c 的齐次等式关系,然后整理成ca 的形式,并将其视为整体,就变成了关于离心率e 的方程,进而求解.跟踪训练4 已知椭圆C 以坐标轴为对称轴,长轴长是短轴长的5倍,且经过点A (5,0),求椭圆C 的离心率. 解 若焦点在x 轴上,得 ⎩⎪⎨⎪⎧2a =5×2b ,25a 2+0b2=1,解得⎩⎪⎨⎪⎧a =5,b =1,∴c =a 2-b 2=52-12=26, ∴e =c a =265;若焦点在y 轴上,得⎩⎪⎨⎪⎧2a =5×2b ,0a 2+25b2=1,得⎩⎪⎨⎪⎧a =25,b =5,∴c =a 2-b 2=252-52=106, ∴e =c a =10625=265.故椭圆C 的离心率为265.1.已知椭圆的方程为2x 2+3y 2=m (m >0),则此椭圆的离心率为________. 答案33解析 由2x 2+3y 2=m (m >0),得x 2m 2+y 2m 3=1,∴c 2=m 2-m 3=m 6,∴e 2=13,又∵0<e <1,∴e =33.2.与椭圆9x 2+4y 2=36有相同焦点,且短轴长为2的椭圆的标准方程是________. 答案 x 2+y 26=1解析 由已知得c =5,b =1,所以a 2=b 2+c 2=6, 又椭圆的焦点在y 轴上, 故椭圆的标准方程为y 26+x 2=1.3.若一个椭圆长轴的长度、短轴的长度和焦距成等差数列,则该椭圆的离心率是________. 答案 35解析 由题意有,2a +2c =2(2b ),即a +c =2b , 又c 2=a 2-b 2,消去b 整理得5c 2=3a 2-2ac , 即5e 2+2e -3=0,又∵0<e <1,∴e =35或e =-1(舍去).4.若焦点在y 轴上的椭圆x 2m +y 22=1的离心率为12,则m 的值为________.答案 32解析 ∵焦点在y 轴上,∴0<m <2, ∴a =2,b =m ,∴c =2-m , 又e =c a =12,∴2-m 2=12,解得m =32.5.已知点(m ,n )在椭圆8x 2+3y 2=24上,则2m +4的取值范围是________________. 答案 [4-23,4+23]解析 因为点(m ,n )在椭圆8x 2+3y 2=24上,即在椭圆x 23+y 28=1上,所以点(m ,n )满足椭圆的范围|x |≤3,|y |≤22,因此|m |≤3,即-3≤m ≤3,所以2m +4∈[4-23,4+23].1.椭圆的顶点、焦点、中心坐标等几何性质与坐标有关,它们反映了椭圆在平面内的位置. 2.椭圆的长轴长、短轴长、焦距、离心率等几何性质与坐标无关,它们反映了椭圆的形状. 3.讨论与坐标有关的几何性质应先由焦点确定出椭圆的类型,不能确定的应分焦点在x 轴上、y 轴上进行讨论.4.与椭圆x 2a 2+y 2b 2=1有相同焦点的椭圆可设为x 2a 2+m +y 2b 2+m=1.一、填空题1.椭圆4x 2+49y 2=196的长轴长、短轴长、离心率依次是________. 答案 14,4,357解析 先将椭圆方程化为标准形式,得x 249+y 24=1,其中b =2,a =7,c =3 5.2.焦点在x 轴上,长、短半轴长之和为10,焦距为45,则椭圆的标准方程为________. 答案 x 236+y 216=1解析 依题意得c =25,a +b =10, 又a 2=b 2+c 2从而解得a =6,b =4.3.若椭圆的焦距、短轴长、长轴长构成一个等比数列,则椭圆的离心率为________. 答案5-12解析 依题意得,4b 2=4ac ,∴b 2a 2=ca,即1-e 2=e .∴e 2+e -1=0,∴e =5-12(舍去负值). 4.已知椭圆的方程x 2a 2+y 2b 2=1(a >b >0)的焦点分别为F 1,F 2,F 1F 2=2,离心率e =12,则椭圆的标准方程为________________. 答案 x 24+y 23=1解析 因为F 1F 2=2,离心率e =12,所以c =1,a =2,所以b 2=3,椭圆方程为x 24+y 23=1.5.中心在原点,焦点在坐标轴上,离心率为32,且过点(2,0)的椭圆的标准方程是________. 答案 x 24+y 2=1或x 24+y 216=1解析 若焦点在x 轴上,则a =2. 又e =32,∴c = 3.∴b 2=a 2-c 2=1, ∴方程为x 24+y 2=1.若焦点在y 轴上,则b =2.又e =32,∴b 2a 2=1-34=14,∴a 2=4b 2=16,∴方程为x 24+y 216=1.6.椭圆x 212+y 23=1的左焦点为F 1,点P 在椭圆上,若线段PF 1的中点M 在y 轴上,则点P的纵坐标是________. 答案 ±32解析 设椭圆的右焦点为F 2,由题意知PF 2⊥x 轴, 因为a 2=12,b 2=3,所以c 2=a 2-b 2=9,c =3. 所以点P 和点F 2的横坐标都为3. 故将x =3代入椭圆方程,可得y =±32.7.椭圆(m +1)x 2+my 2=1的长轴长是________.答案2mm解析 椭圆方程可化简为x 211+m +y 21m =1,由题意知m >0,∴11+m <1m ,∴a =mm ,∴椭圆的长轴长2a =2mm.8.已知椭圆C 的上,下顶点分别为B 1,B 2,左,右焦点分别为F 1,F 2,若四边形B 1F 1B 2F 2是正方形,则此椭圆的离心率e =________. 答案22解析 因为四边形B 1F 1B 2F 2是正方形,所以b =c , 所以a 2=b 2+c 2=2c 2,所以e =c a =22.9.若椭圆x 2a 2+y 2b 2=1的焦点在x 轴上,过点⎝⎛⎭⎫1,12作圆x 2+y 2=1的切线,切点分别为A ,B ,直线AB 恰好经过椭圆的右焦点和上顶点,则椭圆的方程是____________. 答案 x 25+y 24=1解析 ∵x =1是圆x 2+y 2=1的一条切线. ∴椭圆的右焦点为A (1,0),即c =1.设P ⎝⎛⎭⎫1,12,则k OP =12,∵OP ⊥AB ,∴k AB =-2,则直线AB 的方程为y =-2(x -1),它与y 轴的交点为(0,2).∴b =2,a 2=b 2+c 2=5,故椭圆的方程为x 25+y 24=1.10.设椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,P 是C 上的点,PF 2⊥F 1F 2,∠PF 1F 2=30°,则C 的离心率为________. 考点 椭圆的离心率问题 题点 求a ,b ,c 得离心率 答案33解析 由题意可设PF 2=m ,结合条件可知PF 1=2m ,F 1F 2=3m ,故离心率e =c a =2c2a =F 1F 2PF 1+PF 2=3m 2m +m =33.11.设F 1,F 2是椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左,右焦点,P 为直线x =3a2上一点,△F 2PF 1是底角为30°的等腰三角形,则E 的离心率为________.答案 34解析 设直线x =3a 2与x 轴交于点M ,则∠PF 2M =60°, 在Rt △PF 2M 中,PF 2=F 1F 2=2c ,F 2M =3a 2-c , 故cos60°=F 2M PF 2=3a 2-c 2c =12, 解得c a =34,故离心率e =34.二、解答题12.已知椭圆C 1:x 2100+y 264=1,设椭圆C 2与椭圆C 1的长轴长、短轴长分别相等,且椭圆C 2的焦点在y 轴上.(1)求椭圆C 1的长半轴长、短半轴长、焦点坐标及离心率;(2)写出椭圆C 2的方程,并研究其性质.解 (1)由椭圆C 1:x 2100+y 264=1可得其长半轴长为10, 短半轴长为8,焦点坐标(6,0),(-6,0),离心率e =35. (2)椭圆C 2:y 2100+x 264=1,性质:①范围:-8≤x ≤8,-10≤y ≤10;②对称性:关于x 轴、y 轴、原点对称;③顶点:长轴端点(0,10),(0,-10),短轴端点(-8,0),(8,0),焦点坐标(0,6),(0,-6);④离心率:e =35. 13.分别求适合下列条件的椭圆的标准方程:(1)离心率是23,长轴长是6; (2)在x 轴上的一个焦点与短轴两个端点的连线互相垂直,且焦距为6.解 (1)设椭圆的标准方程为x 2a 2+y 2b 2=1 (a >b >0)或y 2a 2+x 2b 2=1 (a >b >0). 由已知得2a =6,e =c a =23,∴a =3,c =2. ∴b 2=a 2-c 2=9-4=5.∴椭圆的标准方程为x 29+y 25=1或x 25+y 29=1. (2)设椭圆的标准方程为x 2a 2+y 2b 2=1 (a >b >0). 如图所示,△A 1F A 2为等腰直角三角形,OF 为斜边A 1A 2上的中线(高),且OF =c ,A 1A 2=2b , ∴c =b =3,∴a 2=b 2+c 2=18,故所求椭圆的标准方程为x 218+y 29=1. 三、探究与拓展14.已知椭圆x 2a 2+y 2b 2=1(a >b >0)的两个焦点分别为F 1(-c,0),F 2(c,0)(c >0),过点E ⎝⎛⎭⎫a 2c ,0的直线与椭圆相交于点A ,B 两点,且F 1A ∥F 2B ,F 1A =2F 2B ,则椭圆的离心率为________. 答案 33 解析 由F 1A ∥F 2B ,F 1A =2F 2B ,得EF 2EF 1=F 2B F 1A =12, 从而a 2c -c a 2c +c =12,整理得a 2=3c 2.故离心率e =c a =33. 15.已知椭圆E 的中心为坐标原点O ,两个焦点分别为A (-1,0),B (1,0),一个顶点为H (2,0).(1)求椭圆E 的标准方程;(2)对于x 轴上的点P (t,0),椭圆E 上存在点M ,使得MP ⊥MH ,求实数t 的取值范围. 解 (1)由题意可得,c =1,a =2,∴b = 3.∴所求椭圆E 的标准方程为x 24+y 23=1. (2)设M (x 0,y 0)(x 0≠±2),则x 204+y 203=1.① MP →=(t -x 0,-y 0),MH →=(2-x 0,-y 0),由MP ⊥MH 可得MP →·MH →=0,即(t -x 0)(2-x 0)+y 20=0.②由①②消去y 0,整理得t (2-x 0)=-14x 20+2x 0-3.∵x 0≠2,∴t =14x 0-32. ∵-2<x 0<2,∴-2<t <-1.∴实数t 的取值范围为(-2,-1).。
数学苏教版选修1-1 圆锥曲线方程及性质
圆锥曲线方程及性质一.课标要求:1.了解圆锥曲线的实际背景,感受圆锥曲线在刻画现实世界和解决实际问题中的作用; 2.经历从具体情境中抽象出椭圆、抛物线模型的过程,掌握它们的定义、标准方程、几何图形及简单性质;3.了解双曲线的定义、几何图形和标准方程,知道双曲线的有关性质。
二.命题走向本讲内容是圆锥曲线的基础内容,也是高考重点考查的内容,在每年的高考试卷中一般有2~3道客观题,难度上易、中、难三档题都有,主要考查的内容是圆锥曲线的概念和性质,从近十年高考试题看主要考察圆锥曲线的概念和性质。
圆锥曲线在高考试题中占有稳定的较大的比例,且选择题、填空题和解答题都涉及到,客观题主要考察圆锥曲线的基本概念、标准方程及几何性质等基础知识和处理有关问题的基本技能、基本方法。
对于本讲内容来讲,预测07年:(1)1至2道考察圆锥曲线概念和性质客观题,主要是求值问题;(2)可能会考察圆锥曲线在实际问题里面的应用,结合三种形式的圆锥曲线的定义。
三.要点精讲1.椭圆(1)椭圆概念平面内与两个定点1F 、2F 的距离的和等于常数(大于21||F F )的点的轨迹叫做椭圆。
这两个定点叫做椭圆的焦点,两焦点的距离叫椭圆的焦距。
若M 为椭圆上任意一点,则有21||||2MF MF a +=。
椭圆的标准方程为:22221x y a b +=(0a b >>)(焦点在x 轴上)或12222=+bx a y (0a b >>)(焦点在y 轴上)。
注:①以上方程中,a b 的大小0a b >>,其中222c a b =-; ②在22221x y a b +=和22221y x a b+=两个方程中都有0a b >>的条件,要分清焦点的位置,只要看2x 和2y 的分母的大小。
例如椭圆221x y m n+=(0m >,0n >,m n ≠)当m n >时表示焦点在x 轴上的椭圆;当m n <时表示焦点在y 轴上的椭圆。
苏教版数学必修二圆锥曲线问题解析
苏教版数学必修二圆锥曲线问题解析圆锥曲线是数学中的一个重要概念,出现在几何学和代数学的多个领域中。
在这篇文章中,我们将探讨苏教版数学必修二中与圆锥曲线相关的问题,并进行详细的解析和讨论。
圆锥曲线是由一个固定点F(焦点)和到该点的所有点的距离与一个固定直线L(准线)的距离相等的点构成。
根据焦点和准线的位置关系,圆锥曲线可以分为三种类型:椭圆、双曲线和抛物线。
首先,让我们来详细讨论椭圆。
椭圆是圆锥曲线的一种形式,它具有两个焦点和一个长轴和短轴。
椭圆在现实生活中有很多应用,比如行星围绕太阳的轨道就是椭圆。
我们可以通过椭圆的方程来描述它的形状和位置。
在苏教版数学必修二中,我们将学习如何确定椭圆的焦点、准线以及重要的参数,如长轴、短轴和离心率。
接下来,让我们转向双曲线。
双曲线也是圆锥曲线的一种形式,它具有两个焦点和两条渐近线。
双曲线在现实生活中也有很多应用,比如电磁波的传播和抛物线天线等。
在苏教版数学必修二中,我们将学习如何确定双曲线的焦点、准线以及重要的参数,如焦距、离心率和渐近线。
最后,让我们来讨论抛物线。
抛物线是圆锥曲线的第三种形式,它具有一个焦点和一个准线。
抛物线在现实生活中也有很多应用,比如炮弹的轨迹和卫星天线的设计等。
在苏教版数学必修二中,我们将学习如何确定抛物线的焦点、准线以及重要的参数,如焦距、准线方程和焦点坐标。
除了探讨这些圆锥曲线的基本性质和参数之外,苏教版数学必修二还涵盖了更高级的主题,如圆锥曲线与直角坐标系、圆锥曲线的标准方程和解析几何等。
我们将深入研究这些主题,以便更好地理解和解决与圆锥曲线相关的问题。
通过学习圆锥曲线,我们可以应用数学的知识和技巧解决各种实际问题。
圆锥曲线在科学、工程和技术领域中都有广泛的应用,因此对其有深入的理解非常重要。
苏教版数学必修二提供了一种清晰和系统的方法,帮助学生掌握圆锥曲线的概念和技巧,并能够应用于实际问题的求解。
总而言之,圆锥曲线是数学中的一个重要概念,苏教版数学必修二对其进行了详细的解析和讨论。
苏教版高中数学选修2-1第2章圆锥曲线与方程2.1含答案
§2.1圆锥曲线学习目标 1.了解当一个平面截一个圆锥面时,所截得的图形的各种情况.2.初步掌握椭圆、双曲线、抛物线的定义及其几何特征.3.通过平面截圆锥面的实验和对有关天体运动轨道的了解,知道圆锥曲线在我们身边广泛存在.知识点一椭圆的定义观察图形,思考下列问题:思考1如图,把细绳两端拉开一段距离,分别固定在图板上的两点F1,F2处,套上铅笔,拉紧绳子,移动笔尖,画出的轨迹是什么图形?答案椭圆思考2图中移动的笔尖始终满足怎样的几何条件?答案PF1+PF2是常数(大于F1F2).梳理平面内到两个定点F1,F2的距离的和等于常数(大于F1F2)的点的轨迹叫做椭圆,两个定点F1,F2叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距.知识点二双曲线的定义观察图示,若固定拉链上一点F1或F2,拉开或闭拢拉链,拉链头M经过的点可画出一条曲线,思考下列问题:思考1图中动点M的几何性质是什么?答案|MF1-MF2|为一个正常数.思考2若MF1-MF2=F1F2,则动点M的轨迹是什么?答案以F2为端点,向F2右边延伸的射线.梳理平面内到两个定点F1,F2的距离的差的绝对值等于常数(小于F1F2的正数)的点的轨迹叫做双曲线,两个定点F1,F2叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距.知识点三抛物线的定义观察图形,思考下列问题:思考如图,定点C和定直线EF,用三角板画出到定点的距离等于到定直线的距离的动点D的轨迹.则动点D的轨迹是什么?其满足什么条件?答案抛物线,动点D到定点C和定直线EF距离相等,且C不在EF上.梳理平面内到一个定点F和一条定直线l(F不在l上)的距离相等的点的轨迹叫做抛物线,定点F叫做抛物线的焦点,定直线l叫做抛物线的准线.椭圆、双曲线、抛物线统称为圆锥曲线.1.平面内到两定点的距离之和为常数的点的轨迹是椭圆.(×)2.平面内到两定点的距离之差的绝对值为常数的点的轨迹是双曲线.(×)3.抛物线上的点到焦点的距离与到准线的距离相等.(√)类型一 圆锥曲线定义的理解例 1 平面内动点 M 到两点 F 1(-3,0),F 2(3,0)的距离之和为 3m ,问 m 取何值时 M 的轨迹 是椭圆?解 ∵MF 1+MF 2=3m ,∴M 到两定点的距离之和为常数,当 3m 大于 F 1F 2 时,由椭圆定义知,M 的轨迹为椭圆, ∴3m >F 1F 2=3-(-3)=6,∴m >2,∴当 m >2 时,M 的轨迹是椭圆.反思与感悟 在深刻理解圆锥曲线的定义的过程中,一定要注意定义中的约束条件(1)在椭圆中,和为定值且大于 F 1F 2.(2)在双曲线中,差的绝对值为定值且小于 F 1F 2. (3)在抛物线中,点 F 不在定直线上.跟踪训练 1 (1)命题甲:动点 P 到两定点 A ,B 的距离之和 P A +PB =2a (a >0,a 为常数);命题乙:P 点轨迹是椭圆,则命题甲是命题乙的________条件.(2)动点 P 到两个定点 A (-2,0),B(2,0)构成的三角形的周长是 10,则点 P 的轨迹是________. 答案 (1)必要不充分 (2)椭圆解析 (1)若 P 点轨迹是椭圆,则 PA +PB =2a (a >0,且为常数),∴甲是乙的必要条件.反之,若 P A +PB =2a (a >0,且是常数),不能推出 P 点轨迹是椭圆.因为仅当 2a >AB 时,P 点轨迹才是椭圆;而当 2a =AB 时,P 点轨迹是线段 AB ;当 2a <AB时,P 点无轨迹,∴甲不是乙的充分条件.综上,甲是乙的必要不充分条件.(2)由题意知 P A +PB +AB =10,又 AB =4,∴PA +PB =6>4.∴点 P 的轨迹是椭圆.类型二 圆锥曲线轨迹的探究例 2 如图,已知动圆 C 与圆 F 1,F 2 均外切(圆 F 1 与圆 F 2 相离),试问:动点 C 的轨迹是什 么曲线?解 设动圆 C 的半径为 R ,圆 F 1,F 2 的半径分别为 r 1,r 2,则 CF 1=R +r 1,CF 2=R +r 2. 所以 CF 1-CF 2=r 1-r 2.跟踪训练 3 在△ABC 中,BC 固定,顶点 A 移动.设 BC =m ,且|sin C -sin B |= sin A ,则解 因为|sin C -sin B |= sin A ,由正弦定理可得|AB -AC |= BC = m ,且 m <BC ,又 CF 1-CF 2=r 1-r 2<F 1F 2,故动圆圆心 C 的轨迹是以 F 1,F 2 为焦点的双曲线靠近 F 2 的一支. 引申探究若把原题中“外切”换成“内切”再求解,结论如何?解 动点 C 的轨迹是以 F 1,F 2 为焦点的双曲线靠近 F 1 的一支.反思与感悟 紧扣圆锥曲线的定义,写出动点满足的条件,然后得到相应的轨迹.跟踪训练 2 已知动点 P 到点 A (-3,0)的距离比它到直线 x =1 的距离大 2,试判断动点 P 的轨迹.解 因点 P 到 A 的距离比它到直线 x =1 的距离大 2,所以点 P 到点 A 的距离等于它到直线 x =3 的距离.因为点 A 不在直线 x =3 上,所以点 P 的轨迹是抛物线.类型三 圆锥曲线定义的应用例 3 在△ABC 中,B (-6,0),C (0,8),且 sin B ,sin A ,sin C 成等差数列.(1)顶点 A 的轨迹是什么? (2)指出轨迹的焦点和焦距.解 (1)由 sin B ,sin A ,sin C 成等差数列,得 sin B +sin C =2sin A .由正弦定理可得 AB +AC=2BC .又 BC =10,所以 AB +AC =20,且 20>BC ,所以点 A 的轨迹是椭圆(除去直线 BC 与椭圆的交点).(2)椭圆的焦点为 B ,C ,焦距为 10.反思与感悟 利用圆锥曲线的定义可以判定动点的轨迹,在判定时要注意定义本身的限制条件,如得到 MF 1+MF 2=2a (a 为大于零的常数)时,还需要看 2a 与 F 1F 2 的大小,只有 2a >F 1F 2 时,所求轨迹才是椭圆.若得到MF 1-MF 2=2a (0<2a <F 1F 2),轨迹仅为双曲线的一支.除了 圆锥曲线定义本身的限制条件外,还要注意题目中的隐含条件.12顶点 A 的轨迹是什么?121 1 12 2 2所以点 A 的轨迹是双曲线(除去双曲线与 BC 的两交点).F FF1.设F1,2是两个定点,1F2=6,动点M满足MF1+MF2=10,则动点M的轨迹是________.答案椭圆解析因MF1+MF2=10>F1F2=6,由椭圆的定义得动点的轨迹是椭圆.2.若F1,2是两个定点且动点P1满足PF1-PF2=1,又F1F2=3,则动点P的轨迹是________.答案双曲线靠近点F2的一支解析因PF1-PF2=1<F1F2=3,故由双曲线定义判断,动点P的轨迹是双曲线靠近点F2的一支.3.到定点(1,0)和定直线x=-1距离相等的点的轨迹是________.答案抛物线解析依据抛物线定义可得.4.到两定点F1(-3,0),F2(3,0)的距离之差的绝对值等于6的点M的轨迹是________.答案两条射线解析据题|MF1-MF2|=F1F2,得动点M的轨迹是两条射线.5.如图,在正方体ABCD-A1B1C1D1中,P是侧面BB1C1C内一动点,若点P到直线BC与直线C1D1的距离相等,则动点P的轨迹是________.答案抛物线解析由正方体的性质可知,点P到C1D1的距离为PC1,故动点P到定点C1和到定直线BC的距离相等,且点C1不在直线BC上,符合抛物线的定义,所以动点P的轨迹是抛物线.1.若MF1+MF2=2a(2a>F1F2),则动点M的轨迹是椭圆.若点M在椭圆上,则MF1+MF2=2a.2.若|MF1-MF2|=2a(0<2a<F1F2),则动点M的轨迹为双曲线.若动点M在双曲线上,则|MF1-MF2|=2a.3.抛物线定义中包含三个定值,分别为一个定点,一条定直线及一个确定的比值.2”一、填空题1.平面内到两定点F1(-3,0),F2(3,0)的距离的和等于6的点P的轨迹是________.答案线段F1F2解析依题意得PF1+PF2=6=F1F2,故动点P的轨迹是线段F1F2.2.到定点(0,7)和到定直线y=7的距离相等的点的轨迹是________.答案直线解析因定点(0,7)在定直线y=7上,故符合条件的点的轨迹是直线.3.已知定点F1(-2,0),F2(2,0),在满足下列条件的平面内,动点P的轨迹为双曲线的是________.(填序号)①|PF1-PF2|=3;②|PF1-PF2|=4;③|PF1-PF2|=5;④PF1-PF2=±4.答案①解析根据双曲线定义知P到F1,F2的距离之差的绝对值要小于F1F2.4.到定点A(2,0)和B(4,0)的距离之差为2的点的轨迹是________.答案一条射线解析要注意两点:一是“差”而不是“差的绝对值;二是“常数”等于两定点间的距离.5.已知△ABC的顶点A(-5,0),B(5,0),△ABC的内切圆圆心在直线x=3上,则顶点C的轨迹是____________.答案以A,B为焦点的双曲线的右支(除去点(3,0))解析如图,AD=AE=8.BF=BE=2,CD=CF,所以CA-CB=8-2=6<AB=10.根据双曲线定义,所求轨迹是以A,B为焦点的双曲线的右支(除去点(3,0)).6.已知点M(x,y)的坐标满足(x-1)2+(y-1)2-(x+3)2+(y+3)2=±4,则动点M的轨迹是________.答案双曲线解析点(x,y)到(1,1)点及到(-3,-3)点的距离之差的绝对值为4,而(1,1)与(-3,-3)距3 10.已知点 A (-1,0),B (1,0).曲线 C 上任意一点 P 满足P A 2-PB 2=4(|P A |-|PB |)≠0.则曲线解析 由P A 2-PB 2=4(|P A |-|PB |)≠0,得|P A |+|PB |=4,且 4>AB .| 离为 4 2,由定义知动点 M 的轨迹是双曲线.7.下列说法中正确的有________.(填序号)①已知 F 1(-6,0),F 2(6,0),到 F 1,F 2 两点的距离之和等于 12 的点的轨迹是椭圆; ②已知 F 1(-6,0),F 2(6,0),到 F 1,F 2 两点的距离之和等于 8 的点的轨迹是椭圆;③到点 F 1(-6,0),F 2(6,0)两点的距离之和等于点 M (10,0)到 F 1,F 2 的距离之和的点的轨迹 是椭圆;④到点 F 1(-6,0),F 2(6,0)距离相等的点的轨迹是椭圆. 答案 ③解析 椭圆是到两个定点 F 1,F 2 的距离之和等于常数(大于 F 1F 2)的点的轨迹,应特别注意 椭圆的定义的应用.①中 F 1F 2=12,故到 F 1,F 2 两点的距离之和为常数 12 的点的轨迹是线段 F 1F 2. ②中点到 F 1,F 2 两点的距离之和 8 小于 F 1F 2,故这样的点不存在.③中点 M (10,0)到 F 1,F 2 两点的距离之和为 (10+6)2+02+ (10-6)2+02=20>F 1F 2=12, 故③中点的轨迹是椭圆.④中点的轨迹是线段 F 1F 2 的垂直平分线. 故正确的是③.8.若动点 P 到定点 F (1,1)和到直线 l :x +y -4=0 的距离相等,则动点 P 的轨迹是________. 答案 直线解析设动点 P 的坐标为(x ,y ),则 (x -1)2+(y -1)2=|3x +y -4|.整理,得 x -3y +2=0,10所以动点 P 的轨迹为直线.9.平面内有两个定点 F 1,F 2 及动点 P ,设命题甲:PF 1-PF 2|是非零常数,命题乙:动点P 的轨迹是以 F 1,F 2 为焦点的双曲线,则甲是乙的________条件.(“充分不必要”“必要不 充分”“充要”“既不充分又不必要”)答案 必要不充分解析 由双曲线的定义可知,若动点 P 的轨迹是以 F 1,F 2 为焦点的双曲线,则|PF 1-PF 2| 是非零常数,反之则不成立.→ → → →C 的轨迹是______.答案 椭圆→ → → →→ →故曲线 C 的轨迹是椭圆.(解析把轨迹方程5x2+y2=|3x+4y-12|写成x2+y2=,∴动点M到原点的=BD,MC=CE,于是MB+MC=BD+CE=(BD+CE)=×39=26>24=BC. 11.已知动圆M过定点A(-3,0),并且在定圆B:(x-3)2+y2=64的内部与其相内切,则动圆圆心M的轨迹为________.答案椭圆解析设动圆M的半径为r.因为动圆M与定圆B内切,所以MB=8-r.又动圆M过定点A,MA=r,所以MA+MB=8>AB=6,故动圆圆心M的轨迹是椭圆.二、解答题12.点M到点F(0,-2)的距离比它到直线l:y-3=0的距离小1,试确定点M的轨迹.解由题意得点M与点F的距离等于它到直线y-2=0的距离,且点F不在直线l上,所以点M的轨迹是抛物线.13.如图所示,已知点P为圆R:x+c)2+y2=4a2上一动点,Q(c,0)为定点(c>a>0,为常数),O为坐标原点,求线段PQ的垂直平分线与直线RP的交点M的轨迹.解由题意,得MP=MQ,RP=2a.MR-MQ=MR-MP=RP=2a<RQ=2c.∴点M的轨迹是以R,Q为两焦点,2a为实轴长的双曲线的右支.三、探究与拓展14.已知动点M的坐标满足方程5x2+y2=|3x+4y-12|,则动点M的轨迹是__________.答案抛物线|3x+4y-12|5距离与到直线3x+4y-12=0的距离相等.∵原点不在直线3x+4y-12=0上,∴点M的轨迹是以原点为焦点,直线3x+4y-12=0为准线的抛物线.△15.在ABC中,BC=24,AC,AB边上的中线长之和等于△39,求ABC的重心的轨迹.解如图所示,以BC的中点O为坐标原点,线段BC所在直线为x轴,线段BC的中垂线为y轴建立平面直角坐标系xOy.设M为△ABC的重心,BD是AC边上的中线,CE是AB边上的中线,由重心的性质知M B 222222333333根据椭圆的定义知,点M的轨迹是以B,C为两焦点,26为实轴长的椭圆去掉点(-13,0),(13,0).。
苏教版圆锥曲线教案(高二)
2.2.1 椭圆及其标准方程【教学目标】1、掌握椭圆的定义;2、掌握椭圆的方程及其推导;3、会求椭圆方程。
【教学重点】椭圆的标准方程推导和应用。
【教学难点】椭圆标准方程的推导。
【教学过程】 一、引入:1、提出问题:(1)动点到两定点之间的距离之和等于这两定点之间距离的点的轨迹是什么? (2)将等于改为小于呢?轨迹怎样? (3)将等于改为大于呢?轨迹怎样? 2、椭圆的定义:我们把 的轨迹叫椭圆.这两个定点叫做椭圆的 ,两个定点的距离叫做椭圆的 。
3、求椭圆方程:(建立如图的坐标系可求出椭圆的标准方程:) (1)焦点在x 轴上 建系设点: 列式:化简:12222=+by a x (222b c a =-)(2)焦点在y 轴上建系设点: 列式:化简:12222=+bx a y (22c a -二、基础自测1、判断下列方程是否表上椭圆,若是,求出c b a ,,的值①12222=+y x ;②12422=+y x ;③12422=-y x ;④9422=+x y2、椭圆191622=+y x 的焦距是 ,焦点坐标为 ;若CD 为过左焦点1F 的弦,则CD F 2∆的周长为3、椭圆11692522=+y x 的焦点坐标是__________________________ 4、1,6==c a ,焦点在y 一轴上的椭圆的标准方程是三、新授内容:例1、求适合下列条件的椭圆的标准方程。
(1)两个焦点的坐标)0,4(1-F ,)0,4(2F 。
椭圆上一点P 到两焦点的距离之和等于10; (2))2,0(1-F ,)2,0(2F 且椭圆过点(23-,25-); (3)焦距为6,且1=-b a 。
【变式拓展1】、求适合下列条件的椭圆的标准方程:(1)两个焦点坐标分别是(-3,0),(3,0),椭圆经过点(5,0).(2)两个焦点坐标分别是(0,5),(0,-5),椭圆上一点P 到两焦点的距离和为26.例2、方程10)2()2(2222=+-+++y x y x 化简后的结果为 .【变式拓展2】、化简方程:)3()3(2222=-++++y x y x例3、已知椭圆过点M (4,3-),N (32,3),求椭圆的标准方程。
【精品】高中数学苏教版选修1-1课件:2.1圆锥曲线课件(29张)1
,∴ S△F1PF2=
84 3
已知椭圆C的中心为坐标原点,一个长轴端点为
特征三角形:椭圆一个焦点、中心、短半轴构成的 三角形。 焦点三角形:椭圆上任一点与两焦点构成的三角形。 周长?正、余弦定理?面积问题?张角问题?……
|x|≤a;|y|≤b x轴 y 轴、原点 ±a,0 0,±b ±c,0 2c (0,1)
|x|≤b;|y|≤a
x轴、y轴、原点
0,±a
±b,0 0,±c a2-b2
椭圆及其应用
一、椭圆的定义
平面内到两个定点F1,F2的距离之和 等于常数 (大于|F1F2| )的点的轨迹叫作椭圆,这两个定点F1,F2 叫作椭圆的 焦点 ,两焦点F1,F2间的距离叫做椭圆的 焦距. 在椭圆的定义中,若2a=|F1F2|或2a<|F1F2|动点P的 轨迹如何?
二、椭圆的标准方程及其几何意义
解析:抛物线y2=8x的焦点是(2,0),∴椭圆的半焦距c=2, 即m2-n2=4,又e= n2=12. 从而椭圆的方程为 ∴m=4,
2.(2010· 广州一模)已知F1,F2是椭圆的两个焦点,过F1且
与椭圆长轴垂直的直线交椭圆于A、B两点,若△ABF2是
等腰直角三有形,则这个椭圆的离心率是 ________
x2 y 2 1的左右焦点,过椭圆中心作一直线 6.设F1,F2为椭圆 4 FP 与椭圆交于P,Q两点,当四边形PF1QF2面积最大时, P 1 F 2 ________.
求椭圆的标准方程主要有定义法、待定系数法,有时还 可根据条件用代入法.用特定系数法求椭圆方程的一般 步骤是: (1)作判断:根据条件判断椭圆的焦点在x轴上,还是 在y 轴上,还是两个坐标轴都有可能.
苏教版选修2《圆锥曲线》说课稿
苏教版选修2《圆锥曲线》说课稿一、教材分析1. 教材背景《圆锥曲线》是苏教版高中数学选修2的一部分,属于高中数学的选修课程,主要内容是圆锥曲线的基本知识和相关性质。
2. 教材特点•系统性强:本教材从基本概念开始,逐渐引入更加深入的内容,形成一个系统的学习框架。
•理论与实际结合:教材不仅重点讲解圆锥曲线的理论知识,还将这些知识与实际问题相结合,突出数学在实际应用中的重要性。
•画图辅助:教材中大量使用图示和实例,帮助学生理解和掌握圆锥曲线的性质。
•培养分析和解决问题的能力:本教材注重培养学生的数学思维能力和解决实际问题的能力,通过大量的例题和练习题提高学生的综合运用能力。
二、教学目标1. 知识与技能目标•了解圆锥曲线的基本概念和性质;•掌握椭圆、双曲线、抛物线的定义、方程及其性质;•学会解圆锥曲线的相关问题。
2. 过程与方法目标•培养学生的数学思维能力和逻辑推理能力;•注重引导学生理解和发现数学规律,提高其数学思考和解决问题的能力;•提供充分的实例和练习,鼓励学生进行实践操作和探索性学习。
3. 情感态度价值观目标•培养学生对数学的兴趣和热爱,提高数学学科的学习积极性;•培养学生的数学思想意识,能够运用数学知识解决实际问题;•培养学生的合作意识和创新精神,提高其团队合作和问题解决能力。
三、教学重点和难点1. 教学重点•圆锥曲线的基本定义和性质;•椭圆、双曲线、抛物线的方程及其性质。
2. 教学难点•理解椭圆、双曲线和抛物线的方程及其性质;•解决实际问题时如何应用圆锥曲线的知识。
四、教学过程与方法设计1. 教学过程安排时间段教学环节教学内容教学方法第1课时导入引入圆锥曲线的概念提问引导讲授椭圆的基本定义和性质讲授、示例分析第2课时讲授双曲线的基本定义和性质讲授、示例分析梳理椭圆与双曲线的对比示范导出、提问引导第3课时讲授抛物线的基本定义和性质讲授、示例分析综合运用圆锥曲线的应用实例小组讨论、展示第4课时练习巩固习题讲解与练习教师辅导、学生独立思考课堂总结总结圆锥曲线的重点知识教师点评、学生互动作业布置布置相关练习题布置写作任务2. 教学方法•提问引导:通过提问的方式,引导学生主动思考、发现问题,并激发学生的学习兴趣。
数学苏教版选修1-1 圆锥曲线
圆锥曲线回顾练习1、设1F 、2F 是平面内两个定点,P 点是平面内的动点,命题甲:12PF PF +为定值;命题乙:P 点的轨迹是以1F 、2F 为焦点的椭圆,则甲是乙的 的条件.拓展1:用类比推理的思维分别设置两个双曲线与抛物线类似的问题.拓展2:由抛物线的问题类比推理出有关椭圆及双曲线第二定义的问题.2、已知()()122,3,1,1F F --且122MF MF =-,则点M 的轨迹是( ) A : 圆 B :椭圆 C :双曲线 D :抛物线3、动点M 到(2,3)F -的距离等于到直线:1l x y +=的距离,则动点M 的轨迹方程是 .拓展:类比推理到其他倍数时的轨迹形状.4、已知()()123,0,3,0F F -,动点M 满足126MF MF +=,则动点M 的轨迹方程是 .变题:若126PF PF -=,则动点P 的轨迹方程是 .例题分析1、已知椭圆的两个焦点是()()123,0,3,0F F -,且通过点5(,2P -.求该椭圆的标准方程.变式练习1:已知2224x my +=的焦距是2,求m 的值. 2:已知椭圆222,(0)x y a a +=>的左焦点到直线2y x =-的距离为,求 椭圆的标准方程.2、已知双曲线经过点1(P -,2P ,求该双曲线的标准方程.变式练习:已知双曲线的一条渐近线是340x y +=,且过点(4,1),则其标准方程是3、已知抛物线22,(0)y px p =>的准线恰好是圆22670x y x +-=的切线,求P 的值.变式练习:已知点1122(2,8),(,),(,)A B x y C x y 均在抛物线22y px =上,且ABC ∆的重心恰好是抛物线的焦点.求抛物线的方程;求直线BC 的方程.。
高中数学2.1圆锥曲线 课件苏教版选修2-1
D M
O
C
F
为什么.gsp
ks5u精品课件
例3.一动圆过定点A(-4,0) ,且与定圆 B:(x-4)2+y2=16相外切,则动圆的圆 心轨迹为( 双曲线右支 )
ks5u精品课件
V
Q
F1
O2
F2
M P
O1
椭圆的定义:
平面内到两定点 F1, F2 的距离和等于常数(大于 F1F2) 的点的轨迹叫做椭圆, 两个定点 F1, F2叫做椭圆的焦 点,两焦点间的距离叫做椭圆的焦距。 椭圆形成演示 椭圆定义.gsp
可以用数学表达式来体现: 设平面内的动点为M,有MF 1 MF2
Байду номын сангаас
ks5u精品课件
练习
1 、已知∆ ABC 中, B ( -3 , 0 ), C ( 3 , 0 ),且 AB,BC,AC成等差数列。
(1)求证:点A在一个椭圆上运动;
(2)写出这个椭圆的焦点坐标。
解:(1)根据条件有AB+AC=2BC,
即AB+AC=12, 即动点A到定点B,C的距离之和为定值12, 且12>6=BC, 所以点A在以B,C为焦点的一个椭圆上运动. (2)这个椭圆的焦点坐标分别为(-3,0),(3,0)
圆锥曲线与方程
§2.1圆锥曲线
ks5u精品课件
古希腊数学家 Dandelin 在圆锥截 面的两侧分别放置一球,使它们 都与截面相切(切点分别为F1, F2),又分别与圆锥面的侧面相 切(两球与侧面的公共点分别构 成圆 O1和圆 O2).过 M点作圆锥 面的一条母线分别交圆O1,圆O2 与 P , Q 两点,因为过球外一点 作球的切线长相等,所以 MF1 = MP,MF2 = MQ, MF1 + MF2 =MP + MQ = PQ=定值
高中数学苏教版选修2-1课件:第2章2.1 圆锥曲线
椭圆的定义
已知△ABC中,B(-3,0),C(3,0),且AB,BC, AC成等差数列; (1)求证:点A在一个椭圆上运动; (2)写出这个椭圆的焦点坐标. (链接教材P27T1) [解] (1)证明:在△ABC中,由AB,BC,AC成等差数列 ⇒AB+AC=2BC=12>BC满足椭圆定义,所以点A在以B,C 为焦点的椭圆上运动. (2)焦点坐标为(-3,0),(3,0).
ห้องสมุดไป่ตู้
2.已知直线l:x+2y-3=0,点F(2,1),P为平面上一动点, 过P作PE⊥l于E,PE=PF,则点P的轨迹为__抛__物__线______. 解析:∵点F(2,1)不在直线l上,且PE=PF, ∴点P的轨迹为抛物线.
利用圆锥曲线的定义求轨迹
3.抛物线
平面内到一个定点F和一条定直线l(F不在l上)的距离相等的点 的轨迹叫做抛物线,定点F叫做抛物线的___焦__点_________, 定直线l叫做抛物线的_____准__线_______.
4.圆锥曲线 椭圆、双曲线、抛物线统称为__圆__锥__曲__线______.
1.平面内到两点F1(-3,0),F2(3,0)的距离之和等于8的点 的轨迹是__椭__圆____.
第2章 圆锥曲线与方程
第2章 圆锥曲线与方程
2.1 圆锥曲线
第2章 圆锥曲线与方程
学习导航
1.掌握圆锥曲线的类型及其定义、几何图形和标准
学习 目标
方程,会求简单圆锥曲线的方程.(重点) 2.通过对圆锥曲线性质的研究,感受数形结合的 基本思想和理解代数方法研究几何性质的优越
性.(难点)
学法 指导
通过自己亲自动手尝试画图,发现圆锥曲线的形成 过程进而归纳出它们的定义,培养观察、辨析、归 纳问题的能力.
苏教版高中数学选修圆锥曲线教案(2)
§2.1圆锥曲线教学目标1.通过用平面截圆锥面,经历从具体情境中抽象出椭圆、抛物线模型的过程,掌握它们的定义,并能用数学符号或自然语言的描述。
2.通过用平面截圆锥面,感受、了解双曲线的定义。
能用数学符号或自然语言描述双曲线的定义。
教学重点、难点重点:椭圆、抛物线、双曲线的定义。
难点:用数学符号或自然语言描述三种曲线的定义教具多媒体课件、实物投影仪内容分析本节课教材利用平面对圆锥面的不同截法,产生三种不同的圆锥曲线,得出椭圆、双曲线和抛物线的概念。
这样既使学生经历概念的形成过程,更有利于从整体上认识三种圆锥曲线的内在关系。
根据问题的难易度及学生的认知水平,要求学生掌握椭圆、抛物线的定义,对双曲线只要求了解其定义。
这是建立在学生的最近发展区上的形式化的过程,有利于培养学生的数学化能力,提高数学素养。
学法指导教学中向学生展示平面截圆锥面得到椭圆的过程,使学生加深对圆锥曲线的理解。
对用Dandelin双球发现椭圆的特性(由此形成椭圆的定义),可直接给出放进双球后的图形,再引导学生发现“到两切点距离之和为定值”的特性,这一内容让学生感知、认同即可,不必对探究、推理过程作过多研究。
教学过程设计1.问题情境我们知道,用一个平面截一个圆锥面,当平面经过圆锥面的顶点时,可得到两条相交直线,当平面与圆锥面的轴垂直时,截得的图形是一个圆,试改变平面的位置,观察截得的图形的变化情况。
提出问题:用平面去截圆锥面能得到哪些曲线?2.学生活动学生讨论上述问题,通过观察,可以得到以下三种不同的曲线:对于Dandelin 双球理论只要让学生感知、认同即可。
3.建构数学(1)圆锥曲线的定义椭圆:平面内到两定点1F ,2F 的距离和等于常数(大于12F F )的点的轨迹叫做椭圆,两个定点1F ,2F 叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距。
对于第二种情形,平面与圆锥曲线的截线由两支曲线构成。
(类比椭圆的定义)双曲线:平面内到两定点1F ,2F 的距离的差的绝对值等于常数(小于12F F )的点的轨迹叫做双曲线,两个定点1F ,2F 叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆锥曲线(学生版)
一、填空题
1、已知双曲线22
221(0,0)x y a b a b -=>>的一条渐近线经过点(1,2),则该双曲线的离心率的值
为 ▲
2、等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线y 2
= 4x 的准线交于A 、B 两点,
AB =3,则C 的实轴长为 ▲ .
3、已知1F 、2F 分别是椭圆14
82
2=+y x 的左、右焦点, 点P 是椭圆上的任意一点, 则
121
||
PF PF PF -的取值范围是 ▲ .
4、已知双曲线22221y x a b
-=的一个焦点与圆x 2+y 2-10x =0的圆心重合,且双曲线的离心率等5,则该双曲线的标准方程为 ▲ .
5、已知双曲线)0,0(12
22
2>>=-b a b y a x 的右焦点为,F 若以F 为圆心的圆
05622=+-+x y x 与此双曲线的渐近线相切,则该双曲线的离心率为 ▲ .
6、在平面直角坐标系xOy 中,双曲线22
22:1(0,0)x y E a b a b
-=>>的左顶点为A ,过双曲
线E 的右焦点F 作与实轴垂直的直线交双曲线E 于B ,C 两点,若ABC ∆为直角三角形,则双曲线E 的离心率为 .
7、设双曲线22
145
x y -=的左、
右焦点分别为1F ,2F ,点P 为双曲线上位于第一象限内一点,且12PF F 的面积为6,则点P 的坐标为
8、如图,过抛物线y 2
=2px (p>0)的焦点F 的直线L 交抛物线于点A 、B ,
交其准线于点C ,若|BC|=2|BF|,且|AF|=3,则此抛物线的方程为 。
9、已知圆C 的圆心为抛物线x y 42
-=的焦点,又直线4360x y --=与圆C 相切,则圆C 的标准方程为 ▲ .
10、圆心在抛物线22x y =上,并且和抛物线的准线及y 轴都相切的圆的标准方程为 ▲ .
二、解答题
1、如图,在平面直角坐标系xoy 中,已知12,F F 分别是椭圆E :22
221(0)
x y a b a b
+=>>的左、右焦点,A ,B 分别是椭圆E 的左、右顶点,且2250AF BF +=. (1)求椭圆E 的离心率;
(2)已知点()1,0D 为线段2OF 的中点,M 为椭圆E 上的动点(异于点A 、B ),连接1MF 并延长交椭圆E 于点N ,连接MD 、ND 并分别延长交椭圆E 于点P 、Q ,连接PQ ,设直线MN 、PQ 的斜率存在且分别为1k 、2k ,试问是否存在常数λ,使得120k k λ+=恒成立?若存在,求出λ的值;若不存在,说明理由.
2、已知椭圆C :22
221x y a b
+=(a >b >0)的上顶点为A ,左,右焦点分别为F 1,F 2,且椭圆C
过点P (43,b
3
),以AP 为直径的圆恰好过右焦点F 2.
(1)求椭圆C 的方程;
(2)若动直线l 与椭圆C 有且只有一个公共点,试问:在x 轴上是否存在两定点,使其到直线l 的距离之积为1?若存在,请求出两定点坐标;若不存在,请说明理由.
3、如图, 在平面直角坐标系xOy 中, 已知椭圆2222:1(0)x y
C a b a b
+=>>经过点
M ,
椭圆的离心率e =
, 1F 、2F 分别是椭圆的左、右焦点. (1)求椭圆C 的方程;
(2)过点M 作两直线与椭圆C 分别交于相异两点A 、B . ①若直线MA 过坐标原点O , 试求2MAF ∆外接圆的方程;
②若AMB ∠的平分线与y 轴平行, 试探究直线AB 的斜率是否为定值?若是, 请给予证明;若不是, 请说明理由.
4、已知左焦点为F(-1,0)的椭圆过点E(123.过点P(1,1)分别作斜率为k1,k2的椭圆的动弦AB,CD,设M,N分别为线段AB,CD的中点.
(1)求椭圆的标准方程;
(2)若P为线段AB的中点,求k1;
(3)若k1+k2=1,求证直线MN恒过定点,并求出定点坐标.
5、如图,在平面直角坐标系xOy 中,椭圆)0(1:
2
22
2>>=+b a b y a x E 的焦距为2,且过点
)2
6,
2(. (1) 求椭圆E 的方程;
(2) 若点A ,B 分别是椭圆E 的左、右顶点,直线l 经过点B 且垂直于x 轴,点P 是椭
圆上异于A ,B 的任意一点,直线AP 交l 于点.M
(ⅰ)设直线OM 的斜率为,1k 直线BP 的斜率为2k ,求证:21k k 为定值; (ⅱ)设过点M 垂直于PB 的直线为m .
求证:直线m 过定点,并求出定点的坐标.
6、如图,在平面直角坐标系xOy 中,已知点F 是椭圆22
22:1(0)x y E a b a b
+=>>的左焦点,
A ,
B ,
C 分别为椭圆E 的右、下、上顶点,满足5FC BA =,椭圆的离心率为
12
. (1)求椭圆的方程;
(2)若P 为线段FC (包括端点)上任意一点,当PA PB 取得最小值时,求点P 的坐标;
(3)设点M 为线段BC (包括端点)
上的一个动点,射线MF 交椭圆于点
N ,若NF FM λ=,求实数λ的取
值范围.。