安徽省蚌埠市2014-2015学年高二上学期期末考试数学(文)试卷

合集下载

高中高二数学上学期第二次月考试卷 文(含解析)-人教版高二全册数学试题

高中高二数学上学期第二次月考试卷 文(含解析)-人教版高二全册数学试题

2014-2015学年某某省某某市安吉县上墅私立高中高二(上)第二次月考数学试卷(文科)一、选择题:(本大题共10小题,每小题3分,共30分.)1.在△ABC中,“A=”是“cosA=”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件2.已知命题p:∃x∈R,x﹣2>0,命题q:∀x∈R,>x,则下列说法中正确的是() A.命题p∨q是假命题 B.命题p∧q是真命题C.命题p∨(¬q)是假命题 D.命题p∧(¬q)是真命题3.直线x﹣2y+2=0经过椭圆的一个焦点和一个顶点,则该椭圆的离心率为()A. B. C. D.4.若直线(m+2)x+3y+3=0与直线x+(2m﹣1)y+m=0平行,则实数m=() A.﹣或1 B. 1 C. 1或2 D.﹣5.直线2x+3y+1=0与直线4x+my+7=0平行,则它们之间的距离为() A. 4 B. C. D.6.设l,m是不同的直线,α,β,γ是不同的平面()A.若l⊥α,l⊥m,则m∥α B.若l⊂α,m⊂β,α∥β,则l∥mC.若l∥α,m⊥α,则l⊥m D.若α∩β=l,l⊥γ,m⊥β,则m∥γ7.过P(2,0)的直线被圆(x﹣2)2+(y﹣3)2=9截得的线段长为2时,直线l的斜率为()A. B. C.±1 D.8.若双曲线的离心率为,则其渐近线方程为()A. y=±2x B. C. D.9.直线l:x+y﹣4=0与圆C:x2+y2=4的位置关系是()A.相交过圆心 B.相交不过圆心 C.相切 D.相离10.下列结论正确的是()A.命题“若a>b>0,则a2>b2”的逆命题是假命题B.若函数f(x)=sinx,则函数f(x)为周期函数的逆命题是真命题C.向量,的夹角为钝角的充要条件是•<0D.“x2>2”是“x2﹣3x+2≥0”的充分不必要条件二、填空题:(本大题共7小题,每小题3分,共21分.)11.由命题“存在x∈R,使x2+2x+m≤0”是假命题,则实数m的取值X围为.12.已知命题p:m<0,命题q:∀x∈R,x2+mx+1>0成立,若“p∧q”为真命题,则实数m 的取值X围是.13.两直线l1:ax+2y﹣1=0,l2:(a﹣1)x+ay+1=0垂直,则a=.14.两圆x2+y2﹣4x+6y=0和x2+y2﹣6x=0的连心线方程为.15.已知动圆M与圆C1:(x+3)2+y2=9外切且与圆C2:(x﹣3)2+y2=1内切,则动圆圆心M的轨迹方程是.16.一个几何体的三视图如图所示(单位:m),则该几何体的体积为m3.17.下列四个命题:①“∃x∈R,x2﹣x+1≤0”的否定;②“若x2+x﹣6≥0,则x>2”的否命题;③在△ABC中,“A>30°”是“sinA>”的充分不必要条件④“函数f(x)=tan(x+φ)为奇函数”的充要条件是“φ=kπ.(k∈Z)”,其中真命题的序号是.三、解答题:(本大题共5小题,共49分.)18.设p:实数x满足x2+2ax﹣3a2<0(a>0),q:实数x满足x2+2x﹣8<0,且q是p的必要不充分条件,求a的取值X围.19.求满足下列条件的椭圆方程:(1)长轴在x轴上,长轴长等于12,离心率等于;(2)椭圆经过点(﹣6,0)和(0,8);(3)椭圆的一个焦点到长轴两端点的距离分别为10和4.20.如图,正方形ACDE所在的平面与平面ABC垂直,M是CE和AD的交点,AC⊥BC,且AC=BC.(1)求证:AM⊥平面EBC;(2)求直线AB与平面EBC所成角的大小.21.已知在平面直角坐标系中的一个椭圆,它的中心在原点,左焦点为,且过点D(2,0).(1)求该椭圆的标准方程;(2)设点,若P是椭圆上的动点,求线段PA的中点M的轨迹方程.22.已知圆C:x2+y2=4和直线l:3x+4y+12=0,点P是圆C上的一动点,直线与坐标轴的交点分别为点A、B,(1)求与圆C相切且平行直线l的直线方程;(2)求△PAB面积的最大值.2014-2015学年某某省某某市安吉县上墅私立高中高二(上)第二次月考数学试卷(文科)参考答案与试题解析一、选择题:(本大题共10小题,每小题3分,共30分.)1.在△ABC中,“A=”是“cosA=”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件考点:必要条件、充分条件与充要条件的判断.专题:简易逻辑.分析:根据充分必要条件的定义结合三角形的性质,分别证明充分性和必要性,从而得到答案.解答:解:在△ABC中,若A=,则cosA=,是充分条件,在△ABC中,若cosA=,则A=或A=,不是必要条件,故选:A.点评:本题考查了充分必要条件,考查了三角形中的三角函数值问题,是一道基础题.2.已知命题p:∃x∈R,x﹣2>0,命题q:∀x∈R,>x,则下列说法中正确的是() A.命题p∨q是假命题 B.命题p∧q是真命题C.命题p∨(¬q)是假命题 D.命题p∧(¬q)是真命题考点:复合命题的真假.专题:简易逻辑.分析:容易判断命题p是真命题,q是假命题,所以根据p∨q,p∧q,¬q的真假和p,q的关系即可找出正确选项.解答:解:∃x∈R,x﹣2>0,即不等式x﹣2>0有解,∴命题p是真命题;x<0时,无解,∴命题q是假命题;∴p∨q为真命题,p∧q是假命题,¬q是真命题,p∨(¬q)是真命题,p∧(¬q)是真命题;∴D正确.故选D.点评:考查真命题,假命题的概念,以及p∨q,p∧q,¬q的真假和p,q真假的关系.3.直线x﹣2y+2=0经过椭圆的一个焦点和一个顶点,则该椭圆的离心率为()A. B. C. D.考点:椭圆的简单性质.专题:计算题.分析:直线x﹣2y+2=0与坐标轴的交点为(﹣2,0),(0,1),依题意得.解答:直线x﹣2y+2=0与坐标轴的交点为(﹣2,0),(0,1),直线x﹣2y+2=0经过椭圆的一个焦点和一个顶点;故.故选A.点评:本题考查了椭圆的基本性质,只需根据已知条件求出a,b,c即可,属于基础题型.4.若直线(m+2)x+3y+3=0与直线x+(2m﹣1)y+m=0平行,则实数m=() A.﹣或1 B. 1 C. 1或2 D.﹣考点:直线的一般式方程与直线的平行关系.专题:直线与圆.分析:由直线的平行可得m的方程,解得m代回验证可得.解答:解:∵直线(m+2)x+3y+3=0与直线x+(2m﹣1)y+m=0平行,∴(m+2)(2m﹣1)﹣3×1=0,解得m=﹣或1经验证当m=1时,两直线重合,应舍去,故选:D点评:本题考查直线的一般式方程和平行关系,属基础题.5.直线2x+3y+1=0与直线4x+my+7=0平行,则它们之间的距离为() A. 4 B. C. D.考点:两条平行直线间的距离.专题:直线与圆.分析:通过直线的平行求出m,然后利用平行线之间的距离求解即可.解答:解:直线2x+3y+1=0与直线4x+my+7=0平行,所以m=6,直线4x+my+7=0化为直线4x+6y+7=0即2x+3y+3.5=0,它们之间的距离为:d==.故选:C.点评:本题考查两条平行线之间是距离的求法,基本知识的考查.6.设l,m是不同的直线,α,β,γ是不同的平面()A.若l⊥α,l⊥m,则m∥α B.若l⊂α,m⊂β,α∥β,则l∥mC.若l∥α,m⊥α,则l⊥m D.若α∩β=l,l⊥γ,m⊥β,则m∥γ考点:空间中直线与平面之间的位置关系.专题:空间位置关系与距离.分析:利用空间中线线、线面、面面间的位置关系求解.解答:解:若l⊥α,l⊥m,则m∥α或m⊂α,故A错误;若l⊂α,m⊂β,α∥β,则l与m平行或异面,故B错误;若l∥α,m⊥α,则由直线与平面平行的性质得l⊥m,故C正确;若α∩β=l,l⊥γ,m⊥β,则m∥γ或m⊂γ,故D错误.故选:C.点评:本题考查命题真假的判断,是基础题,解题时要注意空间思维能力的培养.7.过P(2,0)的直线被圆(x﹣2)2+(y﹣3)2=9截得的线段长为2时,直线l的斜率为() A. B. C.±1 D.考点:直线与圆的位置关系.专题:直线与圆.分析:设直线l的方程为:y=kx﹣2k,由已知条件结合圆的性质和点到直线的距离公式推导出=2,由此能求出直线的斜率.解答:解:设直线l的斜率为k,则直线l的方程为:y=kx﹣2k,(x﹣2)2+(y﹣3)2=9的圆心C(2,3),半径r=3,∵过P(2,0)的直线被圆(x﹣2)2+(y﹣3)2=9截得的线段长为2,∴圆心C(2,3)到直线AB的距离d==2,∵点C(2,3)到直线y=kx﹣2k的距离d==2,∴•2=3,解得k=±.故选:A.点评:本题考查直线的斜率的求法,是中档题,解题时要认真审题,注意点到直线的距离公式的合理运用.8.若双曲线的离心率为,则其渐近线方程为()A. y=±2x B. C. D.考点:双曲线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:通过双曲线的离心率,推出a、b关系,然后直接求出双曲线的渐近线方程.解答:解:由双曲线的离心率,可知c=a,又a2+b2=c2,所以b=a,所以双曲线的渐近线方程为:y==±x.故选B.点评:本题考查双曲线的基本性质,渐近线方程的求法,考查计算能力.9.直线l:x+y﹣4=0与圆C:x2+y2=4的位置关系是()A.相交过圆心 B.相交不过圆心 C.相切 D.相离考点:直线与圆的位置关系.专题:直线与圆.分析:求出圆心(0,0)到直线l:x+y﹣4=0的距离d正好等于半径,可得直线和圆相切.解答:解:由于圆心(0,0)到直线l:x+y﹣4=0的距离为d==2=r(半径),故直线和圆相切,故选:C.点评:本题主要考查直线和圆的位置关系,点到直线的距离公式的应用,属于基础题.10.下列结论正确的是()A.命题“若a>b>0,则a2>b2”的逆命题是假命题B.若函数f(x)=sinx,则函数f(x)为周期函数的逆命题是真命题C.向量,的夹角为钝角的充要条件是•<0D.“x2>2”是“x2﹣3x+2≥0”的充分不必要条件考点:命题的真假判断与应用.专题:简易逻辑.分析: A.“若a>b>0,则a2>b2”的逆命题为“若a2>b2,则a>b>0”是假命题;B.函数f(x)=sinx,则函数f(x)为周期函数的逆命题为“函数f(x)为周期函数,则f (x)=sinx”,显然不正确;C.向量,的夹角为钝角⇒•<0,反之不成立,由于非零向量反向共线时,满足<0;D.“x2>2”⇒或x,而x2﹣3x+2=﹣≥﹣,反之也不成立.解答:解:A.“若a>b>0,则a2>b2”的逆命题为“若a2>b2,则a>b>0”是假命题,正确;B.函数f(x)=sinx,则函数f(x)为周期函数的逆命题为“函数f(x)为周期函数,则f (x)=sinx”是假命题,不正确;C.向量,的夹角为钝角⇒•<0,反之不成立,由于向量反向共线时,其<0,因此不正确;D.“x2>2”⇒或x,此时x2﹣3x+2=﹣≥﹣,反之也不成立,因此“x2>2”是“x2﹣3x+2≥0”的既不充分也不必要条件,不正确.综上可得:只有A.故选:A.点评:本题考查了函数的性质、简易逻辑的判定、向量的数量积及其夹角公式,考查了推理能力,属于基础题.二、填空题:(本大题共7小题,每小题3分,共21分.)11.由命题“存在x∈R,使x2+2x+m≤0”是假命题,则实数m的取值X围为(1,+∞).考点:特称命题.专题:计算题.分析:原命题为假命题,则其否命题为真命题,得出∀x∈R,都有x2+2x+m>0,再由△<0,求得m.解答:解:∵“存在x∈R,使x2+2x+m≤0”,∴其否命题为真命题,即是说“∀x∈R,都有x2+2x+m>0”,∴△=4﹣4m<0,解得m>1.∴m的取值X围为(1,+∞).故答案为:(1,+∞)点评:本题考查了存在命题的否定,不等式恒成立问题.考查转化、计算能力.12.已知命题p:m<0,命题q:∀x∈R,x2+mx+1>0成立,若“p∧q”为真命题,则实数m 的取值X围是﹣2<m<0 .考点:复合命题的真假.专题:简易逻辑.分析:根据复合命题的真假性判断出命题p、q都是真命题,再逐一求出m的X围,最后求它们的交集.解答:解:因为“p∧q”为真命题,所以命题p、q都是真命题,若命题q是真命题,则∀x∈R,x2+mx+1>0横成立,所以△=m2﹣4<0,解得﹣2<m<2,又命题p:m<0,也是真命题,所以实数m的取值X围是:﹣2<m<0,故答案为:﹣2<m<0.点评:本题考查了复合命题的真假性,以及二次函数的性质,属于基础题.13.两直线l1:ax+2y﹣1=0,l2:(a﹣1)x+ay+1=0垂直,则a= 0或﹣1 .考点:直线的一般式方程与直线的垂直关系.专题:直线与圆.分析:由已知得a(a﹣1)+2a=0,由此能求出a.解答:解:∵两直线l1:ax+2y﹣1=0,l2:(a﹣1)x+ay+1=0垂直,∴a(a﹣1)+2a=0,解得a=0或a=﹣1.故答案为:0或﹣1.点评:本题考查实数值的求法,是基础题,解题时要认真审题,注意直线与直线垂直的性质的合理运用.14.两圆x2+y2﹣4x+6y=0和x2+y2﹣6x=0的连心线方程为3x﹣y﹣9=0 .考点:圆与圆的位置关系及其判定.专题:计算题;直线与圆.分析:求出圆心坐标,利用点斜式,可得方程.解答:解:两圆x2+y2﹣4x+6y=0和x2+y2﹣6x=0的圆心坐标分别为(2,﹣3),(3,0),∴连心线方程为y﹣0=(x﹣3),即3x﹣y﹣9=0.故答案为:3x﹣y﹣9=0.点评:本题考查圆与圆的位置关系及其判定,考查直线方程,比较基础.15.已知动圆M与圆C1:(x+3)2+y2=9外切且与圆C2:(x﹣3)2+y2=1内切,则动圆圆心M的轨迹方程是﹣=1(x≥2).考点:直线与圆的位置关系.专题:直线与圆.分析:找出两圆圆心坐标与半径,设设动圆圆心M(x,y),半径为r,根据动圆M与圆C1外切且与圆C2内切,即可确定出M轨迹方程.解答:解:由圆C1:(x+3)2+y2=9,圆心C1(﹣3,0),半径r1=3,圆C2:(x﹣3)2+y2=1,圆心C2(3,0),r2=1,设动圆圆心M(x,y),半径为r,根据题意得:,整理得:|MC1|﹣|MC2|=4,则动点M轨迹为双曲线,a=2,b=,c=3,其方程为﹣=1(x≥2).故答案为:﹣=1(x≥2)点评:此题考查了直线与圆的位置关系,以及动点轨迹方程,熟练掌握双曲线定义是解本题的关键.16.一个几何体的三视图如图所示(单位:m),则该几何体的体积为m3.考点:由三视图求面积、体积.专题:立体几何.分析:几何体是圆锥与圆柱的组合体,判断圆柱与圆锥的高及底面半径,代入圆锥与圆柱的体积公式计算.解答:解:由三视图知:几何体是圆锥与圆柱的组合体,其中圆柱的高为4,底面直径为2,圆锥的高为2,底面直径为4,∴几何体的体积V=π×12×4+×π×22×2=4π+π=π.故答案为:.点评:本题考查了由三视图求几何体的体积,根据三视图判断几何体的形状及数据所对应的几何量是解题的关键.17.下列四个命题:①“∃x∈R,x2﹣x+1≤0”的否定;②“若x2+x﹣6≥0,则x>2”的否命题;③在△ABC中,“A>30°”是“sinA>”的充分不必要条件④“函数f(x)=tan(x+φ)为奇函数”的充要条件是“φ=kπ.(k∈Z)”,其中真命题的序号是①②.考点:命题的真假判断与应用.专题:简易逻辑.分析:①按照特称命题的否定要求改写,然后判断真假;②先写出原命题,然后再按照否条件、否结论进行改写;③双向推理,然后进行判断,此例可以举反例;④结合奇函数的性质进行推导,从左推右,然后反推化简.解答:解:①原命题的否定是:∀x∈R,x2﹣x+1>0;因为,故①为真命题;②原命题的否命题是:若x2+x﹣6<0,则x≤2.由x2+x﹣6<0,得(x+3)(x﹣2)<0,所以﹣3<x<2,故②为真命题;③当A=150°时,.所以故在△ABC中,“A>30°”是“sinA>”的不充分条件.故③是假命题;④若函数f(x)为奇函数,则f(0)=tanφ=0,或y轴为图象的渐近线,所以φ=kπ(k∈Z);或tanφ不存在,则φ=,(k∈Z)所以前者是后者的不充分条件.故④为假命题.故答案为:①,②点评:本题以简易逻辑为载体,考查了命题的否定及否命题的写法以及真假判断,充分必要性的判断方法,属于基础题,难度不大.三、解答题:(本大题共5小题,共49分.)18.设p:实数x满足x2+2ax﹣3a2<0(a>0),q:实数x满足x2+2x﹣8<0,且q是p的必要不充分条件,求a的取值X围.考点:必要条件、充分条件与充要条件的判断.专题:不等式的解法及应用.分析:先分别化简两个不等式,再利用q是p的必要不充分条件,转化为,然后某某数a的取值X围.解答:解:由x2+2ax﹣3a2<0得(x+3a)(x﹣a)<0,又a>0,所以﹣3a<x<a,(2分)x2+2x﹣8<0,∴﹣4<x<2,p为真时,实数x的取值X围是:﹣3a<x<a;q为真时,实数x的取值X围是:﹣4<x<2(6分)因为q是p的必要不充分条件,所以有(10分)所以实数a的取值X围是≤a≤2.(14分)点评:本题考查一元二次不等式的解法,必要条件、充分条件与充要条件的判断,考查计算能力,转化思想,是中档题.19.求满足下列条件的椭圆方程:(1)长轴在x轴上,长轴长等于12,离心率等于;(2)椭圆经过点(﹣6,0)和(0,8);(3)椭圆的一个焦点到长轴两端点的距离分别为10和4.考点:椭圆的简单性质.专题:圆锥曲线的定义、性质与方程.分析:(1)设椭圆方程为+=1(a>b>0),运用离心率公式和a,b,c的关系,解得a,b,即可得到椭圆方程;(2)设椭圆方程为mx2+ny2=1,(m,n>0),由题意代入点(﹣6,0)和(0,8),解方程即可得到椭圆方程;(3)讨论椭圆的焦点的位置,由题意可得a﹣c=4,a+c=10,解方程可得a,c,再由a,b,c 的关系解得b,即可得到椭圆方程.解答:解:(1)设椭圆方程为+=1(a>b>0),由题意可得,2a=12,e=,即有a=6,=,即有c=4,b===2,即有椭圆方程为+=1;(2)设椭圆方程为mx2+ny2=1,(m,n>0),由题意代入点(﹣6,0)和(0,8),可得36m+0=1,且0+64n=1,解得m=,n=,即有椭圆方程为+=1;(3)当焦点在x轴上时,可设椭圆方程为+=1(a>b>0),由题意可得a﹣c=4,a+c=10,解得a=7,c=3,b==2,即有椭圆方程为+=1;同理,当焦点在y轴上时,可得椭圆方程为+=1.即有椭圆方程为+=1或+=1.点评:本题考查椭圆的方程和性质,主要考查椭圆的方程的求法,注意运用椭圆的方程的正确设法,以及椭圆性质的运用,属于基础题.20.如图,正方形ACDE所在的平面与平面ABC垂直,M是CE和AD的交点,AC⊥BC,且AC=BC.(1)求证:AM⊥平面EBC;(2)求直线AB与平面EBC所成角的大小.考点:直线与平面所成的角;平面与平面垂直的判定.专题:空间位置关系与距离;空间角;空间向量及应用.分析:(1)建立空间直角坐标,利用向量法证明线面垂直.(2)利用向量法求线面角的大小.解答:解:∵四边形ACDE是正方形,所以EA⊥AC,AM⊥EC,∵平面ACDE⊥平ABC,∴EA⊥平面ABC,∴可以以点A为原点,以过A点平行于BC的直线为x轴,分别以直线AC和AE为y轴和z轴,建立如图所示的空间直角坐标系A﹣xyz.设EA=AC=BC=2,则A(0,0,0),B(2,2,0),C(0,2,0),E(0,0,2),∵M是正方形ACDE的对角线的交点,∴M(0,1,1) (3)=(0,1,1),=(0,2,0)﹣(0,0,2)=(0,2,﹣2),=(2,2,0)﹣(0,2,0)=(2,0,0),∴,,∴AM⊥EC,AM⊥CB,∴AM⊥平面EBC.…(5分)(2)∵AM⊥平面EBC,∴为平面EBC的一个法向量,∵=(0,1,1),=(2,2,0),∴cos.∴=60°.∴直线AB与平面EBC所成的角为30°.…(12分)点评:本题主要考查向量法证明线面垂直以及利用向量法求线面角的大小,运算量较大.21.已知在平面直角坐标系中的一个椭圆,它的中心在原点,左焦点为,且过点D(2,0).(1)求该椭圆的标准方程;(2)设点,若P是椭圆上的动点,求线段PA的中点M的轨迹方程.考点:轨迹方程;椭圆的标准方程.专题:计算题;圆锥曲线的定义、性质与方程.分析:(1)设椭圆方程为,根据题意可得a=2且c=,从而b==1,得到椭圆的标准方程;(2)设点P(x0,y0),线段PA的中点为M(x,y),根据中点坐标公式将x0、y0表示成关于x、y的式子,将P(x0,y0)关于x、y的坐标形式代入已知椭圆的方程,化简整理即可得到线段PA的中点M的轨迹方程.解答:解:(1)由题意知椭圆的焦点在x轴上,设椭圆的标准方程是∵椭圆经过点D(2,0),左焦点为,∴a=2,,可得b==1因此,椭圆的标准方程为.(2)设点P的坐标是(x0,y0),线段PA的中点为M(x,y),由根据中点坐标公式,可得,整理得,∵点P(x0,y0)在椭圆上,∴可得,化简整理得,由此可得线段PA中点M的轨迹方程是.点评:本题给出椭圆满足的条件,求椭圆方程并求与之有关的一个轨迹方程,着重考查了椭圆的标准方程、简单几何性质和轨迹方程的求法等知识点,属于中档题.22.已知圆C:x2+y2=4和直线l:3x+4y+12=0,点P是圆C上的一动点,直线与坐标轴的交点分别为点A、B,(1)求与圆C相切且平行直线l的直线方程;(2)求△PAB面积的最大值.考点:直线和圆的方程的应用.专题:直线与圆.分析:(1)根据题意设所求方程为3x+4y+a=0,根据直线与圆相切时,圆心到直线的距离d=r求出a的值,即可确定出所求直线方程;(2)当直线与AB平行,且与圆相切时,△PAB面积的最大值,如图所示,求出|AB|与|MN|的长,即可确定出△PAB面积的最大值.解答:解:(1)设所求直线方程为3x+4y+a=0,由题意得:圆心(0,0)到直线的距离d=r,即=2,解得:a=±10,则所求直线方程为3x+4y±10=0;(2)当直线与AB平行,且与圆相切时,△PAB面积的最大值,此时直线方程为3x+4y﹣10=0,∵点C到直线AB的距离||=,CM=2,∴|MN|=+2=,∵A(﹣4,0),B(0,3),即OA=4,OB=3,∴|AB|=5,则△PAB面积最大值为×5×=11.点评:此题考查了直线与圆的方程的应用,涉及的知识有:点到直线的距离公式,两直线平行时斜率的关系,以及直线与圆相切的性质,熟练掌握公式及性质是解本题的关键.。

安徽省蚌埠市五中十二中14-15高三第一学期期中——数学(文)

安徽省蚌埠市五中十二中14-15高三第一学期期中——数学(文)

安徽省蚌埠市五中十二中 2014—2015学年第一学期期中考试数学(文)试题时间:120分钟 分数:150一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的表格内(每小题5分,共50分).1.已知集合M ={1,2,3},N ={2,3,4},则N M ⋂= A .∅ B. {1,4} C. {2,3} D. {1,2,3,4}2.已知b a >,则下列不等式一定成立的是 A .33->-b a B .bc ac > C .cbc a < D .32+>+b a 3.函数xx y 1+=()0>x 的最小值是 A .1 B . 2 C .-2 D .以上都不对 4.函数()x x x f ln +=的零点所在的大致区间为 A .(0,1) B .(1,2)C .(1,e )D .(2,e )5.若⎩⎨⎧>+-≤+=)1(3)1(1)(x x x x x f ,则)]25([f f 的值为A .21- B .23 C .25 D .296.若R a ∈,则“a a >2”是“1>a ”的A .充分不必要条件 B.必要不充分条件 C .既不充分也不必要条件 D .充要条件 7.下列说法中正确的是①()0x x f =与()1=x g 是同一个函数;②()x f y =与()1+=x f y 有可能是同一个函数;③ ()x f y =与()t f y =是同一个函数;④定义域和值域相同的函数是同一个函数. A .①② B .②③ C .②④ D .①③8.已知函数()x f 是定义在R 上的偶函数,则下列结论一定成立的是 A .R x ∈∀,()()x f x f -> B .R x ∈∃0,()()00x f x f ->C .R x ∈∀,()()0≥-x f x fD .R x ∈∃0,()()000<-x f x f9.已知函数()22xf x =-,则函数()y f x =的图象可能是10.下列命题中正确的是A .若命题P 为真命题,命题q 为假命题,则命题“q p ∧”为真命题B .命题“若p 则q”的否命题是“若q 则p”C .命题“R x ∈∀,02>x”的否定是“R x ∈∀0,020≤x ”D .函数22x x y -=的定义域是{}20≤≤x x选择题答案二、填空题:请把答案填在题中横线上(每小题5分,共25分).11.函数52)(2+-=x x x f 的定义域是(]2,1-∈x ,值域是 . 12.函数3222--=x xy 的单调递减区间是 .13.已知()x x f 5.0log =,且(1)(21)f a f a -<-,则a 的取值范围是 . 14.若点(1,3)和(-4,-2)在直线02=++m y x 的两侧,则m 的取值范围是 . 15.已知函数()12-x f 的定义域是[]2,3-,则函数()1+x f 的定义域是 .三、解答题:请写出详细过程(6小题,共75分)16.(本小题12分)设集合}32,3,2{2-+=a a U ,}2|,12{|-=a A ,}5{=A C U ,求实数a 的值.17.(本小题12分)已知函数()x x x x f ln 2212--=. ①.求函数()x f 在点⎪⎭⎫⎝⎛-21,1处的切线方程. ②.求函数()x f 的极值.18. (本小题12分)某工厂生产一种产品的固定成本是20000元,每生产一件产品需要另外投入100元,市场销售部进行调查后得知,市场对这种产品的年需求量为1000件,且销售收入函数21()10002g t t t =-+,其中t 是产品售出的数量,且01000t ≤≤.(利润=销售收入—成本).①.若x 为年产量,y 表示利润,求()y f x =的解析式.②.当年产量为多少时,工厂的利润最大,最大值为多少?19.(本小题13分)已知定义在R 上的函数()x f 对所有的实数n m ,都有()()()n f m f n m f +=+,且当0>x 时,()0<x f 成立,()42-=f . ①.求()0f ,()1f ,()3f 的值. ②.证明函数()x f 在R 上单调递减. ③.解不等式()()622-<+x f x f .20.(本小题13分)已知不等式0222<-+-m x mx .①.若对于所有的实数x 不等式恒成立,求m 的取值范围.②.设不等式对于满足2≤m 的一切m 的值都成立,求x 的取值范围.21.(本小题13分)已知函数()()b x x a ax x f 6622323+++-=在2=x 处取得极值. ①.求a 的值及()x f 的单调区间.②.若[]4,1∈x 时,不等式()2b x f <恒成立,求b 的取值范围.2014-2015学年度高三第一学期期中联考文科数学参考答案11、[)8,4 12、(]1,∞- 13、3221<<a 14、105<<-m 15、46≤≤-x 三、解答题16、 由①得2=a 或4-=a 由②得2=a 或1-=a 2=∴a17、解:① ()xx x f 21--=' ()21-='=∴f k∴所求切线方程为232+-=x y ② ()()()xx x x x x x x x f 122212+-=--=--=' 且0>x 20<<∴x 时()0<'x f 2>x 时()0>'x f∴函数()x f 在()2,0单调递减,在()+∞,2单调递增. 18、解:①当01000x ≤≤时,t x =,∴211000200001002y x x x =-+--21900200002x x =-+-当1000x >时,1000t =22110001000200001002y x =-⨯+--480000100x =- ()2190020000(01000)2480000100(1000)x x x f x xx ⎧-+-≤≤⎪∴=⎨⎪->⎩②当01000x ≤≤时()221190020000(900)3850022f x x x x =-+-=--+∴当900x =时,()max 385000f x =当1000x >时,()480000100f x x =-为减函数,∴()480000100100f x <-⨯,即()380000f x <∴当年产量为900件时,工厂的利润最大,最大值为385000元.19、解:① 令0==n m 得()00=f令1==n m 得()21-=f()()()6123-=+=∴f f f ② 由已知得()()()n f m f n m f =-+令21x x >,且R x x ∈21,()()()2121x x f x f x f -=-∴ 21x x >()021<-∴x x f 即 ()()21x f x f < ∴函数()x f 在R 单调递减.③ 不等式可化为())3(f 22<+∴x x f 因为() x f 为R 上的减函数所以322>+x x ,解得1>x 或3-<x20、解: ① 当0=m 时,不等式为022<--x ,显然不恒成立. 0≠∴m∴ 0<m 0<∆解得 21-<m② 法一:不等式可化为()2212+<+x x m 即 1222++<x x m 上式对2≤m 恒立 21222>++∴x x 解得 10<<x 法二:不等式可化为()02212<--+x x m令()()2212--+=x x m m f()0<∴m f 对2≤m 恒立 ()02<∴f 即()022122<--+x x解得 10<<x21、解:① 由已知()()62332++-='x a ax x f ()02='f 1=∴a ()()()213--='x x x f 由()0>'x f 得2>x 或1<x ()0<'x f 得21<<x故函数()x f 在()2,1单调递减,在()1,∞-和()+∞,2单调递增. ② 由①得函数()x f 在[]2,1单调递减,在[]4,2单调递增()b f 6251+=()b f 6164+=2616b b <+∴ 解得8>b 或2-<b。

2014—2015学年第一学期初三年级数学期末考试试卷含答案

2014—2015学年第一学期初三年级数学期末考试试卷含答案

2014—2015学年第一学期初三年级期末质量抽测数学试卷2014.12学校姓名考试编号考生须知1.本试卷共6页,共五道大题,25个小题,满分120分.考试时间120分钟.2.在试卷和答题卡上认真填写学校名称、姓名和考试编号.3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效.4.考试结束,请将答题卡交回.一、选择题(共8道小题,每小题4分,共32分)下列各题均有四个选项,其中只有一个..是符合题意的.1.已知⊙O 1和⊙O 2的半径分别为3和5,如果O 1O 2= 8,那么⊙O 1和⊙O 2的位置关系是A .外切B.相交C.内切D.内含2.在不透明的布袋中装有2个白球,3个黑球,它们除颜色外完全相同,从袋中任意摸出一个球,摸出的球是白球..的概率是A .15B.13C.25D.233.如图,⊙O 的直径AB=4,点C 在⊙O 上,如果∠ABC =30°,那么AC 的长是A .1B .2C .3D .24. 在方格纸中,选择标有序号①②③④中的一个小正方形涂黑,使它与图中阴影部分组成的新图形构成中心对称图形,该小正方形的序号是A .①B .②C .③D .④5.如图,在△ABC 中,点D E 、分别在AB AC 、边上,DE ∥BC ,若:3:4AD AB,6AE,则AC 等于A. 3B. 4C . 6D. 86.当二次函数249y xx 取最小值时,x 的值为A .2B .1C .2D .9来源学|科|网ABC30°④③②①ABCODC BAO7.课外活动小组测量学校旗杆的高度.如图,当太阳光线与地面成30°角时,测得旗杆AB 在地面上的影长BC 为24米,那么旗杆AB 的高度约是A .12米B .83米C .24米D .243米[来源:]8.已知:如图,在半径为4的⊙O 中,AB 为直径,以弦AC (非直径)为对称轴将AC折叠后与AB 相交于点D ,如果3ADDB ,那么AC 的长为A .214B .27C .42D .6二、填空题(共4道小题,每小题4分,共16分)9.如果3cos 2A,那么锐角A 的度数为.10.如果一个圆锥的母线长为4,底面半径为1,那么这个圆锥的侧面积为.11.在1×2的正方形网格格点上放三枚棋子,按图所示的位置已放置了两枚棋子,如果第三枚棋子随机放在其它格点上,那么以这三枚棋子所在的格点为顶点的三角形是直角三角形的概率为.12.在平面直角坐标系xoy 中,直线2x 和抛物线2yax 在第一象限交于点A,过A 作ABx 轴于点B .如果a 取1,2,3,,,n 时对应的△AOB 的面积为123S S S ,,,,n S ,那么1S _____;123nS S S S _____.三、解答题(共6道小题,第13题4分,第14 -18题各5分,共29分)13.如图1,正方形ABCD 是一个 6 × 6网格的示意图,其中每个小正方形的边长为1,位于AD 中点处的点P 按图2的程序移动.(1)请在图中画出点P 经过的路径;(2)求点P 经过的路径总长.绕点A 顺时针旋转90°绕点B 顺时针旋转90°绕点C 顺时针旋转90°输入点P输出点ADPxOy[来源:.Com]14.计算:3tan302cos452sin 60.15.现有三个自愿献血者,两人血型为O 型,一人血型为A 型.若在三人中随意挑选一人献血,两年以后又从此三人中随意挑选一人献血,试求两次所献血的血型均为O 型的概率(要求:用列表或画树状图的方法解答).[来源:]16. 如图,从热气球C 处测得地面A 、B 两处的俯角分别为30°、45°,如果此时热气球C处的高度CD 为100米,点A 、D 、B 在同一直线上,求AB 两处的距离.17. 已知抛物线与x 轴相交于两点A(1,0),B(-3,0),与y 轴相交于点C (0,3).(1)求此抛物线的函数表达式;(2)如果点3,2Dm 是抛物线上的一点,求△ABD 的面积.18.如图,在△ABC 中,∠AB C =2∠C ,BD 平分∠ABC ,且2AD ,22BD ,求AB 的值.BCDADCBA四、解答题(共4道小题,每小题5分,共20分)19.如图,在平面直角坐标系xoy 中,⊙A 与y 轴相切于点3(0,)2B ,与x 轴相交于M 、N 两点.如果点M 的坐标为1(,0)2,求点N 的坐标.20.(1)已知二次函数223y xx ,请你化成2()y x h k的形式,并在直角坐标系中画出223y xx 的图象;(2)如果11()A x y ,,22()B x y ,是(1)中图象上的两点,且121x x ,请直接写出1y 、2y 的大小关系;(3)利用(1)中的图象表示出方程2210xx 的根来,要求保留画图痕迹,说明结果.21.已知:如图,在△ABC 中,AB =AC ,以AC 为直径的⊙O 与BC 交于点D ,DE ⊥AB ,垂足为E ,ED 的延长线与AC 的延长线交于点F .(1)求证:DE 是⊙O 的切线;(2)若⊙O 的半径为4,BE =2,求∠F 的度数.yxO AB MNyOxEOA22.阅读下面的材料:小明遇到一个问题:如图(1),在□ABCD 中,点E 是边BC 的中点,点F 是线段AE 上一点,BF 的延长线交射线CD 于点G. 如果3AF EF,求CD CG的值.他的做法是:过点E 作EH ∥AB 交BG 于点H ,则可以得到△BAF ∽△HEF .请你回答:(1)AB 和EH 的数量关系为,CG 和EH 的数量关系为,CD CG的值为.(2)如图(2),在原题的其他条件不变的情况下,如果(0)AF a a EF,那么CD CG的值为(用含a 的代数式表示).(3)请你参考小明的方法继续探究:如图(3),在四边形ABCD 中,DC ∥AB ,点E是BC 延长线上一点,AE 和BD 相交于点 F. 如果(00)AB BC m n mnCDBE,,,那么AF EF的值为(用含m ,n 的代数式表示).H(1)ABCDE FG G FE DCBA(2)(3)AB CDEF五、解答题(共3道小题,第23题7分,第24、25题各8分,共23分)23.由于2013年第30号强台风“海燕”的侵袭,致使多个城市受到影响. 如图所示,A 市位于台风中心M 北偏东15°的方向上,距离612千米,B 市位于台风中心M 正东方向603千米处. 台风中心以每小时30千米的速度沿MF 向北偏东60°的方向移动(假设台风在移动的过程中的风速保持不变),距离台风中心60千米的圆形区域内均会受到此次强烈台风的影响.(1)A 市、B 市是否会受到此次台风的影响?说明理由.(2)如果受到此次台风影响,该城市受到台风影响的持续时间为多少小时?备用图24.已知二次函数y = x 2–kx + k – 1(k >2).(1)求证:抛物线y = x 2–kx + k- 1(k >2)与x 轴必有两个交点;(2)抛物线与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,若tan 3OAC,求抛物线的表达式;(3)以(2)中的抛物线上一点P (m,n )为圆心,1为半径作圆,直接写出:当m 取何值时,x 轴与P 相离、相切、相交.25.已知:四边形ABCD 中,AD ∥BC ,AD=AB=CD ,∠BAD =120°,点E 是射线CD 上的一个动点(与C 、D 不重合),将△ADE 绕点A 顺时针旋转120°后,得到△ABE',连接EE'.(1)如图1,∠AEE'= °;(2)如图2,如果将直线AE 绕点A 顺时针旋转30°后交直线BC 于点F ,过点E 作EM∥AD 交直线AF 于点M ,写出线段DE 、BF 、ME 之间的数量关系;(3)如图3,在(2)的条件下,如果CE =2,AE=27,求ME 的长.xyO–1–21234–1–21234E'MFEDC BAE'EDCBA图1图2E'MFEDC BA图32014—2015学年第一学期初三年级期末质量抽测数学试卷参考答案及评分标准2014.12一、选择题(共8个小题,每小题4分,共32分)题号 1 2 3 4 5 6 7 8 答案 ACDBDABA二、填空题(共4个小题,每小题4分,共16分)题号9 10 1112答案304344 ,2n(n+1)(各2分)三、解答题(共6道小题,第13题4分,第14 -18题各5分,共29分)13.解:(1)如图所示:PAB CD,,,,,,,,,,,,,,,,,,,,2分(2)由题意得,点P 经过的路径总长为:270318091802n r .,,,,,,,,,,,4分14.解:原式=323322322,,,,,,,,,,,,,,,,,,,,,,3分=113,,,,,,,,,,,,,,,,,,,,,,4分=23.,,,,,,,,,,,,,,,,,,,,,,,,,,,,5分15.解:列表如下:O 1O 2 A O 1(O 1,O 1)(O 1,O 2)(O 1,A)O 2(O 2,O 1) (O 2,O 2) (O 2,A) A(A ,O 1)(A ,O 2) (A ,A),,,,,,,,,,,,,,,,,,,,,,,4分所以,两次所献血型均为O 型的概率为49.,,,,,,,,,,,,,,,,,,,,,,5分16.解:依题意,可知:30,45,,100,CABCBACD AB D CD 于点,,,,,,,,,,,,,,,1分,CD AB 90.CDACDB ,,,,,,,,,,,,,,,,,,,,,,,,,2分Rt 100BDC BDCD 在中,,,,,,,,,,,,,,,,,,,,,,,,3分Rt tan CDADC AAD在中,.∴31003AD CD .,,,,,,,,,,,,,,,,,,,,,,,,,4分1003100ABADBD.,,,,,,,,,,,,,,,,,,,,,,,5分∴AB 两处的距离为(1003100)米.17.解:(1)∵抛物线与y 轴相交于点C (0,3),∴设抛物线的解析式为23y axbx .,,,,,,,,,,,,,,,,,1分∵抛物线与x 轴相交于两点(1,0),(3,0)A B ,∴30,9330.a b a b ,,,,,,,,,,,,,,,,,,,,,,,,,,,2分解得:1,2.a b∴抛物线的函数表达式为:232yxx .,,,,,,,,,,,,,,,,3分(2)∵点3(,)2D m 是抛物线上一点,∴2(23339)224m . ,,,,,,,,,,,,,,,,,,,,,,4分∴119942242ABDDSAB y . ,,,,,,,,,,,,,,,,,,5分18.解:∵BD 平分∠ABC ,∴∠ABC =2∠1=2∠2.∵∠ABC =2∠C ,∴∠C =∠1=∠2.,,,,,,,,,,,1分∴22CD BD . ,,,,,,,,,,,,2分∴32AC.又∵∠A=∠A,∴△ABD ∽△ACB .,,,,,,,,,,,,,,,,,,,,,,,,,,,3分∴AD AB ABAC.,,,,,,,,,,,,,,,,,,,,,,,,,,,4分∴22326AB AD AC .∴6AB(舍负).,,,,,,,,,,,,,,,,,,,,,,,,,,5分四、解答题(共4道小题,每小题5分,共20分)19.解:连接AB 、AM ,过点A 作AC ⊥MN 于点C .∵⊙A 与y 轴相切于点B(0,32),∴AB ⊥y 轴.又∵AC ⊥MN ,x 轴⊥y 轴,∴四边形BOCA 为矩形.∴AC =OB=32,OC =BA .∵AC ⊥MN ,∴∠ACM=90°,MC=CN .,,,,,,,,,,,,,,,,,,,,2分∵M(12,0),∴OM =12.在Rt △AMC 中,设AM=r.O A B MNCyx21DCBA。

安徽省蚌埠市2023-2024学年高二上学期语文期末考试试卷(含答案)

安徽省蚌埠市2023-2024学年高二上学期语文期末考试试卷(含答案)

安徽省蚌埠市2023-2024学年高二上学期语文期末试卷姓名:__________ 班级:__________考号:__________现代文阅读Ⅰ材料一:中华传统文化,的确是历史悠久,博大精深,其中那些精华的东西,让人不能不爱它,也无法离开它。

它是我们慈祥的老祖母,是我们睿智的老祖父,是雍容华贵的贵妇人,是风流倜傥的大诗人,是炎黄子孙的传家宝,是中华民族的精气神,是先进文化建设之渊源,是构建和谐社会之基石。

首先,中国传统文化蕴含着一种伟大的民族精神。

在五千多年的发展中,中华民族形成了以爱国主义为核心的团结统一、爱好和平、勤劳勇敢、自强不息的伟大民族精神。

中华传统文化,始终把爱国主义精神作为首要的价值标准。

一向主张先爱国,后立家,信奉无国便无家,“家”为小家,“国”是大家。

不管是国泰民安,还是国难当头,都要先大家而后小家。

中华民族历来反对涣散分裂,追求团结统一,强调群体优势,崇尚众志成城。

爱好和平,更是中华民族的优良传统。

我们的传统文化一向主张“和为贵”,追求天下大同的太平盛世,奉行“仁义礼智信”,修身齐家治国平天下,以“仁”为本,反对战争,反对暴力,反对冤冤相报,主张以德报怨。

勤劳勇敢,自强不息,是中华民族世代相传的传统美德和生命意志。

传统文化歌颂“富贵不能淫,贫贱不能移,威武不能屈”,信奉“天道酬勤”,勉励人们“天行健,君子以自强不息”。

以上独特的民族精神,是中华民族传统文化的风骨,是中华民族赖以生存和发展的精神支撑。

其次,中国传统文化蕴含着一种深刻的哲学智慧。

中华民族传统文化充满着深刻的大智慧,是东方哲学的杰出代表。

这大智慧集中体现在“儒、道、释互补”之中。

儒家思想以孔孟之道为代表,其核心是“仁”。

以仁义礼智信为主要内容,以“中庸之道”为哲学理念。

“仁爱”与“中庸”,均极富智慧。

道家思想以老庄之道为代表,其核心是“道”。

以太极八卦、阴阳五行、天人合一等为主要内容。

其代表性著作《易经》,是中国学问之根据。

试题精选_【百强校】安徽省蚌埠市第二中学2014-2015学年高一上学期期中考试数学参考答案_精校完美版

试题精选_【百强校】安徽省蚌埠市第二中学2014-2015学年高一上学期期中考试数学参考答案_精校完美版

解(3)在集合 中, 在 上是减函数 ,
21. 解:(1)令 即 (2)由 当 当 若 化简得: 时,方程无解 时,解得 ,则 即 即 ,则
若 ,则 (3)(3) f ( x) a 2 2 x 2 2 x 1 a , x [ 1,1] 1 1 令2 x t , 则y a t 2 2t 1 a, t [ ,2] , 令g (t ) at 2 2t 1 a, t [ ,2] 2 2 1 当a 0时,g (t )在 [ ,2] 单调递减, g (t ) min g (2) 3a 3 2 1 当a 0时,g (t ) 2t 1在 [ ,2] 单调递减, g (t ) min g (2) 3a 3 2 1 1 g (t ) min g (2) 3a 3 , 当0 a 时,g (t )在 [ ,2] 单调递减, 2 2 1 1 1 1 1 1 当 a 2时,g (t )在[ , ]单调递减,在[ ,2]单调递增 , g (t ) min g ( ) 1 a , 2 a 2 a a a 1 3 1 当a 2时,g (t )在 [ ,2] 单调递增, g (t ) min g ( ) a , 2 4 2 1 3a 3, a 2 1 1 综上, (a ) g (t ) min 1 a , a 2 a 2 3 a, a2 4
(2)因为函数
,满足
17.试题分析: , (2)由题意: 解得: 或 . 6分 或 12 分 , 10 分
3分
18.【解析】 解析:(
时,解集为 时,解集为
(5)当
时,解集为
19.【解析】(1)由已知 (2) (3) 设 即: 且 在

安徽省蚌埠市2023-2024学年高二下学期7月期末考试 数学含答案

安徽省蚌埠市2023-2024学年高二下学期7月期末考试 数学含答案

蚌埠市2023—2024学年度第二学期期末学业水平监测高二数学(答案在最后)本试卷满分150分,考试时间120分钟注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡和试卷上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.命题“n ∀∈Z ,n ∈Q ”的否定为()A.n ∀∈Z ,n ∉QB.n ∀∈Q ,n ∈ZC.n ∃∈Z ,n ∈QD.n ∃∈Z ,n ∉Q2.若lg πa =,ln πb =,lg e c =,其中e 是自然对数的底数,则()A.a b c>> B.b a c>> C.a c b>> D.c a b >>3.已知向量()1,2a =r ,()4,3b = ,则向量b 在a上的投影向量的坐标是()A.()2,4B.(C.24,55⎛⎫ ⎪⎝⎭D.,55⎛⎫⎪⎝⎭4.已知函数()1221,0,,0,x x f x x x ⎧-≤⎪=⎨⎪>⎩若()3f m =,则m 的值为()A.B.2C.9D.2或95.在()521x -的展开式中,3x 的系数是()A.80- B.40- C.20 D.806.ABC 中,“A B >”是“cos2cos2A B <”的()A.充分不必要条件B.必要不充分条件C .充要条件D.既不充分也不必要条件7.已知函数()tan sin 2f x x =,则函数()f x 的解析式为()A.()22ππ,12x f x x k k x ⎛⎫=≠+∈ ⎪-⎝⎭Z B.()221xf x x =-C.()22ππ,12x f x x k k x ⎛⎫=≠+∈ ⎪+⎝⎭Z D.()221x f x x =+8.已知事件A ,B ,()13P B =,()34P B A =,()12P B A =,则()P A =()A.14B.13C.23D.34二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知由样本数据点集合(){,|1,2,,}i i x y i n = ,求得的回归直线方程为 1.5.5ˆ0yx =+,且3x =,现发现两个数据点()1.3,2.1和()4.7,7.9误差较大,剔除后重新求得的回归直线l 的斜率为1.2,则()A.变量x 与y 具有负相关关系B.剔除后y 不变C.剔除后的回归方程为 1.2.4ˆ1yx =+ D.剔除后相应于样本点()2,3.75的残差为0.0510.函数()()(]ππ0,2,,22f x x ωϕωϕ⎛⎫⎛⎫=+∈∈- ⎪ ⎪⎝⎭⎝⎭的部分图象如图所示,则下列结论正确的是()A.()()πf x f x +=B.π4x =-是曲线()y f x =的一条对称轴C.函数3π8f x ⎛⎫-⎪⎝⎭是奇函数D.若方程()1f x =在()0,m 上有且仅有6个解,则5π13π,24m ⎛⎤∈⎥⎝⎦11.已知函数()f x 及其导函数()f x '的定义域均为R .若函数()23f x -的图象关于点(2,1)对称,()()3310f x f x ++-=且()02f =-,则()A.()f x 的图象关于点(1,1)对称B.()()4f x f x +=)C.()()10262f f ''= D.()5012501i f i ==∑三、填空题:本题共3小题,每小题5分,共15分.12.已知集合(){}2log 1M x x a =-<,若2M ∉,写出一个满足题意的实数a 的值:__________.13.安排甲、乙、丙、丁共4名志愿者完成6项服务工作,每人至少完成1项工作,每项工作由1人完成,甲不能完成其中的A 项工作,则不同的安排方式有______种(用数字作答).14.函数()e xf x x =在0x =处的切线方程为_________;若()()ln 2g x f x x x a =--+-有两个零点,则实数a 的取值范围是_________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.已知函数()32212f x x ax x b =-++在2x =处取得极小值5.(1)求实数a ,b 的值;(2)当[]0,3x ∈时,求函数()f x 的最大值.16.书籍是精神世界的入口,阅读让精神世界闪光,阅读逐渐成为许多人的一种生活习惯,每年4月23日为世界读书日.某市某中学为了了解高一年级学生的阅读情况,从高一年级全部1000名学生中随机抽取100名学生,调查他们每周的阅读时间(单位:小时)并进行统计,得到样本的频率分布直方图如图所示.由频率分布直方图可以认为该校高一学生每周阅读时间X 服从正态分布()2,N μσ,其中μ可以近似为100名学生的每周阅读时间的平均值(同组数据用该组数据区间的中点值表示),223.8σ=.(1)试估计高一全体学生中每周阅读时间不高于6.8小时的人数(四舍五入取整);(2)若从高一全体学生中随机抽取5名学生进行座谈,设选出的5人中每周阅读时间在10.6小时以上的学生人数为Y ,求随机变量Y 的分布列,数学期望与方差.参考数据:若随机变量ξ服从正态分布()2,N μσ,则(),0.6827P μσμσ-+≈,()2,20.9545P μσμσ-+≈,()3,30.9973P μσμσ-+≈.17.我国为了鼓励新能源汽车的发展,推行了许多购车优惠政策,包括:国家财政补贴、地方财政补贴、免征车辆购置税、充电设施奖补、车船税减免、放宽汽车消费信贷等.为了了解群众对新能源车和传统燃油车的偏好是否与年龄有关,调查组对400名不同年龄段(19岁以上)的车主进行了问卷调查,其中有200名车主偏好新能源汽车,这200名车主中各年龄段所占百分比见下图:在所有被调查车主中随机抽取1人,抽到偏好传统燃油车且在19~35岁年龄段的概率为316.(1)请将下列2×2列联表直接补充完整.偏好新能源汽车偏好燃油车合计19~35岁35岁以上合计并判断能否在犯错误的概率不超过0.001的前提下,认为偏好新能源汽车与年龄有关?(2)将上述调查中的频率视为概率,按照分层随机抽样方法,从偏好新能源汽车的车主中选取5人,再从这5人中任意取2人,求2人中恰有1人在19-35岁年龄段的概率.附:()()()()()22n ad bc a b c d a c b d χ-=++++,其中n a b c d =+++.α0.1000.0500.0100.0050.001αχ2.7063.8416.6357.87910.82818.定义函数()sin cos f x m x n x =+的“伴随向量”为(),a m n = ,向量(),a m n =的“伴随函数”为()sin cos f x m x n x =+.(1)若向量(),a m n = 的“伴随函数”()f x 满足π7π9tan 11π918f f ⎛⎫⎪⎝⎭=⎛⎫ ⎪⎝⎭,求n m的值;(2)已知2a b == ,设()0,0OP a b λμλμ=+>> ,且OP的“伴随函数”为()g x ,其最大值为t ,求()()2t λμ-+的最小值,并判断此时向量a ,b的关系.19.若非空集合A 与B ,存在对应关系f ,使A 中的每一个元素a ,B 中总有唯一的元素b 与它对应,则称这种对应为从A 到B 的映射,记作f :A →B .设集合{}5,3,1,1,3,5A =---,{}12,,,n B b b b = (*n ∈N ,6n ≤),且B A ⊆.设有序四元数集合()1234{,,,,i P X X x x x x x A ==∈且1,2,3,4}i =,(){}1234,,,Q Y Y y y y y ==.对于给定的集合B ,定义映射f :P →Q ,记为()Y f X =,按映射f ,若i x B ∈(1,2,3,4i =),则1i i y x =+;若i x B ∉(1,2,3,4i =),则i i y x =.记()41B ii S Y y ==∑.(1)若{}5,1B =-,()1,3,3,5X =--,写出Y ,并求()B S Y ;(2)若{}123,,B b b b =,()1,3,3,5X =--,求所有()B S Y 的总和;(3)对于给定的()1234,,,X x x x x =,记41ii xm ==∑,求所有()B S Y 的总和(用含m 的式子表示).蚌埠市2023—2024学年度第二学期期末学业水平监测高二数学本试卷满分150分,考试时间120分钟注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡和试卷上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.命题“n ∀∈Z ,n ∈Q ”的否定为()A.n ∀∈Z ,n ∉QB.n ∀∈Q ,n ∈ZC.n ∃∈Z ,n ∈QD.n ∃∈Z ,n ∉Q【答案】D 【解析】【分析】直接根据全称命题的否定求解即可.【详解】命题“n ∀∈Z ,n ∈Q ”的否定为“n ∃∈Z ,n ∉Q ”.故选:D.2.若lg πa =,ln πb =,lg e c =,其中e 是自然对数的底数,则()A.a b c >>B.b a c>> C.a c b>> D.c a b>>【答案】B 【解析】【分析】应用对数函数单调性判断大小即可.【详解】因为lg y x =单调递增,又πe >,所以lgπlge >,可得a c >;又因为πlog y x =单调递增,又10e >,所以ππlog 10log e>0>,所以ππ11,lgπlnπlog 10log e<<,可得a b <,所以b a c >>.故选:B.3.已知向量()1,2a =r ,()4,3b = ,则向量b 在a上的投影向量的坐标是()A.()2,4B.(C.24,55⎛⎫ ⎪⎝⎭D.,55⎛⎫⎪⎝⎭【答案】A 【解析】【分析】根据坐标计算,a a b ⋅,然后由投影向量公式可得.【详解】因为142310a a b ==⋅=⨯+⨯= ,所以向量b 在a上的投影向量为()()21021,22,45a b a a a⋅===.故选:A4.已知函数()1221,0,,0,x x f x x x ⎧-≤⎪=⎨⎪>⎩若()3f m =,则m 的值为()A.B.2C.9D.2或9【答案】C 【解析】【分析】由题可得2130mm ⎧-=⎨≤⎩或123m m ⎧⎪=⎨⎪>⎩,即求.【详解】∵函数()1221,0,0x x f x x x ⎧-≤⎪=⎨⎪>⎩,()3f m =,∴2130mm ⎧-=⎨≤⎩或123m m ⎧⎪=⎨⎪>⎩,解得9m =.故选:C.5.在()521x -的展开式中,3x 的系数是()A.80-B.40- C.20D.80【答案】D 【解析】【分析】先求出5(21)x -展开式中的通项,再求出k 值即可.【详解】5(21)x -展开式中的通项公式为:555155C (2)(1)C (1)2k k k kk k k k T x x ---+=-=-,令53k -=,则2k =,5(21)x ∴-展开式中3x 的系数为2235C (1)280-=,故选:D .6.ABC 中,“A B >”是“cos2cos2A B <”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】C 【解析】【分析】cos2cos2A B <等价于sin sin A B >,由正弦定理以及充分必要条件的定义判断即可.【详解】在三角形中,因为cos2cos2A B <,所以2212sin 12sin A B -<-,即sin sin A B >若A B >,则a b >,即2sin 2sin R A R B >,sin sin A B >若sin sin A B >,由正弦定理sin sin a b A B=,得a b >,根据大边对大角,可知A B >所以“A B >”是“cos2cos2A B <”的充要条件故选:C7.已知函数()tan sin 2f x x =,则函数()f x 的解析式为()A.()22ππ,12x f x x k k x ⎛⎫=≠+∈ ⎪-⎝⎭Z B.()221xf x x =-C.()22ππ,12x f x x k k x ⎛⎫=≠+∈ ⎪+⎝⎭Z D.()221x f x x =+【答案】D 【解析】【分析】由二倍角公式以及平方关系、商数关系即可得解.【详解】()()2222sin cos 2tan tan sin 2,tan R sin cos tan 1x x xf x x x x x x ===∈++,所以()221xf x x =+.故选:D.8.已知事件A ,B ,()13P B =,()34P B A =,()12P B A =,则()P A =()A.14B.13C.23D.34【答案】C 【解析】【分析】应用条件概率公式及全概率公式计算即可.【详解】因为()()()()()()31,42P BA P B A P B A P B A P A P A====,所以()()11,42P B A P B A ==,所以()()()()()()()()1111423P B P A P B A P A P B A P A P A =+=⨯+-⨯=,所以()23P A =.故选:C.二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知由样本数据点集合(){,|1,2,,}i i x y i n = ,求得的回归直线方程为 1.5.5ˆ0yx =+,且3x =,现发现两个数据点()1.3,2.1和()4.7,7.9误差较大,剔除后重新求得的回归直线l 的斜率为1.2,则()A.变量x 与y 具有负相关关系B.剔除后y 不变C.剔除后的回归方程为 1.2.4ˆ1yx =+ D.剔除后相应于样本点()2,3.75的残差为0.05【答案】BC 【解析】【分析】根据给定条件,利用回归直线方程的性质、残差的基本概念等进行解题.【详解】对于A ,由剔除前回归直线的斜率为1.5,剔除后重新求得的回归直线l 的斜率为1.2,两者均大于0,则变量x 与y 具有正相关关系,A 错误;对于B ,剔除前 1.50.55y x =+=,而剔除的两个数据点1.3 4.732x +==,2.17.952y +==,因此剔除后y 不变,B 正确;对于C ,剔除后3x =,5y=,而回归直线l 的斜率为1.2,则回归直线方程为ˆ 1.2 1.4yx =+,C 正确;对于D ,剔除后的回归直线方程为ˆ 1.2 1.4yx =+,当2x =时,ˆ 3.8=y ,则残差为3.75 3.80.05-=-,D 错误.故选:BC10.函数()()(]ππ0,2,,22f x x ωϕωϕ⎛⎫⎛⎫=+∈∈- ⎪ ⎪⎝⎭⎝⎭的部分图象如图所示,则下列结论正确的是()A.()()πf x f x +=B.π4x =-是曲线()y f x =的一条对称轴C.函数3π8f x ⎛⎫-⎪⎝⎭是奇函数D.若方程()1f x =在()0,m 上有且仅有6个解,则5π13π,24m ⎛⎤∈ ⎥⎝⎦【答案】ACD 【解析】【分析】由(0)1f ϕ==-及π()08f =,可求得π())4f x x =-,从而判断A ,B ,C ;解出()1f x =的6个正根,再求出第7个正根,即可得m 的范围,从而判断D .【详解】解:对于A .(0)1f ϕ==-,即sin 2ϕ=-,又因为ππ[,]22ϕ∈-,所以4πϕ=-,所以π())4f x x ω=-,又因为π()08f =,ππsin()084ω-=,所以ππ84k ωπ-=,k ∈Z ,解得82k ω=+,k ∈Z ,又因为(0,2]ω∈,所以0k =,2ω=,所以π())4f x x =-,所以2ππ2T ==,所以(π)()f x f x +=,故A 正确;对于B .因为π())4f x x =-,所以π3π()144f -=-=-≠所以π4x =-不是函数的对称轴,故B 错误;对于C .因为3π(π)28f x x x -=-=,易知此时函数为奇函数,故C 正确;对于D.πππ()1)1sin(2)22π44244f x x x x k π=⇔-=⇔-=⇔-=+,k ∈Z或()π3π22π,44x k k -=+∈Z ,即π()1π4f x x k =⇔=+,k ∈Z 或()π,2x k k π=+∈Z ,若方程()1f x =在(0,)m 上有且只有6个根,则将它们从小到大排列为:π4,π2,5π4,3π2,9π4,5π2,由规律可知,大于5π2且离5π2最近的使得()1f x =的x 为13π4,所以5π13π(,24m ∈,故D 正确.故选:ACD .11.已知函数()f x 及其导函数()f x '的定义域均为R .若函数()23f x -的图象关于点(2,1)对称,()()3310f x f x ++-=且()02f =-,则()A.()f x 的图象关于点(1,1)对称B.()()4f x f x +=)C.()()10262f f ''=D.()5012501i f i ==∑【答案】ACD【解析】【分析】根据函数的图象变换及其对称性,可判断A ;结合()(2)2f x f x +-=和(3)(3)10f x f x ++-=,化简得到()(4)8f x f x =+-,可判断B ;对(3)(3)10f x f x ++-=和()(2)2f x f x +-=,两边同时求导,得()(4)f x f x ''=+,从而得()f x '是以4为周期的周期函数,即可判断C ;令()()2g x f x x =-,可得()g x 的周期为4,且令()()2f x g x x =+,用赋值法求得(1)1g =-,(2)0=g ,(3)1g =-,(4)2g =-,根据501()(1)(2)(50)(1)(2)(50)2(12350)i f i f f f g g g ==++=+++++++∑ 求解即可.【详解】解:A .设函数()y f x =的图象关于(,)a b 对称,则(3)y f x =-关于(3,)a b +对称,可得(23)f y x =-关于3(,)2a b +对称,因为函数(23)f x -的图像关于点(2,1)对称,可得322a +=,1b =,解得1a =,1b =,所以函数()y f x =的图象关于(1,1)对称,所以A 正确;B .由函数()y f x =的图象关于(1,1)对称,可得()(2)2f x f x +-=,因为(3)(3)10f x f x ++-=,可得(4)(2)10f x f x ++-=,两式相减得(4)()8f x f x +-=,即(4)()8f x f x +=+,所以B 不正确;C .由(3)(3)10f x f x ++-=,可得(3)(3)0f x f x ''+--=,即(3)(3)f x f x ''+=-,所以(6)()f x f x ''+=-,在()(2)2f x f x +-=中,两边求导得:()(2)0f x f x ''--=,即()(2)f x f x '=-,(2)()f x f x ''+=-,所以(2)(6)f x f x ''+=+,即()(4)f x f x ''=+,所以()y f x '=的周期为4,所以(1026)(2)f f ''=,故C 正确;D .令()()2g x f x x =-,可得(4)(4)2(4)(4)28g x f x x f x x +=+-+=+--,因为()(4)8f x f x =+-,所以(4)(4)28()2()g x f x x f x x g x +=+--=-=,所以()(4)g x g x =+,所以函数()g x 是以4为周期的周期函数,因为(0)2f =-,且函数()f x 关于(1,1)对称,可得f (1)1=,f (2)2(0)4f =-=,又因为(3)(3)10f x f x ++-=,令0x =,可得2(3)10f =,所以(3)5f =,再令1x =,可得(4)(2)10f f +=,所以(4)6f =,由()()2g x f x x =-,可得(1)1g =-,(2)0=g ,(3)1g =-,(4)2g =-,可得(1)(2)(3)(4)4g g g g +++=-,又由函数()()2g x f x x =-是以4为周期的周期函数,且()()2f x g x x =+,所以501()(1)(2)(50)(1)(2)(50)2(12350)i f i f f f g g g ==++=+++++++∑ 12[(1)(2)(3)(4)](1)(2)2(1250)g g g g g g =++++++++ 50(150)12(4)10225012+=⨯--++⨯=,所以D 正确.故选:ACD .【点睛】关键点点睛:本题D 选项的关键是求出函数的周期以及一个周期内函数值的和,最后求和即可.三、填空题:本题共3小题,每小题5分,共15分.12.已知集合(){}2log 1M x x a =-<,若2M ∉,写出一个满足题意的实数a 的值:__________.【答案】2(本题答案不唯一,只要所写数值满足(][),02,a ∈-∞⋃+∞即可)【解析】【分析】解对数不等式求出集合M ,然后根据2M ∉可得a 的范围,即可得答案.【详解】由()2log 1x a -<得02x a <-<,即2a x a <<+,所以(),2M a a =+,因为2M ∉,所以2a ≥或22a +≤,得(][),02,a ∞∞∈-⋃+.故答案为:2(答案不唯一)13.安排甲、乙、丙、丁共4名志愿者完成6项服务工作,每人至少完成1项工作,每项工作由1人完成,甲不能完成其中的A 项工作,则不同的安排方式有______种(用数字作答).【答案】1170【解析】【分析】先分组,然后将不含工作A 的3组工作中选1组分配为甲,再分配其他3组工作即可.【详解】第一步,将6项工作分为1,1,1,3或1,1,2,2有3111221163216421322322C C C C C C C C 65A A A +=种情况;第二步,从不含工作A 的3组工作中选1组分配为甲,有13C 3=种情况;第三步,将剩下的3组工作分配给其余3人,有33A 6=种情况.由分布计数乘法计数原理可得不同的安排方式有65361170⨯⨯=种.故答案为:117014.函数()e xf x x =在0x =处的切线方程为_________;若()()ln 2g x f x x x a =--+-有两个零点,则实数a 的取值范围是_________.【答案】①.0x y -=②.(),1-∞【解析】【分析】第一个空,对()f x 求导,求出(0)f '和(0)f ,即可求解切线方程;第二个空,进行合理换元和同构,转化为()e t h t t =-的图象与直线2y a =-有两个交点,转化为交点问题,再利用导数研究函数的单调性、最值,最后得到参数的取值范围即可.【详解】()(1)e x f x x '=+,则(0)1f '=,又(0)0f =,所以函数()e x f x x =在0x =处的切线方程为y x =;令()()ln 2e ln 20x g x f x x x a x x x a =--+-=--+-=,所以ln e ln e (ln )2x x x x x x x x a +--=-+=-.令ln ()e (ln )x x F x x x +=-+,定义域为(0,)+∞,2y a =-,令ln t x x =+,易知ln t x x =+在(0,)+∞上单调递增,且R t ∈.所以()e t h t t =-,则函数()g x 有两个零点转化为函数()e t h t t =-的图象与直线2y a =-有两个交点.则()e 1t h t '=-,当0t <时,()0h t '<;当0t >时,()0h t '>,即()e t h t t =-在(,0)-∞上单调递减,在(0,)+∞上单调递增,所以0()(0)e 01h t h ≥=-=,当t →-∞时,()h t →+∞;当t →+∞时,()h t →+∞,则21y a =->,解得1a <,即实数a 的取值范围是(,1)-∞.故答案为:y x =;(,1)-∞.【点睛】关键点点睛:本题第二问的关键是利用同构思想,构造函数()e t h t t =-,转化为直线与函数交点问题.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.已知函数()32212f x x ax x b =-++在2x =处取得极小值5.(1)求实数a ,b 的值;(2)当[]0,3x ∈时,求函数()f x 的最大值.【答案】(1)9a =,1b =.(2)10【解析】【分析】(1)直接求导得()2244120f a =-+=',解出a 值,验证即可;(2)由(1)知()3229121f x x x x =-++,求导再列表即可得到其最大值.【小问1详解】()26212f x x ax =-+',因为()f x 在2x =处取极小值5,所以()2244120f a =-+=',得9a =,此时()()()261812612f x x x x x =-+=--',令()0f x '<,解得12x <<;令()0f x '>,解得1x <或2x >,所以()f x 在()1,2上单调递减,在()2,∞+上单调递增,所以()f x 在2x =时取极小值,符合题意.所以9a =,()322912f x x x x b =-++.又()245f b =+=,所以1b =.综上,9a =,1b =.【小问2详解】由(1)知()3229121f x x x x =-++,()()()612f x x x -'=-,列表如下:x()0,11()1,22()2,33()f x '+-+()f x 1极大值6极小值510由于610<,故[]0,3x ∈时,()()max 310f x f ==.16.书籍是精神世界的入口,阅读让精神世界闪光,阅读逐渐成为许多人的一种生活习惯,每年4月23日为世界读书日.某市某中学为了了解高一年级学生的阅读情况,从高一年级全部1000名学生中随机抽取100名学生,调查他们每周的阅读时间(单位:小时)并进行统计,得到样本的频率分布直方图如图所示.由频率分布直方图可以认为该校高一学生每周阅读时间X 服从正态分布()2,N μσ,其中μ可以近似为100名学生的每周阅读时间的平均值(同组数据用该组数据区间的中点值表示),223.8σ=.(1)试估计高一全体学生中每周阅读时间不高于6.8小时的人数(四舍五入取整);(2)若从高一全体学生中随机抽取5名学生进行座谈,设选出的5人中每周阅读时间在10.6小时以上的学生人数为Y ,求随机变量Y 的分布列,数学期望与方差.参考数据:若随机变量ξ服从正态分布()2,N μσ,则(),0.6827P μσμσ-+≈,()2,20.9545P μσμσ-+≈,()3,30.9973P μσμσ-+≈.【答案】(1)159人(2)分布列见解析,()52E Y =,()54D Y =.【解析】【分析】(1)利用正态分布相关知识即可求解;(2)因为2~(10.6,3.8)X N ,所以每周阅读时间在10.6小时以上的概率为1(10.6)2P X >=,可得1~(5,2Y B ,然后求出对应的概率即可得解.【小问1详解】样本中100名学生每周阅读时间的均值为:20.160.2100.3140.25180.1510.6⨯+⨯+⨯+⨯+⨯=,即10.6μ=,又 3.8σ=,所以()2~10.6,3.8X N ,所以()()()16.810.68270.158652P X P X μσ≤=≤-=⨯-=,所以全年级学生中每周阅读时间不高于6.8小时的人数大约为:0.158651000159⨯≈(人)【小问2详解】因为()2~10.6,3.8X N ,所以每周阅读时间在10.6小时以上的概率为()110.62P X >=,可得1~5,2Y B ⎛⎫ ⎪⎝⎭,故()505110C 232P Y ⎛⎫=== ⎪⎝⎭,()515151C 232P Y ⎛⎫=== ⎪⎝⎭,()525152C 216P Y ⎛⎫=== ⎪⎝⎭,()535153C 216P Y ⎛⎫=== ⎪⎝⎭,()545154C 3232P Y ⎛⎫=== ⎪⎝⎭,()555115C 232P Y ⎛⎫=== ⎪⎝⎭,随机变量Y 的分布列为:Y012345P132532516516532132故()15522E Y =⨯=,()1155224D Y =⨯⨯=.17.我国为了鼓励新能源汽车的发展,推行了许多购车优惠政策,包括:国家财政补贴、地方财政补贴、免征车辆购置税、充电设施奖补、车船税减免、放宽汽车消费信贷等.为了了解群众对新能源车和传统燃油车的偏好是否与年龄有关,调查组对400名不同年龄段(19岁以上)的车主进行了问卷调查,其中有200名车主偏好新能源汽车,这200名车主中各年龄段所占百分比见下图:在所有被调查车主中随机抽取1人,抽到偏好传统燃油车且在19~35岁年龄段的概率为316.(1)请将下列2×2列联表直接补充完整.偏好新能源汽车偏好燃油车合计19~35岁35岁以上合计并判断能否在犯错误的概率不超过0.001的前提下,认为偏好新能源汽车与年龄有关?(2)将上述调查中的频率视为概率,按照分层随机抽样方法,从偏好新能源汽车的车主中选取5人,再从这5人中任意取2人,求2人中恰有1人在19-35岁年龄段的概率.附:()()()()()22n ad bc a b c d a c b d χ-=++++,其中n a b c d =+++.α0.1000.0500.0100.0050.001αχ 2.7063.8416.6357.87910.828【答案】(1)表格见解析,能在犯错误的概率不超过0.001的前提下,认为偏好新能源汽车与年龄有关(2)35.【解析】【分析】(1)补全22⨯列联表,计算2χ的值,与临界值比较即可判断;(2)利用古典概型的概率公式求解.【小问1详解】在所有被调查车主中随机抽取1人,抽到偏好传统燃油车且在19~35岁年龄段的概率为316,所以偏好传统燃油车且在19~35岁年龄段得人数:34007516⨯=(人),故偏好传统燃油车且在35岁以上年龄段得人数:20075125-=(人),新能源汽车200名车主中在19~35岁年龄段的比例为38%22%60%+=,故人数为:20060%120⨯=(人):新能源汽车35岁以上的人数为:20012080-=(人),填表如下:偏好新能源汽车偏好燃油车合计19~35岁1207524035岁以上80125180合计200200400()()()()()()222400120125758020.26310.828195205200200n ad bc a b c d a c b d χ-⨯⨯-⨯==≈>++++⨯⨯⨯,则能在犯错误的概率不超过0.001的前提下,认为偏好新能源汽车与年龄有关.【小问2详解】按照分层随机抽样,从偏好新能源汽车的车主中选取5人,其中在1935-岁年龄段的人数为12053200⨯=人,35岁以上的人数为2,从5人中任意取2人,共有25C 10=种情况,其中恰有1人在19~35岁年龄段的有1132C C 6=种情况,故2人中恰有1人在19~35岁年龄段的概率为63105P ==.18.定义函数()sin cos f x m x n x =+的“伴随向量”为(),a m n = ,向量(),a m n =的“伴随函数”为()sin cos f x m x n x =+.(1)若向量(),a m n = 的“伴随函数”()f x 满足π7π9tan 11π918f f ⎛⎫ ⎪⎝⎭=⎛⎫ ⎪⎝⎭,求n m的值;(2)已知2a b == ,设()0,0OP a b λμλμ=+>>,且OP的“伴随函数”为()g x ,其最大值为t ,求()()2t λμ-+的最小值,并判断此时向量a ,b的关系.【答案】(1)(2)最小值为12-,此时a b = .【解析】【分析】(1)根据题意得出(),a m n = 的“伴随函数”,然后表示出1π91π18f f ⎛⎫ ⎪⎝⎭⎛⎫ ⎪⎝⎭,令tan n m θ=,利用换元的思想得到π7πtan tan 99θ⎛⎫+= ⎪⎝⎭,再利用正切函数求解即可;(2)设()2cos ,2sin a αα= ,()2cos ,2sin b ββ= ,利用向量线性运算的坐标表示得出OP,进一步得到()g x 的解析式,根据0x 满足0102π2π,2π2π,2x k x k αβ⎧+=+⎪⎪⎨⎪+=+⎪⎩则0x x =时,22t λμ=+,从而()()()()2211122222t t t t λμ---+==-≥-,即可判断a b = .【小问1详解】由题意知,向量(),a m n =的“伴随函数”为()sin cos f x m x n x =+,所以πππππsin cos sin cos tan 99999911π11ππππ11πsin cos cos sin 1tan 181899918πn f m n m n m n m n m n f m ⎛⎫+++ ⎪⎝⎭===⎛⎫+--⨯ ⎪⎝⎭,令tan n m θ=,上式化为π7πtan tan 99θ⎛⎫+= ⎪⎝⎭,所以π7ππ99k θ+=+,2ππ3k θ=+,k ∈Z ,即2πtan tan 3n m θ===.【小问2详解】设()2cos ,2sin a αα= ,()2cos ,2sin b ββ=,因为()()()2cos cos ,2sin sin OP a b λμλαμβλαμβ=+=++,所以()()()2cos cos sin 2sin sin cos g x x xλαμβλαμβ=+++()()2cos sin sin cos 2cos sin sin cos x x x x λααμββ=+++()()2sin 2sin x x λαμβ=+++,令()()()2sin 2sin 22h x x x λαμβλμ=+++≤+,若0x 满足0102π2π,2π2π,2x k x k αβ⎧+=+⎪⎪⎨⎪+=+⎪⎩则0x x =时,22t λμ=+,其中12,k k ∈Z ,此时()122πk k αβ-=-,即2πk αβ=+,k ∈Z ,故a b = .从而()()()()2211122222t t t t λμ---+==-≥-,等号当且仅当1t =时成立,所以()()2t λμ-+的最小值为12-,此时a b = .19.若非空集合A 与B ,存在对应关系f ,使A 中的每一个元素a ,B 中总有唯一的元素b 与它对应,则称这种对应为从A 到B 的映射,记作f :A →B .设集合{}5,3,1,1,3,5A =---,{}12,,,n B b b b = (*n ∈N ,6n ≤),且B A ⊆.设有序四元数集合()1234{,,,,i P X X x x x x x A ==∈且1,2,3,4}i =,(){}1234,,,Q Y Y y y y y ==.对于给定的集合B ,定义映射f :P →Q ,记为()Y f X =,按映射f ,若i x B ∈(1,2,3,4i =),则1i i y x =+;若i x B ∉(1,2,3,4i =),则i i y x =.记()41B i i S Y y ==∑.(1)若{}5,1B =-,()1,3,3,5X =--,写出Y ,并求()B S Y ;(2)若{}123,,B b b b =,()1,3,3,5X =--,求所有()B S Y 的总和;(3)对于给定的()1234,,,X x x x x =,记41i i xm ==∑,求所有()B S Y 的总和(用含m 的式子表示).【答案】(1)()2,3,3,5Y =--,()1B S Y =(2)40(3)63128m +【解析】【分析】(1)根据题意中的新定义,直接计算即可求解;(2)对1,3-,5是否属于B 进行分类讨论,求出对应所有Y 中的总个数,进而求解;(3)由题意,先求出在映射f 下得到的所有1y 的和,同理求出在映射f 下得到的所有i y (2,3,4i =)的和,即可求解.【小问1详解】由题意知,()()()()()1,3,3,511,3,3,52,3,3,5Y f X f ==--=+--=--,所以()23351B S Y =--+=.【小问2详解】对1,3-,5是否属于B 进行讨论:①含1的B 的个数为25C 10=,此时在映射f 下,1112y =+=;不含1的B 的个数为35C 10=,此时在映射f 下,11y =;所以所有Y 中2的总个数和1的总个数均为10;②含5的B 的个数为25C 10=,此时在映射f 下,4516y =+=;不含5的B 的个数为35C 10=,此时在映射f 下,45y =;所以所有Y 中6的总个数和5的总个数均为10;②含3-的B 的个数为25C 10=,此时在映射f 下,2312y =-+=-,3312y =-+=-;不含3-的B 的个数为35C 10=,此时在映射f 下,23y =-,33y =-;所以所有y 中2-的总个数和3-的总个数均为20.综上,所有()B S Y 的总和为()()101256202314010040⨯++++⨯--=-=.【小问3详解】对于给定的()1234,,,X x x x x =,考虑1x 在映射f 下的变化.由于在A 的所有非空子集中,含有1x 的子集B 共52个,所以在映射f 下1x 变为111y x =+;不含1x 的子集B 共521-个,在映射f 下1x 变为11y x =;所以在映射f 下得到的所有1y 的和为()()5511121216332x x x ++-=+.同理,在映射f 下得到的所有i y (2,3,4i =)的和()()5521216332i i i x x x ++-=+.所以所有()B S Y 的总和为()12346332463128x x x x m ++++⨯=+.【点睛】方法点睛:学生在理解相关新概念、新法则(公式)之后,运用学过的知识,结合已掌握的技能,通过推理、运算等解决问题.在新环境下研究“旧”性质.主要是将新性质应用在“旧”性质上,创造性地证明更新的性质,落脚点仍然是集合的有关知识点.。

2014-2015学年上学期期中考试高二数学试卷

2014-2015学年上学期期中考试高二数学试卷

2014-2015学年上学期期中考试高二数学试卷一.选择题(共12小题,每题5分,共60分.答案必须填涂在答题卡上)1.为了了解1200名学生对学校某项教改实验的意见,打算从中抽取一个容量为40的样本,考虑用系统抽样,则分段的间隔k为( ).A.40 B.30C.20 D.122.计算机执行下面的程序段后,输出的结果是().A.4,-2 B.4,1C.1,4 D.-2,43. 线性回归方程ˆy bx a=+表示的直线必经过的一个定点是().A.(,y)x B.(,0)xC.(0,y)D.(0,0)4.如图所示的程序框图输出的结果为().A.1 B.2C.4 D.85.设,x y满足约束条件12x yy xy+≤⎧⎪≤⎨⎪≥-⎩,则3z x y=+的最大值为()A.5 B. 3C. 7D. -86.对一个样本容量为100的数据分组,各组的频数如下:估计小于29的数据大约占总体的 ( ). A .42% B .58% C .40% D .16% 7.下列各数中,最小的数是 ( ) A .75 B .(6)210 C .(2)111111 D .(9)85 8. 10名工人某天生产同一零件,生产的件数是15,17,14,10,15,17,17,16,14,12,设其平均数为a ,中位数为b ,众数为c ,则有 ( ). A .a>b>c B .b>c>a C .c>a>b D .c>b>a 9.4张卡片上分别写有数字1,2,3,4,从这4张卡片中随机抽取2张,则取出的2张卡片上的数字之和为奇数的概率为 ( ). A.13 B.12 C.23 D.34 10.用秦九韶算法计算当x =0.4时,多项式f(x)=3x6+4x5+6x3+7x2+1的值时,需要做乘法运算的次数是( ) A .6 B .5 C .4 D .3 11.一个游戏转盘上有四种颜色:红、黄、蓝、黑,并且它们所占面积的比为6∶2∶1∶4,则指针停在红色或蓝色的区域的概率为 ( ). A.613 B.713 C.413 D.1013 12.命题:“∀x ∈R,220x x -+≥”的否定是( ) A.∃x ∈R,220x x -+≥ B.∀x ∈R,220x x -+≥ C.∃x ∈R,220x x -+< D.∀x ∈R,220x x -+< 座位号:_________ 二、填空题(本大题共4小题,每小题4分,共16分.把答案填在题中横线上) 13.有324,243,270三个数,则它们的最大公约数是________. 14.则年降水量在[200,300](mm)范围内的概率是 15.某中学高三年级从甲、乙两个班级中各选出7名学生参加数学竞赛,他们取得的成绩(满分100分)的茎叶图如图,其中甲班学生的平均分是85,乙班学生成绩的中位数是83,则x +y 的值为答题座位16.已知命题:p:(3)(1)0x x-+>,命题q:22210(0)x x m m-+->>,若命题p是命题q的充分不必要条件,则实数m的范围是____________.三.解答题:(本题共6个小题,共70分,每题均要求写出解答过程)17. (10分)分别用辗转相除法和更相减损术求282与470的最大公约数.18.(12分)写出下列命题的否定,并判断其真假:(1)p:不论m取何实数,方程x2+mx-1=0必有实数根;(2)p:有些三角形的三条边相等;(3)p:菱形的对角线互相垂直;(4)p:存在一个实数x,使得3x <0.19.(12分)某校从高二年级学生中随机抽取60名学生,将其会考的政治成绩(均为整数)分成六段:[40,50),[50,60),…,[90,100]后得到如下频率分布直方图.(Ⅰ)求图中a的值(Ⅱ)根据频率分布直方图,估计该校高二年级学生政治成绩的平均分;20.(12分)某次运动会甲、乙两名射击运动员的成绩如下:甲:9.48.77.58.410.110.510.77.27.810.8乙:9.18.77.19.89.78.510.19.210.1 9.1(1)用茎叶图表示甲、乙两人的成绩;(2)根据茎叶图分析甲、乙两人的成绩;(3)分别计算两个样本的平均数x和标准差s,并根据计算结果估计哪位运动员的成绩比较稳定.21.设变量,x y满足约束条件25020x yx yx+-≤⎧⎪--≤⎨⎪≥⎩,求目标函数231z x y=++的最大值。

安徽省蚌埠市第一中学2015届高三上学期期中考试数学(文)试卷word版无答案

安徽省蚌埠市第一中学2015届高三上学期期中考试数学(文)试卷word版无答案

蚌埠一中2014—2015年度第一学期期中测试高三数学(文)试卷 安勇第I 卷(选择题)一 选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是符合题目要求的.。

每小题5分,总分60分1、已知全集U R =,集合{}|21x A x =>,{}|41B x x =-<<,则A B 等于( )A.(0,1)B.(1,)+∞C. (4,1)-D. (,4)-∞-2、若将函数x x x f 2cos 2sin )(+=的图像向右平移ϕ个单位,所得图像关于y 轴对称,则ϕ的最小正值是( ) A.8π B.4π C.83π D.43π 3) A .3B .2C .1 D4、 “2πϕ=” 是“函数(x)sin(x )f ϕ=+为偶函数”的( )A 充分而不必要条件B 必要而不充分条件C 充分必要条件D 既不充分也不必要条件5、在某次跳空滑雪比赛赛前训练中,甲、乙两位队员各跳一次.设命题p 是“甲落地站稳”,q 是“乙落地站稳”,则命题“至少有一位队员落地没有站稳”可表示为( )A .p q ∨B .()p q ∨⌝C .()()p q ⌝∧⌝D .()()p q ⌝∨⌝6、若0.53,ln 2,log sin12a b c ππ===,则( ) A .b a c >> B .a b c >>C .c a b >>D .b c a >> 7、知函数()f x 的定义域是(0,1),则(2)x f 的定义域是( )A .(0,1)B .(1,2)C .(,0)-∞D .(0,)+∞8、已知()f x 为偶函数,当0x ≥时,1cos ,[0,]2()121,(,)2x x f x x x π⎧∈⎪⎪=⎨⎪-∈+∞⎪⎩,则不等式1(1)2f x -≤的解集为( )A .1247[,][,]4334B .3112[,][,]4343-- C .1347[,][,]3434 D .3113[,][,]4334-- 9、若函数),()1,0()(+∞-∞≠>-=-在a a a ka x f xx 上既是奇函数又是增函数,则log )()(k x a x g +=的图象是( )10、若幂函数()322233-+++=m m xm m y 的图像不过原点,且关于原点对称,则m 的取值是( ) A .2-=m B .1-=m C . 12-=-=m m 或 D .13-≤≤-m11、已知函数x x x f cos sin )(λ+=的图象的一个对称中心是点)0,3(π,则函数()g x =x x x 2sin cos sin +λ的图象的一条对称轴是直线 ( ).A 65π=x .B 34π=x .C 3π=x .D 3π-=x 12、若,a b 为非零实数,则以下不等式中恒成立的个数是( )①222a b ab +≥;② 222()42a b a b ++≤;③2a b ab a b +≥+;④2b a a b +≥. A. 4 B. 3 C. 2 D. 1蚌埠一中2014—2015年度第一学期期中考试高三数学(文)试卷 安勇第I I 卷(非选择题共90分)二、填空题:本大题共5小题,每小题4分,共16分。

安徽省宿州市2014-2015学年高二上学期期末教学质量检测 文科数学试卷及答案

安徽省宿州市2014-2015学年高二上学期期末教学质量检测 文科数学试卷及答案

宿州市2014-2015学年度第一学期期末教学质量检测高二文科数学A 卷(参考答案)一、选择题二、填空题11.任意,n N ∈都有21000n≤; 12. 323π; 13. 3或163; 15. ③⑤ 三、解答题16. 解:p :对任意x R ∈,不等式20x ax a ++>恒成立,由0∆<⇒240a a -<⇒04a <<,得a 的取值范围是04a << ------3分q :方程22x ay a +=表示的是焦点在x 轴上的椭圆,得221x y a+=,故1a >-------6分因为命题“p 且q ”为假命题,命题“p 或q ”为真命题,故p 、q 一真一假, ⑴当p 真q 假时,有041a a <<⎧⎨≤⎩⇒01a <≤;⑵当p 假q 真时,有0,41a aa ≤≥⎧⎨>⎩或⇒4a ≥;--------11分综上实数a 的取值范围是01a <≤或4a ≥. ---------12分 17. 解:由圆C :226440x y x y +-++=,即22(3)(2)9x y -++=,故圆心(3,2)C - 半径3r =, --------2分 因为MN =d ,由MN =1d = --------4分 (1)当l 的斜率k 存在时,设直线方程为0(2)y k x -=-.又圆C 的圆心为(3,2)-,半径3r =,由1=, 解得34k =-.所以直线方程为3(2)4y x =--, 即3460x y +-=. ------9分 (2)当l 的斜率不存在时,l 的方程为2x =,经验证2x =也满足条件. --11分综上直线l 的方程为3460x y +-=或2x =. ------12分18. 解:(Ⅰ)圆22670x y x +--=,即22(3)16x y -+=,所以圆心(3,0),半径为4,抛物线的准线方程为2p x =-,依题意,有3()42p--=,得2p =, 故抛物线方程为24y x =; ------6分(Ⅱ)由(Ⅰ)知,抛物线C 的焦点坐标为(1,0),准线方程为1x =-,由抛物线定义知线段AB 的中点M 到准线的距离为117()222AF BF AB +==, 故线段AB 的中点M 到y 轴的距离75122d =-=. ------12分19. 解:解:b ax x x f 363)(2++=',由该函数在2=x 处有极值,故0)2(='f ,即031212=++b a ………………① 又其图象在1=x 处的切线与直线0526=++y x 平行 故3)1(-='f ,即3363-=++b a ………………②由①,②,解得0,1=-=b a ------4分 ∴c x x x f +-=233)((Ⅰ)∵x x x f 63)(2-=' 由0)(='x f 得01=x ,22=x列表如下故)(x f 的单调递增区间是(,0),(2,)-∞+∞单调递增区间是(0,2) -----7分 (Ⅱ)由(1)可知列表如下∴)(x f 在[1,3]的最小值是4c -+∴2414c c -+>-⇒54c <-或1c > ------12分 20. (Ⅰ)证明:取AC 的中点N ,连接,MN BN ,因为11,22MN EC DB EC ==∥∥,所以MN =∥DB ,故四边形BDMN 为平行四边形,由DM ∥BN ,DM Ú平面ABC ,BN Ü平面ABC , 得DM ∥平面ABC . ------4分 (Ⅱ)因为EC ⊥平面ABC ,BN Ü平面ABC , 所以EC BN ⊥,又因为ABC ∆为正三角形, N 为AC 的中点,所以BN AC ⊥,故由BN AC BN EC AC EC C ⊥⎧⎪⊥⎨⎪=⎩得BN ⊥平面ECA ,因为DM ∥BN ,所以DM ⊥平面ECA , ----9分 又DM Ü平面DEA ,所以平面DEA ⊥平面ECA . (Ⅲ)11(12)2332ABDEC A BDEC BDEC V V S h -+⋅==⋅⋅=⋅=分 ACBM EDN21. 解:(Ⅰ)由题意不妨设切点(1,0)A ,切点(,)B m n 满足221211n mm n m n ⎧-⎪⎪=-⎨-⎪+=⎪⎩,解得34(,)55B .∴过切点,A B 的直线方程为220x y +-=,令0y =得1x =,即1c =,令0x =得2y =,即2b =.∴2225a b c =+=,∴椭圆方程为22154x y +=.椭圆的离心率c e a ===分 (Ⅱ)设与直线AB 的平行的直线方程为2y x t =-+,由222222*********4y x tx tx t x y =-+⎧⎪⇒-+-=⎨+=⎪⎩,*()22(20)424(520)0t t ∆=--⋅⋅-=t ⇒=±故当t =-P 到直线AB的最大距离为d ==又因为(1,0)A ,34(,)55B,所以AB ==故PAB ∆面积的最大值max 111)()225PAB S AB d ∆=⋅==------14分。

2014-2015学年度高二上学期期末试卷

2014-2015学年度高二上学期期末试卷

2014-2015学年度高二上学期期末试卷高二化学注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明一、选择题(题型注释)1.2010年上海世博会主题“城市.让生活更美好”;2011年“国际化学年”的主题是“化学,我们的生活,我们的未来”;2013年1月全国大部分地区出现雾霾天气,北京PM2.5浓度达993,系中国有该监测数据以来最高的一次。

“拯救人类的最后机会”只有节能减排,下列属最有希望的新能源是 ( )①天然气 ②煤 ③石油 ④水能 ⑤太阳能 ⑥地热能 ⑦风能 ⑧氢能A.①②③④B.⑤⑥⑦⑧C.③④⑤⑥D.除①②外2.分子式为C 2H 6O 的有机物,有两种同分异构体,乙醇(CH 3CH 2OH)、甲醚(CH 3OCH 3),则通过下列方法,不可能将二者区别开来的是 ( )A .红外光谱B .1H 核磁共振谱C .质谱法D .与钠反应3.下列有机物不是同一种物质的是( )A .C ClCl H H 和C Cl Cl H H B .CH 2=CH —CH=CH 2和 CH CH CH 2CH 2C.C(CH3)3C(CH3)3和CH3(CH2)3C(CH3)3 D.CH CHCH3CH3CH3CH3和CHCHCH3CH3CH3CH34.化学家们合成了如图所示的一系列的星烷,如三星烷、四星烷、五星烷等。

下列说法不正确的是 ( )A.它们之间互为同系物 B.三星烷的化学式为C9H12C.三星烷与丙苯互为同分异构体 D.它们的一氯代物均只有两种5.A、B两种有机物组成的混合物,当其质量相等时,无论A、B以何种比例混合,完全燃烧时产生H2O的量均相等,符合这一条件的组合是 ( )①同分异构体②同系物③最简式相同④含氢质量分数相同⑤分子中氢原子数相同⑥分子中氢、氧原子数分别相同A.①③④ B.①②③ C.①⑤⑥ D.②④⑥6.某有机物链状分子中含a个甲基,n个亚甲基(—CH2—),m个次甲基(),其余为氯原子。

高中高三数学上学期周测试卷 文(1.28,含解析)-人教版高三全册数学试题

高中高三数学上学期周测试卷 文(1.28,含解析)-人教版高三全册数学试题

2014-2015学年某某省某某高中高三(上)周测数学试卷(文科)(1.28)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知命题P:∀x>0,x3>0,那么¬P是()A.∃x≤0,x3≤0 B.∀x>0,x3≤0 C.∃x>0,x3≤0 D.∀x<0,x3≤0 2.已知集合M={x|x﹣2<0},N={x|x<a},若M⊆N,则实数a的取值X围是()A.[2,+∞)B.D.(﹣∞,0]3.设i是虚数单位,若复数是纯虚数,则m的值为()A.﹣3 B.﹣1 C.1 D.34.已知点P(a,b)是抛物线x2=20y上一点,焦点为F,|PF|=25,则|ab|=()A.100 B.200 C.360 D.4005.(5分)为了检查某超市货架上的饮料是否含有塑化剂,要从编号依次为1到50的塑料瓶装饮料中抽取5瓶进行检验,用每部分选取的间隔一样的系统抽样方法确定所选取的5瓶饮料的编号可能是()A.5,10,15,20,25 B.2,4,6,8,10C.1,2,3,4,5 D.7,17,27,37,476.(5分)(2015某某一模)一个锥体的主视图和左视图如图所示,下面选项中,不可能是该锥体的俯视图的是()A.B.C.D.7.如图所示的程序框图中,若f(x)=x2﹣x+1,g(x)=x+4,且h(x)≥m恒成立,则m 的最大值是()A.0 B.1 C.3 D.48.已知点P(x,y)的坐标满足条件,则x2+y2的最大值为()A.17 B.18 C.20 D.219.(5分)已知定义在R上的函数f(x)满足f(﹣3)=f(5)=1,f'(x)为f(x)的导函数,且导函数y=f′(x)的图象如图所示.则不等式f(x)<1的解集是()A.(﹣3,0)B.(﹣3,5)C.(0,5)D.(﹣∞,﹣3)∪(5,+∞)10.已知函数f(x)=Asin(πx+φ)的部分图象如图所示,点B,C是该图象与x轴的交点,过点C的直线与该图象交于D,E两点,则的值为()A.﹣1 B.C.D.211.(5分)(2015某某二模)设函数y=f(x)的定义域为D,若对于任意的x1,x2∈D,当x1+x2=2a时,恒有f(x1)+f(x2)=2b,则称点(a,b)为函数y=f(x)图象的对称中心.研究函数f(x)=x3+sinx+1的某一个对称中心,并利用对称中心的上述定义,可得到f(﹣2015)+f(﹣2014)+f(﹣2013)+…+f(2014)+f(2015)=()A.0 B.2014 C.4028 D.403112.在Rt△ABC中,CA=CB=3,M,N是斜边AB上的两个动点,且,则的取值X围为()A.[3,6] B.[4,6] C.D.[2,4]二、填空题:每小题5分,共20分.13.(5分)已知数列{a n}是等比数列,若a4=,a6=6,则a10=.14.某学校组织学生参加英语测试,成绩的频率分布直方图如图,数据的分组一次为[20,40),[40,60),[60,80),[80,100),若低于60分的人数是15人,则该班的学生人数是.15.(5分)(2015某某二模)已知体积为的正三棱锥V﹣ABC的外接球的球心为O,满足,则该三棱锥外接球的体积为.16.(5分)(2015某某模拟)给定方程:()x+sinx﹣1=0,下列命题中:①该方程没有小于0的实数解;②该方程有无数个实数解;③该方程在(﹣∞,0)内有且只有一个实数解;④若x0是该方程的实数解,则x0>﹣1.则正确命题是.三、解答题:本大题共6道题,共70分,解答应写出文字说明,证明过程或演算步骤.17.(12分)(2015某某一模)在△ABC中,角A、B、C的对边分别为a,b,c,且满足,2bsinA=a,BC边上中线AM的长为.(Ⅰ)求角A和角B的大小;(Ⅱ)求△ABC的面积.18.(12分)(2014秋禅城区校级期中)年龄在60岁(含60岁)以上的人称为老龄人,某小区的老龄人有350人,他们的健康状况如下表:健康指数 2 1 0 ﹣160岁至79岁的人数120 133 32 1580岁及以上的人数9 18 14 9其中健康指数的含义是:2代表“健康”,1代表“基本健康”,0代表“不健康,但生活能够自理”,﹣1代表“生活不能自理”.(Ⅰ)随机访问该小区一位80岁以下的老龄人,该老龄人生活能够自理的概率是多少?(Ⅱ)按健康指数大于0和不大于0进行分层抽样,从该小区的老龄人中抽取5位,并随机地访问其中的3位.求被访问的3位老龄人中恰有1位老龄人的健康指数不大于0的概率.19.(12分)(2016凉山州模拟)如图,在四棱锥P﹣ABCD中,底面ABCD为直角梯形,AD||BC,PD⊥底面ABCD,∠ADC=90°,AD=2BC,Q为AD的中点,M为棱PC的中点.(Ⅰ)证明:PA∥平面BMQ;(Ⅱ)已知PD=DC=AD=2,求点P到平面BMQ的距离.20.(12分)(2015某某一模)已知动点P到定点F(1,0)和直线l:x=2的距离之比为,设动点P的轨迹为曲线E,过点F作垂直于x轴的直线与曲线E相交于A,B两点,直线l:y=mx+n与曲线E交于C,D两点,与线段AB相交于一点(与A,B不重合)(Ⅰ)求曲线E的方程;(Ⅱ)当直线l与圆x2+y2=1相切时,四边形ACBD的面积是否有最大值,若有,求出其最大值,及对应的直线l的方程;若没有,请说明理由.21.(12分)(2014秋涪城区校级月考)已知函数f(x)=e x﹣ax﹣1(e为自然对数的底数),a>0.(Ⅰ)若函数f(x)恰有一个零点,证明:a a=e a﹣1;(Ⅱ)若f(x)≥0对任意x∈R恒成立,某某数a的取值集合.请考生在第22、23、24三题中任选一题作答,如果多做.则按所做的第一题记分.答时用2B铅笔在答题卡上把所选题目的题号涂黑.【选修4-1:几何证明选讲】22.(10分)(2016某某一模)如图所示,EP交圆于E,C两点,PD切圆于D,G为CE上一点且PG=PD,连接DG并延长交圆于点A,作弦AB垂直EP,垂足为F.(Ⅰ)求证:AB为圆的直径;(Ⅱ)若AC=BD,AB=5,求弦DE的长.【选修4-4:坐标系与参数方程】23.(2015某某一模)在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立直角坐标系,圆C的极坐标方程为,直线l的参数方程为(t 为参数),直线l和圆C交于A,B两点,P是圆C上不同于A,B的任意一点.(Ⅰ)求圆心的极坐标;(Ⅱ)求△PAB面积的最大值.【选修4-5:不等式选讲】24.(2015某某一模)已知函数f(x)=m﹣|x﹣1|﹣2|x+1|.(Ⅰ)当m=5时,求不等式f(x)>2的解集;(Ⅱ)若二次函数y=x2+2x+3与函数y=f(x)的图象恒有公共点,某某数m的取值X围.2014-2015学年某某省某某高中高三(上)周测数学试卷(文科)(1.28)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知命题P:∀x>0,x3>0,那么¬P是()A.∃x≤0,x3≤0 B.∀x>0,x3≤0 C.∃x>0,x3≤0 D.∀x<0,x3≤0 【分析】直接利用全称命题的否定是特称命题写出结果即可.【解答】解:因为全称命题的否定是特称命题,所以,命题P:∀x>0,x3>0,那么¬P是∃x>0,x3≤0.故选:C.【点评】本题考查命题的否定特称命题与全称命题的否定关系,基本知识的考查.2.已知集合M={x|x﹣2<0},N={x|x<a},若M⊆N,则实数a的取值X围是()A.[2,+∞)B.D.(﹣∞,0]【分析】解出集合M,根据子集的概念即可求得实数a的取值X围.【解答】解:M={x|x<2};∵M⊆N;∴a≥2;∴a的取值X围是[2,+∞).故选A.【点评】考查子集的概念,描述法表示集合,可借助数轴求解.3.设i是虚数单位,若复数是纯虚数,则m的值为()A.﹣3 B.﹣1 C.1 D.3【分析】利用复数代数形式的乘除运算化简,然后由实部等于0求得m的值.【解答】解:∵为纯虚数,∴m+3=0,即m=﹣3.故选:A.【点评】本题考查了复数代数形式的乘除运算,考查了复数的基本概念,是基础题.4.已知点P(a,b)是抛物线x2=20y上一点,焦点为F,|PF|=25,则|ab|=()A.100 B.200 C.360 D.400【分析】根据抛物线的定义,把到焦点的距离转化为到准线的距离,从而求出b,进而求ab 的值.【解答】解:根据抛物线是定义,准线方程为:y=﹣5,|PF|=b+5=25,∴b=20,又点P(a,b)是抛物线x2=20y上一点,∴a2=20×20,∴a=±20,∴|ab|=400,故选D.【点评】本题主要考查抛物线的定义,抛物线上的点到焦点的距离与到准线的距离相等.5.(5分)为了检查某超市货架上的饮料是否含有塑化剂,要从编号依次为1到50的塑料瓶装饮料中抽取5瓶进行检验,用每部分选取的间隔一样的系统抽样方法确定所选取的5瓶饮料的编号可能是()A.5,10,15,20,25 B.2,4,6,8,10C.1,2,3,4,5 D.7,17,27,37,47【分析】根据系统抽样的定义求出样本间隔进行判断即可.【解答】解:要从编号依次为1到50的塑料瓶装饮料中抽取5瓶进行检验,则样本间隔为50÷5=10,则只有7,17,27,37,47满足条件.,故选:D.【点评】本题主要考查系统抽样的应用,根据条件求出样本间隔是解决本题的关键.比较基础.6.(5分)(2015某某一模)一个锥体的主视图和左视图如图所示,下面选项中,不可能是该锥体的俯视图的是()A.B.C.D.【分析】由三视图的作法规则,长对正,宽相等,对四个选项进行比对,找出错误选项.【解答】解:本题中给出了正视图与左视图,故可以根据正视图与俯视图长对正,左视图与俯视图宽相等来找出正确选项A中的视图满足三视图的作法规则;B中的视图满足三视图的作法规则;C中的视图不满足三视图的作法规则中的宽相等,故其为错误选项;D中的视图满足三视图的作法规则;故选C【点评】本题考查三视图的作法,解题的关键是掌握住三视图的作法规则即长对正,宽相等,高平齐,利用这些规则即可选出正确选项.7.如图所示的程序框图中,若f(x)=x2﹣x+1,g(x)=x+4,且h(x)≥m恒成立,则m 的最大值是()A.0 B.1 C.3 D.4【分析】由已知中的程序框图可得该程序的功能是计算并输出分段函数:h(x)=的值,数形结合求出h(x)的最小值,可得答案.【解答】解:由已知中的程序框图可得该程序的功能是:计算并输出分段函数:h(x)=的值,在同一坐标系,画出f(x)=x2﹣x+1,g(x)=x+4的图象如下图所示:由图可知:当x=﹣1时,h(x)取最小值3,又∵h(x)≥m恒成立,∴m的最大值是3,故选:C【点评】本题考查的知识点是程序框图,分段函数的应用,函数恒成立,难度中档.8.已知点P(x,y)的坐标满足条件,则x2+y2的最大值为()A.17 B.18 C.20 D.21【分析】作出不等式组对应的平面区域,利用数形结合即可得到结论.【解答】解:设z=x2+y2,则z的几何意义为区域内的点到原点的距离的平方,作出不等式组对应的平面区域如图:由图象可知,则OC的距离最大,由,解得,即C(3,3),则z=x2+y2=9+9=18,故选:B【点评】本题主要考查线性规划的应用,结合数形结合是解决本题的关键.9.(5分)已知定义在R上的函数f(x)满足f(﹣3)=f(5)=1,f'(x)为f(x)的导函数,且导函数y=f′(x)的图象如图所示.则不等式f(x)<1的解集是()A.(﹣3,0)B.(﹣3,5)C.(0,5)D.(﹣∞,﹣3)∪(5,+∞)【分析】由图象可以判断出f(x)的单调性情况,由f(﹣3)与f(5)的取值,即可得出答案.【解答】解:由f′(x)的图象可得,f(x)在(﹣∞,0)上单调递减,在(0,+∞)上单调递增,又由题意可得,f(﹣3)=f(5)=1,∴f(x)<1的解集是(﹣3,5),故选:B.【点评】本题考查导函数图象与函数单调性的关系,考查学生灵活转化题目条件的能力,属于中档题.10.已知函数f(x)=Asin(πx+φ)的部分图象如图所示,点B,C是该图象与x轴的交点,过点C的直线与该图象交于D,E两点,则的值为()A.﹣1 B.C.D.2【分析】根据三角函数的图象和性质,求出函数的周期,利用向量的基本运算和向量的数量积定义即可得到结论.【解答】解:∵函数f(x)=sin(2πx+φ)的周期T==2,则BC==1,则C点是一个对称中心,则根据向量的平行四边形法则可知: =2, =∴=2=2||2=2×12=2.故选:D.【点评】本题主要考查向量的数量积运算,利用三角函数的图象和性质是解决本题的关键.11.(5分)(2015某某二模)设函数y=f(x)的定义域为D,若对于任意的x1,x2∈D,当x1+x2=2a时,恒有f(x1)+f(x2)=2b,则称点(a,b)为函数y=f(x)图象的对称中心.研究函数f(x)=x3+sinx+1的某一个对称中心,并利用对称中心的上述定义,可得到f(﹣2015)+f(﹣2014)+f(﹣2013)+…+f(2014)+f(2015)=()A.0 B.2014 C.4028 D.4031【分析】函数f(x)=x3+sinx+1图象的对称中心的坐标为(0,1),即x1+x2=0时,总有f (x1)+f(x2)=2,再利用倒序相加,即可得到结论【解答】解:∵f(x)=x3+sinx+1,∴f′(x)=3x2﹣cosx,f''(x)=6x+sinx又∵f''(0)=0而f(x)+f(﹣x)=x3+sinx+1+﹣x3﹣sinx+1=2,函数f(x)=x3+sinx+1图象的对称中心的坐标为(0,1),即x1+x2=0时,总有f(x1)+f(x2)=2,∴f(﹣2015)+f(﹣2014)+f(﹣2013)+…+f(2014)+f(2015)=2×2015+f(0)=4030+1=4031.故选:D.【点评】本题考查函数的对称性,确定函数的对称中心,利用倒序相加x1+x2=0时,总有f (x1)+f(x2)=2,是解题的关键.12.在Rt△ABC中,CA=CB=3,M,N是斜边AB上的两个动点,且,则的取值X围为()A.[3,6] B.[4,6] C.D.[2,4]【分析】通过建立直角坐标系求出AB所在直线的方程,设出M,N的坐标,将=2(b ﹣1)2+4,0≤b≤2,求出X围即可.【解答】解:以C为坐标原点,CA为x轴建立平面坐标系,则A(3,0),B(0,3),∴AB所在直线的方程为: =1,则y=3﹣x,设N(a,3﹣a),M(b,3﹣b),且0≤a≤3,0≤b≤3不妨设a>b,∵MN=,∴(a﹣b)2+(b﹣a)2=2,∴a﹣b=1,∴a=b+1,∴0≤b≤2,∴=(a,3﹣a)(b,3﹣b)=2ab﹣3(a+b)+9,=2(b2﹣2b+3)=2(b﹣1)2+4,0≤b≤2,∴当b=0或b=2时有最大值6;当b=1时有最小值4.∴的取值X围为[4,6]故选B.【点评】熟练掌握通过建立直角坐标系、数量积的坐标运算是解题的关键.二、填空题:每小题5分,共20分.13.(5分)已知数列{a n}是等比数列,若a4=,a6=6,则a10= 96 .【分析】由已知求出等比数列的公比的平方,再代入等比数列的通项公式求得a10.【解答】解:在等比数列{a n}中,∵a4=,a6=6,∴,∴.故答案为:96.【点评】本题考查了等比数列的通项公式,是基础的计算题.14.某学校组织学生参加英语测试,成绩的频率分布直方图如图,数据的分组一次为[20,40),[40,60),[60,80),[80,100),若低于60分的人数是15人,则该班的学生人数是50 .【分析】由已知中的频率分布直方图,我们可以求出成绩低于60分的频率,结合已知中的低于60分的人数是15人,结合频数=频率×总体容量,即可得到总体容量.【解答】解:∵成绩低于60分有第一、二组数据,在频率分布直方图中,对应矩形的高分别为0.005,0.01,每组数据的组距为20则成绩低于60分的频率P=(0.005+0.010)×20=0.3,又∵低于60分的人数是15人,则该班的学生人数是=50.故答案为:50【点评】本题考查的知识点是频率分布直方图,结合已知中的频率分布直方图,结合频率=矩形的高×组距,求出满足条件的事件发生的频率是解答本题的关键.15.(5分)(2015某某二模)已知体积为的正三棱锥V﹣ABC的外接球的球心为O,满足,则该三棱锥外接球的体积为.【分析】由题意球的三角形ABC的位置,以及形状,利用球的体积,求出球的半径,求出棱锥的底面边长,利用棱锥的体积求出该三棱锥外接球的体积即可.【解答】解:正三棱锥D﹣ABC的外接球的球心O满足,说明三角形ABC在球O的大圆上,并且为正三角形,设球的半径为:R,棱锥的底面正三角形ABC的高为:底面三角形ABC的边长为: R正三棱锥的体积为:××(R)2×R=解得R3=4,则该三棱锥外接球的体积为=.故答案为:.【点评】本题考查球的内接体问题,球的体积,棱锥的体积,考查空间想象能力,转化思想,计算能力,是中档题.16.(5分)(2015某某模拟)给定方程:()x+sinx﹣1=0,下列命题中:①该方程没有小于0的实数解;②该方程有无数个实数解;③该方程在(﹣∞,0)内有且只有一个实数解;④若x0是该方程的实数解,则x0>﹣1.则正确命题是②③④.【分析】根据正弦函数的符号和指数函数的性质,可得该方程存在小于0的实数解,故①不正确;根据指数函数的图象与正弦函数的有界性,可得方程有无数个正数解,故②正确;根据y=()x﹣1的单调性与正弦函数的有界性,分析可得当x≤﹣1时方程没有实数解,当﹣1<x<0时方程有唯一实数解,由此可得③④都正确.【解答】解:对于①,若α是方程()x+sinx﹣1=0的一个解,则满足()α=1﹣sinα,当α为第三、四象限角时()α>1,此时α<0,因此该方程存在小于0的实数解,得①不正确;对于②,原方程等价于()x﹣1=﹣sinx,当x≥0时,﹣1<()x﹣1≤0,而函数y=﹣sinx的最小值为﹣1且用无穷多个x满足﹣sinx=﹣1,因此函数y=()x﹣1与y=﹣sinx的图象在[0,+∞)上有无穷多个交点因此方程()x+sinx﹣1=0有无数个实数解,故②正确;对于③,当x<0时,由于x≤﹣1时()x﹣1≥1,函数y=()x﹣1与y=﹣sinx的图象不可能有交点当﹣1<x<0时,存在唯一的x满足()x=1﹣sinx,因此该方程在(﹣∞,0)内有且只有一个实数解,得③正确;对于④,由上面的分析知,当x≤﹣1时()x﹣1≥1,而﹣sinx≤1且x=﹣1不是方程的解∴函数y=()x﹣1与y=﹣sinx的图象在(﹣∞,﹣1]上不可能有交点因此只要x0是该方程的实数解,则x0>﹣1.故答案为:②③④【点评】本题给出含有指数式和三角函数式的方程,讨论方程解的情况.着重考查了指数函数的单调性、三角函数的周期性和有界性、函数的值域求法等知识,属于中档题.三、解答题:本大题共6道题,共70分,解答应写出文字说明,证明过程或演算步骤.17.(12分)(2015某某一模)在△ABC中,角A、B、C的对边分别为a,b,c,且满足,2bsinA=a,BC边上中线AM的长为.(Ⅰ)求角A和角B的大小;(Ⅱ)求△ABC的面积.【分析】(Ⅰ)利用余弦定理表示出cosA,将已知等式变形后代入求出cosA的值,确定出角A的度数,将2bsinA=a利用正弦定理化简求出sinB的值,即可确定出角B的大小;(Ⅱ)由A=B,利用等角对等边得到AC=BC,设AC=BC=x,利用余弦定理列出关于x的方程,求出方程的解得到x的值,确定出AC与BC的长,再由sinC的值,利用三角形面积公式即可求出三角形ABC面积.【解答】解:(Ⅰ)由a2﹣b2﹣c2+bc=0得:a2﹣b2﹣c2=﹣bc,即b2+c2﹣a2=bc,∴由余弦定理得:cosA==,∵A为三角形内角,∴A=,由2bsinA=a,利用正弦定理化简得:2sinBsinA=sinA,即sinB=,则B=;(Ⅱ)由A=B,得到AC=BC=x,可得C=,由余弦定理得AM2=x2+﹣2x(﹣)=14,解得:x=2,则S△ABC=ACBCsinC=×2×2×=2.【点评】此题考查了正弦、余弦定理,以及三角形面积公式,熟练掌握定理及公式是解本题的关键.18.(12分)(2014秋禅城区校级期中)年龄在60岁(含60岁)以上的人称为老龄人,某小区的老龄人有350人,他们的健康状况如下表:健康指数 2 1 0 ﹣160岁至79岁的人数120 133 32 1580岁及以上的人数9 18 14 9其中健康指数的含义是:2代表“健康”,1代表“基本健康”,0代表“不健康,但生活能够自理”,﹣1代表“生活不能自理”.(Ⅰ)随机访问该小区一位80岁以下的老龄人,该老龄人生活能够自理的概率是多少?(Ⅱ)按健康指数大于0和不大于0进行分层抽样,从该小区的老龄人中抽取5位,并随机地访问其中的3位.求被访问的3位老龄人中恰有1位老龄人的健康指数不大于0的概率.【分析】(Ⅰ)求出该小区80岁以下的老龄人数,即可求解老龄人生活能够自理的概率.(Ⅱ)按健康指数大于0和不大于0进行分层抽样,从该小区的老龄人中抽取5位,并随机地访问其中的3位.写出5人中抽取3人的基本事件总数,被访问的3位老龄人中恰有1位老龄人的个数,即可求解健康指数不大于0的概率.【解答】解:(Ⅰ)解:该社区80岁以下的老龄人共有120+133+32+15=300人,…(1分)其中生活能够自理的人有120+133+32=285人,…(2分)记“随机访问该小区一位80岁以下的老龄人,该老人生活能够自理”为事件A,则P(A)==.…(4分)(Ⅱ)根据表中数据可知,社区健康指数大于0的老龄人共有280人,不大于0的老龄人共有70人,…(5分)所以,按照分层抽样,被抽取的5位老龄人中,有位为健康指数大于0的,依次记为:a,b,c,d,有一位健康指数不大于0的,记为e.…(7分)从这5人中抽取3人的基本事件有:(a,b,c)(a,b,d)(a,b,e)(a,c,d)(a,c,e)(a,d,e)(b,c,d)(b,c,e)(b,d,e)(c,d,e)共10种,…(9分)其中恰有1位老龄人的健康指数不大于0的事件有:(a,b,e)(a,c,e)(a,d,e)(b,c,e)(b,d,e)(c,d,e)共6种,…(10分)记“被访问的3位老龄人中恰有1位老龄人的健康指数不大于0”为事件B,则P(B)=…(12分)【点评】本题考查分层抽样,古典概型概率公式的应用,基本知识的考查.19.(12分)(2016凉山州模拟)如图,在四棱锥P﹣ABCD中,底面ABCD为直角梯形,AD||BC,PD⊥底面ABCD,∠ADC=90°,AD=2BC,Q为AD的中点,M为棱PC的中点.(Ⅰ)证明:PA∥平面BMQ;(Ⅱ)已知PD=DC=AD=2,求点P到平面BMQ的距离.【分析】(1)连结AC交BQ于N,连结MN,只要证明MN∥PA,利用线面平行的判定定理可证;(2)由(1)可知,PA∥平面BMQ,所以点P到平面BMQ的距离等于点A到平面BMQ的距离.【解答】解:(1)连结AC交BQ于N,连结MN,因为∠ADC=90°,Q为AD的中点,所以N 为AC的中点.…(2分)当M为PC的中点,即PM=MC时,MN为△PAC的中位线,故MN∥PA,又MN⊂平面BMQ,所以PA∥平面BMQ.…(5分)(2)由(1)可知,PA∥平面BMQ,所以点P到平面BMQ的距离等于点A到平面BMQ的距离,所以V P﹣BMQ=V A﹣BMQ=V M﹣ABQ,取CD的中点K,连结MK,所以MK∥PD,,…(7分)又PD⊥底面ABCD,所以MK⊥底面ABCD.又,PD=CD=2,所以AQ=1,BQ=2,,…(10分)所以V P﹣BMQ=V A﹣BMQ=V M﹣ABQ=.,…(11分)则点P到平面BMQ的距离d=…(12分)【点评】本题考查了线面平行的判定定理的运用以及利用三棱锥的体积求点到直线的距离.20.(12分)(2015某某一模)已知动点P到定点F(1,0)和直线l:x=2的距离之比为,设动点P的轨迹为曲线E,过点F作垂直于x轴的直线与曲线E相交于A,B两点,直线l:y=mx+n与曲线E交于C,D两点,与线段AB相交于一点(与A,B不重合)(Ⅰ)求曲线E的方程;(Ⅱ)当直线l与圆x2+y2=1相切时,四边形ACBD的面积是否有最大值,若有,求出其最大值,及对应的直线l的方程;若没有,请说明理由.【分析】(1)设点P(x,y),由题意可得,,化简即可得出;(2)设C(x1,y1),D(x2,y2),由已知可得:,当m=0时,不合题意.当m≠0时,由直线l与圆x2+y2=1相切,可得m2+1=n2,直线与椭圆方程联立可得.利用根与系数的关系可得,再利用基本不等式的性质即可得出.【解答】解:(1)设点P(x,y),由题意可得,,整理可得:.∴曲线E的方程是.(2)设C(x1,y1),D(x2,y2),由已知可得:,当m=0时,不合题意.当m≠0时,由直线l与圆x2+y2=1相切,可得:,即m2+1=n2,联立消去y得.,,所以,,==.当且仅当,即时等号成立,此时.经检验可知,直线和直线符合题意.【点评】本题考查了椭圆的标准方程及其性质、直线与椭圆相交问题转化为方程联立可得根与系数的关系、四边形的面积计算公式、基本不等式的性质,考查了推理能力与计算能力,属于难题.21.(12分)(2014秋涪城区校级月考)已知函数f(x)=e x﹣ax﹣1(e为自然对数的底数),a>0.(Ⅰ)若函数f(x)恰有一个零点,证明:a a=e a﹣1;(Ⅱ)若f(x)≥0对任意x∈R恒成立,某某数a的取值集合.【分析】(Ⅰ)求出函数的导数,通过导数为0,判断函数的单调性,利用函数的最小值证明a a=e a﹣1;(Ⅱ)利用(Ⅰ)函数的最小值,结合f(x)≥0对任意x∈R恒成立,构造函数,求出新函数的最小值利用恒成立,某某数a的取值集合.【解答】(Ⅰ)证明:由f(x)=e x﹣ax﹣1,得f'(x)=e x﹣a.…(1分)由f'(x)>0,即e x﹣a>0,解得x>lna,同理由f'(x)<0解得x<lna,∴f(x)在(﹣∞,lna)上是减函数,在(lna,+∞)上是增函数,于是f(x)在x=lna取得最小值.又∵函数f(x)恰有一个零点,则f(x)min=f(lna)=0,…(4分)即e lna﹣alna﹣1=0.…(5分)化简得:a﹣alna﹣1=0,即alna=a﹣1,于是lna a=a﹣1,∴a a=e a﹣1.…(6分)(Ⅱ)解:由(Ⅰ)知,f(x)在x=lna取得最小值f(lna),由题意得f(lna)≥0,即a﹣alna﹣1≥0,…(8分)令h(a)=a﹣alna﹣1,则h'(a)=﹣lna,由h'(a)>0可得0<a<1,由h'(a)<0可得a>1.∴h(a)在(0,1)上单调递增,在(1,+∞)上单调递减,即h(a)max=h(1)=0,∴当0<a<1或a>1时,h(a)<0,∴要使得f(x)≥0对任意x∈R恒成立,a=1.∴a的取值集合为{1}…(13分)【点评】本题考查函数的导数的应用,函数的最值的求法,考查逻辑推理能力,构造新函数是解题本题的关键.请考生在第22、23、24三题中任选一题作答,如果多做.则按所做的第一题记分.答时用2B铅笔在答题卡上把所选题目的题号涂黑.【选修4-1:几何证明选讲】22.(10分)(2016某某一模)如图所示,EP交圆于E,C两点,PD切圆于D,G为CE上一点且PG=PD,连接DG并延长交圆于点A,作弦AB垂直EP,垂足为F.(Ⅰ)求证:AB为圆的直径;(Ⅱ)若AC=BD,AB=5,求弦DE的长.【分析】(Ⅰ)由已知PG=PD,得到∠PDG=∠PGD,由切割弦定理得到∠PDA=∠DBA,进一步得到∠EGA=∠DBA,从而∠PFA=∠BDA.最后可得∠BDA=90°,说明AB为圆的直径;(Ⅱ)连接BC,DC.由AB是直径得到∠BDA=∠ACB=90°,然后由Rt△BDA≌Rt△ACB,得到∠DAB=∠CBA.再由∠DCB=∠DAB可推得DC∥AB.进一步得到ED为直径,则ED长可求.【解答】(Ⅰ)证明:∵PG=PD,∴∠PDG=∠PGD,由于PD为切线,故∠PDA=∠DBA,又∵∠EGA=∠PGD,∴∠EGA=∠DBA,∴∠DBA+∠BAD=∠EGA+∠BAD,从而∠PFA=∠BDA.又AF⊥EP,∴∠PFA=90°,则∠BDA=90°,故AB为圆的直径.(Ⅱ)解:连接BC,DC.由于AB是直径,故∠BDA=∠ACB=90°.在Rt△BDA与Rt△ACB中,AB=BA,AC=BD,从而得Rt△BDA≌Rt△ACB,于是∠DAB=∠CBA.又∵∠DCB=∠DAB,∴∠DCB=∠CBA,故DC∥AB.∵AB⊥EP,∴DC⊥EP,∠DCE为直角,∴ED为直径,又由(1)知AB为圆的直径,∴DE=AB=5.【点评】本题考查了直线和圆的位置关系,考查了圆的切割线定理的应用,是中档题.【选修4-4:坐标系与参数方程】23.(2015某某一模)在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立直角坐标系,圆C的极坐标方程为,直线l的参数方程为(t 为参数),直线l和圆C交于A,B两点,P是圆C上不同于A,B的任意一点.(Ⅰ)求圆心的极坐标;(Ⅱ)求△PAB面积的最大值.【分析】(Ⅰ)由圆C的极坐标方程为,化为ρ2=,把代入即可得出.(II)把直线的参数方程化为普通方程,利用点到直线的距离公式可得圆心到直线的距离d,再利用弦长公式可得|AB|=2,利用三角形的面积计算公式即可得出.【解答】解:(Ⅰ)由圆C的极坐标方程为,化为ρ2=,把代入可得:圆C的普通方程为x2+y2﹣2x+2y=0,即(x﹣1)2+(y+1)2=2.∴圆心坐标为(1,﹣1),∴圆心极坐标为;(Ⅱ)由直线l的参数方程(t为参数),把t=x代入y=﹣1+2t可得直线l的普通方程:,∴圆心到直线l的距离,∴|AB|=2==,点P直线AB距离的最大值为,.【点评】本题考查了把直线的参数方程化为普通方程、极坐标化为直角坐标方程、点到直线的距离公式、弦长公式、三角形的面积计算公式,考查了推理能力与计算能力,属于中档题.【选修4-5:不等式选讲】24.(2015某某一模)已知函数f(x)=m﹣|x﹣1|﹣2|x+1|.(Ⅰ)当m=5时,求不等式f(x)>2的解集;(Ⅱ)若二次函数y=x2+2x+3与函数y=f(x)的图象恒有公共点,某某数m的取值X围.【分析】(Ⅰ)当m=5时,把要解的不等式等价转化为与之等价的三个不等式组,求出每个不等式组的解集,再取并集,即得所求.(Ⅱ)由二次函数y=x2+2x+3=(x+1)2+2在x=﹣1取得最小值2,f(x)在x=﹣1处取得最大值m﹣2,故有m﹣2≥2,由此求得m的X围.【解答】解:(Ⅰ)当m=5时,,由f(x)>2可得①,或②,或③.解①求得﹣<x<﹣1,解②求得﹣1≤x<0,解③求得x∈∅,易得不等式即4﹣3x>2 解集为.(2)由二次函数y=x2+2x+3=(x+1)2+2,该函数在x=﹣1取得最小值2,因为在x=﹣1处取得最大值m﹣2,所以要使二次函数y=x2+2x+3与函数y=f(x)的图象恒有公共点,只需m﹣2≥2,求得m≥4..【点评】本题主要考查绝对值不等式的解法,关键是去掉绝对值,化为与之等价的不等式组来解;还考查了函数的恒成立问题,体现了转化的数学思想,属于中档题.。

2014—2015学年度第一学期期末考试

2014—2015学年度第一学期期末考试

2014— 2015学年度第一学期期末考试八年级语文试卷(满分:100分;考试时间:120分钟)友情提示: 2.3.1. 根据拼音写汉字,(1)全桥结构y u n chan ()(),和四周景色配合得十分和谐。

()失措。

),或者是几座小山配合着 (5) 这些石刻狮子,有的母子相抱,有的交头接耳,有的像倾听水声,千态万状,惟妙惟肖( )。

(6) 日落的景象和日出同样壮观、绮 ()丽,而且神秘迷人。

2.结合句意,判断下列句子中加点词换成括号里的词恰当的一项是() ・ ・(2分)A. 他们杀孩子、老师、还有牧师,他们全是纯朴 勤劳的普通市民。

(淳朴)・ ・B. 今天,帝国居然还天真 地以为自己就是真正的物主。

(率真)・ ・C. 他们小声议论着,似乎怕惊扰那肃穆.的空气。

(严肃)D. 这些日子,家中光景很是惨淡.,一半为了丧事,一半为了父亲赋闲。

(冷 1.本试卷6页。

考生将自己的姓名、准考证号及所有答案均填写在答题卡上。

答题要求见答题卡上的“注意事项”。

一、语基(22分)或给加点字注音。

(4分)(2) 鬼子们拍打着水追过去,老头子张 hu d ng(3) 或者是重 lu d n ( )叠zh rng ( 竹子花木,全在乎设计者和匠师们生平多阅历。

(4) 因桥下多半是急流,人们到此总要 zh u ( )足欣赏飞瀑流泉。

淡)① 到处呈现一片衰草连天的景象,准备迎接风雪载途的寒冬②北雁南飞,活跃在田 间草际的昆虫销声匿迹③到了秋天,果实成熟,植物的叶子渐渐变黄,在秋风中簌簌地落了下来④在地球上温带和亚热带区域里,年年如是,周而复始。

①4.名著阅读。

(6分)(1)《钢铁是怎样炼成的》最大的成功之处在于塑造了______ 这个无 产阶级英雄形象,他在 ____________ 的影响下逐步走上革命道路。

在他的身上凝聚着那个时代最美好的精神品质,请写出两种: _______________ (4 分)(2) “两句一行,大约读了二三十行罢,他说:“给我读熟。

2014—2015学年度第一学期期末学业质量评估九年级数学试题(含答案)

2014—2015学年度第一学期期末学业质量评估九年级数学试题(含答案)

九年级数学试题注意事项:1. 本试题分第Ⅰ卷和第Ⅱ卷两部分.第Ⅰ卷2页,为选择题,共36分.第Ⅱ卷2页,为非选择题,共84分.全卷满分120分,考试时间120分钟.2.答卷前,务必将答题卡上面的项目填涂清楚.所有答案都必须涂、写在答题卡相应的位置,答在本试卷上一律无效.第Ⅰ卷一、选择题(本题共12小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得3分,多选、不选、错选均记零分.)1. 下列说法中正确的是()A. 平分弦的直径垂直于弦,并且平分弦所对的两条弧;B. 圆是轴对称图形,每一条直径都是它的对称轴;C. 弦的垂直平分线过圆心;D. 相等的圆心角所对的弧也相等.2. 如图,A、B、P是⊙O上的三点,∠APB=40°,则弧AB的度数为()A.50°B.80°C.280°D.80°或280°3. 如图,在直径为AB的半圆O上有一动点P从O点出发,以相同的速度沿O-A-B-O的路线运动,线段OP的长度d与运动时间t之间的函数关系用图象描述大致是()4. 下列命题中的假命题是()A. 正方形的半径等于正方形的边心距的2倍;B. 三角形任意两边的垂直平分线的交点是三角形的外心;C. 用反证法证明命题“三角形中至少有一个内角不小于60°”时,第一步应该“假设每一个内角都小于60°”;D. 过三点能且只能作一个圆.5. 如图,⊙O的半径是4,点P是弦AB延长线上的一点,连接OP,若OP=6,∠APO=30°,则弦AB的长为()A .27B .7C .5D .526. 如图所示,在△ABC 中D 为AC 边上一点,若∠DBC =∠A ,BC =3,AC =6,则CD 的长为( ) A .1 B .2 C .23 D .25 7. 下列方程中:①x 2-2x -1=0, ②2x 2-7x +2=0, ③x 2-x +1=0 两根互为倒数有( ) A. 0个 B. 1个 C. 2个 D. 3个 8. 一次函数y 1=3x +3与y 2=-2x +8在同一直角坐标系内的交点坐标 为(1,6).则当y 1>y 2时,x 的取值范围是( )A. x ≥1B. x =1C. x <1D. x >1 9. 在△ABC 中,若()21cosA 1tanB 02-+-=,则∠C 的度数是( ) A. 45° B. 60° C. 75° D. 105°10. 如图,热气球的探测器显示,从热气球A 看一栋高楼顶部B 的仰角为30°,看这栋高楼底部C 的俯角为60°,热气球A 与高楼的水平距离为120m ,这栋高楼BC 的高度为( ) A .1603m B .803 m C .()12031- m D .()12031+m11. 已知反比例函数y =xk的图像经过点P (-1,2),则这个函数图像位于( ) A .第二、三象限 B .第一、三象限 C .第三、四象限 D .第二、四象限 12. 已知二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,有下列4个结论:①abc <0;②b >a +c ;③2a -b =0;④b 2-4ac <0.其中正确的结论个数是( ) A.1个 B.2个 C.3个 D.4个第Ⅱ卷二、填空题(本题共6小题,要求将每小题的最后结果填写在横线上. 每小题3分,满分18分) 13. 已知一元二次方程ax 2+bx +c =0的两根为x 1=2,x 2=-3,则二次三项式ax 2+bx +c 可分解因式为 .14. ⊙O 的半径为10cm ,AB ,CD 是⊙O 的两条弦,且AB ∥CD ,AB =16cm ,CD =12cm .则AB 与CD 之间的距离是 cm .15. 如图所示,△ABC 中,E 、F 、D 分别是边AB 、AC 、BC 上的点,且满足12AE AF EB FC ==,则△EFD 与△ABC 的面积比为 .16. 如图,M 是Rt △ABC 的斜边BC 上异于B 、C 的一定点,过M 点作直线MN 截△ABC交AC 于点N ,使截得的△CMN 与△ABC 相似. 已知AB =6,AC =8,CM =4,则CN = .17. 一个足球从地面上被踢出,它距地面高度y (米)可以用二次函数x x y 6.199.42+-=刻画,其中x (秒)表示足球被踢出后经过的时间. 则足球被踢出后到离开地面达到最高点所用的时间是 秒. 18. 在△ABC 中,AB =AC =5,tanB =34.若⊙O 的半径为10,且⊙O 经过点B 、C ,那么线段OA 的长等于 .三、解答题(本题共6小题,解答应写出文字说明、证明过程或推演步骤. 共66分) 19. (本题满分10分)市某楼盘准备以每平方米6 000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,房地产开发商为了加快资金周转,对价格经过两次下调后,决定以每平方米4 860元的均价开盘销售.(1)求平均每次下调的百分率.(2)某人准备以开盘价均价购买一套100平方米的住房,开发商给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,一次性送装修费每平方米80元,试问哪种方案更优惠?如图,晚上小明站在路灯P的底下观察自己的影子时发现,当他站在F点的位置时,在地面上的影子为BF,小明向前走2米到D点时,在地面上的影子为AD,若AB=4米,∠PBF=60°,∠PAB=30°,通过计算,求出小明的身高.(结果保留根号).21. (本题满分11分)如图,四边形ABCD内接于⊙O,BC是直径,∠BAD=120°,AB=AD.(1)求证:四边形ABCD是等腰梯形;(2)已知AC=6,求阴影部分的面积.如图,在平行四边形ABCD 中,过点A 作AE ⊥BC ,垂足为E ,连接DE ,F 为线段DE 上一点,且∠AFE =∠B .(1)求证:△ADF ∽△DEC ;(2)若AB =8,AD =63,AF =43,求sinB 的值.23. (本题满分12分)已知关于x 的一元二次方程()2kx 4k 1x 3k 30-+++=. (1)试说明:无论k 取何值,方程总有两个实数根;(2)若△ABC 的两边AB 、AC 的长是方程的两个实数根,第三边BC 的长为5. 当△ABC 是等腰三角形时,求k 的值.AB是⊙O的直径,AD与⊙O相交,点C是⊙O上一点,经过点C的直线交AD于点E.⑴如图1 ,若AC平分∠BAD,CE⊥AD于点E,求证:CE是⊙O的切线;⑵如图2,若CE是⊙O的切线,CE⊥AD于点E,AC是∠BAD的平分线吗?说明理由;⑶如图3,若CE是⊙O的切线,AC平分∠BAD,AB=8,AC=6,求AE的长度.试题答案及评分标准一、选择题(每小题选对得3分,满分36分. 多选、不选、错选均记零分.)题号 1 2 3 4 5 6 7 8 9 10 11 12 答案CBBDACBDCADB二、填空题(每小题3分,满分18分)13. a (x -2)(x +3) 14. 214或 15. 2:9 16. 1655或17.2 18. 3或5 三、解答题(本题共6小题,解答应写出文字说明、证明过程或推演步骤.共66分) 19. (本题满分10分)解:解:(1)设平均每次下调的百分率为x , 则6000(1-x )2=4860, 解得:x 1=0.1=10%, x 2=1.9(舍).故平均每周下调的百分率为10%.……………………6分 (2)方案1优惠:4860×100×(1-0.98)=9720(元); 方案2可优惠:80×100=8000(元). 故方案1优惠.…………………………10分20. (本题满分10分)解:设小明的身高为x 米,则CD =EF =x 米. 在Rt △ACD 中,∠ADC =90°,tan ∠CAD =ADCD,即tan 30°=x /AD ,AD =3x --2分 在Rt △BEF 中,∠BFE =90°,tan ∠EBF =EF /BF ,即tan 60°=x /BF ,BF =x 33---4分 由题意得DF =2,∴BD =DF -BF =2-x 33,∵AB =AD +BD =4,∴3x +2-x 33=4 --8分即x =3.答:小明的身高为3米.------------------------------------------------------------------------10分 21. (本题满分11分)⑴证明:∵∠BAD =120°,AB =AD ∴∠ABD =∠ADB =30° ∴弧AB 和弧AD 的度数都等于60°又 ∵BC 是直径 ∴弧CD 的度数也是60° ------------------ --------------2分 ∴AB =CD 且∠CAD =∠ACB =30° ∴BC ∥AD∴四边形ABCD 是等腰梯形. --------------------------------------------------5分⑵∵BC 是直径 ∴∠BAC =90°∵∠ACB =30°,AC =6∴0cos 30AC BC ===R =∵弧AB 和弧AD 的度数都等于60° ∴∠BOD =120° ---------------------------6分 连接OA 交BD 于点E ,则OA ⊥BD 在Rt △BOE中:0sin30OE OB =⋅=0cos 330BE OB =⋅=,BD =2BE =6----------------------------------------------------8分∴(21201-63602BOD BODS S S⨯⨯=-=⨯阴影扇形ππ ----------------------------------------------------11分 22. (本题满分11分)⑴证明:∵∠AFE =∠B ,∠AFE 与∠AFD 互补,∠B 与∠C 互补∴∠AFD =∠C --------------------------------------------------2分 ∵AD ∥BC ∴∠ADF =∠DEC -------------------------------------------4分 ∴△ADF ∽△DEC ----------------------------------------------------5分 ⑵解:∵△ADF ∽△DEC ∴AD AFDE CD== 解得:DE =12 ----------------------------------------------------7分 ∵AE ⊥BC , AD ∥BC ∴AE ⊥AD∴6AE ==----9分在Rt △ABE 中,63sin 84AE B AB === -------------------------------------------------11分 23. (本题满分12分)解:⑴△=()()243341k k k -++ =2216181212k k k k ++--=2441k k -+ =()221k -≥0 --------------------------------------------------4分∴无论k 取何值,方程总有两个实数根. -------------------------------------------------5分 ⑵若AB =AC 则方程()2kx 4k 1x 3k 30-+++=有两个相等的实数根此时△=0,即:()221k -=0 解得:12k =当12k =时,AB =AC =3,此时AB 、AC 、BC 满足三边关系. -------------------------8分 若BC =5为△ABC 的一腰,则方程()2kx 4k 1x 3k 30-+++=有一根是5,将5x =代入方程()2kx 4k 1x 3k 30-+++=解得:14k = 当14k =时,解得方程两根为5和3,此时AB 、AC 、BC 满足三边关系. ----------11分 综上:当△ABC 是等腰三角形时,k 的值为1124或. -----------------------------12分24. (本题满分12分) ⑴证明:连接OC∵OA =OC ∴∠OAC =∠OCA ∵AC 平分∠BAD ∴∠OCA =∠CAD ∴OC ∥AD∵CE ⊥AD ∴CE ⊥OC -----------------------------------------------3分 又OC 是半径 ∴CE 是⊙O 的切线。

2014-2015学年度第一学期期末考试

2014-2015学年度第一学期期末考试

2014-2015学年度第一学期期末考试九年级化学试卷考生注意:1、本卷共三大题,满分60分。

考试时间为45分钟。

14 P—31一、选择题(本大题共10小题,每题只有一个正确答案,每小题2分,共20分)请将选出的选项序号填入下面的答题表内。

1、自来水的生产过程主要包括以下流程,其中发生化学变化的是()2、我国新修订的《环境空气质量标准》增加了PM2.5监测指标。

PM2.5是指2.5微米以下的细微颗粒物,它对人体健康和环境质量的影响很大。

下列措施对PM2.5的治理起不到积极作用的是()A、城市道路定时洒水B、大力发展火力发电C、大力植树造林D、加强建筑工地扬尘控制3、下列微粒的结构示意图中,表示阴离子的是()4、从分子和原子的角度分析并解释下列事实,其中不正确的是()A、品红在水中扩散——分子在不断运动B、物体的热胀冷缩——分子的大小发生变化C、氧化汞分解成汞和氧气——分子可以再分D、一滴水中大约有1.67×1021个水分子——分子很小5、硒(Se)是一种非金属元素,如果缺硒可能会引起表皮角质化和癌症,含适量硒的矿泉水有益于人体健康。

在硒酸H2SeO4中,Se元素的化合价是()A、+2B、+3C、+4D、+66、下列图示实验操作中,正确的是( )7、如图为铝在元素周期表中的信息和原子结构示意图,从图中不能得到的信息是( )A 、铝是地壳中含量最多的金属元素B 、铝原子的质子数、核外电子数均为13C 、铝元素的相对原子质量为26.98D 、铝原子在化学反应中容易失去3个电子8、蚊虫叮咬时分泌的蚁酸(CH 2O 2)会使人体皮肤肿痛。

下列有关蚁酸的说法正确的是( )A 、蚁酸是氧化物B 、蚁酸是由碳、氢、氧三种原子构成的C 、蚁酸中碳、氧元素的质量比为1:2D 、蚁酸中氢元素的质量分数最小9、图中“●”和“○”分别表示两种元素的原子,能用该图表示的化学反应是( )A 、2CO+O 2 2CO 2B 、C+CO 2 2COC 、H 2+Cl 2 2HClD 、2H 2+O 2 2H 2O10、对比是学习化学的重要方法。

2014-2015-1工科高数(2-1)期末考试A卷参考答案

2014-2015-1工科高数(2-1)期末考试A卷参考答案

2014—2015学年第一学期《高等数学(2-1)》期末考试A卷( 工科类 )参考答案及评分标准各章所占分值如下:第一章函数与极限16 %;第二章一元函数的导数与微分16 %;第三章微分中值定理与导数的应用14 %;第四章不定积分15 %;第五章定积分及其应用26 % . 第六章常微分方程13 % .一.(共3小题,每小题4分,共计12 分)判断下列命题是否正确在 题后的括号内打“√”或“⨯” ,如果正确,请给出证明,如果不正确请举一个反例进行说明 .1.极限xx 1sinlim 0→不存在. ( √ )--------------------------------------------------(2分)证 设x x f 1sin )(= ,取πn x n 21=,221ππ+=n y n ,),2,1( =n0lim =∞→n n x ,0lim =∞→n n y ,但)(lim n n x f ∞→n n x 1sin lim ∞→=02sin lim ==∞→πn n ,)(lim n n y f ∞→n n y 1sinlim ∞→=1)22sin(lim =+=∞→ππn n , 由海涅定理,xx 1sin lim 0→不存在. ---------------------------------------------------------------(2分)2.若曲线)(x f y =在))(,(00x f x 点处存在切线,则)(x f 在0x 点必可导. ( ⨯ )--------------------------------------------------------(2分) 例:3x y =在)0,0(点处有切线0=x ,但3x y =在0=x 处不可导.---------------------------------------------------------(2分)3.设函数)(x f 在],[b a 上连续且下凸,在),(b a 内二阶可导,则),(b a x ∈∀有0)(>''x f . (⨯ )----------------------------------------------------------(2分)例:4)(x x f =在]3,2[-上连续且下凸,但 0)0(=''f .. ---------------------------------------------------------(2分)二.(共3小题,每小题6分,共计18分) 1. 求极限)!sin()11(lim n nnn ⋅-∞→ .解 ,0)11(lim =-∞→nn n,1)!s i n (≤n ------------------------------------------------------(3分).0)!sin()11(lim =⋅-∴∞→n nn n ----------------------------------------------------------------(3分)2.求极限44)1(limxdte t x x t x ⎰-+∞→+.解 44)1(l i mx dtet x xt x ⎰-+∞→+⎪⎭⎫⎝⎛∞∞+=⎰+∞→xx t x e x dt e t 404)1(lim----------------------------(2分)xxx e x x e x )4()1(lim434++=+∞→---------------------------------------------------------------------(2分).141lim 434=++=+∞→x x x x --------------------------------------------------------------------(2分)3.求极限)21(lim 222222nn nn n n n n ++++++∞→ . 解 )21(lim 222222n n nn n n n n ++++++∞→ ∑=∞→⋅⎪⎭⎫⎝⎛+=ni n n n i 12111lim ------------------------------------------------------------------(2分) ⎰+=1021x dx ---------------------------------------------------------------------(2分) 4arctan 10π==x. ----------------------------------------------------------------(2分)1.求函数()xx eex f 11211++=的间断点并判断其类型.解 0=x 是)(x f 的间断点,---------------------------------------------------------------------(3分)又 )(lim 0x f x +→21211lim 11=++=+→xx x ee,)(lim 0x f x -→1211lim 110=++=-→xxx e e , 0=∴x 是)(x f 的跳跃间断点. ---------------------------------------------------------------(3分)2.设⎪⎩⎪⎨⎧=≠-=0,00,1)(2x x x e x f x ,求 .)(x f '解 当0≠x 时,2)1(2)(22x e x x e x f x x --⋅='21222x e e x x --=----------------- (3分 ) 当0=x 时,0)0()(lim )0(0--='→x f x f f x xx e x x 1lim 20-=→201lim2x e x x -=→122lim 20==→x xe xx ,⎪⎩⎪⎨⎧=≠--='∴.0,1,0,12)(222x x x e e x f x x ------------------------------------------------ ( 3分 )3.设方程ln(sin )cos sin x t y t t t =⎧⎨=+⎩确定y 为x 的函数,求dy dx 与22d ydx . 解()sin ()dy y t t t dx x t '==' , --------------------------------------------------------------------(3分)22d y d dy dx dx dx ⎛⎫= ⎪⎝⎭()sin dt t dx =()sin d dt t t dt dx =⋅sin cos ()t t t x t +='sin tan sin t t t t =+. -----------------------------------------------------------------------(3分)1.求不定积分⎰+dx e xx ln 2.解 ⎰+dx e xxln 2⎰⋅=dx e e x x ln 2⎰=dx x e x 2-----------------------------------------------(3分))(2122⎰=x d e x -------------------------------------------------------------------------(2分) .212C e x += ----------------------------------------------------------------------(1分)2.求不定积分⎰dx x x 2cos .解⎰dx x x 2cos ⎰+=dx xx 22cos 1 -------------------------------------------------------(2分) ⎰+=)2(sin 41412x xd x ---------------------------------------------------(2分) ⎰-+=dx x x x x 2sin 412sin 41412 C x x x x +++=2cos 812sin 41412.------------------------------------(2分)3.设)(x f 在]1,1[-上连续,求定积分dx x x x f x f }1sin )]()([{211-+-+⎰-.解1dx x x x f x f }1sin )]()([{211-+-+⎰- dx x x f x f sin )]()([11-+=⎰-dx x 2111-+⎰-------------------------------(2分)dx x 210120-+=⎰(上半单位圆的面积)-----------------------------------(3分)242ππ=⋅=.------------------------------------------------------------------------------(1分)解2dx x x x f x f }1sin )]()([{211-+-+⎰- dx x x f x f sin )]()([11-+=⎰-dx x 2111-+⎰-----------------------------(2分)+=0dx x 2111-+⎰-(上半单位圆的面积)-------------------------------(3分)2π=.-------------------------------------------------------------------------------------(1分)五.(本题8分)设由曲线 x y ln = 与直线 0=-ey x 及 x 轴 所围平面图形为 D (1) 求D 的面积S ;(4分)(2) 求D 绕直线e x =旋转所得旋转体的体积 V .(4分)解 曲线x y ln =与直线 0=-ey x 的交点为)1,(e ----------------------(1分).12-=e------------------------------------------(3分) (2) ⎰⎰---=-=1210221)()(dy e e dy ey e V V V y ππ------------------------------(2分)⎰⎰+---=1221022)2()1(dy e ee e dy y e y y ππ.)3125(6)2212(3222+-=---=e e e e e πππ----------------------(2分)xx ⎰-=1)()1(dyy e e S y 12]2[e ye y -=六.(共2小题,每小题6分,共计12分)1.设有半径为R 的半球形蓄水池中已盛满水 (水的密度为ρ), 求将池中水全部抽出所做的功.解 过球心的纵截面建立坐标系如图,则半圆方程为222x y R +=. --------------------------------------------------(1分).44gR ρπ=---------------------------------------------------------------------------(2分)2.设有质量为m 的降落伞以初速度0v 开始降落,若空气的阻力与速度成正比(比例系数为0>k ),求降落伞下降的速度与时间的函数关系.解 设降落伞下降的速度为)(t v ,则根据牛顿第二运动定律,有 kv mg dtdvm-=,其中g 为重力加速度,-------------------------------------------(2分) 分离变量,得m dtkv mg dv =- , 两端积分 ⎰⎰=-m dtkv mg dv , 1ln 1C m t kv mg k +=-- , 1ln kC t mkkv mg --=-, t mk Cekv mg -=- (其中1kC eC -=,0>-kv mg )---------------------------------(2分)由已知0)0(v v =,代入上式,得0kv mg C -=,故 .)(0tm ke kmg v k mg v --+=------------------------------------------------------------(2分)y,],0[R x ∈∀所做功的微元:取],[dx x x +(其中g x dx x R g dW ⋅-=)(22πρ分)(3)(32dx x x R g -=πρ23()RW g R x x dxρπ=-⎰故七.(本题6分)求微分方程2106652+-=+'-''x x y y y 的通解.解 特征方程为:,0652=+-r r 特征根:.3,221==r r对应齐次方程的通解为:.3221x x e C e C y +=----------------------------------------(3分) 而0不是特征根,可设非齐次方程的特解为C Bx Ax y ++=21,----------------(1分)B Ax y +='21,A y 21='',代入原方程得, 2106)(6)2(5222+-=++++-x x C Bx Ax B Ax A , 2106652)106(622+-=+-+-+x x C B A x A B Ax ,比较同次幂的系数,得⎪⎩⎪⎨⎧=+--=-=.2652,10106,66C B A A B A解之得,.0,0,1===C B A .21x y =∴故所要求的通解为.23221x e C e C y x x ++=---------------------------------------------(2分)八.(本题8分)设L 是一条平面曲线,其上任意一点)0(),(>x y x 到坐标原点的距离恒等于该点处的切线在y 轴上的截距且L 经过点)0,21(. (1)试求曲线L 的方程;(2)求L 位于第一象限的一条切线,使该切线与L 以及两坐标轴所围图形的面积最小. 解(1)过曲线L 上点),(y x 处的切线方程为:)(x X y y Y -'=-, 令0=X ,得切线在y 轴上的截距:y x y Y '-=,由题意,得y x y y x '-=+22,即dx dy x y x y -=⎪⎭⎫⎝⎛+21,)0(>x ------------(2分)令u x y =,则,12x dx u du -=+)0(>x ,12⎰⎰-=+⇒x dxudu )0(>xC x u u ln ln )1ln(2+-=++⇒,C u u x =++⇒)1(2,将xyu =代入并化简,得 C y x y =++22,由L 经过点)0,21(,令21=x ,0=y ,得21=C ,故曲线L 的方程为:,2122=++y x y 即 241x y -=.----------------------------------(2分)(2)曲线L :241x y -=在点),(y x 处的切线方程为:)(x X y y Y -'=-,即)(2)41(2x X x x Y --=--,亦即 )210(4122≤<++-=x x X x Y , 切线与x 轴及y 轴的交点分别为:)0,241(2xx +,).41,0(2+x -----------------------(2分)所求面积⎰--+⋅=210222)41(2)41(21)(dx x xx x S ,)0(>x)413)(41(41)41(2)41(441)(22222222-+=+-+⋅='x x x x x x x x S ,)0(>x 令0)(='x S ,得)(x S 符合实际意义唯一驻点:63=x , 即63=x 为)(x S 在)21,0(内的最小值点, 故所求切线方程为: 41363632++⋅-=X Y ,即.3133+-=X Y ---------------------------------------------(2分)。

2014年安徽省蚌埠市高考数学三模试卷(文)

2014年安徽省蚌埠市高考数学三模试卷(文)

2014年安徽省蚌埠市高考数学三模试卷(文)一、选择题(共10小题,每小题5分,共50分)1.如果复数(m﹣i)i(其中m∈R)的实部与虚部互为相反数,则m=()A.2 B.﹣2 C.﹣1 D.12.设命题p:函数y=在定义域上为减函数;命题q:a,b是任意实数,若a>b>﹣1,则<,则()A.“p或q”为假B.“p且q”为真C.p假q真D.p真q假3.已知角α的终边与单位圆x2+y2=1交于P(,y0),则cos2α=()A.﹣B.1C.D.﹣4.为了了解某校教师使用多媒体进行教学的情况,采用简单随机抽样的方法,从该校400名授课教师中抽取20名,调查了他们上学期使用多媒体进行教学的次数,结果用茎叶图表示如图所示.据此可估计该校上学期400名教师中使用多媒体进行教学次数在[16,30)内的人数为()A.100 B.160 C.200 D.2805.设,是两个非零向量,则使•=||||成立的一个必要非充分条件是()A.=B.⊥C.=λ(λ>0)D.∥6.函数在同一平面直角坐标系内的大致图象为()7.运行如图所示的程序,若结束时输出的结果不小于3,则t的取值范围为()A.B.C.D.8.一个几何体的三视图如图所示,则这个几何体的表面积为()A.B.C.D.99.已知直线2mx﹣(m+1)y+4=0上存在点(x,y)满足,则实数m的取值范围为()A.m≤﹣B.﹣1≤m≤﹣C.m≥﹣D.m≤﹣且m≠﹣110.用card(A)表示非空集合A中的元素个数,已知集合P={x|x+a﹣1=0,a∈R},集合Q={x∈(0,+∞)|x3﹣x2﹣x+c=0},则当|card(P)﹣card(Q)|=1时实数c的取值范围是()A.c∈R B.c>0 C.c>1 D.c>0且c≠1二、填空题(共5小题,每小题5分,共25分)11.=_________.12.已知数列{a n}满足:a1为正整数,a n+1=,如果a1=5,则a1+a2+a3=_________.13.先后2次抛掷一枚骰子,将得到的点数分别记为a,b,将a,b,5的值分别作为三条线段的长,这三条线段能围成等腰三角形的概率_________.14.已知双曲线﹣=1(a>0,b>0)与抛物线y2=2px(p>0)的交点为A、B,A、B连线经过抛物线的交点F,且线段AB的长等于双曲线的虚轴长,则双曲线的离心率为_________.15.关于函数f(x)=|2sinx+m|(m为常数且m∈R),有下列结论:①若m=0,则函数f(x)的最小正周期为π;②如果函数f(x)的最小正周期为2π,则m>0;③函数f(x)图象的对称轴方程式x=kπ+(k∈Z);④存在常数m、k使得函数g(x)=f(x)﹣k(x>0)的零点从小到大排列成公差为2π的等差数列;⑤存在唯一的一组常数m、k,使得函数g(x)=f(x)﹣k(x>0)的零点从小到大排列成公差为π的等差数列;其中正确结论的序号为_________(把你认为正确结论的序号都填上).三、解答题(共6小题,共75分)16.(12分)已知△ABC是锐角三角形,且sin(B﹣)cos(B﹣)=.(Ⅰ)求角B的值;(Ⅱ)若tanAtanC=3,求A、C的值.17.(12分)某日用品按行业质量标准分成五个等级,等级系数X依次为1,2,3,4,5.现从一批该日用品中(Ⅱ)在(Ⅰ)的条件下,将等级系数为4的3件日用品记为x1,x2,x3,等级系数为5的2件日用品记为y1,y2,现从x1,x2,x3,y1,y2,这5件日用品中任取两件(假定每件日用品被取出的可能性相同),写出所有可能的结果,并求这两件日用品的等级系数恰好相等的概率.18.(12分)(2014•蚌埠三模)设函数f(x)=e x(sinx﹣1)(Ⅰ)求函数f(x)的单调增区间;(Ⅱ)当x∈[﹣π,π]时,求函数的最大值和最小值.19.(13分)数列{a n}的前n项和为S n,若a1=3,S n和S n+1满足等式S n+1=S n+n+1.(Ⅰ)求证:数列{}是等差数列;(Ⅱ)若数列{b n}满足b n=a n•2,求数列{b n}的前n项和T n.20.(12分)如图所示,已知四棱锥P﹣ABCD的底面是菱形,∠DAB=,AC∩BD=O,PO⊥平面ABCD,E、F分别在棱PC、PA上,CE=CP,AF=AP,G为PD中点,△PBD是边长为6的等边三角形.(Ⅰ)求证:B、E、C、F四点共面;(Ⅱ)求V四棱锥P﹣BECF.21.(14分)如图,在平面直角坐标系xOy中,已知A,B,C是椭圆+=1(a>b>0)上不同的三点,A (3,),B(﹣3,﹣3),C在第三象限,线段BC的中点在直线OA上.(1)求椭圆的标准方程;(2)求点C的坐标;(3)设动点P在椭圆上(异于点A,B,C)且直线PB,PC分别交直线OA于M,N两点,证明•为定值并求出该定值.。

人教A版高中数学选修一期末考试.docx

人教A版高中数学选修一期末考试.docx

高中数学学习材料马鸣风萧萧*整理制作武汉外国语学校2014—2015学年度上学期期末考试高二数学(文) 试题考试时间:2015年2月3日上午10:20-12:20 满分:150分一、选择题:(每小题5分,共50分)1. 已知复合命题()p q ∧⌝是真命题,则下列命题中也是真命题的是( )A .()p q ⌝∨B .p q ∨C .p q ∧D .()()p q ⌝∧⌝2. 对一个容量为N 的总体抽取容量为n 的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为123,,p p p ,则( )123.A p p p =< 231.B p p p =< 132.C p p p =< 123.D p p p == 3. 质点在数轴上的区间[0,2]上运动,假定质点出现在该区间各点处的概率相等,那么质点落在区间[0,1]上的概率为( )A. 14B. 13C. 12 D .以上都不对 4. “102x x -≥+”是“(1)(2)0x x -+≥”的( ) A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件5. 从某高中随机选取5名高二男生,其身高和体重的数据如下表所示: 身高x (cm) 160 165 170 175 180 体重y (kg)6366707274根据上表可得线性回归方程y ^=0.56x +a ^,据此模型预报身高为172 cm 的高三男生的体重为 ( ) A .70.09 kgB .70.12 kgC .70.55 kgD .71.05 kg6. 从装有5个红球和3个白球的口袋内任取3个球,那么互斥而不对立的事件是 ( ) A .至少有一个红球与都是红球 B .至少有一个红球与都是白球 C .至少有一个红球与至少有一个白球 D .恰有一个红球与恰有二个红球7. 双曲线9322=-x y 的渐近线方程为 ( )A .30x y ±=B .30x y ±=C .30x y ±=D .30x y ±=8. 执行如图所示的程序框图,输出的T =( ) A .29 B .44 C .52 D .629. 已知F 1,F 2是椭圆和双曲线的公共焦点,P 是它们的一个公共点,且∠F 1PF 2=π3,则椭圆和双曲线的离心率的倒数之和的最大值为( )A .433B .233C .3D .210.设函数223()cos 4sin 3(),| t |1,2x f x x t t t x R =++-∈≤其中将()f x 的最小值记为()g t ,则函数()g t 的单调递增区间为( )A .1(,]3-∞-和[1,)+∞ B.1[1,]3-- C.1[,)3+∞ D.1[,1]3-二、填空题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014-2015学年安徽省蚌埠市高二(上)期末数学试卷(文科)一.选择题1.下列说法中正确的是()A.三点确定一个平面B.两条直线确定一个平面C.两两相交的三条直线一定在同一平面内D.过同一点的三条直线不一定在同一平面内2.已知命题甲:A1、A2是互斥事件;命题乙:A1、A2是对立事件,那么甲是乙的() A.充分但不必要条件 B.必要但不充分条件C.充要条件 D.既不充分也不必要条件3.直线x+a2y+1=0(a∈R)的倾斜角的取值范围是()A. [0,] B.(,π) C. [,π) D.(0,)4.将长方体截去一个四棱锥,得到的几何体如图所示,则该几何体的左视图为()A. B. C. D.5.阅读如图所示的程序框图,运行相应的程序,则输出s的值为()A.﹣1 B. 0 C. 1 D. 36.有2个兴趣小组,甲、乙、丙三位同学各参加其中一个小组,每位同学参加各个小组的可能性相同.则这三位同学参加同一个兴趣小组的概率为()A. B. C. D.7.已知m,n是两条不同直线,α,β,γ是三个不同平面,下列命题中正确的是() A.若α⊥γ,β⊥γ,则α∥β B.若m⊥α,n⊥α,则m∥nC.若m∥α,n∥α,则m∥n D.若m∥α,m∥β,则α∥β8.过圆x2+y2=4外一点P(4,2)作圆的两条切线,切点分别为A,B,则△ABP的外接圆方程是()A.(x﹣4)2+(y﹣2)2=1 B. x2+(y﹣2)2=4 C.(x+2)2+(y+1)2=5 D.(x﹣2)2+(y﹣1)2=59.设A(﹣2,2)、B(1,1),若直线ax+y+1=0与线段AB有交点,则a的取值范围是() A.(﹣∞,﹣]∪[2,+∞) B. [﹣,2) C.(﹣∞,﹣2]∪[,+∞) D. [﹣2,]10.已知球的直径SC=6,A,B,是该球球面上的两点,AB=3,∠ASC=∠BSC=45°,则棱锥S ﹣ABC的体积为()A. B. 4 C. D. 6二.填空题11.若命题p:x∈(A∪B),则¬p是.12.一梯形的直观图是一个如图所示的等腰梯形,且该梯形的面积为2,则该梯形的面积为.13.已知集合A={(x,y)|},集合B={(x,y)|3x+2y﹣m=0},若A∩B≠∅,则实数m的最小值等于.14.在集合M={,,1,2,3}的所有非空子集中任取一个集合,恰满足条件“对∀∈A,则∈A”的集合的概率是.15.在四棱柱ABCD﹣A′B′C′D′中,AA′⊥底面ABCD,四边形ABCD为梯形,AD∥BC且AD=AA′=2BC.过A′,C,D三点的平面与BB′交于点E,F,G分别为CC′,A′D′的中点(如图所示)给出以下判断:①E为BB′的中点;②直线A′E和直线FG是异面直线;③直线FG∥平面A′CD;④若AD⊥CD,则平面ABF⊥平面A′CD;⑤几何体EBC﹣A′AD是棱台.其中正确的结论是.(将正确的结论的序号全填上)三.解答题16.已知p:1≤x<3;q:x2﹣ax≤x﹣a;若¬p是¬q的充分条件,求实数a的取值范围.17.根据所给条件求直线l的方程.(1)直线l经过圆x2+y2+2y=0的圆心,且与直线2x+y=0垂直;(2)直线l过点(﹣4,8),且到原点的距离为4.18.如图,四边形ABEF和ABCD都是直角梯形,∠BAD=∠FAB=90°,BE∥AF,BC∥AD,BC=AD,BE=AF,G、H分别为FA、FD的中点.(1)在证明:四边形BCHG是平行四边形.(2)C、D、F、E四点是否共面?若共面,请证明,若不共面,请说明理由.19.袋子中放有大小和形状相同的小球若干个,其中标号为0的小球1个,标号为1的小球1个,标号为2的小球n个.已知从袋子中随机抽取1个小球,取到标号是2的小球的概率是.(1)求n的值;(2)(2)从袋子中不放回地随机抽取2个小球,记第一次取出的小球标号为a,第二次取出的小球标号为b.记事件A表示“a+b=2”,求事件A的概率.20.如图所示,在直三棱柱ABC﹣A1B1C1中,AB=BC=BB1,D为AC的中点.(Ⅰ)求证:B1C∥平面A1BD;(Ⅱ)若AC1⊥平面A1BD,求证B1C1⊥平面ABB1A1;(Ⅲ)在(II)的条件下,设AB=1,求三棱B﹣A1C1D的体积.21.已知直线l:kx﹣y﹣2﹣k=0(k∈R).(1)证明:直线过l定点;(2)若直线不经过第二象限,求k的取值范围;(3)若直线l交x轴正半轴于A,交y轴负半轴于B,△AOB的面积为S,求S的最小值并求此时直线l的方程.2014-2015学年安徽省蚌埠市高二(上)期末数学试卷(文科)参考答案与试题解析一.选择题1.下列说法中正确的是()A.三点确定一个平面B.两条直线确定一个平面C.两两相交的三条直线一定在同一平面内D.过同一点的三条直线不一定在同一平面内考点:平面的基本性质及推论.专题:空间位置关系与距离.分析:根据不共线的三点确定一个平面,可判断A是否正确;根据两条相交直线确定一个平面α,第三条直线与这两条直线分别相交且交点不重合时,也在α内,由此可判断B正确;根据当点在直线上时,不能确定平面来判断C是否正确;根据空间四边形四点不共面来判断D是否正确.解答:解:对A,当三点共线时,平面不确定,故A错误;对B,当两条直线是异面直线时,不能确定一个平面;故B错误;对C,∵两两相交且不共点的三条直线确定一个平面,∴当三条直线两两相交且共点时,不一定在同一个平面,如墙角的三条棱;故C错误;对D,由C可知D正确.故选:D.点评:本题考查了确定平面的条件以及直线共面的问题.2.已知命题甲:A1、A2是互斥事件;命题乙:A1、A2是对立事件,那么甲是乙的() A.充分但不必要条件 B.必要但不充分条件C.充要条件 D.既不充分也不必要条件考点:互斥事件与对立事件.专题:计算题.分析:两个事件是互斥事件,这两个事件不一定是互斥事件,当两个事件是对立事件,则这两个事件一定是互斥事件,命题甲不一定推出命题乙,命题乙一定能推出命题甲,得到结论.解答:解:∵两个事件是互斥事件,这两个事件不一定是互斥事件,当两个事件是对立事件,则这两个事件一定是互斥事件,∴命题甲不一定推出命题乙,命题乙一定能推出命题甲,∴甲是乙的必要不充分条件,故选B.点评:本题考查互斥事件和对立事件的关系,若把互斥事件和对立事件都看做一个集合时,后者对应的集合是前者对应集合的子集.3.直线x+a2y+1=0(a∈R)的倾斜角的取值范围是()A. [0,] B.(,π) C. [,π) D.(0,)考点:直线的一般式方程.专题:直线与圆.分析:当a=0时,直线的倾斜角为;当a≠0时,求出直线的斜率,由斜率的范围可得直线的倾斜角的范围.解答:解:当a2=0,即a=0时,直线方程为x=﹣1,直线的倾斜角为;当a2≠0,即a≠0时,直线的斜率为k=<0,则直线的倾斜角为钝角,即α<π.∴直线x+a2y+1=0(a∈R)的倾斜角的取值范围是().故选:C.点评:本题考查了直线的一般式方程,考查了直线的倾斜角与斜率的关系,是基础题.4.将长方体截去一个四棱锥,得到的几何体如图所示,则该几何体的左视图为()A. B. C. D.考点:简单空间图形的三视图.专题:计算题;空间位置关系与距离.分析:根据三视图的特点,知道左视图从图形的左边向右边看,看到一个正方形的面,在面上有一条对角线,对角线是由左下角到右上角的线,得到结果.解答:解:左视图从图形的左边向右边看,看到一个正方形的面,在面上有一条对角线,对角线是由左下角到右上角的线,故选C.点评:本题考查空间图形的三视图,考查左视图的做法,本题是一个基础题,考查的内容比较简单,可能出现的错误是对角线的方向可能出错.5.阅读如图所示的程序框图,运行相应的程序,则输出s的值为()A.﹣1 B. 0 C. 1 D. 3考点:条件语句;循环语句.专题:算法和程序框图.分析:本题主要考查条件语句与循环语句的基本应用,属于容易题.解答:解:第一次运行程序时i=1,s=3;第二次运行程序时,i=2,s=2;第三次运行程序时,i=3,s=1;第四次运行程序时,i=4,s=0,此时执行i=i+1后i=5,推出循环输出s=0,故选B点评:涉及循环语句的问题通常可以采用一次执行循环体的方式解决.6.有2个兴趣小组,甲、乙、丙三位同学各参加其中一个小组,每位同学参加各个小组的可能性相同.则这三位同学参加同一个兴趣小组的概率为()A. B. C. D.考点:相互独立事件的概率乘法公式.专题:计算题;概率与统计.分析:本题是一个古典概型,试验发生包含的事件数是2×2×2=8种结果,满足条件的事件是这三位同学参加同一个兴趣小组有2种结果,根据古典概型概率公式得到结果.解答:解:由题意知本题是一个古典概型,试验发生包含的事件数是2×2×2=8种结果,满足条件的事件是这三位同学参加同一个兴趣小组,由于共有2个小组,则有2种结果,根据古典概型概率公式得到P==,故选A.点评:本题考查古典概型概率公式,是一个基础题,确定试验发生包含的事件数和满足条件的事件数是关键.7.已知m,n是两条不同直线,α,β,γ是三个不同平面,下列命题中正确的是() A.若α⊥γ,β⊥γ,则α∥β B.若m⊥α,n⊥α,则m∥nC.若m∥α,n∥α,则m∥n D.若m∥α,m∥β,则α∥β考点:空间中直线与平面之间的位置关系.专题:空间位置关系与距离.分析:利用空间中线线、线面、面面间的位置关系求解.解答:解:若α⊥γ,β⊥γ,则α与β相交或平行,故A正确;若m⊥α,n⊥α,则由直线与平面垂直的性质得m∥n,故B正确;若m∥α,n∥α,则m与n相交、平行或异面,故C错误;若m∥α,m∥β,则α与β相交或平行,故D错误.故选:A.点评:本题考查命题真假的判断,是中档题,解题时要注意空间思维能力的培养.8.过圆x2+y2=4外一点P(4,2)作圆的两条切线,切点分别为A,B,则△ABP的外接圆方程是()A.(x﹣4)2+(y﹣2)2=1 B. x2+(y﹣2)2=4 C.(x+2)2+(y+1)2=5 D.(x﹣2)2+(y﹣1)2=5考点:直线与圆的位置关系.专题:计算题.分析:根据已知圆的方程找出圆心坐标,发现圆心为坐标原点,根据题意可知,△ABP的外接圆即为四边形OAPB的外接圆,从而得到线段OP为外接圆的直径,其中点为外接圆的圆心,根据P和O两点的坐标利用两点间的距离公式求出|OP|的长即为外接圆的直径,除以2求出半径,利用中点坐标公式求出线段OP的中点即为外接圆的圆心,根据求出的圆心坐标和半径写出外接圆的方程即可.解答:解:由圆x2+y2=4,得到圆心O坐标为(0,0),∴△ABP的外接圆为四边形OAPB的外接圆,又P(4,2),∴外接圆的直径为|OP|==2,半径为,外接圆的圆心为线段OP的中点是(,),即(2,1),则△ABP的外接圆方程是(x﹣2)2+(y﹣1)2=5.故选D点评:此题考查了直线与圆的位置关系,要求学生熟练运用两点间的距离公式及中点坐标公式.根据题意得到△ABP的外接圆为四边形OAPB的外接圆是本题的突破点.9.设A(﹣2,2)、B(1,1),若直线ax+y+1=0与线段AB有交点,则a的取值范围是()A.(﹣∞,﹣]∪[2,+∞) B. [﹣,2) C.(﹣∞,﹣2]∪[,+∞) D. [﹣2,]考点:两条直线的交点坐标.专题:直线与圆.分析:直线ax+y+1=0与线段AB有交点,说明两点的坐标代入ax+y+1所得的值异号,或直线经过其中一点,由此得不等式求得a的取值范围.解答:解:∵A(﹣2,2)、B(1,1),由直线ax+y+1=0与线段AB有交点,∴A,B在直线ax+y+1=0的两侧或直线经过A,B中的一点.可得(﹣2a+2+1)(a+1+1)≤0.即(2a﹣3)(a+2)≥0,解得:a≤﹣2或a.∴a的取值范围是(﹣∞,﹣2]∪[,+∞).故选:C.点评:本题考查了二元一次方程组所表示的平面区域,考查了数学转化思想方法,是基础题.10.已知球的直径SC=6,A,B,是该球球面上的两点,AB=3,∠ASC=∠BSC=45°,则棱锥S ﹣ABC的体积为()A. B. 4 C. D. 6考点:球内接多面体.专题:计算题;空间位置关系与距离;球.分析:由题意求出SA=AC=SB=BC=3,∠SAC=∠SBC=90°,说明过O,A,B的平面与SC 垂直,求出三角形OAB的面积,即可求出棱锥S﹣ABC的体积.解答:解:如图,由题意△ASC,△BSC均为等腰直角三角形,且SA=AC=SB=BC=3,所以∠SOA=∠SOB=90°,所以SC⊥平面ABO.又AB=3,△ABO为正三角形,则S△ABO=×32=,进而可得:V S﹣ABC=V C﹣AOB+V S﹣AOB=××6=.故选C.点评:本题是基础题,考查球的内接三棱锥的体积,考查空间想象能力,计算能力,得出SC⊥平面ABO是本题的解题关键,且用了体积分割法.二.填空题11.若命题p:x∈(A∪B),则¬p是x∉A且x∉B .考点:命题的否定.专题:简易逻辑.分析:根据命题的否定的定义写出即可.解答:解:若命题p:x∈(A∪B),则¬p是:x∉A且x∉B,故答案为:x∉A且x∉B.点评:本题考查了命题的否定,是一道基础题.12.一梯形的直观图是一个如图所示的等腰梯形,且该梯形的面积为2,则该梯形的面积为4.考点:平面图形的直观图.专题:空间位置关系与距离.分析:把该梯形的直观图还原为原来的梯形,画出图形,结合图形解答问题即可.解答:解:把该梯形的直观图还原为原来的梯形,如图所示;设该梯形的上底为a,下底为b,高为h,则直观图中等腰梯形的高为h′=hsin45°;∵等腰梯形的体积为(a+b)h′=(a+b)•hsin45°=2,∴(a+b)•h==4;∴该梯形的面积为4.故答案为:4.点评:本题考查了平面图形的直观图的画法与应用问题,解题时应明确直观图与原来图形的区别和联系,是基础题目.13.已知集合A={(x,y)|},集合B={(x,y)|3x+2y﹣m=0},若A∩B≠∅,则实数m的最小值等于 5 .考点:简单线性规划;交集及其运算.专题:不等式的解法及应用.分析:作出不等式对应的平面区域,利用A∩B≠∅,建立直线和平面区域的关系求解即可.解答:解:作出不等式组对应的平面区域如图:A∩B≠∅说明直线与平面区域有公共点,由3x+2y﹣m=0得m=3x+2y.由图象可知在点A(1,1)处,函数m=3x+2y取得最小值,此时m=3+2=5.故答案为:5.点评:本题主要考查线性规划的基本应用,利用m的几何意义是解决线性规划问题的关键,注意利用数形结合来解决.14.在集合M={,,1,2,3}的所有非空子集中任取一个集合,恰满足条件“对∀∈A,则∈A”的集合的概率是.考点:列举法计算基本事件数及事件发生的概率.专题:概率与统计.分析:先根据集合的定义求出在所有非空子集中任取一个集合,共有25﹣1=31种,再找到满足对∀∈A,则∈A”的集合的种数,利用古典概型的概率公式求出概率即可解答:解:M={,,1,2,3}的所有非空子集中任取一个集合,共有25﹣1=31种,其中满足条件“对∀∈A,则∈A”的有{,3},{,2},{1},{1,,3},{1,,2},{,,2,3},{,,1,2,3}共7种,故恰满足条件“对∀∈A,则∈A”的集合的概率是故答案为:点评:本题考查了根据古典概型的概率公式计算随机事件的概率,属于基础题15.在四棱柱ABCD﹣A′B′C′D′中,AA′⊥底面ABCD,四边形ABCD为梯形,AD∥BC且AD=AA′=2BC.过A′,C,D三点的平面与BB′交于点E,F,G分别为CC′,A′D′的中点(如图所示)给出以下判断:①E为BB′的中点;②直线A′E和直线FG是异面直线;③直线FG∥平面A′CD;④若AD⊥CD,则平面ABF⊥平面A′CD;⑤几何体EBC﹣A′AD是棱台.其中正确的结论是①③④⑤.(将正确的结论的序号全填上)考点:空间中直线与直线之间的位置关系;棱柱的结构特征.专题:空间位置关系与距离.分析:利用四棱柱的性质,结合线面关系、面面关系定理对选项分别分析解答.解答:解:对于①,∵四棱柱ABCD﹣A1B1C1D1中,四边形ABCD为梯形,AD∥BC,∴平面EBC∥平面A1D1DA,∴平面A1CD与面EBC、平面A1D1DA的交线平行,∴EC∥A1D∴△EBC∽△A1AD,∴,∴E为BB1的中点;故①正确;对于②,因为E,F都是棱的中点,所以EF∥B'C',又B'C'∥A'D',所以EF∥A'D',所以A'E,FG都在平面EFD'A'中;故②错误;对于③,由②可得EF∥A'G,EF=A'G,所以四边形A'EFG是平行四边形,所以FG∥A'E,又A'E⊂平面A'CD中,FG⊄平面A'CD,所以直线FG∥平面A′CD正确;对于④,连接AD',容易得到BF∥AD',所以ABFD'四点共面,因为AD⊥CD,AD'在底面的射影为AD,所以CD⊥AD',又AD'⊥BF,所以BF⊥CD,又BF⊥CE,所以BF⊥平面A'CD,BF⊂平面ABFD',所以平面ABF⊥平面A′CD;故④正确;对于⑤,由④得到,AB与D'F,DC交于一点,所以几何体EBC﹣A′AD是棱台.故⑤正确;故答案为:①③④⑤.点评:本题考查了三棱柱的性质的运用以及其中的线面关系和面面关系的判断,比较综合.三.解答题16.已知p:1≤x<3;q:x2﹣ax≤x﹣a;若¬p是¬q的充分条件,求实数a的取值范围.考点:必要条件、充分条件与充要条件的判断.专题:简易逻辑.分析:分别求出关于p,q的x的范围,根据p,q的关系,从而确定a的范围.解答:解:p:1≤x<3,q:x2﹣ax≤x﹣a⇔(x﹣1)(x﹣a)≤0,∵¬p⇒¬q,∴q⇒p,∴a≥1,∴q:1≤x≤a,∴实数a的范围是:[1,3).点评:本题考查了充分必要条件,考查了命题之间的关系,是一道基础题.17.根据所给条件求直线l的方程.(1)直线l经过圆x2+y2+2y=0的圆心,且与直线2x+y=0垂直;(2)直线l过点(﹣4,8),且到原点的距离为4.考点:直线与圆的位置关系;点到直线的距离公式.专题:综合题;直线与圆.分析:(1)由已知中圆的方程,我们先确定出圆的圆心的坐标,然后根据与已知直线垂直的直线的直线系方程,我们设出与直线2x+y=0垂直的直线方程(含参数λ),将圆心坐标代入可以构造一个关于λ的方程,解方程求出λ的值,即可得到答案.(2)当直线的斜率不存在时,直线方程为x=﹣4,满足条件.当直线的斜率存在时,设直线的方程为y﹣8=k(x+4),由=4,解出k值,可得直线方程.解答:解:(1)由已知,圆的标准方程为x2+(y+l)2=1,圆心坐标为(0,﹣1)设与直线2x+y=0垂直的直线方程是x﹣2y+λ=0则2+λ=0,所以λ=﹣2故经过圆x2+y2+2y=0的圆心,且与直线2x+y=0垂直的直线方程是x﹣2y﹣2=0;(2)当直线的斜率不存在时,直线方程为x=﹣4,满足条件.当直线的斜率存在时,设直线的方程为y﹣8=k(x+4),即kx﹣y﹣4k﹣8=0,由条件得=4,∴k=﹣,故直线方程为3x+4y﹣20=0.综上,直线l的方程为x=﹣4或3x+4y﹣20=0.点评:本题考查的知识点是直线与圆相交的性质,考查点到直线的距离公式的应用,用待定系数法求直线方程,体现了分类讨论的数学思想.18.如图,四边形ABEF和ABCD都是直角梯形,∠BAD=∠FAB=90°,BE∥AF,BC∥AD,BC=AD,BE=AF,G、H分别为FA、FD的中点.(1)在证明:四边形BCHG是平行四边形.(2)C、D、F、E四点是否共面?若共面,请证明,若不共面,请说明理由.考点:直线与平面平行的性质;平面的基本性质及推论.专题:空间位置关系与距离.分析:(1)由已知得GH∥AD,GH=AD,又BC∥AD,BC=AD故GH∥BC,GH=BC,由此能证明四边形BCHG是平行四边形.(2)由BE∥AF,BE=AF,G是FA的中点知,BE∥GA,BR=GA,从而得到四边形BEFG是平行四边形,由此能推导出C,D,F,E四点共面.解答:(1)证明:由题意知,FG=GA,FH=HD所以GH∥AD,GH=AD,又BC∥AD,BC=AD故GH∥BC,GH=BC,所以四边形BCHG是平行四边形.(2)C,D,F,E四点共面.理由如下:由BE∥AF,BE=AF,G是FA的中点知,BE∥GF,BE=GF,所以四边形BEFG是平行四边形,所以EF∥BG由(1)知BG∥CH,所以EF∥CH,故EC,FH共面.又点D在直线FH上所以C,D,F,E四点共面.点评:本题考查了立体几何中四点共面问题和求二面角的问题,考查空间想象能力,几何逻辑推理能力,以及计算能力.19.袋子中放有大小和形状相同的小球若干个,其中标号为0的小球1个,标号为1的小球1个,标号为2的小球n个.已知从袋子中随机抽取1个小球,取到标号是2的小球的概率是.(1)求n的值;(2)(2)从袋子中不放回地随机抽取2个小球,记第一次取出的小球标号为a,第二次取出的小球标号为b.记事件A表示“a+b=2”,求事件A的概率.考点:列举法计算基本事件数及事件发生的概率.专题:概率与统计.分析:(1)由古典概型公式可得关于n的方程,解之即可;(2)由条件列举出所有可能的基本事件,找出符合的有几个,即可的答案.解答:解:(1)由题意可知:=,解得n=4.(2)不放回地随机抽取2个小球的所有等可能基本事件为:(0,1),(0,21),(0,22),(0,23),(0,24),(1,0),(1,21),(1,22),(1,23),(1,24),(21,0),(21,1),(21,22),(21,23),(21,24),(22,0),(22,1),(22,21),(21,23),(21,24),(23,0),(23,1),(23,21),(23,22),(23,24),(24,0),(24,1),(24,21),(24,22),(24,23),共30个,事件A包含的基本事件为:(0,21),(0,22),(0,23),(0,24),(21,0),(22,0),(23,0),(24,0),共8个.故事件A的概率P(A)==点评:本题为古典概型的求解,数准基本事件数是解决问题的关键,属基础题.20.如图所示,在直三棱柱ABC﹣A1B1C1中,AB=BC=BB1,D为AC的中点.(Ⅰ)求证:B1C∥平面A1BD;(Ⅱ)若AC1⊥平面A1BD,求证B1C1⊥平面ABB1A1;(Ⅲ)在(II)的条件下,设AB=1,求三棱B﹣A1C1D的体积.考点:直线与平面垂直的判定;直线与平面平行的判定.专题:空间位置关系与距离.分析:(I)连结AB1交A1B于E,连ED.由正方形的性质及三角形中位线定理,结合线面平行的判定定理可得B1C∥平面A1BD;(Ⅱ)由AC1⊥平面ABD,结合正方形的性质可证得A1B⊥平面AB1C1,进而A1B⊥B1C1,再由线面垂直的判定定理可得B1C1⊥平面ABB1A1.(III)由等腰三角形三线合一可得BD⊥AC.再由面面垂直的性质定理得到BD⊥平面DC1A1.即BD就是三棱锥B﹣A1C1D的高.代入棱锥的体积公式,可得答案.解答:证明:(I)连结AB1交A1B于E,连ED.∵ABC﹣A1B1C1是三棱柱中,且AB=BB1,∴侧面ABB1A是一正方形.∴E是AB1的中点,又已知D为AC的中点.∴在△AB1C中,ED是中位线.∴B1C∥ED.又∵B1C⊄平面A1BD,ED⊂平面A1BD∴B1C∥平面A1BD.…(4分)(II)∵AC1⊥平面ABD,A1B⊂平面ABD,∴AC1⊥A1B,又∵侧面ABB1A是一正方形,∴A1B⊥AB1.又∵AC1∩AB1=A,AC1,AB1⊂平面AB1C1.∴A1B⊥平面AB1C1.又∵B1C1⊂平面AB1C1.∴A1B⊥B1C1.又∵ABC﹣A1B1C1是直三棱柱,∴BB1⊥B1C1.又∵A1B∩BB1=B,A1B,BB1⊂平面ABB1A1.∴B1C1⊥平面ABB1A1.…(8分)解:(III)∵AB=BC,D为AC的中点,∴BD⊥AC.∴BD⊥平面DC1A1.∴BD就是三棱锥B﹣A1C1D的高.由(II)知B1C1⊥平面ABB1A1,∴BC⊥平面ABB1A1.∴BC⊥AB.∴△ABC是直角等腰三角形.又∵AB=BC=1∴BD=∴AC=A1C1=∴三棱锥B﹣A1C1D的体积C1•AA1=K=…(12分)V=•BD•=•A点评:本题考查的知识点是直线与平面垂直的判定,直线与平面平行的判定,棱锥的体积,熟练掌握空间线面平行,线面垂直的判定定理是解答的关键.21.已知直线l:kx﹣y﹣2﹣k=0(k∈R).(1)证明:直线过l定点;(2)若直线不经过第二象限,求k的取值范围;(3)若直线l交x轴正半轴于A,交y轴负半轴于B,△AOB的面积为S,求S的最小值并求此时直线l的方程.考点:直线的一般式方程;恒过定点的直线.专题:直线与圆.分析:(1)直线l:kx﹣y﹣2﹣k=0(k∈R)化为k(x﹣1)﹣y﹣2=0,令,解得即可得出;(2)由方程可知:k≠0时,直线在x轴与y轴上的截距分别为:,﹣2﹣k.由于直线不经过第二象限,可得,解得k.当k=0时,直线变为y=﹣2满足题意.(3)由直线l的方程可得A,B(0,﹣2﹣k).由题意可得,解得k>0.S==•|﹣2﹣k|==,利用基本不等式的性质即可得出.解答:(1)证明:直线l:kx﹣y﹣2﹣k=0(k∈R)化为k(x﹣1)﹣y﹣2=0,令,解得x=1,y=﹣2,∴直线l过定点P(1,﹣2).(2)解:由方程可知:k≠0时,直线在x轴与y轴上的截距分别为:,﹣2﹣k.∵直线不经过第二象限,∴,解得k>0.当k=0时,直线变为y=﹣2满足题意.综上可得:k的取值范围是[0,+∞);(3)解:由直线l的方程可得A,B(0,﹣2﹣k).由题意可得,解得k>0.∴S==•|﹣2﹣k|===4.当且仅当k=2时取等号.∴S的最小值为4,此时直线l的方程为2x﹣y﹣4=0.点评:本题考查了直线系的应用、直线交点的性质、三角形面积计算公式、基本不等式的性质、直线的截距,考查了推理能力与计算能力,属于基础题.。

相关文档
最新文档