数据结构课程设计__二叉排序树的实现

合集下载

数据结构平衡二叉树的操作演示

数据结构平衡二叉树的操作演示

平衡二叉树操作的演示1.需求分析本程序是利用平衡二叉树,实现动态查找表的基本功能:创建表,查找、插入、删除。

具体功能:(1)初始,平衡二叉树为空树,操作界面给出创建、查找、插入、删除、合并、分裂六种操作供选择。

每种操作均提示输入关键字。

每次插入或删除一个结点后,更新平衡二叉树的显示。

(2)平衡二叉树的显示采用凹入表现形式。

(3)合并两棵平衡二叉树。

(4)把一棵二叉树分裂为两棵平衡二叉树,使得在一棵树中的所有关键字都小于或等于x,另一棵树中的任一关键字都大于x。

如下图:2.概要设计平衡二叉树是在构造二叉排序树的过程中,每当插入一个新结点时,首先检查是否因插入新结点而破坏了二叉排序树的平衡性,若是则找出其中的最小不平衡子树,在保持二叉排序树特性的前提下,调整最小不平衡子树中各结点之间的链接关系,进行相应的旋转,使之成为新的平衡子树。

具体步骤:(1)每当插入一个新结点,从该结点开始向上计算各结点的平衡因子,即计算该结点的祖先结点的平衡因子,若该结点的祖先结点的平衡因子的绝对值不超过1,则平衡二叉树没有失去平衡,继续插入结点;(2)若插入结点的某祖先结点的平衡因子的绝对值大于1,则找出其中最小不平衡子树的根结点;(3)判断新插入的结点与最小不平衡子树的根结点个关系,确定是那种类型的调整;(4)如果是LL型或RR型,只需应用扁担原理旋转一次,在旋转过程中,如果出现冲突,应用旋转优先原则调整冲突;如果是LR型或RL型,则需应用扁担原理旋转两次,第一次最小不平衡子树的根结点先不动,调整插入结点所在子树,第二次再调整最小不平衡子树,在旋转过程中,如果出现冲突,应用旋转优先原则调整冲突;(5)计算调整后的平衡二叉树中各结点的平衡因子,检验是否因为旋转而破坏其他结点的平衡因子,以及调整后平衡二叉树中是否存在平衡因子大于1的结点。

流程图3.详细设计二叉树类型定义:typedef int Status;typedef int ElemType;typedef struct BSTNode{ElemType data;int bf;struct BSTNode *lchild ,*rchild;} BSTNode,* BSTree;Status SearchBST(BSTree T,ElemType e)//查找void R_Rotate(BSTree &p)//右旋void L_Rotate(BSTree &p)//左旋void LeftBalance(BSTree &T)//插入平衡调整void RightBalance(BSTree &T)//插入平衡调整Status InsertAVL(BSTree &T,ElemType e,int &taller)//插入void DELeftBalance(BSTree &T)//删除平衡调整void DERightBalance(BSTree &T)//删除平衡调整Status Delete(BSTree &T,int &shorter)//删除操作Status DeleteAVL(BSTree &T,ElemType e,int &shorter)//删除操作void merge(BSTree &T1,BSTree &T2)//合并操作void splitBSTree(BSTree T,ElemType e,BSTree &T1,BSTree &T2)//分裂操作void PrintBSTree(BSTree &T,int lev)//凹入表显示附录源代码:#include<stdio.h>#include<stdlib.h>//#define TRUE 1//#define FALSE 0//#define OK 1//#define ERROR 0#define LH +1#define EH 0#define RH -1//二叉类型树的类型定义typedef int Status;typedef int ElemType;typedef struct BSTNode{ElemType data;int bf;//结点的平衡因子struct BSTNode *lchild ,*rchild;//左、右孩子指针} BSTNode,* BSTree;/*查找算法*/Status SearchBST(BSTree T,ElemType e){if(!T){return 0; //查找失败}else if(e == T->data ){return 1; //查找成功}else if (e < T->data){return SearchBST(T->lchild,e);}else{return SearchBST(T->rchild,e);}}//右旋void R_Rotate(BSTree &p){BSTree lc; //处理之前的左子树根结点lc = p->lchild; //lc指向的*p的左子树根结点p->lchild = lc->rchild; //lc的右子树挂接为*P的左子树lc->rchild = p;p = lc; //p指向新的根结点}//左旋void L_Rotate(BSTree &p){BSTree rc;rc = p->rchild; //rc指向的*p的右子树根结点p->rchild = rc->lchild; //rc的左子树挂接为*p的右子树rc->lchild = p;p = rc; //p指向新的根结点}//对以指针T所指结点为根结点的二叉树作左平衡旋转处理,//本算法结束时指针T指向新的根结点void LeftBalance(BSTree &T){BSTree lc,rd;lc=T->lchild;//lc指向*T的左子树根结点switch(lc->bf){ //检查*T的左子树的平衡度,并做相应的平衡处理case LH: //新结点插入在*T的左孩子的左子树,要做单右旋处理T->bf = lc->bf=EH;R_Rotate(T);break;case RH: //新结点插入在*T的左孩子的右子树上,做双旋处理rd=lc->rchild; //rd指向*T的左孩子的右子树根switch(rd->bf){ //修改*T及其左孩子的平衡因子case LH: T->bf=RH; lc->bf=EH;break;case EH: T->bf=lc->bf=EH;break;case RH: T->bf=EH; lc->bf=LH;break;}rd->bf=EH;L_Rotate(T->lchild); //对*T的左子树作左旋平衡处理R_Rotate(T); //对*T作右旋平衡处理}}//右平衡旋转处理void RightBalance(BSTree &T){BSTree rc,ld;rc=T->rchild;switch(rc->bf){case RH:T->bf= rc->bf=EH;L_Rotate(T);break;case LH:ld=rc->lchild;switch(ld->bf){case LH: T->bf=RH; rc->bf=EH;break;case EH: T->bf=rc->bf=EH;break;case RH: T->bf = EH; rc->bf=LH;break;}ld->bf=EH;R_Rotate(T->rchild);L_Rotate(T);}}//插入结点Status InsertAVL(BSTree &T,ElemType e,int &taller){//taller反应T长高与否if(!T){//插入新结点,树长高,置taller为trueT= (BSTree) malloc (sizeof(BSTNode));T->data = e;T->lchild = T->rchild = NULL;T->bf = EH;taller = 1;}else{if(e == T->data){taller = 0;return 0;}if(e < T->data){if(!InsertAVL(T->lchild,e,taller))//未插入return 0;if(taller)//已插入到*T的左子树中且左子树长高switch(T->bf){//检查*T的平衡度,作相应的平衡处理case LH:LeftBalance(T);taller = 0;break;case EH:T->bf = LH;taller = 1;break;case RH:T->bf = EH;taller = 0;break;}}else{if (!InsertAVL(T->rchild,e,taller)){return 0;}if(taller)//插入到*T的右子树且右子树增高switch(T->bf){//检查*T的平衡度case LH:T->bf = EH;taller = 0;break;case EH:T->bf = RH;taller = 1;break;case RH:RightBalance(T);taller = 0;break;}}}return 1;}void DELeftBalance(BSTree &T){//删除平衡调整BSTree lc,rd;lc=T->lchild;switch(lc->bf){case LH:T->bf = EH;//lc->bf= EH;R_Rotate(T);break;case EH:T->bf = EH;lc->bf= EH;R_Rotate(T);break;case RH:rd=lc->rchild;switch(rd->bf){case LH: T->bf=RH; lc->bf=EH;break;case EH: T->bf=lc->bf=EH;break;case RH: T->bf=EH; lc->bf=LH;break;}rd->bf=EH;L_Rotate(T->lchild);R_Rotate(T);}}void DERightBalance(BSTree &T) //删除平衡调整{BSTree rc,ld;rc=T->rchild;switch(rc->bf){case RH:T->bf= EH;//rc->bf= EH;L_Rotate(T);break;case EH:T->bf= EH;//rc->bf= EH;L_Rotate(T);break;case LH:ld=rc->lchild;switch(ld->bf){case LH: T->bf=RH; rc->bf=EH;break;case EH: T->bf=rc->bf=EH;break;case RH: T->bf = EH; rc->bf=LH;break;}ld->bf=EH;R_Rotate(T->rchild);L_Rotate(T);}}void SDelete(BSTree &T,BSTree &q,BSTree &s,int &shorter){if(s->rchild){SDelete(T,s,s->rchild,shorter);if(shorter)switch(s->bf){case EH:s->bf = LH;shorter = 0;break;case RH:s->bf = EH;shorter = 1;break;case LH:DELeftBalance(s);shorter = 0;break;}return;}T->data = s->data;if(q != T)q->rchild = s->lchild;elseq->lchild = s->lchild;shorter = 1;}//删除结点Status Delete(BSTree &T,int &shorter){ BSTree q;if(!T->rchild){q = T;T = T->lchild;free(q);shorter = 1;}else if(!T->lchild){q = T;T= T->rchild;free(q);shorter = 1;}else{SDelete(T,T,T->lchild,shorter);if(shorter)switch(T->bf){case EH:T->bf = RH;shorter = 0;break;case LH:T->bf = EH;shorter = 1;break;case RH:DERightBalance(T);shorter = 0;break;}}return 1;}Status DeleteAVL(BSTree &T,ElemType e,int &shorter){ int sign = 0;if (!T){return sign;}else{if(e == T->data){sign = Delete(T,shorter);return sign;}else if(e < T->data){sign = DeleteAVL(T->lchild,e,shorter);if(shorter)switch(T->bf){case EH:T->bf = RH;shorter = 0;break;case LH:T->bf = EH;shorter = 1;break;case RH:DERightBalance(T);shorter = 0;break;}return sign;}else{sign = DeleteAVL(T->rchild,e,shorter);if(shorter)switch(T->bf){case EH:T->bf = LH;shorter = 0;break;case RH:T->bf = EH;break;case LH:DELeftBalance(T);shorter = 0;break;}return sign;}}}//合并void merge(BSTree &T1,BSTree &T2){int taller = 0;if(!T2)return;merge(T1,T2->lchild);InsertAVL(T1,T2->data,taller);merge(T1,T2->rchild);}//分裂void split(BSTree T,ElemType e,BSTree &T1,BSTree &T2){ int taller = 0;if(!T)return;split(T->lchild,e,T1,T2);if(T->data > e)InsertAVL(T2,T->data,taller);elseInsertAVL(T1,T->data,taller);split(T->rchild,e,T1,T2);}//分裂void splitBSTree(BSTree T,ElemType e,BSTree &T1,BSTree &T2){ BSTree t1 = NULL,t2 = NULL;split(T,e,t1,t2);T1 = t1;T2 = t2;return;}//构建void CreatBSTree(BSTree &T){int num,i,e,taller = 0;printf("输入结点个数:");scanf("%d",&num);printf("请顺序输入结点值\n");for(i = 0 ;i < num;i++){printf("第%d个结点的值",i+1);scanf("%d",&e);InsertAVL(T,e,taller) ;}printf("构建成功,输入任意字符返回\n");getchar();getchar();}//凹入表形式显示方法void PrintBSTree(BSTree &T,int lev){int i;if(T->rchild)PrintBSTree(T->rchild,lev+1);for(i = 0;i < lev;i++)printf(" ");printf("%d\n",T->data);if(T->lchild)PrintBSTree(T->lchild,lev+1);void Start(BSTree &T1,BSTree &T2){int cho,taller,e,k;taller = 0;k = 0;while(1){system("cls");printf(" 平衡二叉树操作的演示 \n\n");printf("********************************\n");printf(" 平衡二叉树显示区 \n");printf("T1树\n");if(!T1 )printf("\n 当前为空树\n");else{PrintBSTree(T1,1);}printf("T2树\n");if(!T2 )printf("\n 当前为空树\n");elsePrintBSTree(T2,1);printf("\n********************************************************************* *********\n");printf("T1操作:1.创建 2.插入 3.查找 4.删除 10.分裂\n");printf("T2操作:5.创建 6.插入 7.查找 8.删除 11.分裂\n");printf(" 9.合并 T1,T2 0.退出\n");printf("*********************************************************************** *******\n");printf("输入你要进行的操作:");scanf("%d",&cho);switch(cho){case 1:CreatBSTree(T1);break;case 2:printf("请输入要插入关键字的值");scanf("%d",&e);InsertAVL(T1,e,taller) ;break;case 3:printf("请输入要查找关键字的值");scanf("%d",&e);if(SearchBST(T1,e))printf("查找成功!\n");elseprintf("查找失败!\n");printf("按任意键返回87"); getchar();getchar();break;case 4:printf("请输入要删除关键字的值"); scanf("%d",&e);if(DeleteAVL(T1,e,k))printf("删除成功!\n");elseprintf("删除失败!\n");printf("按任意键返回");getchar();getchar();break;case 5:CreatBSTree(T2);break;case 6:printf("请输入要插入关键字的值"); scanf("%d",&e);InsertAVL(T2,e,taller) ;break;case 7:printf("请输入要查找关键字的值"); scanf("%d",&e);if(SearchBST(T2,e))printf("查找成功!\n");elseprintf("查找失败!\n");printf("按任意键返回");getchar();getchar();break;case 8:printf("请输入要删除关键字的值"); scanf("%d",&e);if(DeleteAVL(T2,e,k))printf("删除成功!\n");elseprintf("删除失败!\n");printf("按任意键返回");getchar();getchar();break;case 9:merge(T1,T2);T2 = NULL;printf("合并成功,按任意键返回"); getchar();getchar();break;case 10:printf("请输入要中间值字的值"); scanf("%d",&e);splitBSTree(T1,e,T1,T2) ;printf("分裂成功,按任意键返回"); getchar();getchar();break;case 11:printf("请输入要中间值字的值"); scanf("%d",&e);splitBSTree(T2,e,T1,T2) ;printf("分裂成功,按任意键返回"); getchar();getchar();break;case 0:system("cls");exit(0);}}}main(){BSTree T1 = NULL;BSTree T2 = NULL;Start(T1,T2);}。

数据结构c语言课设-二叉树排序

数据结构c语言课设-二叉树排序

题目:二叉排序树的实现1 内容和要求1)编程实现二叉排序树,包括生成、插入,删除;2)对二叉排序树进展先根、中根、和后根非递归遍历;3)每次对树的修改操作和遍历操作的显示结果都需要在屏幕上用树的形状表示出来。

4)分别用二叉排序树和数组去存储一个班(50 人以上)的成员信息(至少包括学号、姓名、成绩3 项),比照查找效率,并说明在什么情况下二叉排序树效率高,为什么?2 解决方案和关键代码2.1 解决方案:先实现二叉排序树的生成、插入、删除,编写DisplayBST函数把遍历结果用树的形状表示出来。

前中后根遍历需要用到栈的数据构造,分模块编写栈与遍历代码。

要求比照二叉排序树和数组的查找效率,首先建立一个数组存储一个班的成员信息,分别用二叉树和数组查找,利用clock〔〕函数记录查找时间来比照查找效率。

2.2关键代码树的根本构造定义及根本函数typedef struct{KeyType key;} ElemType;typedef struct BiTNode//定义链表{ElemType data;struct BiTNode *lchild, *rchild;}BiTNode, *BiTree, *SElemType;//销毁树int DestroyBiTree(BiTree &T){if (T != NULL)free(T);return 0;}//清空树int ClearBiTree(BiTree &T){if (T != NULL){T->lchild = NULL;T->rchild = NULL;T = NULL;}return 0;}//查找关键字,指针p返回int SearchBST(BiTree T, KeyType key, BiTree f, BiTree &p) {if (!T){p = f;return FALSE;}else if EQ(key, T->data.key){p = T;return TRUE;}else if LT(key, T->data.key)return SearchBST(T->lchild, key, T, p);elsereturn SearchBST(T->rchild, key, T, p);}二叉树的生成、插入,删除生成void CreateBST(BiTree &BT, BiTree p){int i;ElemType k;printf("请输入元素值以创立排序二叉树:\n");scanf_s("%d", &k.key);for (i = 0; k.key != NULL; i++){//判断是否重复if (!SearchBST(BT, k.key, NULL, p)){InsertBST(BT, k);scanf_s("%d", &k.key);}else{printf("输入数据重复!\n");return;}}}插入int InsertBST(BiTree &T, ElemType e){BiTree s, p;if (!SearchBST(T, e.key, NULL, p)){s = (BiTree)malloc(sizeof(BiTNode));s->data = e;s->lchild = s->rchild = NULL;if (!p)T = s;else if LT(e.key, p->data.key)p->lchild = s;elsep->rchild = s;return TRUE;}else return FALSE;}删除//某个节点元素的删除int DeleteEle(BiTree &p){BiTree q, s;if (!p->rchild) //右子树为空{q = p;p = p->lchild;free(q);}else if (!p->lchild) //左子树为空{q = p;p = p->rchild;free(q);}else{q = p;s = p->lchild;while (s->rchild){q = s;s = s->rchild;}p->data = s->data;if (q != p)q->rchild = s->lchild;elseq->lchild = s->lchild;delete s;}return TRUE;}//整棵树的删除int DeleteBST(BiTree &T, KeyType key) //实现二叉排序树的删除操作{if (!T){return FALSE;}else{if (EQ(key, T->data.key)) //是否相等return DeleteEle(T);else if (LT(key, T->data.key)) //是否小于return DeleteBST(T->lchild, key);elsereturn DeleteBST(T->rchild, key);}return 0;}二叉树的前中后根遍历栈的定义typedef struct{SElemType *base;SElemType *top;int stacksize;}SqStack;int InitStack(SqStack &S) //构造空栈{S.base = (SElemType*)malloc(STACK_INIT_SIZE *sizeof(SElemType));if (!S.base) exit(OVERFLOW);S.top = S.base;S.stacksize = STACK_INIT_SIZE;return OK;}//InitStackint Push(SqStack &S, SElemType e) //插入元素e为新栈顶{if (S.top - S.base >= S.stacksize){S.base = (SElemType*)realloc(S.base, (S.stacksize + STACKINCREMENT)*sizeof(SElemType));if (!S.base) exit(OVERFLOW);S.top = S.base + S.stacksize;S.stacksize += STACKINCREMENT;}*S.top++ = e;return OK;}//Pushint Pop(SqStack &S, SElemType &e) //删除栈顶,应用e返回其值{if (S.top == S.base) return ERROR;e = *--S.top;return OK;}//Popint StackEmpty(SqStack S) //判断是否为空栈{if (S.base == S.top) return TRUE;return FALSE;}先根遍历int PreOrderTraverse(BiTree T, int(*Visit)(ElemType e)) {SqStack S;BiTree p;InitStack(S);p = T;while (p || !StackEmpty(S)){if (p){Push(S, p);if (!Visit(p->data)) return ERROR;p = p->lchild;}else{Pop(S, p);p = p->rchild;}}return OK;}中根遍历int InOrderTraverse(BiTree T, int(*Visit)(ElemType e)) {SqStack S;BiTree p;InitStack(S);p = T;while (p || !StackEmpty(S)){if (p){Push(S, p);p = p->lchild;}else{Pop(S, p);if (!Visit(p->data)) return ERROR;p = p->rchild;}}return OK;}后根遍历int PostOrderTraverse(BiTree T, int(*Visit)(ElemType e)) {SqStack S, SS;BiTree p;InitStack(S);InitStack(SS);p = T;while (p || !StackEmpty(S)){if (p){Push(S, p);Push(SS, p);p = p->rchild;}else{if (!StackEmpty(S)){Pop(S, p);p = p->lchild;}}}while (!StackEmpty(SS)){Pop(SS, p);if (!Visit(p->data)) return ERROR;}return OK;}利用数组存储一个班学生信息ElemType a[] = { 51, "陈继真", 88,82, "黄景元", 89,53, "贾成", 88,44, "呼颜", 90,25, "鲁修德", 88,56, "须成", 88,47, "孙祥", 87, 38, "柏有患", 89, 9, " 革高", 89, 10, "考鬲", 87, 31, "李燧", 86, 12, "夏祥", 89, 53, "余惠", 84, 4, "鲁芝", 90, 75, "黄丙庆", 88, 16, "李应", 89, 87, "杨志", 86, 18, "李逵", 89, 9, "阮小五", 85, 20, "史进", 88, 21, "秦明", 88, 82, "杨雄", 89, 23, "刘唐", 85, 64, "武松", 88, 25, "李俊", 88, 86, "卢俊义", 88, 27, "华荣", 87, 28, "杨胜", 88, 29, "林冲", 89, 70, "李跃", 85, 31, "蓝虎", 90, 32, "宋禄", 84, 73, "鲁智深", 89, 34, "关斌", 90, 55, "龚成", 87, 36, "黄乌", 87, 57, "孔道灵", 87, 38, "张焕", 84, 59, "李信", 88, 30, "徐山", 83, 41, "秦祥", 85, 42, "葛公", 85, 23, "武衍公", 87, 94, "范斌", 83, 45, "黄乌", 60, 67, "叶景昌", 99, 7, "焦龙", 89, 78, "星姚烨", 85, 49, "孙吉", 90, 60, "陈梦庚", 95,};数组查询函数void ArraySearch(ElemType a[], int key, int length){int i;for (i = 0; i <= length; i++){if (key == a[i].key){cout << "学号:" << a[i].key << " 姓名:" << a[i].name << " 成绩:" << a[i].grade << endl;break;}}}二叉树查询函数上文二叉树根本函数中的SearchBST()即为二叉树查询函数。

数据结构课程设计

数据结构课程设计

“数据结构”课程设计报告二叉排序树的查找与性能分析学生姓名:段晓宣,张静指导教师:陈少军所在系:电子信息系所学专业:计算机科学与技术年级: 2010级计算机(1)班目录第一章需求分析1.1选题要求 (3)1.2选题的背景与意义 (3)1.3本组课程设计的目标 (3)1.4人员组成和分工 (3)第2章概要分析 (4)2.1系统数据流图 (4)2.2原始数据 (4)2.3输出数据 (4)2.4对数据的处理 (5)2.5数据结构 (5)2.6模块划分 (5)第3章详细设计 (6)3.1二叉排序树的创建 (6)3.2二叉排序树的插入 (7)3.3二叉排序树的查找 (7)3.4计算多数据的平均查找长度 (9)3.5主函数 (9)第4章用户手册 (10)4.1 用户须知 (10)第5章系统测试 (11)项目总结 (12)参考文献 (13)二叉树排序树的查找与性能分析摘要:21世纪是信息化的时代,计算机深入到生活的各个领域。

随着计算机的发展,许多高科技产品如雨后春笋应运而生。

但究其本质而言,无非是以前的理论加以包装。

对于数据控制、管理及处理等方面也可见一斑。

在如今应用的计算机的数据存储方式仍然主要以线性,树型,图型等为主要的及结构。

因此了解并掌握数据结构的知识是很有必要的。

在此次实训期间,本组人员通过运用所学数据结构的知识,进行以二叉排序树的查找与性能分析为题的课程设计,在同组人员的共同努力下,基本实现了:1.创建二叉排序树2.利用文件存储二叉排序树3.二叉排序树的插入4.二叉排序树的查找5.二叉排序树平均查找长度的算法第1章需求分析1.1选题要求(1)根据输入的先序及递归建立二叉排序树;(2)通过文件,向二叉排序树插入结点,并生成二叉树;(3)设置报名号为关键字,可以根据关键字进行查找;(5)查找的同时可以判断比较的次数;(6)根据查找的算法计算出10000个数据平均查找长度;1.2选题的背景与意义(1)树型存储结构数据存储结构中重要的组成部分,二叉树由是树的重点。

二叉排序树的实验报告

二叉排序树的实验报告

二叉排序树的实验报告二叉排序树的实验报告引言:二叉排序树(Binary Search Tree,简称BST)是一种常用的数据结构,它将数据按照一定的规则组织起来,便于快速的查找、插入和删除操作。

本次实验旨在深入了解二叉排序树的原理和实现,并通过实验验证其性能和效果。

一、实验背景二叉排序树是一种二叉树,其中每个节点的值大于其左子树的所有节点的值,小于其右子树的所有节点的值。

这种特性使得在二叉排序树中进行查找操作时,可以通过比较节点的值来确定查找的方向,从而提高查找效率。

二、实验目的1. 理解二叉排序树的基本原理和性质;2. 掌握二叉排序树的构建、插入和删除操作;3. 验证二叉排序树在查找、插入和删除等操作中的性能和效果。

三、实验过程1. 构建二叉排序树首先,我们需要构建一个空的二叉排序树。

在构建过程中,我们可以选择一个节点作为根节点,并将其他节点插入到树中。

插入节点时,根据节点的值与当前节点的值进行比较,如果小于当前节点的值,则将其插入到当前节点的左子树中;如果大于当前节点的值,则将其插入到当前节点的右子树中。

重复这个过程,直到所有节点都被插入到树中。

2. 插入节点在已有的二叉排序树中插入新的节点时,我们需要遵循一定的规则。

首先,从根节点开始,将新节点的值与当前节点的值进行比较。

如果小于当前节点的值,则将其插入到当前节点的左子树中;如果大于当前节点的值,则将其插入到当前节点的右子树中。

如果新节点的值与当前节点的值相等,则不进行插入操作。

3. 删除节点在二叉排序树中删除节点时,我们需要考虑不同的情况。

如果要删除的节点是叶子节点,即没有左右子树,我们可以直接删除该节点。

如果要删除的节点只有一个子树,我们可以将子树连接到要删除节点的父节点上。

如果要删除的节点有两个子树,我们可以选择将其右子树中的最小节点或左子树中的最大节点替代该节点,并删除相应的替代节点。

四、实验结果通过对二叉排序树的构建、插入和删除操作的实验,我们得到了以下结果:1. 二叉排序树可以高效地进行查找操作。

数据结构-二叉排序树

数据结构-二叉排序树

二叉排序树操作一、设计步骤1)分析课程设计题目的要求2)写出详细设计说明3)编写程序代码,调试程序使其能正确运行4)设计完成的软件要便于操作和使用5)设计完成后提交课程设计报告(一)程序功能:1)创建二叉排序树2)输出二叉排序树3)在二叉排序树中插入新结点4)在二叉排序树中删除给定的值5)在二叉排序树中查找所给定的值(二)函数功能:1) struct BiTnode 定义二叉链表结点类型包含结点的信息2) class BT 二叉排序树类,以实现二叉排序树的相关操作3) InitBitree() 构造函数,使根节点指向空4) ~BT () 析构函数,释放结点空间5) void InsertBST(&t,key) 实现二叉排序树的插入功能6) int SearchBST(t,key) 实现二叉排序树的查找功能7) int DelBST(&t,key) 实现二叉排序树的删除功能8) void InorderBiTree (t) 实现二叉排序树的排序(输出功能)9) int main() 主函数,用来完成对二叉排序树类中各个函数的测试二、设计理论分析方法(一)二叉排序树定义首先,我们应该明确所谓二叉排序树是指满足下列条件的二叉树:(1)左子树上的所有结点值均小于根结点值;(2)右子数上的所有结点值均不小于根结点值;(3)左、右子数也满足上述两个条件。

根据对上述的理解和分析,我们就可以先创建出一个二叉链表结点的结构体类型(struct BiTNode)和一个二叉排序树类(class BT),以及类中的构造函数、析构函数和其他实现相关功能的函数。

(二)插入函数(void InsertBST(&t,key))首先定义一个与BiTNode<k> *BT同一类型的结点p,并为其申请空间,使p->data=key,p->lchild和p->rchild=NULL。

数据结构第六章二叉树的应用教案

数据结构第六章二叉树的应用教案

6.3 哈夫曼树
• • 最优树的定义 如何构造最优树
6.3.1 基本术语
路径和路径长度
若在一棵树中存在着一个结点序列 k1,k2,…,kj,使得ki是ki+1的 双亲(1≤i<j),则称此结点序列是 从k1到kj的路径从k1到kj所经过的 分支数称为这两点之间的路径长度
结点的权和带权路径长度
权 给结点赋上一个有某种意义 的实数,我们称为权。 带权路径长度 从根结点到该结点之间路径 长度与该结点上权的乘积。
23 设 key = 48
T
20 10 T 23 T 25
T T
30
T
40 35 T
bool Find(BTreeNode* T, ElemType& item) if(T==NULL) return false; //查找失败 else { if(item==T->data) { item=T->data; return true; } else if(item<T->data) //向左子树继续查找 return Find(T->left, item); else return Find(T->right, item); } //向右子树继续查找
ri r2i ri r2i 1
(小顶堆)

ri r2i ri r2i 1
(大顶堆)
12, 36, 27, 65, 40, 34, 98, 81, 73, 55, 49
是小顶堆
12, 36, 27, 65, 40, 14, 98, 81, 73, 55, 49
不是堆
子树上查找;
3)大于根结点的关键字,则继续在右
子树上查找。

数据结构实验三——二叉树基本操作及运算实验报告

数据结构实验三——二叉树基本操作及运算实验报告

《数据结构与数据库》实验报告实验题目二叉树的基本操作及运算一、需要分析问题描述:实现二叉树(包括二叉排序树)的建立,并实现先序、中序、后序和按层次遍历,计算叶子结点数、树的深度、树的宽度,求树的非空子孙结点个数、度为2的结点数目、度为2的结点数目,以及二叉树常用运算。

问题分析:二叉树树型结构是一类重要的非线性数据结构,对它的熟练掌握是学习数据结构的基本要求。

由于二叉树的定义本身就是一种递归定义,所以二叉树的一些基本操作也可采用递归调用的方法。

处理本问题,我觉得应该:1、建立二叉树;2、通过递归方法来遍历(先序、中序和后序)二叉树;3、通过队列应用来实现对二叉树的层次遍历;4、借用递归方法对二叉树进行一些基本操作,如:求叶子数、树的深度宽度等;5、运用广义表对二叉树进行广义表形式的打印。

算法规定:输入形式:为了方便操作,规定二叉树的元素类型都为字符型,允许各种字符类型的输入,没有元素的结点以空格输入表示,并且本实验是以先序顺序输入的。

输出形式:通过先序、中序和后序遍历的方法对树的各字符型元素进行遍历打印,再以广义表形式进行打印。

对二叉树的一些运算结果以整型输出。

程序功能:实现对二叉树的先序、中序和后序遍历,层次遍历。

计算叶子结点数、树的深度、树的宽度,求树的非空子孙结点个数、度为2的结点数目、度为2的结点数目。

对二叉树的某个元素进行查找,对二叉树的某个结点进行删除。

测试数据:输入一:ABC□□DE□G□□F□□□(以□表示空格),查找5,删除E预测结果:先序遍历ABCDEGF中序遍历CBEGDFA后序遍历CGEFDBA层次遍历ABCDEFG广义表打印A(B(C,D(E(,G),F)))叶子数3 深度5 宽度2 非空子孙数6 度为2的数目2 度为1的数目2查找5,成功,查找的元素为E删除E后,以广义表形式打印A(B(C,D(,F)))输入二:ABD□□EH□□□CF□G□□□(以□表示空格),查找10,删除B预测结果:先序遍历ABDEHCFG中序遍历DBHEAGFC后序遍历DHEBGFCA层次遍历ABCDEFHG广义表打印A(B(D,E(H)),C(F(,G)))叶子数3 深度4 宽度3 非空子孙数7 度为2的数目2 度为1的数目3查找10,失败。

数据结构实验报告-树(二叉树)

数据结构实验报告-树(二叉树)

实验5:树(二叉树)(采用二叉链表存储)一、实验项目名称二叉树及其应用二、实验目的熟悉二叉树的存储结构的特性以及二叉树的基本操作。

三、实验基本原理之前我们都是学习的线性结构,这次我们就开始学习非线性结构——树。

线性结构中结点间具有唯一前驱、唯一后继关系,而非线性结构中结点的前驱、后继的关系并不具有唯一性。

在树结构中,节点间关系是前驱唯一而后继不唯一,即结点之间是一对多的关系。

直观地看,树结构是具有分支关系的结构(其分叉、分层的特征类似于自然界中的树)。

四、主要仪器设备及耗材Window 11、Dev-C++5.11五、实验步骤1.导入库和预定义2.创建二叉树3.前序遍历4.中序遍历5.后序遍历6.总结点数7.叶子节点数8.树的深度9.树根到叶子的最长路径10.交换所有节点的左右子女11.顺序存储12.显示顺序存储13.测试函数和主函数对二叉树的每一个操作写测试函数,然后在主函数用while+switch-case的方式实现一个带菜单的简易测试程序,代码见“实验完整代码”。

实验完整代码:#include <bits/stdc++.h>using namespace std;#define MAX_TREE_SIZE 100typedef char ElemType;ElemType SqBiTree[MAX_TREE_SIZE];struct BiTNode{ElemType data;BiTNode *l,*r;}*T;void createBiTree(BiTNode *&T){ElemType e;e = getchar();if(e == '\n')return;else if(e == ' ')T = NULL;else{if(!(T = (BiTNode *)malloc(sizeof (BiTNode)))){cout << "内存分配错误!" << endl;exit(0);}T->data = e;createBiTree(T->l);createBiTree(T->r);}}void createBiTree2(BiTNode *T,int u) {if(T){SqBiTree[u] = T->data;createBiTree2(T->l,2 * u + 1);createBiTree2(T->r,2 * u + 2); }}void outputBiTree2(int n){int cnt = 0;for(int i = 0;cnt <= n;i++){cout << SqBiTree[i];if(SqBiTree[i] != ' ')cnt ++;}cout << endl;}void preOrderTraverse(BiTNode *T) {if(T){cout << T->data;preOrderTraverse(T->l);preOrderTraverse(T->r);}}void inOrderTraverse(BiTNode *T) {if(T){inOrderTraverse(T->l);cout << T->data;inOrderTraverse(T->r);}}void beOrderTraverse(BiTNode *T){if(T){beOrderTraverse(T->l);beOrderTraverse(T->r);cout << T->data;}}int sumOfVer(BiTNode *T){if(!T)return 0;return sumOfVer(T->l) + sumOfVer(T->r) + 1;}int sumOfLeaf(BiTNode *T){if(!T)return 0;if(T->l == NULL && T->r == NULL)return 1;return sumOfLeaf(T->l) + sumOfLeaf(T->r);}int depth(BiTNode *T){if(!T)return 0;return max(depth(T->l),depth(T->r)) + 1;}bool LongestPath(int dist,int dist2,vector<ElemType> &ne,BiTNode *T) {if(!T)return false;if(dist2 == dist)return true;if(LongestPath(dist,dist2 + 1,ne,T->l)){ne.push_back(T->l->data);return true;}else if(LongestPath(dist,dist2 + 1,ne,T->r)){ne.push_back(T->r->data);return true;}return false;}void swapVer(BiTNode *&T){if(T){swapVer(T->l);swapVer(T->r);BiTNode *tmp = T->l;T->l = T->r;T->r = tmp;}}//以下是测试程序void test1(){getchar();cout << "请以先序次序输入二叉树结点的值,空结点用空格表示:" << endl; createBiTree(T);cout << "二叉树创建成功!" << endl;}void test2(){cout << "二叉树的前序遍历为:" << endl;preOrderTraverse(T);cout << endl;}void test3(){cout << "二叉树的中序遍历为:" << endl;inOrderTraverse(T);cout << endl;}void test4(){cout << "二叉树的后序遍历为:" << endl;beOrderTraverse(T);cout << endl;}void test5(){cout << "二叉树的总结点数为:" << sumOfVer(T) << endl;}void test6(){cout << "二叉树的叶子结点数为:" << sumOfLeaf(T) << endl; }void test7(){cout << "二叉树的深度为:" << depth(T) << endl;}void test8(){int dist = depth(T);vector<ElemType> ne;cout << "树根到叶子的最长路径:" << endl;LongestPath(dist,1,ne,T);ne.push_back(T->data);reverse(ne.begin(),ne.end());cout << ne[0];for(int i = 1;i < ne.size();i++)cout << "->" << ne[i];cout << endl;}void test9(){swapVer(T);cout << "操作成功!" << endl;}void test10(){memset(SqBiTree,' ',sizeof SqBiTree);createBiTree2(T,0);cout << "操作成功!" << endl;}void test11(){int n = sumOfVer(T);outputBiTree2(n);}int main(){int op = 0;while(op != 12){cout << "-----------------menu--------------------" << endl;cout << "--------------1:创建二叉树--------------" << endl;cout << "--------------2:前序遍历----------------" << endl;cout << "--------------3:中序遍历----------------" << endl;cout << "--------------4:后序遍历----------------" << endl;cout << "--------------5:总结点数----------------" << endl;cout << "--------------6:叶子节点数--------------" << endl;cout << "--------------7:树的深度----------------" << endl;cout << "--------------8:树根到叶子的最长路径----" << endl;cout << "--------------9:交换所有节点左右子女----" << endl;cout << "--------------10:顺序存储---------------" << endl;cout << "--------------11:显示顺序存储-----------" << endl;cout << "--------------12:退出测试程序-----------" << endl;cout << "请输入指令编号:" << endl;if(!(cin >> op)){cin.clear();cin.ignore(INT_MAX,'\n');cout << "请输入整数!" << endl;continue;}switch(op){case 1:test1();break;case 2:test2();break;case 3:test3();break;case 4:test4();break;case 5:test5();break;case 6:test6();break;case 7:test7();break;case 8:test8();break;case 9:test9();break;case 10:test10();break;case 11:test11();break;case 12:cout << "测试结束!" << endl;break;default:cout << "请输入正确的指令编号!" << endl;}}return 0;}六、实验数据及处理结果测试用例:1.创建二叉树(二叉链表形式)2.前序遍历3.中序遍历4.后序遍历5.总结点数6.叶子结点数7.树的深度8.树根到叶子的最长路径9.交换所有左右子女10.顺序存储七、思考讨论题或体会或对改进实验的建议通过这次实验,我掌握了二叉树的顺序存储和链式存储,体会了二叉树的存储结构的特性,掌握了二叉树的树上相关操作。

数据结构课程设计报告-最短路径算法-二叉树的三种遍历

数据结构课程设计报告-最短路径算法-二叉树的三种遍历

数据结构课程设计报告班级:计算机科学与技术132班姓名:赖恒财指导教师:董跃华成绩:32信息工程学院2015 年7月8日目录图的最短路径算法实现1. 需求分析 (1)1.1 程序设计内容 (1)1.2 设计要求 (1)2.概要设计 (2)3.详细设计 (2)3.1 数据类型的定义 (2)3.2 功能模块的设计 (2)3.3 主程序流程 (9)4.调试分析 (10)4.1 问题回顾和分析 (10)4.2.经验和体会 (11)5.测试结果 (12)二叉树的遍历1.设计目的 (13)2.需求分析 (14)2.1课程设计的内容和要求 (14)2.2选题的意义及背景 (14)3.概要设计 (14)3.1设计思想 (14)3.2程序数据类型 (16)3.3程序模块分析 (16)3.3.1置空栈 (16)3.3.2入栈 (17)3.3.3出栈 (17)3.3.4取栈顶操作 (17)3.3.5判空栈 (17)3.4函数关系: (18)4.详细设计 (18)4.1二叉树算法程序截图和结果 (18)5.程序测试结果及问题分析 (19)6.总结 (20)参考文献 (21)附录1 (22)附录2 (26)图的最短路径算法实现----基于floyd最短路径算法1.需求分析设计校园平面图,所含景点不少于8个。

以图中顶点表示学校内各景点,存放景点的名称、景点介绍信息等;以边表示路径,存放路径长度信息。

要求将这些信息保存在文件graph.txt中,系统执行时所处理的数据要对此文件分别进行读写操作。

1.1程序设计内容1.从文件graph.txt中读取相应数据, 创建一个图,使用邻接矩阵表示图;2.景点信息查询:为来访客人提供校园任意景点相关信息的介绍;3.问路查询:为来访客人提供校园任意两个景点之间的一条最短路径。

1.2 设计要求(1) 程序要具在一定的健壮性,即当输入数据非法时,程序也能适当地做出反应。

(2) 程序要添加适当的注释,程序的书写要采用缩进格式。

二叉排序树(二叉链表结构存储)数据结构课程设计报告

二叉排序树(二叉链表结构存储)数据结构课程设计报告

二叉排序树(二叉链表结构存储)数据结构课程设计报告目录1需求分析 (1)1.1课程设计题目、任务及要求 (1)1.2课程设计思想 (1)2概要设计 (2)2.1 二叉排序树的定义 (2)2.2二叉链表的存储结构 (2)2.3建立二叉排序树 (2)2.4二叉排序树的生成过程 (3)2.5中序遍历二叉树 (3)2.6二叉排序树的查找 (3)2.7二叉排序树的插入 (4)2.8平均查找长度 (4)3详细设计和实现 (4)3.1主要功能模块设计 (4)3.2主程序设计 (5)4调试与操作说明 (12)4.1程序调试 (12)4.2程序操作说明 (13)总结 (16)致谢 (17)参考文献 (19)1需求分析1.1课程设计题目、任务及要求二叉排序树。

用二叉链表作存储结构(1)以(0)为输入结束标志,输入数列L,生成一棵二叉排序树T;(2)对二叉排序树T作中序遍历,输出结果;(3)计算二叉排序树T查找成功的平均查找长度,输出结果;(4)输入元素x,查找二叉排序树T:若存在含x的结点,则删除该结点,并作中序遍历(执行操作2);否则输出信息“无x”;1.2课程设计思想建立二叉排序树采用边查找边插入的方式。

查找函数采用递归的方式进行查找。

如果查找成功则不应再插入原树,否则返回当前结点的上一个结点。

然后利用插入函数将该元素插入原树。

对二叉排序树进行中序遍历采用递归函数的方式。

在根结点不为空的情况下,先访问左子树,再访问根结点,最后访问右子树。

由于二叉排序树自身的性质,左子树小于根结点,而根结点小于右子树,所以中序遍历的结果是递增的。

计算二插排序树的平均查找长度时,仍采用类似中序遍历的递归方式,用s记录总查找长度,j记录每个结点的查找长度,s置初值为0,采用累加的方式最终得到总查找长度s。

平均查找长度就等于s/i(i为树中结点的总个数)。

删除结点函数,采用边查找边删除的方式。

如果没有查找到,则不对树做任何的修改;如果查找到结点,则分四种情况分别进行讨论:1、该结点左右子树均为空;2、该结点仅左子树为空;3、该结点仅右子树为空;4、该结点左右子树均不为空。

数据结构课程设计参考题目

数据结构课程设计参考题目

数据结构课程设计参考题目数据结构课程设计题目数据结构课程设计题目(大题目).doc一、公司销售管理系统项目开发基本要求1.客户信息管理:对客户的基本信息进行添加、修改和删除。

2.产品信息管理:对产品的基本信息进行添加、修改和删除。

3.供应商信息管理:对供应商的基本信息进行添加、修改和删除。

4.订单信息管理:对订单的基本信息进行添加、修改和删除。

二、高校科研管理系统系统主要用于帮助高校或科研单位管理和维护各项科研相关资料项目开发基本要求1.系统用户管理模块:为系统新用户设置用户名及口令;操作员更改自己的系统口令。

2.数据字典管理模块:管理项目性质包括:分为国家自然科学基金、863、部省科委及企业集团四种情况;范围包括:分为全国、国际、地方三种情况;检索源包括:分为EI、SC I、核心和一般四种情况。

3.项目参加人员管理模块包括:显示添加修改删除查询。

4.项目基本情况模块包括:显示添加修改删除查询。

5.项目获奖情况模块包括:显示添加修改删除查询。

6.期刊论文管理模块包括:显示添加修改删除查询。

7.著作管理模块包括:显示添加修改删除查询。

8.科研工作量统计模块:按照学校科研工作量计算办法,为每位科研人员进行科研工作量的计算和统计。

9.科研积分统计模块:按照学校科研积分计算办法,为每位科研人员进行科研计分的计算和统计。

三、网络五子棋对战四、不同排序算法模拟五、科学计算器数据结构课程设计题目1.运动会分数统计任务:参加运动会有n个学校,学校编号为1……n。

比赛分成m 个男子项目,和w个女子项目。

项目编号为男子1……m,女子m+1……m+w。

不同的项目取前五名或前三名积分;取前五名的积分分别为:7、5、3、2、1,前三名的积分分别为:5、3、2;哪些取前五名或前三名由学生自己设定。

(m<=20,n<=2 0)功能要求:1)可以输入各个项目的前三名或前五名的成绩;2)能统计各学校总分,3)可以按学校编号或名称、学校总分、男女团体总分排序输出;4)可以按学校编号查询学校某个项目的情况;可以按项目编号查询取得前三或前五名的学校。

二叉树实现及应用实验报告

二叉树实现及应用实验报告

二叉树实现及应用实验报告实验名称:二叉树实现及应用实验目的:1. 实现二叉树的创建、插入和删除操作。

2. 学习二叉树的遍历方法,并能够应用于实际问题。

3. 掌握二叉树在数据结构和算法中的一些常用应用。

实验内容:1. 实现二叉树的创建、插入和删除操作,包括二叉树的构造函数、插入函数和删除函数。

2. 学习二叉树的三种遍历方法:前序遍历、中序遍历和后序遍历,并应用于实际问题。

3. 掌握二叉树的一些常用应用,如二叉搜索树、平衡二叉树和哈夫曼树等。

实验步骤:1. 创建二叉树的结构体,包括树节点和树的根节点。

2. 实现二叉树的构造函数,用于创建二叉树的根节点。

3. 实现二叉树的插入函数,用于将元素插入到二叉树中的合适位置。

4. 实现二叉树的删除函数,用于删除二叉树中的指定元素。

5. 学习并实现二叉树的前序遍历、中序遍历和后序遍历函数。

6. 运用二叉树的遍历方法解决实际问题,如查找二叉树中的最大值和最小值。

7. 学习并应用二叉搜索树、平衡二叉树和哈夫曼树等常用二叉树结构。

实验结果:1. 成功创建、插入和删除二叉树中的元素,实现了二叉树的基本操作。

2. 正确实现了二叉树的前序遍历、中序遍历和后序遍历,并能够正确输出遍历结果。

3. 通过二叉树的遍历方法成功解决了实际问题,如查找二叉树中的最大值和最小值。

4. 学习并熟练应用了二叉搜索树、平衡二叉树和哈夫曼树等常用二叉树结构,丰富了对二叉树的理解。

实验分析:1. 二叉树是一种重要的数据结构,具有较好的数据存储和查找性能,广泛应用于计算机科学和算法领域。

2. 通过实验,我们深入了解了二叉树的创建、插入和删除操作,以及前序遍历、中序遍历和后序遍历的原理和应用。

3. 实际问题往往可以转化为二叉树的遍历问题进行求解,通过实验,我们成功应用了二叉树的遍历方法解决了实际问题。

4. 熟练掌握二叉搜索树、平衡二叉树和哈夫曼树的原理和应用,对于提高我们在数据结构和算法方面的设计能力具有重要意义。

数据结构C语言版_二叉排序树

数据结构C语言版_二叉排序树
// 成功,则指针p指向该数据元素结点,并返回1,否则指针p指向查找路径上
// 访问的最后一个结点并返回0,指针f指向T的双亲,其初始调用值为NULL
void SearchBST1(BiTree *T,KeyType key,BiTree f,BiTree *p,int *flag)
{
// 否则返回0。
int InsertBST(BiTree *T, ElemType e)
{
BiTree p,s;
int flag;
SearchBST1(T,e.key,NULL,&p,&flag);
if(!flag) // 查找不成功
{
s=(BiTree)malloc(sizeof(BiTNode));
free(s);
}
}
// 算法9.7 P230
// 若二叉排序树T中存在关键字等于key的数据元素时,则删除该数据元素结点,
// 并返回1;否则返回0。
int DeleteBST(BiTree *T,KeyType key)
{
if(!*T) // 不存在关键字等于key的数据元素
DestroyDSTable(&(*DT)->rchild); // 销毁右孩子子树
free(*DT); // 释放根结点
*DT=NULL; // 空指针赋0
}
}
// 算法9.5(a) P228
// 在根指针T所指二叉排序树中递归地查找某关键字等于key的数据元素,
}
// 销毁动态查找表DT
void DestroyDSTable(BiTree *DT)

《数据结构》课程标准

《数据结构》课程标准

《数据结构》课程标准一、概述(一) 课程的性质本课程为计算机专业技术人员提供必要的专业基础知识和技能训练,同时也是计算机应用相关学科所必须掌握的课程。

通过本课程的学习,使学生熟练掌握计算机程序设计中常见的各种数据的逻辑结构、存储结构及相应的运算,初步掌握算法的时间分析和空间分析的技术,并能根据计算机加工的数据特性运用数据结构的知识和技巧设计出更好的算法和程序,并进一步培养基本的良好的程序设计能力。

(二)课程基本理念以培养学生如何合理地组织数据、有效地存储和处理数据,正确地设计算法以及对算法进行的分析和评价的能力,学会数据的组织方法和实现方法,并进一步培养基本的良好的程序设计能力。

(三)课程设计思路本课程标准从计算机软件技术及应用技术专业的视角出发,以满足本专业就业岗位所必须具备的计算机软件技术基础知识为基础,教学内容设计通过岗位工作目标与任务分析,分解完成工作任务所必备的知识和能力,采用并列和流程相结合的教学结构,构建教学内容的任务和达到工作任务要求而组建的各项目,以及教学要求和参考教学课时数。

通过实践操作、案例分析,培养学生的综合职业能力,基本达到程序员级职业技能鉴定标准。

本课程建议课时为64学时,理论课时为20,实训课时为44,在具体教学过程中可进行进行调整。

二、课程目标(一)总目标本课程以培养学生的数据抽象能力和复杂程序设计的能力为总目标。

通过本课程的学习,学生可以学会分析研究计算机加工的数据结构的特性,以便为应用涉及的数据选择适当的逻辑结构、存储结构及其相应的运算,并初步掌握算法的时间分析和空间分析的技术;另一方面,本课程的学习过程也是复杂程序设计的训练过程,要求学生编写的程序结构清楚和正确易读,符合软件工程的规范。

(二)具体目标掌握各种主要数据结构的特点、计算机内的表示方法,以及处理数据的算法实现。

使学生学会分析研究计算机加工的数据结构的特性,以便为应用涉及的数据选择适当的逻辑结构、存储结构及相应的算法,并初步了解对算法的时间分析和空间分析技术。

二叉排序树的应用

二叉排序树的应用
}
3.2.2插入模块
在二叉排序树中插入新结点,要保证插入后的二叉树仍符合二叉排序树的定义。插入过程:若二叉排序树为空,则待插入结点*p作为根结点插入到空树中;当非空时,将待插结点关键字p->item和树根关键字t->item进行比较,若p->item=t->item,则无需插入,若p->item<t->item则插入到根的左子树中,若p->item>t->item,则插入到根的右子树中。而子树中的插入过程和在树中的插入过程相同,如此进行下去,直到把结点*P作为一个新的树叶插入到二叉排序树中,或者直到发现树已有相同关键字的结点为止。其算法如下:
{
btree *stack[100];
btree *p = NULL;
btree *q = NULL;
int sign = 0;
int top = -1;
p = b;
《数据结构》
课程设计报告书
题目:二叉排序树的实现
系别:计算机科学与应用
1设计要求
(1)用顺序和二叉链表作存储结构
(2)以回车('\n')为输入结束标志,输入数列L,生成一棵二叉排序树T;
(3)对二叉排序树T作中序遍历,输出;
(4)输入元素x,查找二叉排序树T,若存在含x的结点,则删除该结点,并作中序遍历(执行操作2);否则输出信息“无x”;
int main(void)
{
int a = 0;
int x = 0;
int b = 0;
btree *head = NULL;
btree *s = NULL;
head = (btree *)malloc(sizeof(btree));

二叉排序树与平衡二叉排序树基本操作的实现 文本文档

二叉排序树与平衡二叉排序树基本操作的实现 文本文档

10 设计说明书(论文)质量 30 综述简练完整,有见解;立论正确,论述充分,结论严谨合理;实验正确,分析处理科学。
11 创新 10 对前人工作有改进或突破,或有独特见解。
成绩
指导教师评语
指导教师签名: 年 月 日
摘要及关键字
本程序中的数据采用“树形结构”作为其数据结构。具体采用的是“二叉排序树”。
1.2.5 平衡二叉树( AVL树 )
①平衡二叉树(Balanced Binary Tree)是指树中任一结点的左右子树的高度大致相同。 ②任一结点的左右子树的高度均相同(如满二叉树),则二叉树是完全平衡的。通常,只要二叉树的高度为O(1gn),就可看作是平衡的。 ③平衡的二叉排序树指满足BST性质的平衡二叉树。 ④AVL树中任一结点的左、右子树的高度之差的绝对值不超过1。在最坏情况下,n个结点的AVL树的高度约为1.44lgn。而完全平衡的二叉树高度约为lgn,AVL树是最接近最优的。
1.2.4平均查找长度…………………………………………………………… 6
1.2.5平均二叉树(AVL树)…………………………………………………… 6
1.2.6平衡因子………………………………………………………………… 7
1.2.7平衡二叉树的调整方法…………………………………………………… 7
攀枝花学院本科学生课程设计任务书
题 目 二叉排序树与平衡二叉树的实现
1、课程设计的目的
使学生进一步理解和掌握课堂上所学各种基本抽象数据类型的逻辑结构、存储结构和操作实现算法,以及它们在程序中的使用方法。
使学生掌握软件设计的基本内容和设计方法,并培养学生进行规范化软件设计的能力。
3) 使学生掌握使用各种计算机资料和有关参考资料,提高学生进行程序设计的基本能力。

数据结构课程设计_二叉树操作

数据结构课程设计_二叉树操作

数据结构课程设计_⼆叉树操作数据结构课程设计题⽬:⼆叉树的操作学⽣姓名:学号:系部名称:计算机科学与技术系专业班级:指导教师:课程设计任务书第⼀章程序要求1)完成⼆叉树的基本操作。

2)建⽴以⼆叉链表为存储结构的⼆叉树;3)实现⼆叉树的先序、中序和后序遍历;4)求⼆叉树的结点总数、叶⼦结点个数及⼆叉树的深度。

第⼆章算法分析建⽴以⼆叉链表为存储结构的⼆叉树,在次⼆叉树上进⾏操作;1先序遍历⼆叉树的操作定义为:若⼆叉树唯恐则为空操作;否则(1)访问根节点;(2)先序遍历做字数和;(3)先序遍历有⼦树;2中序遍历⼆叉树的操作定义为:若⼆叉树为空,则空操作;否则(1)中序遍历做⼦树;(2)访问根节点;(3)中序遍历有⼦树;3后续遍历⼆叉树的操作定义为:若⼆叉树为空则为空操作;否则(1)后序遍历左⼦树;(2)后序遍历右⼦树;(3)访问根节点;⼆叉树的结点总数、叶⼦结点个数及⼆叉树的深度。

第三章⼆叉树的基本操作和算法实现⼆叉树是⼀种重要的⾮线性数据结构,是另⼀种树形结构,它的特点是每个节点之多有两棵⼦树(即⼆叉树中不存在度⼤于2的结点),并且⼆叉树的结点有左右之分,其次序不能随便颠倒。

1.1⼆叉树创建⼆叉树的很多操作都是基于遍历实现的。

⼆叉树的遍历是采⽤某种策略使得采⽤树形结构组织的若⼲年借点对应于⼀个线性序列。

⼆叉树的遍历策略有四种:先序遍历中续遍历后续遍历和层次遍历。

基本要求1 从键盘接受输⼊数据(先序),以⼆叉链表作为存储结构,建⽴⼆叉树。

2 输出⼆叉树。

3 对⼆叉树进⾏遍历(先序,中序,后序和层次遍历)4 将⼆叉树的遍历打印出来。

⼀.问题描述⼆叉树的很多操作都是基于遍历实现的。

⼆叉树的遍历是采⽤某种策略使得采⽤树型结构组织的若⼲结点对应于⼀个线性序列。

⼆叉树的遍历策略有四种:先序遍历、中序遍历、后序遍历和层次遍历。

⼆.基本要求1.从键盘接受输⼊数据(先序),以⼆叉链表作为存储结构,建⽴⼆叉树。

2.输出⼆叉树。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课程设计课程名称数据结构课程设计题目名称二叉排序树的实现学院应用数学学院专业班级学号学生姓名指导教师2013 年 12 月 26 日1.设计任务1)实现二叉排序树,包括生成、插入,删除;2)对二叉排序树进行先根、中根、和后根非递归遍历;3)每次对树的修改操作和遍历操作的显示结果都需要在屏幕上用树的形状表示出来。

4)分别用二叉排序树和数组去存储一个班(50人以上)的成员信息(至少包括学号、姓名、成绩3项),对比查找效率,并说明为什么二叉排序树效率高(或者低)。

2. 函数模块:2.1.主函数main模块功能1.通过bstree CreatTree()操作建立二叉排序树。

2.在二叉排序树t中通过操作bstree InsertBST(bstree t,intkey,nametype name,double grade)插入一个节点。

3. 从二叉排序树t中通过操作void Delete(bstree &p)删除任意节点。

4. 在二叉排序树t中通过操作bstnode *SearchBST(bstree t,keytype key)查找节点。

5. 在二叉排序树t中通过操作p=SearchBST(t,key)查询,并修改节点信息6. 非递归遍历二叉排序树。

7. 定义函数void compare()对数组和二叉排序树的查找效率进行比较比较。

2.2创建二叉排序树CreatTree模块从键盘中输入关键字及记录,并同时调用插入函数并不断进行插入。

最后,返回根节点T。

2.3删除模块:二叉排序树上删除一个阶段相当于删去有序系列中的一个记录,只要在删除某个节点之后依旧保持二叉排序树的性质即可。

假设二叉排序树上删除节点为*p(指向节点的指针为p),其双亲节点为*f(节点指针为f)。

若*p节点为叶子节点,则即左右均为空树,由于删去叶子节点不破坏整棵树的结构,则只需修改其双亲节点的指针即可;若*p节点只有左子树或只有右子树,此时只要令左子树或右子树直接成为其双亲节点*f的左子树即可;若*p节点的左子树和右子树均不为空,其一可以令*p的左子树为*f的左子树,而*p的右子树为*s的右子树,其二可以令*p的直接前驱(或直接后继)替代*p,然后再从二叉排序树中删去它的直接前驱(或直接后继)。

在二叉排序树中删除一个节点的算法为void DeleteData(bstree &t,keytype key)若二叉排序树t中存在关键字等于key的数据元素,则删除该数据元素节点,并返回TRUE,否则返回FALSE。

2.4插入模块二叉排序树是一种动态树表,其特点是树的结构通常不是一次生成的,而是在查找的过程中,当树中不存在关键字等于给定值得节点时在进行插入。

新插入的节点一定是一个新添加的叶子节点,并且是查找不成功时查找路径上访问的最后一个节点的左孩子或右孩子的节点。

一个无序系列可以通过构造一棵二叉排序树而变成一个有序系列,构造树的过程即为对无序系列进行排序的过程,并且每次插入的节点都是二叉排序树上新的叶子节点,则在进行插入操作时,不必移动其他节点,仅需改变某个节点的指针由空变为非空即可。

二叉排序树的插入算法为bstree InsertBST(bstree t,int key,nametype name,double grade)若二叉排序树中不存在关键字等于key的数据元素时,插入元素并返回TRUE。

2.5查找模块二叉排序树又称二叉查找树,当二叉排序树不为空时,首先将给定的值和根节点的关键字比较,若相等则查找成功,否则将依据给定的值和根节点关键字之间的大小关系,分别在左子树或右子树上继续进行查找。

为此定义一个二叉排序树的查找算法为bstnode *SearchBST(bstree t,keytype key)在根指针t所指向的二叉排序树中查找关键字等于key的数据元素,如成功,返回指向该元素节点的指针,否则返回空指针。

2.6效率比较compare模块void compare()对数组和二叉排序树的查找效率进行比较比较。

2.7二叉排序树的遍历先序遍历也叫做先根遍历。

首先访问根结点然后遍历左子树,最后遍历右子树。

在遍历左、右子树时,仍然先访问根结点,然后遍历左子树,最后遍历右子树,如果二叉树为空则返回。

其实过程为:先遍历左子树root->left->left->left...->null,由于是先序遍历,因此一遇到节点,便需要立即访问;由于一直走到最左边后,需要逐步返回到父节点访问右节点,因此必须有一个措施能够对节点序列回溯。

其一可以用栈记忆在访问途中将依次遇到的节点保存下来。

根据栈的先进后出、后进先出的特点特点。

则可以用栈保存。

每次都将遇到的节点压入栈,当左子树遍历完毕后从栈中弹出最后一个访问的节点,然后访问其右子树。

基本算法思想:1.先访问根节点,将根节点入栈2.重复执行两大步骤:如果该节点左孩子存在,则访问该左孩子节点,并将其指针入栈。

重复以上操作,直到节点的左孩子不存在。

将栈顶的元素,即其指针出栈,回到父节点,如果该指针节点的右孩子存在,则将该指针指向的右孩子节点重复执行以上步骤,直到桟为空为止。

操作函数为void x_print(Tree T)中序遍历:中序遍历和先序遍历访问的顺序不同。

中序遍历访问顺序为中序遍历左子数,在访问根节点,最后中序遍历右子树。

先序遍历是先访问,再入栈;而中序遍历则是先入栈,弹栈后再访问。

将二叉树的根节点入栈,如果该节点有左孩子,将左孩子直接入栈,重复该操作,直到该节点无左孩子;在将栈顶元素出栈,并访问该节点指向的节点,如果该指针指向的右孩子存在,则将当前指针指向右孩子节点。

重复执行步骤直到栈为空为止。

操作函数为void z_print(Tree T )。

后序遍历:先后序遍历左子树,在后序遍历右子树,最后访问根节点。

先将根节点入栈,如果该节点左孩子节点存在,将该节点左孩子节点入栈。

重复执行此操作,直到节点左孩子节点为空。

取栈顶元素,并赋值给P,如果P的右孩子为空或P的右孩子等于q(即如果p的右孩子已访问,则访问根节点,即p指向的节点,并用q来记录刚刚访问的节点的指针),若p有右孩子,且右孩子没有别访问过,则p=p->rchild。

操作函数为void h_print(Tree T)3.源代码#include<stdio.h>#include<iostream>#include<string>#include<time.h>#include <iomanip>using namespace std;typedef string nametype;typedef unsigned long keytype;typedef struct node //结点的结构体{keytype key;nametype name;int grade;struct node *lchild,*rchild;}bstnode;typedef bstnode *bstree;//栈的定义//typedef struct{ //栈结构bstree *base;bstree *top;int stacksize;}Sqstack;int InitStack (Sqstack &s) //建立一个空栈{s.base=(bstree*)malloc(1000 * sizeof(int));s.top=s.base;return 1;};int Push(Sqstack &s ,node *e)//在栈顶插入元素(进栈){*s.top=e;s.top=s.top+1;return 1;};int Pop(Sqstack &s, bstree &e)//出栈{if(s.top==s.base)return 0;else s.top=s.top-1;e=*s.top;return 1;};//非递归历遍并输出结点信息///*---------------先序非递归遍历---------------*/ void x_print(node *t){Sqstack s;InitStack(s);bstnode *p;p=t;while(p||!(s.top==s.base)){if(p){Push(s,p);cout<<p->key<<"\t"<<setw(20);cout<<p->name<<"\t"<<setw(20);cout<<p->grade<<"\t"<<endl;p=p->lchild;}else{Pop(s,p);p=p->rchild;}}}/*---------------中序非递归遍历---------------*/ void z_print(node *t){Sqstack s;InitStack(s);bstnode *p;p=t;while(p||!(s.top==s.base)){if(p){Push(s,p);p=p->lchild;}else{Pop(s,p);cout<<p->key<<"\t"<<setw(20);cout<<p->name<<"\t"<<setw(20);cout<<p->grade<<"\t"<<endl;p=p->rchild;}}}/*---------------非递归后序遍历---------------*/ void h_print(node *t){Sqstack s;InitStack(s);node *p,*q;p=t;q=NULL;while(p || !(s.top==s.base)){if(p){Push(s,p);p=p->lchild;}else{p=*(s.top-1);if(p->rchild==q){Pop(s,q);p=NULL;cout<<q->key<<"\t"<<setw(20);cout<<q->name<<"\t"<<setw(20);cout<<q->grade<<"\t"<<endl;}else{p=p->rchild;q=NULL;}}}}//递归查找二叉树///*---归查找,若找到就返回指向该结点的指针,否则返回空---*/bstnode *SearchBST(bstree t,keytype key) {if(t==NULL||key==t->key)return t;if(key<t->key)return SearchBST(t->lchild ,key);elsereturn SearchBST(t->rchild ,key);}//-------------------给定学生信息插入到二叉树中-------------------// bstree InsertBST(bstree t,int key,nametype name,double grade){bstree p,q;if(t==NULL) //树初始为空,新建二叉树{t=new bstnode();t->key=key;t->name=name;t->grade=grade;t->lchild=t->rchild=NULL;}else{p=t;while(p) //树已存在,按照二叉排序树的特性查找{q=p;if(p->key>key)p=q->lchild;else if(p->key<key)p=q->rchild;else{cout<<endl;cout<<"树中已有该节点:"<<key<<endl;cout<<endl;return t;}}p=new bstnode(); //找不到结点就新建一个结点插入到二叉排序树中p->key=key;p->name=name;p->grade=grade;p->lchild=p->rchild=NULL;if(q->key>key)q->lchild=p;elseq->rchild=p;}return t;}//-------------------二叉树排序树的构建-------------------//bstree CreatTree() //不断输入学生信息以插入到二叉树中{bstree t=NULL;keytype key;nametype name;double grade;cout<<"请输入---学号---姓名---成绩---(输入0时结束):"<<endl;cin>>key;if(key==0)return t;cin>>name;cin>>grade;while(key) //key==0时退出{t=InsertBST(t,key,name,grade);cout<<"请输入---学号---姓名---成绩---(输入0时结束):"<<endl;cin>>key;if(key==0)break;cin>>name;cin>>grade;}return t;}//-------------------删除树中的结点-------------------//void Delete(bstree &p) //删除结点的函数{bstree q,s;if(!p->rchild){q=p;p=q->lchild ;delete q;}else if(!p->lchild){q=p;p=p->rchild;delete q;}else{q=p;s=p->lchild;while(s->rchild){q=s;s=s->rchild;}p->name=s->name;if(q!=p)q->rchild=s->lchild;elseq->lchild=s->lchild;delete s;}}void DeleteData(bstree &t,keytype key){if(!t){cout<<"没有该信息,请重新输入!";cin>>key;DeleteData(t,key);}else{if(t->key==key){Delete(t); //若找到结点直接删除cout<<"删除成功!"<<endl;}else if(t->key>key)DeleteData(t->lchild,key); //结点数据比查找关键字大,继续在其左子树中查找elseDeleteData(t->rchild,key); //结点数据比查找关键字小,继续在其右子树中查找}}//数组和二叉排序树的查找效率比较//void compare(){bstree t=NULL;clock_t start,end,start1,end1;int num=0;int a=0;int b=0;int c=0;int d=1;bstree p;string key,name;double grade;nametype str [100][3];//cout<<"(输入0时结束)"<<endl;cout<<"请输入---学号---姓名---成绩---(输入0时结束):"<<endl;cin>>key;if(key=="0")return ;cin>>name;cin>>grade;while(key!="0"){str[num][0]=key;str[num][1]=name;str[num][2]=grade;int key1=atoi(key.c_str()); //用库函数将字符串转化为关键字的int型t=InsertBST(t,key1,name,grade); //插入结点cout<<"请输入---学号---姓名---成绩---(输入0时结束):"<<endl;cin>>key;if(key=="0")break;cin>>name;cin>>grade;num++;}cout<<endl;cout<<"进行数组和二叉排序树的查询效率比较(比较:1 不比较:0)";cin>>d;while(d!=NULL){switch(d){case 0:cout<<"返回选择界面"<<endl;break;case 1:cout<<"数组查询!"<<endl;cout<<"请输入查询的成绩:"<<endl;cin>>key;start=clock();while(a<=10000000) //循环模拟数组查找{while(b<=99){if(str[b][0]==key){b=100;}elseb++;}b=0;a++;}end=clock();if(num>=100)cout<<"数组查询:无查询信息,花费时间: "<<end-start<<" 毫秒"<<endl;elsecout<<"数组查询:查到信息,花费时间: "<<end-start<<" 毫秒"<<endl;int key1=atoi(key.c_str()); //同上转化start1=clock();while(c<=10000000) //用循环来模拟树中查找{p=SearchBST(t,key1);c++;}end1=clock();if(p==NULL)cout<<"树查询:无查询信息,花费时间: "<<end1-start1<<" 毫秒"<<endl;elsecout<<"树查询:查到信息,花费时间: "<<end1-start1<<" 毫秒"<<endl;a=0;b=0;c=0;break;}cout<<"是否继续进行操作(是:1 否:0):";cin>>d;}}//二叉树的深度int TreeDepth(bstree t){int left,right,max;if(t!=NULL){left=TreeDepth(t->lchild);right=TreeDepth(t->rchild);max=left>right?left:right;return max+1;}else{return 0;}}//树状输出二叉树void PrintTree(bstree t,int layer){int k;if(t==NULL)return ;PrintTree(t->rchild,layer+1);for(k=0;k<layer;k++)cout<<" ";cout<<t->key<<"\n";PrintTree(t->lchild,layer+1);}//-------------------主函数测试-------------------//int main(){int d;keytype key;bstree t=NULL;t=CreatTree();d=TreeDepth(t);cout<<"二叉排序树的树形表示如下"<<endl;PrintTree(t,d);char choose;nametype name;bstree p;double grade;cout<<" "<<endl;cout<<"-----------------------------请输入你要选择的操作-------------------------------"<<endl;cout<<" |-------------------------------------|"<<endl;cout<<" ||-----------------------------------||"<<endl;cout<<" || a 插入信息 ||"<<endl;cout<<" || b 删除信息 ||"<<endl;cout<<" || c 查询信息 ||"<<endl;cout<<" || d 修改信息 ||"<<endl;cout<<" || 0 退出 ||"<<endl;cout<<" || e 对二叉排序树进行非递归遍历 ||"<<endl;cout<<" || f 进行数组和二叉树查找效率实验||"<<endl;cout<<" ||-----------------------------------||"<<endl;cout<<" |-------------------------------------|"<<endl;cout<<endl;cout<<"需要选择的操作为:";cin>>choose;cout<<endl;while(choose){switch(choose){case 'a'://cout<<"输入学生信息信息(学号为0时结束)."<<endl;cout<<"请输入---学号---姓名---成绩---(输入0时结束):"<<endl;cin>>key;if(key==0) /*{PrintTree(t,d);break;}*/cin>>name;cin>>grade;while(key){t=InsertBST(t,key,name,grade);cout<<"请输入---学号---姓名---成绩---:"<<endl;cin>>key;if(key==0)break;cin>>name;cin>>grade;}break;case 'b':cout<<"请输入要删除信息学生的成绩:"<<endl;cin>>key;DeleteData(t,key);d=TreeDepth(t);cout<<"删除结点后二叉树的树形显示如下"<<endl;PrintTree(t,d);break;case 'c':cout<<"请输入要查询的成绩:"<<endl;cin>>key;p=SearchBST(t,key);if(p==NULL)cout<<"无查询的关键字:"<<key<<endl;elsecout<<"成绩"<<"\t"<<setw(20)<<"姓名"<<"\t"<<setw(20)<<"学号"<<endl;cout<<p->key<<"\t"<<setw(20);cout<<p->name<<"\t"<<setw(20);cout<<p->grade<<endl;break;case 'd':cout<<"请输入要修改的学号:"<<endl;cin>>key;p=SearchBST(t,key);if(p==NULL)cout<<"无你所要修改的关键字:"<<key<<endl;else{cout<<"请输入修改的姓名:";cin>>name;cout<<"请输入修改的成绩:";cin>>grade;p->name=name;p->grade=grade;}break;case 'e':if(!t)cout<<"没有任何信息,请先输入信息!";else{cout<<"学号"<<"\t"<<setw(20)<<"姓名"<<"\t"<<setw(20)<<"成绩"<<endl;cout<<"------------------非递归先序遍历----------------"<<endl;cout<<endl;x_print(t);cout<<"------------------非递归中序遍历-----------------"<<endl;cout<<endl;z_print(t);cout<<"------------------非递归后序遍历-----------------"<<endl;cout<<endl;h_print(t);}break;case 'f':cout<<"***此实验为独立实验,实验数据独立于外部数据***"<<endl;cout<<"***请重新输入相关信息***"<<endl;compare();break;default:cout<<"选择错误!";break;}cout<<endl;cout<<endl;cout<<" "<<endl;cout<<"-----------------------------请输入你要选择的操作-------------------------------"<<endl;cout<<" |-------------------------------------|"<<endl;cout<<" ||-----------------------------------||"<<endl;cout<<" || a 插入信息 ||"<<endl;cout<<" || b 删除信息 ||"<<endl;cout<<" || c 查询信息 ||"<<endl;cout<<" || d 修改信息 ||"<<endl;cout<<" || 0 退出 ||"<<endl;cout<<" || e 对二叉排序树进行非递归遍历 ||"<<endl;cout<<" || f 进行数组和二叉树查找效率实验||"<<endl;cout<<" ||-----------------------------------||"<<endl;cout<<" |-------------------------------------|"<<endl;cout<<endl;cout<<"选择的操作位:";cin>>choose;cout<<endl;}return 0;}4.运行结果及截图从键盘读入数据以0作为结束标志可得二叉排序树树状表示主菜单选择模块需要在树种添加节点则执行操作a需要在书中删除节点执行操作b需要查询节点信息执行操作c修改某一节点信息执行操作d执行操作0退出程序执行执行操作e对树进行先序遍历、后序遍历、中序遍历运行结果如下图需要对树和数组的查询效率比较执行操作f4.实验结论栈是仅表尾进行插入和删除的线性表,栈的顺序存储结构是利用一组地址连续的存储单元依次存放自栈底到栈顶的数据元素,并同时附设指针top指示栈顶元素在顺序栈中的位置。

相关文档
最新文档