浙江省宁波市鄞州区2018-2019学年七年级下学期数学期末考试试卷
2018-2019学年第二学期7年级下浙江各地期末考试数学试题精选及答案解析
2018-2019学年第二学期7年级下浙江各地期末考试数学试题一.选择题(共16小题)1.(2019•瑞安市期末)若x+y=2z,且x≠y≠z,则的值为()A.1B.2C.0D.不能确定2.(2019•余姚市期末)多项式4a2+1再加上一个单项式后,使其成为一个多项式的完全平方,则不同的添加方法有()A.2种B.3种C.4种D.多于4种3.(2019•越城区期末)能使分式值为整数的整数x有()个.A..1B.2C.3D..44.(2019•鄞州区期末)如图将一张四边形纸片沿EF折叠,以下条件中能得出AD∥BC的条件个数是()①∠2=∠4;②∠2+∠3=180°;③∠1=∠6;④∠4=∠5.A.1B.2C.3D.45.(2019•温州期末)王老师有一个实际容量为1.8GB(1GB=220KB)的U盘,内有三个文件夹,已知课件文件夹占用了0.8GB的内存,照片文件夹内有32张大小都是211KB的旅行照片,音乐文件夹内有若干首大小都是215KB的音乐,若该U盘内存恰好用完,则此时文件夹内有音乐()首.A.28B.30C.32D.346.(2019•杭州期末)已知a,b是常数,若化简(﹣x+a)(2x2+bx﹣3)的结果不含x的二次项,则36a﹣18b﹣1的值为()A.﹣1B.0C.17D.357.(2019•越城区期末)如图所示,把一根铁丝折成图示形状后,AB∥DE,则∠BCD等于()A.∠D+∠B B.∠B﹣∠D C.180°+∠D﹣∠B D.180°+∠B﹣∠D 8.(2019•越城区期末)已知关于x的分式方程+=1的解是非负数,则m的取值范围是()A.m>2B.m≥2C.m≥2且m≠3D.m>2且m≠39.(2019•温州期末)如图,已知直线a∥b,点A,B分别在直线a,b上,连结AB.点D是直线a,b之间的一个动点,作CD∥AB交直线b于点C,连结AD.若∠ABC=70°,则下列选项中∠D不可能取到的度数为()A.60°B.80°C.150°D.170°10.(2019•天台县期末)已知min{,x2,x}表示取三个数中最小的那个数,例如:当x=9,min{,x2,x}=min{,92,9}=3﹒当min{,x2,x}=时,则x的值为()A.B.C.D.11.(2019•天台县期末)如图1,当光线在空气进入水中时,会发生折射,满足入射角∠1与折射角∠2的度数比为4:3﹒如图2,在同一平面上,两条光线同时从空气进入水中,两条入射光线与水面夹角分别为α,β,在水中两条折射光线的夹角为γ,则α,β,γ三者之间的数量关系为()A.B.C.α+β=γD.α+β+γ=180°12.(2019•拱墅区校级期末)已知关于x,y的方程组以下结论:①当k=0,方程组的解也是方程x﹣2y=﹣4的解;②存在实数k,使得x+y=0;③当y﹣x>﹣1时,k>1;④不论k取什么实数,x+3y的值始终不变,其中正确的是()A.①②③B.①②④C.①③④D.②③④13.(2019•瑞安市期末)如图,已知直线EC∥BD,直线CD分别与EC,BD相交于C,D两点.在同一平面内,把一块含30°角的直角三角尺ABD(∠ADB=30°,∠ABD=90°)按如图所示位置摆放,且AD平分∠BAC,则∠ECA=()A.15°B.2C.25D.30°14.(2019•越城区期末)已知a=2019x+2018,b=2019x+2019,c=2019x+2020,则代数式a2+b2+c2﹣ab ﹣ac﹣bc的值为()A.0B.1C.2D.315.(2019•余姚市期末)如图,平行河岸两侧各有一城镇P,Q,根据发展规划,要修建一条公路连接P,Q两镇.已知相同长度造桥总价远大于陆上公路造价,为了尽量减少总造价,应该选择方案()A.B.B.C.D.16.(2019•嵊州市期末)已知:如图,点D是射线AB上一动点,连接CD,过点D作DE∥BC交直线AC 于点E.若∠ABC=84°,∠CDE=20°,则∠ADC的度数为()A.104°B.76°C.104°或64°D.104°或76°二.填空题(共14小题)17.(2019•永康市期末)若(a+2)a﹣3=1,则a=.18.(2019•鄞州区期末)若实数a,b满足a2+5b2+4ab+6b+9=0,则a+5b的值为.19.(2019•嵊州市期末)若方程组的解为,则方程组的解是.20.(2019•嵊州市期末)如图,P是长方形ABCD内一点,过点P分别作EF∥AB,GH∥BC,(E,F,G,H在长方形的各边上),这样,EF,GH就把长方形ABCD分割成四个小长方形,若其中长方形BEPG的面积是其周长的1.5倍,长方形AGPF和长方形PECH的面积均为2,则长方形PHDF的周长为.21.(2019•诸暨市期末)若解分式方程+2产生增根,则m=.22.(2019•嵊州市期末)如图,在△ABC中,已知BC=7,点E,F分别在边AB,BC上,将△BEF沿直线EF折叠,使点B落在点D处,DF向右平移若干单位长度后恰好能与边AC重合,连结AD,若3AC﹣AD=11,则AC+3AD的值为.23.(2019•天台县期末)已知关于x,y的方程组,有以下结论:①当k=0时,方程组的解是;②方程组的解可表示为;③不论k取什么实数,x+3y的值始终不变.其中正确的有.(填写编号)24.(2019•温州期末)如图,在长方形ABCD中,AB=10,BC=13.E,F,G,H分别是线段AB,BC,CD,AD上的定点,现分别以BE,BF为边作长方形BEQF,以DG为边作正方形DGIH.若长方形BEQF 与正方形DGIH的重合部分恰好是一个正方形,且BE=DG,Q,I均在长方形ABCD内部.记图中的阴影部分面积分别为S1,S2,S3,若,则S3=.25.(2019•西湖区期末)已知实数a,b,定义运算:a※b=,若a※(a﹣3)=1,则a=.26.(2019•余姚市期末)如图,一副三角板的三个内角分别是90°,45°,45°和90°,60°,30°,按如图所示叠放在一起(点A,D,B在同一直线上),若固定△ABC,将△BDE绕着公共顶点B顺时针旋转α度(0<α<180),当边DE与△ABC的某一边平行时,相应的旋转角α的值为.27.(2019•嘉兴期末)小明、小林和小颖共解出100道数学题,每人都解出了其中的60道,如果将其中只有1人解出的题叫做难题,2人解出的题叫做中档题,3人都解出的题叫做容易题,那么难题比容易题多道.28.(2019•嘉兴期末)如图,点M是AB的中点,点P在MB上.分别以AP,PB为边,作正方形APCD 和正方形PBEF,连结MD和ME.设AP=a,BP=b,且a+b=10,ab=20.则图中阴影部分的面积为.29.(2019•越城区期末)一个自然数若能表示为相邻两个自然数的平方差,则这个自然数为“智慧数”,比如:22﹣12=3,3就是智慧数,从0开始,不大于2019的智慧数共有个.30.(2019•瑞安市期末)如图,用如图①中的a张长方形和b张正方形纸板作侧面和底面,做成如图②的竖式和横式两种无盖纸盒,若295<a+b<305,用完这些纸板做竖式纸盒比横式纸盒多30个,则a =,b=.三.解答题(共11小题)31.(2019•嵊州市期末)(1)若m2+n2=13,m+n=3,则mn=.(2)请仿照上述方法解答下列问题:若(a﹣b﹣2017)2+(2019﹣a+b)2=5,则代数式的值为.32.(2019•杭州期末)已知关于x,y的二元一次方(a为实数)(1)若方程组的解始终满足y=a+1,求a的值;(2)已知方程组的解也是方程bx+3y=1(b为实数,b≠0且b≠﹣6)的解①探究实数a,b满足的关系式;②若a,b都是整数,求b的最大值和最小值.33.(2019•西湖区期末)一项工程甲队单独完成所需天数是乙队单独完成这项工程所需天数的;若由乙队先做45天,剩下的工程再由甲、乙两队合作54天可以完成.(1)求甲、乙两队单独完成这项工程各需要多少天?(2)已知甲队每天的施工费用为0.82万元,乙队每天的施工费用为0.68万元,工程预算的施工费用为100万元,拟安排甲、乙两队同时合作完成这项工程,则工程预算的施工费用是否够用?若不够用,需追加预算多少万元?说明理由.34.(2019•温州期末)李师傅要给一块长9米,宽7米的长方形地面铺瓷砖,如图,现有A和B两种款式的瓷砖,且A款正方形瓷砖的边长与B款长方形瓷砖的长相等,B款瓷砖的长大于宽,已知一块A款瓷砖和一块B款瓷砖的价格和为140元;3块A款瓷砖价格和4块B款瓷砖价格相等.请回答以下问题:(1)分别求出每款瓷砖的单价;(2)若李师傅买两种瓷砖共花了1000元,且A款瓷砖的数量比B款多,则两种瓷砖各买了多少?(3)李师傅打算按如下设计图的规律进行铺瓷砖,若A款瓷砖的用量比B款瓷砖的2倍少14块,且恰好铺满地面,则B款瓷砖的长和宽分别为米(直接写出答案)?35.(2019•瑞安市期末)某校七年级为了表彰“数学素养水平测试”中表现优秀的同学,准备用480元钱购进笔记本作为奖品.若A种笔记本买20本,B本笔记本买30本,则钱还缺40元;若A种笔记本买30本,B种笔记本买20本,则钱恰好用完.(1)求A,B两种笔记本的单价;(2)由于实际需要,需要增加购买单价为6元的C种笔记本若干本.若购买A,B,C三种笔记本共60本,钱恰好全部用完,任意两种笔记本之间的数量相差小于15本,则C种笔记本购买了本.(直接写出答案)36.(2019•余姚市期末)如图,将几个小正方形与小长方形拼成一个边长为(a+b+c)的正方形.(1)若用不同的方法计算这个边长为(a+b+c)的正方形面积,就可以得到一个等式,这个等式可以为(只要写出一个即可);(2)请利用(1)中的等式解答下列问题:①若三个实数a,b,c满足a+b+c=11,ab+bc+ac=38,求a2+b2+c2的值;②若三个实数x,y,z满足2x×4y÷8z=,x2+4y2+9z2=44,求2xy﹣3xz﹣6yz的值.37.(2019•越城区期末)杨辉三角形,又称贾宪三角形,帕斯卡三角形,是二项式系数在三角形中的一种几何排列,在我国南宋数学家杨所著的《详解九章算术》(1261年)一书中用如图的三角形解释二项和的乘方规律(a+b)1=a+b(a+b)2=a2+2ab+b2(a+b)3=(a+b)(a2+2ab+b2)=a3+3a2b+3ab2+b3(a+b)4=(a+b)(a3+3a2b+3ab2+b3)=a4+4a3b+6a2b2+4ab3+b4“杨辉三角”里面蕴藏了许多的规律(1)找出其中各项字母之间的规律以及各项系数之间的规律各一条;(2)直接写出(a+b)6展开后的多项式;(3)运用:若今天是星期四,经过84天后是星期,经过8100天后是星期.38.(2019•鄞州区期末)如图,长方形ABCD中,AB=x(6<x<9),AD=y(6<y<9),放入一个边长为6的正方形AEFG和两个边长都为3的正方形CHIJ及正方形DKMN,S1,S2,S3分别表示对应阴影部分的面积.(1)NH=,KG=,BJ=(结果用含x或y的代数式表示).(2)若S2=S3,求长方形ABCD的周长.(3)若2S1+3S2=5S3,且AD比AB长1,求长方形ABCD的面积.39.(2019•越城区期末)如图为一台灯示意图,其中灯头连接杆DE始终和桌面FG平行,灯脚AB始终和桌面FG垂直,(1)当∠EDC=∠DCB=120°时,求∠CBA;(2)连杆BC、CD可以绕着B、C和D进行旋转,灯头E始终在D左侧,设∠EDC,∠DCB,∠CBA的度数分别为α,β,γ,请画出示意图,并直接写出示意图中α,β,γ之间的数量关系.40.(2019•天台县期末)一个运输公司有甲、乙两种货车,两次满载的运输情况如下表:甲种货车辆数乙种货车辆数合计运货吨数第一次2418第二次5635(1)求甲、乙两种货车每次满载分别能运输多少吨货物;(2)现有一批重34吨的货物需要运输,而甲、乙两种货车运输的保养费用分别为80元/辆和40元/辆.公司打算由甲、乙两种货车共10辆来完成这次运输,为了使保养费用不超过700元,公司该如何安排甲、乙两种货车来完成这次运输任务.41.(2019•诸暨市期末)已知,直线AB∥DC,点P为平面上一点,连接AP与CP.(1)如图1,点P在直线AB、CD之间,当∠BAP=60°,∠DCP=20°时,求∠APC.(2)如图2,点P在直线AB、CD之间,∠BAP与∠DCP的角平分线相交于点K,写出∠AKC与∠APC 之间的数量关系,并说明理由.(3)如图3,点P落在CD外,∠BAP与∠DCP的角平分线相交于点K,∠AKC与∠APC有何数量关系?并说明理由.2018-2019学年第二学期7年级下浙江各地期末考试数学试题参考答案与试题解析一.选择题(共16小题)1.(2019•瑞安市期末)若x+y=2z,且x≠y≠z,则的值为()A.1B.2C.0D.不能确定【解析】∵x+y=2z,且x≠y≠z,∴x﹣z=z﹣y,∴====1,故选:A.2.(2019•余姚市期末)多项式4a2+1再加上一个单项式后,使其成为一个多项式的完全平方,则不同的添加方法有()A.2种B.3种C.4种D.多于4种【解析】当4a2是中间项时,那么,第三项为4a4;组成的完全平方式为(2a2+1)2;当4a2是第一项时,那么,中间项为±4a,组成的完全平方式为(2a±1)2;添加的单项式可以为4a4、±4a,即3种,故选:B.3.(2019•越城区期末)能使分式值为整数的整数x有()个.A..1B.2C.3D..4【解析】=+=2+,当2x﹣3=±1或±13时,是整数,即原式是整数.解得:x=2或1或8或﹣5;4个,故选:D.4.(2019•鄞州区期末)如图将一张四边形纸片沿EF折叠,以下条件中能得出AD∥BC的条件个数是()①∠2=∠4;②∠2+∠3=180°;③∠1=∠6;④∠4=∠5.A.1B.2C.3D.4【解析】①∵∠2=∠4,∴AD∥BC,故①符合题意;②∵∠2+∠3=180°,∠3+∠5=180°,∴∠2=∠5,∴HE∥GF,本选项不符合题意;③由折叠的性质可得∠1=∠7,∵∠1=∠6,∴∠6=∠7,∴AD∥BC,故③符合题意;④无法由∠4=∠5得到AD∥BC,本选项不符合题意.故能得出AD∥BC的条件个数是2.故选:B.5.(2019•温州期末)王老师有一个实际容量为1.8GB(1GB=220KB)的U盘,内有三个文件夹,已知课件文件夹占用了0.8GB的内存,照片文件夹内有32张大小都是211KB的旅行照片,音乐文件夹内有若干首大小都是215KB的音乐,若该U盘内存恰好用完,则此时文件夹内有音乐()首.A.28B.30C.32D.34【解析】(1.8﹣0.8)×220=220(KB)32×211=216(KB),(220﹣216)÷215=25﹣2=30(首),故选:B.6.(2019•杭州期末)已知a,b是常数,若化简(﹣x+a)(2x2+bx﹣3)的结果不含x的二次项,则36a﹣18b﹣1的值为()A.﹣1B.0C.17D.35【解析】原式=﹣2x3﹣bx2+3x+2ax2+abx﹣3a=﹣2x3+(2a﹣b)x2+(3+ab)x﹣3a∵(﹣x+a)(2x2+bx﹣3)结果不含x的二次项∴2a﹣b=0∵式子36a﹣18b﹣1=18(2a﹣b)﹣1∴36a﹣18b﹣1=18×0﹣1=﹣1故选:A.7.(2019•越城区期末)如图所示,把一根铁丝折成图示形状后,AB∥DE,则∠BCD等于()A.∠D+∠B B.∠B﹣∠D C.180°+∠D﹣∠B D.180°+∠B﹣∠D【解析】∵AB∥DE,∴∠E=180°﹣∠B,∴∠BCD=∠D+∠E=180°﹣∠B+∠D.故选:C.8.已知关于x的分式方程+=1的解是非负数,则m的取值范围是()A.m>2B.m≥2C.m≥2且m≠3D.m>2且m≠3【解析】分式方程去分母得:m﹣3=x﹣1,解得:x=m﹣2,由方程的解为非负数,得到m﹣2≥0,且m﹣2≠1,解得:m≥2且m≠3.故选:C.9.(2019•温州期末)如图,已知直线a∥b,点A,B分别在直线a,b上,连结AB.点D是直线a,b之间的一个动点,作CD∥AB交直线b于点C,连结AD.若∠ABC=70°,则下列选项中∠D不可能取到的度数为()A.60°B.80°C.150°D.170°【解析】延长CD交直线a于E.∵a∥b,∴∠AED=∠DCF,∵AB∥CD,∴∠DCF=∠ABC=70°,∴∠AED=70°∵∠ADC=∠AED+∠DAE,∴∠ADC>70°,故选:A.10.(2019•天台县期末)已知min{,x2,x}表示取三个数中最小的那个数,例如:当x=9,min{,x2,x}=min{,92,9}=3﹒当min{,x2,x}=时,则x的值为()A.B.C.D.【解析】当=时,x=,x<,不合题意;当x2=时,x=±,当x=﹣时,x<x2,不合题意;当x=时,=,x2<x<,符合题意;当x=时,x2=,x2<x,不合题意,故选:C.11.(2019•天台县期末)如图1,当光线在空气进入水中时,会发生折射,满足入射角∠1与折射角∠2的度数比为4:3﹒如图2,在同一平面上,两条光线同时从空气进入水中,两条入射光线与水面夹角分别为α,β,在水中两条折射光线的夹角为γ,则α,β,γ三者之间的数量关系为()A.B.C.α+β=γD.α+β+γ=180°【解析】如图2所示,过B,D,F分别作水平线的垂线,则PC∥DE∥QG,∴∠BDF=∠BDE+∠FDE=∠DBC+∠DFG,由题可得,∠DBC=∠ABP=(90°﹣α),∠DFG=∠HFQ=(90°﹣β),∴∠BDF=(90°﹣α)+(90°﹣β)=(180°﹣α﹣β),即γ=135°﹣(α+β),∴(α+β)=135°﹣γ,故选:B.12.(2019•拱墅区期末)已知关于x,y的方程组以下结论:①当k=0,方程组的解也是方程x﹣2y=﹣4的解;②存在实数k,使得x+y=0;③当y﹣x>﹣1时,k>1;④不论k取什么实数,x+3y的值始终不变,其中正确的是()A.①②③B.①②④C.①③④D.②③④【解析】①把k=0代入方程组得:,解得:,代入方程得:左边=﹣2﹣2=﹣4,右边=﹣4,左边=右边,此选项正确;②由x+y=0,得到y=﹣x,代入方程组得:,即k=3k﹣1,解得:k=,则存在实数,使x+y=0,本选项正确;③,①×2﹣②得:y=1﹣k,把y=1﹣k代入①得:x=3k﹣2,y﹣x=1﹣k﹣3k+2=3﹣4k,代入不等式得:3﹣4k>﹣1,解得:k<1,此选项错误;④x+3y=3k﹣2+3﹣3k=1,本选项正确,故选:B.13.(2019•瑞安市期末)如图,已知直线EC∥BD,直线CD分别与EC,BD相交于C,D两点.在同一平面内,把一块含30°角的直角三角尺ABD(∠ADB=30°,∠ABD=90°)按如图所示位置摆放,且AD平分∠BAC,则∠ECA=()A.15°B.2C.25D.30°【解析】如图,延长BA交EC于H.∵EC∥BD,∴∠CHA+∠ABD=180°,∵∠ABD=90°,∴∠AHC=90°,∵AD平分∠BAC,∴∠BAC=2∠BAD=120°,∵∠BAC=∠AHC+∠ECA,∴∠ECA=30°,故选:D.14.(2019•嘉祥县期末)已知a=2019x+2018,b=2019x+2019,c=2019x+2020,则代数式a2+b2+c2﹣ab ﹣ac﹣bc的值为()A.0B.1C.2D.3【解析】∵a=2019x+2018,b=2019x+2019,c=2019x+2020,∴a﹣b=﹣1,b﹣c=﹣1,c﹣a=2,∴a2+b2+c2﹣ab﹣ac﹣bc=2(a2+b2+c2﹣ab﹣ac﹣bc)÷2=[(a﹣b)2+(b﹣c)2+(c﹣a)2]÷2=[(﹣1)2+(﹣1)2+22]÷2=6÷2=3故选:D.15.(2019•余姚市期末)如图,平行河岸两侧各有一城镇P,Q,根据发展规划,要修建一条公路连接P,Q两镇.已知相同长度造桥总价远大于陆上公路造价,为了尽量减少总造价,应该选择方案()A.B.C.D.【解析】如图,作PP'垂直于河岸L,使PP′等于河宽,连接QP′,与河岸L相交于N,作NM⊥L,则MN∥PP′且MN=PP′,于是四边形PMNP′为平行四边形,故PM=NP′.根据“两点之间线段最短”,QP′最短,即PM+NQ最短.观察选项,选项C符合题意.故选:C.16.(2019•嵊州市期末)已知:如图,点D是射线AB上一动点,连接CD,过点D作DE∥BC交直线AC 于点E.若∠ABC=84°,∠CDE=20°,则∠ADC的度数为()A.104°B.76°C.104°或64°D.104°或76°【解析】当点D在线段AB上时,如图1所示.∵DE∥BC,∴∠ADE=∠ABC=84°,∴∠ADC=∠ADE+∠CDE=84°+20°=104°;当点D在线段AB的延长线上时,如图2所示.∵DE∥BC,∴∠ADE=∠ABC=84°,∴∠ADC=∠ADE﹣∠CDE=84°﹣20°=64°.综上所述:∠ADC=104°或64°.故选:C.二.填空题(共14小题)17.(2019•永康市期末)若(a+2)a﹣3=1,则a=3或﹣1或﹣3.【解析】∵(a+2)a﹣3=1,∴a+2≠0,且a﹣3=0或a+2=1或a+2=﹣1,且a﹣3是偶数,∴a=3或﹣1或﹣3,故答案为:3或﹣1或﹣3.18.(2019•鄞州区期末)若实数a,b满足a2+5b2+4ab+6b+9=0,则a+5b的值为﹣9.【解析】∵a2+5b2+4ab+6b+9=0,∴(a+2b)2+(b+3)2=0,∴a+2b=0,b+3=0,解得:a=6,b=﹣3,∴a+5b=6+5×(﹣3)=﹣9.故答案为﹣9.19.(2019•嵊州市期末)若方程组的解为,则方程组的解是.【解析】在方程组中,设x+2=a,y﹣1=b,则变形为方程组,解得.故答案为:.20.(2019•嵊州市期末)如图,P是长方形ABCD内一点,过点P分别作EF∥AB,GH∥BC,(E,F,G,H在长方形的各边上),这样,EF,GH就把长方形ABCD分割成四个小长方形,若其中长方形BEPG的面积是其周长的1.5倍,长方形AGPF和长方形PECH的面积均为2,则长方形PHDF的周长为.【解析】设PG=a,PE=b,PF=c,PH=d,根据题意,得ac=bd=2,则c=,d=.又ab=1.5×2(a+b)=3(a+b).c+d=+===.所以长方形PHDF的周长为2(c+d)=.故答案为.21.(2019•诸暨市期末)若解分式方程+2产生增根,则m=﹣5.【解析】去分母得:x﹣1=m+2x+8,由分式方程有增根,得到x+4=0,即x=﹣4,把x=﹣4代入整式方程得:m=﹣5,故答案为:﹣522.(2019•嵊州市期末)如图,在△ABC中,已知BC=7,点E,F分别在边AB,BC上,将△BEF沿直线EF折叠,使点B落在点D处,DF向右平移若干单位长度后恰好能与边AC重合,连结AD,若3AC﹣AD=11,则AC+3AD的值为12.【解析】∵将△BEF沿直线EF折叠,使点B落在点D处,∴DF=BF,∵DF向右平移若干单位长度后恰好能与边AC重合,∴四边形ADFC是平行四边形,∴AD=CF,DF=AC,设AD=CF=x,则AC=DF=BF=7﹣x,∵3AC﹣AD=11,∴3(7﹣x)﹣x=11,∴x=2.5,∴AD=2,5,AC=4.5,∴AC+3AD=4.5+3×2.5=12,故答案为:12.23.(2019•天台县期末)已知关于x,y的方程组,有以下结论:①当k=0时,方程组的解是;②方程组的解可表示为;③不论k取什么实数,x+3y的值始终不变.其中正确的有①②③.(填写编号)【解析】①当k=0时,原方程组可整理得:,解得:,故①正确;②解方程组,得:,故②正确;③由②知,方程组的解为,∴x+3y=3k﹣2+3(1﹣k)=1,∴不论k取什么实数,x+3y的值始终不变,故③正确;故答案为①②③.24.(2019•温州期末)如图,在长方形ABCD中,AB=10,BC=13.E,F,G,H分别是线段AB,BC,CD,AD上的定点,现分别以BE,BF为边作长方形BEQF,以DG为边作正方形DGIH.若长方形BEQF 与正方形DGIH的重合部分恰好是一个正方形,且BE=DG,Q,I均在长方形ABCD内部.记图中的阴影部分面积分别为S1,S2,S3,若,则S3=.【解析】如图,设CG=a,则DG=GI=BE=10﹣a,∵AB=10,BC=13,∴AE=AB﹣BE=10﹣(10﹣a)=a,PI=IG﹣PG=10﹣a﹣a=10﹣2a,AH=13﹣DH=13﹣(10﹣a)=a+3,∵,即,4a2﹣9a=0,a1=0(舍),a2=,则S3=(10﹣2a)2=(10﹣)2=,故答案为:.25.(2019•西湖区期末)已知实数a,b,定义运算:a※b=,若a※(a﹣3)=1,则a=3或±1.【解析】∵a>a﹣3,a※(a﹣3)=1,根据题中的新定义得:a a﹣3=1,∴a﹣3=0或a=1或a=﹣1,∴a=3或±1.故答案为:3或±1.26.(2019•余姚市期末)如图,一副三角板的三个内角分别是90°,45°,45°和90°,60°,30°,按如图所示叠放在一起(点A,D,B在同一直线上),若固定△ABC,将△BDE绕着公共顶点B顺时针旋转α度(0<α<180),当边DE与△ABC的某一边平行时,相应的旋转角α的值为45°,75°,165°.【解析】①如图1中,当DE∥AB时,易证∠ABD=∠D=45°,可得旋转角α=45°②如图2中,当DE∥BC时,易证∠ABD=∠ABC+∠CBD=∠ABC+∠D=75°,可得旋转角α=75°③如图3中,当DE∥AC时,作BM∥AC,则AC∥BM∥DE,∴∠CBM=∠C=90°,∠DBM=∠D=45°,∴∠ABD=30°+90°+45°=165°,可得旋转角α=165°,综上所述,满足条件的旋转角α为45°,75°,165°故答案为45°,75°,165°.27.(2012•乐平市校级自主招生)小明、小林和小颖共解出100道数学题,每人都解出了其中的60道,如果将其中只有1人解出的题叫做难题,2人解出的题叫做中档题,3人都解出的题叫做容易题,那么难题比容易题多20道.【解析】设x道难题,y道中档题,z道容易题.x+y+z=100①x+2y+3z=180②①×2﹣②,得x﹣z=20,∴难题比容易题多20道.故填20.28.(2018•嘉兴期末)如图,点M是AB的中点,点P在MB上.分别以AP,PB为边,作正方形APCD 和正方形PBEF,连结MD和ME.设AP=a,BP=b,且a+b=10,ab=20.则图中阴影部分的面积为35.【解析】∵AP=a,BP=b,点M是AB的中点,∴AM=BM=,∴S阴影=S正方形APCD+S正方形BEFP﹣S△ADM﹣S△BEM=a2+b2﹣a×﹣b×=a2+b2﹣(a+b)2=(a+b)2﹣2ab﹣(a+b)2=100﹣40﹣25=35,故答案为:35.29.(2019•越城区期末)一个自然数若能表示为相邻两个自然数的平方差,则这个自然数为“智慧数”,比如:22﹣12=3,3就是智慧数,从0开始,不大于2019的智慧数共有1010个.【解析】∵(n+1)2﹣n2=2n+1,∴所有的奇数都是智慧数,∵2019÷2=1009…1,∴不大于2019的智慧数共有:1009+1=1010.故答案为:1010.30.(2019•瑞安市期末)如图,用如图①中的a张长方形和b张正方形纸板作侧面和底面,做成如图②的竖式和横式两种无盖纸盒,若295<a+b<305,用完这些纸板做竖式纸盒比横式纸盒多30个,则a=288,b=102.【解析】设横式纸盒x个,则竖式纸盒为(x+30)个,a=4(x+30)+3x,b=(x+30)+2x,∵295<a+b<305,∴295<4(x+30)+3x+(x+30)+2x<305,解得:14.5≤x≤15.5,∵x为整数,∴x=15当x=15时,a=225,b=75,故答案为:225,75.三.解答题(共11小题)31.(2019•嵊州市期末)(1)若m2+n2=13,m+n=3,则mn=﹣2.(2)请仿照上述方法解答下列问题:若(a﹣b﹣2017)2+(2019﹣a+b)2=5,则代数式的值为﹣4038.【解析】(1)把m+n=3两边平方得:(m+n)2=9,即m2+n2+2mn=9,把m2+n2=13代入得:2mn=﹣4,即mn=﹣2;(2)由题意得:4=[(a﹣b﹣2017)+(2019﹣a+b)]2=(a﹣b﹣2017)2+(2019﹣a+b)2+2(a﹣b﹣2017)(2019﹣a+b),把(a﹣b﹣2017)2+(2019﹣a+b)2=5代入得:(a﹣b﹣2017)(2019﹣a+b)=﹣,则原式==﹣4038,故答案为:﹣403832.(2019•杭州期末)已知关于x,y的二元一次方(a为实数)(1)若方程组的解始终满足y=a+1,求a的值;(2)已知方程组的解也是方程bx+3y=1(b为实数,b≠0且b≠﹣6)的解①探究实数a,b满足的关系式;②若a,b都是整数,求b的最大值和最小值.【解析】(1),②﹣①得:3y=6a﹣3,即y=2a﹣1,把y=2a﹣1代入y=a+1中得:2a﹣1=a+1,解得:a=2;(2)①把y=2a﹣1代入方程组第一个方程得:x=a+2,方程组的解为,代入bx+3y=1得:ab+2b+6a﹣3=1,即ab+6a+2b=4;②由ab+6a+2b=4,得到b====﹣6,∵a,b都是整数,∴a+2=±1,±2,±4,±8,±16,当a+2=1,即a=﹣1时,b取得最大值10;当a+2=﹣1,即a=﹣3时,b取得最小值﹣22.33.(2019•西湖区期末)一项工程甲队单独完成所需天数是乙队单独完成这项工程所需天数的;若由乙队先做45天,剩下的工程再由甲、乙两队合作54天可以完成.(1)求甲、乙两队单独完成这项工程各需要多少天?(2)已知甲队每天的施工费用为0.82万元,乙队每天的施工费用为0.68万元,工程预算的施工费用为100万元,拟安排甲、乙两队同时合作完成这项工程,则工程预算的施工费用是否够用?若不够用,需追加预算多少万元?说明理由.【解析】(1)设乙队单独完成这项工程需要x天,则甲队单独完成这项工程需要x天.根据题意得:+54×=1.解得:x=180.经检验:x=180是所列方程的根.且符合题意,∴x=×180=120(天).答:甲、乙两队单独完成这项工程各需要120天和180天.(2)设甲、乙两队合作完成这项工程需要y天.可得:(+)y=1.解得:y=72.需要施工费用:72×(0.82+0.68)=108(万元).∵108>100,108﹣100=8(万元)∴工程预算的施工费用不够用.需追加预算8万元.34.(2019•温州期末)李师傅要给一块长9米,宽7米的长方形地面铺瓷砖,如图,现有A和B两种款式的瓷砖,且A款正方形瓷砖的边长与B款长方形瓷砖的长相等,B款瓷砖的长大于宽,已知一块A款瓷砖和一块B款瓷砖的价格和为140元;3块A款瓷砖价格和4块B款瓷砖价格相等.请回答以下问题:(1)分别求出每款瓷砖的单价;(2)若李师傅买两种瓷砖共花了1000元,且A款瓷砖的数量比B款多,则两种瓷砖各买了多少?(3)李师傅打算按如下设计图的规律进行铺瓷砖,若A款瓷砖的用量比B款瓷砖的2倍少14块,且恰好铺满地面,则B款瓷砖的长和宽分别为1米和米或1米和米(直接写出答案)?【解析】(1)设A款瓷砖单价为x元,B款瓷砖单价为y元,则,解得:;答:A款瓷砖单价为80元,B款瓷砖单价为60元.(2)设A款瓷砖买了m块,B款瓷砖买了y块,且m>n,则80m+60n=1000,即:4m+3n=50,∵m,n为正整数,且m>n,∴m=11时,n=2;m=8时,n=6;答:买了11块A款瓷砖,2块B款瓷砖或8块A款瓷砖,6块B款瓷砖;(3)设A款瓷砖边长为a米,B款瓷砖长为a米、宽为b米,则2××=2(+1)×﹣14,解得:a=1,由题意得:是正整数,设=k(k为正整数),解得:b=,当k=1时,b=(>1,舍去);当k=2时,b=(>1,舍去);当k=3时,b=;当k=4时,b=.故答案为:1米和米或1米和.35.(2019•瑞安市期末)某校七年级为了表彰“数学素养水平测试”中表现优秀的同学,准备用480元钱购进笔记本作为奖品.若A种笔记本买20本,B本笔记本买30本,则钱还缺40元;若A种笔记本买30本,B种笔记本买20本,则钱恰好用完.(1)求A,B两种笔记本的单价;(2)由于实际需要,需要增加购买单价为6元的C种笔记本若干本.若购买A,B,C三种笔记本共60本,钱恰好全部用完,任意两种笔记本之间的数量相差小于15本,则C种笔记本购买了24,26,28.本.(直接写出答案)【解析】(1)设A种笔记本的单价为x元,B种笔记本的单价为y元,依题意,得:,解得:.答:A种笔记本的单价为8元,B种笔记本的单价为12元.(2)设购买A种笔记本m本,B种笔记本n本,则购买C种笔记本(60﹣m﹣n)本,依题意,得:8m+12n+6(60﹣m﹣n)=480,∴m+3n=60,∴购买C种笔记本2n本.∵m,n均为正整数,且|m﹣n|<15,n<15,∴或或,∴2n=24,26,28.故答案为:24,26,28.36.(2019•余姚市期末)如图,将几个小正方形与小长方形拼成一个边长为(a+b+c)的正方形.(1)若用不同的方法计算这个边长为(a+b+c)的正方形面积,就可以得到一个等式,这个等式可以为(a+b+c)2=a2+b2+c2+2ab+2ac+2bc(只要写出一个即可);(2)请利用(1)中的等式解答下列问题:①若三个实数a,b,c满足a+b+c=11,ab+bc+ac=38,求a2+b2+c2的值;②若三个实数x,y,z满足2x×4y÷8z=,x2+4y2+9z2=44,求2xy﹣3xz﹣6yz的值.【解析】(1)(a+b+c)2=a2+b2+c2+2ab+2ac+2bc,故答案为:(a+b+c)2=a2+b2+c2+2ab+2ac+2bc;(2)①∵(a+b+c)2=a2+b2+c2+2ab+2ac+2bc,a+b+c=11,ab+bc+ac=38,∴a2+b2+c2=(a+b+c)2﹣(2ab+2ac+2bc)=112﹣2×38=45;②∵2x×4y÷8z=,∴2x×22y÷23z=,∴2x+2y﹣3z=2﹣2,∴x+2y﹣3z=﹣2,∵(x+2y﹣3z)2=x2+4y2+9z2+2(2xy﹣3xz﹣6yz),x2+4y2+9z2=44,∴(﹣2)2=44+2(2xy﹣3xz﹣6yz),∴2xy﹣3xz﹣6yz=﹣20.37.(2019•越城区期末)杨辉三角形,又称贾宪三角形,帕斯卡三角形,是二项式系数在三角形中的一种几何排列,在我国南宋数学家杨所著的《详解九章算术》(1261年)一书中用如图的三角形解释二项和的乘方规律(a+b)1=a+b(a+b)2=a2+2ab+b2(a+b)3=(a+b)(a2+2ab+b2)=a3+3a2b+3ab2+b3(a+b)4=(a+b)(a3+3a2b+3ab2+b3)=a4+4a3b+6a2b2+4ab3+b4“杨辉三角”里面蕴藏了许多的规律(1)找出其中各项字母之间的规律以及各项系数之间的规律各一条;(2)直接写出(a+b)6展开后的多项式a6+6a5b+15a4b2+20a3b3+15a2b4+6ab5+b6;(3)运用:若今天是星期四,经过84天后是星期星期五,经过8100天后是星期星期五.【解析】(1)字母的规律a降幂排列,b升幂排列;系数符合斐波那契数列;(2)(a+b)6=a6+6a5b+15a4b2+20a3b3+15a2b4+6ab5+b6;(3)84=(7+1)4的最后一项是1,∴经过84天后是星期五;8100=(7+1)100的最后一项是1,∴经过8100天后是星期五;故答案为星期五,星期五.38.(2019•鄞州区期末)如图,长方形ABCD中,AB=x(6<x<9),AD=y(6<y<9),放入一个边长为6的正方形AEFG和两个边长都为3的正方形CHIJ及正方形DKMN,S1,S2,S3分别表示对应阴影部分的面积.(1)NH=x﹣6,KG=9﹣y,BJ=y﹣3(结果用含x或y的代数式表示).(2)若S2=S3,求长方形ABCD的周长.(3)若2S1+3S2=5S3,且AD比AB长1,求长方形ABCD的面积.【解析】(1)NH=CD﹣DN﹣CH=x﹣3﹣3=x﹣6,KG=AG+DK﹣AD=6+3﹣y=9﹣y,BJ=BC﹣CJ=y﹣3,故答案为:x﹣6;9﹣y;y﹣3;(2)∵S2=S3,∴(9﹣x)(9﹣y)=(x﹣6)(y﹣6),∴x+y=15,∴长方形ABCD的周长=2(x+y)=30;(3)∵2S1+3S2=5S3,且AD比AB长1,∴,解得,,∴长方形ABCD的面积=.39.(2019•越城区期末)如图为一台灯示意图,其中灯头连接杆DE始终和桌面FG平行,灯脚AB始终和桌面FG垂直,(1)当∠EDC=∠DCB=120°时,求∠CBA;(2)连杆BC、CD可以绕着B、C和D进行旋转,灯头E始终在D左侧,设∠EDC,∠DCB,∠CBA的度数分别为α,β,γ,请画出示意图,并直接写出示意图中α,β,γ之间的数量关系.【解析】(1)如图,过C作CP∥DE,延长CB交FG于H,∵DE∥FG,∴PC∥FG,∴∠PCD=180°﹣∠D=60°,∠PCH=120°﹣∠PCD=60°,∴∠CHA=∠PCH=60°,又∵∠CBA是△ABH的外角,AB⊥FG,∴∠CBA=60°+90°=150°,(2)如图,过C作CP∥DE,延长CB交FG于H,∵DE∥FG,∴PC∥FG,∴∠D+∠PCD=180°,∠FHC+∠PCH=180°,∴∠D+∠DCH+∠FHC=360°,又∵∠CBA是△ABH的外角,AB⊥FG,∴∠AHB=∠ABC﹣90°,∴∠FHC=180°﹣(∠ABC﹣90°)=270°﹣∠ABC,∴∠D+∠DCH+270°﹣∠ABC=360°,即∠D+∠DCB﹣∠ABC=90°.即α+β﹣γ=90°.40.(2019•天台县期末)一个运输公司有甲、乙两种货车,两次满载的运输情况如下表:甲种货车辆数乙种货车辆数合计运货吨数第一次2418第二次5635(1)求甲、乙两种货车每次满载分别能运输多少吨货物;(2)现有一批重34吨的货物需要运输,而甲、乙两种货车运输的保养费用分别为80元/辆和40元/辆.公司打算由甲、乙两种货车共10辆来完成这次运输,为了使保养费用不超过700元,公司该如何安排甲、乙两种货车来完成这次运输任务.【解析】(1)设甲车每辆运输x吨货物,乙车每辆运输y吨货物,由题意得:,解得:,答:甲车每辆运输4吨货物,乙车每辆运输2.5吨货物.(2)安排甲车a辆、乙车(10﹣a)辆,,解得:6≤a≤7.5,∵a为整数,∴a可以取的整数是6或7,答:公司可以安排甲车6辆、乙车4辆或甲车7辆、乙车3辆.41.(2019•诸暨市期末)已知,直线AB∥DC,点P为平面上一点,连接AP与CP.(1)如图1,点P在直线AB、CD之间,当∠BAP=60°,∠DCP=20°时,求∠APC.(2)如图2,点P在直线AB、CD之间,∠BAP与∠DCP的角平分线相交于点K,写出∠AKC与∠APC 之间的数量关系,并说明理由.(3)如图3,点P落在CD外,∠BAP与∠DCP的角平分线相交于点K,∠AKC与∠APC有何数量关系?并说明理由.【解析】(1)如图1,过P作PE∥AB,∵AB∥CD,∴PE∥AB∥CD,∴∠APE=∠BAP,∠CPE=∠DCP,∴∠APC=∠APE+∠CPE=∠BAP+∠DCP=60°+20°=80°;。
★试卷3套精选★宁波市2018届七年级下学期期末学业水平测试数学试题
七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.为了应用平方差公式计算(x+2y ﹣1)(x ﹣2y+1),下列变形正确的是( ) A .[x ﹣(2y+1)]2B .[x+(2y+1)]2C .[x ﹣(2y ﹣1)][x+(2y ﹣1)]D .[(x ﹣2y)+1][(x ﹣2y)﹣1]【答案】C【解析】试题解析:()()2121,x y x y +--+()()[21][21]x y x y =--+-,故选C .2.下列从左到右的变形中,是因式分解的个数为( ) ①;②;③.A .个B .个C .个D .个【答案】B【解析】根据因式分解的定义逐个判断即可.【详解】解:是因式分解的是②10x 2-5x=5x (2x-1),③2mR+2mr=2m (R+r ),共2个, 故选:B . 【点睛】本题考查了因式分解的定义,能熟记因式分解的定义的内容是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.3.十一旅游黄金周期间,某景点举办优惠活动,成人票和儿童票均有较大折扣,王明家去了3个大人和4个小孩,共花了400元,李娜家去了4个大人和2个小孩,共花了400元,王斌家计划去3个大人和2个小孩,请你帮助他算一下,需要准备多少门票钱?( ) A .300元 B .310元C .320元D .330元【答案】C【解析】试题解析:设大人门票为x ,小孩门票为y , 由题意,得:3440042400x y x y ,+=⎧⎨+=⎩解得:8040x y =⎧⎨=⎩, 则3x+2y=320.即王斌家计划去3个大人和2个小孩,需要320元的门票. 故选C.4.小明和同学约好周末去公园游玩,他从学校出发,全程2.1千米,此时距他和同学的见面时间还有18分钟,已知他每分钟走90米,途中发现自己可能迟到,于是改骑共享单车,速度为每分钟210米,如果小明不迟到,至少骑车多少分钟?设骑车x分钟,则列出的不等式为()A.210x+90(18﹣x)<2.1 B.210x+90(18﹣x)≥2100C.210x+90(18﹣x)≤2100D.210x+90(18﹣x)≥2.1【答案】B【解析】设骑车x分钟,根据题意列出不等式解答即可.【详解】解;设骑车x分钟,可得:210x+90(18﹣x)≥2100,故选:B.【点睛】此题考查一元一次不等式的应用,关键是根据题意找出不等关系列出不等式.5.△DEF(三角形)是由△ABC平移得到的,点A(﹣1,﹣4)的对应点为D(1,﹣1),则点B(1,1)的对应点E,点C(﹣1,4)的对应点F的坐标分别为()A.(2,2),(3,4)B.(3,4),(1,7)C.(﹣2,2),(1,7) D.(3,4),(2,﹣2)【答案】B【解析】∵点A(−1,−4)的对应点为A′(1,−1),∴此题变化规律是为(x+2,y+3),照此规律计算可知点B(1,1)的对应点B′,点C(−1,4)的对应点C′的坐标分别为(3,4),(1,7).故选B.6.在长方形内,若两张边长分别为和()的正方形纸片按图1,图2两种方式放置(图1,图2中两张正方形纸片均有部分重叠),长方形总未被这两张正方形纸片覆盖的部分用阴影表示,若图1中阴影部分的面积为,图2中阴影部分的面积和为,则关于,的大小关系表述正确的是()A.B.C.D.无法确定【答案】A【解析】利用面积的和差分别表示出,,利用整式的混合运算计算他们的差即可比较.【详解】=(AB-a)·a+(CD-b)(AD-a)=(AB-a)·a+(AD-a)(AB-b)=(AB-a)(AD-b)+(CD-b)(AD-a)=(AB-a)(AD-b)+(AB-b)(AD-a)∴-=(AB-a )(AD-b )+(AB-b )(AD-a )-(AB-a )·a-(AD-a )(AB-b ) =(AB-a )(AD-a-b) ∵AD <a+b , ∴-<0, 故选A. 【点睛】此题主要考查此题主要考查整式的运算,解题的关键是熟知整式的乘法法则. 7.在数轴上表示实数a 和b 的点的位置如图所示,那么下列各式成立的是( )A .a b <B .a b >C .0ab >D .||||a b >【答案】B【解析】根据数轴上的点所表示的数,右边的总比左边的大,且离原点的距离越远,则该点所对应的数的绝对值越大,进行分析.【详解】解:A 、根据a 在b 的右边,则a >b ,故本选项错误; B 、根据a 在b 的右边,则a >b ,故本选项正确;C 、根据a 在原点的右边,b 在原点的左边,得b <0<a ,则ab <0,故本选项错误;D 、根据b 离原点的距离较远,则|b|>|a|,故本选项错误. 故选:B . 【点睛】此题考查了数轴上的点和实数之间的对应关系,同时能够根据点在数轴上的位置判断它们所对应的数之间的大小关系以及绝对值的大小关系.8.如图,下列条件:①13∠=∠,②24180∠+∠=︒,③45∠=∠,④23∠∠=,能判断直线12l l //的有( )A .4个B .3个C .2个D .1个【解析】根据平行线的判定方法:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行;逐一判定即可.【详解】①13∠=∠,∠1和∠3是内错角,故可判定直线12l l //; ②24180∠+∠=︒,∠2和∠4是同旁内角,故可判定直线12l l //; ③45∠=∠,∠4和∠5是同位角,故可判定直线12l l //;④23∠∠=,∠2和∠3既不是同位角也不是内错角,故不能判定直线12l l //; 故选:B. 【点睛】此题主要考查平行线的判定,熟练掌握,即可解题. 9.下列语句正确是( ) A .无限小数是无理数 B .无理数是无限小数C .实数分为正实数和负实数D .两个无理数的和还是无理数【答案】B【解析】解:A .无限不循环小数是无理数,故A 错误; B .无理数是无限小数,正确;C .实数分为正实数、负实数和0,故C 错误;D .互为相反数的两个无理数的和是0,不是无理数,故D 错误. 故选B .10.若不等式组+0-0x a x b >⎧⎨<⎩的解集为23x <<,则关于x ,y 的方程组+52-1ax y x by =⎧⎨=⎩的解为( )A .23x y =⎧⎨=⎩B .24x y =⎧⎨=⎩C .43x y =⎧⎨=⎩D .-4-3x y =⎧⎨=⎩【答案】D【解析】根据已知解集确定出a 与b 的值,代入方程组求出解即可. 【详解】根据题意得:a=−2,b=3, 代入方程组得:-2+52-31x y x y =⎧⎨=⎩①②,①+②得:−2y=6,即y=−3, 把y=−3代入①得:x=−4, 则方程组的解为43x y =-=-⎧⎨⎩, 故答案为:D此题考查解二元一次方程组,解一元一次不等式组,解题关键在于掌握运算法则二、填空题题11.利用1个a×a的正方形,1个b×b的正方形和2个a×b的矩形可拼成一个正方形(如图所示),从而可得到因式分解的公式________.【答案】a1+1ab+b1=(a+b)1【解析】试题分析:两个正方形的面积分别为a1,b1,两个长方形的面积都为ab,组成的正方形的边长为a+b,面积为(a+b)1,所以a1+1ab+b1=(a+b)1.点睛:本题考查了运用完全平方公式分解因式,关键是理解题中给出的各个图形之间的面积关系.12.已知在平面直角坐标系中,线段AB=4,AB∥x轴,若点A坐标为(-3,2),则点B坐标为.【答案】(1,2)或(-7,2)【解析】试题分析:线段AB∥x轴,A、B两点纵坐标相等,又AB=4,B点可能在A点左边或者右边,根据距离确定B点坐标.解:∵AB∥x轴,∴A、B两点纵坐标都为2,又∵AB=4,∴当B点在A点左边时,B(1,2),当B点在A点右边时,B(﹣7,2).故答案为(1,2)或(﹣7,2).考点:坐标与图形性质.13.要使342x-的值不小于35x+,则满足条件的x最小整数是__________.【答案】7【解析】根据代数式342x-的值不小于3x+5的值,即可得出关于x的一元一次不等式,解不等式即可得出x的取值范围,取期内最小的整数,此题得解.【详解】解:由已知得:342x-≥3x+5,解得:13x2,13672<<,∴x的最小整数为1.故答案为:1.【点睛】本题考查了一元一次不等式的整数解,解题的关键是根据代数式342x 的值不小于3x+5的值找出关于x的一元一次不等式.本题属于基础题,难度不大,解决该题型题目时,熟练掌握一元一次不等式的解法是关键.14.为了解小学生的体能情况,抽取了某小学同年级50名学生进行1分钟跳绳测试,将所得数据整理后,画出如图所示的频数分布直方图(各组只含最小值,不含最大值),已知图中从左到右各组的频率分别a, 0.3, 0.4, 0.2,设跳绳次数不低于100次的学生有b人,则a,b的值分别是______.【答案】0.1;1.【解析】用总人数乘以第3、4组的频率和可得b的值,由频率之和等于1可得a的值.【详解】解:由题意知b=50×(0.4+0.2)=1,a=1-(0.4+0.3+0.2)=0.1,故答案为:0.1,1.【点睛】本题考查频数分布直方图,解答本题的关键是明确题意,利用数形结合的思想解答.15.已知x=﹣2是关于x的方程a(x+1)=12a+x的解,则a的值是_____【答案】4 3【解析】把x=﹣2代入方程计算即可求出a的值.【详解】把x=﹣2代入方程得:﹣a=12a﹣2,解得:a=43,故答案为:43.【点睛】本题考查了一元一次方程的解:满足一元一次方程的未知数的值叫一元一次方程的解.16.一棵树高h(m)与生长时间n(年)之间有一定关系,请你根据下表中数据,写出h(m)与n(年)之间的关系式:_____.n/年 2 4 6 8 …h/m 2.6 3.2 3.8 4.4 …【答案】h =0.3n+1【解析】本题主要考查了用待定系数法求一次函数的解析式,可先设出通式,然后将已知的条件代入式子中求出未知数的值,进而求出函数的解析式. 【详解】设该函数的解析式为h =kn+b , 将n =1,h =1.6以及n =4,h =3.1代入后可得2 2.64 3.2k b k b +=⎧⎨+=⎩, 解得0.32k b =⎧⎨=⎩,∴h =0.3n+1,验证:将n =6,h =3.8代入所求的函数式中,符合解析式;将n =8,h =4.4代入所求的函数式中,符合解析式;因此h (m )与n (年)之间的关系式为h =0.3n+1. 故答案为:h =0.3n+1. 【点睛】本题主要考查用待定系数法求一次函数关系式的方法.用来表示函数关系的等式叫做函数解析式,也称为函数关系式.17.如图,已知AB ∥CD ,BE 平分∠ABC ,∠CDE=150°,则∠C=______°.【答案】1【解析】∠CDE=150°,得到∠CDB=180-∠CDE=30°;AB ∥CD ,得到∠ABD=∠CDB=30°;所以∠ABC=60°,得到∠C=180°-60°=1°.【详解】解:∵∠CDE=150°, ∴∠CDB=180-∠CDE=30°, 又∵AB ∥CD , ∴∠ABD=∠CDB=30°; ∵BE 平分∠ABC , ∴∠ABC=60°, ∴∠C=180°-60°=1°. 故答案为:1. 【点睛】本题考查平行线基本性质与邻补角关系,基础知识牢固是本题解题关键三、解答题18.解不等式组() 3x35x1 465xx633⎧+-⎪⎨--≥⎪⎩>,并将不等式组的解集在数轴上表示出来.【答案】83≤x<4;数轴表示见解析.【解析】分别求出不等式3x+3>5(x-1)和43x-6≥653x-的解集,再求出它们的公共部分的解集即可得答案. 【详解】解不等式3x+3>5(x-1)得:x<4,解不等式43x-6≥653x-得:x≥83,则不等式组的解集为83≤x<4,将解集表示在数轴上如下:【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.19.如图,已知AD⊥BC于点D,EF⊥BC于点F,∠1=∠2,试判断DG与BA的位置关系,并说明理由.【答案】DG∥BA,理由见解析【解析】根据平行线的判定可以证得EF∥AD,则同位角∠1=∠BAD,结合已知条件可以推知内错角∠2=∠BAD,根据内错角相等两直线平行得DG∥BA.【详解】解:DG∥BA.理由:∵AD⊥BC,EF⊥BC(已知),∴AD∥EF(同一平面内,垂直于同一条直线的两条直线平行),∴∠1=∠BAD(两直线平行,同位角相等).∵∠1=∠2(已知),∴∠2=∠BAD(等量代换),∴DG∥BA(内错角相等,两直线平行).故答案为:DG∥BA,理由见解析.【点睛】本题考查平行线的判定与性质.由角的数量关系判断两直线的位置关系,由平行关系来寻找角的数量关系是解题的关键.20.化简求值:(1)先化简再求值:(a-1)1+(1a-1)(a+4),其中a=-1. (1)先化简,再求值:(1a+b)(1a-b)+b(1a+b)-4a 1,其中12a =-,b=1. 【答案】(1)3a 1+3a ,值为2.(1)-1.【解析】分析:(1)、首先根据完全平方公式和多项式的乘法计算法则将括号去掉,然后再进行合并同类项得出化简结果,最后将a 的值代入化简结果得出答案;(1)、首先根据平方差公式以及多项式的乘法计算法则将括号去掉,然后再进行合并同类项得出化简结果,最后将a 和b 的值代入化简结果得出答案. 详解:(1)、原式=2224a 427a 433a a a a -+++-=+, 当a=-1时, 原式=()233a 34326a +=⨯+⨯-=.(1)、原式=222242ab 42ab a b b a -++-=, 当a=12-,b=1时,原式=1ab=1×(12-)×1=-1. 点睛:本题主要考查的是多项式的乘法计算法则以及合并同类项法则,属于基础题型.明确乘法计算法则是解决这个问题的关键.21.已知直线l 1∥l 2,直线l 3和直线l 1、l 2交于点C 和D ,点P 是直线l 3上一动点(1)如图1,当点P 在线段CD 上运动时,∠PAC ,∠APB ,∠PBD 之间存在什么数量关系?请你猜想结论并说明理由.(2)当点P 在C 、D 两点的外侧运动时(P 点与点C 、D 不重合,如图2和图3),上述(1)中的结论是否还成立?若不成立,请直接写出∠PAC ,∠APB ,∠PBD 之间的数量关系,不必写理由.【答案】(1)∠APB=∠PAC+∠PBD ;(2)不成立【解析】(1)当P 点在C 、D 之间运动时,首先过点P 作PE ∥l 1,由l 1∥l 2,可得PE ∥l 2∥l 1,根据两直线平行,内错角相等,即可求得:∠APB=∠PAC+∠PBD .(2)当点P 在C 、D 两点的外侧运动时,由直线l 1∥l 2,根据两直线平行,同位角相等与三角形外角的性质,即可求得:∠PAC=∠PBD+∠APB 或∠PBD=∠PAC+∠APB .【详解】(1)如图1,当P点在C、D之间运动时,∠APB=∠PAC+∠PBD.理由如下:过点P作PE∥l1,∵l1∥l2,∴PE∥l2∥l1,∴∠PAC=∠1,∠PBD=∠2,∴∠APB=∠1+∠2=∠PAC+∠PBD;(2)不成立如图2,当点P在C、D两点的外侧运动,且在l2下方时,∠PAC=∠PBD+∠APB.理由如下:∵l1∥l2,∴∠PED=∠PAC,∵∠PED=∠PBD+∠APB,∴∠PAC=∠PBD+∠APB.如图3,当点P在C、D两点的外侧运动,且在l1上方时,∠PBD=∠PAC+∠APB.理由如下:∵l1∥l2,∴∠PEC=∠PBD,∵∠PEC=∠PAC+∠APB,∴∠PBD=∠PAC+∠APB.【点睛】考查平行线的判定与性质,三角形外角的性质等,三角形的一个外角等于与它不相邻的两个内角的和.22.先化简,再求值:[(x+y)2-y(2x+y)-8xy ]÷(2x),其中x=2,y=1 2 .【答案】1【解析】先根据整式混合运算顺序和运算法则化简原式,再将x、y代入计算可得.【详解】原式=(x2+2xy+y2-2xy-y2-8xy)÷(2x)=(x2-8xy)÷(2x)=12x-4y,当x=2、y=-12时,原式=12×2-4×(-12)=1+2=1.【点睛】本题主要考查整式的混合运算-化简求值,解题的关键是熟练掌握整式的混合运算顺序和运算法则.23.如图,△ABC在直角坐标系中,(1)请写出△ABC各点的坐标.(2)求出△ABC的面积.(3)若把△ABC向上平移2个单位,再向右平移2个单位得到△A′B′C′,请在图中画出△A′B′C′,并写出点A′、B′、C′的坐标.【答案】(1)A(﹣1,﹣1),B(4,2),C(1,3);(2)S△ABC=7;(3)见解析,A′(1,1),B′(6,4),C′(3,5).【解析】(1)根据各点在坐标系中的位置写出各点坐标即可;(2)利用矩形的面积减去三个顶点上三角形的面积即可;(3)根据图形平移的性质画出△A′B′C′,并写出点A′、B′、C′的坐标即可.【详解】解:(1)由图可知,A(﹣1,﹣1),B(4,2),C(1,3);(2)S△ABC=4×5﹣12×2×4﹣12×1×3﹣12×3×5=7;(3)如图,△A′B′C′即为所求,A′(1,1),B′(6,4),C′(3,5).【点睛】本题考查的是作图﹣平移变换,熟知图形平移不变性的性质是解答此题的关键.24.在平面直角坐标系中,A 、B 、C 三点的坐标分别为(5,6)-,(3,2)-,()0,5(1)在如图的坐标系中画出ABC △;(2)ABC △的面积为_______________;(3)将ABC △平移得到A B C ''',点A 经过平移后的对应点为(1,1)A ',在坐标系内画出A B C '''并写出点B ',C '的坐标.【答案】(1)见解析;(2)9;(3)()3,3B '- , ()6,0C ';图形见解析【解析】(1)直接描点连线即可;(2)利用割补法求解三角形的面积即可;(3)根据点A 的平移后的坐标,得到三角形的平移方式,然后得到点B ,C 对应平移后的坐标,再描点连线即可.【详解】解:(1)如图.(2)111=54513342=9222ABC S ⨯-⨯⨯-⨯⨯-⨯⨯△; (3) ∵点A 经过平移后的对应点为(1,1)A ',∴△ABC 先向右平移了6个单位,再向下平移了5个单位,则点B 与点C 平移后的坐标为()3,3B '-,()6,0C ',如图,正确画出A B C ''':【点睛】本题主要考查图形的变化-平移,利用割补法求三角形的面积等,解此题的关键在于先根据题意描点连线画出三角形,再根据平移后的坐标得到图形平移的方式.25.城区某新建住宅小区计划购买并种植甲、乙两种树苗共300株.已知甲种树苗每株60元,乙种树苗每株90元.(1)若购买树苗共用21000元,问甲、乙两种树苗应各买多少株?(2)据统计,甲、乙两种树苗每株树苗对空气的净化指数分别为0.2和0.6,问如何购买甲、乙两种树苗才能保证该小区的空气净化指数之和等于90?【答案】(1)甲种树苗买200株,则乙种树苗买100株;(2)应买225株甲种树苗,75株乙种树苗时该小区的空气净华指数之和不低于90,费用最小为20250元.【解析】(1)设甲种树苗买x 株,则乙种树苗买(300-x )株,根据“甲树苗的费用+乙树苗的费用=21000”作为相等关系列方程即可求解;(2)设买x 株甲种树苗,(300-x )株乙种树苗时该小区的空气净化指数之和不低于90,先根据“空气净化指数之和不低于90”列不等式求得x 的取值范围,再根据题意用x 表示出费用,列成一次函数的形式,利用一次函数的单调性来讨论费用的最小值,即函数最小值问题.【详解】(1)设甲种树苗买x 株,则乙种树苗买(300-x )株60x+90(300-x )=21000x=200300-200=100答:甲种树苗买200株,则乙种树苗买100株.(2)设买x 株甲种树苗,(300-x )株乙种树苗时该小区的空气净华指数之和不低于900.2x+0.6(300-x )≥900.2x+180-0.6x≥90-0.4x≥-90x≤225此时费用y=60x+90(300-x)y=-30x+27000∵y是x的一次函数,y随x的增大而减少∴当x最大=225时,y最小=-30×225+27000=20250(元)即应买225株甲种树苗,75株乙种树苗时该小区的空气净华指数之和不低于90,费用最小为20250元.七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.如图,已知AB=AC=BD,则∠1与∠2的关系是()A.3∠1﹣∠2=180°B.2∠1+∠2=180°C.∠1+3∠2=180°D.∠1=2∠2【答案】A【解析】根据等腰三角形的性质和三角形内角和定理可得∠1 和∠C 之间的关系,再根据三角形外角的性质可得∠1 和∠2 之间的关系.【详解】解:∵AB=AC=BD,∴∠B=∠C=180°﹣2∠1,∴∠1﹣∠2=180°﹣2∠1,∴3∠1﹣∠2=180°.故选A.【点睛】本题考查等腰三角形的性质:等腰三角形的两个底角相等,三角形内角和定理以及三角形外角的性质;熟练掌握等腰三角形的性质,弄清角之间的数量关系是解决问题的关键,本题难度适中.2.到一个已知点P 的距离等于3 cm 的直线可以画()A.1 条B.2 条C.3 条D.无数条【答案】D【解析】根据到定点的距离等于定长的点的集合可得圆,再根据过每一个都有一条切线,可得答案.【详解】以点P为圆心,以3为半径的圆有无数条切线,故选:D.【点睛】本题考查点到直线的距离,熟练掌握直线的性质是解题关键.3.已知a<b,则下列不等式一定成立的是()A.a+5>b+5 B.-2a<-2b C.32a>32b D.7a-7b<0【答案】D【解析】分析:根据不等式的性质判断即可.详解:A.∵a<b,∴a+5<b+5,故本选项错误;B.∵a<b,∴﹣2a>﹣2b,故本选项错误;C.∵a<b,∴32a <32b,故本选项错误;D.∵a<b,∴7a<7b,∴7a﹣7b<0,故本选项正确.故选D.点睛:本题考查了对不等式性质的应用,注意:不等式的性质有①不等式的两边都加上或减去同一个数或整式,不等号的方向不变,②不等式的两边都乘以或除以同一个正数,不等号的方向不变,③不等式的两边都乘以或除以同一个负数,不等号的方向改变.4.在直角坐标系中,点P ( 2 x - 6 , x - 5 )在第四象限,则x 的取值范围为()A.3< x < 5 B.-3 < x < 5 C.-5 < x < 3 D.-5 < x <-3【答案】A【解析】点在第四象限的条件是:横坐标是正数,纵坐标是负数.【详解】解:∵点P(2x-6,x-1)在第四象限,∴26050xx⎧⎨⎩->-<,解得:3<x<1.故选:A.【点睛】主要考查了平面直角坐标系中第四象限的点的坐标的符号特点.5.已知关于的方程组的解满足,则的取值范围是()A.B.C.D.【答案】A【解析】本题可将两个方程相加,得出x+y的整数倍与m之间的关系,然后根据x+y≥0可知m的取值.【详解】的两个方程相加,得3x+3y=2m+1.因为x+y⩾0,所以3x+3y⩾0,即2m+1⩾0,解得.选A.【点睛】本题考查解一元一次不等式和解二元一次方程组,解题的关键是掌握解一元一次不等式和解二元一次方程组.6.如果∠α与∠β的两边分别平行,∠α比∠β的3倍少40°,则∠α的度数为()A.20°B.125°C.20°或125°D.35°或110°【答案】C【解析】由两角的两边互相平行可得出两角相等或互补,再由题意,其中一个角比另一个角的3倍少40°,可得出答案.【详解】设∠β为x,则∠α为3x﹣40°,若两角互补,则x+3x﹣40°=180°,解得x=55°,∠α=125°;若两角相等,则x=3x﹣40°,解得x=20°,∠α=20°.故选C.【点睛】本题考查平行线的性质,关键在于根据两角的两边分别平行打开此题的突破口.7.如图,两个边长为5的正方形拼合成一个矩形,则图中阴影部分的面积是( )A.5B.25C.50D.以上都不对【答案】B【解析】将左边正方形向右平移5个单位,两个正方形重合,阴影部分的面积恰是一个正方形的面积.8.在下列的计算中,正确的是()A.m3+m2=m5B.m5÷m2=m3C.(2m)3=6m3D.(m+1)2=m2+1【答案】B【解析】各项计算得到结果,即可作出判断.【详解】A、原式不能合并,不符合题意;B、原式=m3,符合题意;C、原式=8m3,不符合题意;D 、原式=m 2+2m+1,不符合题意,故选B .【点睛】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.9.每到四月,许多地方的杨絮、柳絮如雪花漫天飞舞,人们不堪其忧,据测定,杨絮纤维的直径约为0.0000115 m ,该数值用科学记数法表示为( )A .51.1510⨯B .40.11510-⨯C .711510-⨯D .51.1510-⨯【答案】D【解析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为10n a -⨯,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定. 【详解】绝对值小于1的正数科学记数法表示的一般形式为10n a -⨯ 50.0000115 1.1510m m -=∴⨯故选D.【点睛】此题考查科学记数法,解题关键在于掌握科学记数法的一般形式.10.下列各数中最大的数是A .6-B C .π D .0 【答案】C【解析】根据负数<0<正数,排除A,C ,通过比较其平方的大小来比较B,C 选项.【详解】解:∵25=,29.85π≈,∴60π-<< ,则最大数是π.故选C.【点睛】本题主要考查比较实数的大小,解此题的关键在于用平方法比较实数大小:对任意正实数a 、b 有22a b a b >⇔> .二、填空题题11.在平面内,______________________________,这种图形的变换叫做平移.【答案】将一个图形整体按照某个直线方向移动一定的距离【解析】根据平移的定义即可得到结论.【详解】解:在平面内,将一个图形整体按照某个直线方向移动一定的距离,这样的图形变换叫做图形的平移变换,简称平移.故答案为:将一个图形整体按照某个直线方向移动一定的距离.【点睛】本题考查了几何变换,平移的定义,熟练掌握平移的定义是解题的关键.12.已知()1230m m x-++>是关于x 的一元一次不等式,则m 的值为_________.【答案】2【解析】利用一元一次不等式的定义判断即可确定出m 的值.【详解】解:∵不等式(m+2)x |m|-1+3>0是关于x 的一元一次不等式,∴|m|-1=1,且m+2≠0,解得:m=-2(舍去)或m=2,则m 的值为2,故答案为:2.【点睛】本题考查一元一次不等式的定义,熟练掌握一元一次不等式的定义是解题的关键. 13.如图,在ABC ∆中,已知点,D E 分别为,BC AD 的中点2EF FC =,且ABC ∆的面积为18,则BEF ∆的面积为____________.【答案】6【解析】由点D 是BC 的中点,可得△ABD 的面积=△ACD 的面积=12 △ABC ,由E 是AD 的中点,得出△ABE 的面积=△DBE 的面积=14△ABC 的面积,进而得出△BCE 的面积=12△ABC 的面积,再利用EF=2FC ,求出△BEF 的面积.【详解】∵点D 是BC 的中点,∴△ABD 的面积=△ACD 的面积=12△ABC 的面积=9, ∵E 是AD 的中点,∴△ABE 的面积=△DBE 的面积=14△ABC 的面积=4.5, △ACE 的面积=△DCE 的面积=14△ABC 的面积=4.5, ∴△BCE 的面积=12△ABC 的面积=9,∵EF=2FC,∴△BEF的面积=23×9=6,故答案为:6. 【点睛】此题考查三角形的面积,解题关键在于△BCE的面积=12△ABC的面积14.小冬发现:232=29,(23)2=1.所以他归纳c b a≥(a b)c,请你举反例说明小冬的结论是错误的,你的反例是_____.【答案】(﹣2)23<((﹣2)3)2.【解析】考虑到负数小于正数,只要把底数2换成-2,再验证即可.【详解】解:反例如:(﹣2)23=﹣29,((﹣2)3)2=1,则:(﹣2)23<((﹣2)3)2,故答案为:(﹣2)23<((﹣2)3)2.【点睛】本题考查的是利用举反例的方法说明命题是假命题,对本题,考虑到29>1,只要把底数2换成-2,就有(-2)9<(-2)6,问题即得解决.15.自来水公司为某小区A改造供水系统,如图沿路线AO铺设管道和BO主管道衔接(AO⊥BO),路线最短,工程造价最低,根据是_____.【答案】垂线段最短【解析】根据垂线段的性质解答即可.【详解】解:根据是:直线外一点与直线上各点连接而得到的所有线段中,垂线段最短.故答案为垂线段最短.【点睛】本题考点:垂线段的性质.16.已知△ABC三个顶点的坐标分别是A(-7,0),B(1,0),C(-5,4),那么△ABC的面积等于________.【答案】1【解析】根据题目中所给的点的坐标得到AB=8,AB上的高为4,然后根据三角形面积公式计算即可.【详解】∵△ABC的三个顶点坐标分别为A(-7,0),B(1,0),C(-5,4),∴AB=8,AB上的高为4,∴△ABC 的面积=12 ×8×4=1. 故答案为:1.【点睛】 本题主要考查了点的坐标的意义以及三角形面积的求法,根据题目中所给的点的坐标得到三角形的一边即这边上的高的长是解题的关键.17.如图,在ABC ∆中,ABC ∠、ACB ∠的角平分线相交于点O ,若30A ∠=︒,则BOC ∠=______°【答案】1【解析】根据三角形的角平分线定义和三角形的内角和定理求出∠OBC+∠OCB 的度数,再根据三角形的内角和定理即可求出∠BOC 的度数.【详解】∵BO 、CO 分别是∠ABC 和∠ACB 的角平分线,∴∠OBC+∠OCB=12∠ABC+12∠ACB=12(∠ABC+∠ACB ), ∵∠A=30°,∴∠OBC+∠OCB=12(180°-30°)=75°, ∴∠BOC=180°-(∠OBC+∠OCB )=180°-75°=1°.故答案为:1.【点睛】本题主要利用角平分线的定义和三角形内角和定理求解,熟记概念和定理是解题的关键.三、解答题18.为了响应政府“绿色出行”的号召,李华选择骑自行车到郊外游玩,她离家的距离与时间的关系如图所示,请根据图像回答下列问题.(1)李华到达离家最远的地方是几时?此时离家多远?(2)李华返回时的速度是多少?(3)李华全程骑车的平均速度是多少?【答案】(1)(1)李华到达离家最远的地方是在12时,此时离家30千米;(2)李华返回的途中速度为:15千米/小时;(3)李华全程骑车的平均速度为:10千米/小时.【解析】(1)利用图中的点的横坐标表示时间,纵坐标表示离家的距离,进而得出答案;(2)用离家的距离除以所用时间即可;(3)用李华全程所行的路程除以所用的时间即可.【详解】观察图象可知:(1)李华到达离家最远的地方是在12时,此时离家30千米;÷-=千米/小时;(2)李华返回的途中速度为:30(1513)15+÷-=千米/小时.(3)李华全程骑车的平均速度为:(3030)(159)10【点睛】此题考查函数的图象,解题关键在于看懂题中数据.19.作图题:(要求保留作图痕迹,不写做法)如图,已知∠AOB与点M、N.求作:点P,使点P到OA、OB的距离相等,且到点M与点N的距离也相等.(不写作法与证明,保留作图痕迹)【答案】见解析【解析】首先作出∠AOB的角平分线,再作出MN的垂直平分线,两线的交点就是P点.【详解】如图所示:【点睛】此题考查角平分线的性质,线段垂直平分线的性质,作图—复杂作图,解题关键在于掌握作图法则. 20.如图,四边形ABCD 中,AE,DF 分别是∠BAD,∠ADC 的平分线,且AE⊥DF 于点O .延长DF交AB 的延长线于点M .(1)求证:AB∥DC ;(2)若∠MBC=120°,∠BAD=108°,求∠C,∠DFE 的度数.【答案】(1)见详解;(2)∠C=120°,∠DFE=24°【解析】(1)根据角平分线的定义可得∠DAB=2∠EAB,∠ADC=2∠ADF,根据垂直的定义可得∠AOD=90°,即∠DAE+∠ADF=90°,从而可得∠BAD+∠ADC=2(∠DAE+∠ADF)=180°,即可得证;(2)由AB∥DC可得∠C=∠MBC,从而得出∠ADC=72°,再根据角平分线的定义以及三角形内角和公式解答即可.【详解】解:(1)证明:∵AE,DF分别是∠BAD,∠ADC的平分线,∴∠DAB=2∠EAB,∠ADC=2∠ADF,∵AE⊥DF,∴∠AOD=90°.∴∠DAE+∠ADF=90°,∴∠BAD+∠ADC=2(∠DAE+∠ADF)=180°,∴AB∥DC;(2)∵AB∥DC,∴∠C=∠MBC.∵∠MBC=120°,∴∠C=120°,∵∠BAD=108°,∴∠ADC=72°,∴1362CDF ADC∠=∠=︒,∴∠DFE=180°﹣(∠C+∠CDF)=24°.【点睛】本题主要考查了平行线的判定与性质以及及角平分线的定义的运用.解题时注意:两直线平行,同旁内角互补.21.先阅读理解下面的例题,再按要求解答下列问题:。
宁波市鄞州区2018年期末考试七年级数学试题-含答案
宁波市鄞州区2018年期末考试七年级数学试题考生须知:1. 本试卷分试题卷和答题卡两部分;满分100分,考试时间90分钟;2. 答题前必须在答题卡上填写学校、班级、姓名,填涂好准考证号;3. 所有答案都必须做在答题卡指定的位置上,务必注意试题序号和答题序号相对应。
温馨提示:请仔细审题,细心答题,注意把握考试时间,相信你一定会有出色的表现! 一、精心选一选,相信你一定会选对!(本大题共10小题,每题2分,共20分) 1. 宁波港处于“一带一路”和长江经济带交汇点,地理位置得天独厚。
全年货物吞吐量达9.2亿吨,晋升为全球首个“9亿吨”大港,并连续8年蝉联世界第一宝座。
其中9.2亿用科学计数法表示正确的是( ) A. 89.210⨯B. 79210⨯C. 90.9210⨯D. 79.210⨯2. 下列说法正确的是( )A. 9的倒数是19- B. 9的相反数是-9 C. 9的立方根是3 D. 9的平方根是33. 227,,,3.14,3π,0.303003中,有理数有( )A. 3个B. 4个C. 5个D. 6个4. 把一根木条固定在墙面上,至少需要两枚钉子,这样做的数学依据是( ) A. 两点之间线段最短 B. 两点确定一条直线 C. 垂线段最短D. 两点之间直线最短5. 下面各式中,计算正确的是( ) A. 224-=-B. 2(2)4--=-C. 2(3)6-=D. 2(1)3-=-6. 下列说法正确的是( )A. 35xy-的系数是-3 B. 22m n 的次数是2次 C. 23x y -是多项式D. 21x x --的常数项是17. 轮船在静水中的速度为20 km/h ,水流速度为4 km/h ,从甲码头顺流航行到乙码头,再返回甲码头,共用5 h (不计停留时间),求甲、乙两码头间的距离. 设甲、乙两码头间的距离为x km/h ,则列出的方程正确的是( )A. 2045x x +=B. ()()2042045x x ++-=C.5204x x+=D.5204204x x+=+- 8. 如果代数式22x x +的值为5,那么代数式2243x x +-的值等于( ) A. 2B. 5C. 7D. 139. 古希腊人常用小石子在沙滩上摆成各种形状来研究数. 他们研究过图1中的1,3,6,10,…,由于这些数能够表示成三角形,将其称为三角形数;类似地称图2中的1,4,9,16,…这样的数为正方形数. 那么第100个三角形数和第50个正方形数的和为( )图1 图2 A. 7450B. 7500C. 7525D. 755010. 有一玻璃密封器皿如图①,测得其底面直径为20厘米,高20厘米,先内装蓝色溶液若干。
浙教版2018-2019学年七年级数学下学期期末测试卷(含答案)
2018-2019学年七年级下学期期末统考数学试卷一、选择题(本大题有10小题,每小题3分,共30分)1.已知人体红细胞的平均直径是0.00072cm ,用科学记数法可表示为().A .37.210cm -⨯B .47.210cm -⨯C .57.210cm -⨯D .67.210cm -⨯2.为调查6月份某厂生产的100000件手机电池的质量,质检部门共抽检了其中3个批次,每个批次100件的手机电池进行检验,在这次抽样调查中,样本的容量是(). 3.下列运算结果为6x 的是().A .33x x +B .33()xC .5x x ⋅D .122x x ÷4.下列式子直接能用完全平方公式进行因式分解的是().A .21681a a ++B .239a a -+C .2441a a +-D .2816a a --5.已知直线1l ,2l ,3l ,(如图),5∠的内错角是().A .1∠B .2∠C .3∠D .4∠6.下列分式中,最简分式是().A .22xx y+B .23x xy xy-C .224x x +- D .2121xx x --+7.已知2(3)a -=-,1(3)b -=-,0(3)c =-,那么a ,b ,c 之间的大小关系是().A .a b c >>B .a c b >>C .c b a >>D .c a b >>8.对x ,y 定义一种新运算“※”,规定:y m ny x x =+※(其中m ,n 均为非零常数),若114=※,123=※.则21※的值是(). A .3 B .5 C .9 D .119.对某厂生产的一批轴进行检验,检验结果中轴的直径的各组频数、频率如表(每组含前一个边界值,不含后一个边界值).且轴直径的合格标准为20150.15100ϕ+-(单位:mm ).有下列结论:①这批被检验的轴总数为50根;12345l 2l 1l 3②0.44a b +=且x y =;③这批轴中没有直径恰为100.15mm 的轴;④这一批轴的合格率是82%,若该厂生产1000根这样的轴.则其中恰好有180根不合格,其中正确的有().A .1个B 2 D .4个10.某市在“五水共治”中新建成一个污水处理厂.已知该厂库池中存有待处理的污水a 吨,另有从城区流入库池的待处理污水(新流入污水按每小时b 吨的定流量增加).若污水处理厂同时开动2台机组,需30小时处理完污水;若同时开动3台机组.需15小时处理完污水.现要求用5个小时将污水处理完毕,则需同时开动的机组数为().A .4台B .5台C .6台D .7台二、填空填(本大题有6小题,每小题4分,共24分) 11.要使分式11x x +-有意义,x 的取值应满足__________. 12.已知二元一次方程142x y +=.若用含x 的代数式表示y ,可得y =__________;方程的正整数解是__________.13.如图,有下列条件:①12∠=∠;②34∠=∠;③5B ∠=∠;④180B BAD ∠+∠=︒.其中能得到AB CD ∥的是__________(填写编号).-0.15+0.14φ14.分解因式:34ab ab -=__________. 【答案】(21)(21)ab b b +- 15.若分式方程23111k x x-=--有增根,则k =__________. 16.如图所示,一个大长方形刚好由n 个相同的小长方形拼成,其上、下两边各有2个水平放置的小长方形,中间恰好用若干个小长方形平放铺满,若这个大长方形的长是宽的1.75倍,则n 的值是__________.三、解答题(本大题有7小题,共66分)17.(6分)如图,在每格边长为1的网格上.平移格点三角形ABC ,使三角形ABC 的顶点A 平移到格点D 处.(1)请画出平移后的图形三角形DEF (B ,C 的对应点分别为点E ,F ),并求三角形DEF 的面积.(2)写出线段AD 与线段BF 之间的关系.18.(8分)计算:(1)22132xy x y-;(2)2(2)(4)62m n n m n m m ⎡⎤+-++÷⎣⎦DABCE12345.19.(8分)先化简,再求值:2213312113x x x x x x ---+÷+++,其中9101(3)3x ⎛⎫=-⨯- ⎪⎝⎭.20.(10分)解方程(组)(1)5,325;x y x y +=-⎧⎨-=⎩(2)2210442x x x x+-=-+-.21.(10分)如图,已知AB CD EF ∥∥,30CMA ∠=︒,80CNE ∠=︒,CO 平分MCN ∠.求MCN ∠,DCO ∠的度数(要求有简要的推理说明).22.(12分)以下是某网络书店1~4月关于图书销售情况的两个统计图:某网络书店14-月销售总额统计图绘本类图书销售额占该书店 当月销售总额的百分比统计图D A BC EFOM N(1)求1月份该网络书店绘本类图书的销售额.(2)若已知4月份与1月份这两个月的绘本类图书销售额相同,请补全统计图2. (3)有以下两个结论:①该书店第一季度的销售总额为182万元.②该书店1月份到3月份绘本类图书销售额的月增长率相等. 请你判断以上两个结论是否正确,并说明理由.23.(12分)通过对某校营养午餐的检测,得到如下信息:每份营养午餐的总质量400g ;午餐的成分为蛋白质、碳水化合物、脂肪和矿物质,其组成成分所占比例如图1所示;其中矿物质的含量是脂肪含量的1.5倍,蛋白质和碳水化合物含量占80%.某校营养午餐组成成分统计图 某校营养午餐组成统计图图1图2图1碳水化合物矿物质45%蛋白质脂肪55%图2(1)设其中蛋白质含量是(g)x .脂肪含量是(g)y ,请用含x 或y 的代数式分别表示碳水化合物和矿物质的质量.(2)求每份营养午餐中蛋白质、碳水化合物、脂肪和矿物质的质量. (3)参考图1,请在图2中完成这四种不同成分所占百分比的扇形统计图.2018-2019学年七年级下学期期末统考数学试卷一、选择题(本大题有10小题,每小题3分,共30分)1.已知人体红细胞的平均直径是0.00072cm ,用科学记数法可表示为().A .37.210cm -⨯B .47.210cm -⨯C .57.210cm -⨯D .67.210cm -⨯【答案】B【解析】科学记数法:将数写成10n a ⨯,110a <≤.2.为调查6月份某厂生产的100000件手机电池的质量,质检部门共抽检了其中3个批次,每个批次100件的手机电池进行检验,在这次抽样调查中,样本的容量是(). A .100000 B .3 C .100 D .300【答案】D【解析】3100300⨯=.3.下列运算结果为6x 的是().A .33x x +B .33()xC .5x x ⋅D .122x x ÷【答案】C【解析】解析:3332x x x +=,339()x x =,56x x x ⋅=,12210x x x ÷=.4.下列式子直接能用完全平方公式进行因式分解的是().A .21681a a ++B .239a a -+C .2441a a +-D .2816a a --【答案】A【解析】221681(41)a a a ++=+.5.已知直线1l ,2l ,3l ,(如图),5∠的内错角是().A .1∠B .2∠C .3∠D .4∠【答案】B【解析】内错角的定义.6.下列分式中,最简分式是().12345l 2l 1l 3A .22xx y+B .23x xy xy-C .224x x +- D .2121xx x --+【答案】A【解析】233x xy x yxy y--=,22214(2)(2)2x x x x x x ++==-+--,2211121(1)1x x x x x x --==-+--.7.已知2(3)a -=-,1(3)b -=-,0(3)c =-,那么a ,b ,c 之间的大小关系是().A .a b c >>B .a c b >>C .c b a >>D .c a b >>【答案】D【解析】21(3)9a -=-=,11(3)3b -=-=-,0(3)1c =-=,∴b a c <<.8.对x ,y 定义一种新运算“※”,规定:y m ny x x =+※(其中m ,n 均为非零常数),若114=※,123=※.则21※的值是(). A .3 B .5 C .9 D .11【答案】C【解析】114m n =+=※,1223m n =+=※, ∴5m =,1n =-,∴1292m n =+=※.9.对某厂生产的一批轴进行检验,检验结果中轴的直径的各组频数、频率如表(每组含前一个边界值,不含后一个边界值).且轴直径的合格标准为20150.15100ϕ+-(单位:mm ).有下列结论: ①这批被检验的轴总数为50根; ②0.44a b +=且x y =;③这批轴中没有直径恰为100.15mm 的轴;④这一批轴的合格率是82%,若该厂生产1000根这样的轴.则其中恰好有180根不合格,其中正确的有().A .1个B 2 D .4个【答案】C【解析】总数为50.150÷=(根), 20500.4b =÷=,10.10.420.40.040.04a =----=,0.44a b +=. b 对应20个,所以2x =,4x y +=,x y =,由表知,没有直径恰好100,15mm 的轴, 合格率为0.420.40.8282%+==,生产1000根中不合格的估计有1000(182%)180⨯-=(根),不一定恰好, 故正确的为①②③,共3个.10.某市在“五水共治”中新建成一个污水处理厂.已知该厂库池中存有待处理的污水a 吨,另有从城区流入库池的待处理污水(新流入污水按每小时b 吨的定流量增加).若污水处理厂同时开动2台机组,需30小时处理完污水;若同时开动3台机组.需15小时处理完污水.现要求用5个小时将污水处理完毕,则需同时开动的机组数为(). A .4台B .5台C .6台D .7台【答案】D-0.15+0.14φ【解析】依题意:有30230,15315,a b a b +=⨯⎧⎨+=⨯⎩则30.1.a b =⎧⎨=⎩设需x 台机组,则55a b x +=,∴7x =.二、填空填(本大题有6小题,每小题4分,共24分) 11.要使分式11x x +-有意义,x 的取值应满足__________. 【答案】1x ≠ 【解析】要使11x x +-有意义,则10x -≠, ∴1x ≠.12.已知二元一次方程142x y +=.若用含x 的代数式表示y ,可得y =__________;方程的正整数解是__________. 【答案】22x -2x =,1y =【解析】∵142x y +=, ∴21242x x y ⎛⎫=⨯-=- ⎪⎝⎭,正整数解为2,1.x y =⎧⎨=⎩.13.如图,有下列条件:①12∠=∠;②34∠=∠;③5B ∠=∠;④180B BAD ∠+∠=︒.其中能得到AB CD ∥的是__________(填写编号).【答案】②③【解析】平行线的判定.DA BCE1234514.分解因式:34ab ab -=__________. 【答案】(21)(21)ab b b +-【解析】324(41)(21)(21)ab ab ab b ab b b -=-=+-.15.若分式方程23111k x x-=--有增根,则k =__________. 【答案】32- 【解析】23111k x x -=--等式两边同乘(1)x -, 231k x +=-得24x k =+,∵方程有增根, ∴10x -=即241k +=, ∴32k =-.16.如图所示,一个大长方形刚好由n 个相同的小长方形拼成,其上、下两边各有2个水平放置的小长方形,中间恰好用若干个小长方形平放铺满,若这个大长方形的长是宽的1.75倍,则n 的值是__________.【答案】32【解析】依题意,设小长方形的长为a ,宽为b , 则大长方形长为2a ,宽为2b a +, 则2 1.75(2)a b a =+解得14a b =,∴大长方形有142432⨯+=(个)小长方形拼成.三、解答题(本大题有7小题,共66分)17.(6分)如图,在每格边长为1的网格上.平移格点三角形ABC ,使三角形ABC 的顶点A 平移到格点D 处.(1)请画出平移后的图形三角形DEF (B ,C 的对应点分别为点E ,F ),并求三角形DEF 的面积.(2)写出线段AD 与线段BF 之间的关系. 【答案】见解析【解析】解:(1)图略111342412234222DEF ABC S S ==⨯-⨯⨯-⨯⨯-⨯⨯=△△. (2)AD BE ∥且AD BE =.18.(8分)计算: (1)22132xy x y-;(2)2(2)(4)62m n n m n m m ⎡⎤+-++÷⎣⎦【答案】见解析 【解析】解:(1)2222222323222x y x yx y x y x y --=. (2)2(2)(4)62m n n m n m m ⎡⎤+-++÷⎣⎦222(4446)2m mn n mn n m m =++--+÷2(46)223m m m m =+÷=+.19.(8分)先化简,再求值:2213312113x x x x x x ---+÷+++,其中9101(3)3x ⎛⎫=-⨯- ⎪⎝⎭.【答案】见解析 【解析】解:原式2(1)(1)3(1)3(1)11x x x x x x +--=+++-198711111x x x x x x -+=+==+++++9101(3)33x ⎛⎫=-⨯-=- ⎪⎝⎭时, 原式751312=+=--+.20.(10分)解方程(组) (1)5,325;x y x y +=-⎧⎨-=⎩(2)2210442x x x x+-=-+-.【答案】见解析【解析】解:(1)5,325,x y x y +=-⎧⎨-=⎩①②,【注意有①②】2⨯①+②得55x =-,∴1x =-,代入①得4y =-,∴1,4.x y =-⎧⎨=-⎩. (2)2210442x x x x+-=-+-.化简得2210(2)2x x x ++=--,左右同乘2(2)x -, 得220x x ++-=,∴0x =,经检验,0x =为原分式方程的解.21.(10分)如图,已知AB CD EF ∥∥,30CMA ∠=︒,80CNE ∠=︒,CO 平分MCN ∠.求MCN ∠,DCO ∠的度数(要求有简要的推理说明).【答案】25︒【解析】解:∵AB CD ∥,D A BC EFOM N∴30MCD AMC ∠=∠=︒, 同理,80NCD CNE ∠=∠=︒, ∴110MCN MCD NCD ∠=∠+∠=︒. ∵CO 平分MCN ∠, ∴1552NCO MCN ∠=∠=︒, ∴25DCO NCD NCO ∠=∠-=︒.22.(12分)以下是某网络书店1~4月关于图书销售情况的两个统计图:某网络书店14-月销售总额统计图绘本类图书销售额占该书店 当月销售总额的百分比统计图(1)求1月份该网络书店绘本类图书的销售额.(2)若已知4月份与1月份这两个月的绘本类图书销售额相同,请补全统计图2. (3)有以下两个结论:①该书店第一季度的销售总额为182万元.②该书店1月份到3月份绘本类图书销售额的月增长率相等. 请你判断以上两个结论是否正确,并说明理由. 【答案】见解析【解析】解:(1)1月份绘本类图书的销售额为706% 4.2⨯=(万元).(2)4月份绘本类图书销售总额占的百分比为4.2607%÷=.图略. (3)第一季度销售总额为706250182-+=(万元). ①正确.1月份到2月份,绘本类图书销售额增长率为(628%706%) 4.20.76 4.218.1%⨯-⨯÷=÷≈.图1图22月份到3月份增长率为(5010%628%)628%()0.8%⨯-⨯÷⨯≈.②错误.23.(12分)通过对某校营养午餐的检测,得到如下信息:每份营养午餐的总质量400g ;午餐的成分为蛋白质、碳水化合物、脂肪和矿物质,其组成成分所占比例如图1所示;其中矿物质的含量是脂肪含量的1.5倍,蛋白质和碳水化合物含量占80%.某校营养午餐组成成分统计图 某校营养午餐组成统计图(1)设其中蛋白质含量是(g)x .脂肪含量是(g)y ,请用含x 或y 的代数式分别表示碳水化合物和矿物质的质量.(2)求每份营养午餐中蛋白质、碳水化合物、脂肪和矿物质的质量. (3)参考图1,请在图2中完成这四种不同成分所占百分比的扇形统计图. 【答案】见解析【解析】解:(1)由题可知,矿物质的质量为1.5(g)y .碳水化合物的质量为40045% 1.5180 1.5(g)y y ⨯-=-.(2)40055%,180 1.540080%,x y x y +=⨯⎧⎨+-=⨯⎩,解得188,32,x y =⎧⎨=⎩蛋白质质量为188g .碳水化合物质量为180 1.532132g -⨯=, 脂肪质量为32g ,矿物质质量为1.53248g ⨯= (3)蛋白质:188100%47%400⨯=, 碳水化合物:80%47%33%-=,图1碳水化合物矿物质45%蛋白质脂肪55%图2脂肪:55%47%8%-=,矿物质:45%33%12%-=.图略.。
浙教版数学2018-2019学年七年级下期期末试卷(含答案)
浙教版2018-2019学年七年级下期数学期末试卷考生须知:1.全卷满分为120分,考试时间120分钟.2.本卷答案必须做在答题卷的相应位置上,做在试卷上无效.温馨提示:请仔细审题,细心答题,相信你一定会有出色的表现!卷 Ⅰ一、选择题(本题有10小题,每小题3分,共30分)1.当x =2时,分式3x -1的值为( ▲ )A. 1B. 2C. 3D. 4 2.如图,已知直线a ∥b ,∠1=110°,则∠2等于( ▲ )A .110°B .90°C .70°D .60°3.下列调查应作全面调查的是( ▲ )A .节能灯管厂要检测一批灯管的使用寿命.B .了解居民对废电池的处理情况.C .了解现代大学生的主要娱乐方式.D .某公司对退休职工进行健康检查. 4.计算()32b a 的结果是( ▲ )A .b a 3B .36b aC .35b aD .32b a 5.二元一次方程组⎩⎨⎧=-=+425y x y x ,的解为( ▲ )A ⎩⎨⎧==;,41y x B ⎩⎨⎧==;,32y x C ⎩⎨⎧==;,23y x D ⎩⎨⎧==.,14y x 6.下列分解因式正确的是( ▲ )A .a ﹣16a 3=(1+4a )(a ﹣4a 2)B .4x ﹣8y +4=4(x ﹣2y )C .x 2﹣5x +6=(x +3)(x +2)D .22)1(12--=-+-x x x7.如图,从边长为a +2的正方形纸片中剪去一个边长为a ﹣2的正方形(a >2),剩余部分沿线剪开,再拼成一个长方形(不重叠无缝隙),则该长方形的面积是( ▲ )(第2题图)(第7题图)A .8aB .4aC .2aD .a 2﹣48.化简xx x -+-2422结果是( ▲ ) A .21+x B . 2+x C .2-x x D . 2-x 9.如图,由3×3组成的方格中每个方格内均有代数式(图中只列出了部分代数式),方格中每一行、每一列以及每一条对角线上的三个代数式的和均相等.则方格内打上“a ”的数.是.( ▲ )A .6B .7C .8D .910.如图,直线AB ∥CD ,∠FGH =90°,∠GHM = 40°,∠HMN =30°,并且∠EF A 的两倍比∠CNP 大10°,则∠PND 的大小是( ▲ )A .100° B.120° C .130° D.150°卷 Ⅱ二、填空题:(本题有6小题,每小题4分,共24分) 11.湖州奥体中心于2017年6月10日举行了开幕式并投入使用,整个奥体中心占地31.3公顷,总建筑面积约121000平方米,数字121000用科学记数法表示的结果为 ▲ . 12.因式分解=-92a ▲ . 13.如图是七年级某班全体50位同学身高情况的频数分布直方图,则身高在155﹣160厘米的人数的频率是 ▲ .a -2x9 2y -4x 11 y (第9题图)(第11题图)题图)15(第(第13题图)(第10题图)14.为了奖励兴趣小组的同学,张老师花94元钱购买了《智力大挑战》和《数学趣题》两种书.已知《智力大挑战》每本17元,《数学趣题》每本6元,则《数学趣题》买了 ▲ 本. 15.如图,将△ABC 沿AB 方向向右平移得到△DEF ,连结CF .若AE=10cm ,DB=3cm .则线段CF 的长度为 ▲ cm .16.有一个运算程序,可以使:当为常数)k k n m (=⊗时,得1-1k n m =⊗+)(,21+=+⊗k n m )(。
2018-2019学年浙教版七年级数学下册期末考试试卷(解析版)
浙教版七年级数学下册期末考试试卷一、选择题(每小题2分,共20分)1.(2分)下列调查中,适合采用全面调查方式的是()A.了解一批灯管的使用寿命B.了解居民对废电池的处理情况C.了解一个班级的数学考试成绩D.了解全国七年级学生的视力情况2.(2分)某种电子元件的面积大约为0.00000069平方毫米,将0.00000069这个数用科学记数法表示正确的是()A.0.69×10﹣6B.6.9×10﹣7C.69×10﹣8D.6.9×1073.(2分)下列计算中,结果是a6的是()A.a2+a4B.a2?a3C.a12÷a2D.(a2)34.(2分)如图,直线a,b被直线c所截,下列说法错误的是()A.当a∥b时,一定有∠1=∠3 B.当∠1=∠3时,一定有a∥bC.当a∥b时,一定有∠1+∠2=180°D.当∠2+∠3=180°时,一定有a∥b 5.(2分)若分式的值是零,则x的值为()A.1 B.0 C.﹣2 D.﹣16.(2分)二元一次方程组的解为()A.B.C.D.7.(2分)如图,将图1的长方形ABCD纸片沿EF所在直线折叠得到图2,折叠后DE与BF交于点P,如果∠BPE﹣∠AEP=80°,则∠PEF的度数是()A.55°B.60°C.65°D.70°8.(2分)如图为某商店的宣传单,小胜到此店同时购买了一件标价为x元的衣服和一条标价为y元的裤子,共节省500元,则根据题意所列方程正确的是()A.0.6x+0.4y+100=500 B.0.6x+0.4y﹣100=500C.0.4x+0.6y+100=500 D.0.4x+0.6y﹣100=5009.(2分)将下列多项式因式分解,结果中不含有因式a+1的是()A.a2﹣1 B.a2+a C.(a﹣1)2﹣a+1 D.(a+2)2﹣2(a+2)+110.(2分)设a,b是实数,定义关于“*”的一种运算如下:a*b=(a+b)2﹣(a ﹣b)2.则下列结论:①若a*b=0,则a=0或b=0;②不存在实数a,b,满足a*b=a2+4b2;③a*(b+c)=a*b+a*c;④若ab≠0,a*b=8,则÷=.其中正确的是()A.①②③B.①③④C.①②④D.②③④二、填空题(每小题3分,共30分)11.(3分)分解因式:ax+ay=.12.(3分)已知是方程2x+my=5的一个解,则m的值是.13.(3分)已知:如图,直线a⊥m,直线b⊥m,若∠1=60°,则∠2的度数是.14.(3分)如图,将边长为3cm的等边三角形ABC沿边BC向右平移2cm得到,则四边形AA′C′B的周长是cm.三角形A′B′C′15.(3分)在样本容量为50的一个样本中,某组数据的频率是0.2,则这组数据的频数是.16.(3分)若a+b=2,且a≠b,则代数式(a﹣)?的值是.17.(3分)若x m=3,x n=﹣2,则x m+2n=.18.(3分)若a+b=10,ab=1,则多项式a3b+ab3的值为.19.(3分)如图,A类、B类卡片为正方形(b<a<2b),C类卡片为长方形,小明拿来9张卡片(每类都有若干张)玩拼图游戏,他发现用这9张卡片刚好能拼成一个大正方形(不重叠也不留缝隙),那么他拼成的大正方形的边长是(用a,b的代数式表示).20.(3分)现有一列数:a1,a2,a3,a4,…,a n﹣1,a n(n为正整数),规定a1=2,a2﹣a1=4,a3﹣a2=6,…,a n﹣a n﹣1=2n(n≥2),则a4=.若+++…+=,则n的值为.三、解答题(共50分)21.(8分)计算下列各题(1)+(﹣1)2017﹣(﹣3)0(2)4a2b?(﹣3b2c)÷(2ab3).22.(8分)解方程(组)(1)(2)=3﹣.23.(8分)分解因式(1)2x2﹣2(2)(a2+4)2﹣16a2.24.(8分)已知:如图,EF∥CD,∠1+∠2=180°.(1)判断GD与CA的位置关系,并说明理由.(2)若CD平分∠ACB,DG平分∠CDB,且∠A=40°,求∠ACB的度数.25.(8分)某学校为了了解该校学生对“社会主义核心价值观”的熟悉程度,在全校范围内随机抽查了部分学生进行调查统计,并将调查统计的结果分为A,B,C,D四类.A表示“非常熟悉”,B表示“比较熟悉”,C表示“不太熟悉”,D表示“不熟悉”.将收集的数据绘制成如下两幅不完整的统计图.请根据图中提供的信息,解答下列问题:(1)直接写出本次随机抽查的人数为人,m=%,n=%.(2)补全条形统计图中“C类”的空缺部分.(3)若该校共有1200人,请你估计该校D类学生的人数,并给这些学生提一条建议.26.(10分)为了建设“美丽嵊州”,嵊义线两侧绿化提质改造工程如火如荼地进行.某施工队计划购买甲、乙两种树木,已知3棵甲种树木和2棵乙种树木共需700元;1棵甲种树木和3棵乙种树木共需700元.(1)求甲种树木、乙种树木每棵分别是多少元.(2)该施工队某天计划种植300棵树木,为了尽量减少对嵊义线交通的影响,实际劳动中每小时种植的数量比原计划多20%,结果提前1小时完成,求原计划每小时种植多少棵树.四、附加题(每小题10分,共20分)27.(10分)已知:如图,直线PQ∥MN,点C是PQ,M N之间(不在直线PQ,MN上)的一个动点.(1)若∠1与∠2都是锐角,如图1,请直接写出∠C与∠1,∠2之间的数量关系.(2)若小明把一块三角板(∠A=30°,∠C=90°)如图2放置,点D,E,F是三角板的边与平行线的交点,若∠AEN=∠A,求∠BDF的度数.(3)将图2中的三角板进行适当转动,如图3,直角顶点C始终在两条平行线之间,点G在线段CD上,连结EG,且有∠CEG=∠CEM,给出下列两个结论:①的值不变;②∠GEN﹣∠BDF的值不变.其中只有一个是正确的,你认为哪个是正确的?并求出不变的值是多少.28.(10分)阅读下列材料:已知实数x,y满足(x2+y2+1)(x2+y2﹣1)=63,试求x2+y2的值.解:设x2+y2=a,则原方程变为(a+1)(a﹣1)=63,整理得a2﹣1=63,a2=64,根据平方根意义可得a=±8,由于x2+y2≥0,所以可以求得x2+y2=8.这种方法称为“换元法”,用一个字母去代替比较复杂的单项式、多项式,可以达到化繁为简的目的.根据阅读材料内容,解决下列问题:(1)已知实数x,y满足(2x+2y+3)(2x+2y﹣3)=27,求x+y的值.(2)填空:①分解因式:(x2+4x+3)(x2+4x+5)+1=.②已知关于x,y的方程组的解是,关于x,y的方程组的解是.参考答案与试题解析一、选择题(每小题2分,共20分)1.(2分)下列调查中,适合采用全面调查方式的是()A.了解一批灯管的使用寿命B.了解居民对废电池的处理情况C.了解一个班级的数学考试成绩D.了解全国七年级学生的视力情况【解答】解:A、了解一批灯管的使用寿命调查具有破坏性适合抽样调查,故A 不符合题意;B、了解居民对废电池的处理情况调查范围广适合抽样调查,故B不符合题意;C、了解一个班级的数学考试成绩适合普查,故C符合题意;D、了解全国七年级学生的视力情况调查范围广适合抽样调查,故D不符合题意;故选:C.2.(2分)某种电子元件的面积大约为0.00000069平方毫米,将0.00000069这个数用科学记数法表示正确的是()A.0.69×10﹣6B.6.9×10﹣7C.69×10﹣8D.6.9×10710﹣7,【解答】解:0.00 000 069=6.9×故选:B.3.(2分)下列计算中,结果是a6的是()A.a2+a4B.a2?a3C.a12÷a2D.(a2)3【解答】解:∵a2+a4≠a6,∴选项A的结果不是a6;∵a2?a3=a5,∴选项B的结果不是a6;∵a12÷a2=a10,∴选项C的结果不是a6;∵(a2)3=a6,∴选项D的结果是a6.故选:D.4.(2分)如图,直线a,b被直线c所截,下列说法错误的是()A.当a∥b时,一定有∠1=∠3 B.当∠1=∠3时,一定有a∥bC.当a∥b时,一定有∠1+∠2=180°D.当∠2+∠3=180°时,一定有a∥b 【解答】解:A、∴a∥b,∴∠1=∠3,符合平行线的性质,故本选项正确;B、∵∠1=∠3,∴a∥b,符合平行线的判定定理,故本选项正确;C、∵a∥b,∴∠1=∠3,∵∠2+∠3=180°,∴∠1+∠2=180°,故本选项正确;D、无论a与b位置关系如何,∠2+∠3=180°不变,故本选项错误.故选D.5.(2分)若分式的值是零,则x的值为()A.1 B.0 C.﹣2 D.﹣1【解答】解:依题意得:x﹣1=0,解得x=1,,符合题意,当x=1时,分母x+2=3≠0故选:A.6.(2分)二元一次方程组的解为()A.B.C.D.【解答】解:①+②,得3x=9,解得x=3,把x=3代入①,得3+y=5,y=2,所以原方程组的解为.故选C.7.(2分)如图,将图1的长方形ABCD纸片沿EF所在直线折叠得到图2,折叠后DE与BF交于点P,如果∠BPE﹣∠AEP=80°,则∠PEF的度数是()A.55°B.60°C.65°D.70°【解答】解:AE∥BP,∴∠BPE+∠AEP=180°①.∵∠BPE﹣∠AEP=80°②,∴①﹣②得,∠AEP=50°,∴∠PEF==65°.故选C.8.(2分)如图为某商店的宣传单,小胜到此店同时购买了一件标价为x元的衣服和一条标价为y元的裤子,共节省500元,则根据题意所列方程正确的是()A.0.6x+0.4y+100=500 B.0.6x+0.4y﹣100=500C.0.4x+0.6y+100=500 D.0.4x+0.6y﹣100=500【解答】解:设衣服一件标价为x元,裤子一条标价为y元,由题意得,0.6x+0.4y+100=500.故选A.9.(2分)将下列多项式因式分解,结果中不含有因式a+1的是()A.a2﹣1 B.a2+a C.(a﹣1)2﹣a+1 D.(a+2)2﹣2(a+2)+1【解答】解:A、原式=(a+1)(a﹣1),故A不符合题意;B、原式=a(a+1),故B不符合题意;C、原式=(a﹣1)(a﹣1+1)=a(a﹣1),故C符合题意;D、原式=(a﹣1)2,故D不符合题意;故选:C.10.(2分)设a,b是实数,定义关于“*”的一种运算如下:a*b=(a+b)2﹣(a ﹣b)2.则下列结论:①若a*b=0,则a=0或b=0;②不存在实数a,b,满足a*b=a2+4b2;③a*(b+c)=a*b+a*c;④若ab≠0,a*b=8,则÷=.其中正确的是()A.①②③B.①③④C.①②④D.②③④【解答】解:①∵a*b=0,∴(a+b)2﹣(a﹣b)2=0,a2+2ab+a2﹣a2﹣b2+2ab=0,4ab=0,∴a=0或b=0,故①正确;②∵a*b=(a+b)2﹣(a﹣b)2=4ab,又a*b=a2+4b2,∴a2+4b2=4ab,∴a2﹣4ab+4b2=(a﹣2b)2=0,∴a=2b时,满足条件,∴存在实数a,b,满足a*b=a2+4b2;故②错误,③∵a*(b+c)=(a+b+c)2﹣(a﹣b﹣c)2=4ab+4ac,又∵a*b+a*c=4ab+4ac∴a*(b+c)=a*b+a*c;故③正确.④∵若ab≠0,a*b=8,∴4ab=8,∴ab=2,∴则÷=×==,故④正确,故选B.二、填空题(每小题3分,共30分)11.(3分)分解因式:ax+ay=a(x+y).【解答】解:ax+ay=a(x+y).故答案为:a(x+y).12.(3分)已知是方程2x+my=5的一个解,则m的值是3.【解答】解:∵是方程2x+my=5的一个解,∴代入得:﹣4+3m=5,解得:m=3,故答案为:3.13.(3分)已知:如图,直线a⊥m,直线b⊥m,若∠1=60°,则∠2的度数是120°.【解答】解:∵直线a⊥m,直线b⊥m,∴a∥b,∴∠1=∠3=60°,∴∠2=180°﹣∠3=120°,故答案为120°.14.(3分)如图,将边长为3cm的等边三角形ABC沿边BC向右平移2cm得到的周长是13cm.三角形A′B′C′,则四边形AA′C′B【解答】解:∵平移距离是2cm,∴AA′=BB′=2cm,∵等边△ABC的边长为3cm,∴B′C′=BC=3cm,∴BC′=BB′+B′C′=2+3=5cm,∵四边形AA′C′B的周长=3+2+5+3=13cm.故答案为:13.15.(3分)在样本容量为50的一个样本中,某组数据的频率是0.2,则这组数据的频数是10.【解答】解:根据题意得:50×0.2=10,则这组数据的频数是10,故答案为:1016.(3分)若a+b=2,且a≠b,则代数式(a﹣)?的值是2.【解答】解:原式=?=?=a+b.当a+b=2时,原式=2.故答案是:2.17.(3分)若x m=3,x n=﹣2,则x m+2n=12.【解答】解:∵x m=3,x n=﹣2,∴x m+2n=x m×x2n=3×(﹣2)2=12.故答案为:12.18.(3分)若a+b=10,ab=1,则多项式a3b+ab3的值为98.【解答】解:∵a+b=10,ab=1,∴a3b+ab3=ab(a2+b2)=ab[(a+b)2﹣2ab]=1×[102﹣2×1]=98,故答案为:98.19.(3分)如图,A类、B类卡片为正方形(b<a<2b),C类卡片为长方形,小明拿来9张卡片(每类都有若干张)玩拼图游戏,他发现用这9张卡片刚好能拼成一个大正方形(不重叠也不留缝隙),那么他拼成的大正方形的边长是2a+b (用a,b的代数式表示).【解答】解:如图,∵所求正方形的面积=4a2+b2+4ab=(2a+b)2,∴所求正方形的边长为2a+b.故答案为:2a+b.20.(3分)现有一列数:a1,a2,a3,a4,…,a n﹣1,a n(n为正整数),规定a1=2,a2﹣a1=4,a3﹣a2=6,…,a n﹣a n﹣1=2n(n≥2),则a4=20.若+++…+=,则n的值为2017.【解答】解:∵a1=2,a2﹣a1=4,a3﹣a2=6,…,a n﹣a n﹣1=2n(n≥2),∴a2=a1+4=6=2×3,a3=a2+6=12=3×4,a4=a3+8=20=4×5,…a n=n(n+1).∵+++…+=﹣+﹣+﹣+…+﹣=﹣=,∴=﹣,解得n=2017.故答案为20;2017.三、解答题(共50分)21.(8分)计算下列各题(1)+(﹣1)2017﹣(﹣3)0(2)4a2b?(﹣3b2c)÷(2ab3).【解答】解:(1)原式=32﹣1﹣1=9﹣2=7(2)原式=﹣12a2b3c÷(2ab3)=﹣6ac22.(8分)解方程(组)(1)(2)=3﹣.【解答】解:(1),①×3﹣②得:11y=﹣11,解得:y=﹣1,把y=﹣1代入①得:x=2,则方程组的解为;(2)去分母得:x=3x﹣12+2,解得:x=5,经检验x=5是分式方程的解.23.(8分)分解因式(1)2x2﹣2(2)(a2+4)2﹣16a2.【解答】解:(1)原式=2(x2﹣1)=2(x+1)(x﹣1)(2)原式=(a2+4﹣4a)(a2+4+4a)=(a﹣2)2(a+2)224.(8分)已知:如图,EF∥CD,∠1+∠2=180°.(1)判断GD与CA的位置关系,并说明理由.(2)若CD平分∠ACB,DG平分∠CDB,且∠A=40°,求∠ACB的度数.【解答】解:(1)AC∥DG.理由:∵EF∥CD,∴∠1+∠ACD=180°,,又∵∠1+∠2=180°∴∠ACD=∠2,∴AC∥DG.(2)∵AC∥DG,∴∠BDG=∠A=40°,∵DG平分∠CDB,∴∠CDB=2∠BDG=80°,∵∠BDC是△ACD的外角,∴∠ACD=∠BDC﹣∠A=80°﹣40°=40°,∵CD平分∠ACB,∴∠ACB=2∠ACD=80°.25.(8分)某学校为了了解该校学生对“社会主义核心价值观”的熟悉程度,在全校范围内随机抽查了部分学生进行调查统计,并将调查统计的结果分为A,B,C,D四类.A表示“非常熟悉”,B表示“比较熟悉”,C表示“不太熟悉”,D表示“不熟悉”.将收集的数据绘制成如下两幅不完整的统计图.请根据图中提供的信息,解答下列问题:(1)直接写出本次随机抽查的人数为50人,m=26%,n=14%.(2)补全条形统计图中“C类”的空缺部分.(3)若该校共有1200人,请你估计该校D类学生的人数,并给这些学生提一条建议.【解答】解:(1)由题意可得,本次随机抽查的人数为:20÷40%=50,m=13÷50=0.26=26%,n=7÷50=0.14=14%,故答案为:50,26,14;(2)C类的人数为:50﹣13﹣20﹣7=10,补全的条形统计图如右图所示;(3)由题意可得,该校D类学生的人数为:1200×14%=168,即该校D类学生的人数是168,建议是:这部分学生应该加强学习,明确什么是社会主义核心价值观.26.(10分)为了建设“美丽嵊州”,嵊义线两侧绿化提质改造工程如火如荼地进行.某施工队计划购买甲、乙两种树木,已知3棵甲种树木和2棵乙种树木共需700元;1棵甲种树木和3棵乙种树木共需700元.(1)求甲种树木、乙种树木每棵分别是多少元.(2)该施工队某天计划种植300棵树木,为了尽量减少对嵊义线交通的影响,实际劳动中每小时种植的数量比原计划多20%,结果提前1小时完成,求原计划每小时种植多少棵树.【解答】解:(1)设甲种树木每棵是x元,乙种树木每棵是y元,依题意有,解得.故甲种树木每棵是100元,乙种树木每棵是200元;(2)设原计划每小时种植z棵树,依题意有﹣=1,解得z=50,经检验,z=50是原方程组的解,且符合题意.故原计划每小时种植50棵树.四、附加题(每小题10分,共20分)27.(10分)已知:如图,直线PQ∥MN,点C是PQ,MN之间(不在直线PQ,MN上)的一个动点.(1)若∠1与∠2都是锐角,如图1,请直接写出∠C与∠1,∠2之间的数量关系.(2)若小明把一块三角板(∠A=30°,∠C=90°)如图2放置,点D,E,F是三角板的边与平行线的交点,若∠AEN=∠A,求∠BDF的度数.(3)将图2中的三角板进行适当转动,如图3,直角顶点C始终在两条平行线之间,点G在线段CD上,连结EG,且有∠CEG=∠CEM,给出下列两个结论:①的值不变;②∠GEN﹣∠BDF的值不变.其中只有一个是正确的,你认为哪个是正确的?并求出不变的值是多少.【解答】解:(1)∠C=∠1+∠2.理由:如图1,过C作CD∥PQ,∵PQ∥MN,∴CD∥MN,∴∠1=∠ACD,∠2=∠BCD,∴∠ACB=∠ACD+∠BCD=∠1+∠2.(2)∵∠AEN=∠A=30°,∴∠MEC=30°,由(1)可得,∠C=∠MEC+∠PDC=90°,∴∠PDC=90°﹣∠MEC=60°,∴∠BDF=∠PDC=60°;(3)结论①的值不变是正确的,设∠CEG=∠CEM=x,则∠GEN=180°﹣2x,由(1)可得,∠C=∠CEM+∠CDP,∴∠CDP=90°﹣∠CEM=90°﹣x,∴∠BDF=90°﹣x,∴==2(定值),即的值不变,值为2.28.(10分)阅读下列材料:已知实数x,y满足(x2+y2+1)(x2+y2﹣1)=63,试求x2+y2的值.解:设x2+y2=a,则原方程变为(a+1)(a﹣1)=63,整理得a2﹣1=63,a2=64,根据平方根意义可得a=±8,由于x2+y2≥0,所以可以求得x2+y2=8.这种方法称为“换元法”,用一个字母去代替比较复杂的单项式、多项式,可以达到化繁为简的目的.根据阅读材料内容,解决下列问题:(1)已知实数x,y满足(2x+2y+3)(2x+2y﹣3)=27,求x+y的值.(2)填空:①分解因式:(x2+4x+3)(x2+4x+5)+1=(x+2)4.②已知关于x,y的方程组的解是,关于x,y的方程组的解是或.【解答】解:(1)设2x+2y=a,则原方程变为(a+3)(a﹣3)=27,整理,得:a2﹣9=27,即a2=36,解得:a=±6,6,则2x+2y=±∴x+y=±3;(2)①令a=x2+4x+3,则原式=a(a+2)+1=a2+2a+1=(a+1)2=(x2+4x+4)2=(x+2)4;②由方程组得,整理,得:,∵方程组的解是,∴x﹣1=±3,且y=5,解得:或,故答案为:(x+2)4,或.。
2018-2019学年浙教版七年级下册期末数学测试卷及答案
2018-2019学年七年级(下)期末数学试卷一、选择题:本题有10小题,每小题3分,共30分.1.下列各式从左到右的变形中,是因式分解的为()A.x(a﹣b)=ax﹣bx B.C.x2+4x+4=(x+2)2D.ax+bx+c=x(a+b)+c2.如图,已知∠2=100°,要使AB∥CD,则须具备另一个条件()A.∠1=100°B.∠3=80°C.∠4=80°D.∠4=100°3.下列运算正确的是()A.a6÷a2=a3B.(a2b3)2=a4b6C.a3a2=a6D.a﹣2=﹣4.根据生物学研究结果,青春期男女生身高增长速度呈现如下图规律,由图可以判断,下列说法错误的是()A.男生在13岁时身高增长速度最快B.女生在10岁以后身高增长速度放慢C.11岁时男女生身高增长速度基本相同D.女生身高增长的速度总比男生慢5.计算:(12x3﹣8x2+16x)÷(﹣4x)的结果是()A.﹣3x2+2x﹣4 B.﹣3x2﹣2x+4 C.﹣3x2+2x+4 D.3x2﹣2x+46.如图,将周长为10的△ABC沿BC方向平移1个单位得到△DEF,则四边形ABFD的周长为()A .8B .10C .12D .147.关于x 的方程=有增根,则k 的值是( )A .2B .3C .0D .﹣3 8.用白铁皮做罐头盒,每张铁皮可制盒身25个,或制盒底40个,一个盒身与两个盒底配成一套罐头盒.现有36张白铁皮,设用x 张制盒身,y 张制盒底,恰好配套制成罐头盒.则下列方程组中符合题意的是( )A .B .C .D . 9.已知a ﹣b=3,b ﹣c=﹣4,则代数式a 2﹣ac ﹣b (a ﹣c )的值为( ) A .4 B .﹣4 C .3 D .﹣310.已知关于x 、y 的方程组,给出下列结论:①是方程组的解;②无论a 取何值,x ,y 的值都不可能互为相反数;③当a=1时,方程组的解也是方程x +y=4﹣a 的解;④x ,y 的都为自然数的解有4对.其中正确的个数为( )A .1个B .2个C .3个D .4个二、填空题:本题有6个小题,每小题4分,共24分.11.用科学记数法表示:0.00000136= .12.分解因式:2x 3﹣8xy 2= .13.为迎接学校艺术节,七年级某班进行班级歌词征集活动,作品上交时间为星期一至星期五.班委会把同学们上交作品件数按每天一组分组统计,绘制了频数分布直方图如下.已知从左至右各长方形的高的比为2:3:4:6:1,第二组的频数为9,则全班上交的作品有件.14.如图,把一张矩形纸片ABCD沿EF折叠后,点C﹑D分别落在点C′、D′的位置上,EC′交AD于点G.已知∠EFG=55°,那么∠BEG=度.15.已知﹣=3,则分式的值为.16.若干人乘坐若干辆汽车,如果每辆汽车坐22人,有1人不能上车;如果有一辆车不坐人,那么所有旅客正好能平分乘到其他各车上,则旅客共人.三、解答题:本题有7个小题,共66分.17.计算:(1)(﹣)﹣2+()0+(﹣2)3(2)(2m﹣3)2﹣(4m+1)(m﹣2)18.解方程或方程组:(1)(2)+=1.19.先化简代数式,再选择一个你喜欢的数代入求值.20.农历每年的5月5日是端午节,端午节是中华民族的传统节日,已有上千年的历史,某商场对今年端午节这天销售A、B、C三种品牌粽子的情况进行了统计,绘制如图1和图2所示的统计图,根据图中信息解答下列问题:(1)该商场今年端午节共销售粽子个;(2)请补全图1中的条形统计图;(3)写出A品牌粽子在图2中所对应的圆心角的度数;(4)按今年端午节期间销售统计情况,若该商场今年共售出粽子12万个,估计B品牌粽子售出多少个?21.根据题意解答:(1)如图1,点A、C、F、B在同一直线上,CD平分∠ECB,FG∥CD,若∠ECA 为α度,求∠GFB的度数(用关于a的代数式表示),并说明理由.(2)如图2,某停车场入口大门的栏杆如图所示,BA⊥地面AE,CD∥地面AE,求∠1+∠2的度数,并说明理由.(3)如图3,若∠3=40°,∠5=50°,∠7=80°,则∠1+∠2+∠4+∠6+∠8=度.22.用四块完全相同的小长方形拼成的一个“回形”正方形.(1)用不同代数式表示图中的阴影部分的面积,你能得到怎样的等式,试用乘法公式说明这个等式成立;(2)利用(1)中的结论计算:a+b=2,ab=,求a﹣b;(3)根据(1)中的结论,直接写出x+和x﹣之间的关系;若x2﹣3x+1=0,分别求出x+和(x﹣)2的值.23.某书商去图书批发市场购买某本书,第一次用12000元购书若干本,并把该书按定价7元/本出售,很快售完,由于该书畅销,书商又去批发市场采购该书,第二次购书时,每本书批发价已比第一次提高了20%,他用15000元所购书数量比第一次多了100本.(1)求第一次购书的进价是多少元一本?第二次购进多少本书?(2)若第二次购进书后,仍按原定价7元/本售出2000本时,出现滞销,书商便以定价的n折售完剩余的书,结果第二次共盈利100m元(n、m为正整数),求相应n、m值.2018-2019学年七年级(下)期末数学试卷参考答案与试题解析一、选择题:本题有10小题,每小题3分,共30分.1.下列各式从左到右的变形中,是因式分解的为()A.x(a﹣b)=ax﹣bx B.C.x2+4x+4=(x+2)2D.ax+bx+c=x(a+b)+c【考点】因式分解的意义.【分析】利用因式分解的定义判断即可.【解答】解:列各式从左到右的变形中,是因式分解的为x2+4x+4=(x+2)2,故选C2.如图,已知∠2=100°,要使AB∥CD,则须具备另一个条件()A.∠1=100°B.∠3=80°C.∠4=80°D.∠4=100°【考点】平行线的判定.【分析】同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行;据此判断即可.【解答】解:∵∠2=100°,∴根据平行线的判定可知,当∠4=100°,或∠3=100°,或∠1=80°时,AB∥CD.故选(D)3.下列运算正确的是()A.a6÷a2=a3B.(a2b3)2=a4b6C.a3a2=a6D.a﹣2=﹣【考点】同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方;负整数指数幂.【分析】根据负整数指数幂、同底数幂的乘法、幂的乘方与积的乘方、同底数幂的除法等知识点进行作答.【解答】解:A、底数不变指数相减,故A错误;B、积得乘方等于每个因式分别乘方,再把所得的幂相乘,故B正确;C、底数不变指数相加,故C错误;D、负整指数幂与正整指数幂互为倒数,故D错误.故选:B.4.根据生物学研究结果,青春期男女生身高增长速度呈现如下图规律,由图可以判断,下列说法错误的是()A.男生在13岁时身高增长速度最快B.女生在10岁以后身高增长速度放慢C.11岁时男女生身高增长速度基本相同D.女生身高增长的速度总比男生慢【考点】函数的图象.【分析】根据图象即可确定男生在13岁时身高增长速度是否最快;女生在10岁以后身高增长速度是否放慢;11岁时男女生身高增长速度是否基本相同;女生身高增长的速度是否总比男生慢.【解答】解:A、依题意男生在13岁时身高增长速度最快,故选项正确;B、依题意女生在10岁以后身高增长速度放慢,故选项正确;C、依题意11岁时男女生身高增长速度基本相同,故选项正确;D、依题意女生身高增长的速度不是总比男生慢,有时快,故选项错误.故选D.5.计算:(12x3﹣8x2+16x)÷(﹣4x)的结果是()A.﹣3x2+2x﹣4 B.﹣3x2﹣2x+4 C.﹣3x2+2x+4 D.3x2﹣2x+4【考点】整式的除法.【分析】多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加;12x3÷(﹣4x)=﹣3x2,﹣8x2÷(﹣4x)=2x,16x÷(4x)=﹣4.【解答】解:(12x3﹣8x2+16x)÷(﹣4x)=﹣3x2+2x﹣4;故选A.6.如图,将周长为10的△ABC沿BC方向平移1个单位得到△DEF,则四边形ABFD的周长为()A.8 B.10 C.12 D.14【考点】平移的性质.【分析】根据平移的基本性质,得出四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC即可得出答案.【解答】解:根据题意,将周长为10个单位的△ABC沿边BC向右平移1个单位得到△DEF,∴AD=1,BF=BC+CF=BC+1,DF=AC;又∵AB+BC+AC=10,∴四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC=12.故选:C7.关于x的方程=有增根,则k的值是()A.2 B.3 C.0 D.﹣3【考点】分式方程的增根.【分析】依据分式方程有增根可求得x=3,将x=3代入去分母后的整式方程从而可求得k的值.【解答】解:∵方程有增根,∴x﹣3=0.解得:x=3.方程=两边同时乘以(x﹣3)得:x﹣1=k,将x=3代入得:k=3﹣1=2.故选:A.8.用白铁皮做罐头盒,每张铁皮可制盒身25个,或制盒底40个,一个盒身与两个盒底配成一套罐头盒.现有36张白铁皮,设用x张制盒身,y张制盒底,恰好配套制成罐头盒.则下列方程组中符合题意的是()A.B.C.D.【考点】由实际问题抽象出二元一次方程组.【分析】根据题意可知,本题中的相等关系是:(1)盒身的个数×2=盒底的个数;(2)制作盒身的白铁皮张数+制作盒底的白铁皮张数=36,列方程组即可.【解答】解:设用x张制作盒身,y张制作盒底,根据题意得:,故选C.9.已知a﹣b=3,b﹣c=﹣4,则代数式a2﹣ac﹣b(a﹣c)的值为()A.4 B.﹣4 C.3 D.﹣3【考点】因式分解的应用.【分析】先分解因式,再将已知的a﹣b=3,b﹣c=﹣4,两式相加得:a﹣c=﹣1,整体代入即可.【解答】解:a2﹣ac﹣b(a﹣c),=a(a﹣c)﹣b(a﹣c),=(a﹣c)(a﹣b),∵a﹣b=3,b﹣c=﹣4,∴a﹣c=﹣1,当a﹣b=3,a﹣c=﹣1时,原式=3×(﹣1)=﹣3,故选D.10.已知关于x、y的方程组,给出下列结论:①是方程组的解;②无论a取何值,x,y的值都不可能互为相反数;③当a=1时,方程组的解也是方程x+y=4﹣a的解;④x,y的都为自然数的解有4对.其中正确的个数为()A.1个 B.2个 C.3个 D.4个【考点】二元一次方程组的解.【分析】①将x=5,y=﹣1代入检验即可做出判断;②将x和y分别用a表示出来,然后求出x+y=3来判断;③将a=1代入方程组求出方程组的解,代入方程中检验即可;④有x+y=3得到x、y都为自然数的解有4对.【解答】解:①将x=5,y=﹣1代入方程组得:,由①得a=2,由②得a=,故①不正确.②解方程①﹣②得:8y=4﹣4a解得:y=将y的值代入①得:x=,所以x+y=3,故无论a取何值,x、y的值都不可能互为相反数,故②正确.③将a=1代入方程组得:解此方程得:将x=3,y=0代入方程x+y=3,方程左边=3=右边,是方程的解,故③正确.④因为x+y=3,所以x、y都为自然数的解有,,,,.故④正确.则正确的选项有②③④,故选:C.二、填空题:本题有6个小题,每小题4分,共24分.11.用科学记数法表示:0.00000136= 1.36×10﹣6.【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00000136=1.36×10﹣6,故答案为:1.36×10﹣6.12.分解因式:2x3﹣8xy2=2x(x+2y)(x﹣2y).【考点】提公因式法与公式法的综合运用.【分析】先提取公因式2x,再根据平方差公式进行二次分解即可求得答案.【解答】解:∵2x3﹣8xy2=2x(x2﹣4y2)=2x(x+2y)(x﹣2y).故答案为:2x(x+2y)(x﹣2y).13.为迎接学校艺术节,七年级某班进行班级歌词征集活动,作品上交时间为星期一至星期五.班委会把同学们上交作品件数按每天一组分组统计,绘制了频数分布直方图如下.已知从左至右各长方形的高的比为2:3:4:6:1,第二组的频数为9,则全班上交的作品有48件.【考点】频数(率)分布直方图;频数与频率.【分析】由各长方形的高的比得到各段的频率之比,即可得到第二组的频率,再由数据总和=某段的频数÷该段的频率计算作品总数.【解答】解:从左至右各长方形的高的比为2:3:4:6:1,即频率之比为2:3:4:6:1;第二组的频率为,第二组的频数为9;故则全班上交的作品有9÷=48.故答案为:48.14.如图,把一张矩形纸片ABCD沿EF折叠后,点C﹑D分别落在点C′、D′的位置上,EC′交AD于点G.已知∠EFG=55°,那么∠BEG=70度.【考点】翻折变换(折叠问题).【分析】由矩形的性质可知AD∥BC,可得∠CEF=∠EFG=55°,由折叠的性质可知∠GEF=∠CEF,再由邻补角的性质求∠BEG.【解答】解:∵AD∥BC,∴∠CEF=∠EFG=55°,由折叠的性质,得∠GEF=∠CEF=55°,∴∠BEG=180°﹣∠GEF﹣∠CEF=70°.故答案为:70.15.已知﹣=3,则分式的值为.【考点】分式的值.【分析】由已知条件可知xy≠0,根据分式的基本性质,先将分式的分子、分母同时除以xy,再把﹣=3代入即可.【解答】解:∵﹣=3,∴x≠0,y≠0,∴xy≠0.∴=====.故答案为:.16.若干人乘坐若干辆汽车,如果每辆汽车坐22人,有1人不能上车;如果有一辆车不坐人,那么所有旅客正好能平分乘到其他各车上,则旅客共45或529人.【考点】分式方程的应用.【分析】设起初有汽车m辆,开走一辆空车后,平均每辆车所乘旅客为n人,依题意有22m+1=n(m﹣1)然后确定m、n的值,进而可得答案.【解答】解:设起初有汽车m辆,开走一辆空车后,平均每辆车所乘旅客为n 人.依题意有22m+1=n(m﹣1).所以n==22+,因为n为自然数,所以为整数,因此m﹣1=1,或m﹣1=23,即m=2或m=24.当m=2时,n=45,n(m﹣1)=45×1=45(人);当m=24时,n=23,n(m﹣1)=23×(24﹣1)=529(人).故答案为:45或529.三、解答题:本题有7个小题,共66分.17.计算:(1)(﹣)﹣2+()0+(﹣2)3(2)(2m﹣3)2﹣(4m+1)(m﹣2)【考点】多项式乘多项式;完全平方公式;零指数幂;负整数指数幂.【分析】(1)首先计算负整数指数幂、零次幂、乘方,然后再计算有理数的加减即可;(2)利用完全平方公式计算)(2m﹣3)2,利用多项式乘以多项式法则计算(4m+1)(m﹣2),然后再合并同类项即可.【解答】解:(1)原式=9+1﹣8=2;(2)原式=4m2﹣12m+9﹣(4m2﹣8m+m﹣2),=4m2﹣12m+9﹣4m2+8m﹣m+2,=﹣5m+11.18.解方程或方程组:(1)(2)+=1.【考点】解分式方程;解二元一次方程组.【分析】(1)根据等式的性质把原方程组变形,利用加减消元法解方程组即可;(2)方程两边同乘以(x﹣3),得到整式方程,解整式方程,把得到的根代入最简公分母检验即可.【解答】解:(1)原方程组变形为:,①﹣②得,﹣3n=6,解得,n=﹣2,把n=﹣2代入②得,m=,则方程组的解为:;(2)方程两边同乘以(x﹣3),得5﹣x﹣1=x﹣3,整理得,﹣2x=﹣7,解得,x=,检验:当x=时,(x﹣3)≠0,∴x=是原方程的解.19.先化简代数式,再选择一个你喜欢的数代入求值.【考点】分式的化简求值.【分析】根据分式的运算法则进行化简,再代入a的值求值即可.【解答】解:=÷(﹣)=÷=×=,取a=3,代入可得==2.20.农历每年的5月5日是端午节,端午节是中华民族的传统节日,已有上千年的历史,某商场对今年端午节这天销售A、B、C三种品牌粽子的情况进行了统计,绘制如图1和图2所示的统计图,根据图中信息解答下列问题:(1)该商场今年端午节共销售粽子2400个;(2)请补全图1中的条形统计图;(3)写出A品牌粽子在图2中所对应的圆心角的度数;(4)按今年端午节期间销售统计情况,若该商场今年共售出粽子12万个,估计B品牌粽子售出多少个?【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)利用C品牌粽子的个数除以C品牌粽子所占百分比可得商场今年端午节共销售粽子数;(2)首先利用粽子总数减去A、C品牌粽子数可算出B品牌粽子数,然后再画图即可;(3)利用A品牌粽子所占比例乘以360°即可;(4)利用样本估计总体的方法可得今年端午节期间销售B品牌粽子所占比例为,然后再乘以120000即可.【解答】解:(1)商场今年端午节共销售粽子数:1200÷50%=2400(个),故答案为:2400;(2)B品牌粽子数:2400﹣400﹣1200=800(个),如图所示;(3)A品牌粽子所对应的圆心角的度数:×360°=60°;(4)120000×=40000(个),答:估计B品牌粽子售出40000个.21.根据题意解答:(1)如图1,点A、C、F、B在同一直线上,CD平分∠ECB,FG∥CD,若∠ECA 为α度,求∠GFB的度数(用关于a的代数式表示),并说明理由.(2)如图2,某停车场入口大门的栏杆如图所示,BA⊥地面AE,CD∥地面AE,求∠1+∠2的度数,并说明理由.(3)如图3,若∠3=40°,∠5=50°,∠7=80°,则∠1+∠2+∠4+∠6+∠8=170度.【考点】平行线的性质;多边形内角与外角.【分析】(1)如图1,根据平角定义表示∠ECB=180°﹣α,由角平分线定义得:∠DCB=90°﹣α,最后根据平行线性质得结论;(2)作平行线,根据平行线的性质得:∠BAE=∠ABH=90°和∠1+∠CBH=180°,所以∠1+∠2=∠1+∠CBH+∠ABH=270°;(3)作辅助线,根据外角定理和四边形的内角和360°列式后可得结论.【解答】解:(1)如图1,∵∠ACE=α,∴∠ECB=180°﹣α,∵CD平分∠ECB,∴∠DCB=∠ECB==90°﹣α,∵FG∥CD,∴∠GFB=∠DCB=90°﹣α;(2)如图2,过B作BH∥AE,∵BA⊥AE,∴∠BAE=∠ABH=90°,∵CD∥AE,∴BH∥CD,∴∠1+∠CBH=180°,∴∠1+∠2=∠1+∠CBH+∠ABH=180°+90°=270°;(3)延长图中线段,构建如图所示的三角形和四边形,由外角定理得:∠9=∠1+∠2,∠BAC=∠9+∠8=∠1+∠2+∠8,∵∠5=50°,∠7=80°,∴∠6+∠GDH=130°,∵∠3=40°,∴∠AFE=140°,∵∠BAC+∠4+180°﹣∠GDH+140°=360°,∴∠BAC+∠4﹣∠GDH=40°,∴∠1+∠2+∠4+∠8﹣130°+∠6=40°,∴∠1+∠2+∠4+∠6+∠8=170°,故答案为为:170.22.用四块完全相同的小长方形拼成的一个“回形”正方形.(1)用不同代数式表示图中的阴影部分的面积,你能得到怎样的等式,试用乘法公式说明这个等式成立;(2)利用(1)中的结论计算:a+b=2,ab=,求a﹣b;(3)根据(1)中的结论,直接写出x+和x﹣之间的关系;若x2﹣3x+1=0,分别求出x+和(x﹣)2的值.【考点】完全平方公式的几何背景.【分析】(1)根据阴影部分的面积=4个小长方形的面积=大正方形的面积﹣小正方形的面积,利用完全平方公式,即可解答;(2)根据完全平方公式解答;(3)根据完全平分公式解答.【解答】解:(1)阴影部分的面积为:4ab或(a+b)2﹣(a﹣b)2,得到等式:4ab=(a+b)2﹣(a﹣b)2,说明:(a+b)2﹣(a﹣b)2=a2+2ab+b2﹣(a2﹣2ab+b2)=a2+2ab+b2﹣a2+2ab﹣b2=4ab.(2)(a﹣b)2=(a+b)2﹣4ab==4﹣3=1,∴a﹣b=±1.(3)根据(1)中的结论,可得:,∵x2﹣3x+1=0,方程两边都除以x得:,∴,∴.23.某书商去图书批发市场购买某本书,第一次用12000元购书若干本,并把该书按定价7元/本出售,很快售完,由于该书畅销,书商又去批发市场采购该书,第二次购书时,每本书批发价已比第一次提高了20%,他用15000元所购书数量比第一次多了100本.(1)求第一次购书的进价是多少元一本?第二次购进多少本书?(2)若第二次购进书后,仍按原定价7元/本售出2000本时,出现滞销,书商便以定价的n折售完剩余的书,结果第二次共盈利100m元(n、m为正整数),求相应n、m值.【考点】分式方程的应用;二元一次方程的应用.【分析】(1)设第一次购书的进价为x元/本,根据“第二次购书时,每本书批发价已比第一次提高了20%,他用15000元所购书数量比第一次多了100本”列出方程,求出方程的解即可得到结果;(2)根据题意列出关于m与n的方程,由m与n为正整数,且n的范围确定出m与n的值即可.【解答】解:(1)设第一次购书的进价为x元/本,根据题意得: +100=,解得:x=5,经检验x=5是分式方程的解,且符合题意,∴15000÷(5×1.2)=2500(本),则第一次购书的进价为5元/本,且第二次买了2500本;(2)第二次购书的进价为5×1.2=6(元),根据题意得:2000×(7﹣6)+×(﹣6)=100m,整理得:7n=2m+20,即2m=7n﹣20,∴m=,∵m,n为正整数,且1≤n≤9,∴当n=4时,m=4;当n=6时,m=11;当n=8时,m=18.2017年4月18日。
浙江省宁波市七年级下学期数学期末考试
浙江省宁波市七年级下学期数学期末考试姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)(2018·安徽模拟) 如果a与2互为相反数,则下列结论正确的为()A . a=B . a=-2C . a=D . a=22. (2分)已知y轴上的点P到原点的距离为5,则点P的坐标为()A . (5,0)B . (0,5)或(0,5)C . (0,5)D . (5,0)或(5,0)3. (2分)如图,已知△ABC中,AB∥EF,DE∥BC,则图中相等的同位角有()A . 二组B . 三组C . 四组D . 五组4. (2分)下列抽取的样本具有代表性的有()①用一本书的某一页的字数估计全书的字数;②到老年公寓进行调查,了解全市老年人的健康状况;③到省城一所重点中学进行调查,以便了解全省中学生零花钱的使用情况;④在省内选取一所城市中学、一所农村中学,向每个学生发一张卡片,上面印有秦始皇、毛泽东、周恩来、比尔•盖茨、邓亚萍、刘德华、费俊龙、聂海胜等一些人的名字,要求每个学生都只在一个名字下面画“∨”,以了解全省中学生最崇拜的人物是谁.A . 1个B . 2个C . 3个D . 4个5. (2分)(2017·桂林) 下面四个图形中,∠1=∠2一定成立的是()A .B .C .D .6. (2分)下列各数中,无理数是()A .B .C . 3.14D . π7. (2分) (2020七下·岱岳期中) 下列命题是真命题是()A . 两个无理数的和仍是无理数;B . 垂线段最短;C . 垂直于同一直线的两条直线平行;D . 两直线平行,同旁内角相等;8. (2分)与4﹣最接近的整数是()A . 0B . 1C . 2D . 39. (2分) (2019七下·邓州期末) 如图,∠1=68°,直线a平移后得到直线b,则∠2﹣∠3的度数为()A . 78°B . 132°C . 118°D . 112°10. (2分) (2017七下·上饶期末) 若关于x的一元一次不等式组恰有3个整数解,那么a的取值范围是()A . ﹣2<a<1B . ﹣3<a≤﹣2C . ﹣3≤a<﹣2D . ﹣3<a<﹣2二、填空题 (共8题;共8分)11. (1分) (2016七下·房山期中) 以为解的一个二元一次方程是________.12. (1分) (2016八上·永登期中) 点 P(a,a﹣3)在第四象限,则a的取值范围是________.13. (1分)对八(2)班的一次考试成绩进行统计,已知75.5~85.5分这一组的频数是9,频率是0.2,那么该班级的人数是________ 人.14. (1分) (2016九下·黑龙江开学考) 计算:3 ﹣的结果为________.15. (1分)将线段AB平移1cm得到线段A'B',则点A到点A'的距离是________ cm.16. (1分) (2019七下·白城期中) 已知5+ 小数部分为m,11﹣为小数部分为n,则m+n=________.17. (1分)(2019·沾化模拟) 如图,直线m∥n,以直线m上的点A为圆心,适当长为半径画弧,分别交直线m,n于点B、C,连接AC、BC,若∠1=30°,则∠2=________.18. (1分)在样本的频数分布直方图中,共有11个小长方形,若中间一个长方形的面积等于其他10个小长方形的面积的和的,且样本容量是160,则中间一组的频数为________ .三、解答题 (共6题;共44分)19. (10分) (2020七下·惠城期中) 解方程(组)(1)(2)20. (5分) (2020七下·巩义期末) 解不等式组,把它的解集表示在数轴上,并写出该不等式组的整数解.21. (5分)根据图中尺规作图的痕迹,先判断得出结论:,然后证明你的结论(不要求写已知、求证)22. (5分)“爆竹声声一岁除”,除夕和春节期间燃放爆竹是中国人的传统风俗习惯,但这种习惯会造成空气污染,为了了解某市市民春节期间购买、燃放烟花爆竹的原因,该市统计局随机调查了该市部分15周岁以上常住市民,对调查结果整理后,绘制如图尚不完整的统计图表.组别原因人数A不想改变传统风俗习惯650B增添节日喜庆气氛300C祈福运、求吉利、辟邪害mD没有可替代的庆祝方式150E为了孩子的玩耍和快乐nF其他100请根据图表中提供的信息解答下列问题:(1)填空:当扇形统计图中D组所占的百分比为7.5% 求m n 的值.(2)若该市人口约为800万,请你估计其中属于B组的市民有多少人?(用科学记数法表示);(3)若在此次接受调查的市民中随机抽取一人,此人属于A组的概率是多少?23. (10分)(2016·长沙) 2016年5月6日,中国第一条具有自主知识产权的长沙磁浮线正式开通运营,该路线连接了长沙火车南站和黄花国际机场两大交通枢纽,沿线生态绿化带走廊的建设尚在进行中,届时将给乘客带来美的享受.星城渣土运输公司承包了某标段的土方运输任务,拟派出大、小两种型号的渣土运输车运输土方,已知2辆大型渣土运输车与3辆小型渣土运输车一次共运输土方31吨,5辆大型渣土运输车与6辆小型渣土运输车一次共运输土方70吨.(1)一辆大型渣土运输车和一辆小型渣土运输车一次各运输土方多少吨?(2)该渣土运输公司决定派出大、小两种型号的渣土运输车共20辆参与运输土方,若每次运输土方总量不少于148吨,且小型渣土运输车至少派出2辆,则有哪几种派车方案?24. (9分) (2017九上·大石桥期中) 一位同学拿了两块45°的三角尺△MNK、△ACB做了一个探究活动:将△MNK的直角顶点M放在△ABC的斜边AB的中点处,设AC=BC=a.(1)如图1,两个三角尺的重叠部分为△ACM,则重叠部分的面积为 ________,周长为________.(2)将图1中的△MNK绕顶点M逆时针旋转45°,得到图2,此时重叠部分的面积为________,周长为________.(3)如果将△MNK绕M旋转到不同于图1,图2的位置,如图3所示,猜想此时重叠部分的面积为多少?并试着加以验证.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共8题;共8分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共6题;共44分)19-1、19-2、20-1、21-1、22-1、23-1、23-2、24-1、24-2、24-3、。
【精选3份合集】2018-2019年宁波市七年级下学期数学期末复习能力测试试题
七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.下面的图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【答案】B【解析】轴对称图形的特点是沿着某一条直线折叠后,直线两旁的部分互相重合,中心对称图形的特点是图形绕某点旋转180度后得到的图形与原图形重合,据此分析.【详解】第一个图形等边三角形不是轴对称图形但是中心对称图形,第二个图形既是轴对称图形也是中心对称图形,第三个图形梯形只是轴对称图形但不是中心对称图形,第三个图形是轴对称图形不是中心对称图形.故选B【点睛】考核知识点:中心对称图形的识别.2.如图,点E 在AD 的延长线上,下列条件中能判断AB∥CD 的是()A.∠1=∠4 B.∠2=∠3 C.∠C=∠CDE D.∠C+∠CDA=180°【答案】B【解析】结合图形分析两角的位置关系,根据平行线的判定方法判断.【详解】A、∠1和∠4是AD、BC被BD所截得到的一对内错角,∴当∠1=∠4时,可得AD∥BC,故A不正确;B、∠2和∠3是AB、CD被BD所截得到的一对内错角,∴当∠2=∠3时,可得AB∥CD,故B正确;C、∠C和∠CDE是AD、BC被CD所截得到的一对内错角,∴当∠C=∠CDE时,可得AD∥BC,故C不正确;D、∠C和∠ADC是AD、BC被CD所截得到的一对同旁内角,∴当∠C+∠ADC=180°时,可得AD∥BC,故D不正确;故选B.【点睛】本题主要考查平行线的判定,掌握平行线的性质和判定是解题的关键,即①同位角相等⇔两直线平行,②内错角相等⇔两直线平行,③同旁内角互补⇔两直线平行,④a∥b,b∥c⇒a∥c.3.不等式组24357xx>-⎧⎨-≤⎩的解集在数轴上可以表示为()A .B .C .D .【答案】B【解析】不等式2x>-4,解得x>-2;不等式357x -≤,解得4x ≤;所以不等式组24{357x x --≤>的解集为24x -<≤, 4取得到,所以在数轴上表示出来在4这点为实心,-2取不到,所以在数轴上表示出来在-2这点为空心,表示出来为选项中B 中的图形,故选B【点睛】本题考查不等式组,解答本题需要考生掌握不等式组的解法,会求不等式的解集,掌握数轴的概念和性质 4.若方程组23529x y ax ay -=⎧⎨-=⎩的解x 与y 互为相反数,则a 的值等于( ) A .1B .2C .3D .4 【答案】C【解析】根据x 与y 互为相反数,得到x+y=0,与方程组第一个方程联立求出x 与y 的值,代入第二个方程求出a 的值即可.【详解】根据题意得:2350x y x y -=⎧⎨+=⎩①② ①+②×3得:5x=5,解得:x=1,把x=1代入②得:y=-1,把x=1,y=-1代入29ax ay -=得:a+2a=9,解得:a=3,故选C .【点睛】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值. 5.下列各数中最小的数是( )A .5-B .6-C 37-D 38-【答案】B【解析】直接化简各数,进而得出最小的数.【详解】∵5<6,37-=37-,38-=-2∴5->6-,37->-2∵6>2∴6-<-2,∴6-最小,故选B.【点睛】此题主要考查了实数比较大小,正确化简各数是解题关键.6.4的平方根是( )A .2B .±2C .16D .±16【答案】B【解析】根据平方根的定义,即可。
┃精选3套试卷┃2018届宁波市七年级下学期期末考试数学试题
七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.下列运算正确的是( )A.x6÷x=x6B.x3+x5=x8C.x2 x2=2x4D.(- x2 y)3=-x6 y3【答案】D【解析】根据幂次方计算法则即可解答.【详解】解:①x6÷x=x5,错误.②x3+x5=x3+x5,错误.③x2 x2=x4,错误.④(- x2 y)3=-x6 y3,正确.故选D.【点睛】本题考查幂次方的加减乘除运算,掌握计算公式是解题关键.2.下面四个图形中,∠1与∠2是对顶角的是()A.B.C.D.【答案】D【解析】根据对顶角的定义,可得答案.【详解】解:由对顶角的定义,得D选项是对顶角,故选:D.【点睛】考核知识点:对顶角.理解定义是关键.36小的数是()A.2 B.3 C.4 D.5【答案】A【解析】判断二次根式的大小,6先平方得6,在找到相近的平方数,6的取值范围,即可解题.【详解】∵266=,469<<,∴263<<,∴比实数6小的数是2,故选:A.【点睛】求二次根式的取值范围可利用平方后找到相近的平方数,再将平方数开方即可.4.2019年4月28日,北京世界园艺博览会正式开幕。
在此之前,我国已经举办过七次不同类别的世界园艺博览会,下面是北京,西安,锦州,沈阳四个城市举办的世园会的标志,其中是轴对称图形的是( )A.B.C.D.【答案】B【解析】利用轴对称图形定义即可解答.【详解】解:在平面内一个图形沿一条直线折叠,直线两旁的图形可以完全重合的图形叫做轴对称图形,根据定义只有B满足条件,故选B.【点睛】本题考查轴对称图形的定义,熟悉掌握是解题关键.5.如图,在横线本上面画了两条平行线AB∥CD,则下列等式一定成立的是()A.∠3=2∠1 B.∠3=∠2+90°C.∠2+∠1=90°D.∠3+∠1=180°【答案】D【解析】利用AB∥CD得到∠1=∠4,利用横线都平行得到∠2=∠4,∠3=∠5,则∠1=∠2,从而得到∠1+∠3=180°,∠2+∠3=180°,即可解决问题.【详解】解:如图,∵AB∥CD,∴∠1=∠4,∵横线都平行,∴∠2=∠4,∠3=∠5,∴∠1=∠2,∵∠4+∠5=180°,∴∠1+∠3=180°,∠2+∠3=180°.【点睛】本题考查了平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.6.如图,AE 是ABC 的中线,已知EC 4=,DE 2=,则BD 的长为( )A .2B .3C .4D .6【答案】A 【解析】试题解析:∵AE 是△ABC 的中线,EC=4,∴BE=EC=4,∵DE=1,∴BD=BE-DE=4-1=1.故选A .7.若不等式组220x m x m +<⎧⎨-<⎩的解集为x <2m ﹣2,则m 的取值范围是( ) A .m≤2B .m≥2C .m >2D .m <2【答案】A【解析】根据不等式的性质求出不等式的解集,根据不等式和不等式组解集得出m≥2m -2,求出即可. 【详解】解:220x m x m +<⎧⎨-<⎩①②, 由①得:x<2m-2,由②得:x<m,∵不等式组的解集为x<2m-2,∴m≥2m -2,∴m≤2.【点睛】本题主要考查对不等式的性质,解一元一次不等式(组)等知识点的理解和掌握,能根据题意得出m≥2m -2是解此题的关键.8.若不等式组213x x a->⎧⎨<⎩的整数解共有三个,则a 的取值范围是( ) A .56a <<B .56a <C .56a <D .56a【答案】C【解析】首先确定不等式组的解集,利用含a 的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于a 的不等式,从而求出a 的范围.【详解】解:解不等式2x-1>3,得:x >2,∵不等式组整数解共有三个,∴不等式组的整数解为3、4、5,则5<a ≤6,故选:C .【点睛】本题考查了一元一次不等式组的整数解,正确解出不等式组的解集,确定a 的范围,是解答本题的关键.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了. 9.下列方程的解法中,错误的个数是( )①方程2x-1=x+1移项,得3x=0 ②方程13x -=1去分母,得x-1=3=x=4 ③方程1-2142x x --=去分母,得4-x-2=2(x-1) ④方程1210.50.2x x --+=去分母,得2x-2+10-5x=1 A .1B .2C .3D .4【答案】C【解析】①移项注意符号变化;②去分母后,x-1=1,x=4,中间的等号应为逗号,故错误;③去分母后,注意符号变化.④去分母、去括号、移项、合并同类项、系数化为1,依此即可求解.【详解】解:①方程2x-1=x+1移项,得x=2,即1x=6,故错误; ②方程13x -=1去分母,得x-1=1,解得:x=4,中间的等号应为逗号,故错误; ③方程1-2142x x --=去分母,得4-x+2=2(x-1),故错误;④方程1210.50.2x x--+=去分母,得2(x-1)+5(2-x)=1,即2x-2+10-5x=1,是正确的.错误的个数是1.故选:C.【点睛】本题主要考查解一元一次方程,注意移项、去分母时的符号变化是本题解答的关键.这里应注意③和④在本题中其实进行了两步运算(去分母和去括号),去分母时,如果分子是多项式应先把它当成一个整体带上括号,然后去括号,③在去括号时括号前面是减号,没有改变符号所以错误.10.2的算术平方根是()A.4 B.±4 C.2D.2±【答案】C【解析】根据算术平方根的定义求解即可.【详解】解:2的算术平方根是2故选C.【点睛】本题主要考查了算术平方根的定义,熟练掌握概念是解题的关键.二、填空题题11.如图,△ABC中,AB=4,BC=32,∠ABC=45°,BC、AC两边上的高AD与BE相交于点F,连接CF,则线段CF的长=_____________.【答案】1【解析】分析:首先根据题意得出△ABD为等腰直角三角形,AB=AD=2,然后证明△ADC和△BDF 全等,根据BC的长度得出CD的长度,然后根据Rt△CDF的勾股定理得出答案.详解:∵AB=4,AD⊥BC,∠ABC=45°,∴△ABD为等腰直角三角形,AB=AD=22∵BE⊥AC,∠AFE=∠BFD,∴∠DAC=∠DBF,∴△ADC≌△BDF,∴DF=DC,∵2,∴2∵△CDF为直角三角形,∴2.点睛:本题主要考查的是等腰直角三角形的性质以及三角形全等的判定与性质,难度中等.理解等腰直角三角形的性质是解决这个问题的关键.122,则y x的值为_________【答案】12 【解析】根据非负数性质,求得x 、y 的值,然后代入所求求值即可. 【详解】∵()2x-y 30,10x y ≥+-≥+,()2x-y 310x y +++-=∴3010x y x y -+=⎧⎨+-=⎩, 解得12x y =-⎧⎨=⎩∴y x =2-1=12. 故答案为:12 【点睛】考核知识点:非负数性质,负指数幂.利用非负数性质求解是关键..13.小威到小吃店买水饺,他身上带的钱恰好等于15粒虾仁水饺或20粒韭菜水饺的价钱,若小威先买了9粒虾仁水饺,则他身上剩下的钱恰好可买________粒韭菜水饺.【答案】8【解析】可设1粒虾仁水饺为x 元,1粒韭菜水饺为y 元,由题意可得到y 与x 之间的关系式,再利用整体思想可求得答案.【详解】设1粒虾仁水饺为x 元,1粒韭菜水饺为y 元,则由题意可得15x=20y ,∴3x=4y ,∴15x−9x=6x=2×3x=2×4y=8y ,∴他身上剩下的钱恰好可买8粒韭菜水饺,故答案为:8【点睛】此题考查二元一次方程的应用,解题关键在于列出方程14.如图,象棋盘上,若“将”位于点(1,2)-,“车”位于点(3,2)--,则“马”位于点___.【答案】(4,1)【详解】根据题意,“将”位于点()1,2-,“马”位于点()4,1.故答案为:()4,1.【点睛】本题考查了坐标确定位置,解题关键在于平面内的点与有序实数对一一对应;记住直角坐标系中特殊位置点的坐标特征.15.等腰三角形一腰上的高与另一腰的夹角是20°,则等腰三角形的顶角等于_____.【答案】110°或70°【解析】等腰三角形的高相对于三角形有三种位置关系:三角形内部;三角形的外部;三角形的边上.根据条件可知第三种高在三角形的边上这种情况不成立,因而应分两种情况进行讨论.【详解】当高在三角形内部时(如图1),顶角是70°;当高在三角形外部时(如图2),顶角是110°.故答案为:70°或110°.【点睛】此题主要考查等腰三角形的性质,熟记三角形的高相对于三角形的三种位置关系是解题的关键,本题易出现的错误是只是求出60°一种情况,把三角形简单的认为是锐角三角形.因此此题属于易错题. 16.如图,一只因损坏而倾斜的椅子,从背后看到的形状如图,其中两组对边的平行关系没有发生变化,若∠1=75°,则∠2的大小是_____.【答案】105°【解析】先根据AD ∥BC 求出∠3的度数,再根据AB ∥CD 即可得出结论.【详解】解:如图,∵AD ∥BC ,∠1=75°,∴∠3=∠1=75°,∵AB ∥CD ,∴∠2=180°﹣∠3=180°﹣75°=105°.【点睛】本题考查的是平行线的性质,即两直线平行,同位角相等,同旁内角互补.17.4524'的补角是__________(用度表示)【答案】134.6【解析】利用补角的定义求解即可.【详解】180°-45°24′=134°36′即134.6°【点睛】本题考查补角的定义求解即可,在解题的过程中要注意度、分、秒的计算是60进制.三、解答题18.小明解方程组2?21x yx y+=⎧⎨-=⎩,得到解为5*xy=⎧⎨=⎩,由于不小心,滴上了两滴墨水,刚好遮住了两个数●和*,则数●的值.【答案】19【解析】先把x=5代入第二个方程求出y,再把方程的解x,y代入第一个方程即可得到数●的值.【详解】∵2? 21x yx y+=⎧⎨-=⎩①②把x=5代入②得y=9,把x=5,y=9代入①得数●=2×5+9=19.【点睛】此题主要考查二元一次方程组的解,解题的关键是根据题意代入原方程进行求解.19.某超市店庆期间开展了促销活动,出售A,B两种商品,A种商品的标价为60元/件,B种商品的标价为40元/件,活动方案有如下两种,顾客购买商品时只能选择其中的一种方案:A B方案一按标价的“七折”优惠按标价的“八折”优惠方案二若所购商品达到或超过35件(不同商品可累计),均按标价的“七五折”优惠若某单位购买A种商品x件(x>15),购买B种商品的件数比A种商品件数多10件,求该单位选择哪种方案才能获得更多优惠?【答案】当购买A商品的数量多于20件时,选择方案一,当购买A商品的数量为20件时,选择方案一或方案二都可以,当购买A商品的数量多于15件少于20件时,选择方案二,这样才能获得更多优惠.【解析】某单位购买A种商品x件,则购买B种商品(x+10)件,由于x>15,所以两种商品肯定超过35件,方案二也能采用,按方案一购买花费为y1,按照方案二购买花费y2,求y1﹣y2在自变量x的取值范围的正负情况即可得到答案.【详解】根据题意得:某单位购买A种商品x件,则购买B种商品(x+10)件,按方案一购买花费为:y1=60×0.7x+40×0.8(x+10),按方案二购买花费为:y2=60×0.75x+40×0.75(x+10),y1﹣y2=﹣x+20,∵x>15,∴﹣x<﹣15,∴﹣x+20<5,若y1<y2,则﹣x+20<0,即x>20时,方案一的花费少于方案二,若y1=y2,则﹣x+20=0,即x=20时,方案一的花费等于方案二,若y1>y2,则﹣x+20>0,即15<x<20时,方案二的花费少于方案一,答:当购买A商品的数量多于20件时,选择方案一,当购买A商品的数量为20件时,选择方案一或方案二都可以,当购买A商品的数量多于15件少于20件时,选择方案二,这样才能获得更多优惠.【点睛】本题考查一元一次不等式的应用,正确找出不等量关系,讨论不等式的正负是解题的关键.20.根据图中给出的信息,解答下列问题:(1)放入一个小球水面升高cm,放入一个大球水面升高cm;(2)如果放入大球、小球共10个,且使水面高度不超过50cm,大球最多放入多少个?【答案】(1) 2,3;(2) 4【解析】(1)根据3个小球使水位升高了6cm,2个大球使水位升高了6cm进行解答;(2)设应该放入x个大球,根据题中的不等关系列出一元一次不等式,并解答.【详解】(1) (1)依题意得:32263-=2(cm ) 32262-=3(cm ), 即放入一个小球水面升高 2cm ,放入一个大球水面升高 3cm .故答案是:2;3;(2)设放入大球x 个,由题意得:3x+2(10-x )≤50-26,解得x≤4.答:大球最多可以放入4个【点睛】本题考查了一元一次不等式的应用.解题关键是弄清题意,找到不等关系,列出不等式. 21.分解因式(1)-3m 3+12m(2)2x 2y -8xy +8y(3)a 4+3a 2-4【答案】 (1) -3m (m+2)(m-2),(2)2y(x-2)2,(3)(a 2+4) (a+1) (a-1)【解析】(1)提取-3m 后,再根据平方差公式因式分解;(2)先提取2y ,再根据完全平方公式因式分解;(3)先利用十字相乘法因式分解,再用公式法因式分解.【详解】(1)-3m 3+12m=-3m (m 2-4)=-3m (m+2)(m-2)(2)2x 2y -8xy +8y=2y(x 2-4x+4)=2y(x-2)2(3)a 4+3a 2-4=(a 2-1) (a 2+4)= (a 2+4) (a+1) (a-1)【点睛】此题主要考查因式分解,解题的关键是熟知因式分解的方法.22.解不等式组,并把解集在数轴上表示出来:(1)23120x x +⎧⎨-⎩>< (2)1122x x +⎧-⎪⎨⎪><【答案】(1)-1<x<2(2)x>3【解析】(1)分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.(2)分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.【详解】(1)解不等式2x+3>1,得:x>-1,解不等式x-2<0,得:x<2,则不等式组的解集为-1<x<2,将解集表示在数轴上如下:(2)解不等式x-12x>12,得:x>2,解不等式x+8<4x-1,得:x>3,则不等式组的解集为x>3,将不等式组的解集表示在数轴上如下:【点睛】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.23.(1)如图,△ABC, ∠ABC、∠ACB 的三等分线交于点E、D,若∠1=130°,∠2=110°,求∠A 的度数.(2)如图,△ABC,∠ABC 的三等分线分别与∠ACB 的平分线交于点D,E 若∠1=110°,∠2=130°,求∠A 的度数.【答案】(1)∠A=60°,(2)∠A=60°【解析】(1)由三角形内角和及三等角平分线的定义可得到方程组,则可求得∠ABC+∠ACB ,再利用三角形内角和可求得∠A .(2)由三角形外角可得∠DBC=20°由三等角平分线的定义可得∠ABC=60°,三角形内角和可得∠ECB=30°,角平分线的定义可得∠ACB=60°,由三角形内角和可得∠A=60°.【详解】解:(1)∵∠ABC 、∠ACB 的三等分线交于点 E 、D;ABE EBD DBC x ACE ECD DCB y ∴∠=∠=∠=∠=∠=∠=设22EBC x ECB y ∴∠=∠=, , ∠ABC=3x,∠ACB=3y1+180,2180EBC DCB ECB DBC ∠∠+∠=∠+∠+∠=130+2x+y=180110+2y+x=180⎧∴⎨⎩①②①+②得:240°+3x+3y=360°即3x+3y=120°∴∠ABC+∠ACB=120°∴∠A=180°-(∠ABC+∠ACB)=180°-120°=60°(2)∵∠ABC 的三等分线分别与∠ACB 的平分线交于点 D,E;ABD DBE EBC x ACE DCB y ∴∠=∠=∠=∠=∠=设32ABC x ACB y ∴∠=∠=,710879=1209÷ 【点睛】掌握三角形内角和和外角和以及角的三等分线及角平分线是解题的关键.24.尺规作图:作已知角的平分线,写出作法,并证明(要求保留画图痕迹,先用2B 铅笔画图,然后0.5用毫米碳素笔描黑加粗)已知:AOB ∠求作:AOB的平分线作法:证明:【答案】图见解析;作法见解析;证明见解析【解析】利用基本作图画出OE平分∠AOB,利用三角形全等证明OC为角平分线.【详解】解:作法:先以O为圆心,任意长为半径画弧分别交OA、OB于C、D,然后分别以C、D为圆心,以大于12CD为半径画弧交∠AOB内一点E,则射线OE为所作.证明:由作法得OC=OD,CE=DE,而OE=OE,所以△OCE≌△ODE(SSS),∴∠COE=∠DOE,∴OE平分∠AOB.【点睛】本题考查了作图−基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).25.已知:如图∠1=∠2,∠C=∠D,请证明:∠A=∠F.【答案】证明见解析.【解析】分析:由∠1=∠2,∠1=∠DGH,根据同位角相等,两直线平行,易证得DB∥EC,又由∠C=∠D,易证得AC∥DF,继而证得结论.详解:证明:∵∠1=∠2(已知),又∵∠1=∠DGH(对顶角相等),∴∠2=∠DGH(等量代换).∴DB∥EC(同位角相等,两直线平行).∴∠ABD=∠C(两直线平行,同位角相等)∵∠C=∠D(已知)∴∠ABD=∠D(等量代换)∴AC∥DF (内错角相等,两直线平行)∴∠A=∠F(两直线平行,内错角相等).点睛:本题考查平行线的性质与判定,解题的关键是灵活运用平行线的性质与判定,本题属于基础题型.七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.不等式的解集在数轴上表示正确的是()A.B.C.D.【答案】D【解析】求出不等式的解集,再根据“大于向右,小于向左,不包括端点用空心,包括端点用实心”的原则将解集在数轴上表示出来.【详解】解:解不等式,得:x≥2,表示在数轴上如图:故选:D.【点睛】本题主要考查解不等式得基本能力及在数轴上表示不等式的解集,不等式的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.2.在平面直角坐标系中,点在A.第一象限B.第二象限C.第三象限D.第四象限【答案】B【解析】根据各象限内点的坐标特征解答即可.【详解】点横坐标为负,纵坐标为正,故在第二象限,故选:B.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限;第二象限;第三象限;第四象限.3.《孙子算经》中有“多人共车”问题:“今有三人共车,二车空;二人共车,九人步,问人与车各几何?”若设人数为x,车数为y,所列方程组正确的是()A.2, 329. xyx y⎧-=⎪⎨⎪-=⎩B.2,329.xyy x⎧-=⎪⎨⎪-=⎩C.2,329.xyx y⎧-=⎪⎨⎪-=⎩D.2,329.xyy x⎧-=⎪⎨⎪-=⎩【答案】C【解析】设人数为x,车数为y,根据三人共车,二车空;二人共车,九人步即可列出方程组. 【详解】设人数为x,车数为y,根据题意得2,329.xyx y⎧-=⎪⎨⎪-=⎩故选C.【点睛】此题主要考查二元一次方程的应用,解题的关键是根据题意找到等量关系求解.4.a,b是两个连续整数,若a<11<b,则a+b的值是()A.5 B.6 C.7 D.8【答案】C【解析】试题分析:∵3<11<4,∴a=3,b=4,∴a+b=7,故选C.考点:估算无理数的大小.5.如图,在△ABC中,AC=AD=DB,∠C=70°,则∠CAB的度数为()A.75°B.70°C.40°D.35°【答案】A【解析】利用等腰三角形的性质解决问题即可.【详解】解:∵AC=AD=DB,∴∠C=∠ADC=70°,∠B=∠DAB,∴∠CAD=180°﹣70°﹣70°=40°,∵∠ADC=∠B+∠DAB,∴∠DAB=∠B=35°,∴∠CAB=∠CAD+∠DAB=75°,故选A.【点睛】本题考查等腰三角形的性质,三角形内角和定理,三角形的外角的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.6.下列事件中,是必然事件的是()A.从装有10个黑球的不透明袋子中摸出一个球,恰好是红球B.抛掷一枚普通正方体骰子,所得点数小于7C.抛掷一枚一元硬币,正面朝上D.从一副没有大小王的扑克牌中抽出一张,恰好是方块【答案】B【解析】根据事件发生的可能性大小即可判断.【详解】A. 从装有10个黑球的不透明袋子中摸出一个球,恰好是红球的概率为0,故错误;B. 抛掷一枚普通正方体骰子,所得点数小于7的概率为1,故为必然事件,正确;C. 抛掷一枚一元硬币,正面朝上的概率为50%,为随机事件,故错误;D. 从一副没有大小王的扑克牌中抽出一张,恰好是方块,为随机事件,故错误;故选B.【点睛】此题主要考查事件发生的可能性,解题的关键是熟知概率的定义.7.一个等腰三角形的两条边长分别为3、7,则这个等腰三角形的周长为( )A.13B.17C.13或17D.21或17【答案】B【解析】根据腰为3或7,分类求解,注意根据三角形的三边关系进行判断.【详解】∵等腰三角形的一边长为3,另一边长为7,∴有两种情况:①7为底,3为腰,而3+3=6<7,那么应舍去;②3为底,7为腰,那么7+7+3=17;∴该三角形的周长是7+7+3=17,故选B.【点睛】本题考查了等腰三角形的性质和三角形的三边关系;求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否组成三角形的好习惯,把不符合题意的舍去.8.下列调查方式合适的是()A.为了了解电视机的使用寿命,采用普查的方式B.调查济南市初中学生利用网络媒体自主学习的情况,采用普查的方式C.调查某中学七年级一班学生视力情况,采用抽样调查的方式D.为了了解人们保护水资源的意识,采用抽样调查的方式【答案】D【解析】A、为了了解电视机的使用寿命,采用抽样调查,故本选项错误;B、调查济南市初中学生利用网络媒体自主学习的情况,采用抽样调查,故本选项错误;C、调查某中学七年级一班学生视力情况,采用普查的方式,故本选项错误;D、为了了解人们保护水资源的意识,采用抽样调查的方式,故本选项正确,故选D.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.9.如图所示的运算程序中,若开始输入的x值为48,我们发现第一次输出的结果为24,第二次输出的结果为12, ,则第2018次输出的结果为()A.0 B.3 C.5 D.6【答案】B【解析】根据题意找出规律即可求出答案.【详解】第一次输出为24,第二次输出为12,第三次输出为6,第四次输出为1,第五次输出为6,第六次输出为1,……从第三次起开始循环,∴(2018﹣2)÷2=1008故第2018次输出的结果为:1.故选B.【点睛】本题考查了数字规律,解题的关键是正确理解程序图找出规律,本题属于基础题型.10.用四个完全一样的长方形和一个小正方形拼成如图所示的大正方形,若已知大正方形的面积是196,小正方形的面积是4,若用(),x y x y >表示长方形的长和宽,则下列四个等式中不成立的是( )A .14x y +=B .2x y -=C .22196x y +=D .48xy =【答案】C 【解析】根据大正方形及小正方形的面积,分别求出大正方形及小正方形的边长,然后解出x 、y 的值,即可判断各选项.【详解】由题意得,大正方形的边长为14,小正方形的边长为2∴x+y=14,x−y=2,则142x y x y +=⎧⎨-=⎩ , 解得:86x y =⎧⎨=⎩, 故可得C 选项的关系式符合题意.故选C.【点睛】此题考查二元一次方程组的应用,解题关键在于理解题意找出等量关系.二、填空题题11.已知等式2530m x ++= 是关于x 的一元一次方程,则m=____________.【答案】-1【解析】试题分析:只含有一个未知数,且所含未知数的次数为1的整式方程叫做一元一次方程. 由题意得,.考点:一元一次方程的定义点评:本题属于基础应用题,只需学生熟练掌握一元一次方程的定义,即可完成.12.若1,2x y =⎧⎨=-⎩是关于x ,y 的方程组1,523mx ny x ny -=⎧⎨+=-⎩的解,则m =_____,n =_____. 【答案】-3 2【解析】将1,2x y =⎧⎨=-⎩代入方程组1,523mx ny x ny -=⎧⎨+=-⎩中,得到关于m 、n 的方程组,解方程即可.【详解】∵1,2xy=⎧⎨=-⎩是关于x,y的方程组1,523mx nyx ny-=⎧⎨+=-⎩的解,∴21 543 m nn+=⎧⎨-=-⎩解方程组得:32mn=-⎧⎨=⎩.故答案是:-3,2.【点睛】主要考查方程组的解得概念和解方程组的能力,解题思路是根据题意将方程组的解代入原方程中,即可得出关于m、n的方程组,解方程即可.13.8的平方的倒数的立方根是____________【答案】1 4【解析】分析:由于8的平方等于64,64的倒数是164,然后根据立方根的定义即可求解.详解:∵8的平方等于64,64的倒数是1 64,而14的立方为164,∴8的平方的倒数的立方根是14.故答案为:14.点睛:此题主要考查了立方根的定义和平方运算,解题时首先求出8的平方,然后求其倒数的立方根.14.如图,已知AD∥BC,请添加一个条件,使得△ABC≌△CDA(不添加其它字母及辅助线),你添加的条件是_____.【答案】答案不唯一,如∠B=∠D,AD=BC,AB∥CD等.【解析】由题意得到∠ACB=∠DAC和AC=CA,根据全等三角形的判定(SAS、AAS、ASA)即可得到答案. 【详解】∵AD∥BC,∴∠ACB=∠DAC,而AC=CA,∴当添加BC=DA时,可根据“SAS”判断△ABC≌△CDA;当添加∠BAC=∠DCA或AB∥CD时,可根据“ASA”判断△ABC≌△CDA;当添加∠B=∠D时,可根据“AAS”判断△ABC≌△CDA.故答案为:答案不唯一,如∠B =∠D ,AD =BC ,AB ∥CD 等.【点睛】本题考查全等三角形的判定,解题的关键是掌握全等三角形的判定方法(SAS 、AAS 、ASA ).15.在某次数据分析中,该组数据的最小值是3,最大值是23,若以3为组距,则可分为_组.【答案】7【解析】分析:根据组数=(最大值-最小值) ÷组距计算即可,注意小数部分要进位.详解:在样本数据中最大值为23,最小值为3,它们的差是23-3=20,已知组距为3,那么由于20÷3≈6.67,故可以分成7组.故答案为7.点睛:本题考查的是组数的计算,属于基础题,只要根据组数的定义"数据分成的组的个数称为组数"来解即可.16.如图所示,一个大长方形刚好由n 个相同的小长方形拼成,其上、下两边各有2个水平放置的小长方形,中间恰好用若干个小长方形平放铺满,若这个大长方形的长是宽的1.75倍,则n 的值是__________.【答案】32【解析】分析:依题意,设小长方形的长为a ,宽为b ,则大长方形长为2a ,宽为2b a +,则2 1.75(2)a b a =+解得14a b =,∴大长方形有142432⨯+=(个)小长方形拼成.故答案为:32.点睛:本题考查了由实际问题抽象出二元一次方程,解答本题关进是弄清题意,找出合适的等量关系,列出方程组.17.4x a+2b ﹣5﹣2y 3a ﹣b ﹣3=8是二元一次方程,那么a =_____,b =_____.【答案】2 2【解析】试题解析:根据二元一次方程的定义可知:251{331a b a b +-=--= 解得:2{2a b == 三、解答题18.解不等式组,并把解集在数轴上表示出来.(1)263x125xx-<⎧⎨+≤+⎩①②;(2)3415122x xxx①②≥-⎧⎪⎨->-⎪⎩【答案】(1)不等式组的解集为-3<x≤2,在数轴上表示见解析;(2)不等式组的解集为-1<x≤1,在数轴上表示见解析.【解析】整体分析:分别求出不等式组的解集,再把解集在数轴上表示出来.解:(1)由①得x>-3.由②得x≤2.故此不等式组的解集为-3<x≤2.在数轴上表示如图所示.(2)由①得x≤1.由②得x>-1.故此不等式组的解集为-1<x≤1.在数轴上表示如图所示.19.如图,已知AE∥BF,∠A=60°,点P为射线AE上任意一点(不与点A重合),BC,BD分别平分∠ABP 和∠PBF,交射线AE于点C,点D.(1)图中∠CBD=°;(2)当∠ACB=∠ABD时,∠ABC=°;(3)随点P位置的变化,图中∠APB与∠ADB之间的数量关系始终为,请说明理由.【答案】(1)1;(2)2;(3)2APB ADB∠=∠,见解析.【解析】(1)根据角平分线的定义只要证明∠CBD12=∠ABF即可;(2)想办法证明∠ABC=∠CBP=∠DBP=∠DBF即可解决问题;(3)∠APB=2∠ADB.可以证明∠APB=∠PBF,∠ADB=∠DBF12=∠PBF.【详解】(1)∵AE∥BF,∴∠ABF=180°﹣∠A=120°.又∵BC,BD分别平分∠ABP和∠PBF,∴∠CBD=∠CBP+∠DBP12=(∠ABP+∠PBF)12=∠ABF=1°.故答案为:1.(2)∵AE ∥BF ,∴∠ACB=∠CBF .又∵∠ACB=∠ABD ,∴∠CBF=∠ABD ,∴∠ABC=∠ABD ﹣∠CBD=∠CBF ﹣∠CBD=∠DBF ,∴∠ABC=∠CBP=∠DBP=∠DBF ,∴∠ABC 14=∠ABF=2°. 故答案为:2.(3)∠APB=2∠ADB .理由如下:∵AE ∥BF ,∴∠APB=∠PBF ,∠ADB=∠DBF .又∵BD 平分∠PBF ,∴∠ADB=∠DBF 12=∠PBF 12=∠APB ,即∠APB=2∠ADB .【点睛】本题考查了平行线的性质、角平分线的定义等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型. 20.先化简,再求值:24142a a +--,其中a=2017. 【答案】12019-. 【解析】先对式子进行通分,然后通过约分化简,代入求值即可.【详解】24142a a+--, =41(2)(2)2a a a -+-- =42(2)(2)(2)(2)a a a a a +-+-+- =2(2)(2)a a a -+- =12a -+; 当a=2017时,原式=11201722019-=-+. 【点睛】本题考查了分式的化简求值,在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.21.观察下列各式:()10x -≠()()111x x -÷-=;()()2111xx x -÷-=+; ()()32111xx x x -÷-=++; ()()432111x x x x x -÷-=+++. (1)根据上面各式的规律可得()()111n x x +-÷-=_________;(2)利用(1)的结论化简201820172221++⋯++;(3)若2201810x x x ++++=,求2019x 的值.【答案】(1)11n n x x x -++++;(2)201921-;(3)1 【解析】(1)根据各式规律确定出所求即可;(2)仿照(1)的结论确定出所求即可;(3)已知等式变形后,计算即可求出所求.【详解】(1)(x n+1-1)÷(x-1)=x n +x n-1+…+x+1;故答案为:x n +x n-1+…+x+1;(2)()()20182017201920192221212121++++=-÷-=-;(3)由2201810x x x ++++=可得, ()()2019110x x -÷-=,∴201910x -=,∴20191x =.【点睛】此题考查整式的除法,有理数的混合运算,熟练掌握运算法则是解题的关键.22.在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC 的顶点A ,C 的坐标分别为(﹣4,5),(﹣1,3).(1)写出点B 的坐标,B ;(2)将△ABC 平移得△A′B′C′,点A 、B 、C 的对应点分别是点A′、B′、C′,已知A′(2,3),写出点B′和C′的坐标:B′ 和C′ ;。
《试卷3份集锦》宁波市2018-2019年七年级下学期数学期末考前模拟试题
七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.下列从左边到右边的变形,是因式分解的是( )A .(a-1)(2a a-2)=2a -3a+2B .2a -3a+2=(a-1)(a-2)C .21a -()+(a-1)=2a -aD .2a -3a+2=21a -()-(a-1) 【答案】B【解析】利用因式分解的意义判断即可.【详解】解:a 2-3a+2=(a-1)(a-2)是因式分解.故选:B .【点睛】此题考查了因式分解的意义,熟练掌握因式分解的意义是解本题的关键.2.已知点A (m ,n )在第二象限,则点B (2n-m ,-n+m )在第( )象限.A .一B .二C .三D .四【答案】D【解析】根据第二象限内点的坐标特征,可得m <1,n >1,再根据不等式的性质,可得2n-m >1,-n+m <1,再根据横坐标大于零,纵坐标小于零,可得答案.【详解】解:∵A (m ,n )在第二象限,∴m <1,n >1,∴-m >1,-n <-1.∴2n-m >1,-n+m <1,点B (2n-m ,-n+m )在第四象限,故选:D .【点睛】本题考查了点的坐标,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).3.如图,在ABC △中,8BC =,AB 、AC 的垂直平分线与BC 分别交于E 、F 两点,则AEF 的周长为( )A .4B .8C .10D .12【答案】B【解析】根据垂直平分线的性质得到AE=BE,AF=CF,再根据三角形的周长组成即可求解.【详解】∵AB 、AC 的垂直平分线与BC 分别交于E 、F 两点,∴AE=BE,AF=CF,∴AEF 的周长为AE+EF+AF=BE+EF+AF=BC=8,故选B.【点睛】此题主要考查垂直平分线的性质,解题的关键是熟知垂直平分线的定义.4.下列计算结果正确的是( )A .a 5+a 5=2a 10B .(x 3)3=x 6C .x 5•x =x 6D .(ab 2)3=ab 6【答案】C【解析】直接利用合并同类项法则以及幂的乘方运算法则和积的乘方运算法则、同底数幂的乘法运算法则分别化简得出答案.【详解】A 、a 5+a 5=2a 5,故此选项错误;B 、(x 3)3=x 9,故此选项错误;C 、x 5•x =x 6,正确;D 、(ab 2)3=a 3b 6,故此选项错误,故选C .【点睛】本题考查了合并同类项以及幂的乘方运算和积的乘方运算、同底数幂的乘法运算,正确掌握运算法则是解题关键.5.下列从左到右的变形中,是因式分解的个数为( ) ①;②;③. A .个B .个C .个D .个 【答案】B【解析】根据因式分解的定义逐个判断即可.【详解】解:是因式分解的是②10x 2-5x=5x (2x-1),③2mR+2mr=2m (R+r ),共2个,故选:B .【点睛】本题考查了因式分解的定义,能熟记因式分解的定义的内容是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.6.在平面直角坐标系中,点()2,A m 在第一象限,若点A 关于x 轴的对称点B 在直线1y x =-+上,则m 的值为( )A .3B .2C .1D .-1【答案】C 【解析】根据关于x 轴的对称点的坐标特点可得B (2,−m ),然后再把B 点坐标代入y =−x +1可得m 的值.【详解】解:∵点A (2,m ),∴点A 关于x 轴的对称点B (2,−m ),∵B 在直线y =−x +1上,∴−m =−2+1=−1,∴m =1,故选C .【点睛】此题主要考查了关于x 轴对称的点的坐标特点,以及一次函数图象上点的坐标特点,关键是掌握凡是函数图象经过的点必能满足函数解析式.7.直线AB ,CD 相交于点O ,则对顶角共有( )A .1对B .2对C .3对D .4对【答案】B【解析】根据对顶角的定义解答,注意两直线相交,一个角的对顶角只有一个.【详解】由图可知对顶角有两对分别为∠AOC 与∠BOD ,∠AOD 与∠BOC ; .故选:B .【点睛】本题考查对顶角的概念,熟知对顶角的概念及位置表示是解题的关键.8.如图,能判断直线//AB CD 的条件是( )A .12∠=∠B .34∠=∠C .34180∠+∠=︒D .13180∠+∠=︒【答案】D【解析】根据邻补角互补和条件∠3+∠1=180°,可得∠3=∠5,再根据同位角相等,两直线平行可得结论.【详解】解:∵∠1+∠5=180°,∠3+∠1=180°,∴∠3=∠5,∴AB ∥CD ,故选:D .【点睛】此题主要考查了平行线的判定,关键是掌握:同位角相等,两直线平行.9.判断下列语句,不是命题的是( )A .线段的中点到线段两端点的距离相等B .相等的两个角是同位角C .过已知直线外的任一点画已知直线的垂线D .与两平行线中的一条相交的直线,也必与另一条相交【答案】C【解析】根据命题的定义是判断一件事情的语句,由题设和结论构成,对各个选项进行分析,从而得到答案.【详解】A. 线段的中点到线段两端点的距离相等;是命题,B. 相等的两个角是同位角;是命题,C. 过已知直线外的任一点画已知直线的垂线;不是命题,D. 与两平行线中的一条相交的直线,也必与另一条相交;是命题,故选:C【点睛】本题考查命题的概念以及能够从一些语句找出命题的能力.10.关于x 的不等式组12x x m⎧≤-⎪⎨⎪>⎩的所有整数解的积为2,则m 的取值范围为( )A .m >-3B .m <-2C .m -3≤<-2D .m -3<≤-2 【答案】C【解析】分析:首先确定不等式组的解集,先利用含m 的式子表示,可表示出整数解,根据所有整数解的积为1就可以确定有哪些整数解,从而求出m 的范围.详解:原不等式组的解集为m <x ≤12-.整数解可能为-1,-1,-3…等又因为不等式组的所有整数解的积是1,而1=-1×(-1),由此可以得到-3≤m <-1.故选C .点睛:本题主要考查了一元一次不等式组的整数解,是一道较为抽象的中考题,利用数轴就能直观的理解题意,列出关于m 的不等式组,要借助数轴做出正确的取舍.二、填空题题11.对于任意实数m ,n ,定义一种运算:3m n mn m n =--+※,请根据上述定义解决问题:若关于x 的不等式()27a x <*<的阶级中只有两个整数解,则实数a 的取值范围是__________.【答案】45a ≤<【解析】利用题中的新定义化简所求不等式,求出a 的范围即可.【详解】根据题意得: 2231x x x x =--+=+2※,∵17a x <+<,即16a x -<<解集中有两个整数解,∴314a ≤-<,∴45a ≤<,故答案为:45a ≤<.【点睛】此题考查了一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.12.在平面直角坐标系中,第四象限内的点P 到x 轴的距离是3,到y 轴的距离是4,则点P 坐标为_____.【答案】(4,﹣3)【解析】根据第四象限内点的横坐标是正数,纵坐标是负数,点到x 轴的距离等于纵坐标的长度,到y 轴的距离等于横坐标的长度求出点P 的横坐标和纵坐标,然后写出答案即可.【详解】解:∵点P 在第四象限且到x 轴的距离是3,到y 轴的距离是4,∴点P 的横坐标为4,纵坐标为﹣3,∴点P 的坐标是(4,﹣3).故答案为:(4,﹣3).【点睛】本题考查了点的坐标,熟记点到x 轴的距离等于纵坐标的长度,到y 轴的距离等于横坐标的长度以及第四象限内点的坐标特征是解题的关键.13.计算:2020×2018﹣20192=_____.【答案】-1【解析】首先把2020×2018化成(2019+1)(2019﹣1),然后应用平方差公式计算即可.【详解】解:2020×2018﹣20192=(2019+1)(2019﹣1)﹣20192=20192﹣12﹣20192=﹣1故答案为:﹣1.【点睛】此题主要考查了平方差公式的性质和应用,要熟练掌握,解答此题的关键是要明确:两个数的和与这两个数的差相乘,等于这两个数的平方差.14.如图,直线AB ,CD 被BC 所截,若AB ∥CD ,∠1=45°,∠2=35°,则∠3= 度【答案】80.【解析】根据平行线的性质求出∠C ,根据三角形外角性质求出即可.【详解】∵AB ∥CD ,∠1=45°,∴∠C=∠1=45°.∵∠2=35°,∴∠3=∠2+∠C=35°+45°=80°.故答案为80.15.若等腰三角形的周长为30cm ,其中一边长12cm ,则其腰长为_____cm .【答案】9或1【解析】题目给出等腰三角形有一条边长为1,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【详解】(1)当1cm 是腰长时,底边为30﹣1×2=6(cm ),此时6、1、1三边能够组成三角形,所以其腰长为1cm ;(2)当1cm 为底边长时,腰长为12⨯(30﹣1)=9(cm ),此时9、9、1能够组成三角形,所以其腰长为9cm .故答案为:9或1.【点睛】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键. 16.若点(),P a b 在第三象限,则点()1,1M b a --+在第__________象限.【答案】二【解析】根据第三象限内点的横坐标与纵坐标都是负数判断出a 、b 的正负情况,再判断出点M 的横坐标与纵坐标的正负情况,然后根据各象限内点的坐标特征解答【详解】解:点P(a,b)在第三象限∴a<0;b<0,∴b-1<0;-a+1>0∴点M(b-1,-a+1)在第二象限故答案为:二【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决问题的关键.17.若264a=,则3a=______.【答案】±2【解析】根据平方根、立方根的定义解答.【详解】解:∵264a=,∴a=±8.∴3a=±2故答案为±2【点睛】本题考查平方根、立方根的定义,解题关键是一个正数的平方根有两个,他们互为相反数..三、解答题18.某品牌罐装饮料每箱价格为24元,某商店对该罐装饮料进行“买一送一”促销活动,若整箱购买,则买一箱送一箱,这相当于每罐比原价便宜了2元.问该品牌饮料一箱有多少罐?【答案】6罐【解析】促销钱每罐的价格-2=促销后每罐的价格,根据这个等量关系式列写分式方程求解【详解】设一箱有x罐依据题意,等量关系式为:促销钱每罐的价格-2=促销后每罐的价格即:242422 x x-=解得:x=6答:一箱有6罐饮料【点睛】本题考查了分式方程的应用,求解应用题时,往往分为3个步骤:依据题意列些等量关系式;根据等量关系式,设未知数;列些方程并求解.19.如图,已知AC=BC=CD,BD平分∠ABC,点E在BC的延长线上.(1)试说明CD∥AB的理由;(2)CD是∠ACE的角平分线吗?为什么?【答案】(1)理由见解析;(2)CD是∠ACE的角平分线,理由见解析;【解析】(1)由BD平分∠ABC,可得∠ABD=∠DBC,而BC=CD,可得∠DBC=∠D,从而可得∠ABD=∠D,从而可证CD∥AB;(2)CD是∠ACE的角平分线,由于CD∥AB,可知∠DCE=∠ABE,∠ACD=∠A,而AC=BC,易得∠A=∠ABE,等量代换可证∠ACD=∠DCE,从而可知CD是∠ACE的角平分线.【详解】解:(1)∵BD平分∠ABC(已知),∴∠ABD=∠DBC(角平分线定义),∵BC=CD(已知),∴∠DBC=∠D(等边对等角),∴∠ABD=∠D(等量代换),∴CD∥AB(内错角相等,两直线平行);(2)CD是∠ACE的角平分线.理由如下:∵CD∥AB,∴∠DCE=∠ABE(两直线平行,同位角相等),∠ACD=∠A(两直线平行,内错角相等),∵AC=BC(已知),∴∠A=∠ABE(等边对等角),∴∠ACD=∠DCE(等量代换),即CD是∠ACE的角平分线.考点:1.平行线的判定与性质;2.等腰三角形的性质.20.织里某童装加工企业今年五月份工人每人平均加工童装150套,最不熟练的工人加工的童装套数为平均套数的60%.为了提高工人的劳动积极性,按时完成外商订货任务,企业计划从六月份起进行工资改革.改革后每位工人的工资分二部分:一部分为每人每月基本工资200元;另一部分为每加工1套童装奖励若干元.(1)为了保证所有工人的每月工资收入不低于市有关部门规定的最低工资标准450元,按五月份工人加工的童装套数计算,工人每加工1套童装企业至少应奖励多少元?(精确到分)(2)根据经营情况,企业决定每加工1套童装奖励5元.工人小张争取六月份工资不少于1200元,问小张在六月份应至少加工多少套童装?【答案】(1)该企业每套至少应奖励2.78元;(2)小张在六月份应至少加工200套.【解析】分析:(1)最低工资应考虑最不熟练地工人的工资.关系式为:基本工资200+150×60%×每件奖励钱≥最低工资标准450元,列不等式,解之即可;(2)根据关系式:基本工资200+5×小张加工童装套数≥1200,列不等式,解之即可.详解:(1)设企业每套奖励x元,由题意得:200+60%·150x≥450 ,解得:x≥2.78 ,因此,该企业每套至少应奖励2.78元。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第1页,总8页
…………○…………外…………○…………装…………○…………订…………○…………线…………○…………
姓名:____________班级:____________学号:___________
…………○…………内…………○…………装…………○…………订…………○…………线…………○…………
浙江省宁波市鄞州区2018-2019学年七年级下学期数学期末
考试试卷
考试时间:**分钟 满分:**分
姓名:____________班级:____________学号:___________
题号 一 二 三 四 总分 核分人 得分
注意
事
项:
1、
填
写
答
题
卡
的
内
容
用
2B
铅
笔
填
写
2、提前 15 分钟收取答题卡
第Ⅰ卷 客观题
第Ⅰ卷的注释
评卷人 得分
一、单选题(共10题)
1. 计算20190的结果是( )
A . 2019
B . 1
C . 0
D .
2. 下列方程中,属于二元一次方程的是( ) A . 3a -2b=9 B . 2a+b=6c C . +2=3b D . a -3=4b 2
3. 下列运算正确的是( )
A . a 7+a 6=a 13
B . a 7·a 6=a 42
C . (a 7)6=a 42
D . a 7÷a 6=
4. 下列调查最适合抽样调查的是( )
A . 了解某校体育训练学生的身高
B . 卖早餐的师傅想了解一锅茶鸡蛋的成度
C . 班主任了解全班学生的家庭情况
D . 了解七年级1班全体学生立定跳远成绩
5. 下列等式中,从左到右的变形属于因式分解的是( )
A . x(a -b)=ax -bx
B . x 3+x 2+x=x(x 2+x)
C . x 2-1=(x+1)(x -1)
D . ax+bx -c=x(a+b)+c
答案第2页,总8页
………○…………外…………○…………装…………○…………订…………○…………线…………○…………
※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※
………○…………内…………○…………装…………○…………订…………○…………线…………○…………
6. 已知空气的单位体积质量为1.24×10-3g /cm 3 , 把1.24×1 0-3用小数表示为( )
A . 0.00124
B . 0.0124
C . 0.000124
D . -0.00124
7. 如图,将△ABC 沿射线AB 平移到△DEF 的位置,则以下结论不正确的是( )
A . △C=△F
B . BC△EF
C . AD=BE
D . AC=DB
8. 下列分式约分正确的是( )
A .
B .
C .
D .
9. 一家工艺品厂按计件方式结算工资.暑假里,大学生小华去这家工艺品厂打工,第一天得到工资60元,第二天比第一天多做了10件,得到工资75元.如果设小华第二天做了x 件,依题意列方程正确的是( )
A .
B .
C .
D .
10. 如图,将一张四边形纸片沿EF 折叠,以下条件中能得出AD△BC 的条件个数是( ) ①△2=△4:②△2+△3=180°;③△1=△6:④△4=△5
A . 1
B . 2
C . 3
D . 4。