2016-2017学年人教版八年级数学上册第十三章测试卷 含答案

合集下载

人教版八年级数学第十三章测试卷试题及答案

人教版八年级数学第十三章测试卷试题及答案

人教版八年级数学第十三章测试卷试题一、单选题(共10题;共20分)1.到三角形三个顶点距离相等的点是()A. 三角形三条边的垂直平分线的交点B. 三角形三条角平分线的交点C. 三角形三条高的交点D. 三角形三条边的中线的交点2.如图所示是几种名车的标志,请指出:这几个图案中轴对称图形有()A. 1个B. 2个C. 3个D. 4个3.如图,已知AB=AC,AB=5,BC=3,以AB两点为圆心,大于AB的长为半径画圆弧,两弧相交于点M、N,连接MN与AC相交于点D,则△BDC的周长为()A. 8B. 10C. 11D. 134.如图,在△ABC中,∠A为钝角,AB=20cm,AC=12cm,点P从点B出发以3cm/s的速度向点A运动,点Q同时从点A出发以2cm/s的速度向点C运动,其中一个动点到达端点时,另一个动点也随之停止运动.当△APQ是等腰三角形时,运动的时间是( )A. 2.5sB. 3sC. 3.5sD. 4s5.如图,己知等腰三角形ABC,AB=AC,若以点B为圆心,BC长为半径画弧,交腰AC于点E,则下列结论一定正确的是()A. AE=ECB. AE=BEC. ∠EBC=∠BACD. ∠EBC=∠ABE6.若等腰三角形的顶角为50°,则这个等腰三角形的底角度数为()A. 50°B. 65°C. 80°D. 130°7.如图,点P是∠AOB内任意一点,OP=6cm,点M和点N分别是射线OA和射线OB上的动点,若△PMN 周长的最小值是6 cm,则∠AOB的度数是()A. 15B. 30C. 45D. 608.如图,∠MON内有一点P,P点关于OM的轴对称点是G,P点关于ON的轴对称点是H,GH分别交OM、ON于A、B点,若∠MON=35°,则∠GOH=()A. 60°B. 70°C. 80°D. 90°9.如图,在△ABC中,∠A=60°,BE⊥AC,垂足为E,CF⊥AB,垂足为F,点D是BC的中点,BE,CF交于点M,如果CM=4,FM=5,则BE等于( )A. 14B. 13C. 12D. 1110.如图,等边三角形ABC中,D、E分别为AB、BC边上的两动点,且总使AD=BE,AE与CD交于点F,AG⊥CD 于点G,则=()A. B. 2 C. D.二、填空题(共8题;共24分)11.一等腰三角形一个外角是110°,则它的底角的度数为________.12.若点A(m,n)与点B(-3,2)关于y轴对称,则m+n的值是________.13.如图,一种滑翔伞的形状是左右成轴对称的四边形ABCD,其中∠BAD=150°,∠B=40°,则∠ACD的度数是________°.14.如图,AB是线段CD的垂直平分线,若AC=5cm,BD=3cm,则四边形CADB的周长为________cm.15.如图,在△ABC中,∠ACB=81°,DE垂直平分AC,交AB于点D,交AC于点E.若CD=BC,则∠A等于________度。

第十三章 内能 达标测试卷(含答案)

第十三章  内能 达标测试卷(含答案)

第十三章内能达标测试卷(时间:60分钟分数:100分)一、选择题(每小题4分,共40分)1.如图所示,热熔法连接PPR管时,用热熔器加热粗管端口内层和细管端口外层,然后把细管推进粗管,冷却后两根管子就连接在一起了,并且很难被拉开,这个现象说明( )A.分子是由原子构成的B.分子是运动的C.分子间存在引力D.分子间存在斥力2.如图所示,B瓶装有密度比空气大的红棕色的二氧化氮气体,A瓶装有空气。

抽走玻璃板后,看到两瓶气体会混合在一起,下列说法正确的是( )A.此实验现象能证明气体分子存在引力与斥力B.此实验现象能证明气体扩散与温度有关C.当两瓶气体颜色变均匀后,B瓶里的气体不再向A瓶扩散D.两瓶气体会混合是因为气体分子在不停地做无规则的运动3.下列对生活常见现象的解释不合理的是( )A.河岸边柳絮纷飞——分子在不停地运动B.红墨水在热水中比冷水中扩散得快——温度越高,分子运动越快C.瘪的乒乓球放到热水中会鼓起来——分子间存在间隙D.糖甜盐咸——不同的分子组成的物质具有不同的性质4.汽车紧急刹车时,轮胎温度急剧升高,内能增大,下列实例中改变物体内能的方式与之相同的是( )甲食物放入冰箱内乙冬天搓手取暖丙取暖器取暖丁燃放爆竹A.乙、丁B.甲、丙C.乙、丙D.甲、丁5.一种活塞式点火器如图所示。

它以牛角做套筒,木质推杆前端粘附艾绒。

取火时,一手握住套筒,另一手猛推推杆,艾绒燃烧,随即将杆拔出,口吹立见火苗。

手推杆入筒的过程中,筒内密封气体的( )A.分子动能减小B.密度不变C.分子数增加D.内能增大6.已知水的比热容比煤油大,煤油的比热容比沙石大。

则下列说法正确的是( )A.一杯水倒出一半,杯内剩余水的比热容变小B.水和沙石放出相等热量,水的温度降低较多C.水的比热容表示水的温度升高1 ℃吸收的热量是4.2×103 JD.质量相等的水和煤油,吸收相等热量,煤油温度升高较多7.关于温度、热量和内能,下列说法正确的是( )A.温度高的物体含有热量多B.物体内能增加,一定从外界吸收了热量C.物体吸收了热量,温度一定升高D.温度相同的物体,内能不一定相同8.表中是几种物质的比热容,下列说法不正确的是( )A.制作体温计常用水银做介质,原因之一是水银的比热容小B.北方楼房中的暖气用水做介质,利用了水的比热容大的特性C.水比沙石的比热容大,所以内陆地区的昼夜温差比沿海地区大D.水比冰的比热容大,所以冷却食品时0 ℃的水比0 ℃的冰效果好9.(多选题)2021年10月16日,搭载“神舟十三”号载人飞船的运载火箭精准点火,液氢燃料燃烧,火箭拔地而起。

八年级上册数学第十三章 基础测试卷(含答案)

八年级上册数学第十三章 基础测试卷(含答案)

八年级上册数学第十三章基础测试卷基础巩固1.如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做 ,这条直线就是它的 。

2.把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线 ,这条直线叫做 ,折叠后重合的点是 点,叫做 点。

3.经过线段 这条线段的直线,叫做这条线段的垂直平分线。

4.如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的 。

5.线段垂直平分线上的点与这条线段两个端点的距离 。

6.与一条线段两个端点距离相等的点,在这条线段的 上。

7.点(x ,y)关于x 轴对称的点的坐标为 ;点(x ,y)关于y 轴对称的点的坐标为 。

8.等腰三角形的两个底角 。

9.等腰三角形的顶角 ,底边上的 ,底边上的 相互重合10.如果一个三角形有两个角相等,那么这两个角 也相等。

1L.等边三角形的三个内角都相等,并且每一个内角都等于 。

12.三个角都相等的 是等边三角形;有一个角是60°的是等边三角形。

13.在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的 。

针对训练★知识点1:轴对称图形1.如图所示,判断下列图形是否为轴对称图形,若是,说出它们有几条对称轴。

★知识点2:轴对称2.如图,△ABC 沿着直线MN 折叠后,与△DEF 完全重合。

(1)△ABC 和△DEF 关于直线 对称,直线MN 是 ; (2)点B 的对称点是点 ,点C 的对称点是点 ;(3)连接AD ,线段AD 被直线MN ; (4)PC= , 。

★知识点3:线段的垂直平分线3.如图,在△ABC 中,AB =6cm ,AC =4cm ,BC 的垂直平分线分别交AB 、BC 于D ,E ,则△ACD 的周长为 cm.4.(1)如图①所示,已知线段AB,直线l为线段AB的垂直平分线,垂足为C,P为上的任一点,求证:PA=PB.(2)如图②所示,已知线段AB,PA=PB,求证:点P在线段AB的垂直平分线上.★知识点4:画轴对称图形或成轴对称的两个图形的对称轴5.如图所示的虚线中,是该图形对称轴的是( )A.直线a与直线b B直线a与直线cC.直线a与直线dD.直线a、b、c、d6.画出如图所示图形的对称轴.★知识点5:画轴对称图形7.如图所示,已知△ABC,直线MN.画△A'B'C',使△A'B'C'与△ABC关于直线MN对称.★知识点6:用坐标表示轴对称8.点P(-2,1)关于x轴对称的点的坐标是( )A.(-2,-1)B.(2,-1)C.(2.1)D.(1,2)9.已知△ABC在直角坐标系中的位置如图所示,如果△A′B′C′与△ABC关于y轴对称,那么点A的对应点A'的坐标为( ).A.(-4,2)B.(-4,-2)C.(4,-2)D.(4,2)★知识点7:等腰三角形的性质10.如图,在△ABC中,AB=AC,∠B=35°,则∠C= ()A.17.5°B.20°C.35°D.70°11.下列叙述正确的是( )A.等腰三角形的两个底角相等B.等腰三角形的高、中线、角平分线互相重合C.顶角相等的两个等腰三角形全等D.等腰三角形是锐角三角形12.已知:如图在△ABC中,AB=AC,O是△ABC内一点,且OB=OC,求证:AO⊥BC.★知识点8:等腰三角形的判定13.如图所示,已知BD是△ABC的角平分线,DE∥BC交AB于点E,求证:△BED是等腰三角形。

人教版数学八年级上册 第十三章质量评估测试卷 及答案

人教版数学八年级上册 第十三章质量评估测试卷 及答案

第十三章质量评估测试卷一、选择题(共12小题,总分36分)1.(3分)下列图案是轴对称图形的有( )个.A.1 B.2 C.3 D.42.(3分)点A(-2,5)关于y轴对称的点的坐标是() A.(2,5) B.(-2,-5) C.(2,-5) D.(5,-2)3.(3分)若等腰三角形的顶角为80°,则它的一个底角度数为() A.20°B.50°C.80°D.100°4.(3分)如图,直线m∥n,点A在直线m上,点B,C在直线n上,AB=CB,∠1=70°,则∠BAC等于()A.40°B.55°C.70°D.110°5.(3分)如图,已知DE∥BC,AB=AC,∠1=125°,则∠C的度数是()A.55°B.45°C.35°D.65°6.(3分)若一个等腰三角形的两边长分别为2和4,则这个等腰三角形的周长是为()A.8 B.10 C.8或10 D.6或127.(3分)如图,在四边形ABCD中,AC,BD为对角线,AB=BC=AC=BD,则∠ADC的大小为()A.120°B.135°C.145°D.150°8.(3分)如图所示是4×5的方格纸,请在其中选取一个白色的方格并涂黑,使涂黑部分是一个轴对称图形,这样的涂法有() A.4种B.3种C.2种D.1种9.(3分)如图,在△ABC中,∠B=32°,∠BAC的平分线AD交BC 于点D,若DE垂直平分AB,则∠C的度数为()A.90°B.84°C.64°D.58°10.(3分)如图,在△ABC中,AC=BC,点D在BC的延长线上,AE ∥BD,点E,D在AC同侧,若∠CAE=118°,则∠B的大小为()A.31°B.32°C.59°D.62°11.(3分)如图,等边三角形ABC与互相平行的直线a,b相交,若∠1=25°,则∠2的大小为()A.25°B.35°C.45°D.55°12.(3分)如图,在射线OA,OB上分别截取OA1=OB1,连接A1B1,在B1A1,B1B上分别截取B1A2=B1B2,连接A2B2,…按此规律作下去,若∠A1B1O=α,则∠A10B10O=()A.α210B.α29C.α20D.α18二、填空题(共6小题,总分18分)13.(3分)点M(-2,1)关于x轴的对称点N的坐标是___________.14.(3分)如图,在△ABC中,D M垂直平分AC,交BC于点D,连接AD,若∠C=28°,AB=BD,则∠B的度数为_______度.(第14题)(第15题)(第16题)(第17题)(第18题)15.(3分)如图,在△ABC中,AB<AC,BC边的垂直平分线DE交BC于点D,交AC于点E,BD=4,△ABE的周长为14,则△ABC的周长为_______.16.(3分)如图,AB∥CD,AF=EF,若∠C=62°,则∠A=_______度.17.(3分)如图,在△ABC中,∠BAC=106°,EF、MN分别是AB、AC的垂直平分线,点E、N在BC上,则∠EA N=_______.18.(3分)如图,将数轴从某一点开始折出一个等边三角形ABC,设点A表示的数为x-3,点B表示的数为2x+1,点C表示的数为-4,则x的值等于_______,若将△ABC向右滚动,数字2 012对应的点将与△ABC的顶点_______重合.三、解答题(共8小题,总分66分)19.(6分)如图,在△ABC中,AD平分∠BAC交BC于点D,过点D 作DE∥AB交AC于点E.求证:AE=DE.(第19题)20.(6分)如图,点D、E在△ABC的BC边上,AB=AC,AD=AE.求证:BD=CE.(第20题)21.(8分)如图,在正方形网格中,每个小正方形的边长都为1,网格中有一个格点△ABC(即三角形的顶点都在格点上).(1)△ABC的面积为_______;(2)在图中作出△ABC关于直线MN的对称图形△A′B′C′.(3)利用网格纸,在MN上找一点P,使得P B+P C的距离最短.( 保留痕迹)(第21题)22.(8分)如图,在△ABC中,AB=AC,AD是BC边上的高,过点C 作CE∥AB交AD的延长线于点E,求证:CE=AB.(第22题)23.(8分)如图,在△ABC中,AB=AC,∠BAC=120°,AD⊥BC,垂足为G,且AD=AB,∠EDF=60°,其两边分别交边AB,AC于点E,F.求证:(1)△ABD是等边三角形;(2)BE=AF.(第23题)24.(10分)如图,在等边△ABC中,∠ABC与∠ACB的平分线相交于点O,且OD∥AB,OE∥AC.(第24题)(1)试判断△ODE的形状,并说明你的理由;(2)线段BD、DE、EC三者有什么关系?写出你的判断过程.25.(10分)如图,点O是等边△ABC内一点,∠AOB=110°,∠BOC =α.以OC为一边作等边三角形OCD,连接AC、AD.(1)当α=150°时,试判断△AOD的形状,并说明理由;(第25题)(2)探究:当α为多少度时,△AOD是等腰三角形?26.(10分)如图①,AB=AC,BD、CD分别平分∠ABC和∠ACB.问:(答题时,注意书写整洁)(1)图①中有几个等腰三角形?(写出来,不需要证明)(2)过D点作EF∥BC,交AB于E,交AC于F,如图②,图中增加了几个等腰三角形,选一个进行证明.(3)如图③,若将题中的△ABC改为不等边三角形,其他条件不变,图中有几个等腰三角形?线段EF与BE、CF有什么关系?(写出来,不需要证明)(第26题)答案一、1.B 2.A 3.B 4.C 5.A 6.B7.D8.B9.B 10.A11.B12.B二、13. (-2,-1)14. 6815. 22 16.3117. 32°18. -3;C三、19. 证明:∵AD平分∠BAC交BC于点D,∴∠BAD=∠EAD,∵DE∥AB,∴∠BAD=∠ADE,∴∠EAD=∠ADE,∴AE=DE.20.证明:如答图,过点A作A P⊥BC于P.∵AB=AC,∴B P=P C,∵AD=AE,∴D P=P E,∴B P-D P=P C-P E,∴BD=CE.21.解:(1)4(2)如答图,△A′B′C′即为所求;(3)如答图,点P即为所求.22.证明:∵AB =AC ,AD 是BC 边上的高,∴∠BAE =∠CAE .∵CE ∥AB ,∴∠E =∠BAE .∴∠E =∠CAE .∴CE =AC .∵AB =AC ,∴CE =AB .23.证明:(1)∵AB =AC ,AD ⊥BC ,∴∠BAD =∠DAC =12∠BAC ,∵∠BAC =120°,∴∠BAD =∠DAC =12×120°=60°,∵AD =AB ,∴△ABD 是等边三角形;(2)∵△ABD 是等边三角形,∴∠ABD =∠ADB =60°,BD =AD . ∵∠EDF =60°,∴∠BDE =∠ADF ,在△BDE 与△ADF 中,⎩⎪⎨⎪⎧∠DBE =∠DAF =60°,BD =AD ,∠BDE =∠ADF ,∴△BDE ≌△ADF (ASA ),∴BE =AF .24.解:(1)△ODE 是等边三角形,理由如下:∵△ABC 是等边三角形,∴∠ABC =∠ACB =60°,∵OD ∥AB ,OE ∥AC ,∴∠ODE =∠ABC =60°,∠OED =∠ACB =60°.∴∠DOE =60°∴△ODE 是等边三角形.(2)BD =DE =EC ,∵OB 平分∠ABC ,且∠ABC =60°,∴∠OBD =∠ABO =30°,∵OD ∥AB ,∴∠BOD =∠ABO =30°,∴∠DBO =∠DOB ,∴DB =DO ,同理,EC =EO ,∵DE =OD =OE ,∴BD =DE =EC .25.解:(1)△AOD 是直角三角形.理由如下:∵△OCD 、△ABC 是等边三角形,∴OC =CD ,BC =AC ,∠ACB =∠OCD =60°,∴∠BCO =∠ACD ,在△BOC 与△ADC 中,∵⎩⎪⎨⎪⎧OC =DC ,∠BCO =∠ACD ,BC =AC ,∴△BOC ≌△ADC ,∴∠BOC =∠ADC ,∵∠BOC =α=150°,∠ODC =60°,∴∠ADO =150°-60°=90°, ∴△AOD 是直角三角形;(2)由(1)知,△BOC ≌△ADC ,∴∠CBO =∠CAD .设∠CBO =∠CAD =a ,∠ABO =b ,∠BAO =c ,∠CAO =d , 则a +b =60°,b +c =180°-110°=70°,c +d =60°,∴b -d =10°,∴(60°-a )-d =10°,∴a +d =50°,即∠DAO =50°,综上,当α为110°、125°、140°时,△AOD 是等腰三角形.26.解:(1)有两个等腰三角形:△ABC ,△BDC .(2)增加了三个等腰三角形:△EBD ,△FDC ,△AEF ,选△EBD 进行证明.∵EF ∥BC ,∴∠EDB =∠DBC ,∵BD 平分∠ABC ,∴∠DBE =∠DBC ,∴∠DBE =∠EDB ,∴EB =ED ,∴△EBD 为等腰三角形.(3)有两个等腰三角形:△EBD ,△FDC .EF =BE +CF .。

八年级初二上册数学 人教版单元测试《轴对称》 练习试题 测试卷(含答案)(1)

八年级初二上册数学 人教版单元测试《轴对称》 练习试题 测试卷(含答案)(1)

人教版八年级数学上册 《第十三章 轴对称》单元测试卷一、选择题(共8小题,4*8=32)1.下面四幅图是我国传统文化与艺术中的几个经典图案,其中不是轴对称图形的是( )2.图中由“○”和“□”组成轴对称图形,该图形的对称轴是直线( )A .l 1B .l 2C .l 3D .l 43.下列说法正确的是( )A .等腰三角形的高、中线、角平分线互相重合B .顶角相等的两个等腰三角形全等C .等腰三角形的两个底角相等D .等腰三角形一边不可以是另一边的2倍4.如图,在Rt △ABC 中,∠C =90°,∠B =15°,DE 垂直平分AB 交BC 于点E ,BE =4,则AC 的长为( )A .2B .3C .4D .以上都不对5.如图,在△ABC 中,AB =AC ,∠A =36°,BD ,CE 分别为∠ABC 与∠ACB 的角平分线,BD ,CE 相交于点F ,则图中的等腰三角形有( )A .6个B .7个C .8个D .9个6.如图,在已知的△ABC 中,按以下步骤作图:①分别以点B ,C 为圆心,以大于12 BC 的长为半径作弧,两弧相交于两点M ,N ;②作直线MN 交AB 于点D ,连接CD .若CD =AC ,∠A =50°,则∠ACB 的度数为( )A.90° B.95° C.100° D.105°7.如图,已知S△ABC=12,AD平分∠BAC,且AD⊥BD于点D,则S△ADC的值是( )A.10 B.8 C.6 D.48.在平面直角坐标系xOy中,已知点A(2,-2),在y轴上确定一点P,使△AOP为等腰三角形,则符合条件的点P有()A.1个B.2个C.3个D.4个二、填空题(共6小题,4*6=24)9.如图,△ABC沿着直线MN折叠后,与△DEF完全重合,AC,DF交于点P.△ABC与△DEF 关于直线_______对称,直线MN是_________;10.如图,A,B,C三点在同一条直线上,∠A=50°,BD垂直平分AE,垂足为点D,则∠EBC的度数为_____.11.如图,AD是△ABC的中线,∠ADC=60°,BC=6,把△ABC沿直线AD折叠,点C 落在C′处,连接BC′,则BC′的长为________.12.已知a>0,b<0,则点P(a+1,b-1)关于y轴的对称点一定在第__ __象限.13.如图,在三角形纸片ABC中,∠C=90°,∠A=30°,AC=6,折叠该纸片,使点C落在AB边上的点D处,折痕BE与AC交于点E,则折痕BE的长为__ __.14.如图,在四边形ABCD中,AB=BC=CD=AD,点D到AB的距离为3,∠BAD=60°,点F为AB的中点,点E为AC上的任意一点,则EF+EB的最小值为________.三、解答题(共5小题,44分)15.(6分) 如图,在△AOB中,点C在OA上,点E,D在OB上,且CD∥AB,CE∥AD,AB=AD,求证:△CDE是等腰三角形.16.(8分) 如图,六边形ABCDEF是轴对称图形,CF所在的直线是它的对称轴,若∠AFC +∠BCF=150°,求∠AFE+∠BCD的大小.17.(8分) 如图,在△ABC中,AB=AC,D为BC边上一点,∠B=30°,∠DAB=45°.(1)求∠DAC的度数;(2)求证:DC=AB.18.(10分) 如图,已知点B,C,D在同一条直线上,△ABC和△CDE都是等边三角形,BE交AC于点F,AD交CE于点H.(1)求证△BCE≌△ACD;(2)求证CF=CH;(3)判断△CFH的形状并说明理由.19.(12分) (1)如图①,在四边形ABCD中,AB∥CD,点E是BC的中点,若AE是∠BAD 的平分线,试判断AB,AD,DC之间的等量关系.解决此问题可以用如下方法:延长AE交DC的延长线于点F,易证△AEB≌△FEC 得到AB=FC,从而把AB,AD,DC转化在一个三角形中即可判断.因此,AB,AD,DC之间的等量关系是__ __;(2)问题探究:如图②,在四边形ABCD中,AB∥CD,AF与DC的延长线交于点F,点E是BC的中点,若AE是∠BAF的平分线,试探究AB,AF,CF之间的等量关系,并证明你的结论.参考答案1-4DCCA 5-8CDCD9.MN,对称轴10.100°11.312.三13.414.315.解:∵CD∥AB,∴∠CDE=∠B.又∵CE∥AD,∴∠CED=∠ADB,又AB=AD,∴∠B=∠ADB,∴∠CDE=∠CED,∴△CDE是等腰三角形16.解:∵六边形ABCDEF是轴对称图形,CF所在的直线是它的对称轴,∠AFC+∠BCF =150°,∴∠AFC=∠EFC,∠BCF=∠DCF,∴∠AFE+∠BCD=2(∠AFC+∠BCF)=300°17.解:(1)∵AB=AC,∴∠B=∠C=30°,∴∠BAC=120°,∠DAC=∠BAC-∠BAD=120°-45°=75°(2)∵∠ADC=∠B+∠DAB=75°,∴∠DAC=∠ADC,∴DC=AC,又∵AB=AC,∴DC=AB18.(1)证明:∵△ABC和△CDE都是等边三角形,∴BC=AC,CE=CD,∠ACB=∠ECD =60°.∴∠BCE=60°+∠ACE=∠ACD.∴△BCE≌△ACD(SAS).(2)证明:∵△BCE≌△ACD,∴∠FBC=∠HAC.∵∠ACB=60°,∠FCH=180°-∠ACB -∠ECD=60°,∴∠BCF=∠ACH.又∵BC=AC,∴△BCF≌△ACH(ASA).∴CF=CH.(3)解:△CFH是等边三角形.理由:∵CF=CH,∠FCH=60°,∴△CFH是等边三角形.19.解:(1)AD=AB+DC(2)AB=AF+CF.证明如下:如图,延长AE交DF的延长线于点G,∵AB∥DC,∴∠BAE =∠G,又∵BE=CE,∠AEB=∠GEC,∴△AEB≌△GEC(AAS),∴AB=GC.∵AE是∠BAF的平分线,∴∠BAG=∠FAG,∵∠BAG=∠G,∴∠FAG=∠G,∴AF=FG.∵CG=FG+CF,∴AB=AF+CF。

最新人教版八年级上册数学第十三章水平测试卷

最新人教版八年级上册数学第十三章水平测试卷

AC=AD,AB∥CD,则∠D的度数为
( B)
A. 40°
B. 50°
C. 55°
D. 65°
6. 如图13-4,在△ABC中,AB=AC,以点B为圆心,BC长为 半径画孤,交AC于点D,则下列结论一定正确的是 ( C ) A. AD=DC B. AD=BD C. ∠DBC=∠A D. ∠DBC=∠ABD
八年级·上册·配人教版 测试卷
第十三章水平测试卷
一、选择题(本大题共10小题,每小题3分,共30分)
1. 下列图形是轴对称图形的是
(B
)
A
B
C
D
2. 在平面直角坐标系中,点M(-3,-6)关于y轴对称的点的A坐
标为
(
)
ቤተ መጻሕፍቲ ባይዱ
3. 如图13-1,∠A=30°,∠C′=60°,△ABC与△A′B′C′
关于直线l对称,则∠B的度数为 A. 30°
在△PAM和△PBN中,
∴△PAM≌△PBN(SAS). ∴AM=BN.∴BN=AM=AB+BM.
(3)证明:∵△PAB是等边三角形, ∴AB=PB,∠ABP=60°. ∵BM=AB, ∴PB=BM.∴∠BPM=∠PMB. ∵∠ABP=60°, ∴∠BPM=∠PMB=30°. ∵△PMN是等边三角形, ∴∠PMN=60°.∴∠AMN=90°.∴MN⊥AB.
7. 如图13-5,在△ABC中,AB=AC,AD=AE,∠B=∠DAE=36°
,则图中等腰三角形共有
(D
)
A. 3个
B. 4个
C. 5个
D. 6个
8. 如图13-6,△ABC是等边三角形,点D是AC的中点,DE⊥BBC ,CE=3,则AB等于

人教版初中八年级上册数学第十三章测试卷含答案解析和命题双向细目表-八上13

人教版初中八年级上册数学第十三章测试卷含答案解析和命题双向细目表-八上13

人教版数学八年级上册第13单元《轴对称》测试考生须知:●本试卷满分120分,考试时间100分钟。

●必须使用黑色字迹的钢笔或签字笔书写,字迹工整,笔迹清楚。

●请在试卷上各题目的答题区域内作答,选择题答案写在题中的括号内,填空题答案写在题中的横线上,解答题写在题后的空白处。

●保持清洁,不要折叠,不要弄破。

一.选择题:本大题有10个小题,每小题3分,共30分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.下列图案中,是轴对称图形的是()A. B. C. D.2.在平面直角坐标系中,点(3, -2)关于y轴对称的点的坐标是()A.(3,2)B. (-3,2)C. (-3,-2)D. (3,-2)3.若等腰三角形的周长为25cm,一边为11cm,则腰长为()A.11cmB.7cm或11cmC.7cmD.3cm或11cm4.等腰三角形是轴对称图形,它的对称轴是()A.中线B.底边上的中线C.中线所在的直线D.底边上的中线所在的直线5.三个等边三角形的摆放位置如图所示,若∠1+∠2=125°,则∠3的度数为()A.85°B.55°C.45°D.25°6.如图,在△ABE 中,∠E=20°, AE 的垂直平分线MN 交BE 于点C ,且AB=CE ,则∠B 的度数是( )A.40°B.60°C.50°D.55°7.如图,已知直线m 是正五边形ABCDE 的对称轴,且直线m 过点A ,则∠1的度数为( )A.36°B.70°C.72°D.不确定8.如图,将边长为1的正方形OABC 沿x 轴正方向连续翻转2020次,点A 依次落在点A 1、A 2、 A 3、A 4....A 2020的位置上,则点A 2020的坐标为( )A.(2019,0)B.(2019,1)C.(2020,0)D.(2020,1)9.在△ABC 中,AB=BC ,点D 在AC 上,BD=6cm ,E ,F 分别是AB ,BC 边上的动点,△DEF 周长的最小值为6cm ,则∠ABC=( )A.20°B.25°C.30°D.35°10.如图,线段AB ,DE 的垂直平分线交于点C ,且∠ABC=∠EDC=72°,∠AEB=92°,则∠EBD 的度数为( )第5题 第6题第7题第9题 第8题 第10题A.168°B.158°C.128°D.118°二.填空题:本大题有6个小题,每小题4分,共24分。

第13章 轴对称 人教版数学八年级上册单元测试卷(含答案)

第13章 轴对称 人教版数学八年级上册单元测试卷(含答案)

第十三章 轴对称时间:60分钟 满分:100分一、选择题(本大题共10小题,每小题3分,满分30分.每小题有四个选项,其中只有一个选项符合题意)1.(2022·辽宁盘锦双台子区期末)下列由黑白棋子摆成的图案中,是轴对称图形的是( ) A B C D2.(2022·福建福州鼓楼区期中改编)在平面直角坐标系中,若点(2,m)与点(n,3)关于x 轴对称,则(m+n)2 023的值为( )A.0B.-1C.1D.32 0233.如图是3×3的正方形网格,其中已有2个小方格被涂成了黑色.现在要从编号为①—④的小方格中选出1个也涂成黑色,使黑色部分依然是轴对称图形,不能选择的是( )A.①B.②C.③D.④4.(2022·四川遂宁期末)若等腰三角形的一个外角等于70°,则它的底角的度数为( ) A.35° B.70° C.110° D.55°5.(2022·河南周口期末)元旦联欢会上,同学们玩抢凳子游戏,在与A,B,C三名同学距离相等的位置放一个凳子,谁先抢到凳子谁获胜.如果将A,B,C三名同学所在位置看作△ABC的三个顶点,那么凳子应该放在△ABC的( )A.三边中线的交点处B.三边垂直平分线的交点处C.三边上高的交点处D.三条角平分线的交点处6.(2022·山东菏泽期中)如图,在△ABC中,AB=AC,AD,BE分别是△ABC的中线和角平分线.若∠CAD=20°,则∠ABE的度数为( ) A.20° B.35° C.40° D.70°(第6题) (第7题)7.如图,直线a,b相交形成的夹角中,锐角为52°,交点为O,点A在直线a上,直线b 上存在点B,使以点O,A,B为顶点的三角形是等腰三角形,这样的点B有( )A.4个B.3个C.2个D.1个8.(2022·广东广州天河区期末)在△ABC中,AB=AC,∠A=36°,若按如图所示的尺规作图方法作出线段BD,则下列结论错误的是( )A.AD=BDB.∠BDC=72°C.S△ABD∶S△BCD=BC∶ACD.△BCD的周长=AB+BC9.(2022·山东烟台期末)如图,∠AOB=60°,点P在射线OA上,OP=22,点M,N在射线OB上(点M在点N的左侧),且PM=PN.若MN=4,则OM的长为( ) A.7 B.8 C.9 D.11(第9题) (第10题) 10.(2022·辽宁大连期末)如图,∠ABC=30°,点D是∠ABC内部的一点,连接BD.若BD=1m,点E,F分别是边BA,BC上的动点,则△DEF的周长的最小值为( )A.0.5mB.1mC.1.5mD.2m二、填空题(本大题共6小题,每小题3分,共18分)11.新风向开放性试题汉字是世界上最古老的文字之一,字形结构体现人类追求均衡对称、和谐稳定的天性,黑体的汉字“王”“中”“田”等都是轴对称图形,请再写出两个这样的汉字: .12.(2022·安徽合肥庐阳区期末改编)如图,在Rt△ABC中,∠C=90°,∠A=30°,线段AB的垂直平分线交AB于点D,交AC于点E,连接BE.若CE=3,则AE= .(第12题) (第13题)13.如图,在△ABC中,AB=AD=DC,若∠BAD=24°,则∠C的度数为 .14.新风向新定义试题(2021·江苏苏州期末)定义:等腰三角形的一个底角与其顶角的度数的比值k(k>1)称为这个等腰三角形的优美比.若在等腰三角形ABC中,∠A=36°,则它的优美比为 .15.(2022·河南济期末)在平面直角坐标系中,对△ABC进行如图所示的轴对称变换.若原来点A的坐标是(a,b),则经过第2 023次变换后,点A所对应的坐标是 .16.(2021·北京西城区期末)如图,△ABC是等边三角形,AD⊥BC于点D,DE⊥AC于三、解答题(共6小题,共52分)17.(6分)(2022·湖北十堰期末节选)如图,△ABC的顶点A,B,C都在小正方形的格点上,利用网格线按下列要求画图.(1)画出△A1B1C1,使它与△ABC关于直线l成轴对称;(2)在直线l上找一点P,使点P到点A,B的距离之和最短.(要求:不写作法,保留作图痕迹)18.(8分)(2022·湖北十堰郧阳区期中改编)某市发生地震后,为了抢救伤员,一架救援直升机从该市A地起飞,运送一批地震伤员沿正北方向到机场N,如图.上午8时,直升机从A地出发,以200 km/h的速度向正北方向飞行,9时到达B地,此时,机场的导航站传来信息:在C处有一座高山,因受天气影响,高山周围80 km内能见度低,飞行时会遇到危险.经测量得∠NAC=15°,∠NBC=30°.问该直升机继续向机场N飞行是否有危险,请说明理由.19.(8分)新风向开放性试题(2022·江苏南京鼓楼区期中)证明:有两个角相等的三角形是等腰三角形.已知:如图,在△ABC中, .求证: .证明:20.(8分)如图,在等边三角形ABC的外侧作直线AP,点C关于直线AP的对称点为点D,连接AD,BD,其中BD交直线AP于点E.(1)依题意补全图形;(2)若∠PAC=15°,求∠AEB的度数;21.(10分)新风向探究性试题(2022·河北石家庄裕华区期末)【问题】如图,在△ABC中,点D为BC边上一点,BD=BA.EF垂直平分AC,交AC 于点E,交BC于点F,连接AD,AF.若∠B=30°,∠BAF=90°,求∠DAC的度数.【探究】如果把【问题】中的条件“∠B=30°”去掉,其他条件不变,那么∠DAC的度数会变吗?请说明理由.22.(12分)如图,在△ABC中,AB=BC=AC=12 cm,现有两点M,N分别从点A,B同时出发,沿三角形的边运动,已知点M的速度为1 cm/s,点N的速度为2 cm/s.当点N 第一次到达点B时,M,N同时停止运动.(1)当点M,N运动几秒时,M,N两点重合?(2)当点M,N运动几秒时,可得到等边三角形AMN?(3)当点M,N在BC边上运动时,能否得到以MN为底边的等腰三角形AMN?如果能,请求出此时M,N运动的时间.第十三章 轴对称选择填空题答案速查12345678910D B D A B B A C C B11.甲,本(答案不唯一)12.613.39°14.215.(-a,b)16.181.D高分锦囊判断一个图形是不是轴对称图形,关键看能否找到这样一条直线,使这个图形沿这条直线折叠,直线两旁的部分能够互相重合.2.B ∵点(2,m)与点(n,3)关于x轴对称,∴m=-3,n=2,∴(m+n)2 023=(2-3)2 023=-1.3.D 图示速解如图,将编号为④的小方格涂成黑色,黑色部分不是轴对称图形.4.A 由题意可得,与等腰三角形的这个外角相邻的内角等于110°.∵三角形的内×(180°-110°)=35°.角和为180°,∴底角不可能等于110°,∴底角度数为125.B ∵三角形的三边垂直平分线的交点到三角形三个顶点的距离相等,∴凳子应放在△ABC的三边垂直平分线的交点处.6.B ∵AD是△ABC的中线,AB=AC,∠CAD=20°,【关键】等腰三角形的“三线合一”∴∠CAB=2∠CAD=40°,∴∠ABC=1×(180°-40°)=70°.∵BE是△ABC的角平分线,2∴∠ABE=1∠ABC=35°.2一题多解∵AD是△ABC的中线,AB=AC,∠CAD=20°,∴AD⊥BC,∴∠C=90°-20°=70°,∴∠ABC=∠C=70°.又BE是△ABC的角平分线,∴∠ABE=1∠ABC=35°.27.A 图示速解如图,要使△OAB为等腰三角形,应分三种情况讨论:①当OB=AB时,作线段OA的垂直平分线,与直线b的交点为B1;②当OA=AB时,以点A为圆心,OA 的长为半径作圆,与直线b交于点B2;③当OA=OB时,以点O为圆心,OA的长为半径作圆,与直线b交于点B3,B4.故选A.8.C ∵AB=AC,∠A=36°,∴∠ABC=∠C=72°.由作图痕迹可知BD平分∠ABC∴∠DBC=∠ABD=∠A=36°,【关键】由尺规作图可以得出BD平分∠ABC∴AD=BD,∠BDC=72°.故A,B选项不符合题意.由以上可知∠C=∠BDC,∴BD=BC,∴AD=BC.∵S△ABD∶S△BCD=AD∶CD,∴S△ABD∶S△BCD=BC∶CD.【关键】两三角形同高不同底故C选项符合题意.∵BD=AD,△BCD的周长=BC+CD+BD,∴△BCD的周长=BC+CD+AD=BC+AC=AB+BC.故D选项不符合题意.7.C 如图,过点P作PC⊥OB于点C,∵∠AOB=60°,∴∠OPC=90°-∠AOB=30°.∵OP=22,∴OC=1OP=11.∵2MN=2,∴OM=OC-MC=11-2=9.PM=PN,MN=4,∴MC=1210.B (转化思想)如图,作点D关于AB的对称点G,作点D关于BC的对称点H,连接GH交AB于点E,交BC于点F,此时△DEF的周长有最小值,连接GB,BH.由线段垂直平分线的性质可得,GE=ED,DF=FH,由轴对称的性质得BG=BD,BD=BH,∴ED+DF+EF=GE+EF+FH=GH,此时△DEF的周长最小值为GH.∵∠GBA=∠ABD,∠DBC=∠CBH,BD=m,∴∠GBH=2∠ABC=2×30°=60°,∴△GBH是等边三角形,∴GH=BG=BD=m,∴△DEF的周长的最小值为m.【关键】发现△GBH是等边三角形11.甲,本(答案不唯一,只要是轴对称图形即可)12.6 ∵∠C=90°,∠A=30°,∴∠CBA=60°.∵DE是线段AB的垂直平分线,∴BE=AE,∴∠ABE=∠A=30°,∴∠CBE=60°-30°=30°.∵∠C=90°,CE=3,∴BE=2CE=2×3=6,∴AE=6.13.39° ∵AB=AD,∠BAD=24°,∴∠B=∠ADB=1×(180°-24°)=78°.2又AD=DC ,∴∠C=∠CAD=12∠ADB=12×78°=39°.14.2 (分类讨论思想)当∠A 为顶角时,则底角∠B=∠C=72°,此时,优美比=72°36°=2;当∠A 为底角时,则顶角为108°,此时,优美比=36°108°=13(不合题意,舍去).15.(-a ,b ) 第1次变换后,点A 在第四象限;第2次变换后,点A 在第三象限;第3次变换后,点A 在第二象限;第4次变换后,点A 在第一象限,回到原始位置,…,以此类推,每4次变换为一组循环.因为2 023÷4=505……3,所以第2 023次变换后,点A 在第二象限,坐标为(-a ,b ).16.18 ∵△ABC 是等边三角形,∴∠C=∠BAC=60°.∵AD ⊥BC ,∴BD=CD ,∠DAC=12∠BAC=30°.∵AD=12,∴DE=12AD=6.∵DE ⊥AC ,∴∠EDC=90°-∠C=90°-60°=30°,∴EC=12DC ,∴BC=4EC.∵S △EDC =12ED ·EC=12×6×EC=3EC ,S △ABC =12AD×BC=12×12×BC=6BC=24EC ,∴S △EDCS △ABC =3EC24EC =18.17.【参考答案】(1)如图,△A 1B 1C 1即为所求作.(3分)(2)如图,点P 即为所求作.(6分)18.【参考答案】该直升机继续向机场N 飞行无危险.(1分)理由:如图,过点C 作CD ⊥AN 于点D ,∵∠NAC=15°, ∠NBC=30°,∴∠ACB=15°,CD=12BC ,∴∠ACB=∠NAC ,∴BC=AB.(5分)由题意可得,AB=200 km,∴BC=200 km,∴CD=100 km.∵100>80,∴该直升机继续向机场N飞行无危险.(8分)19.【参考答案】已知:如图,在△ABC中,∠B=∠C.(2分)求证:△ABC是等腰三角形.(4分)证明:如图,过点A作AD⊥BC,垂足为点D.∵AD⊥BC,∴∠ADB=∠ADC=90°.在△ABD和△ACD中,∠B=∠C,∠ADB=∠ADC,AD=AD,∴△ABD≌△ACD(AAS),∴AB=AC,∴△ABC是等腰三角形.(8分)20.【参考答案】(1)补全图形如图所示. (3分) (2)在等边三角形ABC中,AC=AB ,∠BAC=60°.由对称可知AD=AC ,∠PAD=∠PAC=15°,∴∠BAD=90°,AB=AD ,∴∠ABD=∠D=45°,∴∠AEB=∠D+∠PAD=60°.(8分)21.思路导图【参考答案】【问题】∵AB=BD ,∠B=30°,∴∠BAD=∠ADB=180°―30°2=75°.∵∠BAF=90°,∴∠AFB=90°-30°=60°.∵EF 垂直平分AC ,∴∠CAF=∠C.∵∠AFB=∠C+∠CAF=2∠C ,∴∠C=∠CAF=12∠AFB=30°,∴∠CAD=∠ADB-∠C=75°-30°=45°.(5分)【探究】不变.(6分)理由:∵AB=BD ,∴∠BAD=∠ADB=180°―∠B 2=90°-12∠B.∵∠BAF=90°,∴∠AFB=90°-∠B.∵EF 垂直平分AC ,∴∠CAF=∠C.∵∠AFB=∠C+∠CAF=2∠C ,∴∠C=∠CAF=12∠AFB=45°-12∠B ,∴∠CAD=∠ADB-∠C=90°-12∠B-(45°-12∠B )=45°.(10分)22.【参考答案】(1)设当点M ,N 运动x s 时,M ,N 两点重合,由题意,可得x×1+12=2x ,解得x=12.故当点M ,N 运动12 s 时,M ,N 两点重合.(2分)(2)设当点M ,N 运动t s 时,可得到等边三角形AMN ,此时AM=t ,AN=AB-BN=12-2t ,∴t=12-2t ,解得t=4.(4分)故当点M ,N 运动4 s 时,可得到等边三角形AMN.(5分)(3)当点M ,N 在BC 边上运动时,能得到以MN 为底边的等腰三角形.(6分)若△AMN 是以MN 为底边的等腰三角形,则AN=AM ,∴∠AMN=∠ANM ,∴∠AMC=∠ANB.∵在△ABC 中,AB=BC=AC ,∴△ACB 是等边三角形,∴∠C=∠B=60°.(8分)在△ACM 和△ABN 中,∠AMC =∠ANB ,∠C =∠B ,AC =AB ,∴△ACM ≌△ABN ,∴CM=BN.(10分)设当点M ,N 运动时间为y s 时,△AMN 是以MN 为底边的等腰三角形,∴CM=y-12,NB=36-2y ,∴y-12=36-2y ,解得y=16.故能得到以MN 为底边的等腰三角形AMN ,此时M ,N 运动的时间为16 s .(12分)。

人教版八年级数学上册《第十三章轴对称》测试卷-附带有答案

人教版八年级数学上册《第十三章轴对称》测试卷-附带有答案

人教版八年级数学上册《第十三章轴对称》测试卷-附带有答案一、单选题1.以下是某些运动会会标,其中是轴对称图形的是()A.B.C.D.2.等腰三角形的周长为,其中一边长为,则其腰长为()A.B.或C.D.以上都不对3.如图,在由边长为1的小正方形组成的5×5的网格中,点A,B在小方格的顶点上,要在小方格的顶点确定一点C,连接AC和BC,使△ABC是等腰三角形.则方格图中满足条件的点C的个数是()A.5 B.6 C.7 D.84.如图,△ABE、△ADC和△ABC分别是关于AB,AC边所在直线的轴对称图形,若∠1:∠2:∠3=7:2:1,则∠α的度数为()A.90°B.108°C.110°D.126°5.如图,中,是边的垂直平分线,分别交、于点、连接,若恰好为的平分线,则的度数是()A.B.C.D.6.如图,在中、的垂直平分线分别交于点、若的周长是20,则的周长为()A.4 B.7 C.9 D.117.如图,已知点D、点E分别是等边三角形ABC中BC、AB边的中点,AD=5,点F是AD边上的动点,则BF+EF的最小值为()A.7.5 B.5 C.4 D.不能确定8.如图,在△ABC,AB=AC,D为BC上的一点,∠BAD=28°,在AD的右侧作△ADE,使得AE=AD,∠DAE=∠BAC,连接CE、DE,DE交AC于点O,若CE∥AB,则∠AOD的度数为()A.92°B.90°C.88°D.84°二、填空题9.已知等腰三角形的两边长分别为3,6,则这个等腰三角形的周长为.10.如图,在中则°.11.如图,在△ABC中,AB=AC,BD=CD,∠BAD=20°,DE⊥AC于E ,则∠EDC °.12.如图,在直角三角形中,点D在上,点G在上,与关于直线对称,与交于点E,若,则的度数是度.13.如图,△ABC为等边三角形,AE=CD,AD,BE相交于点P,BQ⊥AD于Q,PQ=3,PE=1,则AD 的长为.三、解答题14.如图,在中,求的长15.如图,在平面直角坐标系中,的顶点均在正方形网格的格点上.①画出关于x轴的对称图形;②将向左平移3个单位后得到,画出,并写出顶点的坐标.16.如图所示,在△ABC中,AB=BC,点D是BC上一点,DE⊥AB于点E,DF⊥BC,交AC于点F,连接BF.(1)若∠AFD=155°,求∠EDF的度数;(2)若点F是AC的中点,判断∠ABC与∠CFD的数量关系,并说明理由.17.如图,在中,的垂直平分线分别交线段,于点M,P,的垂直平分线分别交线段,于点N,Q.(1)如图,当时,求的度数;(2)当时,求的度数.18.如图,在中,点分别在边上,且.(1)求证:是等腰三角形;(2)当时,求的度数;(3)若,判断是何种三角形.参考答案:1.B2.C3.B4.B5.C6.C7.B8.C9.1510.6511.2012.13.714.解:在中即BC的长为.15.解:如图所示:,即为所求;,即为所求,点(−3,−1). 16.(1)解:∵∠AFD=155°∴∠DFC=25°∵DF⊥BC,DE⊥AB∴∠FDC=∠AED=90°在Rt△FDC中∴∠C=90°﹣25°=65°∵AB=BC∴∠C=∠A=65°∴∠ABC=180°﹣2×65°=50°∵∠ABC+∠BDE=∠EDF+∠BDE=90°∴∠EDF=∠ABC=50°;(2)解:∠CFD=∠ABC,理由如下:∵AB=BC,且点F是AC的中点∴BF⊥AC,∠ABF=∠CBF=∠ABC∴∠CFD+∠BFD=90°∠CBF+∠BFD=90°∴∠CFD=∠CBF.17.(1)解:∵、分别是的垂直平分线∴,∵∴∵∴∴(2)解:∵分别是的垂直平分线∴∴∴当P点在Q点右侧时,如图:∵∴∵∴.当P点在Q点左侧时∵∴∵∴.综上或.18.(1)证明:在和中是等腰三角形;(2)解:即;;(3)解:是等边三角形,理由如下:由(2)知又又是等边三角形。

人教版八年级数学上册全册单元测试卷(含答案)

人教版八年级数学上册全册单元测试卷(含答案)

第十一章三角形第十二章全等三角形第十三章轴对称第十四章整式的乘法与因式分解第十五章分式三角形单元测试姓名:时间:90分钟满分:100分评分:一、选择题(本大题共10小题,每小题3分,共30分.•在每小题所给出的四个选项中,只有一项是符合题目要求的)1.以下列各组线段为边,能组成三角形的是()A.2cm,3cm,5cm B.5cm,6cm,10cmC.1cm,1cm,3cm D.3cm,4cm,9cm2.等腰三角形的一边长等于4,一边长等于9,则它的周长是()A.17 B.22 C.17或22 D.133.适合条件∠A=12∠B=13∠C的△ABC是()A.锐角三角形 B.直角三角形 C.钝角三角形 D.等边三角形4.已知等腰三角形的一个角为75°,则其顶角为()A.30° B.75° C.105° D.30°或75°5.一个多边形的内角和比它的外角的和的2倍还大180°,这个多边形的边数是() A.5 B.6 C.7 D.86.三角形的一个外角是锐角,则此三角形的形状是()A.锐角三角形 B.钝角三角形 C.直角三角形 D.无法确定7.下列命题正确的是()A.三角形的角平分线、中线、高均在三角形内部B.三角形中至少有一个内角不小于60°C.直角三角形仅有一条高D.直角三角形斜边上的高等于斜边的一半8.能构成如图所示的基本图形是()(A) (B) (C) (D)9.已知等腰△ABC的底边BC=8cm,│AC-BC│=2cm,则腰AC的长为()A.10cm或6cm B.10cm C.6cm D.8cm或6cm10.如图1,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,则∠A与∠1+∠2之间有一种数量关系始终保持不变.请试着找一找这个规律,你发现的规律是(• )A.∠A=∠1+∠2 B.2∠A=∠1+∠2 C.3∠A=2∠1+∠2 D.3∠A=2(∠1+∠2)(1) (2) (3)二、填空题(本大题共8小题,每小题3分,共24分.把答案填在题中横线上)11.三角形的三边长分别为5,1+2x,8,则x的取值范围是________.12.四条线段的长分别为5cm、6cm、8cm、13cm,•以其中任意三条线段为边可以构成________个三角形.13.如下图2:∠A+∠B+∠C+∠D+∠E+∠F等于________.14.如果一个正多边形的内角和是900°,则这个正多边形是正______边形.15.n边形的每个外角都等于45°,则n=________.16.乘火车从A站出发,沿途经过3个车站方可到达B站,那么A、B两站之间需要安排______种不同的车票.17.将一个正六边形纸片对折,并完全重合,那么,得到的图形是________边形,•它的内角和(按一层计算)是_______度.18.如图3,已知∠1=20°,∠2=25°,∠A=55°,则∠BOC的度数是_____.三、解答题(本大题共6小题,共46分,解答应写出文字说明,•证明过程或演算步骤)19.(6分)如图,BD平分∠ABC,DA⊥AB,∠1=60°,∠BDC=80°,求∠C的度数.20.(8分)如图:(1)画△ABC的外角∠BCD,再画∠BCD的平分线CE.(2)若∠A=∠B,请完成下面的证明:已知:△ABC中,∠A=∠B,CE是外角∠BCD的平分线.求证:CE∥AB.21.(8分)(1)如图4,有一块直角三角形XYZ放置在△ABC上,恰好三角板XYZ的两条直角边XY、XZ分别经过点B、C.△ABC中,∠A=30°,则∠ABC+∠ACB=_______,∠XBC+∠XCB=_______.(4) (5)(2)如图5,改变直角三角板XYZ的位置,使三角板XYZ的两条直角边XY、XZ•仍然分别经过B、C,那么∠ABX+∠ACX的大小是否变化?若变化,请举例说明;若不变化,请求出∠ABX+∠ACX的大小.22.(8分)引人入胜的火柴问题,成年人和少年儿童都很熟悉.如图是由火柴搭成的图形,拿去其中的4根火柴,使之留下5个正方形,•且留下的每根火柴都是正方形的边或边的一部分,请你给出两种方案,并将它们分别画在图(1)、(2)中.23.(8分)在平面内,分别用3根、5根、依次相接,•能搭成什么形6根……火柴首尾..状的三角形呢?通过尝试,列表如下所示:问:(1)4根火柴能拾成三角形吗?(2)8根、12根火柴能搭成几种不同形状的三角形?并画出它们的示意图.24.(8分)如图,BC⊥CD,∠1=∠2=∠3,∠4=60°,∠5=∠6.(1)CO是△BCD的高吗?为什么?(2)∠5的度数是多少?(3)求四边形ABCD各内角的度数.答案:1.B2.B 点拨:由题意知,三角形的三边长可能为4,4,9或4,9,9.但4+4<9,说明以4,4,9为边长构不成三角形.所以,这个等腰三角形的周长为22.故选B.3.B 点拨:设∠A=x°,则∠B=2x°,∠C=3x°,由三角形内角和定理,•得x+•2x+3x=180.解得x=30.∴3x=3×30=90.故选B.4.D 点拨:分顶角为75°和底角为75°两种情况讨论.5.C 点拨:据题意,得(n-2)·180=2×360+180.解得n=7.故选C.6.B7.B 点拨:若三角形中三个内角都小于60°,则三个内角的和小于180°,•与内角和定理矛盾.所以,三角形中至少有一个内角不小于60°.8.B9.A 点拨:∵BC=8cm,│AC-BC│=2cm,∴AC=10cm或6cm.•经检验以10cm,•10cm,8cm,或6cm,6cm,8cm为边长均能构成三角形.故选A.10.B 点拨:可根据三角形、四边形内角和定理推证.11.1<x<6 点拨:8-5<1+2x<8+5,解得1<x<6.12.2 点拨:以5cm、6cm、8cm或6cm、8cm、13cm为边长均可构成三角形.13.360°点拨:∵图中正好有两个三角形:△AEC,△BDF,∴∠A+∠B+∠C+∠D+∠E+∠F=360°.14.七15.8 点拨:n=36045︒︒=8.16.1017.四;36018.100°点拨:连接AO并延长,易知∠BOC=∠BAC+∠1+∠2=55°+20°+25•°=100°.19.解:在△ABD中,∵∠A=90°,∠1=60°,∴∠ABD=90°-∠1=30°.∵BD平分∠ABC,∴∠CBD=∠ABD=30°.在△BDC中,∠C=180°-(∠BDC+∠CBD)=180°-(80°+30°)=70°.20.(1)如答图(2)证明:∵∠A=∠B,∠BCD是△ABC的外角,∴∠BCD=∠A+•∠B=2∠B,∵CE是外角∠BCD的平分线,∴∠BCE=12∠BCD=12×2∠B=∠B,∴CE∥AB(•内错角相等,两直线平行)点拨:如答图所示,要证明两直线平行,只需证内错角∠B=∠BCE即可.21.(1)150°;90°(2)不变化.∵∠A=30°,∴∠ABC+∠ACB=150°,∵∠X=•90°,∴∠XBC+∠XCB=90°,∴∠ABX+∠ACX=(∠ABC-∠XBC)+(∠ACB-∠XCB)=(∠ABC+•∠ACB)-(∠XBC+∠XCB)=150°-90°=60°.点拨:此题注意运用整体法计算.22.如答图7-2.23.解:(1)4根火柴不能搭成三角形;(2)8根火柴能搭成一种三角形(3,3,2);12根火柴能搭成三种不同的三角形(4,4,4;5,5,2;3,4,5).图略.24.解:(1)CO是△BCD的高.理由:在△BDC中,∵∠BCD=90°,∠1=∠2,∴∠1=∠2=90°÷2=45°.又∵∠1=∠3,∴∠3=45°.∴∠DOC=180°-(∠1+∠3)=180°-2×45°=90°,∴CO⊥DB.∴CO是△BCD的高.(2)∠5=90°-∠4=90°-60°=30°.(3)∠CDA=∠1+∠4=45°+60°=105°,∠DCB=90°,∠DAB=∠5+∠6=30°+30°=60°,∠ABC=105°.《全等三角形》单元检测题一、选择题 (每小题4分,共40分) 1. 下列可使两个直角三角形全等的条件是A.一条边对应相等B.两条直角边对应相等C.一个锐角对应相等D.两个锐角对应相等 2. 如图,点P 是△ABC 内的一点,若PB =PC ,则A .点P 在∠ABC 的平分线上 B.点P 在∠ACB 的平分线上C .点P 在边AB 的垂直平分线上D .点P 在边BC 的垂直平分线上3. 如图, AD 是ABC △的中线,E ,F 分别是AD 和AD 延长线上的点,且DE DF ,连结BF ,CE . 下列说法:①CE =BF ;②△ABD 和△ACD 面积相等;③BF ∥CE ;④△BDF ≌△CDE . 其中正确的有A. 1个B. 2个C. 3个D. 4个4. 在直角梯形ABCD 中,AD ∥BC ,∠B =90°,E 为AB 上一点,且ED 平分∠ADC ,EC 平分∠BCD ,则下列结论中正确的有AD CBEFP ODCBA A.∠ADE =∠CDE B.DE ⊥EC C.AD ·BC =BE ·DE D.CD =AD +BC 5. 使两个直角三角形全等的条件是A. 斜边相等B. 两直角边对应相等C. 一锐角对应相等D. 两锐角对应相等6. 如图,OP 平分∠AOB ,PC ⊥OA 于C ,PD ⊥OB 于D ,则PC 与PD 的大小关系A.PC >PDB.PC =PDC.PC <PDD.不能确定7. 用两个全等的直角三角形,拼下列图形:①平行四边形;②矩形;③菱形;④正方形;⑤等腰三角形;⑥等边三角形,其中不一定能拼成的图形是A. ①②③B. ②③C. ③④⑤D. ③④⑥8. 如图,平行四边形ABCD 中,AC 、BD 相交于点O ,过点O 作直线分别交于AD 、BC 于点E 、F ,那么图中全等的三角形共有 A.2对 B.4对 C.6对 D.8对 9. 给出下列条件: ①两边一角对应相等 ②两角一边对应相等 ③三角形中三角对应相等 ④三边对应相等,其中,不能使两个三角形全等的条件是A EDOA. ①③B. ①②C. ②③D. ②④10. 如图,P 是∠BAC 的平分线AD 上一点,PE ⊥AB 于E ,PF ⊥AC 于F ,下列结论中不正确的是A. PE PF =B. AE AF =C. △APE ≌△APFD. AP PE PF =+二、简答题 (每小题3分,共24分)11. 如图,ABC ∆中,点A 的坐标为(0,1),点C 的 坐标为(4,3),如果要使ABD ∆与ABC ∆ 全等,那么点D 的坐标是_________.12. 填空,完成下列证明过程.如图,ABC △中,∠B =∠C ,D ,E ,F 分别在AB ,BC ,AC 上,且BD CE =,=DEF B ∠∠求证:=ED EF .证明:∵∠DEC =∠B +∠BDE ( ), 又∵∠DEF =∠B (已知),∴∠______=∠______(等式性质).ADCBE FyADF在△EBD 与△FCE中,∠______=∠______(已证),______=______(已知),∠B=∠C(已知),∴EBD FCE△≌△().∴ED=EF().13. 如图,点B在AE上,∠CAB=∠DAB,要使△ABC≌△ABD,可补充的一个条件是:-____________(写一个即可).(第13题) (第14题) (第15题)14. 如图,在△ABC中,AB=AC,∠A=50°,BD为∠ABC的平分线,则∠BDC=°.15. 如图,在△ABC中,∠C=90°,AB的垂直平分线交AC于D,垂足为E,若∠A=30°,DE=2,∠DBC的度数为__________,CD的长为__________.FED CBA16. 如图,已知AD=BC .EC ⊥AB.DF ⊥AB ,C.D 为垂足,要使ΔAFD ≌ΔBEC ,还需添加一个条件.若以“ASA ”为依据,则添加的条件是 .17. 如图,AB =CD ,AD 、BC 相交于点O ,要使△ABO ≌△DCO ,应添加的条件为 .(添加一个条件即可)18. 如图3,P 是∠AOB 的平分线上一点,C .D 分别是OB .OA 上的点,若要使PD =PC ,只需添加一个条件即可。

人教八年级上册数学第十三章 轴对称 提优测试卷(含答案)

人教八年级上册数学第十三章 轴对称 提优测试卷(含答案)

八年级上册数学第十三章轴对称提优测试卷【答案】考试时间:100分钟满分:120分一、选择题(本题共10小题,每小题3分,计30分)1.下列图形中对称轴只有两条的是( )2.如图,△ABC中,AB=AC.∠B=70°,则∠A的度数是( )A.70°B.55°C.50°D.40°第2题第3题3.如图,在△ABC中,AB=AC,∠A=36°,BD、CE分别是△ABC、△BCD的角平分线,则图中的等腰三角形有( )A.5个B.4个C.3个D.2个4.已知点A(a-1,5)和B(2,b-1)关于x轴对称,则(a+b)的值为( )A.0B.-1C.1D.20175.如图,在△ABC中,AD垂直平分BC,点C在AE的垂直平分线上,点B,D,C,E在同一直线上,若AB=4cm,BD=2cm,则DE的长为( )A. 8cmB. 7cmC. 6cmD.5cm第5题第6题6.如图所示,E是等边△ABC中AC边上的点,∠1=∠2,BE=CD,则对△ADE的形状判断最准确的是( )A.等腰三角形B.等边三角形C.不等边三角形D.不能确定形状7.如图,直线是一条河,P,Q是两个村庄.欲在l上的某处修建一个水泵站,向P,Q两地供水,现有如下四种铺设管道的方案,图中实线表示铺设的管道,则所需管道最短的是( )8.已知A、B两点的坐标分别是(-2,3)和(2,3),则下面四个结论中,正确的有( )①A、B关于x轴对称;②A、B关于y轴对称;③A、B不轴对称;④AB之间的距离为4.A.1个B.2个C.3个D.4个9.如图,在R△ABC中,∠C=90,∠A=30,AB+BC=12cm,则AB等于()A.6cmB. 7 cmC. 8 cmD.9 cm第9题第10题10.如图,在△ABC中,AB=AC,D为BC上一点,连接AD,点E在AD上,过点E 作EM⊥AB,EN⊥AC,垂足分别为M,N.下面四个结论:①如果AD⊥BC,那么EM =EN;②如果EM=EN,那么∠BAD=∠CAD;③如果BD=CD,那么AM=AN;④如果BE=CE,那么直线AD是线段BC的垂直平分线,其中正确的有( )A.1个B.2个C.3个D.4个二、填空题(本题共5小题,每小题3分。

八年级上册数学第十三章 轴对称 测试卷(含答案)

八年级上册数学第十三章 轴对称 测试卷(含答案)

八年级上册数学第十三章轴对称测试卷一、选择题。

(每小题3分,共24分)1.以下四个图形中,对称轴条数最多的是()A B C D2.如图所示是一个经过改造的台球桌面的示意图,图中四个角上的阴影部分分别表示四个入球孔,如果一个球按图中所示的方向被击中(球可以经过多次反弹),那么该球最后将落入的球袋是()A.1号袋B.2号袋C.3号袋D.4号袋第2题图第3题图3.如图所示,△ABC中,AB=AC,点D在AC边上,且BD=BC=AD,则∠A的度数为()A. 30°B.36°C.45°D.70°4.小亮在镜中看到身后墙上的时钟如下,你认为实际时间最接近8:00的是()A B C D5.下列说法正确的是()A.等腰三角形的高、中线、角平分线互相重合B.顶角相等的两个等腰三角形全等C.等腰三角形一边不可以是另一边的二倍D.等腰三角形的两个底角相等6.小朋友文文把一张长方形的纸对折了两次(如图所示),使A,B都落在DC上,折痕分别是DE,DF,则∠EDF的度数为()A. 60 °B.75°C.90°D.120°第6题图第8题图7.等腰三角形一腰上的高与另一腰的夹角为30°,则顶角的度数是()A. 60°B. 120°C. 60°或150°D.60°或120°8.如图,∠AOP=∠BOP=15°,PC∥OA,PD⊥OA,若PC=4,则PD等于()A. 3B. 2.5C. 2D. 1二、填空题(每小题3分,共24分)1.仔细观察如图所示的图案,并按规律在横线上画出合适的图形.______2,则该汽车的车牌号是______.3.已知么MON= 45°,其内部有一点P,它关于OM的对称点是A,关于ON的对称点是B,且OP =2cm,则S△AOB=______4.如图所示,DE是AB的垂直平分线,D是垂足,DE交BC于E,若BC=32cm,AC=18cm,则△AEC的周长为______cm.第4题图第6题图第7题图5.在直角坐标系中,点A,B,C,D的坐标分别为(-1,3),(-2,-4),(1,3),(2,-4),则线段AB与CD的位置关系是______.6.如图,在△ABC中,∠ACB = 90°,AB=10,AC=8,P是AB边上的动点(不与点B重合),点B关于直线CP的对称点B',连接B'A,则B’A长度的最小值是______.7.如图所示,△ABD、△ACE是正三角形,BE和CD交于O点,则∠BOC =______.8.如图所示,有一块形状为等边△ABC的空地,DE,EF为空地中的两条路,且D为AB的中点,DE⊥AC于E,EF∥AB,现已知AE=5m,则地块△EFC的周长为______.三、解答题(共72分)1.如图所示,已知在△ABC中,AB=AC,∠BAC=120°,AC的垂直平分线EF交AC于点E,交BC于点F.求证:BF=2CF.2.用围棋棋子可以在棋盘中摆出许多有趣的图案,如图甲,在棋盘上建立平面直角坐标系,以直线y=x为对称轴,我们可以摆出一个轴对称图形(其中A与A’是对称点),你看它像不像一条美丽的鱼?(1)请你在图乙中,也用10枚以上的棋子摆出一个以直线y=x为对称轴的轴对称图案,并在所摆的图形中找出两组对称点,分别标为B—B',C—C'(注意棋子要摆在格点上).(2)在给定的平面直角坐标系中,你标出的B,B',C,C'的坐标分别是:B( ),B'( ),C( ),C'( ).根据以上对称点的坐标规律,写出点P(a,b)关于对称轴y=x对称点p’的坐标是( ).甲乙3.如图所示,△ABC和△A’B’C’关于直线MN对称,△A’B’C'和△A’’B’’C’’关于直线EF对称.(1)画出直线EF;(2)直线MN与EF相交于点O,试探究∠BOB’’与直线MN, EF所夹锐角α的数量关系.4.如图所示,AD⊥BC,BD=DC,点C在AE的垂直平分线上,AB +BD与DE的长度有什么关系?并加以证明.5.如图所示,在等边三角形ABC中,∠B,∠C的平分线相交于点O,作BO,CO的垂直平分线分别交BC于点E和点F.小明说:“E,F是BC的三等分点.”你同意他的说法吗?请说明理由.6.元旦联欢会上,同学们在礼堂四周摆了一圈条桌,其中北边条桌上摆满了苹果,东边条桌上摆满了香蕉,礼堂中间放一把椅子B.游戏规则是这样的:甲、乙二人从A 处同时出发,先去拿苹果再去拿香蕉,然后回到B处,谁先坐到椅子上谁赢.小张和小李比赛,比赛一开始,只见小张直奔东北两张条桌的交点处,左手抓苹果,右手拿香蕉,回头直奔B处,可是还未跑到B处,只见小李已经手捧苹果和香蕉稳稳地坐在B处的椅子上了,如果小李不比小张跑得快,那他是不是有捷径呢?如果有,请把捷径画出来,并说明理由.参考答案一、1.B 2.B 3.B 4.D 5.D 6.C 7.D 8.C 二、1. 2.M645379 3.2cm ² 4. 50 5.关于y 轴对称 6.2 7. 120° 8. 45m三、1.连接AF. ∵AB=AC,∴∠B= ∠C=︒=︒-︒=∠-︒3021201802A 180.又∵EF 垂直平分AC ,∴AF = CF ∴∠CAF =∠C= 30°. ∴∠BAF= ∠BAC- ∠CAF=120°-30°=90°.在Rt △BAF 中,∵∠B=30°,∴BF =2AF.叉∵AF= CF,∴BF=2CF .2.(1)按要求摆出图形并标出两组对称点B-B ’,C-C';(2)答案不唯一,只要满足点B 的横坐标等于点B ’的纵坐标,点B 的纵坐标等于点B ’的横坐标,点C 的横坐标等于点C ’的纵坐标,点C 的纵坐标等于点C ’的横坐标即可;根据以上对称点坐标的规律,可以发现P(a ,b)关于对称轴y=x 的对称点P ’的坐标为(b ,a).3.(1)如图所示,连接B'B ’’,作线段B'B ’’的垂直平分线EF,则直线EF 是△A ’B ’C ’和△A ’’B ’’C ’’的对称轴.(2)连接BO .因为△ABC 和△A'B'C'关于MN 对称,所以∠BOM=∠B 'OM.又因为△A ’B ’C ’和△A ’’B ’’C ’’关于EF 对称,所以∠B 'OE= ∠B ''OE.所以∠BOB''=∠BOM+ ∠B 'OM+∠B'OE+ ∠B ‘’OE =2(∠B'OM+∠B 'OE) =2a .即∠BOB ’’= 2a.4. AB+BD= DE ,证明略.5.同意,连接OE ,OF.由题意可知:BE= OE,CF= OF,∠OBC=∠OCB= 30°, ∴∠BOE=∠OBC=30°,∠COF=∠OCB=30°,∴∠BOC=120°,∴∠EOF=60°, ∠OEF=60°, ∠OFE=60°.∴△OEF 是等边三角形,∴OE = OF= EF= BE=CF.∴E ,F 是BC 的三等分点.6.分别以北条桌和东条桌为对称轴,作A ,B 的对称点A ’,B ’,连接A'B ’,交两长条桌于C ,D 两点,则折线ACDB 就是捷径.连接A'M 和B'M 因为A ,A ’于CM 对称,B ,B ’关于DM 对称,所以AC=A'C ,AM=A'M ,BD=B'D,BM=B'M.所以折线ACDB 的长=AC+CD+DB=A'C+CD+DB'=A'CDB'=A'B ’,而AM+BM=A'M+B'M> A'B',所以拆线ACDB 是捷径.。

人教版八年级上册数学 第十三章 轴对称 单元培优测试卷

人教版八年级上册数学  第十三章  轴对称  单元培优测试卷

人教版八年级上册数学第十三章轴对称单元培优测试卷一.选择题1. 如图,△ABC与△DEF关于直线l对称,若∠A=65°,∠B=80°,则∠F等于( )A.80°B.65°C.45°D.35°2. 东东从镜子里看到镜子对面电子钟的像如图所示,实际时间是()A.21:10B.10:21C.10:51D.12:013. 下列条件不能得到等边三角形的是( )A.有两个内角是60°的三角形B.有两个角相等的等腰三角形C.腰和底相等的等腰三角形 D.有一个角是60°的等腰三角形4. 如图,△ABC在平面直角坐标系中第二象限内,顶点A的坐标是(-2,3),先把△ABC向右平移4个单位得到△A1B1C1,再作△A1B1C1关于x轴的对称图形△A2B2C2,则顶点A2的坐标是( )A.(-3,2) B.(2,-3) C.(1,-2) D.(3,-1)5. 某镇要在三条公路围成的一块平地上修建一个砂石场,如图,要使这个砂石场到三条公路的距离相等,则可供选择的地址()A.仅有一处 B.有四处 C.有七处 D.有无数处6. 下列三角形:①有两个角等于60°的三角形;②有一个角等于60°的等腰三角形;③三个外角(每个顶点处各取一个外角)都相等的三角形;④一腰上的中线也是这条腰上的高的等腰三角形.其中是等边三角形的有( ).A.①②③B.①②④ C.①③D.①②③④7. 如图,在Rt△ABC中,∠ABC=90°,DE是AC的垂直平分线,交AC于点D,交BC于点E,∠BAE=20°,则∠C的度数是( )A.30° B.35° C.40° D.50°8. 已知实数x、y满足|x-4|+y-8=0,则以x、y的值为两边长的等腰三角形的周长是( )A. 20或16B. 20C. 16D. 以上答案均不对9. 如图,在△ABC中,∠BAC=72°,∠C=36°,∠BAC的平分线AD交BC于点D,则图中有等腰三角形( )A.0个B.1个 C.2个D.3个10. 如图图中的阴影部分是由5个小正方形组成的一个图形,若在图中的方格里涂黑两个正方形,使整个阴影部分成为轴对称图形,涂法有几种()A. 2种B. 4种C. 5种D. 7种11. 如图,在第1个△A1BC中,∠B=30°,A1B=CB;在边A1B上任取一点D,延长CA1到A2,使A1A2=A1D,得到第2个△A1A2D;在边A2D上任取一点E,延长A1A2到A3,使A2A3=A2E,得到第3个△A2A3E,…按此做法继续下去,则第n个三角形中以A n为顶点的内角度数是()A.()n•75°B.)n﹣1•65°C.()n﹣1•75°D.()n•85°12. 已知△ABC是等边三角形,D是BC边上的任意一点,连接AD并作等边三角形ADE,若DE⊥AB,则BD DC的值是()A.12B.23C.1D.32二.填空题13. 如图,△ABC中,AC=8,BC=5,AB的垂直平分线DE交AB于点D,交边AC于点E,则△BCE的周长为________.14. 如图所示图案是几种车的标志,在这几个图案中,轴对称图形有________个,其中只有一条对称轴的轴对称图形有________个,对称轴最多的轴对称图形有________条对称轴.15. 如图,∠AOB=40°,C为OB上的定点,M,N分别为OA,OB上的动点,当CM+MN的值最小时,∠OCM的度数为________.16.如图,点P在∠AOB内,M,N分别是点P关于OA,OB的对称点,连接MN交OA于点E,交OB于点F.若△PEF的周长是20 cm,则MN的长是________cm.17.如图,在△ABC中,∠C=90°,∠B=30°,AB的垂直平分线ED交AB于点E,交BC于点D,若CD=3,则BD的长为.18. 在直角坐标系内有两点A(-1,1)、B(2,3),若M为x轴上一点,且MA+MB最小,则M的坐标是________,MA+MB=________.19. 如图所示,在△ABC中,∠B=50°,∠C=90°,在射线BA上找一点D,使△ACD为等腰三角形,则∠ADC的度数为________.20. 规律探究如图,∠BOC=9°,点A在OB上,且OA=1,按下列要求画图:以A为圆心,1为半径向右画弧交OC于点A1,得第1条线段AA1;再以A1为圆心,1为半径向右画弧交OB于点A2,得第2条线段A1A2;再以A2为圆心,1为半径向右画弧交OC于点A3,得第3条线段A2A3……这样画下去,直到得第n条线段,之后就不能再画出符合要求的线段了,则n=________.三、作图题21. 方案设计①②均是8×8的正方形网格,每个小正方形的顶点称为格点,线段OM,ON的端点均在格点上.在图①、图②给定的网格中,以OM,ON为邻边各画一个四边形,使第四个顶点在格点上.要求:(1)所画的两个四边形均是轴对称图形;(2)所画的两个四边形不全等.四、解答题22. 如图,在△ABC中,AB=AC,D为BC为上一点,∠B=30°,∠DAB=45°.(1)求∠DAC的度数;(2)求证:DC=AB.23. 如图,在△ABC中,D为BC上的一点,E,F为AD上的两点,若EB=EC,FB=FC.求证:AB=AC.24. 如图,在四边形ABCD中,AD∥BC,E是CD的中点,连接AE,BE,BE⊥AE,延长AE交BC的延长线于点F.求证:(1)AD=FC;(2)AB=BC+AD.25. 如图,已知△ABC为等边三角形,点D,E分别在BC,AC边上,且AE=CD,AD与BE相交于点F.(1)求证:△ABE≌△CAD;(2)求∠BFD的度数.26. 已知△ABC中,AB=AC,D是△ABC外一点(点A,D在直线BC的两侧),且DB=DC,过点D作DE∥AC,交射线AB于点E,连接AD交BC于点F.(1)求证:AD⊥BC;(2)如图①,当点E在线段AB上且不与点B重合时,求证:DE=AE;(3)如图②,当点E在线段AB的延长线上时,请直接写出线段DE,AC,BE的数量关系.27. 如图①,P是∠AOB内任意一点,OP=5 cm,M和N分别是射线OA和射线OB上的动点.(1)请你在图②中利用作图确定点M和点N的位置,使得△PMN的周长最小(保留作图痕迹);(2)在图②中,若△PMN周长的最小值是5 cm,则∠AOB的度数是多少?28. 已知:等边△ABC和点P,设点P到△ABC的三边AB、AC、BC的距离分别为h1、h2、h3,△ABC的高为h.(1)如图1,若点P在边BC上,证明:h1+h2=h.(2)如图2,当点P在△ABC内时,猜想h1、h2、h3和h有什么关系?并证明你的结论.(3)如图3,当点P在△ABC外时,h1、h2、h3和h有什么关系?(不需要证明)29. 如果一个三角形能被一条线段分割成两个等腰三角形,那么称这条线段为这个三角形的特异线,称这个三角形为特异三角形.(1)如①,△ABC是等腰锐角三角形,AB=AC(AB>BC),若∠ABC的平分线BD交AC于点D,且BD是△ABC 的一条特异线,则∠BDC=________度;(2)如图②,在△ABC中,∠B=2∠C,线段AC的垂直平分线交AC于点D,交BC于点E.求证:AE是△ABC 的一条特异线;(3)如图③,已知△ABC是特异三角形,且∠A=30°,∠B为钝角,求出所有可能的∠B的度数.。

人教版八年级数学上册试题 第十三章 轴对称章节测试卷(含详解)

人教版八年级数学上册试题  第十三章 轴对称章节测试卷(含详解)

第十三章《轴对称》章节测试卷一.选择题(共12小题,每小题4分,共48分)1.下列交通安全标志中,是轴对称图形的是( )A.B.C.D.2.如图,△ABC和△A′B′C′关于直线l对称,若∠A=50°,∠C′=30°,则∠B的度数为( )A.30°B.50°C.90°D.100°3.到三角形的三个顶点距离相等的点是( )A.三条角平分线的交点B.三条边的垂直平分线的交点C.三条高的交点D.三条中线的交点4.如图,∠BAC=110°,若MP和NQ分别垂直平分AB和AC,则∠PAQ的度数是( )A.20°B.40°C.50°D.60°5.若等腰三角形有两条边的长度为5和8,则此等腰三角形的周长为( )A.18或21B.21C.24或18D.186.如图,直线m∥n,Rt△ABC的顶点A在直线n上,∠C=90°,AB,CB分别交直线m于点D 和点E,且DB=DE,若∠1=65°,则∠BDE的度数为( )A.115°B.120°C.130°D.145°7.在下列结论中:①有一个外角是120°的等腰三角形是等边三角形;②有两个外角相等的等腰三角形是等边三角形;③有一边上的高也是这边上的中线的等腰三角形是等边三角形;④有一个角是60°,且是轴对称的三角形是等边三角形.其中正确的个数是( )A.4个B.3个C.2个D.1个8.已知等腰三角形其中一个内角为70°,那么这个等腰三角形的顶角度数为( )A.70°B.70°或55°C.40°或55°D.70°或40°9.已知点P(a+1,2a﹣3)关于x轴的对称点在第一象限,则a的取值范围是( )A.a<﹣1B.﹣1<a<32C.−32<a<1D.a>3210.如图,在△ABC中,∠C=60°,AD是BC边上的高,点E为AD的中点,连接BE并延长交AC于点F.若∠AFB=90°,EF=2,则BF长为( )A.4B.6C.8D.1011.如图,已知△ABC的面积为12,BP平分∠ABC,且AP⊥BP于点P,则△BPC的面积是( )A.10B.8C.6D.412.如图,点C、D在线段AB的同侧,CA=4,AB=12,BD=9,M是AB的中点,∠CMD=120°,则CD长的最大值是( )A.16B.19C.20D.21二.填空题(共4小题,每小题4分,共16分)13.若点A(m,﹣3),B(﹣2,n)关于y轴对称,则2m+3n的值为 .14.如图:△ABC中,DE是AC的垂直平分线,AE=3cm,△ABD的周长为13cm,则△ABC的周长为 .15.如图,把一张长方形的纸按图那样折叠后,B、D两点落在B′、D′点处,若得∠AOB′=70°,则∠B′OG的度数为 .16.如图,∠MON=30°,点A1,A2,A3,…在射线ON上,点B1,B2,B3,…在射线OM上,△A1B1A2,△A2B2A3,△A3B3A4…均为等边三角形.若OA1=1,则△A n B n A n+1的边长为 .三.解答题(共8小题,共86分)17.如图,在Rt△ABC中,∠ACB=90°,∠CAB=2∠B,AD平分∠CAB.(1)求∠CAD的度数;(2)延长AC至E,使CE=AC,求证:DB=DE.18.如图,△ABC是等腰三角形,AB=AC,点D是AB上一点,过点D作DE⊥BC交BC于点E,交CA延长线于点F.(1)证明:△ADF是等腰三角形;(2)若∠B=60°,BD=4,AD=2,求EC的长,19.如图,在正方形网格中,每个小正方形的边长都为1,网格中有一个格点△ABC(即三角形的顶点都在格点上).(1)△ABC的面积为 ;(2)在图中作出△ABC关于直线MN的对称图形△A′B′C′.(3)利用网格纸,在MN上找一点P,使得PB+PC的距离最短.(保留痕迹)20.如图,在平行四边形ABCD中,AE是BC边上的高,点F是DE的中点,AB与AG关于AE对称,AE与AF关于AG对称.(1)求证:△AEF是等边三角形;(2)若AB=2,求△AFD的面积.21.如图,在△ABC中,DM、EN分别垂直平分AC和BC,交AB于M、N两点,DM与EN相交于点F.(1)若△CMN的周长为15cm,求AB的长;(2)若∠MFN=70°,求∠MCN的度数.22.已知等边△ABC和点P,设点P到△ABC三边AB、AC、BC的距离分别为h1,h2,h3,△ABC 的高为h.(1)若点P在一边BC上[如图①],此时h3=0,求证:h1+h2+h3=h;(2)当点P在△ABC内[如图②],以及点P在△ABC外[如图③]这两种情况时,上述结论是否成立?若成立,请予以证明;若不成立,h1,h2,h3与h之间又有怎样的关系,请说出你的猜想,并说明理由.23.如图,在等边△ABC中,AB=12cm,现有M,N两点分别从点A,B同时出发,沿△ABC的边按顺时针方向运动,已知点M的速度为1cm/s,点N的速度为2cm/s,当点N第一次到达B点时,M,N同时停止运动,设运动时间为t(s).(1)当t为何值时,M,N两点重合?两点重合在什么位置?(2)当点M,N在BC边上运动时,是否存在使AM=AN的位置?若存在,请求出此时点M,N 运动的时间;若不存在,请说明理由.24.如图1,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.(1)求证:CE=CF;(2)在图1中,若G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?(3)运用(1)(2)解答中所积累的经验和知识,完成下题:如图2,在直角梯形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC=12,E是AB上一点,且∠DCE=45°,BE=4,求DE的长.答案一.选择题1.【解答】解:A、不是轴对称图形,故本选项不符合题意;B、不是轴对称图形,故本选项不符合题意;C、不是轴对称图形,故本选项不符合题意;D、是轴对称图形,故本选项符合题意.故选:D.2.【解答】解:∵△ABC和△A′B′C′关于直线l对称,∠A=50°,∠C′=30°,∴△ABC≌△A′B′C′,∴∠C=∠C′=30°,∴∠B=180°﹣∠A﹣∠C=180°﹣50°﹣30°=100°.故选:D.3.【解答】解:∵OA=OB,∴O在线段AB的垂直平分线上,∵OC=OA,∴O在线段AC的垂直平分线上,∵OB=OC,∴O在线段BC的垂直平分线上,即O是△ABC的三边垂直平分线的交点,故选:B.4.【解答】解:∵∠BAC=110°,∴∠B+∠C=70°,又MP,NQ为AB,AC的垂直平分线,∴∠BAP=∠B,∠QAC=∠C,∴∠BAP+∠CAQ=70°,∴∠PAQ=∠BAC﹣∠BAP﹣∠CAQ=110°﹣70°=40°故选:B.5.【解答】解:根据题意,①当腰长为5时,周长=5+5+8=18;②当腰长为8时,周长=8+8+5=21.故选:A.6.【解答】解:如图,∵DB=DE,∴∠2=∠B,∴∠3=2∠B,∵∠C=90°,∴∠5=90°﹣∠B,∵m∥n,∴∠1+∠5+∠3=180°,∴65°+90°﹣∠B+2∠B=180°,∴∠B=25°,∴∠BDE=130°,故选:C.7.【解答】解:①有一个外角是120°的等腰三角形是等边三角形,正确;②有两个外角相等的等腰三角形不一定是等边三角形,错误;③有一边上的高也是这边上的中线的等腰三角形不一定是等边三角形,错误;④有一个角是60°,且是轴对称的三角形是等边三角形,正确.故选:C.8.【解答】解:分两种情况:当70°的角是底角时,则顶角度数为40°;当70°的角是顶角时,则顶角为70°.故选:D.9.【解答】解:∵点P(a+1,2a﹣3)关于x轴的对称点在第一象限,∴点P在第四象限,,∴{a+1>0①2a−3<0②解不等式①得,a>﹣1,,解不等式②得,a<32,所以,不等式组的解集是﹣1<a<32故选:B.10.【解答】解:∵在△ABC中,∠C=60°,AD是BC边上的高,∴∠DAC=90°﹣∠C=90°﹣60°=30°,∵∠AFB=90°,EF=2,∴AE=2EF=4,∵点E为AD的中点,∴DE=AE=4,∵∠C=60°,∠BFC=180°﹣90°=90°,∴∠EBD=30°,∴BE=2DE=8,∴BF=BE+EF=8+2=10,故选:D.11.【解答】解:延长AP交BC于E,∵BP平分∠ABC,∴∠ABP=∠EBP,∵AP⊥BP,∴∠APB=∠EPB=90°,在△ABP和△EBP中,{∠ABP=∠EBPBP=BP∠APB=∠EPB,∴△ABP≌△EBP(ASA),∴AP=PE,∴S△ABP=S△EBP,S△ACP=S△ECP,∴S△PBC=12S△ABC=12×12=6,故选:C.12.【解答】解:如图,作点A关于CM的对称点A′,点B关于DM的对称点B′.∵∠CMD=120°,∴∠AMC+∠DMB=60°,∴∠CMA′+∠DMB′=60°,∴∠A′MB′=60°,∵MA′=MB′,∴△A′MB′为等边三角形∵CD≤CA′+A′B′+B′D=CA+AM+BD=4+6+9=19,∴CD的最大值为19,故选:B.二.填空题13.【解答】解:∵点A(m,﹣3),B(﹣2,n)关于y轴对称,∴m=2,n=﹣3,∴2m+3n=2×2+3×(﹣3)=﹣5.故答案为:﹣514.【解答】解:∵DE是AC的垂直平分线,∴AD=CD,AC=2AE=6cm,又∵△ABD的周长=AB+BD+AD=13cm,∴AB+BD+CD=13cm,即AB+BC=13cm,∴△ABC的周长=AB+BC+AC=13+6=19cm.故答案为19cm.15.【解答】解:根据轴对称的性质得:∠B′OG=∠BOG又∠AOB′=70°,可得∠B′OG+∠BOG=110°∴∠B′OG=1×110°=55°.216.【解答】解:∵△A1B1A2是等边三角形,∴A1B1=A2B1,∠3=∠4=∠12=60°,∴∠2=120°,∵∠MON=30°,∴∠1=180°﹣120°﹣30°=30°,又∵∠3=60°,∴∠5=180°﹣60°﹣30°=90°,∵∠MON=∠1=30°,∴OA1=A1B1=1,∴A2B1=1,∵△A2B2A3、△A3B3A4是等边三角形,∴∠11=∠10=60°,∠13=60°,∵∠4=∠12=60°,∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,∴∠1=∠6=∠7=30°,∠5=∠8=90°,∴A2B2=2B1A2,B3A3=2B2A3,∴A3B3=4B1A2=4,A4B4=8B1A2=8,A5B5=16B1A2=16,以此类推:△A n B n A n+1的边长为 2n﹣1.故答案是:2n﹣1.三.解答题17.证明:(1)∵∠ACB=90°,∴∠CAB+∠B=90°,又∵∠CAB=2∠B,∴∠B=30°,∠CAB=60°,∵AD平分∠CAB,∴∠CAD=∠DAB=30°;(2)∵∠DAB=30°=∠B,∴AD=DB,∵AC=EC,∠ACB=90°,∴AD=DE,∴DE=DB.18.解:(1)∵AB=AC,∴∠B=∠C,∵FE⊥BC,∴∠F+∠C=90°,∠BDE+∠B=90°,∴∠F=∠BDE,而∠BDE=∠FDA,∴∠F=∠FDA,∴AF=AD,∴△ADF是等腰三角形;(2)∵DE⊥BC,∴∠DEB=90°,∵∠B=60°,BD=4,∴BE=12BD=2,∵AB=AC,∴△ABC是等边三角形,∴BC=AB=AD+BD=6,∴EC=BC﹣BE=4.19.解:(1)S△ABC=3×4−12×2×2−12×1×4−12×2×3=12﹣2﹣2﹣3=5.故答案为:5;(2)如图,△A′B′C′即为所求;(3)如图,点P即为所求.20.解:(1)∵AE是BC边上的高,∴AE⊥BC,∵四边形ABCD是平行四边形,∴AD∥BC,∴AE⊥AD,即∠DAE=90°,∵点F是DE的中点,即AF是Rt△ADE的中线,∴AF=EF=DF,∵AE与AF关于AG对称,∴AE=AF,则AE=AF=EF,∴△AEF是等边三角形;(2)记AG、EF交点为H,∵△AEF是等边三角形,且AE与AF关于AG对称,∴∠EAG=30°,AG⊥EF,∵AB与AG关于AE对称,∴∠BAE=∠GAE=30°,∠AEB=90°,∵AB=2,∴BE=1、DF=AF=AE=3,则EH=12AE=32、AH=32,∴S△ADF=12×3×32=334.21.解:(1)∵DM、EN分别垂直平分AC和BC,∴AM=CM,BN=CN,∴△CMN的周长=CM+MN+CN=AM+MN+BN=AB,∵△CMN的周长为15cm,∴AB=15cm;(2)∵∠MFN=70°,∴∠MNF+∠NMF=180°﹣70°=110°,∵∠AMD=∠NMF,∠BNE=∠MNF,∴∠AMD+∠BNE=∠MNF+∠NMF=110°,∴∠A+∠B=90°﹣∠AMD+90°﹣∠BNE=180°﹣110°=70°,∵AM=CM,BN=CN,∴∠A=∠ACM,∠B=∠BCN,∴∠MCN=180°﹣2(∠A+∠B)=180°﹣2×70°=40°.22.解:(1)如图1,连接AP,则 S△ABC=S△ABP+S△APC∴12BC•AM=12AB•PD+12AC•PF即12BC•h=12AB•h1+12AC•h2又∵△ABC是等边三角形∴BC=AB=AC,∴h=h1+h2;(2)点P在△ABC内时,h=h1+h2+h3,理由如下:如图2,连接AP、BP、CP,则 S△ABC=S△ABP+S△BPC+S△ACP∴12BC•AM=12AB•PD+12AC•PE+12BC•PF即12BC•h=12AB•h1+12AC•h2+12BC•h3又∵△ABC是等边三角形,∴BC=AB=AC.∴h=h1+h2+h3;点P在△ABC外时,h=h1+h2﹣h3.理由如下:如图3,连接PB,PC,PA由三角形的面积公式得:S△ABC=S△PAB+S△PAC﹣S△PBC,即12BC∙AM=12AB•PD+12AC•PE−12BC•PF,∵AB=BC=AC,∴h1+h2﹣h3=h,即h1+h2﹣h3=h.23.解:(1)由题意,t×1+12=2t,解得:t=12,∴当t=12时,M,N两点重合,此时两点在点C处重合;(2)结论:当点M、N在BC边上运动时,可以得到以MN为底边的等腰三角形.理由:由(1)知12秒时M、N两点重合,恰好在C处,如图,假设△AMN是等腰三角形,∴AN=AM,∴∠AMN=∠ANM,∴∠AMC=∠ANB,∵△ACB是等边三角形,∴∠C=∠B,在△ACM和△ABN中,{∠C=∠B∠AMC=∠ANB,AC=AB∴△ACM≌△ABN(AAS),∴CM=BN,设当点M、N在BC边上运动时,M、N运动的时间y秒时,△AMN是等腰三角形,∴CM=y﹣12,NB=36﹣2y,∵CM=NB,∴y﹣12=36﹣2y,解得:y=16.故假设成立.∴当点M、N在BC边上运动时,当运动时间为12秒或16秒时,AM=AN.24.(1)证明:在正方形ABCD中,∵BC=CD,∠B=∠CDF,BE=DF,∴△CBE≌△CDF.∴CE=CF.(2)解:GE=BE+GD成立.∵△CBE≌△CDF,∴∠BCE=∠DCF.∴∠ECD+∠ECB=∠ECD+∠FCD.即∠ECF=∠BCD=90°.又∠GCE=45°,∴∠GCF=∠GCE=45°.∵CE=CF,∠GCF=∠GCE,GC=GC,∴△ECG≌△FCG.∴EG=GF.∴GE=DF+GD=BE+GD.(3)解:过C作CG⊥AD,交AD延长线于G,在直角梯形ABCD中,∵AD∥BC,∠A=∠B=90°,又∠CGA=90°,AB=BC,∴四边形ABCG为正方形.∴AG=BC=12.已知∠DCE=45°,根据(1)(2)可知,ED=BE+DG,设DE=x,则DG=x﹣4,∴AD=AG﹣DG=16﹣x,AE=AB﹣BE=12﹣4=8.在Rt△AED中∵DE2=AD2+AE2,即x2=(16﹣x)2+82解得:x=10.∴DE=10.。

八年级数学上册第十三章《轴对称》综合测试卷-人教版(含答案)

八年级数学上册第十三章《轴对称》综合测试卷-人教版(含答案)

八年级数学上册第十三章《轴对称》综合测试卷-人教版(含答案)一、选择题(每小题3分,共30分)1.(2022独家原创)下图是天气预报中的图形,其中是轴对称图形的为( )A BC D2.(2022独家原创)如图,在△ABC中,∠BAC=75°,∠ACB=35°,AC=8,∠ABC的平分线BD交边AC于点D,则AD+BD的长为( )A.10B.8C.6D.43.(2020湖南益阳中考)如图,在△ABC中,AC的垂直平分线交AB于点D,交AC于点E,CD平分∠ACB,若∠A=50°,则∠B的度数为( )A.25°B.30°C.35°D.40°4.(2021河北石家庄二十八中期中)如图,△ABC中,点D在AC上,连接BD,∠ABD=2∠DBC,∠ADB=2∠C,∠DBC=∠A,则图中共有等腰三角形( )A.0个B.1个C.2个D.3个5.如图,在棋盘中建立直角坐标系xOy,现将A,O,B三颗棋子分别放置在(-2,2),(0,0),(1,0)处.如果在其他格点位置添加一颗棋子P,使四颗棋子A,O,B,P成为轴对称图形,则满足条件的棋子P的位置的坐标不正确的是( )A.(-2,3)B.(-3,2)C.(-2,-2)D.(0,-1)6.(2020湖北宜昌中考)如图,点E,F,G,Q,H在一条直线上,且EF=GH,我们知道按如图所作的直线l 为线段FG的垂直平分线.下列说法正确的是( )A.l是线段EH的垂直平分线B.l是线段EQ的垂直平分线C.l是线段FH的垂直平分线D.EH是l的垂直平分线7.(2020山东济南期末)如图,在△ABC中,∠C=90°,∠A=15°,∠DBC=60°,BC=1,则AD的长为( )A.1.5B.2C.3D.48.如图,在△ABC中,AB=AC,∠C=70°,△AFG与△ABC关于直线DE成轴对称,∠CAE=10°,连接BF,则∠ABF的度数是( )A.30°B.35°C.40°D.45°第8题图第9题图9.如图,在钝角三角形ABC中,∠ABC为钝角,以点B为圆心,AB的长为半径画弧,再以点C为圆心,AC 的长为半径画弧,两弧交于点D,连接AD,与CB的延长线交于点E.下列结论错误的是( )A.CE垂直平分ADB.CE平分∠ACDC.△ABD是等腰三角形D.△ACD是等边三角形10.(2021河南郑州模拟)如图,在△ABC中,∠ABC和∠ACB的平分线相交于点O,过点O作EF∥BC交AB于E,交AC于F,过点O作OD⊥AC于D,下列选项中结论错误的是( )A.EF=BE+CFB.∠BOC=90°+12∠AC.点O到△ABC各边的距离相等D.设OD=m,AE+AF=n,则S△AEF=mn二、填空题(每小题3分,共24分)11.(2021山东淄博中考)在直角坐标系中,点A(3,2)关于x轴的对称点为A1,将点A1向左平移3个单位得到点A2,则点A2的坐标为.12.(2022独家原创)如图,在3×3的方格图中,将其中一个小方格涂阴影,使整个图形为轴对称图形,这样的轴对称图形共有个.13.(2022黑龙江齐齐哈尔三中期中)如图,将△ABC折叠,使点A与BC边中点D重合,折痕为MN,若AB=9,BC=6,则△DNB的周长为.14.(2019湖南永州中考)已知∠AOB=60°,OC是∠AOB的平分线,点D为OC上一点,过D作直线DE⊥OA,垂足为点E,且直线DE交OB于点F,如图所示.若DE=2,则DF= .15.(2021江苏苏州中考)如图,在Rt△ABC中,∠C=90°,AF=EF.若∠CFE=72°,则∠B= °.16.(2022安徽芜湖一中期末)如图,已知点D、E分别是等边三角形ABC中BC、AB边的中点,AD=6,点F是线段AD上的动点,则BF+EF的最小值为.17.如图,已知D为等边三角形纸片ABC的边AB上的点,过点D作DG∥BC交AC于点G,DE⊥BC于点E,过点G作GF⊥BC于点F.把三角形纸片ABC分别沿DG,DE,GF按如图所示的方式折叠,则图中阴影部分是三角形.18.(2021四川绵阳模拟)如图,∠BOC=60°,点A是OB的反向延长线上的一点,OA=10 cm,动点P从点A出发沿AB以2 cm/s的速度移动,动点Q从点O出发沿OC以1 cm/s的速度移动,如果点P、Q同时出发,用t(s)表示移动的时间,当t= 时,△POQ是等腰三角形.三、解答题(共46分)19.(2019广西中考)(6分)如图,在平面直角坐标系中,已知△ABC的三个顶点坐标分别是A(2,-1),B(1,-2),C(3,-3).(1)将△ABC向上平移4个单位长度得到△A1B1C1,请画出△A1B1C1;(2)请画出与△ABC关于y轴对称的△A2B2C2;(3)请写出A1、A2的坐标.20.(6分)如图,四边形ABCD中,AD=4,BC=1,∠A=30°,∠B=90°,∠ADC=120°,求CD的长.21.(2022浙江温州期末)(8分)如图,在△ABC中,AB=AC,点E,F在边BC上,BE<BF.已知BE=CF.(1)求证:△ABE≌△ACF;(2)若点D在AF的延长线上,AD=AC,∠BAE=30°,∠BAD=75°,求证:AB∥DC.22.(8分)如图,在△ABC中,AB=AC,点D、E、F分别在AB、BC、AC边上,且BE=CF, BD=CE.(1)求证:△DEF是等腰三角形;(2)当∠A=44°时,求∠DEF的度数.23.(2018浙江绍兴中考)(8分)数学课上,张老师举了下面的例题:例1 等腰三角形ABC中,∠A=110°,求∠B的度数.(答案:35°)例2 等腰三角形ABC中,∠A=40°,求∠B的度数.(答案:40°或70°或100°) 张老师启发同学们进行变式,小敏编了如下一题:变式等腰三角形ABC中,∠A=80°,求∠B的度数.(1)请你解答以上的变式题;(2)解(1)后,小敏发现,∠A的度数不同,得到∠B的度数的个数也可能不同,如果在等腰三角形ABC 中,设∠A=x°,当∠B有三个不同的度数时,请你探索x的取值范围.24.(10分)如图,在平面直角坐标系中,点A的坐标为(1,0),以线段OA为边在第四象限内作等边三角形AOB,点C为x轴正半轴上一动点(OC>1),连接BC,以线段BC为边在第四象限内作等边三角形CBD,连接DA并延长,交y轴于点E.(1)求证:OC=AD;(2)在点C的运动过程中,∠CAD的度数是否会变化?如果不变,请求出∠CAD的度数;如果改变,请说明理由;(3)当点C运动到什么位置时,以A、E、C为顶点的三角形是等腰三角形?参考答案1.C根据轴对称图形的定义可知,选项A中的图形不是轴对称图形,选项B中的图形不是轴对称图形,选项C中的图形是轴对称图形,选项D中的图形不是轴对称图形.故选C.2.B在△ABC中,∠BAC=75°,∠ACB=35°,∴∠ABC=180°-∠BAC-∠ACB=70°,∵BD平分∠ABC,∴∠DBC=1∠ABC=35°,2∴∠DBC=∠ACB,∴BD=CD,∴AD+BD=AD+CD=AC=8.故选B.3.B∵DE垂直平分AC,∴AD=CD,∴∠ACD=∠A=50°,又∵CD平分∠ACB,∴∠ACB=2∠ACD=100°,∴∠B=180°-∠A-∠ACB=180°-50°-100°=30°,故选B.4.D图中共有等腰三角形3个.∵∠ADB=∠C+∠DBC,∠ADB=2∠C,∴∠DBC=∠C,∴△BCD是等腰三角形,∵∠ABD=2∠DBC,∴∠ABD=∠ADB,∴△ABD是等腰三角形,∵∠DBC=∠A,∴∠A=∠C,∴△ABC是等腰三角形,故选D.5.B满足条件的点P的位置如图所示,点P的坐标为(-2,3)或(3,2)或(-2,-2)或(0, -1),故选B.6.A设直线l与FG交于点O(图略),∵直线l为线段FG的垂直平分线,∴FO=GO,l⊥FG,∵EF=GH,∴EF+FO=GH+OG,即EO=OH,∴l为线段EH的垂直平分线,故选项A正确;∵EO≠OQ,∴l不是线段EQ的垂直平分线,故选项B错误;∵FO≠OH,∴l不是线段FH的垂直平分线,故选项C错误;∵l为直线,直线没有垂直平分线,∴EH不能平分直线l,故选项D错误.故选A.7.B ∵∠DBC=60°,∠C=90°,∴∠BDC=90°-60°=30°,∴BD=2BC=2×1=2, ∵∠C=90°,∠A=15°,∴∠ABC=90°-15°=75°, ∴∠ABD=∠ABC-∠DBC=75°-60°=15°, ∴∠ABD=∠A,∴AD=BD=2.故选B.8.C ∵△AFG 与△ABC 关于直线DE 成轴对称,∴△AFG ≌△ABC,∠GAE=∠CAE=10°,∴∠GAF=∠CAB,AB=AF,∵AB=AC,∠C=70°,∴∠ABC=∠ACB=70°,∴∠GAF=∠BAC=40°,∴∠BAF=40°+10°+10°+40°=100°,∵AB=AF,∴∠ABF=∠AFB=40°.故选C.9.D 由题意可得CA=CD,BA=BD,∴直线CB 是AD 的垂直平分线,即CE 垂直平分AD,故A 选项结论正确;∵AC=DC,CE ⊥AD,∴∠ACE=∠DCE,即CE 平分∠ACD,故B 选项结论正确;∵DB=AB,∴△ABD 是等腰三角形,故C 选项结论正确;∵AD 与AC 不一定相等,∴△ACD 不一定是等边三角形,故D 选项结论错误.故选D.10.D ∵在△ABC 中,∠ABC 和∠ACB 的平分线相交于点O, ∴∠OBC=∠OBE,∠OCB=∠OCF,∵EF ∥BC,∴∠OBC=∠EOB,∠OCB=∠FOC, ∴∠EOB=∠OBE,∠FOC=∠OCF, ∴BE=OE,CF=OF,∴EF=OE+OF=BE+CF, 故A 选项结论正确;∵在△ABC 中,∠ABC 和∠ACB 的平分线相交于点O,∴∠OBC=12∠ABC,∠OCB=12∠ACB,∴∠OBC+∠OCB=12∠ABC+12∠ACB=12(180°-∠A)=90°-12∠A,∴∠BOC=180°-(∠OBC+∠OCB)=90°+12∠A,故B 选项结论正确;过点O 作OM ⊥AB 于M,ON ⊥BC 于N,连接OA,如图,∵在△ABC 中,∠ABC 和∠ACB 的平分线相交于点O,∴ON=OD=OM,∴点O 到△ABC 各边的距离相等,故C 选项结论正确;∵OD=m,∴ON=OD=OM=m,∴S △AEF =S △AOE +S △AOF =12AE ·OM+12AF ·OD=12OD ·(AE+AF)=12mn,故D 选项结论错误.故选D.11.(0,-2)解析∵点A(3,2)关于x轴的对称点为A1,∴A1(3,-2),∵将点A1向左平移3个单位得到点A2,∴点A2的坐标为(0,-2).12.3解析将其中一个小方格涂阴影,使整个图形为轴对称图形,这样的轴对称图形有3个,如图.13.12解析∵D为BC的中点,且BC=6,∴BD=12BC=3,由折叠的性质知NA=ND,则△DNB的周长=ND+NB+BD=NA+NB+BD=AB+BD=9+3=12.14.4解析过点D作DM⊥OB,垂足为M,如图所示.∵OC是∠AOB的平分线,DE⊥OA,∴DM=DE=2.在Rt△OEF中,∠OEF=90°,∠EOF=60°,∴∠OFE=30°,即∠DFM=30°.在Rt△DMF中,∠DMF=90°,∠DFM=30°,∴DF=2DM=4.故答案为4.15.54解析∵AF=EF,∴∠A=∠AEF,∵∠A+∠AEF=∠CFE=72°,∴∠A=12×72°=36°,在Rt△ABC中,∠C=90°,∴∠B=90°-36°=54°.16.6解析如图,连接CE交AD于点F,连接BF,∵△ABC是等边三角形,∴BF=CF,∴BF+EF=CF+EF=CE,此时BF+EF的值最小,最小值为CE的长,∵D、E分别是△ABC中BC、AB边的中点,∴AD=CE,∵AD=6,∴CE=6,∴BF+EF的最小值为6.17.等边解析∵三角形ABC为等边三角形,∴∠A=∠B=∠C=60°,根据题意知点B和点C经过折叠后分别落在了点I和点H处,∴∠DIH=∠B=60°,∠GHI=∠C=60°,∴∠HJI=60°,∴∠DIH=∠GHI=∠HJI,∴阴影部分是等边三角形,故答案为等边.或1018.103解析分情况讨论:①当点P在OA上时,如图所示,△POQ是等腰三角形,PO=QO;∵PO=AO-AP=(10-2t)cm,OQ=t cm,.∴10-2t=t,解得t=103②当点P在射线OB上时,如图所示,△POQ是等腰三角形.∵∠BOC=60°,∴等腰△POQ是等边三角形,∴PO=QO.∵PO=AP-AO=(2t-10)cm,OQ=t cm,∴2t-10=t,解得t=10.故当t=103或t=10时,△POQ是等腰三角形.19.解析(1)如图所示,△A1B1C1即为所求.(2)如图所示,△A2B2C2即为所求.(3)A1(2,3),A2(-2,-1).20.解析如图,延长AD交BC的延长线于点E.∵∠A=30°,∠B=90°,∴∠E=60°,AE=2BE,∵∠ADC=120°,∴∠EDC=60°,∴△EDC是等边三角形.设CD=CE=DE=x,∵AD=4,BC=1,∴AE=x+4,BE=x+1,∴2(x+1)=x+4,解得x=2,∴CD=2.21.证明(1)∵AB=AC,∴∠ABE=∠ACF,在△ABE 和△ACF 中,{AB =AC,∠ABE =∠ACF,BE =CF,∴△ABE ≌△ACF(SAS).(2)∵△ABE ≌△ACF,∴∠CAF=∠BAE=30°,∵AD=AC,∴∠ADC=∠ACD=75°,∴∠BAD=∠ADC,∴AB ∥CD.22.解析 (1)证明:∵AB=AC,∴∠ABC=∠ACB,在△DBE 和△ECF 中,{BE =CF,∠DBE =∠ECF,BD =CE,∴△DBE ≌△ECF(SAS),∴DE=EF,∴△DEF 是等腰三角形.(2)∵△DBE ≌△ECF,∴∠BDE=∠CEF,∠BED=∠CFE,∵∠A+∠B+∠C=180°,∠A=44°,∴∠B=12×(180°-44°)=68°,∴∠BDE+∠BED=112°,∴∠BED+∠CEF=112°,∴∠DEF=180°-112°=68°.23.解析 (1)当∠A 为顶角时,∠B=12×(180°-80°)=50°, 当∠A 为底角时,若∠B 为顶角,则∠B=180°-80°-80°=20°, 若∠B 为底角,则∠B=∠A=80°,∴∠B 的度数为50°或20°或80°.(2)分两种情况:①当90≤x<180时,∠A 只能为顶角,∴∠B 的度数只有一个.②当0<x<90时,若∠A 为顶角,则∠B=(180−x 2)°,若∠A 为底角,则∠B=x °或∠B=(180-2x)°,∴当180−x 2≠180-2x 且180−x 2≠x 且180-2x ≠x,即x ≠60时,∠B 有三个不同的度数.综上,当0<x<90且x ≠60时,∠B 有三个不同的度数.24.解析 (1)证明:∵△AOB,△CBD 都是等边三角形,∴OB=AB,CB=DB,∠ABO=∠DBC=60°,∴∠OBA+∠ABC=∠CBD+∠ABC,即∠OBC=∠ABD,在△OBC 和△ABD 中,{OB =AB,∠OBC =∠ABD,CB =DB,∴△OBC ≌△ABD(SAS),∴OC=AD.(2)点C 在运动过程中,∠CAD 的度数不会发生变化.理由如下: ∵△AOB 是等边三角形,∴∠BOA=∠OAB=60°,∵△OBC ≌△ABD,∴∠BAD=∠BOC=60°,∴∠CAD=180°-∠OAB-∠BAD=60°.(3)∵∠OAB=∠BAD=60°,∴∠OAE=180°-60°-60°=60°,∴∠EAC=120°,∠OEA=30°,∴以A,E,C 为顶点的三角形是等腰三角形时,AE 和AC 是腰, ∵A(1,0),∴OA=1,∵∠OEA=30°,∴AE=2OA=2,∴AC=AE=2,∴OC=OA+AC=1+2=3,∴当点C 的坐标为(3,0)时,以A,E,C 为顶点的三角形是等腰三角形.。

人教版八年级数学上册第十三章达标测试卷及答案

人教版八年级数学上册第十三章达标测试卷及答案

第十三章达标测试卷一、选择题(每题3分,共30分)1.下列四个交通标志图中为轴对称图形的是()2.已知点P(3,-2)与点Q关于x轴对称,则点Q的坐标为() A.(-3,2) B.(-3,-2)C.(3,2) D.(3,-2)3.一个等腰三角形的两边长分别为5和11,则这个等腰三角形的周长为() A.16 B.21C.27 D.21或274.等腰三角形的一个角为50°,则这个等腰三角形的顶角为() A.50°B.65°C.80°D.50°或80°5.下列说法中,正确的是()A.关于某条直线对称的两个三角形一定全等B.两个全等三角形一定关于某条直线对称C.面积相等的两个三角形一定关于某条直线对称D.周长相等的两个三角形一定关于某条直线对称6.如图,一艘海轮位于灯塔P的南偏东70°方向的M处,它以每小时40 n mile 的速度向正北方向航行,2 h后到达灯塔P的北偏东40°方向的N处,则N 处与灯塔P的距离为()A.40 n mile B.60 n mileC.70 n mile D.80 n mile(第6题) (第7题) (第8题)7.如图,等腰三角形ABC的周长为21,底边BC=5,AB的垂直平分线DE交AB于点D,交AC于点E,则△BEC的周长为()A.13 B.14 C.15 D.168.如图,若△ABC是等边三角形,AB=6,BD是∠ABC的平分线,延长BC到E,使CE=CD,则BE的长为()A.7 B.8 C.9 D.109.如图,在Rt△ABC中,∠ACB=90°,∠B=30°,CD是斜边AB上的高,AD =3 cm,则AB的长度是()A.3 cm B.6 cm C.9 cm D.12 cm(第9题) (第10题)10.如图,在△ABC中,BI,CI分别平分∠ABC,∠ACB,过I点作DE∥BC,分别交AB于D,交AC于E,给出下列结论:①△DBI是等腰三角形;②△ACI是等腰三角形;③AI平分∠BAC;④△ADE的周长等于AB+AC.其中正确的是()A.①②③B.②③④C.①③④D.①②④二、填空题(每题3分,共24分)11.若点M(m,-n)与点N(3,m-1)关于y轴对称,则mn=________,直线MN与x轴的位置关系是________.12.如图,AE∥BD,C是BD上的点,且AB=BC,∠ACD=110°,则∠EAB=________.(第12题) (第13题) (第14题)13.如图,在正方形方格中,阴影部分是涂黑7个小正方形所形成的图案,再将方格内空白的一个小正方形涂黑,使得到的新图案成为一个轴对称图形的涂法有________种.14.如图,在△ABC中,∠C=90°,∠B=30°,AB边的垂直平分线ED交AB于点E,交BC于点D,若CD=3,则BD的长为________.15.如图,在等腰三角形ABC中,AB=AC,P,Q分别是边AC,AB上的点,且AP=PQ=QC=BC,则∠PCQ的度数为________.(第15题) (第17题) (第18题)16.若等腰三角形的顶角为150°,则它一腰上的高与另一腰的夹角的度数为________.17.如图,点D,E分别在等边三角形ABC的边AB,BC上,将△BDE沿直线DE翻折,使点B落在B1处.若∠ADB1=70°,则∠CEB1=________.18.如图,等腰三角形ABC的底边BC长为4,面积是16,腰AC的垂直平分线EF分别交AC,AB边于点E,F.若点D为BC边的中点,点M为线段EF上一动点,则△CDM周长的最小值为________.三、解答题(19~22题每题8分,25题14分,其余每题10分,共66分) 19.如图,已知AB=AC,AE平分∠DAC,那么AE∥BC吗?为什么?20.如图,在四边形ABCD中,已知A(4,4),B(1,3),C(1,0),D(3,1),在平面直角坐标系内分别作出四边形ABCD关于x轴和y轴对称的图形.21.如图,P为∠MON的平分线上的一点,P A⊥OM于A,PB⊥ON于B.求证:OP垂直平分AB.22.如图,在△ABC中,∠C=2∠A,BD平分∠ABC交AC于D.求证AB=BC +CD.23.如图,在△ABC中,AB=AC,点D,E,F分别在边AB,BC,AC上,且BE=CF,BD=CE.(1)求证:△DEF是等腰三角形;(2)当∠A=40°时,求∠DEF的度数.24.如图,已知点D为等腰直角三角形ABC内一点,AC=BC,∠ACB=90°,∠CAD=∠CBD=15°,E为AD的延长线上的一点,且CE=CA.(1)求证:DE平分∠BDC;(2)若点M在DE上,且DC=DM,求证ME=BD.25.(1)如图①,已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D,E.求证DE=BD+CE.(2)如图②,将(1)中的条件改为:在△ABC中,AB=AC,D,A,E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE是否成立?若成立,请你给出证明;若不成立,请说明理由.(3)拓展与应用:如图③,D,E是过点A的直线m上的两动点(D,A,E三点互不重合),且△ABF和△ACF均为等边三角形,连接BD,CE.若∠BDA=∠AEC =∠BAC,试判断△DEF的形状,并说明理由.答案一、1.D 2.C 3.C 4.D 5.A 6.D 7.A 8.C 9.D 10.C 二、11.-12;平行 12.40° 13.3 14.6 15.⎝ ⎛⎭⎪⎫3607° 16.60° 17.50°18.10 点拨:如图,连接AD ,交EF 于点M ′,连接CM ′,当点M 与点M ′重合时CM +MD 最短,因此△CDM 周长最小.∵直线EF 垂直平分AC , ∴AM ′=CM ′.∵AB =AC ,D 为BC 的中点, ∴AD ⊥BC ,CD =BD .∴AD 是△ABC 的边BC 上的高.又∵△ABC 的底边BC 长为4,面积是16,∴AD =16×2÷4=8. ∴△CDM 周长的最小值为8+4÷2=10. 三、19.解:AE ∥BC .理由如下:∵AB =AC ,∴∠B =∠C .由三角形的外角性质得∠DAC =∠B +∠C =2∠B .∵AE 平分∠DAC ,∴∠DAC =2∠DAE ,∴∠B =∠DAE . ∴AE ∥BC .20.解:如图,四边形A 1B 1C 1D 1为四边形ABCD 关于x 轴对称的图形,四边形A 2B 2C 2D 2为四边形ABCD 关于y 轴对称的图形.(第20题)21.证明:∵OP 平分∠MON ,P A ⊥OM ,PB ⊥ON ,∴P A =PB . 又OP =OP ,∴Rt △POA ≌Rt △POB (HL ). ∴OA =OB . ∵OP 平分∠MON , ∴OP 垂直平分AB .22.证明:延长BC 至点E ,使BE =BA ,连接DE . ∵BD 平分∠ABC ,∴∠ABD =∠EBD . 又AB =EB ,BD =BD , ∴△ABD ≌△EBD (SAS ). ∴∠A =∠E .∵∠ACB =2∠A ,∴∠ACB =2∠E . ∵∠ACB =∠E +∠CDE , ∴∠CDE =∠E .∴CD =CE . 又∵AB =BE ,BE =BC +CE , ∴AB =BC +CD .23.(1)证明:∵AB =AC , ∴∠B =∠C .在△DBE 和△ECF 中,⎩⎨⎧BE =CF ,∠B =∠C ,BD =CE ,∴△DBE ≌△ECF (SAS ).∴DE =EF .∴△DEF 是等腰三角形.(2)解:由(1)可知△DBE ≌△ECF ,∴∠1=∠3. ∵∠A +∠B +∠C =180°,∠A =40°,∠B =∠C , ∴∠B =12(180°-40°)=70°. ∴∠1+∠2=110°. ∴∠3+∠2=110°.∴∠DEF =70°.24.证明:(1)∵AC =BC ,∠ACB =90°,∴∠BAC =∠ABC =45°. ∵∠CAD =∠CBD =15°, ∴∠BAD =∠ABD =30°. ∴AD =BD .又∵AC =BC ,∠CAD =∠CBD , ∴△ADC ≌△BDC (SAS ). ∴∠ACD =∠BCD =45°, ∴∠ADC =∠BDC =120°. ∵∠ADC +∠CDE =180°, ∴∠CDE =60°,∴∠BDE =120°-60°=60°. ∴∠BDE =∠CDE , 即DE 平分∠BDC . (2)连接CM .∵DC =DM ,∠CDE =60°, ∴△CDM 为等边三角形. ∴∠CMD =60°,CD =CM , ∴∠CME =120°, ∴∠CME =∠BDC . ∵CE =CA , ∴∠CAE =∠E . ∵∠CAE =∠CBD , ∴∠E =∠CBD . 在△CME 和△CDB 中,⎩⎨⎧∠E =∠CBD ,∠CME =∠CDB ,CM =CD ,∴△CME ≌△CDB (AAS ). ∴ME =BD .25.(1)证明:∵∠BAC=90°,∴∠BAD+∠CAE=90°.又∵BD⊥直线m,CE⊥直线m,∴∠BDA=∠CEA=90°.∴∠BAD+∠DBA=90°.∴∠CAE=∠DBA.又∵AB=AC,∴△BDA≌△AEC(AAS).∴BD=AE,AD=EC.∴DE=AD+AE=EC+BD,即DE=BD+CE.(2)解:成立.证明如下:∵∠BDA=∠BAC,∴∠DAB+∠DBA=∠DAB+∠CAE,∴∠DBA=∠CAE.又∵∠BDA=∠AEC,AB=AC,∴△BDA≌△AEC(AAS).∴BD=AE,AD=EC.∴DE=AE+AD=BD+CE.(3)解:△DEF是等边三角形.理由如下:由(2)知△BDA≌△AEC,∴∠BAD=∠ACE,AD=EC. 又∵△ABF和△ACF是等边三角形,∴FC=F A,∠AFC=∠FCA=∠F AB=60°.∴∠BAD+∠F AB=∠ACE+∠FCA,即∠DAF=∠ECF.∴△F AD≌△FCE(SAS).∴FD=FE,∠DF A=∠EFC.又∵∠EFC+∠AFE=60°,八年级数学上册第十三章达标测试卷及答案∴∠DF A+∠AFE=60°.∴∠DFE=60°.∴△DEF是等边三角形.。

人教版八年级数学上册第十三章达标测试卷及答案

人教版八年级数学上册第十三章达标测试卷及答案

人教版八年级数学上册第十三章达标测试卷及答案第十三章达标测试卷一、选择题(每题3分,共30分)1.下列四个交通标志图中为轴对称图形的是()A。

B。

C。

D。

2.已知点P(3.-2)与点Q关于x轴对称,则点Q的坐标为()A。

(-3.2)B。

(-3.-2)C。

(3.2)D。

(3.-2)3.一个等腰三角形的两边长分别为5和11,则这个等腰三角形的周长为()A。

16B。

21C。

27D。

21或274.等腰三角形的一个角为50°,则这个等腰三角形的顶角为()A。

50°B。

80°C。

50°或80°D。

130°5.下列说法中,正确的是()A。

关于某条直线对称的两个三角形一定全等B。

两个全等三角形一定关于某条直线对称C。

面积相等的两个三角形一定关于某条直线对称D。

周长相等的两个三角形一定关于某条直线对称6.如图,一艘海轮位于灯塔P的南偏东70°方向的M处,它以每小时40 n mile的速度向正北方向航行,2 h后到达灯塔P的北偏东40°方向的N处,则N处与灯塔P的距离为()A。

40 n mileB。

60 n mileC。

70 n mileD。

80 n mile7.如图,等腰三角形ABC的周长为21,底边BC=5,AB 的垂直平分线DE交AB于点D,交AC于点E,则△BEC的周长为()A。

13B。

14C。

15D。

168.如图,若△ABC是等边三角形,AB=6,BD是∠ABC 的平分线,延长BC到E,使CE=CD,则BE的长为()A。

7B。

8C。

9D。

109.如图,在Rt△ABC中,∠ACB=90°,∠B=30°,CD是斜边AB上的高,AD=3 cm,则AB的长度是()A。

3 cmB。

6 cmC。

9 cmD。

12 cm10.如图,在△ABC中,BI,CI分别平分∠ABC,∠ACB,过I点作DE∥BC,分别交AB于D,交AC于E,给出下列结论:①△DBI是等腰三角形;②△ACI是等腰三角形;③AI 平分∠BAC;④△ADE的周长等于AB+AC。

2016-2017学年人教版八年级数学上册第十三章测试卷_含答案

2016-2017学年人教版八年级数学上册第十三章测试卷_含答案

2016-2017学年八年级数学上册第十三章测试卷(100分,45分钟)一、选择题(每题4分,共32分)1.〈福建三明〉如图1,不是轴对称图形的是( )图12.〈宁夏〉如图2,△ABC中,∠ACB=90°,沿CD折叠△CBD,使点B恰好落在AC边上的点E处,若∠A=22°,则∠BDC等于()A.44° B. 60° C. 67° D. 77°图2 图3 图4 3.〈湖北十堰〉如图3,将△ABC沿直线DE折叠后,使得点B与点A重合,已知AC=5 cm,△ADC的周长为17 cm,则BC的长为()A.7 cm B.10 cm C.12 cm D.22 cm 4.已知等腰三角形的一个角等于42°,则它的底角为( ) A.42°B.69°C.69°或84°D.42°或69°5. 如图4,在△ABC中, AB=AC, CD为∠ACB的平分线,DE∥BC,∠A=40°, 则∠EDC的度数是()A.30°B.36°C.35°D.54°6.如图5,AB=AC,∠BAD=30°,AD⊥BC且AD=AE, 则∠EDC的度数为()A.10°B.12.5°C.15°D.20°图5 图67.如图6,△ABC中,AB=AC,点D、E、F分别在BC、AB、AC上,且DE=BE,DF=DC,若∠A=40°,则∠EDF的度数为( )A.45°B.60°C.70°D.80°8.如图7,是一个经过改造的台球桌面的示意图,图中四个角上的阴影部分分别表示四个入球孔.如果一个球按图中所示的方向被击出(球可以经过多次反射),那么该球最后将落入的球袋是( )A.1号袋B.2号袋C.3号袋D.4号袋二、填空题(每题4分,共24分)9.点E(5,-a)与点F(b,2-)关于y轴对称,则a=______,b=_______.10.已知:如图8所示,点D在BC的延长线上,∠ACD=120°,AB =AC,则△ABC的形状为_____________.图7 图811.如图9,在△ABC 中,∠B =30°,ED 垂直平分BC ,ED =3.则CE 的长为___________.12.〈湖北武汉改编〉如图10,在平面直角坐标系中,Rt △ABC 的三个顶点分别是A (2,3-),B (4,0),C (2,0).在x 轴上有一点P ,使得P A +PB 的值最小,则点P 的坐标是_________.图9 图10 图1113.〈浙江义乌〉如图11,AD ⊥BC 于点D ,D 为BC 的中点,连接AB ,∠ABC 的平分线交AD 于点O ,连接OC ,若∠AOC =125°,则∠ABC =________°.14.如图12,已知∠AOB =α,在射线OA 、OB 上分别取点A 1、B 1,使OA 1=OB 1,连接11B A ,在11A B ,B B 1上分别取点2A 、2B ,使2121A B B B =,连接22B A ,…,按此规律下去,记∠A 2B 1B 2=θ1,∠A 3B 2B 3=θ2,…,∠A n +1B n B n +1=θn ,则θ1=___________;θn =___________.图12三、解答题(15、16题每题10分,其余每题12分,共44分)15.如图13所示,(1)写出顶点C的坐标;(2)作△ABC关于y轴对称的△A1B1C1;(3)若点A2(a,b)与点A关于x轴对称,求ba 的值.图1316.已知:如图14, △ABC是等边三角形, D是BC的中点, DF⊥AC 于F, 延长DF到E, 使EF=DF, 连接AE, 求:∠E的度数.图1417.〈江苏扬州〉已知:如图15,锐角△ABC的两条高BD、CE相交于点O,且OB=OC.(1)求证:△ABC是等腰三角形;图15 (2)判断点O是否在∠BAC的平分线上,并说明理由.18.〈探究题〉如图16,点O是等边△ABC内一点,∠AOB=110°,∠BOC=α,将△BOC绕点C按顺时针方向旋转60°得△ADC,连接OD.(1)求证:△COD是等边三角形;图16(2)当α=150°时,试判断△AOD的形状,并说明理由(3)探究:当α为多少度时,△AOD是等腰三角形?参考答案及点拨第十三章过关自测卷一、1.A 2.C 3.C 4.D 5.C 6.C7.C 点拨:在三个等腰三角形中运用“等边对等角”的性质,把不同三角形中的角联系起来,实现了角的转化.8. B 点拨:本题中的台球经过多次反射,每一次的反射就是一次轴对称变换,直到最后落入球袋,可用轴对称作图(如答图1),该球最后将落入2号袋.答图1二、9. 52-; 点拨:点E 、F 关于y 轴对称,横坐标互为相反数,纵坐标不变.10. 等边三角形 11. 612.(0,2-) 点拨:如答图2,在网格图中找出点A 关于x 轴的对称点1A ,连接B A 1,交x 轴于点P (0,2-).答图213.70 14.2180α+ο;()n n 218012α+⋅-ο 三、15.解:(1)C (1,2--).(2)如答图3.答图3(3)∵点2A (a ,b )与点A 关于x 轴对称,A 的坐标是(1,2), ∴a =1,b =2-,∴b a - =()21--=3.16.解:如答图4,连接AD .∵△ABC 是等边三角形, D 是BC 的中点,∴∠1=∠2=30°,又∵DF ⊥AC 于F , DF =EF ,∴AD =AE ,∠ADE =90°2∠-=60°,∴∠E =∠ADE =60°.答图417.(1)证明:如答图5,∵OB =OC ,∴∠OBC =∠OCB ,∵BD 、CE 是两条高,∴∠BDC =∠CEB =90°,又∵BC =CB ,∴△BDC ≌△CEB (AAS ),∴∠DCB =∠EBC ,∴AB =AC ,∴△ABC 是等腰三角形.(2)解:点O 在∠BAC 的平分线上.如答图5,连接AO .答图5∵ △BDC ≌△CEB ,∴BD =CE ,又∵OB =OC ,∴ OD =OE .又∵∠BDA =∠CEA =90°,AO =AO ,∴Rt △ADO ≌Rt △AEO (HL ), ∴∠DAO =∠EAO ,∴点O 在∠BAC 的平分线上.18.(1)证明:∵将△BOC 绕点C 按顺时针方向旋转60°得△ADC ,∴CO =CD ,∠OCD =60°,∴△COD 是等边三角形.(2)解:当α=150°时,△AOD 是直角三角形,理由是:∵△BOC ≌△ADC ,∴∠ADC =∠BOC =150°,又∵△COD 是等边三角形, ∴∠ODC =60°,∴∠ADO =∠ADC -∠ODC =90°,即△AOD 是直角三角形.(3)解:①要使AO =AD ,需∠AOD =∠ADO ,∵∠AOD =α---οοο60110360=α-ο190,∠ADO =ο60-α,∴α-ο190=ο60-α, ∴ο125=α;②要使OA =OD ,需∠OAD =∠ADO ,∵∠OAD =-ο180 (∠AOD +∠ADO )=()οοο60190180-+--αα=ο50,∴ο60-α=ο50, ∴ο110=α;③要使DO =DA ,需∠OAD =∠AOD .∵∠AOD =α---οοο60110360 =α-ο190,∠OAD =()2240260180αα-=--οοο,∴α-ο190=2240α-ο,解得ο140=α.综上所述:当α的度数为ο125或ο110或ο140时,△AOD 是等腰三角形.。

人教版八年级上册数学第十三章测试题 (1)

人教版八年级上册数学第十三章测试题 (1)

第十三章 轴对称 单元测试(A )答题时间:120 满分:150分一、选择题 (每题3分,共30分。

每题只有一个正确答案,请将正确答案的代号填在下面的表格中)题号 1 2 3 4 5 6 7 8 9 10 答案1、下列图案是几种名车的标志,在这几个图案中不是轴对称图形的是( )A :B :C :D :2、点M (1,2)关于x 轴对称的点的坐标为( )A :(-1,-2)B :(-1,2)C :(1,-2)D :(2,-1) 3、下列图形中对称轴最多的是( )A :等腰三角形B :正方形C :圆D :线段 4、已知直角三角形中30°角所对的直角边为2㎝,则斜边的长为( )A :2 ㎝B :4 ㎝C :6 ㎝D :8㎝ 5、下列说法正确的是( )A :等腰三角形的高、中线、角平分线互相重合B :顶角相等的两个等腰三角形全等C :等腰三角形的两个底角相等D :等腰三角形一边不可以是另一边的二倍6、若等腰三角形的周长为26cm ,一边为11cm ,则腰长为( )A :11cmB :7.5cmC :11cm 或7.5cmD : 以上都不对 7、如图:DE 是∆ABC 中AC 边的垂直平分线,若BC=8厘米,AB=10厘米,则∆EBC 的周长为( )厘米A :16B :18C :26D :288、如图:∠EAF=15°,AB=BC=CD=DE=EF ,则∠DEF 等于( )CEBDADCBAEA:90° B: 75° C:70° D: 60°9、若等腰三角形腰上的高是腰长的一半,则这个等腰三角形的底角是()A:75°或15° B:75° C:15° D:75°和30°10、如图所示,l是四边形ABCD的对称轴,AD∥BC,现给出下列结论:①AB∥CD;②AB=BC;③AB⊥BC;④AO=OC 其中正确的结论有()A:1个 B:2个 C:3个 D:4个二、填空题(每题3分,共30)11、在数字0、2、4、6、8中是轴对称图形的是;12、等腰三角形一个底角是30°,则它的顶角是__________度;13、等腰三角形的一边长是6,另一边长是3,则周长为________________;14、等腰三角形的一内角等于50°,则其它两个内角各为;15、如图:在Rt△ABC中,∠C=90°,∠A=30°,AB+BC=12㎝,则AB= ㎝;16、如图:从镜子中看到一钟表的时针和分针,此时的实际时刻是________;17、如图:点P为∠AOB内一点,分别作出P点关于OA、OB的对称点P1,P2,连接P1P2交OA于M,交OB于N,P1P2=15,则△PMN的周长为;18、点E(a,-5)与点F(-2,b)关于y轴对称,则a= ,b= ;19、在△ABC是AB=5,AC=3,BC边的中线的取值范围是。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016-2017学年八年级数学上册第十三章测试卷
(100分,45分钟)
一、选择题(每题4分,共32分)
1.〈福建三明〉如图1,不是轴对称图形的是( )
图1
2.〈宁夏〉如图2,△ABC中,∠ACB=90°,沿CD折叠△CBD,使点B恰好落在AC边上的点E处,若∠A=22°,则∠BDC等于()A.44° B. 60° C. 67° D. 77°
图2 图3 图4 3.〈湖北十堰〉如图3,将△ABC沿直线DE折叠后,使得点B与点A重合,已知AC=5 cm,△ADC的周长为17 cm,则BC的长为()A.7 cm B.10 cm C.12 cm D.22 cm 4.已知等腰三角形的一个角等于42°,则它的底角为( ) A.42°B.69°
C.69°或84°D.42°或69°
5. 如图4,在△ABC中, AB=AC, CD为∠ACB的平分线,DE∥BC,∠A=40°, 则∠EDC的度数是()
A.30°
B.36°
C.35°
D.54°
6.如图5,AB=AC,∠BAD=30°,AD⊥BC且AD=AE, 则∠EDC的度数为()
A.10°
B.12.5°
C.15°
D.20°
图5 图6
7.如图6,△ABC中,AB=AC,点D、E、F分别在BC、AB、AC上,且DE=BE,DF=DC,若∠A=40°,则∠EDF的度数为( )
A.45°
B.60°
C.70°
D.80°
8.如图7,是一个经过改造的台球桌面的示意图,图中四个角上的阴影部分分别表示四个入球孔.如果一个球按图中所示的方向被击出(球可以经过多次反射),那么该球最后将落入的球袋是( )
A.1号袋
B.2号袋
C.3号袋
D.4号袋
二、填空题(每题4分,共24分)
9.点E(5,-a)与点F(b,2-)关于y轴对称,则a=______,b=_______.
10.已知:如图8所示,点D在BC的延长线上,∠ACD=120°,AB =AC,则△ABC的形状为_____________.
图7 图8
11.如图9,在△ABC 中,∠B =30°,ED 垂直平分BC ,ED =3.则CE 的长为___________.
12.〈湖北武汉改编〉如图10,在平面直角坐标系中,Rt △ABC 的三个顶点分别是A (2,3-),B (4,0),C (2,0).在x 轴上有一点P ,使得P A +PB 的值最小,则点P 的坐标是_________.
图9 图10 图11
13.〈浙江义乌〉如图11,AD ⊥BC 于点D ,D 为BC 的中点,连接AB ,∠ABC 的平分线交AD 于点O ,连接OC ,若∠AOC =125°,则∠ABC =________°.
14.如图12,已知∠AOB =α,在射线OA 、OB 上分别取点A 1、B 1,使OA 1=OB 1,连接11B A ,在11A B ,B B 1上分别取点2A 、2B ,使2121A B B B =,连接22B A ,…,按此规律下去,记∠A 2B 1B 2=θ1,∠A 3B 2B 3=θ2,…,∠A n +1B n B n +1=θn ,则θ1=___________;θn =___________.
图12
三、解答题(15、16题每题10分,其余每题12分,共44分)
15.如图13所示,(1)写出顶点C的坐标;
(2)作△ABC关于y轴对称的△A1B1C1;
(3)若点A2(a,b)与点A关于x轴对称,求b
a 的值.
图13
16.已知:如图14, △ABC是等边三角形, D是BC的中点, DF⊥AC 于F, 延长DF到E, 使EF=DF, 连接AE, 求:∠E的度数.
图14
17.〈江苏扬州〉已知:如图15,锐角△ABC的两条高BD、CE相交于点O,且OB=OC.
(1)求证:△ABC是等腰三角形;
图15 (2)判断点O是否在∠BAC的平分线上,并说明理由.
18.〈探究题〉如图16,点O是等边△ABC内一点,∠AOB=110°,∠BOC=α,将△BOC绕点C按顺时针方向旋转60°得△ADC,连接OD.
(1)求证:△COD是等边三角形;
图16
(2)当α=150°时,试判断△AOD的形状,并说明理由
(3)探究:当α为多少度时,△AOD是等腰三角形?
参考答案及点拨
第十三章过关自测卷
一、1.A 2.C 3.C 4.D 5.C 6.C
7.C 点拨:在三个等腰三角形中运用“等边对等角”的性质,把不同三角形中的角联系起来,实现了角的转化.
8. B 点拨:本题中的台球经过多次反射,每一次的反射就是一次轴对称变换,直到最后落入球袋,可用轴对称作图(如答图1),该球最后将落入2号袋.
答图1
二、9. 52-; 点拨:点E 、F 关于y 轴对称,横坐标互为相反数,纵坐标不变.
10. 等边三角形 11. 6
12.(0,2-) 点拨:如答图2,在网格图中找出点A 关于x 轴的对称点1A ,连接B A 1,交x 轴于点P (0,2-).
答图2
13.70 14.2180α+ ;()
n n 218012α+⋅- 三、15.解:(1)C (1,2--).(2)如答图3.
答图3
(3)∵点2A (a ,b )与点A 关于x 轴对称,A 的坐标是(1,2), ∴a =1,b =2-,∴b a - =()21--=3.
16.解:如答图4,连接AD .
∵△ABC 是等边三角形, D 是BC 的中点,
∴∠1=∠2=30°,
又∵DF ⊥AC 于F , DF =EF ,
∴AD =AE ,∠ADE =90°2∠-=60°,∴∠E =∠ADE =60°.
答图4
17.(1)证明:如答图5,∵OB =OC ,∴∠OBC =∠OCB ,∵BD 、CE 是两条高,∴∠BDC =∠CEB =
90°,又∵BC =CB ,∴△BDC ≌△CEB (AAS ),
∴∠DCB =∠EBC ,∴AB =AC ,∴△ABC 是等腰三角形.
(2)解:点O 在∠BAC 的平分线上.如答图5,连接AO .
答图5
∵ △BDC ≌△CEB ,∴BD =CE ,又∵OB =OC ,∴ OD =OE .
又∵∠BDA =∠CEA =90°,AO =AO ,∴Rt △ADO ≌Rt △AEO (HL ), ∴∠DAO =∠EAO ,∴点O 在∠BAC 的平分线上.
18.(1)证明:∵将△BOC 绕点C 按顺时针方向旋转60°得△ADC ,∴CO =CD ,∠OCD =
60°,∴△COD 是等边三角形.
(2)解:当α=150°时,△AOD 是直角三角形,理由是:∵△BOC ≌△ADC ,∴∠ADC =∠BOC =150°,又∵△COD 是等边三角形, ∴∠ODC =60°,∴∠ADO =∠ADC -∠ODC =
90°,即△AOD 是直角三角形.
(3)解:①要使AO =AD ,需∠AOD =∠ADO ,∵∠AOD =α--- 60110360=α- 190,∠ADO = 60-α,∴α- 190= 60-α, ∴ 125=α;②要使OA =OD ,需∠OAD =∠ADO ,∵∠OAD =- 180 (∠AOD +∠ADO )=() 60190180-+--αα= 50,∴ 60-α= 50, ∴ 110=α;
③要使DO =DA ,需∠OAD =∠AOD .∵∠AOD =α--- 60110360 =
α- 190,∠OAD =()
2240260180αα-=-- ,∴α- 190=2240α- ,解得 140=α.综上所述:当α的度数为 125或 110或 140时,△AOD 是等腰
三角形.。

相关文档
最新文档