《不等式与不等式组》单元复习题

合集下载

第九章不等式与不等式组单元测试

第九章不等式与不等式组单元测试

DCBA第九章《不等式与不等式组》单元测试班级_________姓名____________一.填空题(每空3分,第2题每空2分,共35分)1. x的21与5的差不小于3,用不等式可表示为__________.2.设x >y,则x+2___y+2, -3x___-3y, x-y___0, x+y___2y.3.当x_____时,式子3x-5的值大于5x+3的值.4.当x_____时,代数式x-3是非正数.5.不等式x≤23的正整数解为______,不等式-2≤x<1的整数解为__________.6.若不等式组⎩⎨⎧>≤<mxx21有解,则m的取值范围是________.7.若不等式2x<a的解集为x<2,则a=_______.8.某饮料瓶上有这样字样:Eatable Date 18 months.如果用x(单位:月)表示Eatable Date(保质期),那么该饮料的保质期可以用不等式表示为___________.9.某次数学测验中有16道选择题,评分办法:答对一道得6分,答错一道扣2分,不答得0分。

某学生有一道题未答,那么这个同学至少要答对_____道题,成绩才能在60分以上.二.选择题(每题3分,共24分)1.已知a<b,则下列不等式中不正确的是( )A. 4a<4bB. a+4<b+4C. -4a<-4bD. a-4<b-42设.表示三种不同的物体,用天平比较它们质量的大小,情况如图,那么这三种物体按质量从大到小的顺序为()3.不等式组⎪⎩⎪⎨⎧-≥+>-xxx2313211的解集在数轴上表示为( )4.若方程3m(x+1)+1=m(3-x)-5x 的解是负数,则m 的取值范围是( )A m>-1.25 B. m<-1.25 C.m>1.25 D.m<1.255.不等式31(x-m)>2-m 的解集为x>2,则m 的值为 ( ) A.4 B.2 C.1.5 D.0.56.从甲地到乙地有16千米,某人以4千米/时~8千米/时的速度由甲到乙,则他用的时间大约为 ( )A 1小时~2小时 B2小时~3小时 C3小时~4小时 D2小时~4小时7.不等式7x-2(10-x)≥7(2x-5)非负整数解是( )A .0,1,2 B.0,1,2,3 C.0,1,2,3,4 D.0,1,2,3,4,58.某种出租车的收费标准:起步价7元(即行使距离不超过3千米都须付7元车费),超过3千米以后,每增加1千米,加收2.4元(不足1千米按1千米计).某人乘这种出租车从甲地到乙地共付车费19元,那么甲地到乙地路程的最大值是( )A .5千米 B.7千米C.8千米 1)1(22<---x x D.15千米 三.解答题(共41分) 1.解不等式1)1(22<---x x ;2.解不等式组⎪⎩⎪⎨⎧-≤-+>-x x x x 237121)1(325,并求其整数解,并把解集表示在数轴上;3.已知方程组⎩⎨⎧-=++=+12123m y x m y x ,当m 为何值时,x>y.4.娃哈哈矿泉水每瓶售价1.2元,现甲、乙两家商场给出优惠政策:甲商场全部九折,乙商场20瓶以上的部分8折.若你是消费者,选哪家商场比较合适?5.有一群猴子,一天结伴去偷桃子.分桃子时,如果每只猴子分3个,那么还剩下59个;如果每个猴子分5个,就都分得桃子,但有一个猴子分得的桃子不够5个.你能求出有几只猴子,几个桃子吗?参考答案:一.1.21x-5≥3 2.> < > > 3.x<-4 4.x ≤3 5.0. -2,-1,0 6.1≤m<2 7.4 8.x ≤18 9.12二.1C 2A 3B 4A 5B 6D 7B 8C三.1.x>-2,图略2.解不等式①得:x>2.5解不等式②得:x ≤4, 所以不等式组的解集2.5<x ≤4,整数解为:4,33.解方程组得x=m+3,y=-m+5,因为x>y,所以m+3>-m-5,m>-4 所以当m>-4时,x>y4.20瓶以下,选甲商场20≤x<40瓶,选甲商场X=40瓶,两商场一样x>40瓶,选乙商场5.设有x 只猴子,则有(3x+59)只桃子,根据题意得:0<(3x+59)-5(x-1)<5解得29.5<x<32因为x 为整数,所以x=30或x=31当x=30时,(3x+59)=149当x=31时,(3x+59)=152答:有30只猴子,149只桃子或有31只猴子,152只桃子。

人教版七年级下册数学第九章《不等式和不等式组》单元检测卷 (附答案)

人教版七年级下册数学第九章《不等式和不等式组》单元检测卷 (附答案)

人教版七年级下册数学第九章《不等式和不等式组》单元测试卷(基础)总分:100分一、选择题(每小题4分,共40分)1.(2020·四川省巴中中学七年级期中)在下列数学表达式:①-20<,②2-50x ≥,③1x =,④2-x x ,⑤-2x ≠,⑥2-1x x +<中,是不等式的有( ) A .2个B .3个C .4个D .5个2.(2020·重庆綦江区·七年级期末)把不等式x+2≤0的解集在数轴上表示出来,则正确的是( ) A . B . C .D .3.(2020·河南许昌市·)我市某一天的最高气温是9C ︒,最低气温是零下2C ︒,则当天我市气温变化范围()t C ︒是( )A .29t <<B .29t ≤≤C .29t -<<D .29t -≤≤4.(2021·浙江杭州市·八年级期末)若a b >,则下列各式中一定成立的是( ) A .22a b -<-B .11a b +>+C .22a b <D .33a b->- 5.(2021·湖南怀化市·八年级期末)下列不等式中,变形错误的是( ) A .x y >则11x y +>+ B .若a b ->-则a b < C .12x y ->则2x y <- D .若35x -<则53x <-6.(2021·浙江温州市·八年级期末)不等式213x -≤的解是( ) A .1≥xB .1x ≤C .2x ≥D .2x ≤7.(2021·沙坪坝区·重庆一中八年级期末)不等式480x -≥的解集在数轴上表示为( ) A .B .C .D .8.(2021·全国七年级)不等式组24020x x -⎧⎨+>⎩的解集在数轴上表示正确的是( )A .B .C .D .9.(2021·湖南娄底市·八年级期末)如果不等式()33a x a ->-的解集是1x <,那么a 的取值范围是( ) A .0a >B .0a <C .3a >D .3a <10.(2021·广西北海市·八年级期末)若不等式组无解,则a 的取值范围为( )A .4a >B .4a ≤C .04a <<D .4a ≥二、填空题(每小题5分,共30分)11.(2021·浙江宁波市·八年级期末)若a b >,则25a --________25b --(填“>”或“<”).12.(2020·浙江杭州市·九年级期末)不等式组()5831131<722x x x x⎧+>+⎪⎨--⎪⎩的最大整数解为__________.13.(2021·贵州铜仁市·八年级期末)不等式组321215x x ->⎧⎨-≤⎩的正整数解是______.14.(2021·湖南娄底市·八年级期末)关于x 的一元一次不等式组的解集在数轴上的表示如图所示,则此不等式组的解集是______________.15.(2021·湖南邵阳市·八年级期末)若关于x 的不等式组0721x m x -≤⎧⎨-≤⎩的解集中恰好有三个整数,则m 的取值范围是___.16.(2020·浙江绍兴市·八年级其他模拟)关于x 的不等式组314(1)x x x a->-⎧⎨<⎩的解是3x <,那么a 的取值范围是______.三、解答题一(每小题6分,共12分) 17.(2021·广西北海市·八年级期末)解不等式:431132x x +-->,并把解集在数轴上表示出来.18.(2021·湖南邵阳市·八年级期末)解不等式组:31211213x x x x +≥-⎧⎪+⎨>-⎪⎩,并在数轴上表示解集四、解答题二(每小题9分,共18分)19.(2021·安徽六安市·七年级期末)关于x 、y 的方程组2564x y mx ny +=-⎧⎨-=⎩.与关于x 、y 的方程组35168x y nx my -=⎧⎨+=-⎩的解相同,求2021(2)m n +20.(2021·湖南邵阳市·八年级期末)“一方有难,八方相助”是中华民族的优良传统.“新冠肺炎”疫情期间,我市向湖北省某县捐赠A 型医疗物资290件和B 型医疗物资100件.计划租用甲、乙两种型号的汽车共8辆运送过去.经了解,甲种汽车每辆最多能载A 型医疗物资40件和B 型医疗物资10件,乙种汽车每辆最多能载A 型医疗物资30件和B 型医疗物资20件. (1)请你帮助设计所有可能的租车方案;(2)如果甲种汽车每辆的运费是1200元,乙种汽车每辆的运费是1000元,这次运送的费用最少需要多少钱?答案解析一、选择题(每小题4分,共40分)1.(2020·四川省巴中中学七年级期中)在下列数学表达式:①-20<,②2-50x ≥,③1x =,④2-x x ,⑤-2x ≠,⑥2-1x x +<中,是不等式的有( ) A .2个 B .3个C .4个D .5个【答案】C 【分析】根据不等式的定义,用“>”、“≥”、“<”、“≤”、“≠”等不等号表示不相等关系的式子是不等式进行判断即可得. 【详解】根据不等式的定义可知①-2<0;②2x-5>0;⑤x≠-2;⑥x+2>x-1为不等式, 共4个, 故选:C . 【点睛】本题考查了不等式,一般地,用不等号表示不相等关系的式子叫不等式,解答此类题关键是要识别常见不等号:>、<、≤、≥、≠.2.(2020·重庆綦江区·七年级期末)把不等式x+2≤0的解集在数轴上表示出来,则正确的是( ) A . B .C .D .【答案】D 【解析】试题分析:根据一元一次不等式的解法解不等式x+2≤0,得x≤﹣2. 表示在数轴上为:.故选D考点:不等式的解集3.(2020·河南许昌市·)我市某一天的最高气温是9C ︒,最低气温是零下2C ︒,则当天我市气温变化范围()t C ︒是( )A .29t <<B .29t ≤≤C .29t -<<D .29t -≤≤【答案】D 【分析】利用不等式的定义即可得. 【详解】最高气温是9C ︒表示的是气温小于或等于9C ︒, 最低气温是零下2C ︒表示的是气温大于或等于2C -︒, 则当天我市气温变化范围是29t -≤≤, 故选:D . 【点睛】本题考查了列不等式,掌握列不等式的方法是解题关键.4.(2021·浙江杭州市·八年级期末)若a b >,则下列各式中一定成立的是( ) A .22a b -<- B .11a b +>+C .22a b <D .33a b->- 【答案】B 【分析】根据不等式的性质进行判断即可. 【详解】解:A 、在不等式两边同时减2,不等号方向不变,故错误; B 、在不等式两边同时加1,不等号方向不变,故正确; C 、在不等式两边同时乘2,不等号方向不变,故错误; D 、在不等式两边同时除以-3,不等号方向改变,故错误; 故选:B . 【点睛】本题考查了不等式的性质,解题关键是熟记不等式的性质,灵活运用不等式性质进行判断. 5.(2021·湖南怀化市·八年级期末)下列不等式中,变形错误的是( ) A .x y >则11x y +>+ B .若a b ->-则a b < C .12x y ->则2x y <- D .若35x -<则53x <-【答案】D根据不等式的性质解题:不等式的两边同时加(或减)同一个数(或式子),不等式的结果仍成立;不等式的两边同乘以(或除以)同一个不为零的正数,不等式的结果仍成立; 不等式的两边同乘以(或除以)同一个不为零的负数,不等式的方向要改变. 【详解】A. x y >则11x y +>+,正确,故A 不符合题意;B. 若a b ->-则a b <,正确,故B 不符合题意;C. 12x y ->则2x y <-,正确,故C 不符合题意; D. 若35x -<则53x >-,错误,故D 符合题意,故选:D . 【点睛】本题考查不等式的性质,是重要考点,难度较易,掌握相关知识是解题关键. 6.(2021·浙江温州市·八年级期末)不等式213x -≤的解是( ) A .1≥x B .1x ≤C .2x ≥D .2x ≤【答案】D 【分析】不等式移项合并,把x 系数化为1,即可求出解集. 【详解】不等式213x -≤, 移项合并得:24x ≤, 解得:2x ≤, 故选:D . 【点睛】本题考查了解一元一次不等式,熟练掌握运算法则是解本题的关键.7.(2021·沙坪坝区·重庆一中八年级期末)不等式480x -≥的解集在数轴上表示为( ) A .B .C .D .【分析】首先解出不等式的解集,然后看四个答案中哪个符合,即可解答;【详解】解:不等式4x-8≥0,4x≥8,x≥2;D符合;故选:D.【点睛】本题考查了在数轴上表示不等式的解集,不等式的解集在数轴上表示出来的方法:“>”空心圆点向右画折线,“≥”实心圆点向右画折线,“<”空心圆点向左画折线,“≤”实心圆点向左画折线.8.(2021·全国七年级)不等式组24020xx-⎧⎨+>⎩的解集在数轴上表示正确的是()A .B .C .D .【答案】C【分析】先求出不等式组的解集,再在数轴上表示出来即可.【详解】解:24020xx-⎧⎨+>⎩①②,解不等式①,得2x,解不等式②,得2x>-,∴不等式组的解集是22x-<,在数轴上表示为:,故选:C.【点睛】本题考查了一元一次不等式组和在数轴上表示不等式组的解集,能求出不等式组的解集是解题的关键.9.(2021·湖南娄底市·八年级期末)如果不等式()33a x a ->-的解集是1x <,那么a 的取值范围是( ) A .0a > B .0a <C .3a >D .3a <【答案】D 【分析】根据不等式的性质,不等式的两边同乘或除以同一个负数,不等号的方向改变,可得答案. 【详解】(3)3a x a ->-的解集是1x <,∴30a -<,解得:3a <, 故答案选D . 【点睛】本题考查了解一元一次不等式,由不等号方向改变,得出未知数的系数小于0是解题的关键. 10.(2021·广西北海市·八年级期末)若不等式组04x a x无解,则a 的取值范围为( )A .4a >B .4a ≤C .04a <<D .4a ≥【答案】D 【分析】不等式组整理后,根据不等式组无解确定出a 的范围即可. 【详解】解:不等式组整理得:4x a x,由不等式组无解,得到4a ≥. 故选:D . 【点睛】此题考查了解一元一次不等式组,熟练掌握不等式组的解法是解本题的关键.二、填空题(每小题5分,共30分)11.(2021·浙江宁波市·八年级期末)若a b >,则25a --________25b --(填“>”或“<”). 【答案】< 【分析】根据不等式的性质直接求解即可.【详解】∴22a b -<- ∴2525b a故答案是:<. 【点睛】本题考查了不等式的性质,熟悉相关性质是解题的关键.12.(2020·浙江杭州市·九年级期末)不等式组()5831131<722x x x x ⎧+>+⎪⎨--⎪⎩的最大整数解为__________.【答案】3 【分析】分别求出每一个不等式的解集,根据口诀:大小小大中间找确定不等式组的解集即可得出答案. 【详解】解:()5831131<722x x x x ⎧+>+⎪⎨--⎪⎩①②解不等式①可得:x >52-, 解不等式②可得:x <4, 则不等式组的解集为52-<x <4, ∴不等式组的最大整数解为3, 故答案为:3. 【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键. 13.(2021·贵州铜仁市·八年级期末)不等式组321215x x ->⎧⎨-≤⎩的正整数解是______.【答案】2或3 【分析】根据不等式的基本性质分别解两个不等式,然后取公共解集,最后找出整数解即可.解:321215x x ->⎧⎨-≤⎩①② 解①,得1x > 解②,得3x ≤∴该不等式组的解集为13x <≤ ∴该不等式组的整数解为2或3 故答案为2或3. 【点睛】此题考查的是求不等式组的整数解,掌握不等式组的解法是解决此题的关键.14.(2021·湖南娄底市·八年级期末)关于x 的一元一次不等式组的解集在数轴上的表示如图所示,则此不等式组的解集是______________.【答案】13x -<≤. 【分析】根据不等式组解集确定的口诀,结合数轴,确定解集即可. 【详解】根据数轴的意义,得 不等式的解集为13x -<≤; 故答案为13x -<≤. 【点睛】本题考查了不等式组解集,利用数形结合思想,熟练掌握解集的确定要领是解题的关键. 15.(2021·湖南邵阳市·八年级期末)若关于x 的不等式组0721x m x -≤⎧⎨-≤⎩的解集中恰好有三个整数,则m 的取值范围是___. 【答案】5≤m <6 【分析】首先解不等式组求得解集,然后根据不等式组恰好有三个整数解,确定整数解,则可以得到一个关于m的不等式组求得m的范围.【详解】解:0 721 x mx-≤⎧⎨-≤⎩①②解不等式①,得:x m≤解不等式②,得:3x≥∴不等式组的解集为:3x m≤≤∵不等式组恰有三个整数解,∴不等式组的整数解为3、4、5,则5≤m<6.故答案为:5≤m<6.【点睛】本题考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.16.(2020·浙江绍兴市·八年级其他模拟)关于x的不等式组314(1)x xx a->-⎧⎨<⎩的解是3x<,那么a的取值范围是______.【答案】a≥3【分析】先解第一个不等式得到x<3,由于不等式组的解集为x<3,则利用同大取大可得到a的范围.【详解】解:314(1)x xx a->-⎧⎨<⎩①,解①得x<3,而不等式组的解集为x<3,所以a≥3.故答案为:a≥3.【点睛】本题考查了解一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.三、解答题一(每小题6分,共12分)17.(2021·广西北海市·八年级期末)解不等式:431132x x +-->,并把解集在数轴上表示出来.【答案】57x <;数轴见解析 【分析】 根据一元一次不等式的解法:去分母,去括号,移项、合并同类项,系数化1,即可得到x 的范围,再把所得的x 的范围在数轴上表示出来即可.【详解】431132x x +-->, 去分母,得()()243316x x +-->,去括号,得28936x x +-+>,移项、合并同类项,得75x ->-,系数化为1,得57x <. 在数轴上表示此不等式的解集如图:【点睛】本题考查了一元一次不等式的解法,以及在数轴上表示不等式的解集,解题关键是明确不等式的性质,两边同时除以一个负数不等号的方向要改变,在数轴上表示不等式的解集时“>”,“≥”向右画,“<”,“≤”向左画,“≥”,“≤”用实心点,“>”,“<”用空心圆.18.(2021·湖南邵阳市·八年级期末)解不等式组:31211213x x x x +≥-⎧⎪+⎨>-⎪⎩,并在数轴上表示解集 【答案】24x -≤<,数轴见解析【分析】分别解出这两个不等式,即可得到不等式组的解集.【详解】 解:31211213x x x x +≥-⎧⎪⎨+>-⎪⎩①②,解不等式①得2x ≥-,解不等式②得4x <,∴不等式组的解集为24x -≤<,在数轴上表示不等式的解集为:【点睛】本题考查解不等式组,解题的关键是掌握解不等式组的方法.四、解答题二(每小题9分,共18分)19.(2021·安徽六安市·七年级期末)关于x 、y 的方程组2564x y mx ny +=-⎧⎨-=⎩.与关于x 、y 的方程组35168x y nx my -=⎧⎨+=-⎩的解相同,求2021(2)m n +【答案】1【分析】 由题意,根据方程组的解相同得到2563516x y x y +=-⎧⎨-=⎩,从而得到22x y =⎧⎨=-⎩,再代入计算,求出m 、n 的值,即可得到答案.【详解】解:根据题意,由2563516x y x y +=-⎧⎨-=⎩, 解得:22x y =⎧⎨=-⎩,代入48mx ny nx my -=⎧⎨+=-⎩, 得224228m n n m +=⎧⎨-=-⎩, 解得:31m n =⎧⎨=-⎩;则20212021(2)(32)1m n +=-=;【点睛】 本题考查了解二元一次方程组,解题的关键是掌握解二元一次方程组的方法进行解题.20.(2021·湖南邵阳市·八年级期末)“一方有难,八方相助”是中华民族的优良传统.“新冠肺炎”疫情期间,我市向湖北省某县捐赠A 型医疗物资290件和B 型医疗物资100件.计划租用甲、乙两种型号的汽车共8辆运送过去.经了解,甲种汽车每辆最多能载A 型医疗物资40件和B 型医疗物资10件,乙种汽车每辆最多能载A 型医疗物资30件和B 型医疗物资20件.(1)请你帮助设计所有可能的租车方案;(2)如果甲种汽车每辆的运费是1200元,乙种汽车每辆的运费是1000元,这次运送的费用最少需要多少钱?【答案】(1)租车的方案有两种:方案一:租用甲种汽车5辆,乙种汽车3辆;方案二:租用甲种汽车6辆,乙种汽车2辆;(2)这次运送的费用最少需要9000元.【分析】(1)设租用甲种汽车x 辆,乙种汽车(8-x)辆,根据题意列一元一次不等式组,解一元一次不等式组,找到符合题意的解即可;(2)由(1)中结论,分别计算租车费用,再比较大小即可解题.【详解】解:(1)设租用甲种汽车x 辆,乙种汽车(8-x)辆,得()()4030829010208100x x x x ⎧+-≥⎪⎨+-≥⎪⎩, 解得:5x 6≤≤,所以符合条件的x 可以取5,6,租车的方案有两种:方案一:租用甲种汽车5辆,乙种汽车3辆;方案二:租用甲种汽车6辆,乙种汽车2辆;⨯+⨯=9000元;(2)方案一:租车的费用:1200510003⨯+⨯=9200元;方案二:租车的费用:1200610002所以这次运送的费用最少需要9000元.【点睛】本题考查一元一次不等式(组)的实际应用,是重要考点,难度较易,掌握相关知识是解题关键.。

人教新版七年级下册《第9章 不等式与不等式组》单元测试卷

人教新版七年级下册《第9章 不等式与不等式组》单元测试卷

人教新版七年级下册《第9章不等式与不等式组》单元测试卷一、选择题1.若m>n,则下列各式中错误的是()A.m﹣2>n﹣2B.4m>4n C.﹣3m>﹣3n D.>2.在数学表达式:①﹣3<0,②3x+5>0,③x2﹣6,④x=﹣2,⑤y≠0,⑥x+2≥x中,不等式的个数是()A.2B.3C.4D.53.不等式组的解集是()A.x≥﹣1B.x<5C.﹣1≤x<5D.x≤﹣1或x<5 4.若a<b,则下列结论不一定成立的是()A.a﹣1<b﹣1B.2a<2b C.﹣>﹣D.a2<b25.在一次绿色环保知识竞赛中,共有20道题,对于每一道题,答对得10分,答错或不答扣5分,则至少答对多少题,得分才不低于80分?设答对x题,可列不等式为()A.10x﹣5(20﹣x)≥80B.10x+5(20﹣x)≥80C.10x﹣5(20﹣x)>80D.10x+5(20﹣x)>806.某经销商销售一批多功能手表,第一个月以200元/块的价格售出80块,第二个月起降价,以150元/块的价格将这批手表全部售出,销售总额超过了2.7万元,则这批手表至少有()A.152块B.153块C.154块D.155块7.若关于x的不等式组有解,则m的范围是()A.m≤2B.m<2C.m<﹣1D.﹣1≤m<2 8.a、b是不相等的任意正数,又x=,y=,则x、y这两个数一定是()A.至少有一个小于2B.都不小于2C.至少有一个大于2D.都不大于29.已知点M(1﹣2m,m﹣1)关于x轴的对称点在第一象限,则m的取值范围在数轴上表示正确的是()A.B.C.D.10.如果a>b,下列各式中不正确的是()A.a﹣4>b﹣4B.﹣2a<﹣2b C.﹣1+a<﹣1+b D.二、填空题11.对一个实数x按如图所示的程序进行操作,规定:程序运行从“输入一个实数x”到“结果是否大于88?”为一次操作.如果操作只进行一次就停止,则x的取值范围是.12.不等式4x≤12的自然数解是:.13.不等式2x>﹣3x,x2+1≤0,|2x﹣1|+1>0,x2﹣2x+1>0中,解集是一切实数的是,无解的是.14.已知数a、b、c满足a+b+c=6,2a﹣b+c=3,0≤c≤b,则a的最大值为;最小值为.15.不等式﹣3≤5﹣2x<3的正整数解是.16.“端午节”前,商场为促销定价为10元每袋的蜜枣粽子,采取如下方式优惠销售:若一次性购买不超过2袋,则按原价销售;若一次性购买2袋以上,则超过部分按原价的七折付款.张阿姨现有50元钱,那么她最多能买蜜枣粽子袋.三、解答题17.解不等式组:18.解不等式组,并把解集在数轴上表示出来.19.如果方程组的解满足x>0,y>0,求m的取值范围.20.10个实数a1,a2,…,a10,满足a1=1,0≤a2≤2a1,0≤a3≤2a2,…,0≤a10≤2a9,且使a1﹣a2+a3﹣a4+a5﹣a6+a7﹣a8+a9﹣a10取得最大值,求此时a9的值.21.现在有住宿生若干名,分住若干间宿舍,若每间住5人,则还有19人无宿舍住;若每间住8人,则有一间宿舍不空也不满,问住宿人数是多少?22.阅读材料:形如2<2x+1<3的不等式,我们就称之为双连不等式,求解双连不等式的方法一,转化为不等式组求解,如;方法二,利用不等式的性质直接求解,双连不等式的左、中、右同时减去1,得1<2x<2,然后同时除以2,得<x<1.解决下列问题:(1)请你写一个双连不等式并将它转化为不等式组;(2)利用不等式的性质解双连不等式2≥﹣2x+3>﹣5;(3)已知﹣3≤x<,求3x+5的整数值.人教新版七年级下册《第9章不等式与不等式组》单元测试卷一、选择题1.若m>n,则下列各式中错误的是()A.m﹣2>n﹣2B.4m>4n C.﹣3m>﹣3n D.>【分析】依据不等式的基本性质进行判断,即可得出结论.【解答】解:A.不等式m>n的两边都减去2,不等号的方向不变,原变形正确,故本选项不符合题意;B.不等式m>n的两边都乘以4,不等号的方向不变,原变形正确,故本选项不符合题意;C.不等式m>n的两边都乘以﹣3,不等号的方向改变,原变形错误,故本选项符合题意;D.不等式m>n的两边都除以2,不等号的方向不变,原变形正确,故本选项不符合题意.故选:C.【点评】本题考查了不等式的基本性质.解题的关键是掌握不等式的基本性质:不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变.等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变.2.在数学表达式:①﹣3<0,②3x+5>0,③x2﹣6,④x=﹣2,⑤y≠0,⑥x+2≥x中,不等式的个数是()A.2B.3C.4D.5【分析】依据不等式的定义求解即可.【解答】解:①﹣3<0是不等式,②3x+5>0是不等式,③x2﹣6不是不等式,④x=﹣2不是不等式,⑤y≠0是不等式,⑥x+2≥x是不等式.故选:C.【点评】本题主要考查的是不等式的定义,掌握不等式的定义是解题的关键.3.不等式组的解集是()A.x≥﹣1B.x<5C.﹣1≤x<5D.x≤﹣1或x<5【分析】先求出不等式组中各个不等式的解集,再利用数轴确定不等式组的解集.【解答】解:由﹣x≤1得:x≥﹣1由x﹣2<3得:x<5∴不等式组的解集为5>x≥﹣1.故选:C.【点评】解不等式组时要注意解集的确定原则:同大取大,同小取小,大小小大取中间,大大小小无解了.4.若a<b,则下列结论不一定成立的是()A.a﹣1<b﹣1B.2a<2b C.﹣>﹣D.a2<b2【分析】由不等式的性质进行计算并作出正确的判断.【解答】解:A、在不等式a<b的两边同时减去1,不等式仍成立,即a﹣1<b﹣1,故本选项错误;B、在不等式a<b的两边同时乘以2,不等式仍成立,即2a<2b,故本选项错误;C、在不等式a<b的两边同时乘以﹣,不等号的方向改变,即﹣>﹣,故本选项错误;D、当a=﹣5,b=1时,不等式a2<b2不成立,故本选项正确;故选:D.【点评】考查了不等式的性质.应用不等式的性质应注意的问题:在不等式的两边都乘以(或除以)同一个负数时,一定要改变不等号的方向;当不等式的两边要乘以(或除以)含有字母的数时,一定要对字母是否大于0进行分类讨论.5.在一次绿色环保知识竞赛中,共有20道题,对于每一道题,答对得10分,答错或不答扣5分,则至少答对多少题,得分才不低于80分?设答对x题,可列不等式为()A.10x﹣5(20﹣x)≥80B.10x+5(20﹣x)≥80C.10x﹣5(20﹣x)>80D.10x+5(20﹣x)>80【分析】首先设答对x道题,则答错了或不答的有(20﹣x)道,根据题意可得:答对题的得分﹣答错了或不答扣的分数≥80,列出不等式.【解答】解:设答对x道题,根据题意可得:10x﹣5(20﹣x)≥80,故选:A.【点评】此题主要考查了由实际问题抽象出一元一次不等式,关键是正确理解题意,找出题目中的不等关系,列出不等式.6.某经销商销售一批多功能手表,第一个月以200元/块的价格售出80块,第二个月起降价,以150元/块的价格将这批手表全部售出,销售总额超过了2.7万元,则这批手表至少有()A.152块B.153块C.154块D.155块【分析】根据题意设出未知数,列出相应的不等式,从而可以解答本题.【解答】解:设这批手表有x块,200×80+(x﹣80)×150>27000解得,x>153∴这批手表至少有154块,故选:C.【点评】本题考查一元一次不等式的应用,解题的关键是明确题意,列出相应的不等式.7.若关于x的不等式组有解,则m的范围是()A.m≤2B.m<2C.m<﹣1D.﹣1≤m<2【分析】根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到即可确定m的取值范围.【解答】解:∵关于x的不等式组有解,∴m<2,故选:B.【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.8.a、b是不相等的任意正数,又x=,y=,则x、y这两个数一定是()A.至少有一个小于2B.都不小于2C.至少有一个大于2D.都不大于2【分析】a、b是互不相等的任意正数,不妨设a>b>0,根据a2+b2≥2ab,即可作出判断.【解答】解:a、b是互不相等的任意正数,不妨设a>b>0,x=≥=2×,y=≥=2×,∵a>b>0,∴0<<1,>1∴y一定大于2,而x不确定.故至少有一个大于2.故选:A.【点评】本题考查不等式的性质,正确利用不等式的性质a2+b2≥2ab是关键.9.已知点M(1﹣2m,m﹣1)关于x轴的对称点在第一象限,则m的取值范围在数轴上表示正确的是()A.B.C.D.【分析】先得出点M关于x轴对称点的坐标为(1﹣2m,1﹣m),再由第一象限的点的横、纵坐标均为正可得出关于m的不等式,继而可得出m的范围,在数轴上表示出来即可.【解答】解:由题意得,点M关于x轴对称的点的坐标为:(1﹣2m,1﹣m),又∵M(1﹣2m,m﹣1)关于x轴的对称点在第一象限,∴,解得:,在数轴上表示为:.故选:A.【点评】此题考查了在数轴上表示不等式解集的知识,及关于x轴对称的点的坐标的特点,根据题意得出点M对称点的坐标是解答本题的关键.10.如果a>b,下列各式中不正确的是()A.a﹣4>b﹣4B.﹣2a<﹣2b C.﹣1+a<﹣1+b D.【分析】根据不等式的性质对各选项进行逐一分析即可.【解答】解:A.∵a>b,∴a﹣4>b﹣4,原变形正确,故此选项不符合题意;B.∵a>b,∴﹣2a<﹣2b,原变形正确,故此选项不符合题意;C.∵a>b,∴﹣1+a>﹣1+b,原变形不正确,故此选项符合题意;D.∵a>b,∴,原变形正确,故此选项不符合题意.故选:C.【点评】本题考查的是不等式的性质.解题的关键是掌握不等式的性质,即:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.二、填空题11.对一个实数x按如图所示的程序进行操作,规定:程序运行从“输入一个实数x”到“结果是否大于88?”为一次操作.如果操作只进行一次就停止,则x的取值范围是x>49.【分析】表示出第一次的输出结果,再由第三次输出结果可得出不等式,解不等式求出即可.【解答】解:第一次的结果为:2x﹣10,没有输出,则2x﹣10>88,解得:x>49.故x的取值范围是x>49.故答案为:x>49【点评】本题考查了一元一次不等式的应用,解答本题的关键是读懂题意,根据结果是否可以输出,得出不等式.12.不等式4x≤12的自然数解是:0,1,2,3.【分析】首先解不等式,然后确定不等式的自然数解即可.【解答】解:系数化成1得:x≤3.则自然数解是0,1,2,3,故答案为:0,1,2,3.【点评】本题考查了不等式的解法,解一元一次不等式的基本依据是不等式的基本性质,解不等式是本题的关键.13.不等式2x>﹣3x,x2+1≤0,|2x﹣1|+1>0,x2﹣2x+1>0中,解集是一切实数的是|2x ﹣1|+1>0,无解的是x2+1≤0.【分析】分别求出不等式的解集,判断即可.【解答】解:不等式2x>﹣3x,解得:x>0;x2+1≤0,即x2≤﹣1,无解;|2x﹣1|+1>0,即|2x﹣1|>﹣1,解得:x为一切实数;x2﹣2x+1>0,即(x﹣1)2>0,解得:x≠1,则解集是一切实数的是|2x﹣1|+1>0,无解的是x2+1≤0.故答案为:|2x﹣1|+1>0,x2+1≤0.【点评】此题考查了解一元一次不等式,以及绝对值,熟练掌握不等式的解法是解本题的关键.14.已知数a、b、c满足a+b+c=6,2a﹣b+c=3,0≤c≤b,则a的最大值为3;最小值为.【分析】由a+b+c=6,2a﹣b+c=3关系式可以用a来表示b和c,再根据0≤c≤b列出不等式组,可以求得a的取值范围,最后根据a的取值范围来确定a的最大最小值.【解答】解:∵由已知条件得,解得,∵0≤c≤b,∴,解答,故a的最大值为3,最小值为.故答案为:3;.【点评】本题考查了解一元一次不等式组,解答本题的关键是分别用a来表示b和c,根据b≥c≥0,就可以得到关于a的不等式组.本题利用了消元的基本思想,消元的方法可以采用加减消元法或代入消元法.15.不等式﹣3≤5﹣2x<3的正整数解是2,3,4.【分析】先将不等式化成不等式组,再求出不等式组的解集,进而求出其整数解.【解答】解:原式可化为:,解得,即1<x≤4,所以不等式的正整数解为2,3,4.【点评】此题要明确,不等式﹣3≤5﹣2x<3要转化成不等式组的形式解答,否则将无从下手.16.“端午节”前,商场为促销定价为10元每袋的蜜枣粽子,采取如下方式优惠销售:若一次性购买不超过2袋,则按原价销售;若一次性购买2袋以上,则超过部分按原价的七折付款.张阿姨现有50元钱,那么她最多能买蜜枣粽子6袋.【分析】根据一次性购买不超过2袋,则按原价销售;若一次性购买2袋以上,则超过部分按原价的七折付款,设可以购买x袋蜜枣粽子,根据:2袋原价付款数+超过2袋的总钱数≤50,列出不等式求解即可得.【解答】解:设可以购买x(x为整数)袋蜜枣粽子.2×10+(x﹣2)×10×0.7≤50,解得:x≤6,则她最多能买蜜枣粽子是6袋.故答案为:6.【点评】此题考查了一元一次不等式的应用,关键是读懂题意,找出题目中的数量关系,列出不等式,注意x只能为整数.三、解答题17.解不等式组:【分析】先求出每个不等式的解集,再求出不等式组的解集即可.【解答】解:∵解不等式①得:x>﹣2,解不等式②得:x<3,∴不等式组的解集为﹣2<x<3.【点评】本题考查了解一元一次不等式组,能根据不等式的解集得出不等式组的解集是解此题的关键.18.解不等式组,并把解集在数轴上表示出来.【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.【解答】解:,解①得x≤1,解②得x>﹣3,,不等式组的解集是:﹣3<x≤1.【点评】本题考查了一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.19.如果方程组的解满足x>0,y>0,求m的取值范围.【分析】先解方程组得出,根据x>0,y>0得出,求出每个不等式的解集即可得出答案.【解答】解:解方程组得,∵x>0,y>0,∴,解不等式①,得:m>1,解不等式②,得:m<或m>1,∴m的取值范围是m>1.【点评】本题主要考查解一元一次不等式组和二元一次方程组,解题的关键是根据已知条件列出关于m的不等式组,并熟练解不等式组.20.10个实数a1,a2,…,a10,满足a1=1,0≤a2≤2a1,0≤a3≤2a2,…,0≤a10≤2a9,且使a1﹣a2+a3﹣a4+a5﹣a6+a7﹣a8+a9﹣a10取得最大值,求此时a9的值.【分析】根据10个不等式,当10个式子都取等号时,10个式子累加后才成立,进而计算可得结论.【解答】解:a1﹣a2+a3﹣a4+a5﹣a6+a7﹣a8+a9﹣a10=a1+(a3﹣a2)+(a5﹣a4)+(a7﹣a6)+(a9﹣a8)﹣a10,∵0≤a3≤2a2,∴a3﹣a2≤a2,同理:a5﹣a4≤a4,a7﹣a6≤a6,a9﹣a8≤a8,∴原式≤a1+a2+a4+a6+a8﹣a10≤a1+a2+a4+a6+a8,∵a2≤2a1,a4≤23a1,a6≤25a1,a8≤27a1,a9≤28a1,∴原式≤(1+2+23+25+27)a1=171,最大值为171,此时a9=28=256.【点评】本题考查了数字的变化类,解决本题的关键是观察数字的变化寻找规律.21.现在有住宿生若干名,分住若干间宿舍,若每间住5人,则还有19人无宿舍住;若每间住8人,则有一间宿舍不空也不满,问住宿人数是多少?【分析】假设宿舍共有x间,则住宿生人数是5x+19人,若每间住8人,则有一间不空也不满,说明住宿生若住满(x﹣1)间,还剩的人数大于或等于1人且小于8人,所以可列式1≤5x+19﹣8(x﹣1)<8,解出x的范围讨论.【解答】解:设有宿舍x间.住宿生人数5x+19人.由题意得,1≤5x+19﹣8(x﹣1)<8,即1≤﹣3x+27<8,解得:6<x≤8.因为宿舍间数只能是整数,所以宿舍是7间或8间,当宿舍是7间时,住宿人数为5×7+19=54;当宿舍是8间时,住宿人数为5×8+19=59.答:住宿人数是54或59人.【点评】本题考查一元一次不等式的应用,对题目逐字分析,找出隐含(数学中的客观事实,但在题目中不存在)或题目中存在的条件.列出不等式关系,求解.22.阅读材料:形如2<2x+1<3的不等式,我们就称之为双连不等式,求解双连不等式的方法一,转化为不等式组求解,如;方法二,利用不等式的性质直接求解,双连不等式的左、中、右同时减去1,得1<2x<2,然后同时除以2,得<x<1.解决下列问题:(1)请你写一个双连不等式并将它转化为不等式组;(2)利用不等式的性质解双连不等式2≥﹣2x+3>﹣5;(3)已知﹣3≤x<,求3x+5的整数值.【分析】(1)3<x﹣2<5,转化为不等式组;(2)根据方法二的步骤解答即可;(3)根据方法二的步骤解答,得出﹣4≤3x+5<﹣,即可得到结论.【解答】解:(1)3<x﹣2<5,转化为不等式组;(2)2≥﹣2x+3>﹣5,不等式的左、中、右同时减去3,得﹣1≥﹣2x>﹣8,同时除以﹣2,得≤x<4;(3)﹣3≤x<,不等式的左、中、右同时乘以3,得﹣9≤3x<﹣,同时加5,得﹣4≤3x+5<﹣,∴3x+5的整数值﹣4或﹣3.【点评】本题考查了解一元一次不等式组,参照方法二解不等式组是解题的关键,应用的是不等式的性质.。

新七年级数学下册第九章《不等式与不等式组》单元综合练习题(含答案)

新七年级数学下册第九章《不等式与不等式组》单元综合练习题(含答案)

七年级数学第9章《不等式和不等式组》同步测试一、选择题(每题3分,共30分):1、若a >b ,则下列各式中一定成立的是( )A .ma >mbB .c 2a >c 2bC .(1+c 2)a >(1+c 2)b D .1﹣a >1﹣b 2、在数轴上表示不等式x >-2的解集,正确的是( )3、不等式a >b ,两边同时乘m 得am <bm ,则一定有( )A .m =0B .m <0C .m >0D .m 为任何实数4、下列说法中,错误的是( )A .x =1是不等式x <2的解B .-2是不等式2x -1<0的一个解C .不等式-3x >9的解集是x =-3D .不等式x <10的整数解有无数个 5、已知实数a ,b 满足a +1>b +1,则下列选项错误的为( )A .a >bB .a +2>b +2C .-a <-bD .2a >3b6、已知不等式组有解,则 的取值范围为( ) A .a>-2 B .a≥-2 C .a<2 D .a≥27、如果不等式组⎩⎪⎨⎪⎧2x -1>3(x -1),x<m 的解集是x <2,那么m 的取值范围是( ) A .m =2 B .m >2 C .m <2 D .m≥28、小明准备用自己今年的零花钱买一台价值300元的英语学习机.现在他已存有45元,如果从现在起每月节省30元,设x 个月后他存够了所需钱数,则x 应满足的关系式是( )A. 30x-45≥300B. 30x+45≥300C. 30x-45≤300D. 30x+45≤3009、对于实数x ,我们规定[x]表示不大于x 的最大整数,例如[1.2]=1,[3]=3,[-2.5]=-3.若[x +410]=5,则x 的取值可以是( ) A .40 B .45 C .51 D .5610、若关于x 的不等式组⎩⎪⎨⎪⎧x -a≤0,2x +3a >0的解集中至少有5个整数解,则正数a 的最小值是( )A .3B .2C .1 D.23二、填空题(每题3分,共15分):11、不等式3(x ﹣1)≤5﹣x 的非负整数解有_____个.12、已知0≤a–b≤1且1≤a+b≤4,则a 的取值范围是13、已知关于x 的不等式组⎩⎪⎨⎪⎧5-3x≥-1,a -x <0无解,则a 的取值范围是 . 14、若实数3是不等式2x -a -2<0的一个解,则a 可取的最小正整数为 .15、某校规定期中考试成绩的40%和期末考试成绩的60%的和作为学生成绩总成绩.该校李红同学期中数学考了85分,她希望自己学期总成绩不低于90分,则她在期末考试中数学至少应得多少分?设她在期末应考x 分,可列不等式为 .三、解答题(共55分):16、(6分)在爆破时,如果导火索燃烧的速度是每秒钟0.8 cm ,人跑开的速度是每秒钟4 m ,为了使点导火索的人在爆破时能够跑到100 m 以外的安全地区,设导火索的长为s cm.(1)用不等式表示题中的数量关系;(2) 要使人能跑到安全地区,则导火索的长度至少多长?17、(6分)已知关于x 的不等式ax <-b 的解集是x >1,求关于y 的不等式by >a 的解集.18、(8分)已知关于x 的不等式2m -mx 2>12x -1. (1)当m =1时,求该不等式的解集;(2)m 取何值时,该不等式有解,并求出解集.19、(8分)某商店5月1日举行促销优惠活动,当天到该商店购买商品有两种方案.方案一:用168元购买会员卡成为会员后,凭会员卡购买商店内任何商品,一律按商品价格的8折优惠;方案二:若不购买会员卡,则购买商店内任何商品,一律按商品价格的9.5折优惠.已知小敏5月1日前不是该商店的会员.(1)若小敏不购买会员卡,所购买商品的价格为120元时,实际应支付多少元?(2)请帮小敏算一算,所购买商品的价格在什么范围内时,采用方案一更合算?20、(10分)解不等式组并在数轴上表示解集.(1)⎩⎪⎨⎪⎧2x<5,①3(x +2)≥x+4,②(2) ⎩⎪⎨⎪⎧x -32(2x -1)≤4,①1+3x 2>2x -1,②21、(8分)春平中学要为学校科技活动小组提供实验器材,计划购买A 型、B 型两种型号的放大镜.若购买8个A 型放大镜和5个B 型放大镜需用220元;购买4个A 型放大镜和6个B 型放大镜需用152元.(1)求每个A 型放大镜和每个B 型放大镜各多少元;(2)春平中学决定购买A 型放大镜和B 型放大镜共75个,总费用不超过1 180元,那么最多可以购买多少个A 型放大镜?22、(9分)某科技有限公司准备购进A 和B 两种机器人来搬运化工材料,已知购进A 种机器人2个和B 种机器人3个共需16万元,购进A 种机器人3个和B 种机器人2个共需14万元,请解答下列问题:(1)求A 、B 两种机器人每个的进价;(2)已知该公司购买B 种机器人的个数比购买A 种机器人的个数的2倍多4个,如果需要购买A 、B 两种机器人的总个数不少于28个,且该公司购买的A 、B 两种机器人的总费用不超过106万元,那么该公司有哪几种购买方案?参考答案:一、选择题:1、C2、C3、B4、C5、D6、C7、D8、B9、C 10、B二、填空题:11、312、 ≤a≤13、a≥214、515、40%×85+60%x≥90三、解答题:16、(1)4×s 0.8>100. (2)25 cm17、∵不等式ax <-b 的解集是x >1,∴a<0,-b a=1. ∴b=-a ,b >0.∴不等式by >a 的解集为y >a b=-1, 即不等式by >a 的解集为y >-1.18、(1)当m =1时,该不等式为2-x 2>12x -1,解得x <2. (2)∵2m -mx 2>12x -1,∴2m-mx >x -2. ∴-mx -x >-2-2m.∴(m+1)x <2(1+m).∵该不等式有解,∴m+1≠0,即m≠-1.当m >-1时,不等式的解集为x <2;当x <-1时,不等式的解集为x >2.19、(1)120×0.95=114(元).(2)设购买商品的价格为x 元.由题意,得0.8x +168<0.95x.解得x >1 120. 当购买商品的价格超过1 120元时,采用方案一更合算.20、(1)解不等式①,得x <52人教版数学七年级下册第9章《不等式与不等式组》检测题(含答案)人教版七年级数学下册第九章 不等式与不等式组单元测试题检测题一、单选题(每小题只有一个正确答案)1.下列各式是一元一次不等式的是( )A .B .C .D .2.若a >b ,则下列各式中一定成立的是( )A .ma >mbB .c 2a >c 2bC .(1+c 2)a >(1+c 2)b D .1﹣a >1﹣b 3.如果 的解集是 ,那么 的取值范围是( )A .B .C .D .4.如图,天平左盘中物体A 的质量为 ,,天平右盘中每个砝码的质量都是1g,则 的取值范围在数轴上可表示为( )A .B .C .D .5.已知不等式组有解,则 的取值范围为( ) A .a>-2 B .a≥-2 C .a<2 D .a≥26.将不等式组的解集在轴上表示出来,应是( ) A . B .C .D .7.不等式组>的整数解的个数为()A.0个B.2个C.3个D.无数个8.已知不等式组的解集是2<x<3,则关于x的方程ax+b=0的解为( ) A.x=B.x=C.x=D.x=9.已知0≤a–b≤1且1≤a+b≤4,则a的取值范围是( )A.1≤a≤2B.2≤a≤3C.≤a≤D.≤a≤10.已知(m+4)x|m|–3+6>0是关于x的一元一次不等式,则m的值为()A.4 B.±4 C.3 D.±311.若点M(2m﹣1,m+3)在第二象限,则m取值范围是()A.m> B.m<﹣3 C.﹣3<m< D.m<12.某校组织开展“校园安全”的知识竞赛,共有20道题,答对一题记10分,答错(或不答)一题记-5分.小明参加本次竞赛得分要超过100分,他至少要答对题()A.13道 B.14道 C.15道 D.16道二、填空题13.不等式组的解集是____________;14.若,则比较大小:________.15.如果三个连续自然数的和不大于9,那么这样自然数共有_____组.16.不等式3(x﹣1)≤5﹣x的非负整数解有_____个.17.在实数范围内定义一种新运算“⊕”,其运算规则为:a⊕b=2a+3b.如:1⊕5=2×1+3×5=17.则不等式x⊕4<0的解集为_____.三、解答题18.求不等式的解集,并把解集在数学轴表示出来(1)3x+2<2x+4(2)19.解下列不等式组,并把它们的解集在数轴上表示出来.(1)><; (2)<20.已知2x+3=2a,y-2a=4,并且a-<x+y≤2a+,求a的取值范围.21.某慈善组织租用甲、乙两种货车共16辆,把蔬菜266吨、水果169吨全部运到灾区,已知一辆甲种货车同时可装蔬菜18吨、水果10吨;一辆乙种货车同时可装蔬菜16吨、水果11吨.(1)若将这批货物一次性运到灾区,有哪几种租车方案?(2)若甲种货车每辆需付燃油费1500元,乙种货车每辆需付燃油费1200元,应选(1)中的哪种方案,才能使所付的燃油费最少?最少的燃油费是多少元?22.由于雾霾天气持续笼罩某地区,口罩市场出现热卖.某商店用8000元购进甲、乙两种口罩,销售完后共获利2800元,其进价和售价如下表:(1)求该商店购进甲、乙两种口罩各多少袋?(2)该商店第二次仍以原价购进甲、乙两种口罩,购进乙种口罩袋数不变,而购进甲种口罩袋数是第一次的2倍,甲种口罩按原售价出售,而乙种口罩让利销售.若两种口罩销售完毕,要使第二次销售活动获利不少于3680元,则乙种口罩最低售价为每袋多少元?23.已知实数是一个不等于的常数,解不等式组,并根据的取值情况写出其解集.24.阅读下列材料:解答“已知,且,,试确定的取值范围”的过程如下:解:,又,,又,同理得:由得,的取值范围是请按照上述方法,解答下列问题:若,且,,求的取值范围;若,且,,求最大值.参考答案1.B2.C3.B4.D5.C6.C7.C8.D9.C10.A11.C12.B13.﹣9<x≤﹣314.>15.3组.16.317.18.(1)x<2;(2)x ≤-5.19.(1)不等式组的解集为x>3;(2)不等式组的解集为-1≤x人教版七年级数学下册:第九章《不等式与一次不等式组》单元测试人教版七年级数学下册:第九章不等式及不等式组单元测试(时间:60分钟,满分:100分)一、选择题(每题3分,共24分)1.当1≤x≤2时,ax+2>0,则a 的取值范围是( ).A .a >﹣1B .a >﹣2C .a >0D .a >﹣1且a≠02.若不等式组12x x k<≤⎧⎨>⎩ 有解,则k 的取值范围是( ).A.2k <B. 2k ≥C.1k <D. 12k ≤<3.已知,a b 为非零有理数,下面四个不等式组中,解集有可能为22x -<<的不等式组是( ).A .11ax bx >⎧⎨>⎩B .11ax bx >⎧⎨<⎩C .11ax bx <⎧⎨>⎩D .11ax bx <⎧⎨<⎩4.不等式组9511x x x m +<+⎧⎨>+⎩的解集是2>x ,则m 的取值范围是( ).A.2≤mB. 2≥mC.1≤mD. 1>m5.不等式组()()⎪⎩⎪⎨⎧≤--+<--+-1213128313x x x x 的解集应为( ). A 、2-<x B 、722≤<-x C 、12≤<-x D 、2-<x 或x ≥16.如图,用两根长度均为Lcm的绳子,分别围成一个正方形和圆.则围成的正方形和圆的面积比较().A.正方形的面积大B.圆的面积大C.一样大D.根据L的变化而变化7.某商场的老板销售一种商品,他要以利润不低于进价20%价格才能出售,但为了获得更多利润,他以高出进价80%的价格标价.若你想买下标价为360元的这种商品,最多降价多少时商店老板才能出售().A.80元B.100元 C.120元D.160元8. 中央电视台2套“开心辞典”栏目中,有一期的题目如图所示,两个天平都平衡,则与两个球体质量相等的正方体的个数为( ) .A.5 B.4 C.3 D.2二、填空题(每题5分,共40分)9.已知关于x的不等式组的整数解共有个,则的取值范围为.10.已知方程组⎩⎨⎧=+=-7325ayxyax的解满足⎩⎨⎧<>yx,则a的取值范围.11. 若不等式组⎩⎨⎧->+<121mxmx无解,则m的取值范围是.12.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打折.13.已知关于x的方程3k-5x=-9的解是非负数,求k的取值范围 .14.如果关于x的不等式组9080x ax b-≥⎧⎨-<⎩的正整数解仅为1,2,3,则a的取值范围是,b的取值范围是 .15. 为确保信息安全,信息需加密传输,发送方将明加密为密文传输给接收方,接收方收到密文后解密还原为明文.已知某种加密规则为:明文a ,b 对应的密文为a-2b ,2a+b .例如,明文1,2对应的密文是-3,4,当接收方收到密文是1,7时,解密得到的明文是 .16.若不等式组114111.5(1)()0.5(21)22x x a x a x x +⎧+>⎪⎪⎨⎪-+>-+-⎪⎩①②只有一个整数解,则a 的取值范围 . 三、解答题(每题12分,共36分) 17.已知x 满足⎪⎩⎪⎨⎧3)12(24213120)93(33)62(18)3(35-<--->---+-x x x x x x ,化简|x -3|+|2x -1| . 18.某小区准备新建50个停车位,用以解决小区停车难的问题.已知新建1个地上停车位和1个地下停车位共需0.6万元;新建3个地上停车位和2个地下停车位共需1.3万元.(1)该小区新建1个地上停车位和1个地下停车位各需多少万元?(2)该小区的物业部门预计投资金额超过12万元而不超过13万元,那么共有几种建造停车位的方案?19. 今年春季我国西南地区发生严重旱情,为了保障人畜饮水安全,某县急需饮水设备12台,现有甲、乙两种设备可供选择,其中甲种设备的购买费用为4000元/台,安装及运输费用为600元/台;乙种设备的购买费用为3000元/台,安装及运输费用为800元/台.若要求购买的费用不超过40000元,安装及运输费用不超过9200元,则可购买甲、乙两种设备各多少台?【答案与解析】一.选择题1. 【答案】A ;【解析】当x=1时,a+2>0解得:a >﹣2;当x=2,2a+2>0,解得:a >﹣1,∴a 的取值范围为:a >﹣1.2. 【答案】A ;【解析】画数轴进行分析.3. 【答案】D ;【解析】由选项及解集可得a b 、一正一负,不防设a 正b 负代入选项验证.4. 【答案】C ;【解析】解第一个不等式得x >2,由题意可得1m +≤2,所以m ≤1.5. 【答案】C ;【解析】解第一个不等式得2x >-,解第二个不等式得1x ≤,所以不等式组的解集为21x -<≤.6. 【答案】B ;7. 【答案】C ;【解析】解:设降价x 元时商店老板才能。

精选七年级数学下册第九章《不等式与不等式组》单元综合练习题(含答案解析)

精选七年级数学下册第九章《不等式与不等式组》单元综合练习题(含答案解析)

人教版七年级数学下册第九章不等式与不等式组检测题 (word 版,含答案)人教版七年级数学下册第九章 不等式与不等式组单元测试题题一、选择题1.下列说法不一定成立的是( )A. 若a>b ,则a +c>b +cB. 若a +c>b +c ,则a>bC. 若a>b ,则ac 2>bc 2D. 若ac 2>bc 2,则a>b2.如图是关于x 的不等式2x -a ≤-1的解集,则a 的取值是( )A. a ≤-1B. a ≤-2C. a =-1D. a =-2 3.下列解不等式2+x 3>2x -15的过程中,出现错误的一步是( ) ①去分母,得5(x +2)>3(2x -1); ②去括号,得5x +10>6x -3; ③移项,得5x -6x >-10-3;④合并同类项、系数化为1,得x >13.A. ①B. ②C. ③D. ④ 4.不等式组的解集表示在数轴上正确的是( )5.在关于x ,y 的方程组中,未知数满足x ≥0,y >0,那么m 的取值范围在数轴上应表示为( )6.若不等式组2x -1>3(x -1),x<m 的解集是x <2,则m 的取值范围是( ) A. m =2 B. m >2 C. m <2 D. m ≥2 7.如果关于x 的不等式组无解,那么m 的取值范围为( )A. m ≤-1B. m <-1C. -1<m ≤0D. -1≤m <0 8.若关于x 的不等式组的解集中至少有5个整数解,则正数a 的最小值是( )A. 3B. 2C. 1D. 239.“一方有难,八方支援”,雅安芦山4•20地震后,某单位为一中学捐赠了一批新桌椅,学校组织初一年级200名学生搬桌椅.规定一人一次搬两把椅子,两人一次搬一张桌子,每人限搬一次,最多可搬桌椅(一桌一椅为一套)的套数为( ) A. 60 B. 70 C. 80 D. 90 10.某市出租车的收费标准是:起步价8元(即行驶距离不超过3千米都需付8元车费),超过3千米以后,每增加1千米,加收2.6元(不足1千米按1千米计).某人打车从甲地到乙地经过的路程是x 千米,出租车费为21元,那么x 的最大值是( ) A. 11 B. 8 C. 7 D. 5 二、填空题。

《不等式与不等式组》单元测试题及参考答案(基础卷)

《不等式与不等式组》单元测试题及参考答案(基础卷)

《不等式与不等式组》单元测试题(基础)一、填空题1.若m <n,则-5m____-5n.2.2X ≤7的自然数解有_______个.3.不等式15x >-2的解集是___________.4.比x 相反数的3倍大2的数不大于x 的12与5的差,则x 的范围___________.5.若ax >-a 解集为x <-1,则a 的范围是________.6.不等式组31x x <⎧⎨>-⎩的解集是__________.7.若关于x 的不等式组的解集如图所示,则这个不等式组的解集是__________.8.不等式组125x x ⎧⎪⎨⎪⎩≥<的整数解是__________ .9.2-3412x -<≤的非负整数解为__________.10.三角形三边长分别为3,x ,5,则a 的取值范围是__________. 11.已知等腰三角形的周长为12,则这个等腰三角形的腰长x 的范围是________. 12.“输入一个实数 x ,然后经过如图的运算,到判断是否大于190为止”叫做一次操作,那么恰好经过三次操作停止,则 x 的取值范围是__________.二、选择题13.在数轴上表示不等式x ≥-2的解集,正确的是( )A B C D14.若a <b ,则下列结论不一定成立的是( ) A .11a b -<- B .22a b < C .33a b ->- D .22a b <15.不等式组⎩⎨⎧2x -1≤3,x>-1的解集在数轴上表示正确的是( )16.下列不等式的变形中,正确的是 ( ) A .如果 −12x >2,那么 x <−1 B .如果 32x >−23x ,那么 x <0 C .如果 3x <−3,那么 x >−1D .如果 −113x <0,那么 x >017.代数式x-1的值大于0,5-x 的值又不小于1,则整数x 的值是( ) A.1个 B.2个 C.3个 D.4个18.不等式2318x -<的正整数解为( )A.3个B.4个C.5个D.6个19.不等式组115x x x >-⎧⎪>⎨⎪<⎩的解集是( )A .x >-1B .x >1C .-1<x <1D .1<x <520.如果关于x 、y 的方程组5234x y x y k +=⎧⎨-=-⎩的解是正数,则k 的取值范围是( )A.-2<k<3B. k>3C.k<-2D. -3<k<2 21.若关于x 的不等式组无解,则a 的取值范围是( )A .a >2B .a ≥2C .1<a ≤2D .1≤a <222.若关于x 、y 的方程组321232x y k x y +=-⎧⎨-=⎩的解满足4x +7y >2,则k 的取值范围是( )A.k >3B. k >2C.k<3D. k<2 三、解答题23.解下列不等式或不等式组,并把解集在数轴上表示出来。

不等式与不等式组》单元检测试题(含答案解析)

不等式与不等式组》单元检测试题(含答案解析)

不等式与不等式组》单元检测试题(含答案解析)一. 单选题1. 若 a > 0,b < 0,则下列不等式组的解为:A. a + b > 0B. a - b < 0C. a - b > 0D. a + b < 0答案:C解析:a > 0,b < 0,所以 a - b > 0。

2. 已知不等式组如下:{x ≥ 3{x < 7则 x 的取值范围为:A. 3 ≤ x < 7B. 3 ≤ x ≤ 7C. x > 3 或 x < 7D. x ≤ 3 或x ≥ 7答案:B解析:x ≥ 3,x < 7,所以3 ≤ x ≤ 7。

3. 已知不等式 a - 2 < 5 和 b + 3 > 7,下列哪个论断成立:A. a < 3 且 b > 4B. a > 3 且 b < 4C. a > 3 且 b > 4D. a < 3 且 b < 4答案:A解析:a - 2 < 5 可得 a < 3,b + 3 > 7 可得 b > 4,所以 a < 3 且 b > 4。

二. 填空题1. 若 a + 2 > 6,则 a 的最小值为 ________。

答案:4解析:通过移项可得 a > 4,所以 a 的最小值为 4。

2. 若 -2x + 5 ≥ -11,则 x 的取值范围为 ________。

答案:x ≤ 8/2,即x ≤ 4。

解析:通过移项可得 -2x ≥ -16,然后将两边同时除以 -2 并改变符号得x ≤ 8/2,即x ≤ 4。

三. 解答题1. 解不等式组:{3x + 4 > 10{2x - 5 ≤ 1解答:首先解第一条不等式:3x + 4 > 10通过移项得 3x > 10 - 4,即 3x > 6然后将两边同时除以 3 并改变符号得 x > 2接着解第二条不等式:2x - 5 ≤ 1通过移项得2x ≤ 1 + 5,即2x ≤ 6然后将两边同时除以 2 得x ≤ 3综合两个不等式的解,不等式组的解为2 < x ≤ 3。

新七年级数学下册第九章《不等式与不等式组》单元测试题(含答案解析)(1)

新七年级数学下册第九章《不等式与不等式组》单元测试题(含答案解析)(1)

人教版七年级数学下册第九章不等式与不等式组复习检测试题(有答案)一、选择题。

1.下列式子中,是不等式的有( ).①2x=7;②3x+4y;③-3<2;④2a-3≥0;⑤x>1;⑥a-b>1.A.5个B.4个C.3个D.1个2.若a<b,则下列结论不一定成立的是()A.a﹣1<b﹣1 B.2a<2b C.﹣>﹣D.a2<b23.不等式3x+2≥5的解集是()A.x≥1 B.x≥C.x≤1 D.x≤﹣14.已知不等式组,其解集在数轴上表示正确的是()A.B.C.D.5.已知关于x的不等式3x﹣m+1>0的最小整数解为2,则实数m的取值范围是()A.4≤m<7 B.4<m<7 C.4≤m≤7 D.4<m≤76.不等式组的正整数解的个数是()A.5 B.4 C.3 D.27.已知关于x的不等式组仅有三个整数解,则a的取值范围是()A.≤a<1 B.≤a≤1 C.<a≤1 D.a<18.下列哪个选项中的不等式与不等式5x>8+2x组成的不等式组的解集为<x<5()A.x+5<0 B.2x>10 C.3x﹣15<0 D.﹣x﹣5>09.不等式组的最小整数解是()A.﹣1 B.0 C.1 D.210.已知:[x]表示不超过x的最大整数.例:[3.9]=3,[﹣1.8]=﹣2.令关于k的函数f(k)=[]﹣[](k 是正整数).例:f(3)=[]﹣[]=1.则下列结论错误的是()A.f(1)=0 B.f(k+4)=f(k)C.f(k+1)≥f(k)D.f(k)=0或1二.填空题1.不等式0103≤-x 的正整数解是_______________________.2.2≥x 的最小值是a ,6-≤x 的最大值是b ,则.___________=+b a3.把关于x 的不等式组的解集表示在数轴上,如图所示,那么这个不等式组的解集是 . 4.若不等式组⎩⎨⎧><bx ax 的解集是空集,则,a b 的大小关系是_______________.5.若代数式3x -15的值不小于代数式1510x+的值,则x 的取值范围是__________.6.不等式组的解集为 .7.若x 为实数,则[x]表示不大于x 的最大整数,例如[1.6]=1,[π]=3,[﹣2.82]=﹣3等.[x]+1是大于x 的最小整数,对任意的实数x 都满足不等式[x]≤x <[x]+1.①利用这个不等式①,求出满足[x]=2x ﹣1的所有解,其所有解为 . 三、解答题1.解不等式组,并将解集在数轴上表示出来.2.求不等式组的正整数解.3.某图书馆计划选购甲、乙两种图书.已知甲图书每本价格是乙图书每本价格的2.5倍,用800元单独购买甲图书比用800元单独购买乙图书要少24本. (1)甲、乙两种图书每本价格分别为多少元?(2)如果该图书馆计划购买乙图书的本数比购买甲图书本数的2倍多8本,且用于购买甲、乙两种图书的总经费不超过1060元,那么该图书馆最多可以购买多少本乙图书?4.某中学要为学校科技活动小组提供实验器材,计划购买A型、B型两种型号的放大镜.若购买8个A型放大镜和5个B型放大镜需用220元;若购买4个A型放大镜和6个B型放大镜需用152元.(1)求每个A型放大镜和每个B型放大镜各多少元;(2)春平中学决定购买A型放大镜和B型放大镜共75个,总费用不超过1180元,那么最多可以购买多少个A型放大镜?5.某学校准备购买若干台A型电脑和B型打印机.如果购买1台A型电脑,2台B型打印机,一共需要花费5900元;如果购买2台A型电脑,2台B型打印机,一共需要花费9400元.(1)求每台A型电脑和每台B型打印机的价格分别是多少元?(2)如果学校购买A型电脑和B型打印机的预算费用不超过20000元,并且购买B型打印机的台数要比购买A型电脑的台数多1台,那么该学校至多能购买多少台B型打印机?6.友谊商店A型号笔记本电脑的售价是a元/台.最近,该商店对A型号笔记本电脑举行促销活动,有两种优惠方案.方案一:每台按售价的九折销售;方案二:若购买不超过5台,每台按售价销售;若超过5台,超过的部分每台按售价的八折销售.某公司一次性从友谊商店购买A型号笔记本电脑x台.(1)当x=8时,应选择哪种方案,该公司购买费用最少?最少费用是多少元?(2)若该公司采用方案二购买更合算,求x的取值范围.参考答案:一、选择题。

第9章 不等式与不等式组【真题模拟练】(解析版)七年级数学下册单元复习(人教版)

第9章 不等式与不等式组【真题模拟练】(解析版)七年级数学下册单元复习(人教版)

第9章不等式与不等式组真题模拟练(时间:90分钟,分值:100分)一、选择题(共12小题,满分36分,每小题3分)1.(3分)(2021•常德)若a b >,下列不等式不一定成立的是()A .55a b ->-B .55a b -<-C .a bc c>D .a c b c+>+【答案】C .【解析】解:A .∵a b >,∴55a b ->-,故本选项不符合题意;B .∵a b >,∴55a b -<-,故本选项不符合题意;C .∵a b >,∴当0c >时,a b c c >;当0c <时,a bc c<,故本选项符合题意;D .∵a b >,∴a c b c +>+,故本选项不符合题意;故选:C .2.(3分)(2021•河北)已知a b >,则一定有4a -□4b -,“□”中应填的符号是()A .>B .<C .D .=【答案】B .【解析】解:根据不等式的性质,不等式两边都乘同一个负数,不等号的方向改变.∴a b >,∴44a b -<-.故选:B .3.(3分)(2021•丽水)若31a ->,两边都除以3-,得()A .13a <-B .13a >-C .3a <-D .3a >-【答案】A .【解析】解:∵31a ->,∴不等式的两边都除以3-,得13a <-,故选:A .4.(3分)(2021•临沂)已知a b >,下列结论:①2a ab >;②22a b >;③若0b <,则2a b b +<;④若0b >,则11a b<,其中正确的个数是()A .1B .2C .3D .4【答案】A .【解析】解:a b >,∴当0a >时,2a ab >,当0a =时,2a ab =,当0a <时,2a ab <,故①结论错误∴a b >,∴当||||a b >时,22a b >,当||||a b =时,22a b =,当||||a b <时,22a b <,故②结论错误;∵a b >,0b <,∴2a b b +>,故③结论错误;∵a b >,0b >,∴0a b >>,∴11a b<,故④结论正确;∴正确的个数是1个.故选:A .5.(3分)(2021•包头)定义新运算“?”,规定:?2a b a b =-.若关于x 的不等式?3x m >的解集为1x >-,则m 的值是()A .1-B .2-C .1D .2【答案】B .【解析】解∵?2a b a b =-,∴?2x m x m =-.∵?3x m >,∴23x m ->,∴23x m >+.∵关于x 的不等式?3x m >的解集为1x >-,∴231m +=-,∴2m =-.故选:B .6.(3分)(2021•临沂)不等式113x x -<+的解集在数轴上表示正确的是()A .B .C .D .【答案】B .【解析】解:去分母,得:133x x -<+,移项,得:331x x -<+,合并同类项,得:24x -<,系数化为1,得:2x >-,将不等式的解集表示在数轴上如下:故选:B .7.(3分)(2021•贵港)不等式组1231x x <-<+的解集是()A .12x <<B .23x <<C .24x <<D .45x <<【答案】C .【解析】解:不等式组化为123231x x x <-⎧⎨-<+⎩①②,由不等式①,得2x >,由不等式②,得4x <,故原不等式组的解集是24x <<,故选:C .8.(3分)(2021•南通)若关于x 的不等式组23120x x a +>⎧⎨-⎩恰有3个整数解,则实数a 的取值范围是()A .78a <<B .78a <C .78a <D .78a 【答案】C .【解析】解:23120x x a +>⎧⎨-⎩①②,解不等式①,得 4.5x >,解不等式②,得x a ,所以不等式组的解集是4.5x a <,∵关于x 的不等式组23120x x a +>⎧⎨-⎩恰有3个整数解(整数解是5,6,7),∴78a <,故选:C .9.(3分)(2021•湘潭)不等式组12480x x +⎧⎨-<⎩的解集在数轴上表示正确的是()A .B .C .D .【答案】D .【解析】解:解不等式12x +,得:1x ,解不等式480x -<,得:2x <,则不等式组的解集为12x <,将不等式组的解集表示在数轴上如下:故选:D .10.(3分)(2021•永州)在一元一次不等式组21050x x +>⎧⎨-⎩的解集中,整数解的个数是()A .4B .5C .6D .7【答案】C .【解析】解:21050x x +>⎧⎨-⎩①②∵解不等式①得:0.5x >-,解不等式②得:5x ,∴不等式组的解集为0.55x -<,∴不等式组的整数解为0,1,2,3,4,5,共6个,故选:C .11.(3分)(2020•宜宾)某单位为响应政府号召,需要购买分类垃圾桶6个,市场上有A 型和B 型两种分类垃圾桶,A 型分类垃圾桶500元/个,B 型分类垃圾桶550元/个,总费用不超过3100元,则不同的购买方式有()A .2种B .3种C .4种D .5种【答案】B .【解析】解:设购买A 型分类垃圾桶x 个,则购买B 型分类垃圾桶(6)x -个,依题意,得:500550(6)3100x x +-,解得:4x .∵x ,(6)x -均为非负整数,∴x 可以为4,5,6,∴共有3种购买方案.故选:B .12.(3分)(2020•重庆)小明准备用40元钱购买作业本和签字笔.已知每个作业本6元,每支签字笔2.2元,小明买了7支签字笔,他最多还可以买的作业本个数为()A .5B .4C .3D .2【答案】B .【解析】解:设还可以买x 个作业本,依题意,得:2.27640x ⨯+,解得:1410x .又∵x 为正整数,∴x 的最大值为4.故选:B .二、填空题(共10小题,满分30分,每小题3分)13.(3分)(2021•苏州)若21x +,且01y <<,则x 的取值范围为.【答案】102x <<.【解析】解:由21x y +=得21y x =-+,根据01y <<可知0211x <-+<,∴120x -<-<,∴102x <<.故答案为:102x <<.14.(3分)(2021•内江)已知非负实数a ,b ,c 满足123234a b c---==,设23S a b c =++的最大值为m ,最小值为n ,则nm的值为.【答案】1116.【解析】解:设123234a b ck ---===,则21a k =+,32b k =+,34c k =-,∴23212(32)3(34)414S a b c k k k k =++=++++-=-+.∵a ,b ,c 为非负实数,∴210320340k k k +⎧⎪+⎨⎪-⎩,解得:1324k-.∴当12k =-时,S 取最大值,当34k =时,S 取最小值.∴14()14162m =-⨯-+=,3414114n =-⨯+=.∴1116n m =.故答案为:1116.15.(3分)(2021•柳州)如图,在数轴上表示x 的取值范围是.【答案】2x >.【解析】解:在数轴上表示x 的取值范围是2x >.故答案为:2x >.16.(3分)(2021•眉山)若关于x 的不等式1x m +<只有3个正整数解,则m 的取值范围是.【答案】32m -<-.【解析】解:解不等式1x m +<得:1x m <-,根据题意得:314m <-,即32m -<-,故答案是:32m -<-.17.(3分)(2021•上海)不等式2120x -<的解集是.【答案】6x <.【解析】解:移项,得:212x <,系数化为1,得:6x <,18.(3分)(2021•丹东)不等式组213xx m-<⎧⎨>⎩无解,则m的取值范围.【答案】2m.【解析】解:213xx m-<⎧⎨>⎩①②,解不等式①得:2x<,解不等式②x m>,∵不等式组无解∴2m,故答案为:2m.19.(3分)(2021•荆门)关于x的不等式组()31213x ax x--<⎧⎪+⎨-⎪⎩恰有2个整数解,则a的取值范围是.【答案】56a<.【解析】解:解不等式()3x a--<,得:3x a>-,解不等式1213x x+-,得:4x,∵不等式组有2个整数解,∴233a-<,解得56a<.故答案为:56a<.20.(3分)(2020•攀枝花)世纪公园的门票是每人5元,一次购门票满40张,每张门票可少1元.若少于40人时,一个团队至少要有人进公园,买40张门票反而合算.【答案】33.【解析】解:设x人进公园,若购满40张票则需要:40(51)404160⨯-=⨯=(元),故5160x>时,解得:32x>,则当有32人时,购买32张票和40张票的价格相同,则再多1人时买40张票较合算;32133+=(人).则至少要有33人去世纪公园,买40张票反而合算.21.(3分)(2013•乌鲁木齐)某次知识竞赛共有20道题,每一题答对得10分,答错或不答都扣5分,娜娜得分要超过90分,设她答对了n 道题,则根据题意可列不等式.【答案】105(20)90n n -->.【解析】解:根据题意,得105(20)90n n -->.故答案为:105(20)90n n -->.22.(3分)(2020•宁夏)《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著,某兴趣小组阅读四大名著的人数,同时满足以下三个条件:(1)阅读过《西游记》的人数多于阅读过《水浒传》的人数;(2)阅读过《水浒传》的人数多于阅读过《三国演义》的人数;(3)阅读过《三国演义》的人数的2倍多于阅读过《西游记》的人数.若阅读过《三国演义》的人数为4,则阅读过《水浒传》的人数的最大值为.【答案】6.【解析】解:设阅读过《西游记》的人数是a ,阅读过《水浒传》的人数是(b a ,b 均为整数),依题意,得:48a bb a >⎧⎪>⎨⎪<⎩,∵a ,b 均为整数∴47b <<,∴b 最大可以取6.故答案为:6.三、解答题(共5小题,满分34分)23.(6分)(2021•陕西)求不等式3125x -+>-的正整数解.【答案】见解析.【解析】解:去分母得:3510x -+>-,移项合并得:315x ->-,解得:5x <,则不等式的正整数解为1,2,3,4.24.(6分)(2017•呼和浩特)已知关于x 的不等式21122m mx x ->-.(1)当1m =时,求该不等式的解集;(2)m 取何值时,该不等式有解,并求出解集.【答案】见解析.【解析】解:(1)当1m =时,不等式为2122x x->-,去分母得:22x x ->-,解得:2x <;(2)不等式去分母得:22m mx x ->-,移项合并得:(1)2(1)m x m +<+,当1m ≠-时,不等式有解,当1m >-时,不等式解集为2x <;当1m <-时,不等式的解集为2x >.25.(6分)(2021•兴安盟)解不等式组:21612152263x x x x+<+⎧⎪--⎨-⎪⎩,在数轴上表示解集并列举出非正整数解.【答案】见解析.【解析】解:解不等式216x x +<+得:5x <,解不等式12152263x x---得:2x -,将解集表示在数轴上如下:∴不等式组的解集为25x -<,∴不等式组的非正整数解为2-、1-、0.26.(8分)(2021•本溪)某班计划购买两种毕业纪念册,已知购买1本手绘纪念册和4本图片纪念册共需135元,购买5本手绘纪念册和2本图片纪念册共需225元.(1)求每本手绘纪念册和每本图片纪念册的价格分别为多少元?(2)该班计划购买手绘纪念册和图片纪念册共40本,总费用不超过1100元,那么最多能购买手绘纪念册多少本?【答案】见解析.【解析】解:(1)设每本手绘纪念册的价格为x 元,每本图片纪念册的价格为y 元,依题意得:4135 52225 x yx y+=⎧⎨+=⎩,解得:3525 xy=⎧⎨=⎩.答:每本手绘纪念册的价格为35元,每本图片纪念册的价格为25元.(2)设可以购买手绘纪念册m本,则购买图片纪念册(40)m-本,依题意得:3525(40)1100m m+-,解得:10m.答:最多能购买手绘纪念册10本.27.(8分)(2021•黑龙江)“中国人的饭碗必须牢牢掌握在咱们自己手中”.为扩大粮食生产规模,某粮食生产基地计划投入一笔资金购进甲、乙两种农机具.已知购进2件甲种农机具和1件乙种农机具共需3.5万元,购进1件甲种农机具和3件乙种农机具共需3万元.(1)求购进1件甲种农机具和1件乙种农机具各需多少万元?(2)若该粮食生产基地计划购进甲、乙两农机具共10件,且投入资金不少于9.8万元又不超过12万元,设购进甲种农机具m件,则有哪几种购买方案?哪种购买方案需要的资金最少,最少资金是多少?(3)在(2)的方案下,由于国家对农业生产扶持力度加大,每件甲种农机具降价0.7万元,每件乙种农机具降价0.2万元,该粮食生产基地计划将节省的资金全部用于再次购买甲、乙两种农机具(可以只购买一种)请直接写出再次购买农机具的方案有哪几种?【答案】见解析.【解析】解:(1)设购进1x万元,1件乙种农机具y万元.根据题意得:2 3.533x yx y+=⎧⎨+=⎩,解得:1.50.5 xy=⎧⎨=⎩,答:购进1件甲种农机具1.5万元,1件乙种农机具0.5万元.(2)设购进甲种农机具m件,购进乙种农机具(10)m-件,根据题意得:1.50.5(10)9.8 1.50.5(10)12m mm m+-⎧⎨+-⎩,解得:4.87m.∵m为整数.∴m可取5、6、7.∴有三种方案:方案一:购买甲种农机具5件,乙种农机具5件.11方案二:购买甲种农机具6件,乙种农机具4件.方案三:购买甲种农机具7件,乙种农机具3件.设总资金为w 万元.1.50.5(10)5w m m m =+-=+.∵10k =>,∴w 随着m 的减少而减少,∴5m =时,15510w =⨯+=最小(万元).∴方案一需要资金最少,最少资金是10万元.(3)设节省的资金用于再次购买甲种农机具a 件,乙种农机具b 件,由题意得:(1.50.7)(0.50.2)0.750.25a b -+-=⨯+⨯,其整数解:015a b =⎧⎨=⎩或37a b =⎧⎨=⎩,∴节省的资金全部用于再次购买农机具的方案有两种:方案一:购买甲种农机具0件,乙种农机具15件.方案二:购买甲种农机具3件,乙种农机具7件.。

七年级数学下册《第九章不等式与不等式组》单元测试卷-附答案(人教版)

七年级数学下册《第九章不等式与不等式组》单元测试卷-附答案(人教版)

七年级数学下册《第九章不等式与不等式组》单元测试卷-附答案(人教版)一、单选题1.若a<b ,则下列各式中不成立的是( )A .22a b +<+B .22a b < C .22a b -<- D .22a b -<-2.不等式10x -<的解集是( )A .1x >B .1x >-C .1x <D .1x <-3.不等式组 233412x x x +>⎧⎪⎨-≤-⎪⎩ 的解集在数轴上应表示为( )A .B .C .D .4.在平面直角坐标系中,点M (1+m ,2m ﹣3)不可能在( )A .第一象限B .第二象限C .第三象限D .第四象限5.若(m ﹣1)x >m ﹣1 的解集是 x <1,则 m 的取值范围是( )A .m >1B .m≤﹣1C .m <1D .m≥16.如图所示,在数轴上表示了某不等式的解集,则这个不等式可能是( )A .x≤1B .x≤-1C .x≥1D .x≥-17.一次知识竞赛共有15道题.竞赛规则是:答对1题记8分,答错1题扣4分,不答记0分.若甲同学总分超过了85分,且有1道题没答,则甲同学至少答对了() A .11道题B .12道题C .13道题D .14道题8.关于x 的不等式23x m +>的解如图所示,则m 的值为( ).A .1-B .5-C .1D .59.不等式组{5x −1>3x −4−13x ≤23−x的整数解的和为( )A .1B .0C .29D .3010.把一些书分给几名同学,如果每人分3本,那么余8本;如果前面的每名同学分5本,那么最后一人就分不到3本,共有()名同学. A .5B .6C .7D .8二、填空题11.用不等号填空:如果>0a b -,那么a b .12.某测试共有20道题,每答对一道得5分,每答错或不答一道题扣1分,设小明答对了x 道题,若小明得分要超过80分,则小明至少要答对 道题.13.如果不等式组4x x m≥⎧⎨<⎩有解,那么m 的取值范围是 .14.在平面直角坐标系中,已知点P (m ﹣3,4﹣2m ),m 是任意实数.(1)当m =0时,点P 在第 象限.(2)当点P 在第三象限时,求m 的取值范围 .三、计算题15.解不等式:215132x x -+-≤1. 16.解不等式组:()53133143x x x x ⎧-<-⎪⎨-+≥-⎪⎩四、解答题17.已知一种卡车每辆至多能载3吨货物.现有100吨黄豆,若要一次运完这批黄豆,至少需要这种卡车多少辆?18.解不等式:2 (3x -1)≤x +3,并把它的解集在数轴上表示出来.19.解不等式组()()2810433112x x x x ⎧+≤--⎪⎨+-<⎪⎩,并写出它的所有整数解. 五、综合题20.(1)若x>y ,请比较2-3x 与 2-3y 的大小,并说明理由. (2)若x>y ,请比较(a -3)x 与(a -3)y 的大小.21.2022年是富川县大力发展香芋种植的一年,某香芋种植大户聘请了一些临时工帮种植一批香芋,每个工人每天可以种植一亩香芋,计划9天种完,种植3天后由于气象台预测几天后将会有暴雨,为使香芋的种植不受到暴雨的影响,所以该种植大户又聘请了5个工人一起种植香芋,恰好提前两天完成了种植任务.(1)问该香芋种植大户种植了多少亩香芋?第一批请了多少个工人帮种植香芋?(2)种植过程中每天中午都要给每个工人提供一份快餐,已知烧鹅饭每个21元,排骨蒸饭每个18元,在种植的最后一天,该种植大户计划帮工人们订快餐的总花费不超过300元,则最多能订多少个烧鹅饭?22.先阅读理解下面的例题,再按要求解答下列问题.例题:解不等式()()330x x -+>.解:由有理数的乘法法则“两数相乘,同号得正,异号得负”,得3030x x -<⎧⎨+<⎩①,3030x x ->⎧⎨+>⎩②解不等式组①,得3x <-,解不等式组②,得3x >,()()330x x ∴-+>的解集为3x >或3x <-.(1)满足()()22310x x -+>的x 的取值范围是 ;(2)仿照材料,解不等式()()3150x x -+<.参考答案与解析1.【答案】C【解析】【解答】解:A 、∵a <b∴a+2<b+2,故本选项不符合题意; B 、∵a <b ∴22a b< ,故本选项不符合题意; C 、∵a <b∴-2a >-2b ,故本选项符合题意; D 、∵a <b∴a-2<b-2,故本选项不符合题意; 故答案为:C .【分析】根据不等式的性质,即不等式两边同加上或同减去同一个数,不等号方向不变,不等式两边同乘以或同除以同一个正数,不等号方向不变,同乘以或同除以同一个负数,不等号方向改变,据此分别判断即可.2.【答案】A【解析】【解答】解:10x -<1x -<- 1x >故答案为:A.【分析】根据不等式的性质两边同时减1、再两边同时除以-1,把不等式的系数化为1,即可解答.3.【答案】C【解析】【解答】解: 233412x x x +>⎧⎪⎨-≤-⎪⎩①② 解①得 1x > 解②得 2x ≤∴不等式组的解集为 12x <≤ 将解集表示在数轴上如C 选项所示 故答案为:C .【分析】先解不等式组,然后按照大于向右画,小于向左画,有等号是实心圆点,无等号是空心圆点的原则即可确定答案.4.【答案】B【解析】【解答】解:A.由 10230m m +>⎧⎨->⎩ 知m > 32 ,此时点M 在第一象限;B.由 10230m m +<⎧⎨->⎩知m 无解,即点M 不可能在第二象限;C.由 10230m m +<⎧⎨-<⎩知m <﹣1,此时点M 在第三象限;D.由 10230m m +>⎧⎨-<⎩ 知﹣1<m < 32 ,此时点M 在第四象限;故答案为:B.【分析】根据各象限内点的坐标符号特点列出关于m 的不等式组,解之求出m 的范围,从而得出答案.5.【答案】C【解析】【解答】解:∵(m-1)x >m-1的解集是 x <1∴m-1<0∴m<1. 故答案为:C.【分析】根据不等式的性质可得m-1<0,求解可得m 的范围.6.【答案】C【解析】【解答】由题意得x≥1.故答案为:C.【分析】根据数轴直接写出不等式的解集即可。

不等式与不等式组单元测试题(含答案)

不等式与不等式组单元测试题(含答案)

不等式与不等式组单元测试题一、填空题(每题3分,共30分)1、不等式组12x x <⎧⎨>-⎩的解集是2、将下列数轴上的x 的范围用不等式表示出来3、34125x +-<≤的非正整数解为 4、a>b,则-2a -2b.5、3X ≤12的自然数解有 个.6、不等式12x >-3的解集是 。

7、用代数式表示,比x 的5倍大1的数不小于x 的21与4的差 。

8、若(m-3)x<3-m 解集为x>-1,则m .9、三角形三边长分别为4,a ,7,则a 的取值范围是10、某次个人象棋赛规定:赢一局得2分,平一局得0分,负一局得反扣1分。

在12局比赛中,积分超过15分就可以晋升下一轮比赛,小王进入了下一轮比赛,而且在全部12轮比赛中,没有出现平局,问小王最多输 局比赛二、选择题(每小题2分,共20分)11、在数轴上表示不等式x ≥-2的解集,正确的是( )A B C D12、下列叙述不正确的是( )A 、若x<0,则x2>xB 、如果a<-1,则a>-aC 、若43-<-a a ,则a>0D 、如果b>a>0,则ba 11-<-13、如图1,设“○”、“□”、“△”分别表示三种不同的物体,用天平比较它们质量的大小,两次情况如图所示,那么每个“○”、“□”、“△”这样的物体,按质量从大到小....的顺序排列为 A 、 ○□△ B 、 ○△□C 、 □○△D 、 △□○图114、如图2天平右盘中的每个砝码的质量都是1g ,则物体A的质量m(g)取值范围,在数轴上可表示为( )15、代数式1-m 的值大于-1,又不大于3,则m 的取值范围是( ).13.31.22.22A m B m C m D m -<≤-≤<-≤<-<≤ 16、不等式45111x -<的正整数解为( ) A.1个 B.3个 C.4个 D.5个17、不等式组2.01x x x >-⎧⎪>⎨⎪<⎩的解集是(.1.0.01.21A x B x C x D x >-><<-<<18、如果关于x 、y 的方程组322x y x y a +=⎧⎨-=-⎩的解是负数,则a 的取值范围是A.-4<a<5B.a>5C.a<-4D.无解19、若关于x 的不等式组()202114x a x x ->⎧⎪⎨+>-⎪⎩的解集是x>2a,则a 的取值范围是 A. a>4 B. a>2 C. a=2 D.a ≥20、若方程组2123x y m x y +=+⎧⎨+=⎩中,若未知数x 、y 满足x+y>0,则m 的取值范围是 .4.4.4.4A m B m C m D m >-≥-<-≤-三、解答题(第1题20分,第2、3各5分,第4、5题各10分,共50分) 0 0 1 2 B 0 A A 图2 0 12 A 2 1C 1 D21、解下不等式(或不等式组)并在数轴上表示解集。

(必考题)初中七年级数学下册第九单元《不等式与不等式组》经典复习题(含答案解析)

(必考题)初中七年级数学下册第九单元《不等式与不等式组》经典复习题(含答案解析)

一、选择题1.已知关于x 的不等式组5210x x a -≥-⎧⎨->⎩无解,则a 的取值范围是( )A .a <3B .a ≥3C .a >3D .a ≤3B解析:B 【分析】首先解不等式,然后根据不等式组无解确定a 的范围. 【详解】 解:5210x x a -≥-⎧⎨->⎩①②解不等式①,得3x ≤; 解不等式②,得x a >; ∵不等式组无解, ∴3a ≥; 故选:B . 【点睛】本题考查了一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.2.已知不等式组1113x a x -<-⎧⎪-⎨≤⎪⎩的解集如图所示(原点没标出,数轴单位长度为1),则a的值为( )A .﹣1B .0C .1D .2D解析:D 【分析】首先解不等式组,求得其解集,又由数轴知该不等式组有3个整数解即可得到关于a 的方程,解方程即可求得a 的值. 【详解】解:∵1113x a x -<-⎧⎪-⎨≤⎪⎩,解不等式1x a -<-得:1x a <-, 解不等式113x-≤得:2x ≥-,∴不等式组的解集为:21x a -≤<-, 由数轴知该不等式组有3个整数解, 所以这3个整数解为-2、-1、0, 则11a -=, 解得:2a =, 故选:D . 【点睛】本题考查了一元一次不等式组的整数解,以及在数轴上表示不等式的解集,熟练掌握运算法则是解本题的关键.3.关于x 的一元一次不等式组的解集在数轴上的表示如图所示,则不等式组的解集是( )A .1x >-B .3x ≤C .13x -≤≤D .13x -<≤ D解析:D 【分析】数轴的某一段上面,表示解集的线的条数,与不等式的个数一样,那么这段就是不等式组的解集.实心圆点包括该点,空心圆圈不包括该点,大于向右小于向左.两个不等式的公共部分就是不等式组的解集. 【详解】由数轴知,此不等式组的解集为-1<x≤3, 故选D . 【点睛】考查解一元一次不等式组,不等式的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.4.己知关于x ,y 的二元一次方程ax b y +=,下表列出了当x 分别取值时对应的y 值.则关于x 的不等式0ax b --<的解集为( )x… -2 -1 0 1 2 3 … y …321-1-2…A .x <1B .x >1C .x <0D .x >0A解析:A将x=0、y=1和x=1、y=0代入ax+b=y得到关于a、b的方程组,解之得出a、b的值,从而得到关于x的不等式,解之可得答案.【详解】解:根据题意,得:10 ba b=⎧⎨+=⎩,解得a=-1,b=1,则不等式-ax-b<0为x-1<0,解得x<1,故选:A.【点睛】本题考查了解一元一次不等式,解题的关键是根据题意列出关于x的不等式,并熟练掌握解一元一次不等式的步骤和依据.5.不等式组20240xx+>⎧⎨-≤⎩的解集在数轴上表示正确的是()A .B .C .D . C解析:C【解析】分析:先求出各不等式的解集,再求出其公共解集即可.详解:解不等式x+2>0,得:x>-2,解不等式2x-4≤0,得:x≤2,则不等式组的解集为-2<x≤2,将解集表示在数轴上如下:故选C.点睛:本题主要考查解一元一次不等式组,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.6.若关于x的不等式组255332xxxx a+⎧>-⎪⎪⎨+⎪<+⎪⎩只有5个整数解,则a的取值范围( )A.1162a-<-B.116a2-<<-C.1162a-<-D.1162a-- A【分析】分别解两个不等式得到得x <20和x >3-2a ,由于不等式组只有5个整数解,则不等式组的解集为3-2a <x <20,且整数解为15、16、17、18、19,得到14≤3-2a <15,然后再解关于a 的不等式组即可. 【详解】255332x x x x a +⎧>-⎪⎪⎨+⎪<+⎪⎩①② 解①得x <20 解②得x >3-2a ,∵不等式组只有5个整数解, ∴不等式组的解集为3-2a <x <20, ∴14≤3-2a <15,1162a ∴-<-故选A 【点睛】本题主要考查对不等式的性质,解一元一次不等式,一元一次不等式组的整数解等知识点的理解和掌握,能求出不等式14≤3-2a <15是解此题的关键.7.如果不等式组5x x m <⎧⎨>⎩有解,那么m 的取值范围是( )A .m >5B .m≥5C .m <5D .m≤8C解析:C 【解析】 ∵不等式组有解,∴m <5. 故选C .【方法点睛】本题主要考查的是不等式的解集,依据口诀列出不等式是解题的关键. 8.某电视台组织知识竞赛,共设20道选择题,各题分值相同,每题必答.下表记录了5个参赛者的得分情况参赛者答对题数 答错题数得分 A20 0 100 B18288A .胜一场积5分,负一场扣1分B .某参赛选手得了80分C .某参赛选手得了76分D .某参赛选手得分可能为负数B解析:B 【分析】由参赛者A 可得:胜一场得100÷20=5分,设负一场扣x 分,根据参赛者B 的得分列出方程,求出方程的解即可得出负一场扣多差分;设参赛选手胜y 场,则负(20-y )场,根据胜场的得分+负场的得分=选手得分,分别建立方程求出其解即可. 【详解】A .由参赛者A 可得:胜一场得100÷20=5分,设负一场扣x 分,根据参赛者B 的得分:5181288x ⨯-⨯=,解得:1x =,所以负一场扣1分;故本选项正确;B .设参赛选手胜y 场,则负(20-y )场,则()512080y y ⨯-⨯-=,解得503y =,∵y 为整数,∴参数选手不可能得80分;故本选项错误;C .设参赛选手胜y 场,则负(20-y )场,()512076y y ⨯-⨯-=,解得16y =,所以参数选手胜了16场,负了4场;故本选项正确;D .设参赛选手胜y 场,则负(20-y )场,()51200y y ⨯-⨯-<,解得103y <,所以当参赛选手低于4场胜利时候,得分就可能是负数;故本选项正确; 故选:B 【点睛】本题考查了总数÷分数=每份数的运用,列一元一次方程解实际问题的运用,结论猜想试题的运用,解答时关键胜场的得分+负场得分=总得分是关键.9.若关于x 的不等式组0722x m x -<⎧⎨-≤⎩的整数解共有3个,则m 的取值范围是( )A .5<m <6B .5<m ≤6C .5≤m ≤6D .6<m ≤7B解析:B 【分析】分别求出不等式组中不等式的解集,利用取解集的方法表示出不等式组的解集,根据解集中整数解有3个,即可得到m 的范围. 【详解】解不等式x ﹣m <0,得:x <m ,解不等式7﹣2x≤2,得:x≥52,因为不等式组有解,所以不等式组的解集为52≤x<m,因为不等式组的整数解有3个,所以不等式组的整数解为3、4、5,所以5<m≤6.故选:B.【点睛】此题考查了一元一次不等式组的整数解,表示出不等式组的解集,根据题意找出整数解是解本题的关键.10.不等式325132x x++≤-的解集表示在数轴上是()A.B.C.D. B解析:B【分析】根据一元一次不等式的解法,去分母,去括号,移项,合并同类项,系数化为1即可得解.【详解】解:去分母,得,2(3x+2)≤3(x+5)﹣6,去括号,得6x+4≤3x+15﹣6,移项、合并同类项,得3x≤5,系数化为1,得,x≤53,在数轴上表示为:故选:B.【点睛】本题考查了解一元一次不等式,以及在数轴上表示不等式的解集,>向右画,<向左画,≤与≥用实心圆点,<与>用空心圆圈.二、填空题11.不等式组2173112x x x -<⎧⎪⎨+-≥⎪⎩的解集是____.1≤x <4【分析】分别求出每一个不等式的解集再找到公共部分即可得【详解】解:解不等式①得x <4解不等式②得x≥1所以不等式组的解集为:1≤x <4故答案为:1≤x <4【点睛】此题主要考查了求一元一次不解析:1≤x <4. 【分析】分别求出每一个不等式的解集,再找到公共部分即可得. 【详解】解:217?311?2x x x -<⎧⎪⎨+-≥⎪⎩①②解不等式①得,x <4, 解不等式②得,x≥1,所以,不等式组的解集为:1≤x <4. 故答案为:1≤x <4. 【点睛】此题主要考查了求一元一次不等式组的解集,正确求出每一个不等式解集是解答此题的关键.12.已知关于x 的不等式6m x <<的整数解共有3个,则m 的取值范围为_____________.【分析】首先写出连续3小于6的整数然后即可判断m 的取值范围【详解】由题意得:符合题意的整数解为543∴m 不能取值3可以取值2∴故答案为【点睛】本题考查了解不等式难度较低主要考查学生对不等式组知识点的解析:23m ≤<【分析】首先写出连续3小于6的整数,然后即可判断m 的取值范围. 【详解】由题意得:符合题意的整数解为5,4,3 ∴m 不能取值3,可以取值2 ∴23m ≤< 故答案为23m ≤<. 【点睛】本题考查了解不等式,难度较低,主要考查学生对不等式组知识点的掌握.整理出x 的取值范围分析整数解情况为解题关键.13.若||2x =,||3y =,且0x y +<,则x y -值为______.1或5【分析】由已知可以得到x=2或-2y=3或-3然后对xy 的取值进行分类讨论找出使x+y<0的取值组合即可求得x-y 的值【详解】解:∵|x|=2|y|=3∴x=2或-2y=3或-3(1)当x=2解析:1或5 【分析】由已知可以得到x=2或-2,y=3或-3,然后对x 、y 的取值进行分类讨论,找出使x+y<0的取值组合,即可求得x-y 的值. 【详解】解:∵|x|=2,|y|=3,∴x=2或-2,y=3或-3,(1)当x=2时,要使x+y<0 ,必须y=-3,此时x-y=2-(-3)=2+3=5; (2)当x=-2时,要使x+y<0 ,必须y=-3,此时x-y=-2-(-3)=-2+3=1; 故答案为1或5. 【点睛】本题考查绝对值、不等式和有理数加减法的综合应用,熟练掌握绝对值、不等式、有理数加减法及分类讨论的思想是解题关键 . 14.若关于x 的不等式组2()12153xm x 的解集为76x -<<-,则m 的值是______.【分析】先解不等式组得出其解集为结合可得关于的方程解之可得答案【详解】解:由①得:由②得:不等式的解集为:∵关于的不等式组的解集为【点睛】本题考查的是利用一元一次不等式组的解集求参数熟悉相关性质是解 解析:152【分析】先解不等式组得出其解集为1262m x,结合76x -<<-可得关于m 的方程,解之可得答案. 【详解】 解:2()102153xm x ①②由①得:2210x m +->,221x m >-+, 12x m >-+ 由②得:212x <-,6x <-,∴不等式的解集为:162m x -+<<- ∵关于x 的不等式组的解集为76x -<<-,172m ∴-+=-152m ∴=【点睛】本题考查的是利用一元一次不等式组的解集求参数,熟悉相关性质是解题的关键. 15.不等式组2021x x x -≥⎧⎨>-⎩的最小整数解是________.0【分析】求出不等式组的解集确定出最小整数解即可【详解】不等式组整理得:不等式组的解集为:-1<x≤2最小的整数解为0故答案为:0【点睛】本题主要考查一元一次不等式组的整数解掌握一元一次不等式组的求解析:0 【分析】求出不等式组的解集,确定出最小整数解即可. 【详解】不等式组整理得:21x x ≤⎧⎨>-⎩,∴不等式组的解集为:-1<x ≤2,∴最小的整数解为0.故答案为:0. 【点睛】本题主要考查一元一次不等式组的整数解,掌握一元一次不等式组的求解是解题关键. 16.若不等式25123x x +-≤-的解集中x 的每一个值,都能使关于x 的不等式3(1)552()x x m x -+>++成立,则m 的取值范围是__________.【分析】首先通过解不等式得出的解集和的解集然后根据题意建立一个关于m 的不等式从而确定m 的范围即可【详解】解得解得∵不等式的解集中的每一个值都能使关于的不等式成立解得【点睛】本题主要考查不等式的解集掌解析:35m <-【分析】首先通过解不等式得出25123x x +-≤-的解集和3(1)552()x x m x -+>++的解集,然后根据题意建立一个关于m 的不等式,从而确定m 的范围即可. 【详解】25123x x +-≤-, 解得45x ≤. 3(1)552()x x m x -+>++,解得12mx -<. ∵不等式25123x x +-≤-的解集中x 的每一个值,都能使关于x 的不等式3(1)552()x x m x -+>++成立,1425m -∴>, 解得35m <-.【点睛】本题主要考查不等式的解集,掌握解不等式的方法是解题的关键.17.若关于x 的不等式2310a x -->的最大整数解为2-,则实数a 的取值范围是_________.【分析】先求出不等式的解再根据不等式的最大整数解确定a 的取值范围即可【详解】解:解得∵不等式的最大整数解为∴解得:;故答案为:【点睛】本题考查的是不等式的解正确的解不等式是解题的关键 解析:512a -<≤- 【分析】先求出不等式的解,再根据不等式的最大整数解确定a 的取值范围即可. 【详解】解:解2310a x -->,得213<-a x , ∵不等式2310a x -->的最大整数解为2-,∴21-2-13<-≤a , 解得:512a -<≤-; 故答案为:512a -<≤-.【点睛】本题考查的是不等式的解,正确的解不等式是解题的关键.18.已知a 、b 的和,a 、b 的积及b 的相反数均为负,则a ,b ,a -,+a b ,b a -的大小关系是________.(用“<”把它们连接起来)【分析】根据相反数正负数和有理数加减运算的性质分析即可得到答案【详解】∵∴∴∴∵∴∴∵∴∴即故答案为:【点睛】本题考查了相反数正负数有理数大小比较有理数加减运算的知识;解题的关键是熟练掌握相反数正负 解析:a a b b a b a <+<<-<-【分析】根据相反数、正负数和有理数加减运算的性质分析,即可得到答案.【详解】∵0b -<∴0b >∴0b a a -+>∴b a a ->-,b a a +>∵0a b ⨯<∴0a <∴0a ->∵0a b +<∴b a <-∴0a a b b a b a <+<<<-<-即a a b b a b a <+<<-<-故答案为:a a b b a b a <+<<-<-.【点睛】本题考查了相反数、正负数、有理数大小比较、有理数加减运算的知识;解题的关键是熟练掌握相反数、正负数和有理数加减运算的性质,从而完成求解.19.如果不等式组324x a x a +⎧⎨-⎩<<的解集是x <a ﹣4,则a 的取值范围是_______.a≥﹣3【分析】根据口诀同小取小可知不等式组的解集解这个不等式即可【详解】解这个不等式组为x <a ﹣4则3a+2≥a ﹣4解这个不等式得a≥﹣3故答案a≥﹣3【点睛】此题考查解一元一次不等式组掌握运算法解析:a ≥﹣3.【分析】根据口诀“同小取小”可知不等式组32{4x a x a +-<<的解集,解这个不等式即可. 【详解】解这个不等式组为x <a ﹣4,则3a +2≥a ﹣4,解这个不等式得a ≥﹣3故答案a ≥﹣3.【点睛】此题考查解一元一次不等式组,掌握运算法则是解题关键 20.若关于x 的一元一次不等式组21122x a x x ->⎧⎨->-⎩的解集是21x -<<,则a 的取值是__________.【分析】表示出不等式组中两不等式的解集根据x 的范围确定出a 的值即可【详解】解不等式得解不等式得∵不等式组的解集为解得:故答案为:【点睛】本题考查了解一元一次不等式组能根据不等式的解集和已知得出关于的解析:5a =-【分析】表示出不等式组中两不等式的解集,根据x 的范围确定出a 的值即可.【详解】解不等式21x a ->得12a x +>, 解不等式122x x ->-得1x <,∵不等式组的解集为21x -<<,122a +=-, 解得:5a =-.故答案为:5a =-.【点睛】本题考查了解一元一次不等式组,能根据不等式的解集和已知得出关于a 的方程是解此题的关键.三、解答题21.我国古代民间把正月正、二月二、三月三、五月五、六月六、七月七、九月九这“七重”列为吉庆日;“七”在生活中表现为时间的阶段性,比如一周有“七天”……在数的学习过程中,有一类自然数具有的特性也和“七”有关.定义:对于四位自然数n ,若其千位数字与个位数字之和等于7,百位数字与十位数字之和也等于7,则称这个四位自然数n 为“七巧数”.例如:3254是“七巧数”,因为347+=,257+=,所以3254是“七巧数”; 1456不是“七巧数”,因为167+=,但457+≠,所以1456不是“七巧数”.(1)若一个“七巧数”的千位数字为a ,则其个位数字可表示为______(用含a 的代数式表示);(2)最大的“七巧数”是______,最小的“七巧数”是______;(3)若m 是一个“七巧数”,且m 的千位数字加上十位数字的和,是百位数字减去个位数字的差的3倍,请求出满足条件的所有“七巧数”m .解析:(1)7-a ;(2)7700,1076;(3)6431,4523,2615【分析】(1)根据七巧数的定义,即可得到答案;(2)根据七巧数的定义,即可得到答案;(3)设m 的千位数字为a ,百位数字为b ,十位数字为c ,个位数字为d ,根据题意得到a ,b ,c ,d 之间的数量关系,进而求出b 的范围,即可求解.【详解】(1)∵一个“七巧数”的千位数字为a ,∴其个位数字可表示为:7-a ,故答案是:7-a ;(2)由题意可得:最大的“七巧数”是:7700,最小的“七巧数”是:1076,故答案是:7700,1076;(3)设m 的千位数字为a ,百位数字为b ,十位数字为c ,个位数字为d ,则3()77a c b d a d c b +=-⎧⎪=-⎨⎪=-⎩①②③,把②③代入①,可得:7-d+7-b=3b-3d ,既:4b-2d=14,∴d=2b-7,∴百位数字为b ,个位数字为2b-7,十位数字为7-b ,∵2b-7≥0且7-b≥0,∴3.5≤b≤7,当b=4时,则d=1,a=6,c=3,m=6431,当b=5时,则d=3,a=4,c=2,m=4523,当b=6时,则d=5,a=2,c=1,m=2615,当b=7时,则d=7,a=0,c=0,不符合题意,∴ 满足条件的所有“七巧数”m 为:6431,4523,2615.【点睛】本题主要考查新定义问题,理解题意,列出方程和不等式,掌握分类讨论的思想方法,是解题的关键.22.(1)解方程组:43220x y x y +=⎧⎨+=⎩(2)解不等式组:3(2)211124x x x x -<-⎧⎪⎨-≥-⎪⎩ 解析:(1)12x y =-⎧⎨=⎩;(2)25x ≤<. 【分析】(1)利用加减消元法解二元一次方程组即可得;(2)先分别求出两个不等式的解,再找出它们的公共部分即为不等式组的解.【详解】(1)43220x y x y +=⎧⎨+=⎩①②, 由①2-⨯②得:322y y -=,解得2y =,将2y =代入②得:220x +=,解得1x =-,则方程组的解为12x y =-⎧⎨=⎩; (2)3(2)211124x x x x -<-⎧⎪⎨-≥-⎪⎩①②, 解不等式①得:5x <,解不等式②得:2x ≥,则不等式组的解为25x ≤<.【点睛】本题考查了解二元一次方程组、解一元一次不等式组,熟练掌握方程组和不等式组的解法是解题关键.23.解不等式组32,121.25x x x x <+⎧⎪⎨++≥⎪⎩①②并把解集在数轴上表示出来. 解析:解集为:31x -<.在数轴上表示见解析.【分析】分别求出不等式组中两不等式的解集,找出两解集的公共部分确定出不等式组的解集,表示在数轴上即可.【详解】解:32,12125x x x x <+⎧⎪⎨++≥⎪⎩①②,由①得:1x <;由②得:3x ≥-,∴不等式组的解集为31x -≤<,表示在数轴上,如图所示:.【点睛】本题考查了解一元一次不等式组,以及在数轴上表示不等式的解集,熟练掌握不等式组的解法是解本题的关键.24.解下列方程(方程组)或不等式(组).(1)[]{}3213(21)35x x ---+=(2)2(53)3(12)x x x +≤--(3)解方程214163x x --=-(4)解方程组2538x y x y +=⎧⎨-=⎩(代入法解) (5)372(1)423133x x x x -<-⎧⎪⎨+≥-⎪⎩ (6)0.35340.532m n m n m n m n +-⎧-=⎪⎪⎨+-⎪+=⎪⎩ 解析:(1)23x =-;(2)3x ≤-;(3)34x =;(4)31x y =⎧⎨=⎩;(5)15x -≤<;(6)71012m n ⎧=⎪⎪⎨⎪=⎪⎩. 【分析】(1)先去括号,然后移项、合并同类项,系数化为1,即可得到答案;(2)先去括号,然后移项、合并同类项,系数化为1,即可得到答案;(3)先去分母,去括号,然后移项、合并同类项,系数化为1,即可得到答案; (4)由代入消元法解方程组,即可得到答案;(5)先求出每个不等式的解集,即可得到不等式组的解集;(6)先把方程组去分母,然后进行整理,再利用加减消元法解方程组,即可得到答案.【详解】解:(1)[]{}3213(21)35x x ---+=,∴[]{}3216335x x ---+=,∴{}32165x x --=,∴{}3145x --=,∴3125x --=, ∴23x =-; (2)2(53)3(12)x x x +≤--, ∴10636x x x +≤-+,∴10736x x -≤--,∴39x ≤-,∴3x ≤-;(3)214163x x --=-,∴212(4)6x x -=--,∴21826x x -=--,∴43x =, ∴34x =; (4)2538x y x y +=⎧⎨-=⎩①②, 由①得:52x y =-③,把③代入②得:3(52)8y y --=,解得:1y =,把1y =代入①,得3x =,∴方程组的解为31x y =⎧⎨=⎩; (5)372(1)423133x x x x -<-⎧⎪⎨+≥-⎪⎩①② 解不等式①,得5x <;解不等式②,得1x ≥-;∴不等式组的解集为:15x -≤<;(6)0.35340.532m n m n m n m n +-⎧-=⎪⎪⎨+-⎪+=⎪⎩, 方程组整理得:5352153m n m n +=⎧⎨-=⎩①②, 由①-②,得:3618n =, ∴12n =, 把12n =代入②,得710m =, ∴方程组的解为:71012m n ⎧=⎪⎪⎨⎪=⎪⎩; 【点睛】本题考查了解一元一次方程,解二元一次方程组,解不等式,解不等式组,解题的关键是熟练掌握运算法则,正确的进行解题.25.解不等式(组):(1)24123x x ---≤;(2)63(4) 23253x xx x-≥-⎧⎪⎨++>⎪⎩①②.解析:(1)x≤4;(2)1<x≤3.【分析】(1)先去分母,再去括号、移项、合并同类项、系数化为1得到解集;(2)分别解不等式即可得到不等式组的解集.【详解】解:(1)去分母,得:3(x﹣2)﹣6≤2(4﹣x),去括号,得:3x﹣6﹣6≤8﹣2x,移项,得:3x+2x≤8+6+6,合并同类项,得:5x≤20,系数化为1,得:x≤4;(2)解不等式①,得:x≤3,解不等式②,得:x>1,则不等式组的解集为1<x≤3.【点睛】此题考查解不等式及不等式组,掌握解不等式的方法是解题的关键.26.解不等式组:23332x xxx>-⎧⎪⎨-+≥⎪⎩①②,并把它们的解集表示在数轴上.解析:(1)1<x≤3,图见解析【分析】求出不等式组中两个不等式的解集后,再求出两个解集的公共部分并在数轴上表示出来即可.【详解】解:解不等式①得:x>1,解不等式②得:x≤3,∴不等式组的解集为:1<x≤3,并可在数轴上表示如下:【点睛】本题考查不等式组的求解,熟练掌握求不等式解集公共部分的方法是解题关键. 27.解不等式,并把解表示在数轴上. 417366x x +≥- 解析:3x ≤,见解析【分析】先去分母,然后移项、合并同类项,系数化为1,即可得到答案.【详解】解:去分母,得2417x x ≥+-移项,得4271x x -≤-合并同类项,得26x ≤系数化为1,得3x ≤;把解表示在数轴上如图:【点睛】本题考查了解一元一次不等式,解题的关键是掌握解不等式的方法进行解题.28.计划对河道进行改造,现有甲乙两个工程队参加改造施工,受条件限制,每天只能由一个工程队施工.若甲工程队先单独施工3天,再由乙工程队单独施工5天,则可以完成550米施工任务:若甲工程队先单独施工2天,再由乙工程对单独施工4天,则可以完成420米的施工任务.(1)求甲、乙两个工程队平均每天分别能完成多少米施工任务?(2)该河道全长6000米,若两队合作工期不能超过90天,乙工程队至少施工多少天? 解析:(1)甲工程队每天能完成施工任务50米,乙工程队每天能完成施工任务80米;(2)乙工程队至少施工50天【分析】(1)设甲工程队每天施工x 米,乙工程队每天施工y 米,根据等量关系列出二元一次方程组,即可求解;(2)设乙工程队施工a 天,根据不等量关系,列出一元一次不等式,即可求解.【详解】(1)设甲工程队每天施工x 米,乙工程队每天施工y 米,根据题意得:3555024420x y x y +=⎧⎨+=⎩,解得:5080x y =⎧⎨=⎩, 答:甲工程队每天能完成施工任务50米,乙工程队每天能完成施工任务80米; (2)设乙工程队施工a 天,根据题意得:80a+50(90-a )≥6000,解得:a≥50,答:乙工程队至少施工50天【点睛】本题主要考查二元一次方程组与一元一次不等式的实际应用,找出等量关系和不等量关系,列出方程组和不等式,是解题的关键.。

人教版七年级下第九章不等式与不等式组单元复习题含答案

人教版七年级下第九章不等式与不等式组单元复习题含答案

1 / 5七年级数学下第九章不等式与不等式组单元复习卷人教版一、选择题1. 若a <b ,则下列各式中,错误的是( )A. a -3<b -3B. -a <-bC. -2a >-2bD. 13a <13b 2. 若m >n ,则下列不等式中一定成立的是( )A. m +2<n +3B. 2m <3nC. a -m <a -nD. ma 2>na 23. 数a 、b 在数轴上的位置如图所示,则下列不等式成立的是( )A. a >bB. ab >0C. a +b >0D. a +b <04. 若关于x 的一元一次不等式组{x <m 2x−1>3(x−2)的解集是x <5,则m 的取值范围是( )A. m ≥5B. m >5C. m ≤5D. m <5 5. 某商品的标价比成本价高m %,根据市场需要,该商品需降价n %出售,为了不亏本,n 应满足( )A. n ≤mB. n ≤100m 100+mC. n ≤m 100+mD. n ≤100m 100−m 6. 某种记事本零售价每本6元,凡一次性购买两本以上给予优惠,优惠方式有两种,第一种:“两本按原价,其余按七折优惠”;第二种:全部按原价的八折优惠,若想在购买相同数量的情况下,要使第一种办法比第二种办法得到的优惠多,最少要购买记事本( )A. 5本B. 6本C. 7本D. 8本7. 不等式组{2x+13−3x+22>13−x ≥2的解集在数轴上表示正确的是( ) A. B.C.D. 8. 不等式组{x −1≥23x<2x+4的解集是( )A. x >4B. x ≤3C. 3≤x <4D. 无解9. 如果不等式组{x −a ≥02x −10<0只有一个整数解,那么a 的范围是( ) A. 3<a ≤4 B. 3≤a <4 C. 4≤a <5 D. 4<a ≤510. 如果不等式(1+a )x >1+a 的解集为x <1,那么a 的取值范围是( )A. a >0B. a <0C. a >-1D. a <-111. 若方程2x =4的解使关于x 的一次不等式(a -1)x <a +5成立,则a 的取值范围是( )A. a ≠1B. a >7C. a <7D. a <7且a ≠1二、填空题12. 如果不等式(a +1)x <a +1的解集为x >1,那么a 的取值范围是______.13. 已知不等式组{x ≥−1x <1的解集如图所示,则不等式组的整数解为______ . 14. 若3-4x 6-5n >2是一元一次不等式,则n = ______ .15. 已知关于x 的不等式9x -a ≤0的正整数解为1、2、3、4,则a 的取值范围______ .16. 不等式组{3x −1<52x+5≤3(x+2)的整数解为______.17. 小明原有63元,如图记录了他今天所有支出,其中饮料支出的金额被涂黑.若每瓶饮料的售价为5元,则小明可能剩下的钱数为______ 元. 支出金额(元) 早餐10 午餐15 晚餐20 饮料 ■18. “的3倍与2的差是非负数”用不等式表示为______ .19. 已知不等式组{x +1<2a x −b >1的解集是2<x <3,则关于x 的方程ax +b =0的解为______. 20. 若a >b ,则-2a ______ -2b .(用“<”号或“>”号填空)三、计算题21. 解不等式组 {3(x −2)+4<5x 1−x 4+x ≥2x −1.22. 解不等式x+12-(x -1)≤1,并把解集在数轴上表示出来.23. 解不等式组{1−3(x −1)<8−xx−32+3≥x+1.24. 解不等式组{8−2x ≤x −13x+1>−3+x .3 / 525. 是否存在整数k ,使方程组{2x +y =k x −y =1的解中,x 大于1,y 不大于1,若存在,求出k 的值,若不存在,说明理由.26. 已知关于x 、y 的二元一次方程组{x +y =3m +3x −y =m −5(1)求这个方程组的解;(用含有m 的代数式表示)(2)若这个方程组的解,x 的值是负数,y 的值是正数,求m 的整数值.27. 学校为了奖励初三优秀毕业生,计划购买一批平板电脑和一批学习机,经投标,购买1台平板电脑比购买3台学习机多600元,购买2台平板电脑和3台学习机共需8400元.(1)求购买1台平板电脑和1台学习机各需多少元?(2)学校根据实际情况,决定购买平板电脑和学习机共100台,要求购买的总费用不超过168000元,且购买学习机的台数不超过购买平板电脑台数的1.7倍.请问有哪几种购买方案?哪种方案最省钱?【答案】1. B2. C3. D4. A5. B6. C7. B8. C 9. A 10. D11. D 12. a <-113. -1,014. 115. 36≤a <4516. -1,0,117. 3、8或1318. 3x -2≥0 19. -1220. <21. 解:{3(x −2)+4<5x①1−x 4+x ≥2x −1②, 由①得:x >-1;由②得:x ≤1;∴不等式组的解集是-1<x ≤1.22. 解:去分母得:x +1-2(x -1)≤2,∴x +1-2x +2≤2,移项、合并同类项得:-x ≤-1,不等式的两边都除以-1得:x ≥1把不等式组的解集在数轴表示为:.23. 解:, ∵解不等式①得:x ≤1,解不等式②得:x >-2,∴不等式组的解集为-2<x ≤1.24. 解:,解不等式①得,x >-2;由不等式②得,x ≥3,故此不等式组的解集为;x ≥3.25. 解:解方程组{2x +y =k x −y =1得{x =k+13y =k−23 ∵x 大于1,y 不大于1从而得不等式组{k+13>1k−23≤1解之得2<k ≤5又∵k 为整数∴k 只能取3,4,5答:当k 为3,4,5时,方程组{2x +y =k x −y =1的解中,x 大于1,y 不大于1.5 / 5 26. 解:(1){x +y =3m +3①x −y =m −5②, ①+②得,2x =4m -2,解得x =2m -1,①-②得,2y =2m +8,解得y =m +4, 所以,方程组的解是{x =2m −1y =m +4;(2)据题意得:{2m −1<0m +4>0, 解之得:-4<m <12,所以,整数m 的值为-3、-2、-1、0.27. 解:(1)设购买1台平板电脑和1台学习机各需x 元,y 元,根据题意得:{x −3y =6002x +3y =8400, 解得:{x =3000y =800, 则购买1台平板电脑和1台学习机各需3000元,800元;(2)设购买平板电脑x 台,学习机(100-x )台,根据题意得:{100−x ≤1.7x 3000x +800(100−x)≤168000, 解得:37.03≤x ≤40,正整数x 的值为38,39,40,当x =38时,y =62;x =39时,y =61;x =40时,y =60,方案1:购买平板电脑38台,学习机62台,费用为114000+49600=163600(元); 方案2:购买平板电脑39台,学习机61台,费用为117000+48800=165800(元); 方案3:购买平板电脑40台,学习机60台,费用为120000+48000=168000(元), 则方案1最省钱.。

新人教版七年级数学下册第九章《不等式与不等式组》单元测试题(含答案解析)

新人教版七年级数学下册第九章《不等式与不等式组》单元测试题(含答案解析)

人教版七年级下册数学单元练习卷:第九章 不等式与不等式组一、填空题(本大题共10小题,每小题3分,共30分) 1.如果1<x <2,那么(x –1)(x –2)__________0.(填写“>”、“<”或“=”)2.写出一个解集为x <–1,且未知数的系数为2的一元一次不等式:__________. 3.当x __________时,式子–2(x –1)的值小于8.4.不等式组1023x x x -<⎧⎨+>⎩的解集是__________.5.不等式2x +5>4x –1的正整数解是__________.6.一件商品的进价是500元,标价为600元,打折销售后要保证获利不低于8%,则此商品最少打__________折.7.某商品的售价是528元,商家出售一件这样的商品可获利润是进价的10%~20%,设进价为x 元,则x 的取值范围是__________.8.已知关于x 的不等式组12634x x a -<⎧⎨+≤⎩只有两个整数解,则a 的取值范围__________.9.2x ≥的最小值是a ,6x ≤-的最大值是b ,则a +b =__________. 10.已知不等式组1x a x b ≥--⎧⎨-≥-⎩①②在同一条数轴上表示不等式①②的解集如图,则b –a的值为__________.二、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的) 11.不等式x +1>3的解集是 A .x >1B .x >–2C .x >2D .x <212.在数轴上表示不等式x –1≤0的解集,正确的是 A .B .C .D .13.x 与3的和的一半是负数,用不等式表示为A .12x +3>0 B .12x +3<0 C .12(x +3)<0D .12(x +3)>014.下列说法中,错误的是 A .x =1是不等式x <2的解B .–2是不等式2x –1<0的一个解C .不等式–3x >9的解集是x =–3D .不等式x <10的整数解有无数个 15.若–12a ≥b ,则a ≤–2b ,其根据是 A .不等式的两边加(或减)同一个数(或式子),不等号的方向不变 B .不等式的两边乘(或除以)同一个正数,不等号的方向不变 C .不等式的两边乘(或除以)同一个负数,不等号的方向改变 D .以上答案均不对16.下列不等式中,不含有1x =-这个解的是 A .213x +≤- B .213x -≥-C .213x -+≥D .213x --≤17.不等式组()1132230x x x ⎧+≥-⎪⎨⎪-->⎩的最大整数解为A .8B .6C .5D .418.关于x 的不等式组()3141x x x m⎧->-⎨<⎩的解集为x <3,那么m 的取值范围为A .m =3B .m >3C .m <3D .m ≥319.一次智力测验,有20道选择题.评分标准是:对1题给5分,错1题扣2分,不答题不给分也不扣分.小明有两道题未答.至少答对几道题,总分才不会低于60分?则小明至少答对的题数是 A .11道 B .12道C .13道D .14道20.阅读理解:我们把a b c d 称作二阶行列式,规定它的运算法则为a cad bc b d=-,例如1324=1423=2⨯-⨯-,如果231xx-0>,则x 的取值范围是A .x >1B .x <–1C .x >3D .x <–3三、解答题(本大题共8小题,共60分.解答应写出文字说明、证明过程或演算步骤) 21.解不等式()2263x x -≤-,并写出它的正整数解.22.解不等式组26623212x x x x -<-⎧⎪⎨++>⎪⎩,并写出它的整数解.23.已知关于x 的不等式x a <7的解也是不等式2752x a a->–1的解,求a 的取值范围.24.解不等式组:()262311x x x x ⎧-≤⎪>-⎨⎪-<+⎩①②③.请结合题意,完成本题的解答.(1)解不等式①,得__________,依据是:__________. (2)解不等式③,得__________.(3)把不等式①,②和③的解集在数轴上表示出来.(4)从图中可以找出三个不等式解集的公共部分,得不等式组的解集.25.根据等式和不等式的基本性质,我们可以得到比较两数大小的方法:(1)若a –b >0,则a __________b ; (2)若a –b =0,则a __________b ; (3)若a –b <0,则a __________b .这种比较大小的方法称为“求差法比较大小”. 请运用这种方法尝试解决下面的问题:比较4+3a 2–2b +b 2与3a 2–2b +1的大小.26.分子、分母都是整式,并且分母中含有未知数的不等式叫做分式不等式.小亮在解分式不等式253xx+->0时,是这样思考的:根据“两数相除,同号得正,异号得负”,原分式不等式可转化为下面两个不等式组:①25030xx+>⎧⎨->⎩或②25030xx+<⎧⎨-<⎩,解不等式组①,得x>3,解不等式组②,得x<–5 2 .所以原分式不等式的解集为x>3或x<–5 2 .请你参考小亮思考问题的方法,解分式不等式342xx--<0.27.如果一元一次方程的根是一元一次不等式组的解,则称该一元一次方程为该不等式组的关联方程.(1)在方程①3x–1=0,②2103x+=,③x–(3x+1)=–5中,不等式组25312x xx x-+>-⎧⎨->-+⎩的关联方程是________;(2)若不等式组112132xx x⎧-<⎪⎨⎪+>-+⎩的一个关联方程的根是整数,则这个关联方程可以是________(写出一个即可);(3)若方程3–x=2x,3+x=122x⎛⎫+⎪⎝⎭都是关于x的不等式组22x x mx m<-⎧⎨-≤⎩的关联方程,直接写出m的取值范围.28.为降低空气污染,启东飞鹤公交公司决定全部更换节能环保的燃气公交车.计划购买A 型和B型两种公交车共10辆,其中每台的价格,年载客量如表:若购买A型公交车1辆,B型公交车2辆,共需400万元;若购买A型公交车2辆,B 型公交车1辆,共需350万元.(1)求a,b的值;(2)如果该公司购买A型和B型公交车的总费用不超过1200万元,且确保这10辆公交车在该线路的年均载客量总和不少于680万人次.请你设计一个方案,使得购车总费用最少.参考答案1.【答案】<2.【答案】2x <–2(答案不唯一) 3.【答案】>–3 4.【答案】31x -<< 5.【答案】1,2 6.【答案】9 7.【答案】440≤x ≤480 8.【答案】4<a ≤7 9.【答案】–4 10.【答案】1311.【答案】C 12.【答案】D 13.【答案】C 14.【答案】C 15.【答案】C 16.【答案】A 17.【答案】C 18.【答案】D 19.【答案】D 20.【答案】A21.【解析】去括号得:2x –4≤6–3x ,移项得:2x +3x ≤6+4, 整理解得:x ≤2, 正整数解为1,2.22.【解析】由不等式2x –6<6–2x 得:x <3.由不等式2x +1>32x +得:13x >. ∴不等式组的解集为133x <<.又x 为整数,∴x =1,2.∴原不等式组的整数解为1,2.23.【解析】解不等式27152x a a-->人教版七年级数学下册第九章不等式与不等式组单元测试题一、 选择题。

不等式与不等式组单元测试卷精选全文完整版

不等式与不等式组单元测试卷精选全文完整版

可编辑修改精选全文完整版不等式与不等式组单元测试卷班级 __________ 座号___________ 姓名 成绩____________一、选择题(每小题4分,共24分)1.下列各式中,是一元一次不等式的是( )A、5+4>8 B、12-x C、x 2≤5 D、x x31-≥0 2.不等式4(x -2)>2(3x -6)的非负整数解的个数为( )A .0个B .1个C .2个D .3个3.若不等式组的解集为-1≤x ≤3,则图中表示正确的是( )A .B .C .D .4.已知a <b ,则下列不等式中不正确的是( ).A.4a <4b B.a +4<b +4 C.-4a <-4b D.a -4<b -45.不等式()123x m m ->-的解集为2x >,则m 的值为( ) A .4 B .2 C .32 D .126.不等式组123x x -≤⎧⎨-<⎩的解集是( ) A .x ≥-1 B .x <5 C .-1≤x <5 D .x ≤-1或x <5二、填空题(每小题4分,共16分)7.已知x 的12与4的差不小于3,用不等式表示这一关系式为 。

8.已知x >3,化简x -|3-x |=______.9.当x 时,式子3x -4的值大于5x + 3的值。

10.某次数学测验中共有18道题目,评分办法:答对一道得5分,答错或不答一道扣2分,那么这个同学至少要答对______道题,成绩才能在60分以上.三、解不等式(组)(每小题8分,共32分)11、11237x x --≤ 12、1)1(22≥---x x13、⎩⎨⎧-≤-->x x x 2813214、513(1)131722x x x x ->+⎧⎪⎨-≤-⎪⎩四、想一想(8分)15.已知方程组32121x y mx y m+=+⎧⎨+=-⎩,m为何值时,x>y?五、实际应用(每小题10分,共20分)15.小颖家每月水费都不少于15元,自来水公司的收费标准如下:若每户每月用水不超过5立方米,则每立方米收费1. 8元;若每户每月用水超过5立方米,则超出部分每立方米收费2元,小颖家每月用水量至少是多少?16.某工厂现有甲种原料360kg,乙种原料290kg,计划利用这两种原料生产A,B 两种产品共50件,已知生产一件A产品需要甲原料9kg,乙原料3kg,生产一件B 产品需要甲原料4kg,乙原料10kg.(1)设生产x件A种产品,写出x应满足的不等式组。

七年级下册《第9章不等式与不等式组》单元测试题(含答案解析)

七年级下册《第9章不等式与不等式组》单元测试题(含答案解析)

秋人教版七年级下《第9章不等式与不等式组》单元测试题一.选择题(共10小题)1.数a、b在数轴上的位置如图所示,则下列不等式成立的是()A.a>b B.ab>0C.a+b>0D.a+b<02.已知x>2,则下列变形正确的是()A.﹣x<2B.若y>2,则x﹣y>0C.﹣x+2<1D.若y>2,则3.如果不等式组有解,那么m的取值范围是()A.m>5B.m≥5C.m<5D.m≤84.一元一次不等式组的解集在数轴上表示正确的是()A.B.C.D.5.已知(m+4)x|m|﹣3+6>0是关于x的一元一次不等式,则m的值为()A.4B.±4C.3D.±36.下列各式不是一元一次不等式组的是()A.B.C.D.7.用不等式表示“a的一半不小于﹣7”,正确的是()A.a≥﹣7B.a≤﹣7C.a>﹣7D.8.不等式x﹣1<2的正整数解有()A.1个B.2个C.3个D.4个9.小红准备用50元钱买甲、乙两种饮料共10瓶,已知甲饮料每瓶7元,乙饮料每瓶4元,则小红最多能买甲种饮料的瓶数是()A.4B.3C.2D.110.已知点M(1﹣a,3a﹣9)在第三象限,且它的坐标都是整数,则a的值是()A.0B.1C.2D.3二.填空题(共8小题)11.已知x≥2的最小值是a,x≤﹣6的最大值是b,则a+b=.12.若a<b,则﹣5a﹣5b(填“>”“<”或“=”).13.若不等式(a﹣3)x>1的解集为x<,则a的取值范围是.14.如图,小雨把不等式3x+1>2(x﹣1)的解集表示在数轴上,则阴影部分盖住的数字是.15.请写出一个一元一次不等式.16.不等式x+3<2的解集是.17.不等式组的解集为.18.为有效开展“阳光体育”活动,某校计划购买篮球和足球共50个,购买资金不超过3000元.若每个篮球80元,每个足球50元,则篮球最多可购买个.三.解答题(共7小题)19.利用数轴确定不等式组的解集.20.根据下列语句列不等式并求出解集:x与4的和不小于6与x的差.21.列式计算:求使的值不小于的值的非负整数x.22.阅读下面的材料:小明在学习了不等式的知识后,发现如下正确结论:若A﹣B>0,则A>B;若A﹣B=0,则A=B;若A﹣B<0,则A<B.下面是小明利用这个结论解决问题的过程:试比较与2的大小.解:∵=﹣2+=2>0,∴2.回答下面的问题:(1)请完成小明的解题过程;(2)试比较2(x2﹣3xy+4y2)﹣3与3x2﹣6xy+8y2﹣2的大小(写出相应的解答过程).23.我们知道不等式的两边加(或减)同一个数(或式子),不等号的方向不变.不等式组是否也具有类似的性质呢?请解答下列问题.(1)完成下列填空:已知用“<”或“>”填空5+23+1﹣3﹣1﹣5﹣21﹣24+1(2)一般地,如果那么a+c b+d(用“<”或“>”填空).请你说明上述性质的正确性.24.定义新运算:对于任意有理数a,b,都有a*b=b(a﹣b)﹣b,等式右边是通常的加法、减法及乘法运算,例如:2*5=5×(2﹣5)﹣5=﹣20.(1)求2*(﹣5)的值;(2)若x*(﹣2)的值大于﹣6且小于9,求x的取值范围,并在如图所示的所画的数轴上表示出来.25.已知:关于x、y的方程组的解为非负数.(1)求a的取值范围;(2)化简|2a+4|﹣|a﹣1|;(3)在a的取值范围内,a为何整数时,使得2ax+3x<2a+3解集为x>1.秋人教版七年级下册《第9章不等式与不等式组》单元测试题参考答案与试题解析一.选择题(共10小题)1.数a、b在数轴上的位置如图所示,则下列不等式成立的是()A.a>b B.ab>0C.a+b>0D.a+b<0【分析】本题利用数与数轴的关系及数形结合解答.【解答】解:如图可知,A、a<0,b>0,∴b>a,错误;B、a<0,b>0,∴ab<0,错误;C、a<﹣1,0<b<1,∴a+b<0,错误;D、正确.故选:D.【点评】本题主要是利用数形结合的思想,用排除法选项.2.已知x>2,则下列变形正确的是()A.﹣x<2B.若y>2,则x﹣y>0C.﹣x+2<1D.若y>2,则【分析】根据不等式的性质,可得答案.【解答】解:A、两边乘以不同的数,故A不符合题意;B、x,y无法比较,故B不符合题意;C、两边都除以﹣2,不等号的方向改变,故C符合题意;D、x,y无法比较,故D不符合题意;故选:C.【点评】主要考查了不等式的基本性质.“0”是很特殊的一个数,因此,解答不等式的问题时,应密切关注“0”存在与否,以防掉进“0”的陷阱.不等式的基本性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变.3.如果不等式组有解,那么m的取值范围是()A.m>5B.m≥5C.m<5D.m≤8【分析】依据小大大小中间找,可确定出m的取值范围.【解答】解:∵不等式组有解,∴m<5.故选:C.【点评】本题主要考查的是不等式的解集,依据口诀列出不等式是解题的关键.4.一元一次不等式组的解集在数轴上表示正确的是()A.B.C.D.【分析】先求出不等式组的解集,然后根据“大于向右,小于向左,包括端点用实心,不包括端点用空心”的原则将不等式组的解集在数轴上表示出来,再进行比较可得到答案.【解答】解:第一个不等式的解集为:x>﹣3;第二个不等式的解集为:x≤2;所以不等式组的解集为:﹣3<x≤2.在数轴上表示不等式组的解集为:.故选:C.【点评】把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.5.已知(m+4)x|m|﹣3+6>0是关于x的一元一次不等式,则m的值为()A.4B.±4C.3D.±3【分析】根据一元一次不等式的定义,|m|﹣3=1,m+4≠0,分别进行求解即可.【解答】解:根据题意|m|﹣3=1,m+4≠0解得|m|=4,m≠﹣4所以m=4.故选:A.【点评】本题考查一元一次不等式的定义中的未知数的最高次数为1次,本题还要注意未知数的系数不能是0.6.下列各式不是一元一次不等式组的是()A.B.C.D.【分析】根据一元一次不等式组的定义进行解答.【解答】解:A、该不等式组符合一元一次不等式组的定义,故本选项错误;B、该不等式组符合一元一次不等式组的定义,故本选项错误;C、该不等式组中含有2给未知数,不是一元一次不等式组,故本选项正确;D、该不等式组符合一元一次不等式组的定义,故本选项错误;故选:C.【点评】本题考查了一元一次不等式组的定义,每个不等式中含有同一个未知数且未知数的次数是1的不等式组是一元一次不等式组.7.用不等式表示“a的一半不小于﹣7”,正确的是()A.a≥﹣7B.a≤﹣7C.a>﹣7D.【分析】抓住题干中的“不小于﹣7”,是指“大于”或“等于﹣7”,由此即可解决问题.【解答】解:根据题干“a的一半”可以列式为:a;“不小于﹣7”是指“大于等于﹣7”;那么用不等号连接起来是:a≥﹣7.故选:A.【点评】此题考查了由实际问题抽象一元一次不等式的知识,属于基础题,理解“不小于”的含义是解答本题的关键.8.不等式x﹣1<2的正整数解有()A.1个B.2个C.3个D.4个【分析】根据解一元一次不等式基本步骤:移项、合并同类项可得不等式的解集,继而可得其正整数解.【解答】解:移项,得:x<2+1,合并同类项,得:x<3,所以不等式的正整数解为1、2,故选:B.【点评】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.9.小红准备用50元钱买甲、乙两种饮料共10瓶,已知甲饮料每瓶7元,乙饮料每瓶4元,则小红最多能买甲种饮料的瓶数是()A.4B.3C.2D.1【分析】首先设小红能买甲种饮料的瓶数是x瓶,则可以买乙饮料(10﹣x)瓶,由题意可得不等关系:甲饮料的花费+乙饮料的花费≤50元,根据不等关系可列出不等式,再求出整数解即可.【解答】解:设小红能买甲种饮料的瓶数是x瓶,则可以买乙饮料(10﹣x)瓶,由题意得:7x+4(10﹣x)≤50,解得:x≤,∵x为整数,∴x=0,1,2,3,则小红最多能买甲种饮料的瓶数是3瓶.故选:B.【点评】此题主要考查了一元一次不等式的应用,关键是弄清题意,找出合适的不等关系,设出未知数,列出不等式.10.已知点M(1﹣a,3a﹣9)在第三象限,且它的坐标都是整数,则a的值是()A.0B.1C.2D.3【分析】在第三象限内,那么横坐标小于0,纵坐标小于0.而后求出整数解即可.【解答】解:∵点M在第三象限.∴,解得1<a<3,因为点M的坐标为整数,所以a=2.故选:C.【点评】主要考查了平面直角坐标系中第三象限的点的坐标的符号特点.四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).二.填空题(共8小题)11.已知x≥2的最小值是a,x≤﹣6的最大值是b,则a+b=﹣4.【分析】解答此题要理解“≥”“≤”的意义,判断出a和b的最值即可解答.【解答】解:因为x≥2的最小值是a,a=2;x≤﹣6的最大值是b,则b=﹣6;则a+b=2﹣6=﹣4,所以a+b=﹣4.故答案为:﹣4.【点评】解答此题要明确,x≥2时,x可以等于2;x≤﹣6时,x可以等于﹣6.12.若a<b,则﹣5a>﹣5b(填“>”“<”或“=”).【分析】根据不等式的性质,在不等式的两边同时乘以一个负数,不等号的方向改变,即可得出答案.【解答】解:∵a<b,∴﹣5a>﹣5b;故答案为:>.【点评】此题考查了不等式的性质,掌握不等式的基本性质是本题的关键,不等式的基本性质是:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.13.若不等式(a﹣3)x>1的解集为x<,则a的取值范围是a<3.【分析】根据不等式的性质可得a﹣3<0,由此求出a的取值范围.【解答】解:∵(a﹣3)x>1的解集为x<,∴不等式两边同时除以(a﹣3)时不等号的方向改变,∴a﹣3<0,∴a<3.故答案为:a<3.【点评】本题考查了不等式的性质:在不等式的两边同时乘以或除以同一个负数不等号的方向改变.本题解不等号时方向改变,所以a﹣3小于0.14.如图,小雨把不等式3x+1>2(x﹣1)的解集表示在数轴上,则阴影部分盖住的数字是﹣3.【分析】根据去括号、移项、合并同类项,可得不等式的解集,根据不等式解集的表示方法,可得答案.【解答】解:去括号,得3x+1>2x﹣2,移项、合并同类项,得x>﹣3,故答案为:﹣3.【点评】本题考查了在数轴上表示不等式的解集,不等式的解集在数轴上表示出来>或≥,向右画;<或≤,向左画,注意在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.15.请写出一个一元一次不等式x﹣1>0(答案不唯一).【分析】根据一元一次不等式的定义,只要含有一个未知数,并且未知数的次数是1的不等式就可以.【解答】解:一元一次不等式有:x﹣1>0.故答案为:x﹣1>0(答案不唯一).【点评】本题考查不等式的定义;写出的不等式只需符合条件,越简单越好.16.不等式x+3<2的解集是x<﹣1.【分析】不等式经过移项即可得到答案.【解答】解:x+3<2,移项得:x<﹣1,即不等式的解集为:x<﹣1,故答案为:x<﹣1.【点评】本题考查解一元一次不等式,熟悉解一元一次不等式的步骤是解题的关键.17.不等式组的解集为6<x<9.【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.【解答】解:解不等式8x>48,得:x>6,解不等式2(x+8)<34,得:x<9,则不等式组的解集为6<x<9,故答案为:6<x<9.【点评】本题考查了不等式组的解法,求不等式组中每个不等式的解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.18.为有效开展“阳光体育”活动,某校计划购买篮球和足球共50个,购买资金不超过3000元.若每个篮球80元,每个足球50元,则篮球最多可购买16个.【分析】设购买篮球x个,则购买足球(50﹣x)个,根据总价=单价×购买数量结合购买资金不超过3000元,即可得出关于x的一元一次不等式,解之取其中的最大整数即可.【解答】解:设购买篮球x个,则购买足球(50﹣x)个,根据题意得:80x+50(50﹣x)≤3000,解得:x≤.∵x为整数,∴x最大值为16.故答案为:16.【点评】本题考查了一元一次不等式的应用,根据各数量间的关系,正确列出一元一次不等式是解题的关键.三.解答题(共7小题)19.利用数轴确定不等式组的解集.【分析】先分别求出各不等式的解集,在数轴上表示出来,即可得出不等式组的解集.【解答】解:由①得x≥﹣2由②得x<1在数轴上表示不等式①、②的解集所以,不等式组的解集是﹣2≤x<1【点评】本题考查了解一元一次不等式组:先分别解几个不等式,然后把它们的解集的公共部分作为原不等式的解集;按照“同大取大,同小取小,大于小的小于大的取中间,大于小的小于大的为空集”.也考查了利用数轴表示不等式的解集.20.根据下列语句列不等式并求出解集:x与4的和不小于6与x的差.【分析】与4的和不小于6与x的差.可表示为x+4≥6﹣x,由此可得出不等式,然后求解即可.【解答】解:根据题意可得:x+4≥6﹣x,解得:x≥1.【点评】本题考查了由实际问题抽象一元一次不等式的知识及解一元一次不等式的知识,属于基础题,注意掌握解不等式的法则.21.列式计算:求使的值不小于的值的非负整数x.【分析】根据题意列出不等式后,依据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1求得其解集,继而可得答案.【解答】解:≥,3(x+1)+4≥2(3x﹣1),3x+3+4≥6x﹣2,3x﹣6x≥﹣2﹣3﹣4,﹣3x≥﹣9,x≤3,则符合条件的非负整数有0、1、2、3.【点评】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变22.阅读下面的材料:小明在学习了不等式的知识后,发现如下正确结论:若A﹣B>0,则A>B;若A﹣B=0,则A=B;若A﹣B<0,则A<B.下面是小明利用这个结论解决问题的过程:试比较与2的大小.解:∵=﹣2+=2>0,∴>2.回答下面的问题:(1)请完成小明的解题过程;(2)试比较2(x2﹣3xy+4y2)﹣3与3x2﹣6xy+8y2﹣2的大小(写出相应的解答过程).【分析】(1)根据示例可知,一个式子减去另一个式子,如果结果大于0,则前面的式子大于后边的式子,故>2,(2)用2(x2﹣3xy+4y2)﹣3减去3x2﹣6xy+8y2﹣2,将得到的式子化简,发现总<0,则2(x2﹣3xy+4y2)﹣3<3x2﹣6xy+8y2﹣2.【解答】解:(1)根据题意可知:若A﹣B>0,则A>B,∵﹣(2﹣)>0,∴>2答案为:>,(2)2(x2﹣3xy+4y2)﹣3﹣(3x2﹣6xy+8y2﹣2)=2x2﹣6xy+8y2﹣3﹣3x2+6xy﹣8y2+2=﹣x2﹣1.∵﹣x2﹣1<0,∴2(x2﹣3xy+4y2)﹣3﹣(3x2﹣6xy+8y2﹣2)<0.∴2(x2﹣3xy+4y2)﹣3<3x2﹣6xy+8y2﹣2.【点评】本题考查不等式的性质和实数的大小比较,掌握比较实数大小的方法是解决本题的关键.23.我们知道不等式的两边加(或减)同一个数(或式子),不等号的方向不变.不等式组是否也具有类似的性质呢?请解答下列问题.(1)完成下列填空:已知用“<”或“>”填空5+2>3+1﹣3﹣1>﹣5﹣21﹣2<4+1(2)一般地,如果那么a+c>b+d(用“<”或“>”填空).请你说明上述性质的正确性.【分析】(1)根据不等式的性质即可判断;(2)利用(1)中规律即可判断,根据不等式的性质即可证明;【解答】解:(1)5+2>3+1,﹣3﹣1>﹣5﹣2,1﹣2<4+1;故答案为>,>,<;(2)结论:a+c>b+d.理由:因为a>b,所以a+c>b+c,因为c>d,所以b+c>b+d,所以a+c>b+d.故答案为>.【点评】本题考查不等式的性质、解题的关键是熟练掌握不等式的性质解决问题,属于中考常考题型.24.定义新运算:对于任意有理数a,b,都有a*b=b(a﹣b)﹣b,等式右边是通常的加法、减法及乘法运算,例如:2*5=5×(2﹣5)﹣5=﹣20.(1)求2*(﹣5)的值;(2)若x*(﹣2)的值大于﹣6且小于9,求x的取值范围,并在如图所示的所画的数轴上表示出来.【分析】(1)根据新定义列式计算可得;(2)根据新定义得出x*(﹣2)=﹣2x﹣2,由“x*(﹣2)的值大于﹣6且小于9”列出关于x的不等式组,解之可得.【解答】解:(1)2*(﹣5)=﹣5×[2﹣(﹣5)]﹣(﹣5)=﹣5×(2+5)+5=﹣35+5=﹣30;(2)x*(﹣2)=﹣2×(x+2)+2=﹣2x﹣4+2=﹣2x﹣2,由题意可得,解得:﹣5.5<x<2,不等式组的解集在数轴上表示为:【点评】本题考查了一元一次不等式组的解法,正确理解运算的定义是关键.25.已知:关于x、y的方程组的解为非负数.(1)求a的取值范围;(2)化简|2a+4|﹣|a﹣1|;(3)在a的取值范围内,a为何整数时,使得2ax+3x<2a+3解集为x>1.【分析】(1)先解方程组,根据解为非负数,得出a的取值范围;(2)根据a的取值范围化简|2a+4|﹣|a﹣1|即可;(3)根据2ax+3x<2a+3解集为x>1,得出a的值即可.【解答】解:(1)由得,,∵方程组的解为非负数,∴,得﹣2≤a≤﹣1;(2)∵﹣2≤a≤﹣1,∴|2a+4|﹣|a﹣1|=2a+4﹣(1﹣a)=2a+4﹣1+a=3a+3;(3)∵2ax+3x<2a+3解集为x>1,∴2a+3<0,∵﹣2≤a≤﹣1,∴若a为整数,则a=﹣2,即在a的取值范围内,a=﹣2时,使得2ax+3x<2a+3解集为x>1.【点评】本题考查一元一次不等式的整数解、绝对值、解二元一次方程组,解答本题的关键是明确它们各自的解答方法.。

新人教版七年级数学下册第九章《不等式与不等式组》单元测试(解析版)(1)

新人教版七年级数学下册第九章《不等式与不等式组》单元测试(解析版)(1)

人教版七年级数学下册第九章不等式与不等式组复习试题七年级数学下册第九章不等式与不等式组复习试题(含答案)一、选择题1.下列选项中是一元一次不等式组的是( )A.B.-C.D.2.下列说法中,错误的是( )A.不等式x<2的正整数解有一个B.-2是不等式2x-1<0的一个解C.不等式-3x>9的解集是x>-3D.不等式x<10的整数解有无数个3.下列说法不一定成立的是( )A.若a>b,则a+c>b+cB.若a+c>b+c,则a>bC.若a>b,则ac2>bc2D.若ac2>bc2,则a>b4.如图,数轴上所表示关于x的不等式组的解集是( )A.x≥2B.x>2C.x>-1D.-1<x≤25.不等式组-的解集表示在数轴上正确的是( )6.不等式6-4x≥3x-8的非负整数解有( )A.2个B.3个C.4个D.5个7.对于实数x,我们规定:[x]表示不小于x的最小整数,例如:[1.4]=2,[4]=4,[-3.2]=-3,若=6,则x的取值可以是( )A.41B.47C.50D.588.张老师带领全班学生到植物园参观,门票每张10元,购票时才发现所带的钱不够,售票员告诉他:如果参观人数50人以上( 含50人)可以按团体票八折优惠,于是张老师购买了50张票,结果发现所带的钱还有剩余.那么张老师和他的学生至少有( )A.40人B.41人C.42人D.43人9.已知4<m<5,则关于x的不等式组--的整数解共有( )A.1个B.2个C.3个D.4个10把一些图书分给几名同学,如果每人分3本,那么余8本;如果前面的每名同学分5本,那么最后一人就分不到3本.这些图书有( )A.23本B.24本C.25本D.26本二、填空题)1.“x的4倍与2的和是负数”用不等式表示为.2.若23x m-1-2>19是关于x的一元一次不等式,则m=.3.不等式4+3x≥x-1的所有负整数解的和为.4.若不等式--无解,则实数a的取值范围是.5.三张卡片A,B,C上分别写有三个式子2x-1,,-3( x-2 ),其中A卡片上式子的值不超过B 卡片上式子的值,但不小于C卡片上式子的值,则x的取值范围是.6.定义新运算:对于任意实数a,b都有a b=3a-b+1,其中等式右边是通常的加法、减法及乘法运算,如:25=3×2-5+1=2,若不等式x m<5的解集表示在数轴上,如图所示,则m的值为.三、解答题1.解不等式3( x-1 )≤,并把它的解集在数轴上表示出来.2.已知:不等式-≤2+x,( 1 )解该不等式,并把它的解集表示在数轴上;( 2 )若实数a满足a>2,说明a是否是该不等式的解.3.解不等式组--并写出该不等式组的最大整数解.4.)已知不等式--1<6的负整数解是方程2x-3=ax的解,试求出不等式组--的解集.5.若不等式组--的解集为-2<x<3,求a+b的值.6.已知二元一次方程组--其中x<0,y>0,求a的取值范围,并把解集在数轴上表示出来.7.某校计划组织师生共300人参加一次大型公益活动,如果租用6辆大客车和5辆小客车恰好全部坐满.已知每辆大客车的乘客座位数比小客车多17个.( 1 )求每辆大客车和每辆小客车的乘客座位数;( 2 )由于最后参加活动的人数增加了30人,学校决定调整租车方案,在保持租用车辆总数不变的情况下,为将所有参加活动的师生装载完成,求租用小客车数量的最大值.8.某公司为奖励在趣味运动会上取得好成绩的员工,计划购买甲、乙两种奖品共20件.其中甲种奖品每件40元,乙种奖品每件30元.( 1 )如果购买甲、乙两种奖品共花费了650元,求甲、乙两种奖品各购买了多少件?( 2 )如果购买乙种奖品的件数不超过甲种奖品件数的2倍,总花费不超过680元,求该公司有哪几种不同的购买方案?参考答案:一、选择题DCCAC BCBBD二、填空题1. 4x+2<0.22.3. -3.4. a≤-1.5.≤x≤6.16. 2.三、解答题( 共66分)1由题意得6( x-1 )≤x+4,6x-6≤x+4,6x-x≤4+6,5x≤10,x≤2,将解集表示在数轴上如下:2.( 1 )2-x≤3( 2+x),2-x≤6+3x,-4x≤4,x≥-1,解集表示在数轴上如下:( 2 )∵a>2,不等式的解集为x≥-1,而2>-1,∴a是不等式的解.3.解( x-1 )≤1,得x≤3,解1-x<2,得x>-1,则不等式组的解集是-1<x≤3.∴该不等式组的最大整数解为3.4∵--1<6,4-5x-2<12,-5x<10,x>-2,∴不等式的负整数解是-1,把x=-1代入2x-3=ax,得-2-3=-a,解得a=5,把a=5代入不等式组,得--解不等式组,得<x<15.5.由--得∴-解得-∴a+b=-1.6.解方程组,得-由题意,得-解得-4<a<.∴解集在数轴上表示为:7. 1 )设每辆小客车的乘客座位数是x个,大客车的乘客座位数是y个,根据题意,得-解得答:每辆小客车的乘客座位数是18个,大客车的乘客座位数是35个.( 2 )设租用a 辆小客车人教版七年级下册 第九章 不等式与不等式组单元卷福州屏东中学2018-2019学年第二学期数学校本练习(3)班级: 姓名: 座号: 成绩:一、选择题(本题共6小题,每小题4分,共24分)1.下列不等式中,是一元一次不等式是( )A.x 2-1<0B.x -y ≠0C.x ≥1D.043≤-x2.若m <n ,则下列不等式中正确的是( )A.m -1>n -1B.-2m <-2nC.6m <6nD.44nm >3.关于x 的不等式的解集在数轴上表示如图所示,该不等式的解集是( )A.x ≤2B.x <2C.x ≥2D.x >2 4.如果关于x 的不等式(m -1)x <m -1的解集为x >1,那么m 的取值范围是( ) A.m >-1 B.m >1 C.m <-1 D.m <15.小诚家距离学校2700米,他步行的平均速度为75米/分,跑步的平均速度为180米/分,若他从家到达学校的时间不超过12分钟,则至少需要跑步多少分钟?设小诚需要跑步x 分钟,则可列关于x 的不等式为( ) A.2700180)12(75≤+-x x B.2700180)12(75≥+-x x C.12180752700≤-+x x D.12751802700≥-+xx6.若关于x 的不等式组⎩⎨⎧≥-<-04)1(2a x x 无解,则a 的取值范围为( )A.a ≤3B.a ≥3C.a <3D.a >3二、填空题(本题共6小题,每小题4分,共24分)7. 5与x 的2倍的差是非负数,用不等式表示为 。

不等式与不等式组全章测试题含答案

不等式与不等式组全章测试题含答案

第九章 不等式与不等式组 全章测试题一、选择题1.下列变形错误的是( ) A .若a -c >b -c ,则a >bB .若12a <12b ,则a <bC .若-a -c >-b -c ,则a >bD .若-12a <-12b ,则a >b2.不等式x 2-x -13≤1的解集是( ) A .x≤4 B .x≥4 C .x≤-1 D .x≥-13.将不等式组⎩⎪⎨⎪⎧12x -1≤7-32x ,5x -2>3(x +1)的解集表示在数轴上,正确的是( )4.若关于x 的方程3(x +k)=x +6的解是非负数,则k 的取值范围是( ) A .k≥2 B .k >2 C .k≤2 D .k <25.若关于x 的一元一次不等式组⎩⎨⎧x -1<0,x -a >0无解,则a 的取值范围是( )A .a≥1B .a >1C .a≤-1D .a <-16.若不等式组⎩⎨⎧x -b <0,x +a >0的解集为2<x <3,则a ,b 的值分别为( )A .-2,3B .2,-3C .3,-2D .-3,27.三个连续正整数的和小于39,这样的正整数中,最大一组的和是( ) A .39 B .36 C .35 D .348.某天然气公司在一些居民小区安装天然气管道时,采用一种鼓励居民使用天然气的收费办法,若整个小区每户都安装,收整体初装费10000元,再对每户收费500元.某小区住户按这种收费方法全部安装天然气后,每户平均支付不足1000元,则这个小区的住户数( ) A .至少20户 B .至多20户 C .至少21户 D .至多21户9.某种出租车的收费标准是:起步价7元(即行驶距离不超过3千米都收7元车费),超过3千米以后,超过部分每增加1千米,加收2.4元(不足1千米按1千米计).某人乘这种出租车从甲地到乙地共支付19元,设此人从甲地到乙地经过的路程是x 千米,那么x 的取值范围是( )A .1<x≤11B .7<x≤8C .8<x≤9D .7<x <8 二、填空题10.已知x 2是非负数,用不等式表示____;已知x 的5倍与3的差大于10,且不大于20,用不等式组表示____________.11.若|x +1|=1+x 成立,则x 的取值范围是__________.12.若关于x ,y 的二元一次方程组⎩⎨⎧3x -2y =m +2,2x +y =m -5中x 的值为正数,y 的值为负数,则m的取值范围为____________.13.在平面直角坐标系中,已知点A(7-2m ,5-m)在第二象限内,且m 为整数,则点A 的坐标为_________.14.一种药品的说明书上写着:“每日用量60~120 mg ,分4次服用”,则一次服用这种药品的用量x(mg)的范围是____________.15.按下列程序(如图),进行运算规定:程序运行到“判断结果是否大于244”为一次运算.若x =5,则运算进行______次才停止;若运算进行了5次才停止,则x 的取值范围是__________.16.为了加强学生的交通安全意识,某中学和交警大队联合举行了“我当一日小交警”活动,星期天选派部分学生到交通路口值勤,协助交通警察维护交通秩序.若每一个路口安排4人,那么还剩下78人;若每一个路口安排8人,那么最后一个路口不足8人,但不少于4人.则这个中学共选派值勤学生_______人,共有______个交通路口安排值勤. 三、解答题17.解下列不等式(组),并把解集在数轴上表示出来: (1)5x -13-x >1;(2)x2-1≤7-x 3;(3)⎩⎨⎧4x +6>1-x ,3(x -1)≤x +5; (4)⎩⎨⎧2x +5≤3(x +2),1-2x 3+15>0.18.解不等式组⎩⎨⎧2x +3>3x ,x +33-x -16≥12,并求出它的整数解的和.19.阅读理解:解不等式(x +1)(x -3)>0.解:根据两数相乘,同号得正,原不等式可以转化为⎩⎨⎧x +1>0,x -3>0或⎩⎨⎧x +1<0,x -3<0.解不等式组⎩⎨⎧x +1>0,x -3>0得x >3;解不等式组⎩⎨⎧x +1<0,x -3<0得x <-1.所以原不等式的解集为x >3或x <-1.问题解决:根据以上材料,解不等式(x -2)(x +3)<0.20.某商场进了一批价值8万元的衣服,每件零售价为180元时,卖出了250件,但发现销售量不大,营业部决定每件降价40元,那么商场至少要再卖出多少件后才能收回成本?21.某小区前面有一块空地,现想建成一块面积大于48平方米,周长小于34米的长方形绿化草地,已知一边长为8米,设其邻边长为x 米,求x 的整数值.22. 为加强中小学生安全和禁毒教育,某校组织了“防溺水、交通安全、禁毒”知识竞赛,为奖励在竞赛中表现优异的班级,学校准备从体育用品商场一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),购买1个足球和1个篮球共需159元;足球单价是篮球单价的2倍少9元.(1)求足球和篮球的单价各是多少元?(2)根据学校实际情况,需一次性购买足球和篮球共20个,但要求购买足球和篮球的总费用不超过1550元,则学校最多可以购买多少个足球?23.某地区为筹备一项庆典,利用现有的3490盆甲种花卉和2950盆乙种花卉搭配A ,B 两种园艺造型共50个摆放在迎宾大道两侧,已知搭配一个A 种造型需甲种花卉80盆,乙种花卉40盆;搭配一个B 种造型需甲种花卉50盆,乙种花卉90盆,且搭配一个A 种造型的成本是200元,搭配一个B 种造型的成本是300元,则有多少种搭配方案?这些方案中成本最低的是多少元?答案:1---9 CAACA ABCB 10. x 2≥0 ⎩⎨⎧5x -3>105x -3≤2011. x≥-112. 83<m <1913. (-1,1) 14. 15≤x ≤3015. 4 2<x ≤4 16. 158 2017. (1) 解:x >2,数轴略 (2) 解:x ≤4,数轴略(3) 解:-1<x ≤4,数轴略(4) 解:-1≤x <45,数轴略18. 解:不等式组的解集为-4≤x <3∴这个不等式组的整数解为-4,-3,-2,-1,0,1,2 其和为-4-3-2-1+0+1+2=-7 19. 解:由题意得⎩⎨⎧x -2>0,x +3<0或⎩⎨⎧x -2<0,x +3>0,解不等式组⎩⎨⎧x -2>0,x +3<0,不等式组无解;解不等式组⎩⎨⎧x -2<0,x +3>0,解得-3<x <2,则原不等式的解集是-3<x <220. 解:设商场至少要再卖出x 件后才能收回成本 由题意得180×250+(180-40)x ≥80000 解得x ≥250即商场至少要再卖出250件后才能收回成本 21. 解:根据题意得⎩⎨⎧8x >48,2(x +8)<34,解得6<x <9 又∵x 为整数 ∴x 的值为7或822. 解:(1)设足球的单价是x 元,篮球的单价是y 元,根据题意得⎩⎨⎧x +y =159,x =2y -9,解得⎩⎨⎧x =103,y =56,则足球的单价是103元,篮球的单价是56元(2)设最多可以购买足球m 个,则购买篮球(20-m)个,根据题意得103m +56(20-m)≤1550,解得m ≤9747,∵m 为整数,∴m 最大取9,则学校最多可以购买9个足球23. 解:设搭配A 种造型x 个,则B 种造型为(50-x)个,依题意得⎩⎨⎧80x +50(50-x )≤3490,40x +90(50-x )≤2950,解得31≤x ≤33,∵x 是整数,∴x 可取31,32,33,∴可设计三种搭配方案:①A 种的造型31个,B 种造型19个;②A 种造型32个,B 种造型18个;③A 种造型33个,B 种造型17个.由于B 种造型的成本高于A 种造型成本,所以B 种造型越少,成本越低,故应选择方案③,成本最低,最低成本为33×200+17×300=11700(元)第九章 不等式与不等式组测试1 不等式及其解集学习要求:知道不等式的意义;知道不等式的解集的含义;会在数轴上表示解集.(一)课堂学习检测一、填空题:1.用“<”或“>”填空:⑴4______-6; (2)-3______0;(3)-5______-1;(4)6+2______5+2;(5)6+(-2)______5+(-2); (6)6×(-2)______5×(-2). 2.用不等式表示:(1)m -3是正数______; (2)y +5是负数______; (3)x 不大于2______; (4)a 是非负数______;(5)a 的2倍比10大______; (6)y 的一半与6的和是负数______;(7)x 的3倍与5的和大于x 的31______;(8)m 的相反数是非正数______.3.画出数轴,在数轴上表示出下列不等式的解集:(1)⋅>213x(2)x ≥-4.(3)⋅≤51x(4)⋅-<312x二、选择题:4.下列不等式中,正确的是( ).(A)4385-<-(B)5172< (C)(-6.4)2<(-6.4)3 (D)-|-27|<-(-3)3 5.“a 的2倍减去b 的差不大于-3”用不等式可表示为( ). (A)2a -b <-3 (B)2(a -b )<-3 (C)2a -b ≤-3 (D)2(a -b )≤-3三、解答题:6.利用数轴求出不等式-2<x ≤4的整数解.(二)综合运用诊断一、填空题:7.用“<”或“>”填空:⑴-2.5______-5.2; (2);125______114--(3)|-3|______-(-2.3); (4)a 2+1______0; (5)0______|x |+4; (6)a +2______a .8.“x 的23与5的差不小于-4的相反数”,用不等式表示为______. 二、选择题:9.如果a 、b 表示两个负数,且a <b ,则( ).(A)1>b a(B)1<b a (C)ba 11< (D)ab <110.如图在数轴上表示的解集对应的是( ).(A)-2<x <4 (B)-2<x ≤4 (C)-2≤x <4 (D)-2≤x ≤4 11.a 、b 是有理数,下列各式中成立的是( ).(A)若a >b ,则a 2>b 2 (B)若a 2>b 2,则a >b (C)若a ≠b ,则|a |≠|b | (D)若|a |≠|b |,则a ≠b 12.|a |+a 的值一定是( ).(A)大于零 (B)小于零 (C)不大于零 (D)不小于零三、判断题:13.不等式5-x >2的解集有无数多个. ( ). 14.不等式x >-1的整数解有无数多个. ( ).15.不等式32421<<-x 的整数解有0、1、2、3、4. ( ). 16.若a >b >0>c ,则.0>cab( ).四、解答题:17.若a 是有理数,比较2a 和3a 的大小.(三)拓广、探究、思考18.若不等式3x -a ≤0只有三个正整数解,求a 的取值范围.19.对于整数a 、b 、c 、d ,定义bd ac c d b a -=,已知3411<<d b,则b +d 的值为______.测试2 不等式的性质学习要求:知道不等式的三条基本性质,并会用它们解简单的一元一次不等式.(一)课堂学习检测一、填空题:1.已知a <b ,用“<”或“>”填空:⑴a +3______b +3; (2)a -3______b -3; (3)3a ______3b ;(4);2______2b a (5);7______7ba -- (6)5a +2______5b +2; (7)-2a -1______-2b -1; (8)4-3b ______6-3a . 2.用“<”或“>”填空: (1)若a -2>b -2,则a ______b ; (2)若,33ba <则a ______b ; (3)若-4a >-4b ,则a ______b ;(4),22ba -<-则a ______b . 3.不等式3x <2x -3变形成3x -2x <-3,是根据______. 4.如果a 2x >a 2y (a ≠0).那么x ______y . 二、选择题:5.若a >2,则下列各式中错误的是( ). (A)a -2>0 (B)a +5>7 (C)-a >-2 (D)a -2>-4 6.已知a >b ,则下列结论中错误的是( ). (A)a -5>b -5 (B)2a >2b (C)ac >bc (D)a -b >0 7.若a >b ,且c 为有理数,则( ). (A)ac >bc (B)ac <bc (C)ac 2>bc 2 (D)ac 2≥bc 2 8.若由x <y 可得到ax >ay ,应满足的条件是( ). (A)a ≥0 (B)a ≤0 (C)a >0 (D)a <0三、解答题:9.根据不等式的基本性质解下列不等式,并将解集表示在数轴上.(1)x -10<0.(2).62121+->x x(3)2x ≥5.(4).131-≥-x10.用不等式表示下列语句并写出解集: ⑴8与y 的2倍的和是正数;(2)a 的3倍与7的差是负数.(二)综合运用诊断一、填空题:11.(1)若x <a <0,则把x 2;a 2,ax 从小到大排列是______.(2)关于x 的不等式mx -n >0,当m ______时,解集是;mnx <当m ______时,解集是⋅>mn x 12.已知b <a <2,用“<”或“>”填空:(1)(a -2)(b -2)______0; (2)(2-a )(2-b )______0; (3)(a -2)(a -b )______0.13.不等式4x -3<4的解集中,最大的整数x =______. 14.如果ax >b 的解集为,abx >则a ______0. 二、选择题:15.已知方程7x -2m +1=3x -4的根是负数,则m 的取值范围是( ).(A)25=m (B)25>m (C)25<m (D)25≤m16.已知二元一次方程2x +y =8,当y <0时,x 的取值范围是( ).(A)x >4 (B)x <4 (C)x >-4 (D)x <-4 17.已知(x -2)2+|2x -3y -a |=0,y 是正数,则a 的取值范围是( ).(A)a <2 (B)a <3 (C)a <4 (D)a <5三、解答题:18.当x 取什么值时,式子563-x 的值为(1)零;(2)正数;(3)小于1的数.(三)拓广、探究、思考19.若m 、n 为有理数,解关于x 的不等式(-m 2-1)x >n .20.解关于x 的不等式ax >b (a ≠0).测试3 解一元一次不等式学习要求:会解一元一次不等式.(一)课堂学习检测一、填空题:1.用“>”或“<”填空:(1)若x ______0,y <0,则xy >0;(2)若ab >0,则b a ______0;若ab <0,则ab______0; (3)若a -b <0,则a ______b ;(4)当x >x +y ,则y ______0.2.当a ______时,式子152-a 的值不大于-3.3.不等式2x -3≤4x +5的负整数解为______. 二、选择题:4.下列各式中,是一元一次不等式的是( ).(A)x 2+3x >1(B)03<-yx (C)5511≤-x(D)31312->+x x 5.关于x 的不等式2x -a ≤-1的解集如图所示,则a 的取值是( ).(A)0 (B)-3 (C)-2 (D)-1三、解下列不等式,并把解集在数轴上表示出来:6.2(2x -3)<5(x -1). 7.10-3(x +6)≤1.8.⋅-->+22531x x 9.⋅-≥--+612131y y y10.求不等式361633->---x x 的非负整数解.11.求不等式6)125(53)34(2+<-x x 的所有负整数解.(二)综合运用诊断一、填空题:12.已知a <b <0,用“>”或“<”填空:⑴2a ______2b ;(2)a 2______b 2;(3)a 3______b 3;(4)a 2______b 3;(5)|a |______|b |(6)m 2a ______m 2b (m ≠0). 13.⑴已知x <a 的解集中的最大整数为3,则a 的取值范围是______;(2)已知x >a 的解集中最小整数为-2,则a 的取值范围是______.二、选择题:14.下列各对不等式中,解集不相同的一对是( ).(A)72423xx +<-与-7(x -3)<2(4+2x ) (B)3921+<-x x 与3(x -1)<-2(x +9) (C)31222-≥+x x 与3(2十x )≥2(2x -1) (D)x x ->+414321与3x >-1 15.如果关于x 的方程5432bx a x +=+的解不是负值,那么a 与b 的关系是( ) (A)b a 53>(B)a b 53≥(C)5a =3b(D)5a ≥3b三、解下列不等式:16.(1)3[x -2(x -7)]≤4x . (2).17)10(2383+-≤--y y y(3).151)13(21+<--y y y (4)⋅-+≤--+15)2(22537313x x x(5)).1(32)]1(21[21-<---x x x x (6)⋅->+-+2503.002.003.05.09.04.0x x x四、解答题:17.已知方程组⎩⎨⎧-=++=+②①m y x m y x 12,312的解满足x +y <0.求m 的取值范围.18.x 取什么值时,代数式413--x 的值不小于8)1(32++x 的值.19.已知关于x 的方程3232xm x x -=--的解是非负数,m 是正整数,求m 的值.*20.当310)3(2k k -<-时,求关于x 的不等式k x x k ->-4)5(的解集.(三)拓广、探究、思考21.适当选择a 的取值范围,使1.7<x <a 的整数解:(1)x 只有一个整数解; (2)x 一个整数解也没有.22.解关于x 的不等式2x +1≥m (x -1).(m ≠2)23.已知A =2x 2+3x +2,B =2x 2-4x -5,试比较A 与B 的大小.测试4 实际问题与一元一次不等式学习要求:会从实际问题中抽象出不等的数量关系,会用一元一次不等式解决实际问题.(一)课堂学习检测一、填空题:1.若x 是非负数,则5231x-≤-的解集是______. 2.使不等式x -2≤3x +5成立的负整数有______. 3.代数式231x-与代数式x -2的差是负数,则x 的取值范围为______ 4.6月1日起,某超市开始有偿..提供可重复使用的三种环保购物袋,每只售价分别为1元、2元和3元,这三种环保购物袋每只最多分别能装大米3公斤、5公斤和8公斤.6月7日,小星和爸爸在该超市选购了3只环保购物袋用来装刚买的20公斤散装大米,他们选购的3只环保购物袋至少..应付给超市______元. 二、选择题:5.三角形的两边长分别为4cm 和9cm ,则下列长度的四条线段中能作为第三边的是( ). (A)13cm (B)6cm (C)5cm (D)4cm6.一商场进了一批商品,进价为每件800元,如果要保持销售利润不低于15%,则售价应不低于( ). (A)900元 (B)920元 (C)960元 (D)980元三、解答题:7.某种商品进价为150元,出售时标价为225元,由于销售情况不好,商品准备降价出售,但要保证利润不低于10%,那么商店最多降价多少元出售商品?8.某次数学竞赛活动,共有16道选择题,评分办法是:答对一题给6分,答错一题倒扣2分,不答题不得分也不扣分.某同学有一道题未答,那么这个学生至少答对多少题,成绩才能在60分以上?(二)综合运用诊断一、填空题:9.直接写出解集:(1)4x -3<6x +4的解集是______; (2)(2x -1)+x >2x 的解集是______;(3)5231052--≤-x x x 的解集是______. 10.若m >5,试用m 表示出不等式(5-m )x >1-m 的解集______. 二、选择题:11.初三⑴班的几个同学,毕业前合影留念,每人交0.70元,一张彩色底片0.68元,扩印一张相片0.50元,每人分一张,将收来的钱尽量用掉的前提下,这张相片上的同学最少有( ). (A)2人 (B)3人 (C)4人 (D)5人12.某出租车的收费标准是:起步价7元,超过3km 时,每增加1km 加收2.4元(不足1km 按1km 计).某人乘这种出租车从甲地到乙地共支付车费19元,设此人从甲地到乙地经过的路程是x km ,那么x 的最大值是( ). (A)11 (B)8 (C)7 (D)5三、解答题:13.已知:关于x 、y 的方程组⎩⎨⎧-=++=+134,123p y x p y x 的解满足x >y ,求p 的取值范围.14.某工人加工300个零件,若每小时加工50个可按时完成;但他加工2小时后,因事停工40分钟.那么这个工人为了按时或提前完成任务,后面的时间每小时他至少要加工多少个零件?(三)拓广、探究、思考15.某商场出售A 型冰箱,每台售价2290元,每日耗电1度;而B 型节能冰箱,每台售价比A 高出10%,但每日耗电0.55度.现将A 型冰箱打折出售(打九折后的售价为原价的十分之九),问商场最多打几折时,消费者购买A 型冰箱才比购买B 型冰箱更合算?(按使用期10年,每年365天,每度电0.4元计算)16.某零件制造车间有20名工人,已知每名工人每天可制造甲种零件6个或乙种零件5个,且每制造一个甲种零件可获利150元,每制造一个乙种零件可获利260元,在这20名工人中,车间每天安排x 名工人制造甲零件,其余工人制造乙种零件. ⑴若此车间每天所获利润为y (元),用x 的代数式表示y ;(2)若要使每天所获利润不低于24000元,至少要派多少名工人去制造乙种零件?测试5 一元一次不等式组(一)学习要求:会解一元一次不等式组,并会利用数轴正确表示出解集.(一)课堂学习检测一、填空题:1.解不等式组⎩⎨⎧>--<+)2(223)1(,423x x 时,解⑴式,得______,解(2)式,得______.于是得到不等式组的解集是______.2.解不等式组⎪⎩⎪⎨⎧-≥--≥-)2(21)1(,3212x x 时,解⑴式,得______,解(2)式,得______,于是得到不等式组的解集是______.3.用字母x 的范围表示下列数轴上所表示的公共部分: (1)________________________; (2)_______________________; (3)________________________.二、选择题:4.不等式组⎩⎨⎧+<+>-5312,243x x x 的解集为( ).(A)x <-4 (B)x >2 (C)-4<x <2 (D)无解5.不等式组⎩⎨⎧>+<-023,01x x 的解集为( ).(A)x >1(B)132<<-x(C)32-<x (D)无解三、解下列不等式组,利用数轴确定不等式组的解集.6.⎩⎨⎧≥-≥-.04,012x x7.⎩⎨⎧>+≤-.074,03x x8.⎪⎩⎪⎨⎧+>-≤-.3342,121x x x x9.-5<6-2x <3.四、解答题:10.解不等式组⎪⎩⎪⎨⎧⋅<-+≤+321),2(352x x x x 并写出不等式组的整数解.(二)综合运用诊断一、填空题:11.当x 满足______时,235x-的值大于-5而小于7. 12.不等式组⎪⎪⎩⎪⎪⎨⎧⋅≤-+<2512,912x x x x 的整数解为______.二、选择题:13.如果a >b ,那么不等式组⎩⎨⎧<<.,b x a x 的解集是( ).(A)x <a(B)x <b(C)b <x <a(D)无解14.不等式组⎩⎨⎧+>+≤+1,159m x x x 的解集是x >2,则m 的取值范围是( ).(A)m ≤2(B)m ≥2 (C)m <1 (D)m >1三、解答题:15.求不等式组73123<--≤x 的整数解.16.解不等式组⎪⎩⎪⎨⎧-<-->-->+.3273,4536,7342x x x x x x17.当k 取何值时,方程组⎩⎨⎧-=+=-52,53y x k y x 的解x 、y 都是负数?18.已知⎩⎨⎧+=+=+122,42k y x k y x 中的x 、y 满足且0<y -x <1,求k 的取值范围.(三)拓广、探究、思考19.已知a 是自然数,关于x 的不等式组⎩⎨⎧>-≥-.02,43x a x 的解集是x >2,求a 的值.20.关于x 的不等式组⎩⎨⎧->-≥-.123,0x a x 的整数解共有5个.求a 的取值范围.测试6 一元一次不等式组(二)学习要求:进一步掌握一元一次不等式组.(一)课堂学习检测一、填空题:1.直接写出解集:(1)⎩⎨⎧->>3,2x x 的解集是______;(2)⎩⎨⎧-<<3,2x x 的解集是______;(3)⎩⎨⎧-><32x x 的解集是______;(4)⎩⎨⎧-<>3,2x x 的解集是______.2.一个两位数,它的十位数字比个位数字小2,如果这个数大于20且小于40,那么此数为______.二、选择题:3.如果式子7x -5与-3x +2的值都小于1,那么x 的取值范围是( ).(A)76<x (B)31>x (C)7631<<x (D)无解4.已知不等式组⎩⎨⎧->--+-≤-).23(2)1(53,1)1(3)3(2x x x x x 它的整数解一共有( ).(A)1个(B)2个(C)3个(D)4个5.若不等式组⎩⎨⎧>≤<k x x 21有解,则k 的取值范围是( ).(A)k <2 (B)k ≥2 (C)k <1(D)1≤k <2三、解下列不等式组,并把解集在数轴上表示出来:6.⎪⎩⎪⎨⎧⋅>-<-322,352x x x x7.⎪⎩⎪⎨⎧->---->-.6)2(3)3(2,132x x xx8.⎪⎩⎪⎨⎧+>-≤+).2(28,142x x x9..234512x x x -≤-≤-(二)综合运用诊断一、填空题:10.不等式组⎪⎩⎪⎨⎧⋅<->+233,152x x 的所有整数解的和是______,积是______.11.k 满足______时,方程组⎩⎨⎧=-=+.4,2y x k y x 中的x 大于1,y 小于1.二、解下列不等式组:12.⎪⎪⎩⎪⎪⎨⎧<+->+--.1)]3(2[21,312233x x x x x13.⎪⎪⎪⎩⎪⎪⎪⎨⎧⋅>-->-->-24,255,13x x x x x x三、解答题:14.k 取哪些整数时,关于x 的方程5x +4=16k -x 的根大于2且小于10?15.已知关于x 、y 的方程组⎩⎨⎧-=-+=+3472m y x m y x ,的解为正数.(1)求m 的取值范围;(2)化简|3m +2|-|m -5|.(三)拓广、探究、思考16.若关于x 的不等式组⎪⎪⎩⎪⎪⎨⎧+<+->+a x x x x 322,3215只有4个整数解,求a 的取值范围.测试7 利用不等关系分析实际问题学习要求:利用不等式(组)解决较为复杂的实际问题;感受不等式(组)在实际生活中的作用.(一)课堂学习检测列不等式(组)解应用题:1.一个工程队原定在10天内至少要挖掘600m 3的土方.在前两天共完成了120m 3后,接到要求要提前2天完成掘土任务.问以后几天内,平均每天至少要挖掘多少土方?2.某城市平均每天产生垃圾700吨,由甲、乙两个垃圾厂处理.如果甲厂每小时可处理垃圾55吨,需花费550元;乙厂每小时处理45吨,需花费495元,如果规定该城市每天用于处理垃圾的费用的和不能超过7150元,问甲厂每天至少要处理多少吨垃圾?3.若干名学生,若干间宿舍,若每间住4人将有20人无法安排住处;若每间住8人,则有一间宿舍的人不空也不满,问学生有多少人?宿舍有几间?4.今年5月12日,汶川发生了里氏8.0级大地震,给当地人民造成了巨大的损失.某中学全体师生积极捐款,其中九年级的3个班学生的捐款金额如下表:老师统计时不小心把墨水滴到了其中两个班级的捐款金额上,但他知道下面三条信息:信息一:这三个班的捐款总金额是7700元;信息二:(2)班的捐款金额比(3)班的捐款金额多300元;信息三:(1)班学生平均每人捐款的金额大于..51元...48元,小于请根据以上信息,帮助老师解决:①(2)班与(3)班的捐款金额各是多元;②(1)班的学生人数.(二)综合运用诊断5.某学校计划组织385名师生租车旅游,现知道出租公司有42座和60座客车,42座客车的租金为每辆320元,60座客车的租金为每辆460元.(1)若学校单独租用这两种客车各需多少钱?(2)若学校同时租用这两种客车8辆(可以坐不满),而且比单独租用一种车辆节省租金,请选择最节省的租车方案.(三)拓广、探究、思考6.在“5·12大地震”灾民安置工作中,某企业接到一批生产甲种板材24000m2和乙种板材12000m2的任务.(1)已知该企业安排140人生产这两种板材,每人每天能生产甲种板材30m2或乙种板材20m2.问:应分别安排多少人生产甲种板材和乙种板材,才能确保他们用相同的时间完成各自的生产任务?(2)某灾民安置点计划用该企业生产的这批板材搭建A,B两种型号的板房共400间,在搭建过程中,按实际需要调运这两种板材.已知建一间A型板房和一间B型板房所需板材及能安置的人数板房型号甲种板材乙种板材安置人数A型板房54m226m2 5B型板房78m241m28问:这400间板房最多能安置多少灾民?全章测试(一)一、填空题:1.用“>”或“<”填空:(1)m +3______m -3;(2)4-2x ______5-2x ;(3);23______13--yy (4)a <b <0,则a 2______b 2;(5)若23yx -<-,则2x ______3y . 2.若使3233->-yy 成立,则y ______. 3.不等式x >-4.8的负整数解是______. 二、选择题:4.x 的一半与y 的平方的和大于2,用不等式表示为( ).(A)2212>+y x (B)2212>++y x (C)222>+y x(D)221>+y x 5.因为-5<-2,所以( ). (A)-5x <-2x (B)-5x >-2x (C)-5x =-2x (D)三种情况都可能 6.若a ≠0,则下列不等式成立的是( ). (A)-2a <2a (B)-2a <2(-a )(C)-2-a <2-a(D)aa 22<-7.下列不等式中,对任何有理数都成立的是( ). (A)x -3>0 (B)|x +1|>0 (C)(x +5)2>0 (D)-(x -5)2≤0 8.若a <0,则关于x 的不等式|a |x <a 的解集是( ). (A)x <1 (B)x >1 (C)x <-1(D)x >-1三、解不等式(组),并把解集在数轴上表示出来:9..11252476312-+≥---x x x 10.⎪⎩⎪⎨⎧<+-+--≤+.121331),3(410)8(2x x x x四、解答题:11.x 取何整数时,式子729+x 与2143-x 的差大于6但不大于8.12.当k 为何值时,方程1)(5332+-=-k x k x 的解是(1)正数;(2)负数;(3)零.13.已知方程组⎩⎨⎧-=+=-k y x k y x 513,2的解x 与y 的和为负数.求k 的取值范围.14.不等式m m x ->-2)(31的解集为x >2.求m 的值.15.某车间经过技术改造,每天生产的汽车零件比原来多10个,因而8天生产的配件超过200个.第二次技术改造后,每天又比第一次技术改造后多做配件27个,这样只做了4天,所做配件个数就超过了第一次改造后8天所做配件的个数.求这个车间原来每天生产配件多少个?16.仔细观察下图,认真阅读对话:根据对话的内容,试求出饼干和牛奶的标价各是多少?全章测试(二)一、填空题1.当m ______时,方程5(x -m )=-2有小于-2的根. 2.满足5(x -1)≤4x +8<5x 的整数x 为______.3.若11|1|=--xx ,则x 的取值范围是______. 4.已知b <0<a ,且a +b <0,则按从小到大的顺序排列a 、-b 、-|a |、-|-b |四个数为______.二、选择题5.若0<a <b <1,则下列不等式中,正确的是( ).,11;11;1;1ba b a b a b a <><>④③②①(A)①、③ (B)②、③ (C)①、④ (D)②、④ 6.下列命题结论正确的是( ).(1)若a >b ,则-a >-b ;(2)若a >b ,则3-2a >3-2b ;(3)8|a |>5|a |. (A)(1)、(2)、(3) (B)(2)、(3) (C)(3) (D)没有一个正确 7.若不等式(a +1)x >a +1的解集是x <1,则a 必满足( ). (A)a <0 (B)a >-1 (C)a <-1 (D)a <1 8.已知x <-3,那么|2+|3+x ||的值是( ). (A)-x -1 (B)-x +1 (C)x +1 (D)x -1 9.如下图,对a 、b 、c 三种物体的重量判断正确的是( ).(A)a <c(B)a <b(C)a >c(D)b <c三、解不等式(组):10.3(x +2)-9≥-2(x -1). 11..57321<+<-x12.⎪⎪⎩⎪⎪⎨⎧>--+<-.0415221131x x x x 13.求⎪⎩⎪⎨⎧≤-->032,134x x x 的整数解.14.如果关于x 的方程3(x +4)-4=2a +1的解大于方程3)43(414-=+x a x a 的解, 求a 的取值范围.15.某单位要印刷一批北京奥运会宣传资料,在需要支付制版费600元和每份资料0.3元印刷费的前提下,甲、乙两个印刷厂分别提出了不同的优惠条件,甲印刷厂提出:凡印刷数量超过2000份的,超过部分的印刷费可按9折收费,乙印刷厂提出:凡印刷数量超过3000份的,超过部分印刷费可按8折收费。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《不等式与不等式组》单元复习题一、填空题1.用恰当的不等号表示下列关系: ①x 的3倍与8的和比y 的2倍小: ; ②老师的年龄a 不小于你的年龄b小: .2.若x <y ,则x -2 y -2.(填“<、>或=”号)3.若39a b-<-,则b 3a .(填“<、>或=”号) 4.不等式7-x >1的正整数解为: .5.当y _______时,代数式423y-的值至少为1.6.不等式6-12x <0的解集是_________.7.若一次函数y =2x -6,当x _____时,y >0.8.当x ________时,代数式523--x 的值是非正数. 9.当m ________时,不等式(2-m )x <8的解集为x >m-28. 10.若方程m x x -=+33 的解是正数,则m 的取值范围是_________.11.x 的53与12的差不小于6,用不等式表示为__________________.12.从小明家到学校的路程是2400米,如果小明早上7点离家,要在7点30分到40分之间到达学校,设步行速度为x 米/分,则可列不等式组为__________________,小明步行的速度范围是_________. 13.若x =23+a ,y =32+a ,且x >2>y ,则a 的取值范围是________. 14.已知三角形的两边为3和4,则第三边a 的取值范围是________.15.如图9-1,在数轴上表示某不等式组中的两个不等式的解集,则该不等式组的解集为 .16.若11|1|-=--x x ,则x 的取值范围是 . 17.不等式组110210x x ⎧+>⎪⎨⎪->⎩,.的解为 .18.当0<<a x 时,2x 与ax 的大小关系是_______________.19.若点P (1-m ,m )在第二象限,则(m -1)x >1-m 的解集为_______________.20.已知x =3是方程2a x -—2=x —1的解,那么不等式(2—5a )x <31的解集是 .21.若不等式组841x x x m+-⎧⎨⎩p f 的解集是x >3,则m 的取值范围是 .22.已知关于x 的不等式组0321x a x -≥⎧⎨-≥-⎩的整数解共有5个,则a 的取值范围是 .23.小明用100元钱购得笔记本和钢笔共30件,已知每本笔记本2元,每只钢笔5元.那么小明最多能买 只钢笔.24.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打 . 二、选择题25.不等式260x ->的解集在数轴上表示正确的是( )26.在下图中不等式-1<x ≤2在数轴上表示正确的是( )DCBA27.解集在数轴上表示为如图9-2所示的不等式组是( )A .32x x >-⎧⎨⎩≥ B .32x x <-⎧⎨⎩≤ C .32x x <-⎧⎨⎩≥ D .32x x >-⎧⎨⎩≤ 28.关于x 的不等式2x -a ≤-1的解集如图9-3所示,则a 的取值是( ).A .0B .-3C .-2D .-1图9-1C .图9-2图9-329.将不等式84113822x x x x +<-⎧⎪⎨≤-⎪⎩的解集在数轴上表示出来,正确的是( )30.不等式组2110x x >-⎧⎨-⎩,≤的解集是( )A.12x >- B.12x <-C.1x ≤ D.112x -<≤ 31.已知a <b ,则下列不等式中不正确的是( ).A.4a <4b B.a +4<b +4 C.-4a <-4b D.a -4<b -432.不等式1132x +<的正整数解有( ).A.1个 B.2个 C.3个 D.4个 33.满足-1<x ≤2的数在数轴上表示为( ).34.如果|x -2|=x -2,那么x 的取值范围是( ). A.x ≤2 B.x ≥2 C.x <2 D.x >2 35.从甲地到乙地有16千米,某人以4千米/时~8千米/时的速度由甲地到乙地,则他用的时间大约为( ).A.1小时~2小时 B.2小时~3小时 C.3小时~4小时 D.2小时~4小时36.不等式组102(1)x x x +<⎧⎨-⎩,≤的解集是( ).A.x <-1 B.x ≤2 C.x >1D.x ≥237.不等式2+x <6的非负整数解有( )A .2个B .3个C .4个D .5个 38.下图所表示的不等式组的解集为( )34210-1A .x 3φB .32ππx -C .2-φxD .32φφx - 39.若方程3m (x +1)+1=m (3-x )-5x 的解是负数,则m 的取值范围是( ).A.m >-1.25 B.m <-1.25 C.m >1.25 D.m <1.2540.某种出租车的收费标准:起步价7元(即行驶距离不超过3千米都需付7元车费),超过3千米后,每增加1千米,加收2.4元(不足1千米按1千米计).某人乘这种出租车从甲地到乙地共付车费19元,那么甲地到乙地路程的最大值是( ). A.5千米 B.7千米 C.8千米 D.15千米 三、解答题 41.解不等式:112x x >+42.解不等式组,并把它的解集表示在数轴上:3(1)7251.3x x xx --⎧⎪⎨--<⎪⎩≤,① ②43.解不等式组331213(1)8x x x x -⎧++⎪⎨⎪--<-⎩,,≥并写出该不等式组的整数解.1- 1- A. B. C. D.44.x 为何值时,代数式5123--+x x 的值是非负数?45.已知:关于x 的方程m x m x =--+2123的解的非正数,求m 的取值范围.46.北京奥运会期间,某旅行社组团去北京观看某场足球比赛,入住某宾馆.已知该宾馆一楼房间比二楼房间少5间,该旅游团有48人,若全部安排在一楼,每间住4人,房间不够,每间住5人,有房间没住满.若全部安排在二楼,每间住3人,房间不够,每间住4人,则有房间没住满.你能根据以上信息确定宾馆一楼有多少房间吗?47.国庆节期间,电器市场火爆.某商店需要购进一批电视机和洗衣机,根据市场调查,决定电视机进货量不少于洗衣机的进货量的一半.电视机与洗衣机的进价和售价如下表:类 别 电视机 洗衣机 为进价(元/台)18001500售价(元/台)2000 1600 计划购进电视机和洗衣机共100台,商店最多可筹集资金161 800元. (1)请你帮助商店算一算有多少种进货方案?(不考虑除进价之外的 其它费用)(2)哪种进货方案待商店销售购进的电视机与洗衣机完毕后获得利润 最多?并求出最多利润.(利润=售价-进价)48.今秋,某市白玉村水果喜获丰收,果农王灿收获枇杷20吨,桃子12吨.现计划租用甲、乙两种货车共8辆将这批水果全部运往外地销售,已知一辆甲种货车可装枇杷4吨和桃子1吨,一辆乙种货车可装枇杷和桃子各2吨. (1)王灿如何安排甲、乙两种货车可一次性地运到销售地?有几种方案?(2)若甲种货车每辆要付运输费300元,乙种货车每辆要付运输费240元,则果农王灿应选择哪种方案,使运输费最少?最少运费是多少?参考解析一、填空题1.①3x +8<2y ;②a ≥b2.<(点拨:根据不等式的基本性质,不等式两边同时加上或减去同一个数,不等号方向不变) 3.>(点拨:根据不等式的基本性质,不等式两边同时乘或除以同一个负数,不等号方向改变) 4.1、2、3、4、5 5.≤12(点拨:由题意可列出不等式423y -≥1) 6.x >12 7.x >3(点拨:由题意可得不等式2x -6>0) 8.23x ≥(点拨:代数式523--x 的值是非正数,所以可得不等式3205x -≤-)9.m >2(点拨:根据不等式的性质,不等号方向发生改变,所以x 的系数小于0)10.m >-3(点拨:解关于x 的方程可得32m x +=,因为解为正数,所以得到不等式32m +>0,解不等式即可)11.31265x -≥12.302400402400x x ≤⎧⎨≥⎩,60米-80米/分.(点拨:7点出发,要在7点30分到40分之间到达学校,意味着小明在30分钟之内的路程不能超过2400米,而40分钟时的路程至少达到2400米.由此可列出不等式组)13.1<a <4(点拨:根据题意,可得到不等式组3222 2 3a a +⎧⎪⎪⎨+⎪⎪⎩f p ,解不等式组即可)14.1<a <7 15.x <2 16.x <1(点拨:由题意可知,x -1的绝对值等于它的相反数,则x -1<0,所以x <1. 17.21x -<<18.2x >ax (点拨:在不等式x a <两边同时乘以负数x ,则不等式的方向改变)19.x >-1(点拨:由P (1-m ,m )在第二象限可知,1-m <0且m >0,所以m >1)20.x <19(点拨:先将x =3代入方程,可解得a =-5,再将a =-5代入不等式解不等式得出结果) 21.m <3(点拨:解不等式组可得结果3x x m ⎧⎨⎩f f ,因为不等式组的解集是x >3,所以结合数轴,根据“同大取大”原则,不难看出结果为m <3)22.-3<a ≤-2(解不等式组可得结果a ≤x ≤2,因此五个整数解为2、1、0、-1、-2,所以-3<a ≤-2)23.13支(点拨:设小明一共买了x 本笔记本,y 支钢笔,根据题意,可得混合组2510030x y x y +≤⎧⎨+=⎩,可求得y ≤403,因为y 为正整数,所以最多可以买钢笔13支) 24.7折(点拨:设最低打x 折,由题意可得12008008005%10x⨯-≥⨯,解之得x ≥7) 二、选择题25.A 26.A 27.D 28.B (点拨:x ≤12a +,又不等式解为:x ≤-1,所以12a +=-1,解得:a =-3) 29.C 30.D 31.C(点拨:根据不等式的基本性质,不等式两边同时加上或减去同一个数,不等号的方向不变;不等式两边同时乘或除以同一个正数,不等号的方向不变,同时乘或除以同一个负数,不等号的方向要改变) 32.C(点拨:先求出不等式的解集,从中找出相应的正整数解即可) 33.B(点拨:注意解集表示时的方向及点的空心与实心区别)34.B(点拨:因为|x -2|=x -2,根据一个正数的绝对值等于它的本身,可以知道x -2的值大于或等于0,从而得到相关不等式求解) 35.D(点拨:路程一定,速度的范围直接决定所用时间的范围) 36.A 37.C (点拨:非负整数解包括0) 38.A 39.A(点拨:先通过解方程求出用m 表示的x 的式子,然后根据方程解是负数,得到关于m 的不等式,求解不等式即可) 40.C 三、解答题 41.解析:(1)112x x ->,112x >,所以2x >. 42.解析:解不等式①,得2x -≥; 解不等式②,得12x <-. 在同一条数轴上表示不等式①②的解集,如答图9-1:所以,原不等式组的解集是122x -<-≤. 43.解析:解不等式3312x x -++≥,得1x ≤.解不等式13(1)8x x --<-,得2x >-.∴原不等式组的解集是21x -<≤.∴原不等式组的整数解是101-,,.44.解析:由题意可得31025x x +--≥,解不等式x ≥173-. 45.解析:解关于x 的方程m x m x =--+2123,得344m x -=,因为方程解为非正数,所以有344m-≤0,解之得,m ≥34.46.解析:设该宾馆一楼有x 间房,则二楼有(x +5)间房,由题意可得不等式组答图9-14485483(5)484(5)48x x x x ⎧⎪⎪⎨+⎪⎪+⎩p f p f ,解这个不等式组可得9.6<x <11,因为x 为正整数,所以x =10 即该宾馆一楼有10间房间. 47.解析:(1)设商店购进电视机x 台,则购进洗衣机(100-x )台,根据题意,得1(100),218001500(100)161800.x x x x ⎧≥-⎪⎨⎪+-≤⎩ ,解不等式组,得 1333≤x ≤1393.即购进电视机最少34台,最多39台,商店有6种进货方案.(2)设商店销售完毕后获利为y 元,根据题意,得y =(2000-1800)x +(1600-1500)(100-x )=100x +10000. ∵ 100>0,∴ 当x 最大时,y 的值最大.即 当x =39时,商店获利最多为13900元. 48.解析:(1)设安排甲种货车x 辆,则安排乙种货车(8-x )辆,依题意,得4x + 2(8-x )≥20,且x + 2(8-x )≥12,解此不等式组,得 x ≥2,且 x ≤4, 即 2≤x ≤4. ∵ x甲种货车 乙种货车 方案一 2辆 6辆 方案二 3辆 5辆 方案三 4辆 4辆(2 300×3 + 240×5 = 2100元;方案三所需运费 300×4 + 240×4 = 2160元.所以王灿应选择方案一运费最少,最少运费是2040元.。

相关文档
最新文档