用几何画板绘制正五边形并不复杂
几何画板怎么画正五边形
如何利用几何画板画正五边形
几何画板可以对图形进项变换,旋转就是其中一个重要的变换手段,以下教程讲解如何利用几何画板旋转命令构造正五边形。
具体操作如下:
1.单击线段工具,在画板的适当位置任意画一条线段AB。
2.单击移动箭头工具,双击点A,将点A设为旋转中心。
同时选中点B和线段AB,执行“变换”—“旋转”命令,打开旋转对话框,设置旋转角度为108度,单击旋转按钮,得到线段AB’。
使用旋转命令设置旋转角度为108度构造线段AB’示例
3.单击移动箭头工具,双击点B’,将点B’设为旋转中心。
同时选中点A和线段AB’,执行“变换”—“旋转”命令,打开旋转对话框,旋转角度一样是设为108度,单击旋转按钮,得到线段B’A’。
类似地按前面的方法做出剩余的两条边。
使用旋转命令构造五边形的其余边示例
4.接着依次选中五边形的五个顶点,执行“显示”—“点的标签”命令,打开多个对象的标签对话框,在起始标签文本框中输入“A”,单击确定按钮,将选中的点的标签改为A、B、C、D、E,最终效果如下图所示。
使用旋转命令构造的正五边形示例
学习以上教程,相信大家已经掌握了使用旋转命令构造正五边形的方法,对几何画板的变换功能有了更深层次的认识。
正五边形尺规作图的画法及其他(精品)
正五边形尺规作图的画法及其他正五边形的画法第一种:圆内接正五边形的画法如下:1、作一个圆,设它的圆心为O;2、作圆的两条互相垂直的直径AZ和XY;3、作OY的中点M;4、以点M为圆心,MA为半径作圆,交OX于点N;5、以点A为圆心,AN为半径,在圆上连续截取等弧,使弦AB=BC=CD=DE=AN,则五边形ABCDE即为正五边形。
第二种作法:1. 以O为圆心,半径长为R画圆,并作互相垂直的直径MN和AP;2. 平分半径OM于K,得OK=KM;3. 以K为圆心,KA为半径画弧与ON交于H,AH即为正五边形的边长;4. 以AH为弦长,在圆周上截得A、B、C、D、E各点,顺次连结这些点。
五边形ABCDE 即为所求。
第三种:圆内接正五边形的画法如下:1、作一个圆,设它的圆心为O;2、作圆的两条互相垂直的直径AZ和XY;3、作OY的中点M;4、以点M为圆心,MA为半径作圆,交OX于点N;5、以点A为圆心,AN为半径,在圆上连续截取等弧,使弦AB=BC=CD=DE=AN,则五边形ABCDE即为正五边形。
以上两种图形的作法运用了所求图形边长与已知的线段长度的关系,用构造直角三角形的方法作出与所求图形的边长相等的线段,从而作出整个图形,这是尺规作图中常用的一种方法——等线段法,即用已知图形的线段作出与所求图形边长相等的线段。
正多边形的尺规作图是大家感兴趣的.正三边形很好做;正四边形稍难一点;正六边形也很好做;正五边形就更难一点,但人们也找到了正五边形的直规作图方法.确实,有的困难一些,有的容易一些.正七边形的尺规作图是容易一些,还是困难一些呢?人们很久很久未找到作正七边形的办法,这一事实本身就说明作正七边形不容易;一直未找到这种作法,也使人怀疑:究竟用尺规能否作出正七边形来?数学不容许有这样的判断:至今一直没有人找到正七边形的尺规作图方法来,所以断言它是不能用尺规作出的.人们迅速地解决了正三、四、五、六边形的尺规作图问题,却在正七边形面前止步了:究竟能作不能作,得不出结论来.这个悬案一直悬而未决两千余年.17世纪的费马,就是我们在前面已两次提到了的那个法国业余数学家,他研究了形如Fi (i为右下角标)=22i(底数2指数2的i次幂)+1 的数.费马的一个著名猜想是,当n≥3时,不定方程xn+yn=zn没有正整数解.现在他又猜测Fi都是素数,对于i=0,1,2,3,4时,容易算出来相应的Fi:F0=3,F1=5,F2=17,F3=257,F4=65 537验证一下,这五个数的确是素数.F5=225+1是否素数呢?仅这么一个问题就差不多一百年之后才有了一个结论,伟大的欧拉发现它竟不是素数,因而,伟大的费马这回可是猜错了!F5是两素数之积:F5=641×6 700 417.当然,这一事例多少也说明:判断一个较大的数是否素数也决不是件简单的事,不然,何以需要等近百年?何以需要欧拉这样的人来解决问题?更奇怪的是,不仅F5不是素数,F6,F7也不是素数,F8,F9,F10,F11等还不是素数,甚至,对于F14也能判断它不是素数,但是它的任何真因数还不知道.至今,人们还只知F0,F1,F2,F3,F4这样5个数是素数.由于除此而外还未发现其他素数,于是人们产生了一个与费马的猜想大相径庭的猜想,形如22i+1的素数只有有限个.但对此也未能加以证明.当然,形如Fi=22i+1的素数被称为费马素数.由于素数分解的艰难,不仅对形如Fi=22i+1的数的一般结论很难做出,而且具体分解某个Fi也不是一件简单的事.更加令人惊奇的事情发生在距欧拉发现F5不是素数之后的60多年,一位德国数学家高斯,在他仅20岁左右之时发现,当正多边形的边数是费马素数时是可以尺规作图的,他发现了更一般的结论:正n边形可尺规作图的充分且必要的条件是n=2k(2的k次幂)或2k×p1×p2×…×ps,(1,2…s为右下角标)其中,p1,p2,…,ps是费马素数.正7边形可否尺规作图呢?否!因为7是素数,但不是费马素数.倒是正17边形可尺规作图,高斯最初的一项成就就是作出了正17边形.根据高斯的理论,还有一位德国格丁根大学教授作了正257边形.就这样,一个悬而未决两千余年的古老几何问题得到了圆满的解决,而这一问题解决的过程是如此的蹊跷,它竟与一个没有猜对的猜想相关连.正17边形被用最简单的圆规和直尺作出来了,而正多边形可以换个角度被视为是对圆的等分,那么这也相当于仅用圆规和直尺对圆作了17等分,其图形更觉完美、好看.高斯本人对此也颇为欣赏,由此引导他走上数学道路(他早期曾在语言学与数学之间犹豫过),而且在他逝后的墓碑上就镌刻着一个正17边形图案.高斯把问题是解决得如此彻底,以致有了高斯的定理,我们对于早已知道如何具体作图的正三边形、正五边形,还进而知道了它们为什么能用尺规作图,就因为3和5都是费马素数(3=F0,5=F1);对于很久以来未找到办法来作出的正七边形,乃至于正11边形、正 13边形,现在我们能有把握地说,它们不可能由尺规作图,因为7、11、13都不是费马素数;对于正257边形、正65 537边形,即使我们不知道具体如何作,可是理论上我们已经知道它们是可尺规作图的;此外,为什么正四边形、正六边形可尺规作图呢?因为4=22,因为6= 2· 3而 3=F0.。
正五边形尺规作图的画法及其他
正五边形尺规作图的画法及其他正五边形的画法圆内接正五边形的画法如下:1、作一个圆,设它的圆心为O;2、作圆的两条互相垂直的直径AZ和XY;3、作OY的中点M;4、以点M为圆心,MA为半径作圆,交OX于点N;5、以点A为圆心,AN为半径,在圆上连续截取等弧,使弦AB=BC=CD=DE=AN,则五边形ABCDE即为正五边形。
以上两种图形的作法运用了所求图形边长与已知的线段长度的关系,用构造直角三角形的方法作出与所求图形的边长相等的线段,从而作出整个图形,这是尺规作图中常用的一种方法——等线段法,即用已知图形的线段作出与所求图形边长相等的线段。
正多边形的尺规作图是大家感兴趣的.正三边形很好做;正四边形稍难一点;正六边形也很好做;正五边形就更难一点,但人们也找到了正五边形的直规作图方法.确实,有的困难一些,有的容易一些.正七边形的尺规作图是容易一些,还是困难一些呢?人们很久很久未找到作正七边形的办法,这一事实本身就说明作正七边形不容易;一直未找到这种作法,也使人怀疑:究竟用尺规能否作出正七边形来?数学不容许有这样的判断:至今一直没有人找到正七边形的尺规作图方法来,所以断言它是不能用尺规作出的.人们迅速地解决了正三、四、五、六边形的尺规作图问题,却在正七边形面前止步了:究竟能作不能作,得不出结论来.这个悬案一直悬而未决两千余年.17世纪的费马,就是我们在前面已两次提到了的那个法国业余数学家,他研究了形如Fi (i为右下角标)=22i(底数2指数2的i次幂)+1 的数.费马的一个著名猜想是,当n≥3时,不定方程xn+yn=zn没有正整数解.现在他又猜测Fi都是素数,对于i=0,1,2,3,4时,容易算出来相应的Fi:F0=3,F1=5,F2=17,F3=257,F4=65 537验证一下,这五个数的确是素数.F5=225+1是否素数呢?仅这么一个问题就差不多一百年之后才有了一个结论,伟大的欧拉发现它竟不是素数,因而,伟大的费马这回可是猜错了!F5是两素数之积:F5=641×6 700 417.当然,这一事例多少也说明:判断一个较大的数是否素数也决不是件简单的事,不然,何以需要等近百年?何以需要欧拉这样的人来解决问题?更奇怪的是,不仅F5不是素数,F6,F7也不是素数,F8,F9,F10,F11等还不是素数,甚至,对于F14也能判断它不是素数,但是它的任何真因数还不知道.至今,人们还只知F0,F1,F2,F3,F4这样5个数是素数.由于除此而外还未发现其他素数,于是人们产生了一个与费马的猜想大相径庭的猜想,形如22i+1的素数只有有限个.但对此也未能加以证明.当然,形如Fi=22i+1的素数被称为费马素数.由于素数分解的艰难,不仅对形如Fi=22i+1的数的一般结论很难做出,而且具体分解某个Fi也不是一件简单的事.更加令人惊奇的事情发生在距欧拉发现F5不是素数之后的60多年,一位德国数学家高斯,在他仅20岁左右之时发现,当正多边形的边数是费马素数时是可以尺规作图的,他发现了更一般的结论:正n边形可尺规作图的充分且必要的条件是n=2k(2的k次幂)或2k×p1×p2×…×ps,(1,2…s为右下角标)其中,p1,p2,…,ps是费马素数.正7边形可否尺规作图呢?否!因为7是素数,但不是费马素数.倒是正17边形可尺规作图,高斯最初的一项成就就是作出了正17边形.根据高斯的理论,还有一位德国格丁根大学教授作了正257边形.就这样,一个悬而未决两千余年的古老几何问题得到了圆满的解决,而这一问题解决的过程是如此的蹊跷,它竟与一个没有猜对的猜想相关连.正17边形被用最简单的圆规和直尺作出来了,而正多边形可以换个角度被视为是对圆的等分,那么这也相当于仅用圆规和直尺对圆作了17等分,其图形更觉完美、好看.高斯本人对此也颇为欣赏,由此引导他走上数学道路(他早期曾在语言学与数学之间犹豫过),而且在他逝后的墓碑上就镌刻着一个正17边形图案.高斯把问题是解决得如此彻底,以致有了高斯的定理,我们对于早已知道如何具体作图的正三边形、正五边形,还进而知道了它们为什么能用尺规作图,就因为3和5都是费马素数(3=F0,5=F1);对于很久以来未找到办法来作出的正七边形,乃至于正11边形、正 13边形,现在我们能有把握地说,它们不可能由尺规作图,因为7、11、13都不是费马素数;对于正257边形、正65 537边形,即使我们不知道具体如何作,可是理论上我们已经知道它们是可尺规作图的;此外,为什么正四边形、正六边形可尺规作图呢?因为4=22,因为6= 2· 3而 3=F0.。
正五边形尺规作图的画法及其他
正五边形尺规作图的画法及其他正五边形的画法圆内接正五边形的画法如下:1、作一个圆,设它的圆心为O;2、作圆的两条互相垂直的直径AZ和XY;3、作OY的中点M;4、以点M为圆心,MA为半径作圆,交OX于点N;5、以点A为圆心,AN为半径,在圆上连续截取等弧,使弦AB=BC=CD=DE=AN,则五边形ABCDE即为正五边形。
以上两种图形的作法运用了所求图形边长与已知的线段长度的关系,用构造直角三角形的方法作出与所求图形的边长相等的线段,从而作出整个图形,这是尺规作图中常用的一种方法——等线段法,即用已知图形的线段作出与所求图形边长相等的线段。
正多边形的尺规作图是大家感兴趣的.正三边形很好做;正四边形稍难一点;正六边形也很好做;正五边形就更难一点,但人们也找到了正五边形的直规作图方法.确实,有的困难一些,有的容易一些.正七边形的尺规作图是容易一些,还是困难一些呢?人们很久很久未找到作正七边形的办法,这一事实本身就说明作正七边形不容易;一直未找到这种作法,也使人怀疑:究竟用尺规能否作出正七边形来?数学不容许有这样的判断:至今一直没有人找到正七边形的尺规作图方法来,所以断言它是不能用尺规作出的.人们迅速地解决了正三、四、五、六边形的尺规作图问题,却在正七边形面前止步了:究竟能作不能作,得不出结论来.这个悬案一直悬而未决两千余年.17世纪的费马,就是我们在前面已两次提到了的那个法国业余数学家,他研究了形如Fi (i为右下角标)=22i(底数2指数2的i次幂)+1 的数.费马的一个著名猜想是,当 n≥3时,不定方程xn+yn=zn没有正整数解.现在他又猜测Fi都是素数,对于i=0,1,2,3,4时,容易算出来相应的Fi:F0=3,F1=5,F2=17,F3=257,F4=65 537验证一下,这五个数的确是素数.F5=225+1是否素数呢?仅这么一个问题就差不多一百年之后才有了一个结论,伟大的欧拉发现它竟不是素数,因而,伟大的费马这回可是猜错了!F5是两素数之积:F5=641×6 700 417.当然,这一事例多少也说明:判断一个较大的数是否素数也决不是件简单的事,不然,何以需要等近百年?何以需要欧拉这样的人来解决问题?更奇怪的是,不仅F5不是素数,F6,F7也不是素数,F8,F9,F10,F11等还不是素数,甚至,对于F14也能判断它不是素数,但是它的任何真因数还不知道.至今,人们还只知F0,F1,F2,F3,F4这样5个数是素数.由于除此而外还未发现其他素数,于是人们产生了一个与费马的猜想大相径庭的猜想,形如22i+1的素数只有有限个.但对此也未能加以证明.当然,形如Fi=22i+1的素数被称为费马素数.由于素数分解的艰难,不仅对形如Fi=22i+1的数的一般结论很难做出,而且具体分解某个Fi也不是一件简单的事.更加令人惊奇的事情发生在距欧拉发现F5不是素数之后的60多年,一位德国数学家高斯,在他仅20岁左右之时发现,当正多边形的边数是费马素数时是可以尺规作图的,他发现了更一般的结论:正n边形可尺规作图的充分且必要的条件是n=2k(2的k次幂)或 2k×p1×p2×…×ps,(1,2…s为右下角标)其中,p1,p2,…,ps是费马素数.正7边形可否尺规作图呢?否!因为7是素数,但不是费马素数.倒是正17边形可尺规作图,高斯最初的一项成就就是作出了正17边形.根据高斯的理论,还有一位德国格丁根大学教授作了正257边形.就这样,一个悬而未决两千余年的古老几何问题得到了圆满的解决,而这一问题解决的过程是如此的蹊跷,它竟与一个没有猜对的猜想相关连.正17边形被用最简单的圆规和直尺作出来了,而正多边形可以换个角度被视为是对圆的等分,那么这也相当于仅用圆规和直尺对圆作了17等分,其图形更觉完美、好看.高斯本人对此也颇为欣赏,由此引导他走上数学道路(他早期曾在语言学与数学之间犹豫过),而且在他逝后的墓碑上就镌刻着一个正17边形图案.高斯把问题是解决得如此彻底,以致有了高斯的定理,我们对于早已知道如何具体作图的正三边形、正五边形,还进而知道了它们为什么能用尺规作图,就因为3和5都是费马素数(3=F0,5=F1);对于很久以来未找到办法来作出的正七边形,乃至于正11边形、正 13边形,现在我们能有把握地说,它们不可能由尺规作图,因为7、11、13都不是费马素数;对于正257边形、正65 537边形,即使我们不知道具体如何作,可是理论上我们已经知道它们是可尺规作图的;此外,为什么正四边形、正六边形可尺规作图呢?因为4=22,因为 6= 2·3而 3=F0.THANKS致力为企业和个人提供合同协议,策划案计划书,学习课件等等打造全网一站式需求欢迎您的下载,资料仅供参考。
如何画一个正五边形
李东升 应用统计学 201100703003
思想:在纸上用圆规画个圆 ,然后画出圆的两条相互垂直的直径AC与BD,之后分别用C、D作圆心,用圆 直径BD作圆,两圆交在E点,则OE上依次截出四个点来,那么这四个点和A点就是这个正五边形的五个顶点将相隔的两点连接就成了一个正五边形。
图1
首先,以半径为2画一个圆,在圆内画两条直径相互垂直。
图2
以BD为半径分别在C、D点作圆交于E点,OE就是圆内正五边形的边长。
图3
以OE为半径,以A点为中心,交圆 于F连接AF为正五边形边长。
图4
AF,FG,为正五边形的两条边。
图5
图5内总共有7个圆,两个大圆的半径为4,其中内接正五边形的圆的半径为2,剩余4个圆的半径为2.3275,所有作图均由Matlab所作。有程序,有真相。
该怎样用几何画板绘制正五边形呢
该怎样⽤⼏何画板绘制正五边形呢在学习⼏何的过程中,我们不可避免的会遇到正五边形。
正五边形是五条长度相等的线段,⾸尾相连构成的⼀个封闭形状且内⾓相等的平⾯图形。
现在很多的⽼师在使⽤多媒体教程的过程中,都会⽤来绘制正五边形辅助教程。
但是具体这么绘制⼀些⼏何画板的新⼿⽤户还不是很熟悉,下⾯就来给⼤家分享⼀下该怎样⽤⼏何画板绘制正五边形呢?具体的操作步骤如下:步骤⼀新建参数n=5。
打开⼏何画板,点击上⽅“数据”菜单,在其下拉菜单选择“新建参数”命令,在弹出的对话框修改参数名称为n,数值改为5(不要⼩数的)。
新建参数n在⼏何画板中新建参数n⽰例步骤⼆绘制五边形的中⼼和起点。
选择左侧⼯具箱“点⼯具”,在画板空⽩处任意绘制⼀点A,作为五边形的中⼼;再绘制另外⼀个点B,作为五边形⼀个边的起点。
确定五边形中⼼绘制五边形的中⼼A和起点B⽰例步骤三计算数值360°÷n。
点击上⽅“数据”菜单,在其下拉菜单选择“计算”命令,在弹出的对话框计算数值,得到360°÷n的值。
计算数值计算数值360°÷n⽰例步骤四对点B执⾏旋转变换。
选择“移动箭头⼯具”,双击点A,标记旋转中⼼;选中点B,执⾏“变换”——“旋转”命令,⾓度点击上步的计算值,这样就出现新的点B’,构造线段BB’,如下图所⽰。
旋转变换点B点B执⾏旋转变换⽰例步骤五只选中B和参数n,按住shift键,执⾏“变换”——“深度迭代”命令,在初象⾼亮区内点击点B’,然后点击“迭代”按钮,完成五边形绘制。
迭代构造五边形执⾏迭代构造正五边形⽰例以上给⼤家详细介绍了该怎样⽤⼏何画板绘制正五边形呢,主要在于让⼤家掌握⼏何画板迭代功能的灵活运⽤。
利⽤迭代还可以构造很多⼏何图形和精美图案,在前⾯的教程中都有介绍。
如果你对之前学习的⽤反射命令构造正五边形有疑问,可参考相关的。
尺规作图正五边形
尺规作图正五边形
[正五边形的画法]
圆内接正五边形的画法如下:
①以O为圆心,定长R为半径画圆,并作互相垂直的直径MN和 AP.
②②平分半径ON,得OK=KN.
③③以 K为圆心,KA为半径画弧与 OM交于 H, AH即为正五边形的
边长.
④④以AH为弦长,在圆周上截得A,B,C,D,E各点,顺次连接这些点即
得正五边形.
⑤已知边长作正五边形的近似画法如下:
⑥①作线段AB等于定长l,并分别以A,B为圆心,已知长l为半径画
弧与AB的中垂线交于K.
⑦②以K为圆心,取AB的2/3长度为半径向外侧取C点,使CK=2/3AB
⑧③以 C为圆心,已知边长 AB为半径画弧,分别与前两弧相交于
M,N.
⑨④顺次连接A,B,N,C,M各点即近似作得所要求的正五边形.
在圆内作一个正三角形
先画个圆O。
半径为R
在圆上取任意一点P圆心。
半径仍为R做弧。
与圆O相交与AB两点。
AB是正三角形的两个顶点了。
再以A为圆心,半径仍为R做弧。
与圆O又有两个交点。
其中一个肯定为第1次做弧的圆心P。
还有个设为Q
以Q为圆心。
半径为R作弧。
与圆O有两个交点。
一个为A,另一个为C
则三角形ABC为正三角形。
正五边形尺规作图的画法及其他(精品)
正五边形尺规作图的画法及其他(精品)正五边形尺规作图的画法及其他正五边形的画法第一种:圆内接正五边形的画法如下:1、作一个圆,设它的圆心为O;2、作圆的两条互相垂直的直径AZ和XY;3、作OY的中点M;4、以点M为圆心,MA为半径作圆,交OX于点N;5、以点A为圆心,AN为半径,在圆上连续截取等弧,使弦AB=BC=CD=DE=AN,则五边形ABCDE即为正五边形。
第二种作法:1. 以O为圆心,半径长为R画圆,并作互相垂直的直径MN和AP;2. 平分半径OM于K,得OK=KM;3. 以K为圆心,KA为半径画弧与ON交于H,AH即为正五边形的边长;4. 以AH为弦长,在圆周上截得A、B、C、D、E各点,顺次连结这些点。
五边形ABCDE即为所求。
第三种:圆内接正五边形的画法如下:1、作一个圆,设它的圆心为O;2、作圆的两条互相垂直的直径AZ和XY;3、作OY的中点M;4、以点M为圆心,MA为半径作圆,交OX于点N;5、以点A为圆心,AN为半径,在圆上连续截取等弧,使弦AB=BC=CD=DE=AN,则五边形ABCDE即为正五边形。
以上两种图形的作法运用了所求图形边长与已知的线段长度的关系,用构造直角三角形的方法作出与所求图形的边长相等的线段,从而作出整个图形,这是尺规作图中常用的一种方法——等线段法,即用已知图形的线段作出与所求图形边长相等的线段。
正多边形的尺规作图是大家感兴趣的.正三边形很好做;正四边形稍难一点;正六边形也很好做;正五边形就更难一点,但人们也找到了正五边形的直规作图方法.确实,有的困难一些,有的容易一些.正七边形的尺规作图是容易一些,还是困难一些呢?人们很久很久未找到作正七边形的办法,这一事实本身就说明作正七边形不容易;一直未找到这种作法,也使人怀疑:究竟用尺规能否作出正七边形来?数学不容许有这样的判断:至今一直没有人找到正七边形的尺规作图方法来,所以断言它是不能用尺规作出的.人们迅速地解决了正三、四、五、六边形的尺规作图问题,却在正七边形面前止步了:究竟能作不能作,得不出结论来.这个悬案一直悬而未决两千余年.17世纪的费马,就是我们在前面已两次提到了的那个法国业余数学家,他研究了形如Fi (i为右下角标)=22i(底数2指数2的i次幂)+1 的数.费马的一个著名猜想是,当n≥3时,不定方程xn+yn=zn没有正整数解.现在他又猜测Fi都是素数,对于i=0,1,2,3,4时,容易算出来相应的Fi:F0=3,F1=5,F2=17,F3=257,F4=65 537验证一下,这五个数的确是素数.F5=225+1是否素数呢?仅这么一个问题就差不多一百年之后才有了一个结论,伟大的欧拉发现它竟不是素数,因而,伟大的费马这回可是猜错了!F5是两素数之积:F5=641×6 700 417.当然,这一事例多少也说明:判断一个较大的数是否素数也决不是件简单的事,不然,何以需要等近百年?何以需要欧拉这样的人来解决问题?更奇怪的是,不仅F5不是素数,F6,F7也不是素数,F8,F9,F10,F11等还不是素数,甚至,对于F14也能判断它不是素数,但是它的任何真因数还不知道.至今,人们还只知F0,F1,F2,F3,F4这样5个数是素数.由于除此而外还未发现其他素数,于是人们产生了一个与费马的猜想大相径庭的猜想,形如22i+1的素数只有有限个.但对此也未能加以证明.当然,形如Fi=22i+1的素数被称为费马素数.由于素数分解的艰难,不仅对形如Fi=22i+1的数的一般结论很难做出,而且具体分解某个Fi也不是一件简单的事.更加令人惊奇的事情发生在距欧拉发现F5不是素数之后的60多年,一位德国数学家高斯,在他仅20岁左右之时发现,当正多边形的边数是费马素数时是可以尺规作图的,他发现了更一般的结论:正n边形可尺规作图的充分且必要的条件是n=2k(2的k次幂)或 2k×p1×p2×…×ps,(1,2…s为右下角标)其中,p1,p2,…,ps是费马素数.正7边形可否尺规作图呢?否!因为7是素数,但不是费马素数.倒是正17边形可尺规作图,高斯最初的一项成就就是作出了正17边形.根据高斯的理论,还有一位德国格丁根大学教授作了正257边形.就这样,一个悬而未决两千余年的古老几何问题得到了圆满的解决,而这一问题解决的过程是如此的蹊跷,它竟与一个没有猜对的猜想相关连.正17边形被用最简单的圆规和直尺作出来了,而正多边形可以换个角度被视为是对圆的等分,那么这也相当于仅用圆规和直尺对圆作了17等分,其图形更觉完美、好看.高斯本人对此也颇为欣赏,由此引导他走上数学道路(他早期曾在语言学与数学之间犹豫过),而且在他逝后的墓碑上就镌刻着一个正17边形图案.高斯把问题是解决得如此彻底,以致有了高斯的定理,我们对于早已知道如何具体作图的正三边形、正五边形,还进而知道了它们为什么能用尺规作图,就因为3和5都是费马素数(3=F0,5=F1);对于很久以来未找到办法来作出的正七边形,乃至于正11边形、正 13边形,现在我们能有把握地说,它们不可能由尺规作图,因为7、11、13都不是费马素数;对于正257边形、正65 537边形,即使我们不知道具体如何作,可是理论上我们已经知道它们是可尺规作图的;此外,为什么正四边形、正六边形可尺规作图呢?因为4=22,因为6= 2· 3而 3=F0.。
尺规作正五边形的作图原理
尺规作正五边形的作图原理以《尺规作正五边形的作图原理》为标题,撰写一篇3000字的中文文章尺规作正五边形的原理,是数学计算方面的一个重要课题,被广泛应用于计算和图形设计等领域。
“尺规作正五边形”的作图原理可以使我们快速地用尺规在垂线交点处画出各自独立的正五边形,而且它们之间是等距离的。
首先,要完成尺规作图,我们需要使用一把尺规,此外,我们还需要一张A4纸,将尺规长度设置为需要画正五边形的边长大小。
接着,我们在A4纸上画出一条垂线,将尺规从垂线上端点开始,沿着垂线拉伸一段距离,将垂线上端点定位到尺规的刻度印数处,这就是第一点。
然后,以尺规第一点为原点,转动尺规,角度为大于或等于60°小于或等于90°,将尺规拉伸一段距离,这就是第二点。
接下来,继续重复上面的步骤,将尺规以角度为大于或等于60°小于或等于90°,拉伸,当尺规松动时,就可以得到第三点,第四点和第五点,由此可以画出一个正五边形。
另外,在作图过程中,我们还可以使用其他的数学原理,比如使用三角形的边长和夹角原理,将整个正五边形国一般的边长和夹角的角度分别换算成A-B,A-C,A-D,A-E边长和角度,这样就可以有效地利用尺规,实现不同边长各自独立的正五边形作图。
此外,尺规作正五边形的原理还可以应用于不同类型的正多边形作图中,比如:六边形、七边形、八边形、九边形等,只需要将上述原理改变一下,将角度设置为大于或等于60°小于或等于180°,就可以实现不同边长的正多边形的作图,而且每个边之间的夹角也是相等的。
通过上述分析,可以得出结论,通过利用尺规和数学原理,可以快速地实现正五边形和正多边形的作图,并且它们之间的边长都是相等的,各自独立的,这就是“尺规作正五边形”的作图原理。
总之,“尺规作正五边形”的作图原理是一种实用的作图方式,它一方面可以减少数学计算复杂度,另一方面,它还能够有效节省工作时间,比如在构图设计上有很大的用处。
正五边形尺规作图的画法及其他
正五边形尺规作图的画法及其他正五边形的画法圆内接正五边形的画法如下:1、作一个圆,设它的圆心为O;2、作圆的两条互相垂直的直径AZ和XY;3、作OY的中点M;4、以点M为圆心,MA为半径作圆,交OX于点N;5、以点A为圆心,AN为半径,在圆上连续截取等弧,使弦AB=BC=CD=DE=AN,则五边形ABCDE即为正五边形。
以上两种图形的作法运用了所求图形边长与已知的线段长度的关系,用构造直角三角形的方法作出与所求图形的边长相等的线段,从而作出整个图形,这是尺规作图中常用的一种方法——等线段法,即用已知图形的线段作出与所求图形边长相等的线段。
正多边形的尺规作图是大家感兴趣的.正三边形很好做;正四边形稍难一点;正六边形也很好做;正五边形就更难一点,但人们也找到了正五边形的直规作图方法.确实,有的困难一些,有的容易一些.正七边形的尺规作图是容易一些,还是困难一些呢?人们很久很久未找到作正七边形的办法,这一事实本身就说明作正七边形不容易;一直未找到这种作法,也使人怀疑:究竟用尺规能否作出正七边形来?数学不容许有这样的判断:至今一直没有人找到正七边形的尺规作图方法来,所以断言它是不能用尺规作出的.人们迅速地解决了正三、四、五、六边形的尺规作图问题,却在正七边形面前止步了:究竟能作不能作,得不出结论来.这个悬案一直悬而未决两千余年.17世纪的费马,就是我们在前面已两次提到了的那个法国业余数学家,他研究了形如Fi (i为右下角标)=22i(底数2指数2的i次幂)+1 的数.费马的一个著名猜想是,当n≥3时,不定方程xn+yn=zn没有正整数解.现在他又猜测Fi都是素数,对于i=0,1,2,3,4时,容易算出来相应的Fi:F0=3,F1=5,F2=17,F3=257,F4=65 537验证一下,这五个数的确是素数.F5=225+1是否素数呢?仅这么一个问题就差不多一百年之后才有了一个结论,伟大的欧拉发现它竟不是素数,因而,伟大的费马这回可是猜错了!F5是两素数之积:F5=641×6 700 417.当然,这一事例多少也说明:判断一个较大的数是否素数也决不是件简单的事,不然,何以需要等近百年?何以需要欧拉这样的人来解决问题?更奇怪的是,不仅F5不是素数,F6,F7也不是素数,F8,F9,F10,F11等还不是素数,甚至,对于F14也能判断它不是素数,但是它的任何真因数还不知道.至今,人们还只知F0,F1,F2,F3,F4这样5个数是素数.由于除此而外还未发现其他素数,于是人们产生了一个与费马的猜想大相径庭的猜想,形如22i+1的素数只有有限个.但对此也未能加以证明.当然,形如Fi=22i+1的素数被称为费马素数.由于素数分解的艰难,不仅对形如Fi=22i+1的数的一般结论很难做出,而且具体分解某个Fi也不是一件简单的事.更加令人惊奇的事情发生在距欧拉发现F5不是素数之后的60多年,一位德国数学家高斯,在他仅20岁左右之时发现,当正多边形的边数是费马素数时是可以尺规作图的,他发现了更一般的结论:正n边形可尺规作图的充分且必要的条件是n=2k(2的k次幂)或2k×p1×p2×…×ps,(1,2…s为右下角标)其中,p1,p2,…,ps是费马素数.正7边形可否尺规作图呢?否!因为7是素数,但不是费马素数.倒是正17边形可尺规作图,高斯最初的一项成就就是作出了正17边形.根据高斯的理论,还有一位德国格丁根大学教授作了正257边形.就这样,一个悬而未决两千余年的古老几何问题得到了圆满的解决,而这一问题解决的过程是如此的蹊跷,它竟与一个没有猜对的猜想相关连.正17边形被用最简单的圆规和直尺作出来了,而正多边形可以换个角度被视为是对圆的等分,那么这也相当于仅用圆规和直尺对圆作了17等分,其图形更觉完美、好看.高斯本人对此也颇为欣赏,由此引导他走上数学道路(他早期曾在语言学与数学之间犹豫过),而且在他逝后的墓碑上就镌刻着一个正17边形图案.高斯把问题是解决得如此彻底,以致有了高斯的定理,我们对于早已知道如何具体作图的正三边形、正五边形,还进而知道了它们为什么能用尺规作图,就因为3和5都是费马素数(3=F0,5=F1);对于很久以来未找到办法来作出的正七边形,乃至于正11边形、正 13边形,现在我们能有把握地说,它们不可能由尺规作图,因为7、11、13都不是费马素数;对于正257边形、正65 537边形,即使我们不知道具体如何作,可是理论上我们已经知道它们是可尺规作图的;此外,为什么正四边形、正六边形可尺规作图呢?因为4=22,因为6= 2· 3而 3=F0.。
圆内接正五边形的画法原理
圆内接正五边形的画法原理咱先得知道啥是圆内接正五边形哈。
就是在一个圆里头,画一个正五边形,这个五边形的五个顶点啊,都在这个圆的圆周上。
那怎么画呢?这里面可藏着不少小秘密呢。
咱先在圆里头画一条半径,这条半径可重要啦,就像是咱们盖房子的第一块砖。
然后啊,我们要把这个圆的圆心角给平均分成五份。
这圆心角是啥呢?就是以圆心为顶点的角啦。
那怎么把它分成五份呢?这就用到了一些数学小魔法。
我们知道整个圆的圆心角是360度,那要分成五份,每一份就是360除以5,等于72度啦。
这个72度的角就是我们画正五边形的关键角度哦。
接下来呢,我们就从刚才画的那条半径开始,以圆心为顶点,连续画五个72度的圆心角。
这就像是在圆里画了五个小扇子一样,可好玩了。
这些角的边和圆相交的点啊,就是正五边形的顶点啦。
那为啥这样画出来的就是正五边形呢?咱得好好唠唠这个理儿。
因为我们是把圆心角平均分成了五份,那对应的弧长也是相等的。
在同一个圆里,等弧所对的弦是相等的呀。
所以连接这些顶点得到的五条边就都相等啦。
而且呢,因为正五边形的五条边都相等,它的五个角也都相等。
这是为啥呢?你想啊,正五边形是一个很对称的图形,就像一个超级规则的小城堡。
从圆心到每个顶点的距离都是半径,这就保证了它的对称性。
再从角的方面看,因为相邻的两条边和圆心构成的三角形都是等腰三角形。
而且这些等腰三角形的顶角都是72度,根据等腰三角形的性质,底角就可以算出来啦。
那这些底角在正五边形里就是内角的一部分,经过计算就会发现正五边形的每个内角都是108度,五个角都相等呢。
所以啊,按照这样的方法画出来的就是圆内接正五边形啦。
这就像是我们按照一个神奇的配方,做出了一个超级规则又漂亮的图形小蛋糕。
正五边形的画法【范本模板】
正五边形尺规作图的画法及其他正五边形的画法圆内接正五边形的画法如下:1、作一个圆,设它的圆心为O;2、作圆的两条互相垂直的直径AZ和XY;3、作OY的中点M;4、以点M为圆心,MA为半径作圆,交OX于点N;5、以点A为圆心,AN为半径,在圆上连续截取等弧,使弦AB=BC=CD=DE=AN,则五边形ABCDE即为正五边形.以上两种图形的作法运用了所求图形边长与已知的线段长度的关系,用构造直角三角形的方法作出与所求图形的边长相等的线段,从而作出整个图形,这是尺规作图中常用的一种方法-—等线段法,即用已知图形的线段作出与所求图形边长相等的线段.正多边形的尺规作图是大家感兴趣的.正三边形很好做;正四边形稍难一点;正六边形也很好做;正五边形就更难一点,但人们也找到了正五边形的直规作图方法.确实,有的困难一些,有的容易一些.正七边形的尺规作图是容易一些,还是困难一些呢?人们很久很久未找到作正七边形的办法,这一事实本身就说明作正七边形不容易;一直未找到这种作法,也使人怀疑:究竟用尺规能否作出正七边形来?数学不容许有这样的判断:至今一直没有人找到正七边形的尺规作图方法来,所以断言它是不能用尺规作出的.人们迅速地解决了正三、四、五、六边形的尺规作图问题,却在正七边形面前止步了:究竟能作不能作,得不出结论来.这个悬案一直悬而未决两千余年.17世纪的费马,就是我们在前面已两次提到了的那个法国业余数学家,他研究了形如Fi (i为右下角标)=22i(底数2指数2的i次幂)+1 的数.费马的一个著名猜想是,当n≥3时,不定方程xn+yn=zn没有正整数解.现在他又猜测Fi都是素数,对于i=0,1,2,3,4时,容易算出来相应的Fi:F0=3,F1=5,F2=17,F3=257,F4=65 537验证一下,这五个数的确是素数.F5=225+1是否素数呢?仅这么一个问题就差不多一百年之后才有了一个结论,伟大的欧拉发现它竟不是素数,因而,伟大的费马这回可是猜错了!F5是两素数之积:F5=641×6 700 417.当然,这一事例多少也说明:判断一个较大的数是否素数也决不是件简单的事,不然,何以需要等近百年?何以需要欧拉这样的人来解决问题?更奇怪的是,不仅F5不是素数,F6,F7也不是素数,F8,F9,F10,F11等还不是素数,甚至,对于F14也能判断它不是素数,但是它的任何真因数还不知道.至今,人们还只知F0,F1,F2,F3,F4这样5个数是素数.由于除此而外还未发现其他素数,于是人们产生了一个与费马的猜想大相径庭的猜想,形如22i+1的素数只有有限个.但对此也未能加以证明.当然,形如Fi=22i+1的素数被称为费马素数.由于素数分解的艰难,不仅对形如Fi=22i+1的数的一般结论很难做出,而且具体分解某个Fi也不是一件简单的事.更加令人惊奇的事情发生在距欧拉发现F5不是素数之后的60多年,一位德国数学家高斯,在他仅20岁左右之时发现,当正多边形的边数是费马素数时是可以尺规作图的,他发现了更一般的结论:正n 边形可尺规作图的充分且必要的条件是n=2k(2的k次幂)或2k×p1×p2×…×ps,(1,2…s为右下角标) 其中,p1,p2,…,ps是费马素数.正7边形可否尺规作图呢?否!因为7是素数,但不是费马素数.倒是正17边形可尺规作图,高斯最初的一项成就就是作出了正17边形.根据高斯的理论,还有一位德国格丁根大学教授作了正257边形.就这样,一个悬而未决两千余年的古老几何问题得到了圆满的解决,而这一问题解决的过程是如此的蹊跷,它竟与一个没有猜对的猜想相关连.正17边形被用最简单的圆规和直尺作出来了,而正多边形可以换个角度被视为是对圆的等分,那么这也相当于仅用圆规和直尺对圆作了17等分,其图形更觉完美、好看.高斯本人对此也颇为欣赏,由此引导他走上数学道路(他早期曾在语言学与数学之间犹豫过),而且在他逝后的墓碑上就镌刻着一个正17边形图案.高斯把问题是解决得如此彻底,以致有了高斯的定理,我们对于早已知道如何具体作图的正三边形、正五边形,还进而知道了它们为什么能用尺规作图,就因为3和5都是费马素数(3=F0,5=F1);对于很久以来未找到办法来作出的正七边形,乃至于正11边形、正 13边形,现在我们能有把握地说,它们不可能由尺规作图,因为7、11、13都不是费马素数;对于正257边形、正65 537边形,即使我们不知道具体如何作,可是理论上我们已经知道它们是可尺规作图的;此外,为什么正四边形、正六边形可尺规作图呢?因为4=22,因为6= 2· 3而 3=F0.。
正五边形的画法
尺规作图的简介尺规作图是指用没有刻度的直尺和圆规作图。
一把没有刻度的直尺看似不能做什么,画一个圆又不知道它的半径,画线段又没有精确的长度。
其实尺规作图的用处很大,比如单用圆规找出一个圆的圆心,量度一个角的角度,等等。
运用尺规作图可以画出与某个角相等的角,十分方便。
尺规作图是起源于古希腊的数学课题。
只使用圆规和直尺,并且只准许使用有限次,来解决不同的平面几何作图题。
平面几何作图,限制只能用直尺、圆规。
在历史上最先明确提出尺规限制的是伊诺皮迪斯。
他发现以下作图法:在已知直线的已知点上作一角与已知角相等。
这件事的重要性并不在于这个角的实际作出,而是在尺规的限制下从理论上去解决这个问题。
在这以前,许多作图题是不限工具的。
伊诺皮迪斯以后,尺规的限制逐渐成为一种公约,最后总结在《几何原本》之中。
若干著名的尺规作图已知是不可能的,而当中很多不可能证明是利用了由19世纪出现的伽罗华理论。
尽管如此,仍有很多业余爱好者尝试这些不可能的题目,当中以化圆为方及三等分任意角最受注意。
数学家Underwood Dudley曾把一些宣告解决了这些不可能问题的错误作法结集成书。
■尺规作图的基本要求·它使用的直尺和圆规带有想像性质,跟现实中的并非完全相同:·直尺必须没有刻度,无限长,且只能使用直尺的固定一侧。
只可以用它来将两个点连在一起,不可以在上画刻度。
·圆规可以开至无限宽,但上面亦不能有刻度。
它只可以拉开成你之前构造过的长度。
■五种基本作图·作一个角等于已知角·平分已知角·作已知直线的垂直平分线·作一条线段等于已知线段·过一点作已知直线的垂线■尺规作图公法以下是尺规作图中可用的基本方法,也称为作图公法,任何尺规作图的步骤均可分解为以下五种方法:·通过两个已知点可作一直线。
·已知圆心和半径可作一个圆。
·若两已知直线相交,可求其交点。
尺规作图正五边形原理
尺规作图正五边形原理
正五边形作图原理,也叫做“正五边形布线法”,是在机械设计中常用的一种作图原理,它的主要原理是利用直尺和角尺分别在水平和垂直方向上反复作画,最终得到一个正五边形的外形图。
正五边形作图原理的基本步骤如下:
1. 在一张空白纸上,用直尺和角尺绘制出正五边形的中心点。
2. 用直尺将正五边形的中心点分割成五个分段,分别表示正五边形的五条边。
3. 用角尺在水平和垂直方向上反复画出正五边形的五条边,最终得到正五边形的外形图。
正五边形作图原理的优点:
1. 正五边形作图原理简单易懂,能够帮助设计者快速搭建出正五边形的外形图。
2. 正五边形作图原理可以有效地提高设计效率,节省了设计时间和精力。
3. 正五边形作图原理可以在设计过程中,更加精确地掌握正五边形的各项尺寸,从而更加完美地实现设计效果。
正五边形作图原理的应用:正五边形作图原理可以应用于机械设计、模具设计、机械零件设计等领域,帮助设计者快速搭建出正五边形的外形图。
此外,正五边形作图原理还可以用于绘制其他正多边形的外形图,如正六边形、正七边形等。
总的来说,正五边形作图原理是一种简单实用的作图方法,可以提高设计效率,更加精确地掌握正五边形的各项尺寸,从而更加完美地实现设计效果。
正5,15,16,17边形详细的画法
[正五边形的画法](1)已知边长作正五边形的近似画法如下:①作线段AB等于定长l,并分别以A,B为圆心,已知长l为半径画弧与AB的中垂线交于K.③以C为圆心,已知边长AB为半径画弧,分别与前两弧相交于M,N.④顺次连接A,B,N,C,M各点即近似作得所要求的正五边形.(2) 圆内接正五边形的画法如下:①以O为圆心,定长R为半径画圆,并作互相垂直的直径MN和AP.②平分半径ON,得OK=KN.③以K为圆心,KA为半径画弧与OM交于H, AH即为正五边形的边长.④以AH为弦长,在圆周上截得A,B,C,D,E各点,顺次连接这些点即得正五边形.3.民间口诀画正五边形口诀介绍:"九五顶五九,八五两边分."作法:画法:1.画线段AB=20mm,2.作线段AB的垂直平分线,垂足为G.3.在l上连续截取GH,HD,使GH=5.9/5*10mm=19mm,HD=5.9/5*10mm=11.8mm4.过H作EC⊥CG,在EC上截取HC=HE=8/5*10mm=16mm,5.连结DE,EA,EC,BC,CD,五边形ABCDE就是边长为20mm的近似正五边形.这里提供以下两种作法仅供参考:1、已知边长作正五边形的近似画法如下:(1)作线段AB等于定长l,并分别以A、B为圆心,已知长l为半径画弧与AB的中垂线交于K. (2)以K为圆心,取AB的2/3长度为半径向外侧取C点,使CH=2/3AB (3)以C为圆心,已知边长AB为半径画弧,分别与前两弧相交于M、N. (4)顺次连接A、B、N、C、M各点即近似作得所要求的正五边形.2、圆内接正五边形的画法如下:(1)以O为圆心,定长R为半径画圆,并作互相垂直的直径MN和 AP. (2)平分半径ON,得OK=KN. (3)以 K为圆心,KA为半径画弧与 OM交于 H, AH即为正五边形的边长. (4)以AH为弦长,在圆周上截得A、B、C、D、E各点,顺次连接这些点即得正五边形.尺规做法如下:1.做正方形ABCD的外接圆圆O。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
用几何画绘制正五边形并不复杂
在学习几何的过程中,我们不可避免的会遇到正五边形。
正五边形是五条长度相等的线段,首尾相连构成的一个封闭形状且内角相等的平面图形。
现在很多的老师在使用多媒体教程的过程中,都会用几何画板来绘制正五边形辅助教程。
但是具体这么绘制一些几何画板的新手用户还不是很熟悉,下面就来给大家分享一下用几何画绘制正五边形并不复杂?
具体的操作步骤如下:
步骤一新建参数n=5。
打开几何画板,点击上方“数据”菜单,在其下拉菜单选择“新建参数”命令,在弹出的对话框修改参数名称为n,数值改为5(不要小数的)。
在几何画板中新建参数n示例
步骤二绘制五边形的中心和起点。
选择左侧工具箱“点工具”,在画板空白处任意绘制一点A,作为五边形的中心;再绘制另外一个点B,作为五边形一个边的起点。
绘制五边形的中心A和起点B示例
步骤三计算数值360°÷n。
点击上方“数据”菜单,在其下拉菜单选择“计算”命令,在弹出的对话框计算数值,得到360°÷n的值。
计算数值360°÷n示例
步骤四对点B执行旋转变换。
选择“移动箭头工具”,双击点A,标记旋转中心;选中点B,执行“变换”——“旋转”命令,角度点击上步的计算值,这样就出现新的点B’,构造线段BB’,如下图所示。
点B执行旋转变换示例
步骤五只选中B和参数n,按住shift键,执行“变换”——“深度迭代”命令,在初象高亮区内点击点B’,然后点击“迭代”按钮,完成五边形绘制。
执行迭代构造正五边形示例
以上给大家详细介绍了用几何画绘制正五边形并不复杂,主要在于让大家掌握几何画板迭代功能的灵活运用。
利用迭代还可以构造很多几何图形和精美图案,在前面的教程中都有介绍。
如果你对之前学习的用反射命令构造正五边形有疑问,可参考相关的几何画板教程。