600 MW超临界锅炉带循环泵启动系统的控制设计与运行(正式版)
600MW超临界机组锅炉顺序控制系统设计
序控制功能设计 中采用 了分级控制的结构 。 给水系统是指除氧器 与锅炉省煤器之间的设备 、 管路等 。因为超 临界机组锅炉都是直流炉 。 而在直流炉 中没有汽包将给水控制系统与 汽温控制系统和燃烧控制 系统 隔离开 。 因此其给水系统也有别于其他 型式 的锅炉 在实际生产 中, 给水系统采用单元制 , 中包括 : 其 给水泵 系统及气 管道 : 给水泵最小 流量再 循环装置 ; 再热器减 温水管道和汽 轮机高压旁路减温水管道 ; 高压加热器系统 ; 给水主路与旁路切换 ; 过 热器减温水管道 。 加热器 的疏水指 回热抽汽在 加热器 内放热后形成的凝结水 。 疏水 系统的作用是 : 疏放与 回收各级加热器 的抽汽凝结 水 ; 保证加热器水 位 在正 常范 围内. 防止汽轮机进水 。而加热器管 系和壳体 中的不凝结 气体会 增加传热热阻 , 增大 出 口端差 , 对设备造成腐蚀 , 需及时排 出。 放气系统的功能是 : 从加 热器和除氧器 中排 出不凝 结 的气体 , 以提高
1 顺序 控 制 系统
顺 序控 制系统 (e un e o t l yt 简 称 S S , S q ec n o Ss m, C r e C ) 是指 根据预 先拟定 的步骤 、 条件或时间 . 对生产 过程 中的机组设备 和系统 自动地 次进行一系列操作 . 以改变设备和系统的工作状态 ( 如风机 的启停 、 阀门的开关等) 其只与设备 的启动 、 . 停止或开 、 管等状态有关1 2 ] 。采用 顺序控制后 . 对一个热力系统和辅机 的启 、 只需按下一个钮 , 停 则热 力 系统 的辅机和相关设备按 安全启 、停规定 的顺 序和时 间间隔 自动动 作 . 行操 作人员只需观察各 程序步骤执行 的情况 , 运 从而减少 了大量 复杂 的操作 同时 . 由于在顺序控制系统设计 中, 各个设备的动作都设 置了严密 的安全联锁条件 . 无论是 自 动顺序操作 , 是单 台设备手动 , 还 只要设 备的动作条件不满 足 . 设备将被 闭锁 . 从而避免 了运行 操作人 员的误操作 . 保证 了设备 的安全运行。
600MW超临界直流机组启动系统
600MW超临界直流机组启动系统摘要:超临界直流机组采用带有循环泵的启动系统,其主要特点是采用给水泵与循环泵并联运行的方式,提高了水冷壁在低负荷下运行的可靠性和经济性以及机组对负荷变化的跟踪性能。
对运行中出现的各种复杂过程控制较为灵活。
关键词:超临界直流启动系统HG-1900/25.4-YM3 型锅炉是哈尔滨锅炉厂有限责任公司利用英国三井巴布科克能源公司(MB)的技术支持,进行设计、制造的。
锅炉为一次中间再热、超临界压力变压运行带内置式再循环泵启动系统的本生(Benson)直流锅炉。
启动系统中设置有循环泵,通过循环泵建立蒸发系统的工质循环,保证水冷壁在低负荷下有良好冷却效果所需的最小流量。
给水经省煤器和水冷壁加热后,形成汽水混合物,流入汽水分离器,经汽水分离后的热水被循环泵重新送入省煤器。
采用循环泵可减少工质流失及热量损失,提高机组的启动速度和对跟踪负荷变化的适应性能,节省启动燃料,提高电厂的经济性,同时可减少启动时对锅炉的热冲击。
一、启动系统的功能超临界直流锅炉设置启动系统的主要目的就是在锅炉启动、低负荷运行(蒸汽流量低于炉膛所需的最小流量时)及停炉过程中,通过启动系统建立并维持水冷壁内的最小流量,以保护炉膛水冷壁管,同时满足机组启、停及低负荷运行时对蒸汽流量的要求。
另外,由于蒸汽经过顶棚过热器出口至4个分离器汇合后再分配至后包墙,有利于顶棚过热器的左右温度偏差补偿,也有利于蒸汽的平衡分配,保证蒸汽流动的均衡。
超临界直流锅炉对给水品质有严格的要求,由于直流炉没有定排系统,水质必须在进入锅炉前达到要求,在锅炉点火前,给水品质必须达到标准。
因此启动系统的另一个作用就是在锅炉冷态洗时,将冲洗水通过扩容器疏水箱排人地沟,当水质符合要求后回收至凝汽器。
锅炉冷态启动时,先要进行系统注水、冷态清洗,清洗后的炉水通过大溢流阀排出系统外,水质合格后,关闭大溢流排污阀。
储水箱水位正常后,启动循环泵(首次启动要点动排气),锅炉点火,进行热态清洗,通过炉水质量来确定是否升温升压。
宁德600MW超临界锅炉运行说明书
5
3、蒸汽吹管
3.1 概述 新建电站锅炉投运前必须进行过热器、再热器及其管道系统的蒸汽吹扫。目的是去除在 制造和安装期间产生的任何杂质(磨屑、金属切割物、焊渣、轧制氧化皮等) 。 3.2 吹管范围 1)从分离器到末级过热器出口集箱的过热器系统 2)主蒸汽管道 3)高压旁路管道 4)冷段再热器管道 5)从冷段再热器入口集箱到热段再热器出口集箱的再热器系统 6)热段再热器管道 7)小汽轮机进汽管道及其它管道 3.3 吹管系数 为了达到有效的吹扫,吹管时被吹扫表面所受的作用力必须大于锅炉最大连续出力 (BMCR)下蒸汽对表面的作用力。作用力越大吹管越有效。吹管系数定义为吹扫工况和 BMCR 工况下蒸汽动量之比。 “火电机组启动蒸汽吹管导则”规定,吹管时应保证被吹扫系统中各处 的吹管系数均应大于 1。 3.4 两种吹管方式及其比较 蒸汽吹管有降压吹管和稳压吹管两种方式。 国内直流锅炉通常采用稳压吹管方式。以内置式汽水分离器出口压力为吹管压力,控制 在 5~5.5MPa。 采用动量计算的方法,在保证被吹扫系统各段吹管系数 K>1 的前提下,得出在选定吹管 蒸汽压力下的吹管蒸汽流量。 稳压吹管操作简便,运行工况稳定,受热面承受较小的热冲击,且可以油煤混烧而节省 了燃油,降低了吹管成本。 稳压吹管每次吹管的持续时间取决于储备的除盐水量。 稳压吹管锅炉的输入热负荷较高, 为此要注意控制炉膛出口烟温,防止过热器和再热器超温。 降压吹管多用在汽包锅炉上。直流锅炉水容积和热容量较小,降压吹管每次持续时间不 到 1 分钟,必须采用价格昂贵的快速启闭的临冲门。此外,吹管时要求锅炉熄火,循环泵停 运,操作繁琐。
4
2.7 清洗流速和水容积 表 1 的数据是基于 HG-1900/25.4-YM4 型锅炉的设计。 清洗水容积还应考虑锅炉本体外的 一些设备,如除氧器、清洗水箱、临时管道等,适当增加一些余量。 表1 部件 名称 主给水管道 省煤器 省煤器下水管 螺旋管水冷壁 垂直管水冷壁 折焰角水平烟道侧墙 启动分离器 贮水箱 溢流管 再循环管 材质 WB36 SA-210C SA-106C SA-213T12 SA-213T12 SA-213T12 WB36 WB36 SA-210C WB36 清洗流速和水容积 管径 mm φ508×45 φ44.5×6 φ559×80 φ38×6.5 φ31.8×5.5 φ44.5×6.1 φ610×65 φ610×65 φ324×55 φ457×60 水容积 3 m 68
600MW机组锅炉启动系统
600MW机组锅炉启动系统施晶一、概述直流锅炉靠给水泵的压力,使锅炉中的水、汽水混合物和蒸汽一次通过全部受热面。
超临界直流锅炉在启动前必须由锅炉给水泵建立一定的启动流量和启动压力,强迫工质流经受热面。
由于直流锅炉没有汽包作为汽水分离的分界点,水在锅炉管中加热、蒸发和过热后直接向汽轮机供汽。
因此,直流锅炉必须设置一套特有的启动系统,以保证锅炉启、停过程中或低负荷运行过程中水冷壁的安全和正常供汽。
1、启动压力直流锅炉的启动压力指锅炉启动前在水冷壁系统中建立的初始压力,它的选取与下列因素有关:(1)、受热面的水动力特性。
随着压力的提高,能改善或避免水动力不稳定,减轻消除管间脉动。
(2)、汽水膨胀现象。
启动压力越高,汽水比体积差越小,汽水膨胀越小,可以缩小启动分离器的容量。
(3)、给水泵的电耗。
启动压力越高,启动过程中给水泵的电耗越大。
为了水动力稳定,避免脉动,希望启动压力高,但从减少给水泵电耗方面考虑,启动压力又不宜过高。
由于我厂锅炉采用了螺旋管圈水冷壁,启动压力对水动力影响很小,因此可选用零压力启动。
我厂锅炉启动系统采用了足够容量的排放阀(3A阀),可满足汽水膨胀时的排放控制。
2、启动流量直流锅炉的启动流量直接影响锅炉启动的安全性和经济性。
启动流量越大,工质流经受热面的质量流速越共,对受热面的冷却,改善水动力特性有利,但工质损失及热量损失也相应增加,同时启动系统的设计容量也要加大。
但流量过小,受热面冷却和水动力稳定就得不到保证,因此,选用启动流量的原则是在保证受热面得到可靠冷却和工质流动稳定的条件下,尽可能选择得小一些。
我厂锅炉启动流量为35%BMCR。
3、汽水膨胀现象直流锅炉的启动过程中工质加热、蒸发和过热三个区段是逐步形成的。
启动初期,分离器前的受热面都起加热水的作用,水温逐渐升高,而工质相态没有发生变化,锅炉出来的是加热水,其体积流量基本等于给水流量。
随着燃料量的增加,炉膛温度提高,换热增强,当水冷壁内某点工质温度达到饱和温度时,开始产生蒸汽,但在开始蒸发点到水冷壁出口的受热面中的工质仍然是水。
600MW超临界机组内置式启动系统介绍
济性指标、机组的操作运行手段、机组的检修维护
制度都将是影响启动系统配置的主要因素。只有充 分考虑这些因素之后才能够对启动系统及其功能做 出合理的优化设计。
2 内置式启动系统分类
内置式启动系统可以分为扩容式( 大气式,非
第5 期
张晓玲等: 0 MW超临界机组内置式启动系统介绍 6
大气式两种) 启动系统、带启动疏水热交换器的启 动系统以及带再循环泵的启动系统。 大气扩容式启动系统是将机组启动期间汽水分 离器中的疏水先进行扩容器扩容,扩容后的二次蒸 汽直接排人大气, 二次疏水由疏水泵直接打人凝汽 器。这种启动方式低负荷运行能力以及适应机组频 繁启动的能力均较差, 会损失部分工质以及全部热 量。带启动疏水热交换器的启动系统是在高压加热 器与省煤器之间增加一个启动疏水热交换器。汽水 分离器内的疏水首先对高压给水进行加热以提高给 水温度,然后被排人除氧器或凝汽器中。该类系统 适应机组低负荷及频繁启动的能力均较高,但由于 涉及到的设备较多,系统复杂, 运行操作也较为烦 琐,应用较少。上述两类启动系统均没有配置启动 再循环泵, 锅炉强制流动的动力均来 自 机组配置的 电动给水启动泵。 带再循环泵的启动系统是超临界直流锅炉较常 配置的一种系统。该系统结合锅炉冷态启动和热态 启动的特点, 通过设置单独的启动循环泵实现不同 阶段对工质和热量最大程度的回收利用。
升温升压到汽水分离器内只有干蒸汽通过时启动系 统工作结束,此时再循环泵及水位控制阀均关闭, 锅炉进人直流运行状态。 带再循环泵的启动系统在锅炉整个启动运行过 程中均不脱离系统,在启动初期和低负荷运行阶段 均可及时切人,保障了超临界直流锅炉启动的安 全。目 前国外大部分机组均采用此类启动系统,国 内几大主要的锅炉制造厂家也已经采纳了该系统作 为锅炉的启动系统。
600 MW超临界直流锅炉不投运锅炉循环泵启动控制
P a t n lz si e t h t r meh d o i rwih fr e ic l t n sa tp s se whc sic p be o ln ,a ay e n d p h t e sa t to fbol t o c d cr uai t ru y tm ih i n a a l f e o e a ln ic ltn u e a s ffu t r p s ste me s r ss c swok n d u r c cewi r i n bi gc ru ai gp mp b c u e o a l,p o o e h a u e u h a r i g me i m e y l t d an h l h tn ,fe trr d c i , i u p rto n ev l t . e i st e fa i i y o s a u e n f s a k e dwae e u t n olg n o e ain byi tr asec,v rfe h e sblt fte eme s r si a o i i h
浙 江 电 力
3 2
Z [ IN L C R C P WE H J G E E T I O R E A
21 第 1 0 0年 0期
60MW 超临界直流锅炉不投运锅 炉 0 循环泵 启动控制
李 彦 猛 ,许 五 洲
( 江 浙 能 兰溪 发 电有 限 责 任公 司 ,浙 江 浙
摘
组启 动 及 低 负 荷 运 行 的要 求 。采 用 锅 炉 循 环 泵 可
减 少 工 质 损 失 及 热 量 损 失 ,提 高 电 厂 的 经 济 性 ,
同 时 可减 少 启 动 时 对 锅 炉 的热 冲击 。兰 溪 发 电厂
600MW超临界机组锅炉启动系统特点与运行控制研究
600MW超临界机组锅炉启动系统特点与运行控制研究发表时间:2018-05-11T16:12:47.447Z 来源:《电力设备》2017年第36期作者:令狐绍伟[导读] 摘要:文章基于600MW超临界机组介绍其汽包锅炉与直流锅炉启动系统的特点,并重点分析锅炉启动前的水冲洗阶段、碱洗和酸洗阶段、热态冲洗和吹管阶段以及干湿态转换阶段的运行控制措施。
(贵州兴义电力发展有限公司贵州省兴义市 562400)摘要:文章基于600MW超临界机组介绍其汽包锅炉与直流锅炉启动系统的特点,并重点分析锅炉启动前的水冲洗阶段、碱洗和酸洗阶段、热态冲洗和吹管阶段以及干湿态转换阶段的运行控制措施。
关键词:600MW超临界机组;锅炉;启动系统1引言随着我国国民经济的发展,人们对于电力能源的需求量不断增加,而且随着能源紧缺和环境恶化问题的不断加剧,我国针对电力行业也加速了能源结构调整和电力企业改革。
对于燃煤火电厂来说,目前主要的发展方向就是发展大容量的超临界以及超超临界机组,其较强的负荷适应性和较高的经济性,符合我国建设资源节约型和环境友好型社会的要求。
超临界直流炉和汽包炉在结构、运行特性和控制方式上有着较大的不同,需要对600MW超临界机组锅炉启动系统特点和运行控制进行研究和讨论。
2 600MW超临界机组锅炉启动系统特点直流锅炉的构造与汽包锅炉不同,其构造中没有汽包的存在,其炉内工质的流动主要依靠水泵的压力作用,由于没有汽包的存在,炉内的水、汽水混合物以及蒸汽会在此压力作用下一次性全部通过受热面。
所以在直流锅炉点火启动时,为了确保启动安全,必须要保证炉膛水冷壁管内的流量应大于最小流量值,从而确保流动的稳定性和确保水冷壁管壁温度在允许的范围之内。
此外,一旦锅炉在启动过程中,以及运行中的产汽量低于最小流量值时,为了防止多余的水进入过热器系统中,还需要在过热器之前增加一个启动旁路系统中将多余的水排掉。
综上所述,对于直流锅炉来说,其启动系统的主要作用就是在锅炉启停以及低负荷的运行过程中,为了确保炉膛内的流量并对水冷壁管进行保护,同时还需要满足机组启停以及低负荷运行时对蒸汽流量的要求。
600MW超临界锅炉课程设计正文
第1章设计任务书设计题目:600MW等级超临界压力煤粉锅炉原始资料如下:锅炉蒸发量:D sh=1913t/h过热蒸汽压力:p sh''=25.4MPa(表压)过热蒸汽温度:t sh''=571℃再热蒸汽流量:D rh=1586t/h再热蒸汽入口压力:p rh'=4.35MPa(表压)再热蒸汽入口温度:t rh'=310℃再热蒸汽出口压力:p rh''=4.16MPa(表压)再热蒸汽出口温度:t rh''=569℃给水压力:p fw=29.35MPa给水温度:t fw=282℃周围环境温度:t ca=20℃排烟温度:v exg=126℃制粉系统:直吹式、中速磨(1)燃料名称:神府东胜煤(2)煤的收到基成分(%):C ar=57.33, H ar=3.62,O ar=9.94, N ar=0.70,S ar=0.41, A ar=15.00, M ar=13.00(3)煤的干燥无灰基挥发分:V daf=33.64%(4)煤的收到基低位发热量:Q net,ar=21805kj/kg(5)灰熔点:DT、ST、FT>1500℃第2章燃料的数据校核和煤种判别2.1 燃料的数据校核计算列于表2-1。
表2-1 燃料的数据校核和煤种判别2.2 煤种判别:由燃料特性得知:因为V daf =33.64% ,10%<V daf<37%所以煤种为烟煤第3章锅炉整体布置的确定3.1 炉整体的外型--选Π型布置选择Π形布置的理由如下:(1)锅炉排烟口在下方送、引风机及除尘器等设备均可布置在地面,锅炉结构和厂房较低,烟囱也建在地面上;(2)对流竖井中,烟气下行流动便于清灰,具有自身除尘的能力;(3)各受热面易于布置成逆流的方式,以加强对流换热;(3)机炉之间的连接管道不长。
3.2 受热面的布置在炉膛内壁面,全部布置水冷壁受热面,其他受热面的布置主要受蒸汽参数、锅炉容量和燃料性质的影响。
600Mw超临界无炉水循环泵锅炉启动初期汽温控制方法
每 台炉 共 配 有 24个 日立一 巴布 科 克 公 司 (BHK)生 产 的 HT-NR3 型旋 流 煤粉 燃烧 器 ,与 之 配套 的是 6台 ZGM1 13GZ型 磨 煤机 ,采 用无 炉水 循环 泵 、带疏 水 扩容 器 的启 动 系统 ,机 组 启动 初 期 的主 汽 温度 难 以控制 且 易超温 。
(1)设备系 统 :在机 组启 动 初期 ,最 小给 水流 量 410 t/h,由于 没
(2)加装 辅助 减 温水 系 统 :在 高加 出 口增 加 一路辅 助 减温 水源
有循环 泵 ,汽 水分 离 器分 离 出来 的饱 和 水 携带 的热 量 没有 在 锅 炉 接 至减 温 水 母管 ,可 以提 高减 温 水 至 过热 器 压 差 ,提 高减 温 水 量 。
在 800 1 000 t/h,若 汽温 还 是偏 高 ,可 适 当降 低总 风 量 ,但总 风量
低 限 应 术30%。未 投 入 燃 烧 器 的 二 次 风 箱 调 节挡 板 的 开 度 保 持
15% ̄20%、外 二 次风 挡板 开度 在 15%,投 入燃 烧 器 的二 次 风箱 调
节 挡板 的开度 根据 燃料 量调 节 并保 持 术0.2 kPa的风压 、外 二 次风
挡 板 开度 40% ̄60%,燃尽 风保 持 50%的开度 。另外尽 量 减少 一次
,;
风量 ,降低 一 次风速 ,提 高 一次 风温 。
图 1 锅 炉 启 动 系 统 图
(5)控 制燃 料 量 的投 入速 率 :燃 料量 的投入 速率 以控制 主 汽温
(2)减温 水 的影 响 :过 热器 的 蒸汽 温度 由水煤 比和 两级 喷水 减 度 变化 速率 为 依据 ,主汽 温度 变 化速 率 牛 1.5℃/r ain。 当炉 膛温 度
超临界600MW锅炉系统及运行的介绍
锅炉设有膨胀中心,并在需监视膨胀的位置合理布置 装设有膨胀指示器,膨胀指示器的装设方便运行工况巡视 检查。膨胀指示器主要布置在水冷壁下集箱,省煤器下集 箱、尾部包墙下集箱及集中下降管等需要对膨胀进行监视 的部位,数量为30个。
锅炉下部水冷壁采用螺旋管圈,在各种负荷下均有足 够的冷却能力,并能有效地补偿沿炉膛周界上的热偏差, 水动力特性稳定;采用4只启动分离器,壁厚较薄,温度 变化时热应力小,适合于滑压运行,具有良好的变压、调 峰和启动性能,同时提高了机组的效率,延长了汽机的寿 命。
4.4 锅炉启动系统
锅炉启动系统配置带再循环泵的内置汽水分离器。系统主 要由下列设备组成。 1) 四只汽水分离器及其引入与引出管系统; 2) 一只立式储水箱; 3) 与储水箱连接的管道、阀门及流量测量装置; 4) 通往扩容器的大、小溢流管及两只水位调节阀及截止阀 ; 5) 热备用管,装有流量测量装置; 6) 省煤器入口到循环泵入口管道的冷却管,流量约为泵 的1-2%; 7) 扩容器;
4.2.2
煤粉旋流燃烧器(LNASB)
本锅炉配置三井巴布科克公司(Mitsui Babcock)的低 NOx轴向旋流煤粉燃烧器(Low NOx Axial Swirl Burner – LNASB),结构见下图。燃烧方式采用前后墙对冲燃烧。前、 后墙上各布置3层燃烧器,每层各有5只LNASB燃烧器,总共 30只。在最上层煤粉燃烧器上方,前后墙各布置1层燃尽风 口,每层布置5只,共10只燃尽风口。一次风喷口采用了防 止烧坏和磨损的合金材料SUS310或1Cr20Ni14Si2制造,燃 烧器内部与煤粉接触部位都敷设了耐热的高铬耐磨材料。 燃烧器间距为3622.5m,燃烧器与侧墙的距离为3848.5m。 点火方式为二级点火,高能电火花点燃轻柴油,轻柴油 火焰点燃煤粉。油枪采用简单机械雾化。
600MW超临界火电机组集控运行规程
600MW超临界火电机组集控运行规程华北电力大学2005年目录1机组设备慨述1.1锅炉设备概述1.2汽机设备概述1.3发电机设备概述2机组设备规范2.1锅炉设备规范及燃料特性2.1.1锅炉设备规范2.1.2锅炉汽水要求2.1.3燃煤成分及特性2.1.4燃料灰渣特性2.1.5点火及助燃油特性(#0轻柴油)2.1.6安全门参数2.1.7炉受热面有关技术规范2.1.8燃烧设备2.2汽机设备规范2.2.1主机设备规范2.2.2汽机主要设计参数2.2.3汽机各级抽汽参数2.2.4蒸汽品质2.2.5旁路系统设备规范2.3发电机及励磁设备规范2.3.1 发电机规范2.3.2 发电机励磁参数2.3.3 发电机冷却介质及油系统规范2.3.4 发电机电流互感器规范2.3.5发电机电压互感器规范2.3.6发电机避雷器设备规范3机组主要控制系统3.1炉膛安全监察控制系统(FSSS)主要功能3.2顺序控制系统(SCS)3.3模拟量控制系统(MCS)3.3.1模拟量控制系统主要功能3.3.2机组协调控制系统运行方式3.3.3子控制回路自动条件3.3.4机组运行方式操作3.4数字电液调节系统(DEH)3.4.1主要功能3.4.2自动调节系统3.4.3其它调节3.4.4OPC保护系统3.4.5阀门管理3.4.6运行方式选择3.5数据采集系统(DAS)3.6ECS4机组主要保护4.1.汽机主要保护4.1.1汽轮机超速及自动跳机保护4.1.2汽轮机主要联锁保护4.1.3调节级叶片保护4.2锅炉主要保护4.2.1锅炉MFT动作条件4.3电气主要保护4.3.1发变组保护A柜配置(许继)4.3.2发变组保护B柜配置(许继)4.3.3发变组保护C柜配置(南自) 4.3.4发变组保护D柜配置(南自)4.3.5发变组保护E柜配置(南自)4.3.6动作结果说明5机组启动5.1启动规定及要求5.1.1启动要求5.1.2机组禁止启动条件5.1.3机组主要检测仪表5.1.4机组启动状态划分5.2启动前联锁、保护传动试验5.3启动前检查准备5.3.1启动前准备5.3.2系统投入5.4机组冷态启动5.4.1炉前给水管路清洗及锅炉上水清洗5.4.2锅炉点火前吹扫准备5.4.3锅炉点火前吹扫5.4.4锅炉点火5.4.5锅炉升温升压5.4.6汽轮机冲转前准备5.4.7汽机冲车、升速、暖机5.4.8并网前进行以下试验5.4.9升速注意事项5.4.10发电机升压注意事项5.4.11发电机并列规定及注意事项5.4.12发电机并列条件5.4.13发电机220KV侧断路器自动准同期并列步骤5.4.14发电机220KV断路器手动准同期并列步骤5.4.15发电机手动准同期并列注意事项5.5机组并列后的检查和操作5.5.1机组并列后的检查5.5.2机组30MW负荷升至180MW负荷5.5.3180MW负荷升至300MW负荷5.5.4300MW负荷升至450MW负荷5.5.5450MW负荷升至600MW负荷5.5.6机组升负荷过程中注意事项5.5.7机组冷态启动的其他注意事项5.6机组热态启动5.6.1热态启动参数选择5.6.2机组冲车条件5.6.3机组热态(温态)启动步骤5.6.4机组热态(温态)启动注意事项6机组正常运行及维护6.1机组正常运行参数限额6.1.1锅炉运行的报警值和跳闸值6.1.2汽机报警及停机值6.1.3发电机系统运行限额6.2机组负荷调整6.2.1机组运行方式说明6.2.2机组正常运行的负荷调整6.2.3AGC方式下的负荷调整6.3运行参数的监视与调整6.3.1机组给水的监视与调整6.3.2主、再热蒸汽温度的监视与调整6.3.3锅炉燃烧调整6.3.4二次风的调整6.3.5炉膛压力的调整6.3.6汽压调整6.3.7发电机系统主要参数的监视与调整6.3.8发电机氢气系统监视与调整6.3.9电机冷却系统的监视与调整6.4定期工作及试验6.5非设计工况运行6.5.1机前压力6.5.2主再热蒸汽温度6.5.3符合下列条件,高加退出运行可带100%负荷运行6.5.4同时切除高加,一段抽汽压力超限最高带负荷570MW 6.5.5低加解列的规定7机组停止运行7.1机组停运前的准备7.1.1机组停运前的准备7.2机组正常停运7.2.1确认机组运行方式7.2.2机组减负荷至240MW7.2.3机组减负荷至30MW7.2.4停机7.2.5停炉7.2.6汽机惰走7.3滑参数停机7.3.1滑停过程中有关参数控制7.3.2机组负荷由600MW减至450MW7.3.3机组负荷由450MW减至300MW7.3.4机组负荷由300MW减至180MW7.3.5机组负荷由180MW减至60MW7.3.6机组负荷由60MW减至18MW7.3.7解列停列(同正常停机操作)7.3.8滑参数停机的注意事项7.4机组停运锅炉抢修7.4.1降温降压7.4.2解列停机7.4.3停炉后的自然冷却7.4.4停炉后的快速冷却8机组停运后的保养8.1锅炉停运后的保养8.1.1锅炉停运后的保养方法8.1.2热炉放水法8.1.3锅炉湿法保养8.1.4锅炉充氮气干式保养8.2汽机停运后的保养8.2.1汽机停机不超过一周的保养8.2.2汽机停机超过一周的保养8.3发电机停运后的保养8.3.1发电机停运后的保养方法9事故处理9.1事故处理的原则9.1.1事故处理的导则9.1.2机组紧急停机的条件及处理9.1.3机组申请停机的条件9.2机组综合性故障9.2.1机组甩负荷处理9.2.250%RB9.2.3厂用电中断9.2.4厂用电部分中断9.3锅炉异常处理9.3.1水冷壁、省煤器、过热器、再热器管损坏9.3.2空预器、尾部烟道着火9.3.3炉前油系统故障处理9.3.4主蒸汽温度异常9.3.5再热蒸汽温度异常9.3.6锅炉给水流量低9.3.7锅炉汽水分离器出口温度高9.4汽机异常运行及常规事故处理9.4.1汽轮机水冲击9.4.2汽轮发电机组振动异常9.4.3汽轮机轴向位移增大9.4.4凝汽器真空降低9.4.5周波不正常9.4.6润滑油系统异常9.4.7抗燃油系统故障9.4.8油系统着火9.4.9DEH异常9.5发电机异常及事故处理9.5.1发电机异常的处理原则9.5.2发电机运行参数异常9.5.3发电机异常运行9.5.4发电机漏氢9.5.5发电机非同期并列9.5.6发电机变为同步电动机运行9.5.7发变组保护动作跳闸9.5.8发电机非全相运行9.5.9发电机失磁9.5.10发电机振荡或失去同步9.5.11电压回路断线9.5.12定子水压力低9.5.13定子水箱水位异常9.5.14内冷水电导率高9.5.15发电机定子线棒或导水管漏水9.5.16发电机定子升不起电压9.5.17发电机氢系统爆炸、着火附表一:常用单位对照表附表二:常用水蒸气参数对照表1.机组设备概述1.1锅炉设备概述1.1.1 该仿真机组锅炉是由哈尔滨锅炉有限责任公司引进三井巴布科克能源公司(MitsuiBabcock Energy Limited)技术生产的超临界参数变压运行直流锅炉,单炉膛、一次再热、平衡通风、露天布置、固态排渣、全钢构架、全悬吊结构Π型锅炉。
600MW超临界机组锅炉启动系统特点与运行控制
文章编号 : 1 0 0 8— 0 8 3 X( 2 0 1 4 ) 0 5— 0 0 7 4— 0 2 中 图分 类 号 : T K 2 2 文 献标 志 码 : B
1 锅 炉 概 况
兴 义 电厂 2× 6 0 0 MW 机 组锅 炉系北 京 B & W 公 司生产 的 B & WB一1 9 0 0 / 2 5 . 4一M 型 超 临界 参 数 变
受热 面分为蒸发受热面和过 热受热面两部 分。而直流
3 直 流 锅 炉 启 动 系统 及 在 调 试 各 阶段 的 运 行 控 制
3统 主要 功能 为 : 建 立冷 、 热 态 清洗循 环 , 在低负 荷下 保证 省煤 器最 低循 环流 量 , 保证 水冷 壁安 全 , 最 大 限度 的 回收 启 动过 程 中 的工 质 和热量 , 提 高机 组 的 经 济性 。兴 义 电 厂 的启 动 系 统 配有炉 水循 环泵 , 其 系统 的组成 见 图 1 。
循 环 加快 。 因此 , 启 动过 程水 冷壁冷 却 充分 , 运行 安
全 。强制循 环锅 炉 在 锅 炉上 水 后 点 火 前 , 循 环 泵 就 开始 工作 , 水冷 壁系 统建立 了循 环 流动 , 从而 保证 了
水 冷壁 在启 动过 程 中 的安 全 。
压 直 流锅炉 。锅 炉为 超 临界参 数 、 垂 直炉 膛 、 一 次 中
7 4.
第 5期
黄锡兵 , 等: 6 0 0 MW 超 临界机组锅炉启动系统特点与运行控制
( 型锅 炉 , 锅 炉 配 有 带 循 环 泵 的 内置 式 启 动 系 统 。 锅 炉采 用双 进双 出正压 直 吹 制粉 系 统 , “ w” 火 焰 燃 烧 方式 , 配置 2 4只浓 缩 型 E l — XC L低 N O x双调 风 旋 流燃 烧器 , 对称 布置 在锅 炉 的前后 拱上 , 与之 配套
600MW超临界机组锅炉启动操作指南
600MW超临界仿真机锅炉操作指南北京同方电子科技有限公司600MW 超临界仿真机锅炉操作指南2600MW 超临界仿真机 (1)锅炉操作指南 (1)600MW 仿真机操作简介(锅炉部分) (1)锅炉专业冷态启动操作: (1)1.启动工业水系统 (1)2.启动空压机房系统 (2)3.启动空预器油站 (4)4.风机油系统就地操作 (5)5.锅炉上水 (7)6.启动空预器 (7)7.启动引送风机 (8)8.炉膛吹扫 (9)9.锅炉点火升压 (11)10.升负荷并转直流 (15)11.启动磨煤机 (16)600MW仿真机操作简介(锅炉部分)关于仿真机的操作,主要要注意两方面内容:其一是仿真环境的建立和正常运行以及日常维护,其二就是利用仿真模拟培训系统进行对学员的实际操作指导。
相关内容可以参考《DCOSE使用手册》、《操作员使用手册》和机炉电各专业的运行规程,本文仅就最常用的必要操作做简单介绍。
锅炉专业冷态启动操作:在电气送电完毕后,锅炉汽机专业操作员即可进行相应的一系列操作。
整个启动过程基本依照规程,经锅炉上水、吹扫、点火、升温升压、汽机冲转、发电机并网、转直流、升负荷、锅炉投煤、汽机投入高低压加热器、继续调整运行直到机组升到600MW负荷工况的过程进行。
1.启动工业水系统在锅炉就地菜单中找到工业水系统,如图1,2图1打开所有冷却水用户的手动门,检查所有管路通畅。
2.启动空压机房系统先在锅炉就地菜单中找到空压机系统如图2。
打开相应的就地门,再去DCS 上启动空压机如图3,注意启动面板上要手动启动时要确认处于手动状态,点击启动后再点击OK 即可。
观察储气罐压力上升。
2图2图323.启动空预器油站到就地图里将就地的一些设备打开,恢复就地系统找到:空预器A 轴承润滑油系统和空预器B 轴承润滑油系统(图4)图4将A 、B 空预器轴承润滑油系统中润滑油系统手动门和冷却水手动门都打开,点击就地控制盘,在弹出窗口中选择一台导向油泵启动并启动支撑油泵,视情况入连锁。
600MW超临界锅炉课程设计正文
第1章设计任务书设计题目:600MW等级超临界压力煤粉锅炉原始资料如下:锅炉蒸发量:D sh=1913t/h过热蒸汽压力:p sh''=25.4MPa(表压)过热蒸汽温度:t sh''=571℃再热蒸汽流量:D rh=1586t/h再热蒸汽入口压力:p rh'=4.35MPa(表压)再热蒸汽入口温度:t rh'=310℃再热蒸汽出口压力:p rh''=4.16MPa(表压)再热蒸汽出口温度:t rh''=569℃给水压力:p fw=29.35MPa给水温度:t fw=282℃周围环境温度:t ca=20℃排烟温度:v exg=126℃制粉系统:直吹式、中速磨(1)燃料名称:神府东胜煤(2)煤的收到基成分(%):C ar=57.33, H ar=3.62,O ar=9.94, N ar=0.70,S ar=0.41, A ar=15.00, M ar=13.00(3)煤的干燥无灰基挥发分:V daf=33.64%(4)煤的收到基低位发热量:Q net,ar=21805kj/kg(5)灰熔点:DT、ST、FT>1500℃第2章燃料的数据校核和煤种判别2.1 燃料的数据校核计算列于表2-1。
表2-1 燃料的数据校核和煤种判别2.2 煤种判别:由燃料特性得知:因为V daf =33.64% ,10%<V daf<37%所以煤种为烟煤第3章锅炉整体布置的确定3.1 炉整体的外型--选Π型布置选择Π形布置的理由如下:(1)锅炉排烟口在下方送、引风机及除尘器等设备均可布置在地面,锅炉结构和厂房较低,烟囱也建在地面上;(2)对流竖井中,烟气下行流动便于清灰,具有自身除尘的能力;(3)各受热面易于布置成逆流的方式,以加强对流换热;(3)机炉之间的连接管道不长。
3.2 受热面的布置在炉膛内壁面,全部布置水冷壁受热面,其他受热面的布置主要受蒸汽参数、锅炉容量和燃料性质的影响。
600 MW超临界锅炉带循环泵启动系统的控制设计与运行(word版)
600 MW超临界锅炉带循环泵启动系统的控制设计与运行Through the process agreement to achieve a unified action policy for different people, so as to coordinate action, reduce blindness, and make the work orderly.编制:___________________日期:___________________600 MW超临界锅炉带循环泵启动系统的控制设计与运行温馨提示:该文件为本公司员工进行生产和各项管理工作共同的技术依据,通过对具体的工作环节进行规范、约束,以确保生产、管理活动的正常、有序、优质进行。
本文档可根据实际情况进行修改和使用。
综观世界锅炉制造商,直流锅炉的启动系统不管其形式如何变化,一般可分为内置式和外置式两种,而内置式启动系统又可分为扩容器式、疏水热交换式及循环泵式,对于带循环泵启动系统,就其布置形式有并联和串联两种。
本文主要介绍600 MW超临界参数锅炉所带循环泵启动系统,而且循环泵与给水泵为串联布置的启动系统的工作原理、控制思想及运行特点,锅炉最低直流负荷不大于30 %BMCR。
锅炉的主要设计参数(锅炉型号:SG1953P25.402M95X) 见表1。
1 带循环泵启动系统的组成在锅炉的启动及低负荷运行阶段,炉水循环确保了在锅炉达到最低直流负荷之前的炉膛水冷壁的安全性。
当锅炉负荷大于最低直流负荷时,一次通过的炉膛水冷壁质量流速能够对水冷壁进行足够的冷却。
在炉水循环中,由分离器分离出来的水往下流到锅炉启动循环泵的入口,通过泵提高压力来克服系统的流动阻力和省煤器最小流量控制阀(V2507) 的压降,水冷壁的最小流量是通过省煤器最小流量控制阀来实现控制的,即使当一次通过的蒸汽量小于此数值时,炉膛水冷壁的质量流速也不能低于此数值。
炉水再循环提供了锅炉启动和低负荷时所需的最小流量,选用的循环泵能提供锅炉冷态和热态启动时所需的体积流量,在启动过程中,并不需要像简单疏水扩容器系统那样往扩容器进行连续的排水,循环泵的设计必须提供足够的压头来建立冷态和热态启动时循环所需的最小流量。
哈锅600MW超超临界锅炉启动转态控制
哈锅600MW超超临界锅炉启动转态控制发表时间:2016-10-13T15:49:42.863Z 来源:《电力设备》2016年第14期作者:吴波[导读] 直流锅炉在启动中会经历由湿态转干态的运行过程,在此过程中锅炉水动力循环发生重大变化。
(深能合和电力(河源)有限公司)摘要:直流锅炉在启动中会经历由湿态转干态的运行过程,在此过程中锅炉水动力循环发生重大变化,且运行操作量巨大,稍有不慎便会造成过热器进水、受热面超温爆管乃至跳机事故。
本文对哈锅生产的HG-1795/26.15-YM1型600MW超超临界锅炉启动系统进行介绍,并对启动转态控制的操作要点及危险点进行了详细分析,提出了相应的控制措施。
关键词:超超临界锅炉;湿态;干态;控制;危险点一、概述河源电厂HG-1975/26.15-YM1型2×600MW锅炉是哈尔滨锅炉厂有限责任公司根据三菱重工业株式会社(MHI)提供技术支持而设计、制造的超超临界变压运行直流锅炉,锅炉为单炉膛、Π型布置,配低NOXPM(Pollution Minimum)主煤粉燃烧器,分级燃烧技术和MACT(Mitsuibishi Advanced Combustion Technology)型低NOX分级送风燃烧系统、反向墙式切圆燃烧方式。
炉膛采用内螺纹管垂直上升膜式水冷壁、带再循环泵的启动系统、一次中间再热。
过热蒸汽调温方式以煤水比为主,同时设置三级喷水减温器;再热蒸汽主要采用尾部竖井分隔烟道调温挡板调温,同时燃烧器的摆动对再热蒸汽温度也有一定的调节作用,在低温再热器入口管道上还设置有事故喷水减温器。
锅炉采用平衡通风、紧身封闭布置、固态排渣、全钢构架、全悬吊结构,设计煤种为晋北烟煤。
锅炉启动系统由启动循环泵、启动分离器、贮水箱、疏水扩容器、水位控制阀、管道及其他阀门附件等组成。
启动分离器为圆形筒体结构,每台炉2只;分离器与贮水箱均为直立式布置在炉后上部。
二、启动系统简介超超临界直流锅炉启动系统的主要作用就是在锅炉启动、低负荷运行(蒸汽流量低于炉膛所需的最小流量时)及停炉过程中,维持炉膛所需的最小流量,以保护炉膛水冷壁管,同时满足机组启、停及低负荷运行时对蒸汽流量的要求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
文件编号:TP-AR-L1805In Terms Of Organization Management, It Is Necessary To Form A Certain Guiding And Planning Executable Plan, So As To Help Decision-Makers To Carry Out Better Production And Management From Multiple Perspectives.(示范文本)编订:_______________审核:_______________单位:_______________600 MW超临界锅炉带循环泵启动系统的控制设计与运行(正式版)600 MW超临界锅炉带循环泵启动系统的控制设计与运行(正式版)使用注意:该安全管理资料可用在组织/机构/单位管理上,形成一定的具有指导性,规划性的可执行计划,从而实现多角度地帮助决策人员进行更好的生产与管理。
材料内容可根据实际情况作相应修改,请在使用时认真阅读。
综观世界锅炉制造商,直流锅炉的启动系统不管其形式如何变化,一般可分为内置式和外置式两种,而内置式启动系统又可分为扩容器式、疏水热交换式及循环泵式,对于带循环泵启动系统,就其布置形式有并联和串联两种。
本文主要介绍600 MW超临界参数锅炉所带循环泵启动系统,而且循环泵与给水泵为串联布置的启动系统的工作原理、控制思想及运行特点,锅炉最低直流负荷不大于30 %BMCR。
锅炉的主要设计参数(锅炉型号:SG1953P25.402M95X) 见表1。
1 带循环泵启动系统的组成在锅炉的启动及低负荷运行阶段,炉水循环确保了在锅炉达到最低直流负荷之前的炉膛水冷壁的安全性。
当锅炉负荷大于最低直流负荷时,一次通过的炉膛水冷壁质量流速能够对水冷壁进行足够的冷却。
在炉水循环中,由分离器分离出来的水往下流到锅炉启动循环泵的入口,通过泵提高压力来克服系统的流动阻力和省煤器最小流量控制阀(V2507) 的压降,水冷壁的最小流量是通过省煤器最小流量控制阀来实现控制的,即使当一次通过的蒸汽量小于此数值时,炉膛水冷壁的质量流速也不能低于此数值。
炉水再循环提供了锅炉启动和低负荷时所需的最小流量,选用的循环泵能提供锅炉冷态和热态启动时所需的体积流量,在启动过程中,并不需要像简单疏水扩容器系统那样往扩容器进行连续的排水,循环泵的设计必须提供足够的压头来建立冷态和热态启动时循环所需的最小流量。
从控制阀出来的水通过省煤器,再进入炉膛水冷壁,总体流程见图1。
在循环中,有部分的水蒸汽产生,然后此汽水混合物进入分离器,分离器布置靠近炉顶,这样可以提供循环泵在任何工况下(包括冷态启动和热态再启动) 所需要的净吸压头,分离器的较高的位置同样也提供了在锅炉初始启动阶段汽水膨胀时疏水所需要的静压头。
在图1 启动系统中,循环泵和给水泵是串联布置,这样的布置具有以下优点:(1) 进入循环泵的水来自下降管或锅炉给水泵或同时从这两者中来。
这样的布置使得在各个启动过程中,总是有水流过循环泵,泵的流量恒定,无须设置任何最小流量的循环回路及其必须的控制设备。
(2) 锅炉给水的欠焓可增加循环泵的净吸压头。
当分离器由湿态转向干态时,疏水流量为零,但此时循环泵能从给水管道中得到足够的流量,可保证分离器平滑地从干态转向湿态,无须在此时进行循环泵的关停操作。
2 带循环泵系统的优点与简单疏水扩容启动系统相比,带再循环泵系统具有如下优点:(1) 可降低给水泵在启动和低负荷运行的功率。
(2) 启动和低负荷运行时,不但能回收全部工质,还可100 %回收疏水热量。
(3) 由于带再循环泵系统分离器的水位控制是通过与汽机蒸汽流量相关的给水控制来完成的,在通常情况下,不需要使用启动系统的排放阀门,这样可以减小系统的热量和工质的损失。
(4) 带泵的启动系统与简单疏水型启动系统相比,能够回收更多的热量,同时也可减小工质损失,炉水再循环确保了炉水本身所带的热量都回到炉膛水冷壁,在启动的大部分时间内,几乎没有什么热损失和工质损失。
带泵的启动系统与疏水型启动系统在排放水量上有巨大区别,后者在锅炉整个启动过程中,从炉膛水冷壁来的水被连续地排放导致了大量的热损失和工质损失,与此相比,带泵的启动系统只需要在锅炉启动的早期汽水膨胀阶段排水到扩容器中,在此时间段,由于排放的水是处于大气压力下的饱和水,所以热损失很小,而且排放水的焓值也较低,不会有工质在扩容器中被蒸发掉。
简单疏水型启动系统是通过给水泵来提供必须的水冷壁最小流量,而带泵的启动系统则是通过循环泵来实现的,对于疏水型的启动过程,所有最小流量的水都在炉膛中被加热,没有蒸发成水蒸气的部分则携带着从炉膛吸收的热量被排到扩容器中,带泵的启动系统由于很小的排放水量,其热损失也很小,其启动过程中总的热损失约为疏水型启动系统的3 %。
由于带循环泵的启动系统在启动的整个过程中能100 %吸收疏水热量,可有效缩短冷态和温态启动时间,相比于简单疏水扩容启动系统,当冷态启动时,点火至汽机冲转时间可缩短70~80min ;温态启动可缩短10~20 min ,该系统更适合于频繁启动、带循环负荷和二班制运行机组。
循环系统采用1 台湿式马达启动泵,型式与常规亚临界控制循环的炉水循环泵基本相同,但泵只有一个出口(控制循环泵有两个出口) ,泵的扬程也要比控制循环泵高的多。
3 锅炉循环泵启动系统的控制当锅炉最初启动没有蒸汽产生时,给水泵可以不带负荷,此时进入省煤器和蒸发器的水完全来自分离器的疏水;一旦有蒸汽产生,分离器中的水位开始下降,给水泵需启动补充给水,控制原理见图2 ,以维持分离器水位,而此时进入省煤器和蒸发系统的流量发生变化由纯粹的疏水变成给水和疏水的混合物,这样的状态一直要维持到最低直流负荷,在该负荷以上锅炉进入直流运行方式,进入蒸发器的水全部变成蒸汽,而省煤器和蒸发器的流量完全来自于给水。
3. 1 启动系统运行方式在湿态运行状态下,给水是通过分离器的水位和蒸汽量来控制,其控制方法类同亚临界控制循环锅炉,分离器的水位需要连续地监视。
为了防止启动初期阶段汽水膨胀时分离器水位过高,饱和水进入过热器,除了给水控制水位外,还设置了大气扩容式系统,在扩容器进口设置有两个高水位调节阀(HWL21P2) ,其功能与简单疏水启动系统相同,另外当循环泵发生故障时,该系统也能启动锅炉,只是工质和热量损失较多。
从水位控制到温度控制的切换过程在维持省煤器和蒸发器最小流量的同时,对于燃烧率的控制也是很重要的,在湿态运行期间,省煤器和蒸发器中的流量保持恒定值,此时燃烧率要渐渐地增长以满足产汽量的要求。
当负荷增长时,为了维持分离器中的压力,燃烧率也要相应增长,在整个湿态运行过程中,分离器中的压力需要一直监视,而燃烧率的增长通过分离器的温度来体现。
最低直流负荷是启动系统的隔离点和锅炉进入干态运行的起始点,在此负荷以下,当燃烧率增长的时候,省煤器和蒸发器中的流量却是固定不变的。
在最低直流负荷点,燃烧率和给水量达到一个预先设定的点。
当逼近最低直流负荷时,分离器水位消失进入干态,此时蒸汽温度控制投入使用。
在切分期间,以分离器出口蒸汽温度作为导前控制点,为了避免温度控制失效重新使启动系统投入运行,分离器出口蒸汽焓值要保持一定的过热度是很重要的,同时锅炉负荷应按升速率直接通过最低直流负荷点,过热度决定于汽机冲转时的压力,对于一台已设计的锅炉,冷态启动汽机冲转时的压力为8. 4 MPa ,过热温度约15 ℃。
在直流方式运行时,通过控制煤水比来调节分离器出口温度,根据锅炉性能计算,在BRL 工况下当燃料量及给水温度不变时,分离器出口蒸汽温度改变±1 ℃,相应的给水量改变约±10 tPh ,才能维持分离器出口蒸汽温度基本不变。
在BRL 工况下当给水量及给水温度不变时,分离器出口蒸汽温度+ 1 ℃,相应的燃料量(低位发热量约23400 kJPkg) 改变约- 1. 2tPh ,才能维持分离器出口蒸汽温度基本不变。
图3 表明由锅炉给水自动控制分离器水位,负荷逐渐增加,一直到纯直流负荷方式后切换到温度自动控制方式的过程。
图3 从水位控制到温度控制的切换过程在第一阶段以前,按照冷态、温态、热态及极热态启动方式,顺序启动锅炉及相关的锅炉辅机,循环泵启动系统投运;分离器水位由控制锅炉母管给水流量来实现。
第一阶段:省煤器入口的给水流量保持在某个最小常数值;当燃料量逐渐增加时,随之产生的蒸汽量也增加,从分离器下降管返回的水量逐渐减小,锅炉给水流量应逐渐增加,以保证省煤器入口的给水流量保持在某个最小常数值,此时分离器入口的湿蒸汽的焓值增加。
①点:分离器入口蒸汽干度达到1 ,饱和蒸汽流入分离器,此时没有水可分离,锅炉给水流量(FE0) 等于省煤器入口的给水流量(FE1) ,但仍保持在某个最小常数值。
切换阶段:省煤器入口的给水流量仍不变,燃烧率继续增加,在分离器中的蒸汽慢慢地过热(此时分离器压力不变) ,分离器出口实际温度仍低于设定值,温度控制还未起作用。
所以此时增加的燃烧率不是用来产生新的蒸汽,而是用来提高直流锅炉运行方式所需的蒸汽蓄热。
②点:分离器出口的蒸汽温度达到设定值,进一步增加燃烧率,使温度超过设定值。
第二阶段:进一步增加燃烧率,给水量也相应增加,锅炉开始由定压运行转入滑压运行,温度控制系统投入运行,由“煤水比”控制分离器出口的蒸汽温度及分隔屏出口的一级喷水减温器的前后温差,该温差是锅炉负荷的函数,当锅炉主蒸汽流量增加至设定值,锅炉正式转入干态运行。
在干态自动方式时,循环泵自动停,循环泵停运后,电动阀(V2503) 自动关闭。
在完成切换后,循环泵与给水泵串联运行,此时如将循环泵停运,由于循环泵提升压头的消失,会产生压力扰动,不利于锅炉安全运行。
若循环泵仍保持运行,随着锅炉负荷上升,省煤器进口给水流量增加,循环泵通流量也增加,循环泵出口的调节阀前后压差增加,当循环泵通路的阻力超过给水母管止回阀压差,止回阀通路打开,二路并行工作,随着锅炉负荷进一步上升,循环泵出口的调节阀前后压差进一步增加,会使泵的提升压头对循环泵通路趋向于零,此时循环泵停运,可避免压力扰动,根据循环泵的具体运行特性,循环泵通路提升压头趋向于零的负荷一般要求大于45 %BMCR。
3. 1. 2 从温度控制到水位控制的切换图4 表明负荷降低,从纯直流锅炉方式后切换到启动运行方式,由温度控制切换到水位控制的过程。
第一阶段:锅炉负荷指令同时减少燃烧率和给水流量,锅炉处于滑压运行,温度控制系统投入运行;当锅炉主蒸汽流量降至设定值以下,干态信号消失。
①点:给水流量达到最低直流负荷流量。
切换阶段: 给水流量仍不变,燃烧率继续减小,在分离器中的蒸汽过热度降低,开始有水分离出。