一元一次不等式(组)教学设计

合集下载

人教版初中数学一元一次不等式教案范文优秀7篇

人教版初中数学一元一次不等式教案范文优秀7篇

人教版初中数学一元一次不等式教案范文优秀7篇一元一次不等式教案篇一一、教学目标:(一)知识与能力目标:(课件第2张)1.体会解不等式的步骤,体会比较、转化的作用。

2.学生理解、巩固一元一次不等式的解法。

3.用数轴表示解集,加深对数形结合思想的进一步理解和掌握。

4.在解决实际问题中能够体会将文字语言转化成数学语言,学会用数学语言表示实际的数量关系。

(二)过程与方法目标:1.介绍一元一次不等式的概念。

2.通过对一元一次方程的解法的复习和对不等式性质的利用,导入对解不等式的讨论。

3.学生体会通过综合利用不等式的概念和基本性质解不等式的方法。

4.学生将文字表达转化为数学语言,从而解决实际问题。

5.练习巩固,将本节和上节内容联系起来。

(三)情感、态度与价值目标:(课件第3张)1.在教学过程中,学生体会数学中的比较和转化思想。

2.通过类比一元一次方程的解法,从而更好的掌握一元一次不等式的解法,树立辩证统一思想。

3.通过学生的讨论,学生进一步体会集体的作用,培养其集体合作的精神。

4.通过本节的学习,学生体会不等式解集的奇异的数学美。

二、教学重、难点:1.掌握一元一次不等式的`解法。

2.掌握解一元一次不等式的阶梯步骤,并能准确求出解集。

3.能将文字叙述转化为数学语言,从而完成对应用问题的解决。

三、教学突破:教材中没有给出解法的一般步骤,所以在教学中要注意让学生经历将所给的不等式转化为简单不等式的过程,并通过学生的讨论交流使学生经历知识的形成和巩固过程。

在解不等式的过程中,与上节课联系起来,重视将解集表示在数轴上,从而指导学生体会用数形结合的方法解决问题。

在研究中,鼓励学生用多种方法求解,从而锻炼他们活跃的思维。

四、教具:计算机辅助教学。

五、教学流程:(一)、复习:教学环节教师活动学生活动设计意图一元一次不等式教案篇二师:下面我们先看一下购物金额对选择哪家超市有何影响?请同学们根据老师给出的学习目标和问题,自学课文一三1页至一三2页例1上边的内容,要求独立或者小组合作,完成书上的问题(1)、(2),时间是10分钟。

人教版初中数学教案(5篇)

人教版初中数学教案(5篇)

人教版初中数学教案(5篇)人教版初中数学教案大全篇一一元一次不等式组教学目标1、熟练掌握一元一次不等式组的解法,会用一元一次不等式组解决有关的实际问题;2、理解一元一次不等式组应用题的一般解题步骤,逐步形成分析问题和解决问题的能力;3、体验数学学习的乐趣,感受一元一次不等式组在解决实际问题中的价值。

教学难点正确分析实际问题中的不等关系,列出不等式组。

知识重点建立不等式组解实际问题的数学模型。

探究实际问题出示教科书第145页例2(略)问:(1)你是怎样理解“不能完成任务”的数量含义的?(2)你是怎样理解“提前完成任务”的数量含义的?(3)解决这个问题,你打算怎样设未知数?列出怎样的不等式?师生一起讨论解决例2.归纳小结1、教科书146页“归纳”(略).2、你觉得列一元一次不等式组解应用题与列二元一次方程组解应用题的步骤一样吗?在讨论或议论的基础上老师揭示:步法一致(设、列、解、答);本质有区别。

(见下表)一元一次不等式组应用题与二元一次方程组应用题解题步骤异同表。

人教版初中数学教案篇二掌握用因式分解法解一元二次方程。

通过复习用配方法、公式法解一元二次方程,体会和探寻用更简单的方法——因式分解法解一元二次方程,并应用因式分解法解决一些具体问题。

重点用因式分解法解一元二次方程。

难点让学生通过比较解一元二次方程的多种方法感悟用因式分解法使解题更简便。

一、复习引入(学生活动)解下列方程:(1)2x2+x=0(用配方法)(2)3x2+6x=0(用公式法)老师点评:(1)配方法将方程两边同除以2后,x前面的系数应为12,12的一半应为14,因此,应加上(14)2,同时减去(14)2.(2)直接用公式求解。

二、探索新知(学生活动)请同学们口答下面各题。

(老师提问)(1)上面两个方程中有没有常数项?(2)等式左边的各项有没有共同因式?(学生先答,老师解答)上面两个方程中都没有常数项;左边都可以因式分解。

因此,上面两个方程都可以写成:(1)x(2x+1)=0(2)3x(x+2)=0因为两个因式乘积要等于0,至少其中一个因式要等于0,也就是(1)x=0或2x+1=0,所以x1=0,x2=-12.(2)3x=0或x+2=0,所以x1=0,x2=-2.(以上解法是如何实现降次的?)因此,我们可以发现,上述两个方程中,其解法都不是用开平方降次,而是先因式分解使方程化为两个一次式的乘积等于0的形式,再使这两个一次式分别等于0,从而实现降次,这种解法叫做因式分解法。

数学《一元一次不等式》教学设计(通用6篇)

数学《一元一次不等式》教学设计(通用6篇)

数学《一元一次不等式》教学设计数学《一元一次不等式》教学设计(通用6篇)作为一名教师,时常需要准备好教学设计,教学设计是根据课程标准的要求和教学对象的特点,将教学诸要素有序安排,确定合适的教学方案的设想和计划。

一份好的教学设计是什么样子的呢?下面是小编精心整理的数学《一元一次不等式》教学设计,仅供参考,欢迎大家阅读。

数学《一元一次不等式》教学设计篇1【教学目标】:1、知识目标:能进一步熟练的解一元一次不等式,会从实际问题中抽象出数学模型,会用一元一次不等式解决简单的实际问题。

2、能力目标:通过观察、实践、讨论等活动,积累利用一元一次不等式解决实际问题的经验,提高分类考虑、讨论问题的能力,感知方程与不等式的内在联系,体会不等式和方程同样都是刻画现实世界数量关系的重要模型3、情感目标:在积极参与数学学习活动的过程中,形成实事求是的态度和独立思考的习惯;学会在解决问题时,与其他同学交流,培养互相合作精神。

【重点难点】:重点:一元一次不等式在实际问题中的应用。

难点:在实际问题中建立一元一次不等式的数量关系。

关键:突出建模思想,刻画出数量关系,从实际中抽象出数量关系。

注意问题中隐含的不等量关系,列代数式得到不等式,转化为纯数学问题求解。

【教学过程】:创设情境,研究新知这个周末我们要去杜氏旅游渡假村,为此我们要做两个准备:先选择一家旅行社,然后购买一些必需的旅游用品。

在这个过程中,我们会碰到一些问题,看同学们能不能用数学知识来解决。

问题1:中国旅行社的原价是每人100元,可以给我们打7.7折;蓝天旅行社的原价和他们相同,但可以三人免费,并且其他人费用打8折;根据我们的实际情况,要选择哪一家比较省钱?(从生活中的问题入手,激发学生探究问题的兴趣,这是一个最优方案的选择问题,具有一定的开放性和探索性,解这类问题,一般要根据题目的条件,分别计算结果,再比较、择优。

本题通过问题设置,培养学生分析题意的能力,分析题中相关条件,找到不等关系。

《一元一次不等式组》教学设计及反思.doc

《一元一次不等式组》教学设计及反思.doc

《一元一次不等式组》教学设计及反思如东县岔河中学季卫东一、目标及目标解析1.目标(1)理解一•元一次不等式组、一元一次不等式组的解集等概念.(2)会解一元一次不等式组,并会用数轴或者口诀确定解集.2.目标解析达到目标(1)的标志是:学生能说出一无一次不等式组的特征.达到目标(2)的标志是:学生能解一•元一次不等式组,能在数轴上确定不等式组的解集,并获得解一元一次不等式组的步骤.三、教学重、难点:在数轴上找公共部分,确定不等式组的解集.四、教学过程设计1 .回顾交流上一节课我们学习了一元一次不等式,知道了一元一次不等式的有关概念,现在一起来交流-T2X-3<—的解题步骤及注意事项。

32 .提出问题形成概念【问题】用每分钟可抽30吨水的抽水机来抽污水管道里的积存污水,估计积存的污水超过1200吨而不足1500吨,那么将污水抽完所用的时间的范围是什么?设问(1):依据题意,你能得出儿个不等关系?设问(2):设抽完污水所用的时间还是范围?学生根据所设未知数,列出所用的不等式.追问(1):类比方程组的概念,把这两个不等式合起来,叫做什么呢?怎样表示?学生自学概念,说出表示方法。

强调:概念中“儿个”、“同一未知数”的含义。

练习:牛刀小试【思考】追问(2):类比方程组的解怎样确定不等式组中x的值?(学生小组讨论)追问(3):通过数轴,怎样得出不等式组的解集呢?学生练习,师点评:不等式组中各个不等式解集的公共部分就是不等式组的解集. 追问(4):什么是一元一次不等式组的解集?什么是解一元一次不等式组?当止白当碗今不等式组的解集有规律吗?」3.探究规律:求下列不等式组的解集(在同一•数轴上表示出两个不等式的解集,并写出不等式组的解集):数轴解集归纳口诀\>3,/ >7.(2)-v<3, x<7.2x + 3> x+ \ 1 2x+5 | c 1 < 2 - A :.3 飞>3,#<7.x< 3,x>7.要求:(1)请利用数轴确定不等式组的解集,标出公共部分;(2)请认真观察这四个不等式组的解集,小组交流,找出规律;(3)总结一元一次不等式组的解集的几种情况。

初中数学_《一元一次不等式与一元一次不等式组》单元起始课教学设计学情分析教材分析课后反思

初中数学_《一元一次不等式与一元一次不等式组》单元起始课教学设计学情分析教材分析课后反思

第十一章“一元一次不等式(组)”单元起始课教学设计一、教学理念:1、尊重学生的学习体验;2、注重知识的生成过程;3、突出学生的主体地位;4、让学生学习有价值的数学。

二、教学目标:1、了解不等式的意义和不等式的性质;2、理解不等式的解及解集的概念,会用数轴表示简单不等式的解集;3、经历建构研究不等式内容的框架图,体会“类比”是研究数学的重要方法,提升数学素养.二、重点:一元一次不等式的相关概念和性质的得出难点:不等式性质3三、教学过程(一)、解决问题,激发生成问题 1、幼儿园王老师给小朋友分糖果,如果每人分5块,还剩3块;如果每人分6块,则差5块. 有多少个小朋友?有多少块糖果?借助方程(组)可以解决生活中许多等量关系的问题,我们学过哪些与方程有关的知识点呢?(通过方程这个知识点建构一元一次方程的知识体系)问题2、幼儿园张老师给小朋友分糖果,如果每人分5块,还剩3块;如果每人分6块,则有一个小朋友不足6块. 有多少个小朋友?有多少块糖果?生活中还存在着不等量关系,如何表达呢?【类比等式,建构不等式的概念】1.根据你的理解,什么样的式子叫做不等式?(引导学生说出“用不等号连接表示不相等关系的式子,叫做不等式)2.如何用不等式表示生活中的不等关系?请举例说明。

3.表示不等关系的关键词有哪些?(二)类比联想,促进生成【类比等式,建构不等式的框架】刚才类比等式,我们得出了什么叫不等式,在本章,我们将系统地学习最简单的不等式-----一元一次不等式的相关内容,还有一元一次不等式组的知识。

请大家根据前面学习等式的经验,你认为我们将学习不等式的哪些内容呢?【板书课题:一元一次不等式(组)】可以从学习内容、过程、方法等多个角度谈谈你的看法。

(三)深入探究,自主生成【类比一元一次方程的相关概念,建构一元一次不等式的相关概念】活动1:观察下列不等式:该如何定义?活动2:类比一元一次方程的解的定义,什么是不等式的解呢?请举例说明。

一元一次不等式组教案

一元一次不等式组教案

一元一次不等式组教案【篇一:《一元一次不等式组》教学设计】一元一次不等式组一、课表解读在初中数学课程标准,第三学段数与代数对一元一次不等式组部分是这样描述的:1.充分感受生活中存在着大量的不等式关系,了解不等式组的意义;2.会解简单的一元一次不等式组,并会用数轴确定解集。

二、教材分析1、教材的地位和作用《一元一次不等式组》的主要内容是一元一次不等式组的解法及其简单应用。

是在学习了有理数的大小比较、等式及其性质、一元一次方程的基础上,开始学习简单的数量之间的不等关系,进一步探究现实世界数量关系的重要内容,是继一元一次方程和二元一次方程组之后,又一次数学建模思想的学习,也是后继学习一元二次方程、函数及进一步学习不等式的重要基础,具有承前启后的重要作用。

《一元一次不等式组》是本章的最后一节,是一元一次不等式知识的综合运用和拓展延伸,是进一步刻画现实世界数量关系的数学模型,是下一节利用一元一次不等式组解决实际问题的关键。

2、教学目标设计依据《课程标准》对7—9年级《不等式》学段的目标要求和本班学生实际情况,特确定如下目标:1.通过实例体会一元一次不等式组是研究量与量之间关系的重要模型之一。

2.了解一元一次不等式组及解集的概念。

3.会利用数轴解较简单的一元一次不等式组。

4.培养学生分析、解决实际问题的能力。

5.通过实际问题的解决,体会数学知识在生活中的应用,激发学生的学习兴趣。

培养学生认真倾听,大胆回答,勤于思考、善于反思的良好学习习惯。

3、教学重点、难点:重点:理解一元一次不等式组的有关概念,会解简单的一元一次不等式组;难点:正确理解一元一次不等式组的解集。

三、学情分析1、学生特点从学生学习的心理基础和认知特点来说,学生已经学习了一元一次不等式,并能较熟练地解一元一次不等式,能将简单的实际问题抽象为数学模型,有一定的数学化能力。

但学生将两个一元一次不等式的解集在同一数轴上表示会产生一定的困惑。

这个年龄段的学生,以感性认识为主,并向理性认知过渡,所以,我对本节课的设计是通过两个学生所熟悉的问题情境,让学生独立思考,合作交流,从而引导其自主学习。

浙教版数学八年级上册3.3《一元一次不等式》教学设计(1)

浙教版数学八年级上册3.3《一元一次不等式》教学设计(1)

浙教版数学八年级上册3.3《一元一次不等式》教学设计(1)一. 教材分析《一元一次不等式》是浙教版数学八年级上册3.3节的内容,本节课的主要内容是一元一次不等式的概念、性质和运算。

学生在学习本节课之前已经掌握了实数、方程等基础知识,具备了一定的逻辑思维能力,但对学生来说,一元一次不等式是一个新的概念,需要通过本节课的学习来掌握。

二. 学情分析学生在学习本节课之前已经掌握了实数、方程等基础知识,具备了一定的逻辑思维能力。

但对学生来说,一元一次不等式是一个新的概念,需要通过本节课的学习来掌握。

同时,学生对于抽象的数学概念的理解和运用还需要进一步的培养和提高。

三. 教学目标1.了解一元一次不等式的概念,掌握一元一次不等式的性质。

2.学会解一元一次不等式,能够运用一元一次不等式解决实际问题。

3.培养学生的逻辑思维能力,提高学生的数学素养。

四. 教学重难点1.重难点:一元一次不等式的概念和性质。

2.难点:解一元一次不等式,运用一元一次不等式解决实际问题。

五. 教学方法1.讲授法:通过讲解一元一次不等式的概念、性质和运算方法,使学生掌握一元一次不等式的基本知识。

2.案例分析法:通过分析实际问题,引导学生运用一元一次不等式解决问题,培养学生的实际应用能力。

3.小组讨论法:学生进行小组讨论,促进学生之间的交流与合作,提高学生的团队协作能力。

六. 教学准备1.教学PPT:制作教学PPT,包括一元一次不等式的概念、性质和运算方法的讲解,以及实际问题的案例分析。

2.教学案例:准备一些实际问题,用于引导学生运用一元一次不等式解决问题。

3.练习题:准备一些练习题,用于巩固学生对一元一次不等式的理解和运用。

七. 教学过程1.导入(5分钟)通过复习实数、方程等基础知识,引导学生进入本节课的学习。

2.呈现(10分钟)讲解一元一次不等式的概念、性质和运算方法,使学生掌握一元一次不等式的基本知识。

3.操练(10分钟)让学生练习解一元一次不等式,巩固学生对一元一次不等式的理解和运用。

人教版初中数学七年级下册第9章一元一次不等式(组)含参专题——有、无解问题(专题课)教案

人教版初中数学七年级下册第9章一元一次不等式(组)含参专题——有、无解问题(专题课)教案

人教版初中数学七年级下册第九章一元一次不等式(组)含参专题——有、无解问题(专题课)教案核心素养:1.使学生加深对一元一次不等式组和它的解集的理解,会用数轴确定含参数的一元一次不等式组的参数范围;2.培养学生探究、独立思考的学习习惯,感受数形结合的作用,熟悉并掌握数形结合的思想方法,提高分析问题和解决的能力;3.提升学生之间合作与交流以及对问题的探讨能力,从中发现数学的乐趣.【教学重难点】重点:含参一元一次不等式组的分类解法难点:1.一元一次不等式中字母参数的讨论2.一元一次不等式中运用数轴分析参数的范围【教学过程】1.问题引导 合作交流出示问题:请同学们解下列两个不等式(1)x-2m<0,(2)x+m >3并思考m 的取值范围. 同学们不难得出不等式(1)的解为x <2m ;(2)的解为x >3-m.引导分析m 的取值范围. 师引导,生回答:任意实数.[问题1]如果将上述两个不等式联立成不等式组⎩⎨⎧>+<-302m x m x ,你能确定不等式组的解集吗? 师提示学生画数轴 ,问:能画几种情况[问题2]如果这个不等式组无解,你能确定m 的取值范围吗?(学生分组讨论)(借助数轴)师生一起分析:如果不等式组无解,则2m <3-m ,解得m <1。

确定一下“<”要不要添加“=”(这是参数取值问题中的难点)学生借助数轴讨论.师生总结:2m 和3-m 在两个不等式的解中都不包含,所以2m 可以等于3-m ,即m ≤1.2.变式拓展 强化理解变式1:若不等式组⎩⎨⎧⋅⋅⋅⋅⋅>+⋅⋅⋅≤-②①302m x m x 无解,这时m 的取值会有变化吗?解不等式①得x ≤2m 解不等式②得x >3-m(学生分组探究)引导:虽然第一个不等式“<”改成“≤”通过数轴可以看到由于和第二个不等式的解集不包含3-m ,所以2m ≤3-m ,m 的取值范围仍然是m ≤1.变式2:如果不等式组变化为⎩⎨⎧⋅⋅⋅⋅⋅≥+⋅⋅⋅≤-②①302m x m x ,这时m 的取值又会有改变吗?(学生分组探究)由于两个不等式都含有等号,这时2m 和3-m 可能是公共点,而要想使不等式组无解,2m 和3-m 不能重合,只能2m <3-m ,所以m 不能等于1,即m <1.3.问题反转[问题3]如果不等式组⎩⎨⎧⋅⋅⋅⋅⋅≥+⋅⋅⋅≤-②①302m x m x 有解,怎样确定 m 的取值范围?把两个不等式的解集在数轴上表示出,同学们观察数轴 ,不难得出要想使不等式组有解,只要2m ≥3-m ,即m ≥1这样两个不等式的解集有公共部分,不等式组有解,所以m 的取值范围m ≥14.方法小结 归纳步骤解含参一元一次不等式(组)有、无解问题时注意掌握四个步骤:一解 .解不等式组,用参数分别表示出两个不等式的解集;二画.借助数轴进行视觉观察,画出有无解的情况;三验:验证端点取舍判断等号是否可取;四:列出不等式,确定取值范围5,拓展演练 题型再变[问题4]下面这种类型的一元一次不等式组如何确定字母参数取值范围?例:已知不等式组⎩⎨⎧⋅⋅⋅-<⋅⋅⋅⋅⋅⋅⋅⋅≥-②①22-10x x a x 的解集是x >1,求a 的取值范围?学生分组解出每个不等式的解集:解①得:x ≥a 解②得:x >1因为不等式的解集是x >1,(学生分组探讨):a 的位置在数轴上应该在哪个位置? 分析得出:a 在数轴上的位置应该在1的左侧.把不等式组的解集在数轴上表示出来:即a <1,[思考3]a 可不可以等于1?因为a=1时不等式组的解集仍然是x >1.所以a 可以等于1,即a 的取值范围a ≤15.基础过关1.若不等式组⎩⎨⎧≤≥-m x x 062 无解,求m 的取值范围? 2.若不等式组⎩⎨⎧>+<--xx a x x 422)2(3有解,求a 的取值范围?3.若不等式组⎩⎨⎧+>+<+1137m x x x 的解集是x >3,求m 的取值范围?。

一元一次不等式教案(精选9篇)

一元一次不等式教案(精选9篇)

一元一次不等式教案(精选9篇)篇1:一元一次不等式教案实际询问题与一元一次不等式教案教学目标1、会从实际询问题中抽象出数学模型,会用一元一次不等式解决实际询问题;2、通过观看、实践、争辩等活动,经受从实际中抽象出数学模型的过程,积存利用一元一次不等式解决实际询问题的阅历,渗透分类争辩思想,感知方程与不等式的内在联系;3、在乐观参与数学学习活动的过程中,初步熟识一元一次不等式的应用价值,形成实事求是的态度和独立思考的适应。

教学难点弄清列不等式解决实际询问题的思想方法,用去括号法解一元一次不等式。

学询问重点查找实际询问题中的不等关系,建立数学模型。

教学过程(师生活动)设计理念提出询问题某学校方案购实若干台电脑,现从两家商店了解到同一型号的电脑每台报价均为6000元,同时多买都有确信的优待.甲商场的优待条件是:第一台按原报价收款,其余每台优待25%;乙商场的优待条件是:每台优待20%.假如你是校长,你该如何考虑,如何选择?(多媒体呈现商场购物情景)通过买电脑那个同学特不生疏的生活实例,引起同学深厚的学习爱好,感受到数学来源于生活,生活中更需要数学。

探究新知1、分组活动.先独立思考,理解题意.再组内沟通,发表自个儿的观点.最终小组汇报,派代表论述理由.2、在同学充分发表意见的基础上,师生共同归纳出以下三种选购方案:(1)啥状况下,到甲商场购买更优待?(2)啥状况下,到乙商场购买更优待?(3)啥状况下,两个商场收费相同?3、我们先来考虑方案:设购买x台电脑,假如到甲商场购买更优待.询问题1:如何列不等式?询问题2:如何解那个不等式?在同学充分争辩的基础上,老师归纳并板书如下:解:设购买x 台电脑,假如到甲商场购买更优待,则6000+6000(1-25%)(x-1)<6000(1-20%)x去括号,得去括号,得:6000+4500x-45004<4800x移项且合并,得:-300x<1500不等式两边同除以-300,得:x<5答:购买5台以上电脑时,甲商场更优待.4、让同学自个儿完成方案(2)与方案(3),并汇报完成状况.老师最终作适当点评.鼓舞同学大胆猜想,对争论的询问题发表见解,进行探究、合作与沟通,涌现出多样化的解题思路.老师准时予以引导、归纳和总结,让同学感知不等式的建模。

《一元一次不等式组》说课稿

《一元一次不等式组》说课稿

《一元一次不等式组》说课稿《一元一次不等式组》说课稿1各位评委老师:大家好!我是九集镇龙门中学老师,今天我展示课的内容是人教版数学七年级下册第九章第二节的第一课时《一元一次不等式》。

下面我就分别从教材、教法、学法、教学过程设计四个方面来说明我对这节课的教学设想。

一、教材分析教材的地位和作用在前面已学习了一元一次方程的相关知识和不等式的性质,本节课主要是通过类比一元一次方程的解法总结归纳出一元一次不等式的解法,并熟练运用不等式的性质解一元一次不等式。

只有学生掌握好了一元一次不等式的解法,才能更好学习后面的不等式组及不等式(组)的应用。

同时,学习本节课时涉及的类比思想、化归思想和数形结合思想对后续学习也是十分有益的,所以本课的教学不能仅仅停留在知识的探索上,更要注重数学方法和数学思想的渗透和传播。

日常生产生活中不等关系的情况常常发生,所以不等式在日常生产生活中的应用很广泛,它与数、式、方程、函数甚至几何图形有着密切的联系,它几乎渗透到初中数学的每一部分。

可见,本节课内容在本章乃至整个初中数学中都具有承上启下的作用,处于一个基础性、工具性的地位,不仅是对已有知识的运用和深化,还为后续继学习打下基础。

教学目标根据《课标》要求和上述教材分析,结合学生的实际情况,我制定了以下教学目标:知识与技能1.了解一元一次不等式、2.利用不等式性质解一元一次不等式,并通过解一元一次方程的步骤来探索解一元一次不等式的一般步骤,体会“比较”和“转化”的数学学习方法、3.用数轴表示解集,启发学生对数形结合思想的进一步理解和掌握、过程与方法1.通过类比一元一次方程的解法,引导启发学生掌握一元一次不等式的解法、2.通过练习巩固,能正确应用不等式性质解一元一次不等式、情感、态度与价值观3.在教学过程中引导学生体会数学中“比较”和“转化”的思想方法、4.通过本节的学习让学生体会不等式解集的奇异的数学美,激发学生学习数学的兴趣、教学重难点和教学关键根据上面的教材分析和《课标》要求,确定本节课的教学重点是:初步掌握一元一次不等式的解法;掌握解一元一次不等式的一般步骤,并能用数轴表示解集、为突出重点,本节课让学生积极参与、自主探索并掌握一元一次不等式的解法。

一元一次不等式组教学设计

一元一次不等式组教学设计

一元一次不等式组教学设计一元一次不等式组教学设计(通用10篇)教学设计是根据课程标准的要求和教学对象的特点,将教学诸要素有序安排,确定合适的教学方案的设想和计划。

下面是店铺收集整理的一元一次不等式组教学设计,希望大家喜欢。

一元一次不等式组教学设计篇1一、学习目标:1、了解一元一次不等式组的概念,理解一元一次不等式组的解集的意义,掌握求一元一次不等式组的解集的常规方法;2、经历知识的拓展过程,感受学习一元一次不等式组的必要性;3、逐步熟悉数形结合的思想方法,感受类比与化归的思想。

二、学习难点:1、重点:一元一次不等式组的解集和解法。

2、难点:一元一次不等式组解集的理解。

三、学习过程:问题情境:现有两根木条a和b,a长10 cm,b长3 cm。

如果再找一根木条。

,用这三根木条钉成一个三角形木框,那么对木条的长度有什么要求?如果设木条长x cm,那么x仅有小于两边之和还不够,仅有大于两边之差也不行,必须同时满足x10+3和x10—3。

类似于方程组引出一元一次不等式组的概念和记法。

探究新知:解下列不等式组解:解不等式(1),得x1,解不等式(2),得x—4。

在同一条数轴上表示不等式(1)、(2)的解集如图:所以,原不等式组的解是x1巩固新知:P140,1,P141,1归纳总结:不等式解集取值法则同大取大,同小取小,大小取中,矛盾无解。

若ab:①当时,•则不等式的公共解集为;②当时,不等式的公共解集为;③当时,不等式的公共解集为;④当时,不等式组。

作业:1、P141,22、解不等式组:(1);(2)(3);(4)3、若不等式组无解,求m的取值范围。

4、解不等式组,并将解集在数轴上表示出来。

5、解不等式组:(1);(2)6、解不等式:(1);(2)7、若关于x的不等式组的解集是,则下列结论正确的是()A、B、C、D、8、若方程组的解是负数,则的取值范围是()A、B、C、D、无解9、若,则x为()A、B、C、或 D、10、已知方程组的解为负数,求m的取值范围。

中职数学基础模块上册(人教版)教案:一元一次不等式(组)的解法

中职数学基础模块上册(人教版)教案:一元一次不等式(组)的解法

中职数学基础模块上册(人教版)教案:一元一次不等式(组)的解法
2.2.2 一元一次不等式(组)的解法
【教学目标】
1. 了解一元一次不等式(组)概念,掌握一元一次不等式(组)的解法.
2. 通过教学,体会数形结合、类比等数学思想方法.
3. 通过对不等式有关概念的学习,培养学生的知识迁移能力和建模意识,以及合作学习的意识.
【教学重点】
一元一次不等式(组)的解法.
【教学难点】
用数轴确定不等式(组)的解集.
【教学方法】
本节课主要采用讲练结合法.首先介绍一元一次不等式的有关概念,接着介绍一元一次不等式的解法及相应的步骤,这是解一元一次不等式组的基础.最后引导学生在数轴上用区间表示各不等式的解集,在此基础上求出相应不等式组的解集.
【教学过程】。

《一元一次不等式组》教案

《一元一次不等式组》教案

《一元一次不等式组》教案(1)教学目标1、经历实际问题中的数量关系的分析、抽象、建立不等式组模型的过程。

2、知道一元一次不等式组及其解集的意义,会解由两个一元一次不等式组成的不等式组,并会用数轴确定解集。

3、通过用不等式组解决实际问题,使学生认识数学与人类生活的密切联系以及对人类历史发展的作用.并以此激发学生学习数学的信心和兴趣.教学重点:一元一次不等式组及其解集的意义教学难点:用数轴确定解集教学方法:讨论探索法.教学过程一、创设问题情境,引入新课某种杜鹃花适宜生长在平均气温为17~20℃的山区,已知这一地区海拔每升高100m,气温下降℃,现测出山脚下的气温是23℃。

估计适宜种植这种杜鹃花的山坡的高度。

二、探索活动1、由几个含有的组成的不等式组叫做一元一次不等式组。

答:同一个未知数、一次不等式。

2、不等式组中所有不等式的解集的,叫做这个不等式组的解集。

答:公共部分。

3、求不等式组的的过程,叫做解不等式组。

答:解集4、一元一次不等式组的两个步骤:(1)求出这个不等式组中各个;(2)利用求出这些不等式的解集的公共部分,即求出这个不等式组的。

答:不等式的解集;数轴;解集。

⎪⎩⎪⎨⎧<--+-≥-②① 1213124326x x x x 三、分组讨论如何求一元一次不等式组的解集呢?(1)不等式组⎩⎨⎧-≥>12x x 的解集是 。

(2)不等式组⎩⎨⎧-<-<12x x 的解集是 。

(3)不等式组⎩⎨⎧><14x x 的解集是 。

(4)不等式组⎩⎨⎧-<>45x x 的解集是 。

答:(1);(2)2x <-;(3)1x 4;(4)无解你能得到什么结论?四、例题教学例1、解不等式组21131x x +<-⎧⎨-≥⎩例2、 解不等式组:,并把它的解集在数轴上表示出来。

例3、解不等式:531x 23≤-<。

思路点拨:(1)本题实质是一个不等式组⎪⎪⎩⎪⎪⎨⎧≤->-②① 5312 3312x x然后解不等式①②,再求出解集的公共部分即原不等式组的解。

一元一次不等式教学设计

一元一次不等式教学设计

一元一次不等式教学设计教学设计课题:一元一次不等式教学内容:七年级下册第九章不等式与不等式组9.2一元一次不等式第一课时一、教材分析本节内容是本章知识的联系中起着承上启下的作用,从学生熟悉的列代数式入手,既复旧知又巧妙地引入了新知。

由代数式到单项式,这是一种下位研究,有利于学生把握概念的内涵和外延的内容。

二、教学目标1.知识与技能:理解一元一次不等式的定义,掌握一元一次不等式的解法,并能够在数轴上表示不等式的解集。

2.过程与方法:通过类比一元一次方程的解法,探究一元一次不等式的解法。

3.情感态度与价值观:培养学生对数学的兴趣,提高解决问题的能力。

4.教学重点、难点:重点是解一元一次不等式的步骤,并能在数轴上表示它的解集;难点是解一元一次不等式,不等式两边同乘(或除以)同一个负数,不等号的方向要改变。

三、学情分析学生已经研究过代数式和单项式的概念,具备一定的代数基础,但对不等式的概念和解法还不熟悉。

四、教法学法与教学用具教学:探究法讲解法学法:自主探究法合作研究教学用具:数轴、黑板、白板、笔。

五、教学过程复引入】复不等式的定义和性质。

探索新知】观察不等式的共同特征,引入一元一次不等式的概念。

练】通过例题,掌握一元一次不等式的解法步骤,并在数轴上表示解集。

归纳总结】总结一元一次不等式的解法和注意事项。

拓展应用】通过实际问题,巩固一元一次不等式的应用。

课堂小结】回顾本节课的重点内容,强化学生对一元一次不等式的理解和掌握。

课后作业】完成课后作业,巩固一元一次不等式的解法和应用。

判断下列各式是否为单项式。

如果不是,请说明理由。

如果是,请指出它的系数和次数。

1) 1000 是单项式,系数为 1000,次数为 0.2) a5 是单项式,系数为 1,次数为 5.3) r2 不是单项式,因为乘法中有两个不同的变量 r 和 2.4) x+1 不是单项式,因为它包含两个不同的项 x 和 1.5) a3b 是单项式,系数为1,次数为 4.6) ba2c 是单项式,系数为1,次数为 4.7) 1122xy2 不是单项式,因为它包含两个不同的项 1122 和 xy2.8) x 不是单项式,因为它包含一个未知数 x 和一个乘法符号。

一元一次不等式组教案6篇

一元一次不等式组教案6篇

一元一次不等式组教案6篇(实用版)编制人:__审核人:__审批人:__编制单位:__编制时间:__年__月__日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如工作总结、工作报告、工作计划、心得体会、讲话致辞、教育教学、书信文档、述职报告、作文大全、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical materials for everyone, such as work summaries, work reports, work plans, reflections, speeches, education and teaching, letter documents, job reports, essay summaries, and other materials. If you want to learn about different data formats and writing methods, please stay tuned!一元一次不等式组教案6篇通过教案的内容是可以看出教师的教学能力的,教案是教师与学生和家长进行有效的沟通和交流,共同关注学生的学习进展,本店铺今天就为您带来了一元一次不等式组教案6篇,相信一定会对你有所帮助。

(完整word版)第11章一元一次不等式与一元一次不等式组教案及单元备课

(完整word版)第11章一元一次不等式与一元一次不等式组教案及单元备课

4、议一议:
1. 讨论下列式子的正确与错误.
(1)如果 a<b,那么 a+c<b+c;
(2)如果 a<b,那么 a-c<b-c;
(3)如果 a<b,那么 ac<bc; 2.设 a>b,用“<”或“>”号填空.
(4)如果 a<b,且 c≠0,那么 a > b . cc
(1)a+1 b+1;
(2)a-3 b-3;
教学重点 掌握简单的一元一次不等式的解法,并能将解集在数轴上表示出来。
教学难点 一元一次不等式的解法。
教法、学法
分析
自主探究与小组合作交流相结合.
媒体使用 和选择
教学过程
二次备课
1、 创设情境,引入新课
(1) 不等式的三条基本性质是什么?
(2) 运用不等式基本性质把下列不等式化成 x>a 或 x<a 的形式。
(1)a-3 b-3; (2) a
b;
22
5b;
(5)当 a>0,b 0 时,ab>0;
(7)当 a<0,b 0 时,ab>0;
三、课堂小结:
(3)-4a -4b; (4)5a
(6)当 a>0,b (8)当 a<0,b
0 时,ab<0; 0 时,ab<0.
四、作业:
板书设计
2.不等式的基本性质
教学反思
(3)3a 3b;
(4) a
b;
4
4
(5)- a 7
- b ; (6)-a -b. 7
5、变式训练:
1.根据不等式的基本性质,把下列不等式化成“x>a”或“x<a”的形式:
(1)x-2<3;
(2)6x<5x-1; (3) 1 x>5; 2
(4)-4x>3.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

教学设计
七年级数学组
课题第九章不等式与不等式组
课题名:不等式与不等式组
(解题训练)课时数:一课时时间:40分钟
教材解读
在七年级的第四章、第八章分别学了一元一次方程和二元一次方程组的知识,学生能根据问题中的数量关系列出一元一次方程或方程组解决实际问题,体会方程或方程组是刻画现实世界数量关系的模型之一。

本章《不等式与不等式组》,是刻画现实世界数量关系的另一模型,通过对不等式(组)解法及应用的训练,激发学生兴趣,增强学好数学的信心,提高分析问题、解决问题的能力。

教学目标知




1、复习回顾一元一次不等式(组)的有
关概念、性质,会解一元一次不等式(组)
2、会用一元一次不等式解决实际问题
课标分析
《新课程标准》要求:
利用类比的方法学习一元
一次不等式(组)及其解
法,并利用这些知识解决
一些实际问题,感受不等
式在研究不等关系问题中
过程与方法1、经历知识的拓展过程,感受学习一元
一次不等式(组)的必要性;
2.培养学生善于发现问题,解决问题的
意识,提高归纳整理的能力。

的重要作用。

学生分析
学生,对于不等式及不等
式组的概念已经了解,解
法基本掌握,但是,性质
的第三条的应用,很多学
生还会出错,对于实际问
题列不等式,学生不太习
惯,所以一元一次不等式
(组)的解法及一元一次
不等式的应用仍需专题训
练。

情感与态度1.通过对问题的探讨,培养学生的合作交流的意识和探究知识的精神。

2、感受类比与化归、数形结合的思想方法。

重点、难点:
教学重点:一元一次不等式(组)的解法及应用教学难点:一元一次不等式(组)的应用
教学过程:
一、基础训练(6分钟)
1、已知a>b ,用”>”或”<”连接下列各式;
(1)a-3 ---- b-3,(2)-2a ----- —-2b,(3)4a-3 ---- 4b-3 (4)a-b --- 0
2、在数轴上表示不等式组x>-2
x 1⎧⎨≤⎩ 的解,其中正确的是( ) 3、求不等式组⎪⎩⎪⎨⎧≥+-+x x x 1210
2 的解集。

二、拓展训练() (11年第4题) 不等式组 的解集在数轴上表示正确的是 ( ) (13年第6题)不等式组 的最小整数解为( ) A. -1 B. 0 C. 1 D. 2
(14年第10题)不等式组 的所有整数解的和是
_______________________.
要求学生独立完成、展
示。

设计意图:
从理解概念、
简单解题两
方面检测学生对基础知
识掌握的情况。

以近几年的三道中考题
为例,第一题
是解集的表示方法,体会数形结合的思想,第2、3题是不等式组解法的
延伸
处理办法: 学生独立思
考,然后交流
讨论,展示解
题思路。


⎨⎧≤->+21,02x x 2,21x x ≤⎧⎨
+>⎩360,420
x x +≥⎧⎨
-⎩>
三、不等式在实际生活中的应用(10分钟)
当应用题中出现以下的关键词,如大于,小于,不小于,不大于,至少,至多等,应列不等式来解决问题.
(河南省中考)某公司为了扩大经营,决定购进6台机器用于生产某种活塞.现有甲、乙两种机器供选择,其中每种机器的价格和每台机器日生产活塞的数量如下表所示.经过预算,本次购买机器所耗资金不能超过34万元.
甲乙
价格(万元/台)75
每台日产量(个)10060
(1)按该公司要求可以有几种购买方案?
(2)若该公司购进的6台机器的日生产能力不能低于380个,那么为了节约资金应选择哪种购买方案?学生认真读题、思考,大胆尝试,先独立完成,在小组内交流,然后展示,教师点拨。

达标测试(14分钟)
1.(09青海)已知点M(3a-9,1-a)在第三象限,且它们的坐标都
是整数,则a=___
A. 1
B. 2
C. 3
D. 0
2.(10临沂市)关于x的不等式3x-2a≤-2的解集如图所示,则a的值是___ 学生独立完成,检测学习效果。

3.(11天津)不等式组 的解集为___
4.(11上海)解不等式组 并把解集在数轴上表示出来.
5.甲、乙两家超市以相同的价格出售同样的商品,为了吸引顾客,各自推出不同的优惠方案:在甲超市累计购买商品超出元之后,超出部分按原价折优惠;在乙超市累计购买商品超出元之后,超出部分按原价折优惠.设顾客预计累计购物 x 元( x>300 ).
(1)请用含 x 的代数式分别表示顾客在两家超市购物所付的费用;
(2)试比较顾客到哪家超市购物更优惠?说明你的理由.
总结反思(2分钟)
x
-5
-4
-3
-2
-1
5
4
3
2
O
1
273120x x x +⎧⎨≥⎩
>-
-(
)315216x x
x x +>-⎧⎨
+-<⎩。

相关文档
最新文档