22.1 二次函数的图象和性质(第5课时)

合集下载

人教版九年级数学上册22.1.2《二次函数y=ax2的图象和性质》教案

人教版九年级数学上册22.1.2《二次函数y=ax2的图象和性质》教案

人教版九年级数学上册22.1.2《二次函数y=ax2的图象和性质》教案一. 教材分析人教版九年级数学上册第22.1.2节《二次函数y=ax^2的图象和性质》是九年级数学的重要内容,主要让学生了解二次函数的图象特征和性质。

通过本节课的学习,学生能理解二次函数的一般形式,掌握二次函数的图象特征,了解二次函数的增减性和对称性,从而为后续的函数学习打下基础。

二. 学情分析学生在学习本节课之前,已经掌握了函数的基本概念,具备了一定的函数知识。

但对于二次函数的图象和性质,可能还存在一定的困惑。

因此,在教学过程中,教师需要关注学生的学习情况,针对学生的实际问题进行讲解,引导学生理解和掌握二次函数的图象和性质。

三. 教学目标1.让学生理解二次函数的一般形式,掌握二次函数的图象特征。

2.让学生了解二次函数的增减性和对称性,能运用二次函数的性质解决实际问题。

3.培养学生的观察能力、分析能力和解决问题的能力。

四. 教学重难点1.二次函数的一般形式和图象特征。

2.二次函数的增减性和对称性。

五. 教学方法1.采用问题驱动法,引导学生主动探究二次函数的图象和性质。

2.利用多媒体辅助教学,直观展示二次函数的图象,帮助学生理解。

3.采用小组合作学习,培养学生的团队协作能力。

六. 教学准备1.多媒体教学设备。

2.二次函数图象和性质的相关教学素材。

3.学生分组合作学习的材料。

七. 教学过程导入(5分钟)教师通过提问方式引导学生回顾一次函数和正比例函数的图象和性质,为新课的学习做好铺垫。

同时,教师可以利用多媒体展示二次函数的图象,让学生初步感受二次函数的特点。

呈现(10分钟)教师给出二次函数的一般形式y=ax^2,让学生观察并分析二次函数的图象特征。

学生通过观察多媒体展示的二次函数图象,总结出二次函数的开口方向、顶点坐标等特征。

操练(10分钟)教师给出几个二次函数的实例,让学生分析其图象特征。

学生通过小组合作学习,探讨并分析二次函数的增减性和对称性。

人教版 九年级上册数学 22.1 二次函数的图象和性质(含答案)

人教版 九年级上册数学 22.1 二次函数的图象和性质(含答案)

人教版九年级数学22.1 二次函数的图象和性质一、选择题(本大题共10道小题)1. 已知点A(1,y1),B(2,y2)在抛物线y=-(x+1)2+2上,则下列结论正确的是()A.2>y1>y2B.2>y2>y1C.y1>y2>2 D.y2>y1>22. 抛物线与x轴交于点(-1,0)和(3,0),与y轴交于点(0,-3),则此抛物线的解析式为()A.y=x2+2x+3 B.y=x2-2x-3C.y=x2-2x+3 D.y=x2+2x-33. 某人画二次函数y=ax2+bx+c的图象时,列出下表(计算没有错误):根据此表判断:一元二次方程ax2+bx+c=0的一个根x1满足下列关系式中的() A.3.2<x1<3.3 B.3.3<x1<3.4 C.3.4<x1<3.5 D.3.1<x1<3.24. 2019·丹东如图,二次函数y=ax2+bx+c的图象过点(-2,0),对称轴为直线x=1.有以下结论:①abc>0;②8a+c>0;③若A(x1,m),B(x2,m)是抛物线上的两点,当x=x1+x2时,y=c;④点M,N是抛物线与x轴的两个交点,若在x 轴下方的抛物线上存在一点P,使得PM⊥PN,则a的取值范围为a≥1;⑤若方程a(x+2)(4-x)=-2的两根为x1,x2,且x1<x2,则-2≤x1<x2<4.其中结论正确的有()A.2个B.3个C.4个D.5个5. 矩形ABCD的两条对称轴为坐标轴,点A的坐标为(2,1),一张透明纸上画有一个点和一条抛物线,平移透明纸,使这个点与点A重合,此时抛物线的函数解析式为y=x2,再次平移这张透明纸,使这个点与点C重合,则此时抛物线的函数解析式变为()A.y=x2+8x+14 B.y=x2-8x+14C.y=x2+4x+3 D.y=x2-4x+36. 2019·资阳如图是函数y=x2-2x-3(0≤x≤4)的图象,直线l∥x轴且过点(0,m),将该函数在直线l上方的图象沿直线l向下翻折,在直线l下方的图象保持不变,得到一个新图象.若新图象对应的函数的最大值与最小值之差不大于5,则m的取值范围是()A.m≥1 B.m≤0C.0≤m≤1 D.m≥1或m≤07. 二次函数y=ax2与一次函数y=ax+a在同一坐标系中的大致图象可能是()8. 二次函数y=ax2+bx+c的图象如图所示,对称轴是直线x=1.有下列结论:①abc<0;②3a+c>0;③(a+c)2-b2<0;④a+b≤m(am+b)(m为实数).其中正确结论的个数为()A.1 B.2 C.3 D.49. (2019•岳阳)对于一个函数,自变量x取a时,函数值y也等于a,我们称a为这个函数的不动点.如果二次函数y=x2+2x+c有两个相异的不动点x1、x2,且x1<1<x2,则c的取值范围是A.c<-3 B.c<-2C.c<14D.c<110. 如图,边长为2的等边△ABC和边长为1的等边△A′B′C′,它们的边B′C′,BC位于同一条直线l上,开始时,点C′与B重合,△ABC固定不动,然后把△A′B′C′自左向右沿直线l平移,移出△ABC外(点B′与C重合)停止,设△A′B′C′平移的距离为x,两个三角形重合部分的面积为y,则y关于x的函数图象是()二、填空题(本大题共8道小题)11. 若物体运动的路程s (m)与时间t (s)之间的关系式为s =5t 2+2t ,则当物体运动时间为4 s 时,该物体所经过的路程为________.12. 【2018·淮安】将二次函数y =x 2-1的图象向上平移3个单位长度,得到的图象所对应的函数解析式是__________.13. (2019•武汉)抛物线2y ax bx c =++经过点(3,0)A -、(4,0)B 两点,则关于x 的一元二次方程2(1)a x c b bx -+=-的解是__________.14. 已知函数y =ax 2+c 的图象与函数y =-3x 2-2的图象关于x 轴对称,则a =________,c =________.15. 如图,在平面直角坐标系中,抛物线y =ax 2(a >0)与y =a (x -2)2交于点B ,抛物线y =a (x -2)2交y 轴于点E ,过点B 作x 轴的平行线与两条抛物线分别交于D ,C 两点.若A 是x 轴上两条抛物线顶点之间的一点,连接AD ,AC ,EC ,ED ,则四边形ACED 的面积为________.(用含a 的代数式表示)16. (2019•天水)二次函数2y ax bx c =++的图象如图所示,若42Ma b =+,N a b =-.则M 、N 的大小关系为M __________N .(填“>”、“=”或“<”)17. 如图,抛物线y =ax 2+bx +c(a ,b ,c 是常数,a≠0)与x 轴交于A ,B 两点,顶点为P(m ,n).给出下列结论:①2a +c <0;②若(-32,y 1),(-12,y 2),(12,y 3)在抛物线上,则y 1>y 2>y 3;③若关于x 的方程ax 2+bx +k =0有实数解,则k >c -n ;④当n =-1a 时,△ABP 为等腰直角三角形.其中正确的结论是________.(填序号)18. 如图,平行于x 轴的直线AC 与函数y 1=x 2(x ≥0),y 2=13x 2(x ≥0)的图象分别交于B ,C 两点,过点C 作y 轴的平行线交y 1的图象于点D ,直线DE ∥AC 交y 2的图象于点E ,则DEAB =________.三、解答题(本大题共4道小题)19. 已知抛物线的顶点坐标是(2,3),并且经过点(0,-1),求它的解析式.20. 如图,抛物线y=ax2+2ax+1与x轴仅有一个公共点A,经过点A的直线交该抛物线于点B,交y轴于点C,且点C是线段AB的中点.(1)求这条抛物线对应的函数解析式;(2)求直线AB对应的函数解析式.21. 二次函数y=ax2+bx+c的图象如图所示,若关于x的方程|ax2+bx+c|=k(k≠0)有两个不相等的实数根,求k的取值范围.22. 如图,对称轴为直线x=2的抛物线y=x2+bx+c与x轴交于点A和点B,与y轴交于点C,且点A的坐标为(-1,0).(1)求此抛物线的解析式;(2)直接写出B、C两点的坐标;(3)求过O,B,C三点的圆的面积.(结果用含π的代数式表示)注:二次函数y=ax2+bx+c(a≠0)的顶点坐标为(-b2a,4ac-b24a)人教版九年级数学22.1 二次函数的图象和性质-答案一、选择题(本大题共10道小题)1. 【答案】A[解析] 根据题意,可得抛物线开口向下,对称轴为直线x=-1,∴在对称轴的右侧,y随x的增大而减小.∵-1<1<2,∴2>y1>y2,故选A.2. 【答案】B[解析] 由抛物线与x轴交于点(-1,0)和(3,0),设此抛物线的解析式为y =a(x+1)(x-3).又因为抛物线与y轴交于点(0,-3),把x=0,y=-3代入y=a(x+1)(x-3),得-3=a(0+1)(0-3),即-3a=-3,解得a=1,故此抛物线的解析式为y=(x+1)(x-3)=x2-2x-3.故选B.3. 【答案】B[解析] 从表格中的数据看,当3.2≤x≤3.5时,y随x的增大而增大,且x=3.3时,y=-0.17<0,x=3.4时,y=0.08>0,故y=0一定在3.3<x<3.4这个范围内取得,∴方程的根也在此范围内.故选B.4. 【答案】A5. 【答案】A[解析] 因为矩形ABCD的两条对称轴为坐标轴,所以矩形ABCD关于坐标原点成中心对称.因为A,C是矩形对角线上的两个点,所以点A,C关于原点对称,所以点C的坐标为(-2,-1),所以抛物线向左平移了4个单位长度,向下平移了2个单位长度,所以平移后抛物线的函数解析式为y=(x+4)2-2=x2+8x+14.故选A.6. 【答案】C7. 【答案】D[解析] 由一次函数y=ax+a可知,其图象与x轴交于点(-1,0),排除A,B;当a>0时,二次函数y=ax2的图象开口向上,一次函数y=ax+a的图象经过第一、二、三象限;当a<0时,二次函数y=ax2的图象开口向下,一次函数y=ax+a的图象经过第二、三、四象限.排除C.8. 【答案】C[解析] ①∵抛物线开口向上,∴a>0. ∵抛物线的对称轴在y轴右侧,∴b<0.∵抛物线与y轴交于负半轴,∴c<0,∴abc>0,所以①错误.②当x=-1时,y>0,∴a-b+c>0.∵-b2a=1,∴b=-2a.把b=-2a代入a-b+c>0中,得3a+c>0,所以②正确.③当x=1时,y<0,∴a+b+c<0.当x=-1时,y>0,∴a-b+c>0,∴(a+b+c)(a-b+c)<0,即(a+c)2-b2<0,所以③正确.④∵抛物线的对称轴为直线x=1,∴x=1时,函数的最小值为a+b+c,∴a+b+c≤am2+bm+c(m为实数),即a+b≤m(am+b),所以④正确.故选C.9. 【答案】B【解析】由题意知二次函数y=x2+2x+c有两个相异的不动点x1、x2,所以x1、x2是方程x2+2x+c=x的两个不相等的实数根,整理,得:x2+x+c=0,所以∆=1–4c>0,又x2+x+c=0的两个不相等实数根为x1、x2,x1<1<x2,所以函数y=x2+x+c=0在x=1时,函数值小于0,即1+1+c<0,综上则140 110cc->⎧⎨++<⎩,解得c<-2,故选B.10. 【答案】B【解析】由题意知:在△A′B′C′移动的过程中,阴影部分总为等边三角形.当0<x≤1时,边长为x,此时y=12x×32x=34x2;当1<x≤2时,重合部分为边长为1的等边三角形,此时y=12×1×32=34;当2<x≤3时,边长为3-x,此时y=12(3-x)×32(3-x).综上,这个分段函数的图象左边为开口向上的抛物线的一部分,中间为直线的一部分,右边为开口向上抛物线的一部分,且最高点为34.故选B.二、填空题(本大题共8道小题)11. 【答案】88 m[解析] 把t=4代入函数解析式,得s=5×16+2×4=88.故填88 m.12. 【答案】y=x2+2[解析] 二次函数y=x2-1的图象向上平移3个单位长度,平移后的纵坐标增加3,即y=x2-1+3=x2+2.13. 【答案】12x =-,25x =【解析】依题意,得:9301640a b c a b c -+=⎧⎨++=⎩, 解得:12b a c a=-⎧⎨=-⎩, 所以,关于x 的一元二次方程a(x-1)2+c=b-bx 为:2(1)12a x a a ax --=-+, 即:2(1)121x x --=-+,化为:23100x x --=,解得:12x =-,25x =,故答案为:12x =-,25x =.14. 【答案】3 215. 【答案】8a [解析] ∵抛物线y =ax 2(a >0)与y =a(x -2)2交于点B , ∴BD =BC =2,∴DC =4.∵y =a(x -2)2=ax 2-4ax +4a ,∴E(0,4a),∴S 四边形ACED =S △ACD +S △CDE =12DC·OE =12×4×4a =8a.16. 【答案】<【解析】当1x =-时,0y a b c =-+>,当2x =时,420y a b c =++<,()42M N a b a b -=+--()420a b c a b c =++--+<,即M N <,故答案为:<.17. 【答案】②④ [解析] (1)当x =-1时,y =a -b +c >0.由x =-b 2a <12和a >0可得-b <a.∴0<a -b +c <a +a +c =2a +c ,即2a +c >0,①错误;(2)结合图象易知②正确;(3)方程ax 2+bx +k =0有实数解,即ax 2+bx +c =c -k 有实数解.∵y =ax 2+bx +c≥n ,∴c -k≥n ,即k≤c -n ,③错误;(4)设抛物线的解析式为y =-1n (x -m)2+n(n <0).令y =0,得-1n(x -m)2+n =0. ∴n 2-(x -m)2=0,∴(n -x +m)(n +x -m)=0.∴x 1=m +n ,x 2=m -n.AB =|x 1-x 2|=-2n.设对称轴交x 轴于点H ,则AH =BH =PH =-n ,∴△ABP 为等腰直角三角形,④正确.18. 【答案】3-3 [解析] 设点A 的坐标为(0,b),则B(b ,b),C(3b ,b),D(3b ,3b),E(3 b ,3b).所以AB =b ,DE =3 b -3b =(3-3) b.所以DE AB =(3-3)b b=3- 3. 三、解答题(本大题共4道小题)19. 【答案】解:根据题意,设抛物线的解析式为y =a(x -2)2+3.∵抛物线经过点(0,-1),∴-1=a(0-2)2+3,解得a =-1,∴y =-(x -2)2+3.20. 【答案】解:(1)∵抛物线y =ax 2+2ax +1与x 轴仅有一个交点,∴b 2-4ac =(2a)2-4a =0,解得a =1,a =0(舍去),∴抛物线的解析式:y =x 2+2x +1.(3分)(2)设直线AB 的解析式为y =kx +b ,∵抛物线解析式y =x 2+2x +1=(x +1)2,∴A(-1,0),(4分)过点B 作BD ⊥x 轴于点D ,如解图,∵OC ⊥x 轴,∴OC ∥BD ,∵C 是AB 中点,∴O 是AD 中点,∴AO =OD =1,(6分)∴点B 的横坐标为1,把x =1代入抛物线中,得y =(x +1)2=(1+1)2=4,∴B 的坐标为(1,4).(7分)把点A(-1,0) ,B(1,4)代入y =kx +b ,得⎩⎨⎧0=-k +b 4=k +b ,解得⎩⎨⎧k =2b =2, ∴直线AB 的解析式为: y =2x +2.(8分)21. 【答案】[解析] 先根据题意画出y =|ax 2+bx +c|的图象,即可得出|ax 2+bx +c|=k(k≠0)有两个不相等的实数根时k 的取值范围.解:根据题意,得y =|ax 2+bx +c|的图象如图所示.由图象易知,若|ax 2+bx +c|=k(k≠0)有两个不相等的实数根,则k >3. 22. 【答案】解:(1)由抛物线经过点A(-1,0),且对称轴为直线x =2,得⎩⎪⎨⎪⎧-b 2=21-b +c =0,(2分) 解得⎩⎨⎧b =-4c =-5,(3分)解图∴抛物线的解析式为y =x 2-4x -5.(4分)(利用抛物线对称性先求出点B 的坐标,再求出解析式也可)(2)B(5,0),C(0,-5).(6分)(3)如解图,连接BC ,易知△OBC 是直角三角形,∴过O ,B ,C 三点的圆的直径是线段BC 的长度,(8分) 由勾股定理得BC =52+52=52,∴所以所求圆的面积是π×(522)2=252π.(10分)。

22.1二次函数的图象和性质

22.1二次函数的图象和性质

根据表中x,y的数值在坐标平面中描点(x,y), 再用平滑的曲线顺次连接各点,就得到y=x2的图象。
可以看出,二次函数y=x2的图象是一条曲线,它 的形状类似于投篮时或掷铅球时球在空中所经过的路 线,只是这条曲线开口向上.这条曲线叫做抛物线 y =x2 .实际上,二次函数的图象都是抛物线,它们的 开口或者向上或者向下.一般地,二次函数 y=ax2+ bx+c.的图象叫做抛物线 y=ax2+bx+c.
例4 要修建一个圆形喷水池,在池中心竖直安装 一根水管,在水管的顶端安一个喷水头,使喷出的抛 物线形水柱在与池中心的水平距离为1 m处达到最高, 高度为3 m,水柱落地处离池中心3 m,水管应多长? 解:如下图,以水管与地面交点为原点,原点与 水柱落地处所在直线为 x 轴,水管所在直线为 y 轴, 建立直角坐标系.
问题1 n个球队参加比赛,每两队之间进行一场比 赛。比赛的场次数m与球队数n有什么关系? 每个队要与其他(n-1)个球队各比赛一场,甲队 对乙队的比赛与乙队对甲队的比赛是同一场比赛,所 以比赛的场次数
1 m= n (n-1), 2

1 2 1 m= n - 2 n. 2

这个函数解析式表示比赛的场次数 m与球队数n的 关系,对于n 的每一个值,m 都有一个对应值,即m是 n的函数。
22.1.3 二次函数y=a(x-h)2+k的图象和性质
例2 在同一直角坐标系中,画出二次函数y=2x2+ 1,y=2x2-1的图象. 解:先列表:
x … -2 -1.5 -1 5.5 3 y=2x2+1 … 9 3.5 1 y=2x2-1 … 7 -0.5 0 1.5 1 -0.5 -1 0.5 1.5 -0.5 1 3 1 1.5 5.5 3.5 2 … 9 … 7 …

《二次函数的图像和性质》PPT课件 人教版九年级数学

《二次函数的图像和性质》PPT课件 人教版九年级数学
2
y=20x2+40x+20③
d=
学生以小组形式讨论,并由每组代表总结.
探究新知
【分析】认真观察以上出现的三个函数解析式,
分别说出哪些是常数、自变量和函数.
函数解析式
y=6x2
自变量
函数
x
y
n
d
x
y
这些函数自变量的最高次项都是二次的!
这些函数有什
么共同点?
探究新知
二次函数的定义
一般地,形如y=ax²+bx+c(a,b,c是常数,a≠ 0)的
总结二次
函数概念
二次函数y=ax²+bx+c
(a,b,c为常数,a≠0)
确定二次函数解
析式及自变量的
取值范围
二次函数的判别:
①含未知数的代数式为整式;
②未知数最高次数为2;
③二次项系数不为0.
人教版 数学 九年级 上册
22.1 二次函数的图象和性质
22.1.2
二次函数y=ax2的
图象和性质
导入新知
探究新知
方法点拨
运用定义法判断一个函数是否为二次函数的
步骤:
(1)将函数解析式右边整理为含自变量的代
数式,左边是函数(因变量)的形式;
(2)判断右边含自变量的代数式是否是整式;
(3)判断自变量的最高次数是否是2;
(4)判断二次项系数是否不等于0.
巩固练习
下列函数中,哪些是二次函数?
(1) y=3(x-1)²+1(是)
(1) 你们喜欢打篮球吗?
(2)你们知道投篮时,篮球运动的路线是什么
曲线?怎样计算篮球达到最高点时的高度?
素养目标

部编数学九年级上册专题22.1二次函数的图象和性质(基础)(解析版)含答案

部编数学九年级上册专题22.1二次函数的图象和性质(基础)(解析版)含答案

专题22.1 二次函数的图象和性质目录二次函数的定义 (1)二次函数求参数 (3)二次函数一般式................................................................................................................................42y ax =性质.....................................................................................................................................42y ax =图像开口.............................................................................................................................62y ax =图像问题.............................................................................................................................7()2y a x h k =-+顶点坐标...........................................................................................................9()2y a x h k =-+性质.................................................................................................................10()2y a x h k =-+图像平移 (13)二次函数一般式配凑顶点式 (14)二次函数图像问题 (15)二次函数比较大小 (19)二次函数性质综合..........................................................................................................................21二次函数的定义【例1】下列函数中,属于二次函数的是( )A .23y x =-B .22(1)y x x =+-C .2(1)y x x =+D .22y x =-【解答】解:A .不含有x 的二次项,所以A 不符合题意;B .化简后21y x =+,不含有x 的二次项,所以B 不符合题意;C .符合题意;D .22y x -=-,不含有x 的二次项,所以D 选项不符合题意.一般的,形如y =ax 2+bx +c (a 、b 、c 是常数,a ≠0)的函数叫做二次函数。

九年级数学上第22章二次函数22.1二次函数的图象和性质5二次函数y=a2k的图象和性质课人教

九年级数学上第22章二次函数22.1二次函数的图象和性质5二次函数y=a2k的图象和性质课人教

课后训练 1、书籍是朋友,虽然没有热情,但是非常忠实。2022年3月11日星期五2022/3/112022/3/112022/3/11
2、科学的灵感,决不是坐等可以等来的。如果说,科学上的发现有什么偶然的机遇的话,那么这种‘偶然的机遇’只能给那些学有素养的人,给那些善于 独立思考的人,给那些具有锲而不舍的人。2022年3月2022/3/112022/3/112022/3/113/11/2022 3、书籍—通过心灵观察世界的窗口.住宅里没有书,犹如房间里没有窗户。2022/3/112022/3/11March 11, 2022 4、享受阅读快乐,提高生活质量。2022/3/112022/3/112022/3/112022/3/11
7.(2020·甘孜州)如图,二次函数y=a(x+1)2+k的图象与x轴 交于A(-3,0),B两点,下列说法错·误·的是( D )
A.a<0 B.图象的对称轴为直线x=-1 C.点B的坐标为(1,0) D.当x<0时,y随x的增大而增大
*8.(2020·杭州)设函数y=a(x-h)2+k(a,h,k是实数,a≠0), 当x=1时,y=1;当x=8时,y=8,( C )
解:①当 MA=MB 时,M(0,0); ②当 AB=AM 时,M(0,-3); ③当 AB=BM 时,M(0,3+3 2)或 M(0,3-3 2). 所以点 M 的坐标为(0,0),(0,-3),(0,3+3 2)或(0,3-3 2).
14.(2020·金华)如图,在平面直角坐标系中,已知二次函数 y= -12(x-m)2+4 图象的顶点为 A,与 y 轴交于点 B,异于顶点 A 的点 C(1,n)在该函数图象上.
(1)求抛物线对应的函数解析式; 解:由题意可知 h=1,则 y=a(x-1)2+k. 将点(3,0),(0,3)的坐标分别代入上式, 得4aa++kk==30,,解得ak==-4. 1, 故抛物线对应的函数解析式为 y=-(x-1)2+4.

人教版数学九年级上册《二次函数的图像和性质》课件PPT

人教版数学九年级上册《二次函数的图像和性质》课件PPT

2
2
2
2
b
1
1,
4ac b2

4



1 2



5 2


12

4
2

2a
y
21
1 2
x


1
2
4a
2

4



1 2

2
2
∴顶点为(1,-2),对称轴为直线 x=1。
练习2 用公式法把y 2x2 8x 6 化成

b 2a
,
4ac 4a
b2
;
(2)对称轴是直线 x b
2a
(3)开口方向:当 a>0时,抛物线开
口向上;当 a<0时,抛物线开口向下。
(4)最值:
如果a>0,当 x
b 2a
时,函数有最小值,
y最小=
4ac 4a
b
2
,
如果a<0,当
x


b 2a
时,函数有最大值,
y最大=
那么一般地,函数y ax2 的图象怎样平 移就得到 y ax2 bx c 的图象呢?
1.用配方法把 y ax2 bx c 化为
y a x h2 k 的形式。
例1
用配方法把 y 1 x2 3x 5
2
2
化为
y a x h2 k 的形式,求出顶点坐标和对称轴。
分析:我们可以用顶点坐标公式求出图 象的顶点,过顶点作平行于y轴的直线就 是图象的对称轴.在对称轴的一侧再找 两个点,则根据对称性很容易找出另两 个点,这四个点连同顶点共五个点,过 这五个点画出图像.

九年级数学上册第二十二章二次函数22.1二次函数的图象和性质22.1.3二次函数y=a(x-h)2+k的图象和性质第

九年级数学上册第二十二章二次函数22.1二次函数的图象和性质22.1.3二次函数y=a(x-h)2+k的图象和性质第

教材分析之前学生已经学过一次函数、反比例函数的图像和性质,以及会建立二次函数的模型和理解二次函数的图像相关概念和性质基础之上进行的。

是前面知识的应用和拓展,又为今后学习二次函数的应用及一元二次方程与二次函数之间的关系作预备。

充分体现了数形结合的思想,因此本课无论在知识上还是培养学生动手能力上都起了很大的作用。

学生已经会了上一节的二次函数图像及性质。

课标要求会用描点法画出二次函数的图像,通过图像了解二次函数的性质。

学情分析可能有些学生对二次函数还不理解,甚至还不会描点法画出函数图像,看图能力差,不能类比一次函数的一些观察图像的方法来学习二次函数的图像。

不能从图中获取相关的信息。

由于放假的原因,学生对上下平移和左右平移的知识有很多淡忘,所以完成本节知识在理解方面会有难点。

教学目标知识目标:让学生经历二次函数y=a(x-h)2+k性质探究的过程,理解函数y=a(x-h)2+k的性质,理解二次函数y=a(x-h)2+k的图象与二次函数y=ax2的图象的关系能力目标:通过画图象独立去探索交流图象的性质培养分析解决问题的能力。

能说出二次函数y =a(x-h)2+k的图象与二次函数y=ax2的图象的关系。

情意目标:在学习中体会知识之间的联系,体会知识的发生发展过程和知识体系。

教学重点:会用描点法画出二次函数y=a(x-h)2+k的图象,理解二次函数y=a(x-h)2+k的性质。

能说出顶点坐标。

教学难点:理解二次函数y=a(x-h)2+k的性质,理解二次函数y=a(x-h)2+k的图象与二次函数y=ax2关系。

教学手段导学案教学方法问答法、练习法、讨论法教学过程1、创设情境::(组织方法)复习两个上下平移及左右平移的二次数学图像,对照图像说出开口方向、对称轴、顶点坐标、最值、性质。

详见导学案。

解决哪些教学目标:在学习中体会知识之间的联系,体会知识的发生发展过程和知识体系。

学生可能出现的困难:忘记或混淆上下平移和左右平移。

九年级数学人教版第二十二章二次函数22.1.1二次函数定义(同步课本知识图文结合例题详解)

九年级数学人教版第二十二章二次函数22.1.1二次函数定义(同步课本知识图文结合例题详解)

九年级数学第22章二次函数
问题3: 某工厂一种产品现在的年产量是20件,计划今后两
年增加产量.如果每年都比上一年的产量增加x倍,那么两
年后这种产品的产量y将随计划所定的x的值而确定,y与x
之间的关系应怎样表示?
这种产品的原产量是20件,一年后的产量是_2_0_(_1_+_x_)件,
再经过一年后的产量是_____2_0_(_1_+_x_)_(_1件+x,) 即两年后的
2
是二次函数关系.
九年级数学第22章二次函数
4.某工厂计划为一批长方体形状的产品涂上油漆,长方体的长 和宽相等,高比长多0.5m. (1)长方体的长和宽用x(m)表示,长方体需要涂漆的表面积 S(m2)如何表示? (2)如果涂漆每平米所需要的费用是5元,涂漆每个长方体所需 要费用用y(元)表示,那么y的表达式是什么? 解析:(1)S=2x2+x(x+0.5)×4=6x2+2x (2)y=5S=5×(6x2+2x)
2.如果函数y=(k-3)xk2 3k 2 +kx+1是二次函数,则k的值
一定是__0____.
九年级数学第22章二次函数
3.用总长为60m的篱笆围成矩形场地,场地面积S(m²)与矩 形一边长a(m)之间的关系是什么?是函数关系吗?是哪一 种函数? 解析:S=a( 60 -a)=a(30-a)=30a-a²=-a²+30a.
函 数
关系Leabharlann 一次函数y=kx+b(k≠0)
正比例函数 y=kx(k≠0)
反比例函数
y= k (k≠0)
x
二次函数
九年级数学第22章二次函数
问题1:
正方体六个面是全等的正方形,设正方体棱长为 x ,表 面积为 y ,则 y 关于x 的关系式为_y_=6_x2____.

22.1二次函数的图象和性质

22.1二次函数的图象和性质

22.1二次函数的图象和性质4.(中考·丽水)若二次函数y=ax2的图象过点P(-2,4),则该图象必经过点( ) A.(2,4) B.(-2,-4)C.(-4,2) D.(4,-2)5.函数y=ax-2与y=ax2(a≠0)在同一平面直角坐标系中的图象可能是( )(第6题)6.(2015·黔西南州)如图,在Rt△ABC中,∠C=90°,AC=4 cm,BC=6 cm,动点P从点C 沿CA以1 cm/s的速度向A点运动,同时动点Q 从点C沿CB以2 cm/s的速度向B点运动,其中一个动点到达终点时,另一个动点也停止运动,则运动过程中所构成的△CPQ的面积y(cm2)与运动时间x(s)之间的函数图象大致是( )11.对于二次函数:①y=3x2;②y=13x2;③y=43x2,它们的图象在同一坐标系中,开口大小的顺序用序号来表示应是( )A.②>③>① B.②>①>③C.③>①>② D.③>②>①13.已知二次函数y=x2,在-1≤x≤4这个范围内,求函数的最值.14.已知函数y=(m+3)x m2+3m-2是关于x的二次函数.(1)求m的值;(2)当m为何值时,该函数图象的开口向下?(3)当m为何值时,该函数有最小值?17.有一座抛物线形状的拱桥,正常水位时,桥下水面宽度AB为20 m,拱顶距离水面4 m.(1)建立如图所示的直角坐标系,求出该抛物线的解析式;(2)在正常水位的基础上,当水位上升h m时,桥下水面宽度CD为d m,请将d表示成关于h的函数解析式;(3)为保证过往船只顺利通行,桥下水面宽度不得小于18 m,则水深超过正常水位多少米时,会影响过往船只顺利通行?3.已知点A(-3,y1),B(-1,y2),C(2,y3)在抛物线y=23x2上,则y1、y2、y3的大小关系是( )A.y1<y2<y3B.y1>y2>y3C.y1<y3<y2D.y2<y3<y14.已知函数y=(m+3)x m2-3m-26是关于x的二次函数.(1)求m的值;(2)当m为何值时,该函数图象的开口向下?(3)当m为何值时,该函数有最小值?(第6题)6.如图,直线AB过x轴上一点A(2,0),且与抛物线y=ax2相交于B、C两点,B点坐标为(1,1),(1)求直线AB的解析式,及抛物线y=ax2的解析式;(2)求点C的坐标;(3)求S△COB;(4)若抛物线上有一点D(在第一象限内),使得S△AOD =S△COB,求点D的坐标.8.如图,二次函数y=ax2+bx的图象与一次函数y=x+2的图象交于A、B两点,点A的横坐标是-1,点B的横坐标是2.(1)求二次函数的解析式;(2)设点C在二次函数图象的OB段上,求四边形OABC面积的最大值.(第8题)5.(2015·泰安)在同一坐标系中,一次函数y=-mx+n2与二次函数y=x2+m的图象可能是( )14.抛物线y=ax2+k的顶点坐标是(0,2),且形状及开口方向与抛物线y=-12x2相同.(1)确定a,k的值;(2)画出抛物线y=ax2+k.1­1.〈上海〉如果将抛物线y=x2+2向下平移1个单位,那么所得新抛物线的解析式是( ) A.y=(x-1)2+2B.y=(x+1)2+2C.y=x2+1D.y=x2+36.已知抛物线y=-13x2+2,当1≤x≤5时,y的最大值是( )A.2 B.23C.53D.73,13.能否通过上下平移二次函数y=13x2的图象,使得到的新的函数图象过点(3,-3)?若能,说出平移的方向和距离;若不能,说明理由.14.抛物线y=ax2+k的顶点坐标是(0,2),且形状及开口方向与抛物线y=-12x2相同.(1)确定a,k的值;(2)画出抛物线y=ax2+k.5.已知二次函数y甲=mx2和y乙=nx2,对任意给定的一个x值都有y甲≥y乙,下列结论可能正确的是________(填序号).①m<n<0;②m>0,n<0;③m<0,n>0;④m>n>0.4.在平面直角坐标系中,函数y=-x+1与y=-32(x-1)2的图象大致是( )8.已知二次函数y=-2(x+h)2,当x<-3时,y随x的增大而增大;当x>-3时,y随x 的增大而减小,则当x=1时,y的值为( ) A.-12 B.12 C.32 D.-3213.抛物线y=ax2向右平移3个单位长度后经过点(-1,4),求a的值和平移后抛物线对应的二次函数解析式.16.如图,已知二次函数y=(x+2)2的图象与x轴交于点A,与y轴交于点B.(1)写出点A、点B的坐标.(2)求S△AOB.(3)写出对称轴的解析式.(4)在对称轴上是否存在一点P,使以P,A,O,B为顶点的四边形为平行四边形?若存在,求出P 点的坐标;若不存在,请说明理由.3.二次函数y=(x-k)2与一次函数y=kx(k >0)在同一平面直角坐标系中的图象大致是( )4.在平面直角坐标系中,函数y=-x+1与y=-32(x-1)2的图象大致是()8.已知二次函数y=-2(x+h)2,当x<-3时,y随x的增大而增大;当x>-3时,y随x 的增大而减小,则当x=1时,y的值为( ) A.-12 B.12 C.32 D.-3214.已知直线y=x+1与x轴交于点A,抛物线y=-2x2平移后的顶点与点A重合.(1)求平移后的抛物线l的解析式;(2)若点B(x1,y1),C(x2,y2)在抛物线l上,且-12<x1<x2,试比较y1,y2的大小.15.已知一条抛物线的开口方向和大小与抛物线y=2x2都相同,而顶点与抛物线y=(x-2)2相同.(1)求该抛物线的解析式;(2)将(1)中的抛物线向左平移3个单位长度会得到怎样的抛物线?(3)直接写出(2)中的抛物线沿坐标轴翻折180°后得到的抛物线的解析式.。

九年级数学 第二十二章 二次函数 22.1 二次函数的图像和性质 22.1.1 二次函数

九年级数学 第二十二章 二次函数 22.1 二次函数的图像和性质 22.1.1 二次函数
(1)求 S 与 x 之间的函数关系式,并写出自变量 x 的取值范围. (2)设计费能达到 24 000 元吗?为什么? (3)估计当 x 是多少米时,设计费最多?最多是多少元? 解:(1)∵矩形一边长为 x m,周长为 16 m, ∴另一边长为(8-x)m, ∴S=x(8-x)=-x2+8x,其中,0<x<8.
注 意:(1)在二次函数 y=ax2+bx+c 中,a≠0 是必要条件,不可忽视; (2)b,c 可以为任何实数; (3)定义中的二次函数是关于 x 的二次整式,切不可把类似“y=x2+1x+3”的 式子也当成二次函数.
12/7/2021
第五页,共二十四页。
归类探究
类型之一 二次函数的识别和应用
12/7/2021
第十九页,共二十四页。
(2)能,理由是: ∵设计费为 2 000 元/m2, ∴当设计费为 24 000 元时,面积为 24 000÷2 000=12(m2),即-x2+8x=12, 解得 x1=2,x2=6, ∴设计费能达到 24 000 元.
12/7/2021
第二十页,共二十四页。
A.2
B.-2
C.-1
D.-4
3.把一根长为 50 cm 的铁丝弯成一个矩形,设这个矩形的一边长为 x cm,它
的面积为 y cm2,则 y 与 x 之间的函数关系式为( C )
A.y=-x2+50x
B.y=x2-50x
C.y=-x2+25x
D.y=-2x2+25
4.二次函数 y=2(x+2)2-3 的二次项系数是 2 ,一次项系数是 8 ,常数
12/7/2021
第九页,共二十四页。
(3)根据上面得到的表达式填写下表: x 5 10 15 20 25 30 35 y 175 300 375 400 375 300 175

九年级数学上册22二次函数22.1二次函数的图象和性质22.1.2二次函数y=ax2的图象和性质

九年级数学上册22二次函数22.1二次函数的图象和性质22.1.2二次函数y=ax2的图象和性质

4.函数y=ax2与y=-ax+b图象可能是(
)
B
第8页
5.下列函数中,当 x>0 时,y 随着 x 的增大而增大的是( D )
A.y=-x+1
B.y=-x-1
C.y=-x2
D.y=x2
*6.已知 m 为实数,下列各点中:A(m,-am2),B(m,-m),C(m2,
-m),D(-m,am2),抛物线 y=-ax2 一定不经过的点是____D_______.
22.1 二次函数图象和性质
22.1.2 二次函数y=ax2图象和性质
第1页
1.二次函数y=ax2图象 二次函数y=ax2图象是一条抛物线,它含有以下特点: (1)顶点在__原__点___、对称轴为__y_轴____; (2)当a>0时,抛物线开口____向__上_,a越大,抛物线开口越______小; 当a<0时,抛物线开口____向__下_,a越小,抛物线开口越_______小_. 2.二次函数y=ax2性质 (1)假如a>0,则: 当x<0时,y随x增大而_____减__小_; 当x>0时,y随x增大而_____增__大_; 当x=0时,y取最___小___值0,即y最小=__0____. (2)假如a<0,则: 当x<0时,y随x增大而_____增__大_; 当x>0时,y随x增大而_____减__小_; 当x=0时,y取最___大___值0,即y最大=__0__.
*7.如图,正方形的边长为 4,以正方形中心为原点建立平面直角 坐标系,作出函数 y=13x2 与 y=-13x2 的图象,则阴影部分的面积是
__8____.
*8.已知 a<-1,点(a-1,y1),(a,y2),(a+1,y3)都在函数 y
=x2 的图象上,则 y1,y2,y3 的大小关系是_y_1_1>__y_2_>__y__3__.

22.1二次函数图象及基本性质(教案)

22.1二次函数图象及基本性质(教案)
3.重点难点解析:在讲授过程中,我会特别强调二次函数的图象绘制方法和基本性质这两个重点。对于难点部分,如对称轴、顶点坐标的计算,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与二次函数相关的实际问题,如投篮的抛物线轨迹。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。通过实际测量和计算,观察二次函数图象的基本性质。
4.实践活动的组织:在实践活动环节,学生们的参与度较高,但在小组讨论过程中,部分学生显得不够积极。为了提高学生的参与度,我将在今后的教学中加强对学生的引导和鼓励,让他们更加主动地投入到讨论中去。
5.小组讨论的引导:在小组讨论环节,我发现部分学生在提出观点和想法时,思路不够清晰。为了提高学生的逻辑思维能力,我将在今后的教学中加强引导,教授学生如何有针对性地分析问题,并提出合理的解决方案。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解二次函数的基本概念。二次函数是形如y=ax²+bx+c(a≠0)的函数。它在数学、物理、工程等领域有着广泛的应用。
2.案例分析:接下来,我们来看一个具体的案例。通过绘制二次函数y=x²的图象,观察其对称性、顶点等基本性质,并探讨这些性质在实际问题中的应用。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了二次函数图象的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对二次函数图象及基本性质的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。

22.1《二次函数的图象和性质》课件(共5课时)

22.1《二次函数的图象和性质》课件(共5课时)

2.类比探究二次函数 y = ax2 + k 的图象和性质
归纳: 一般地,当 a>0 时,抛物线 y = ax2 + k 的对称轴是 y 轴,顶点是(0,k),开口向上,顶点是抛物线的最 低点,a 越大,抛物线的开口越小.当 x<0 时, y 随 x 的增大而减小,当 x>0 时, y 随 x 的增大而增大.
3.练习、巩固二次函数的定义
练习2 填空: (1)一个圆柱的高等于底面半径,则它的表面积 S 与底面半径 r 之间的关系式是__S_=__4_π_r_2_; (2) n 支球队参加比赛,每两队之间进行两场比 赛,则比赛场次数 m 与球队数 n 之间的关系式是 ___m_=__n(__n_-_1__)____.
某种产品现在的年产量是 20 t ,计划今后两年增加 产量.如果每一年都比上一年的产量增加 x 倍,那么两 年后这种产品的产量 y 将随计划所定的 x 的值而确定, y 与 x 之间的关系应该怎样表示?
y 20x2 40x 20
2.通过实例,归纳二次函数的定义
这三个函数关系式有什么共同点?
y 6x2 m 1 n2 1 n
2
4.小结
(1)本节课学了哪些主要内容? (2)抛物线 y = ax2 + k 与抛物线 y = ax2 的区别与联 系是什么?
5.布置作业
教科书习题 22.1 第 5 题(1).
九年级 上册
22.1 二次函数的图象和性质 (第4课时)
• 本课是在学生已经学习了二次函数 y = ax2,y = ax2+ k 的基础上,继续进行二次函数的学习,这是对二次函 数图象和性质研究的延续.
2.类比探究 y a(x h)2, y a(x h)2 k 的图 象和性质

22.1 二次函数的图象和性质(第5课时)

22.1 二次函数的图象和性质(第5课时)
小组评价与总结
这节课你有什么收获?
九、作业: 教科书习题22.1第6题,第7题(2ቤተ መጻሕፍቲ ባይዱ.
十、课后反思
课题
22.1二次函数的图象和性质(第5课时)
课时
1
主备人:张红亮
一、教材内容分析
本节课是在讨论了二次函数 的图象和性质的基础上对二次函数y = ax 2+bx+c的图象和性质
进行研究.主要的研究方法是通过配方将y=ax 2+bx+c向 转化,体会知识之间内在联系.在
具体探究过程中,从特殊的例子出发,分别研究a>0和a<0的情况,再从特殊到一般,得出y=ax 2+bx+c
的图象和性质.
二、学情分析
三、教学目标(知识与技能,过程与方法,情感态度与价值观)
四、教学重点
五、教学难点
六、教学方法
自主、合作、探究
七、教具
多媒体
八、教学过程
教师活动
学生活动
设计意图
激情导入
展示目标
明确学习目标
自主学习
问题1
如何研究二次函数 的图象和性质?
你能画出 的图象吗?
如何直接画出 的图象?
观察图象,二次函数 的性质是什么?
小组合作
你能用前面的方法讨论二次函数y = -2x 2 - 4x +1的
图象和性质吗?
你能说说二次函数y = ax 2 + bx + c的图象和性质吗?
达标测评
2)二次函数y = -2x 2 + 4x -1,
当x _____时,y随x的增大而增大,
当x ______时,y随x的增大而减小.

九年级数学上册第22章二次函数22.1二次函数的图象和性

九年级数学上册第22章二次函数22.1二次函数的图象和性

10. 在同一平面直角坐标系内, 将抛物线 y=(x-1) +3 先向左 平移 1 个单位长度,再向下平移 3 个单位长度后所得抛物线的顶点 坐标为( D ) A.(2,0) B.(2,6) C.(0,6) D.(0,0)
2
第3课时 二次函数y=a(x-h)2+k的图象和性质
B 规律方法综合练
1 11.2017·盐城 如图 22-1-13,将函数 y= (x-2)2+1 的图象沿 2
3.2017·金华 对于二次函数 y=-(x-1) +2 的图象与性质, 下列说法正确的是( B ) A.对称轴是直线 x=1,最小值是 2 B.对称轴是直线 x=1,最大值是 2 C.对称轴是直线 x=-1,最小值是 2 D.对称轴是直线 x=-1,最大值是 2
【解析】二次函数 y=-(x-1)2+2 的图象的对称轴是直线 x=1.∵-1<0, ∴抛物线开口向下,有最大值,最大值是 2.
第3课时 二次函数y=a(x-h)2+k的图象和性质
解:(1)列表: x … -3
1 2 y=- x 2 … -4.5
-2 -2-1 -0.5ຫໍສະໝຸດ 0 01 -0.5
2
3
4 …
… …
-2 -4.5
1 y =- (x 2 … -1)2+2

-2.5
0
1.5
2
1.5
0
-2.5

第3课时 二次函数y=a(x-h)2+k的图象和性质
描点、连线,如图所示:
(2)①下 x=0 ③右 1 上
(0,0)
②下
x=1 (1,2)
1)
2(或上
2 右
第3课时 二次函数y=a(x-h)2+k的图象和性质
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.探究二次函数 y = ax + bx + c 的图象和性质
对于一般的二次函数 y = ax 2 + bx + c,如果 a>0, b b 当 x< 时, y 随 x 的增大而减小,当 x> 时, 2a b 2a y 随 x 的增大而增大;如果 a<0,当 x< 时,y 随 2a b x 的增大而增大,当 x> 时,y 随 x 的增大而减小. 2a
22.1 二次函数的图象和性质 (第5课时)
课件说明
2 • 本节课是在讨论了二次函数 y = a (x - h) + k 的图象和 性质的基础上对二次函数 y=ax 2+bx+c 的图象和性质 进行研究.主要的研究方法是通过配方将 y=ax 2+bx+c 2 向 y =a (x - h) + k 转化,体会知识之间内在联系.在 具体探究过程中,从特殊的例子出发,分别研究 a>0 和 a<0 的情况,再从特殊到一般,得出 y=ax 2+bx+c 的图象和性质.
2
4.巩固练习
(2)二次函数 y = -2x 2 + 4x -1, 当 x <1 时, y 随 x 的增大而增大, 当 x >1 时, y 随 x 的增大而减小.
6.布置作业
教科书习题 22 1.探究二次函数 y x 6 x 21 的图象和性质 2 1 2 ·你能画出 y x 6 x 21的图象吗? 2 1 2 ·如何直接画出 y x 6 x 21的图象? 2 1 2 ·观察图象,二次函数 y x 6 x 21 的性质是什 2 么?
课件说明
• 学习目标: 2 (x - h) + k 之间 1.理解二次函数 y = ax 2 + bx + c 与 y = a 的联系,体会转化思想; 2.通过图象了解二次函数 y = ax 2 + bx + c 的性质,体 会数形结合的思想. • 学习重点: 会用配方法将数字系数的二次函数的表达式化为 y = 2 (x - h) + k 的形式,并能由此得到二次函数 y = ax 2 a + bx + c 的图象和性质.
2.探究二次函数 y = -2x 2 - 4x +1 的图象和性质
你能用前面的方法讨论二次函数 y = -2x - 4x +1 的 图象和性质吗?
2
学车问答 学车问题 开车问题 学车怎么办?
驾校大全 中国驾校报名 考试 理论学习 地址 介绍
1 2 1.探究二次函数 y x 6 x 21 的图象和性质 2
问题1 1 2 如何研究二次函数 y x 6 x 21 的图象和性质? 2
1 2 1.探究二次函数 y x 6 x 21 的图象和性质 2 1 2 2 如何将 y x 6 x 21 转化成 y = a (x - h ) + k 的形 2 式? 1 2 y x 6 x 21 2 1 2 = (x - 12x +42) 2 1 2 = (x - 12x +36 - 36+42) 2 1 2 = (x - 6 ) +3 2
相关文档
最新文档