【免费下载】材料力学金属扭转实验报告

合集下载

材料力学扭转实验报告

材料力学扭转实验报告

材料力学扭转实验报告
本次实验旨在探究不同材料的扭转特性,并使用扭转实验仪器记录其扭转角度和材料的弹性模量,以深入了解材料力学的基本性质和特点。

实验装置包括一个旋转机构、一组夹具与给定标准的扭力装置。

为了保证本次实验的准确性,首先需要校准扭转实验仪器,以确保其在不同扭转角度下的读数准确可靠。

在实验过程中,我们选用了三种材料进行扭转实验:钢、铜和铝。

实验以钢为第一个实验材料。

首先,将钢杆放置于夹具之间,用扭力装置施加一个恒定的扭矩,并在旋转机构上逐渐增加扭转角度,记录下材料在不同扭转角度下的扭转角度和扭力值。

整个实验过程需要反复进行多次,记录扭转角度和扭力值的平均值,以减小误差。

接下来进行铜杆的实验。

操作步骤同上,将铜杆放置于夹具之间,施加恒定扭矩,逐渐增加扭转角度,记录扭转角度和扭力值并取平均值。

最后进行铝杆的实验,仍按照同样的操作步骤进行。

实验结果表明,随着扭转角度的逐渐增加,材料的扭转角度和弹性模量发生变化。

三种材料的弹性模量分别如下:钢为1.96×1011N/m2,铜为1.05×1011N/m2,铝为
6.00×1010N/m2。

由此可见,钢的弹性模量最大,铝的弹性模量最小,这与各自的材料性质和组成有关。

实验中还发现,位移角度与扭转角度呈正相关关系,即随着扭转角度的增加,位移角度也随之增加。

同时,不同材料的弹性模量存在较大差异,这说明在实际应用中,选择不同材料需要根据其其材料性质来进行权衡,进而确定合适的使用场景和条件,以确保其能够满足预期的设备要求。

金属扭转实验报告

金属扭转实验报告

金属扭转实验报告金属扭转实验报告引言:金属材料是工业生产中最常用的材料之一,其力学性能对于产品的质量和可靠性至关重要。

在金属材料力学性能研究中,扭转实验是一种常用的实验方法,通过对金属试样进行扭转加载,可以获取材料的扭转强度、塑性变形能力和疲劳性能等重要参数。

本实验旨在通过对不同金属试样的扭转实验,探究金属材料的力学性能特点。

实验方法:1. 实验材料选择:本次实验选用了三种不同类型的金属材料,分别为铝合金、钢材和铜材。

这三种材料在工业中应用广泛,具有不同的力学性能特点。

每种材料都制备了10个相同尺寸的试样。

2. 实验装置:扭转实验使用扭转试验机进行,试验机具有精确的力和位移测量系统,能够准确记录试样在加载过程中的力学性能变化。

试样通过夹具固定在试验机上,然后扭转加载。

3. 实验步骤:(1) 将试样固定在夹具上,确保试样的中心轴与扭转试验机的转轴一致。

(2) 设置试验机的加载速度和加载范围,确保实验过程的可控性。

(3) 开始加载,记录试样的扭转力和位移数据。

(4) 当试样发生破坏或达到预设的加载条件时,停止加载,并记录试样的破坏形态。

实验结果与分析:1. 铝合金试样的扭转强度较低,破坏形态为断裂。

铝合金具有较好的塑性变形能力,在扭转过程中能够发生较大的变形,但其强度较低,容易发生断裂。

2. 钢材试样的扭转强度较高,破坏形态为塑性变形。

钢材具有较高的强度和较好的塑性变形能力,在扭转过程中能够承受较大的载荷而不发生断裂。

3. 铜材试样的扭转强度介于铝合金和钢材之间,破坏形态为塑性变形。

铜材具有较好的强度和塑性变形能力,但相对于钢材而言,其强度较低。

结论:通过本次实验,我们对铝合金、钢材和铜材的扭转性能进行了研究。

实验结果表明,不同类型的金属材料具有不同的力学性能特点。

铝合金具有较好的塑性变形能力,但强度较低;钢材具有较高的强度和塑性变形能力;铜材介于两者之间。

这些实验结果对于金属材料的选择和应用具有重要的指导意义,有助于提高产品的质量和可靠性。

材料力学金属扭转实验报告[5篇范例]

材料力学金属扭转实验报告[5篇范例]

材料力学金属扭转实验报告[5篇范例]第一篇:材料力学金属扭转实验报告材料力学金属扭转实验报告【实验目的】1、验证扭转变形公式,测定低碳钢的切变模量G。

;测定低碳钢和铸铁的剪切强度极限bτ握典型塑性材料(低碳钢)和脆性材料(铸铁)的扭转性能;2、绘制扭矩一扭角图;3、观察和分析上述两种材料在扭转过程中的各种力学现象,并比较它们性质的差异;4、了解扭转材料试验机的构造和工作原理,掌握其使用方法。

【实验仪器】仪器名称数量参数游标卡尺1 0-150mm,精度CTT502 微机控制电液伺服扭转试验机 1 最大扭矩500N·m,最大功率低碳钢、铸铁各 1 标准【实验原理和方法】1..测定低碳钢扭转时的强度性能指标试样在外力偶矩的作用下,其上任意一点处于纯剪切应力状态。

随着外力偶矩的增加,当达到某一值时,测矩盘上的指针会出现停顿,这时指针所指示的外力偶矩的数值即为屈服力偶矩esM,低碳钢的扭转屈服应力为 pess43WM=τ式中:/3pd W π=为试样在标距内的抗扭截面系数。

在测出屈服扭矩sT 后,改用电动快速加载,直到试样被扭断为止。

这时测矩盘上的从动指针所指示的外力偶矩数值即为最大力偶矩ebM,低碳钢的抗扭强度为 pebb43WM=τ对上述两公式的来源说明如下:低碳钢试样在扭转变形过程中,利用扭转试验机上的自动绘图装置绘出的ϕ-eM 图如图1-3-2 所示。

当达到图中 A 点时,eM 与ϕ成正比的关系开始破坏,这时,试样表面处的切应力达到了材料的扭转屈服应力sτ,如能测得此时相应的外力偶矩epM,如图1-3-3a 所示,则扭转屈服应力为 pepsWM=τ经过A 点后,横截面上出现了一个环状的塑性区,如图1-3-3b 所示。

若材料的塑性很好,且当塑性区扩展到接近中心时,横截面周边上各点的切应力仍未超过扭转屈服应力,此时的切应力分布可简化成图 1-7c 所示的情况,对应的扭矩sT 为 OϕM eABCM epM esM eb 图 1-3-2低碳钢的扭转图τ sTτ sTτ sT(a)pT T =(b)s pT T T <<(c)sT T =图 1-3-3低碳钢圆柱形试样扭转时横截面上的切应力分布s p s3d/22sd/2s s3412d 2 d 2 ττπρρπτρπρρτ WdT ====⎰⎰由于es sM T =,因此,由上式可以得到 pess43WM=τ无论从测矩盘上指针前进的情况,还是从自动绘图装置所绘出的曲线来看,A 点的位置不易精确判定,而B 点的位置则较为明显。

实验_ 金属材料的扭转实验

实验_ 金属材料的扭转实验
2
令a 则a
或者:
l0 a IP
TL0 G IP
xi yi , 2 xi
代入到G
i
i 0
8
2 i
2、测G(图解法) 通过试验机配备的扭矩传感器以及小角度扭角仪,可 自动记录扭矩-扭转角(T- )曲线,如图1-20所示。 在所记录的曲线的弹性直线段上,选取扭矩增量和相 应的扭转角增量。按下式计算材料的切变弹性模量G
2
二、设备和仪器 1. RNJ-500微机控制电子扭转试验机。
1.单片机测控箱 2.固定夹具 3.活动夹具 4.减速箱 5.导轨工作平台 6.手动调整轮 7.伺服电机 8.机架
图附1-5-1 RNJ-500 型微机控制扭转试验机示意图
3
固定夹具(2)一端与扭矩传感器相连,另一端用于试样 安装;活动夹具(3)则一端固定试样,另一端与减速箱 (4)相连。 试验时,由测控系统(计算机或单片机)发出运行指 令,此时伺服电机(7)工作,通过减速箱减速后控制活 动夹具转动,达到给试样施加扭矩的目的。 另外出于试验机调零和操作灵活的考虑,该试验机提 供了手动调节的控制方式。其原理是在单片机测控箱 上设置了手动调零的按钮,在按钮按下时,通过硬件 使伺服电机掉电,此时可以通过转动手动调节轮(6)控 制活动夹具转动,从而施加扭矩。
18
5.3 测规定非比例扭转应力 T (图解法,铝合金) A TP 1. 用于图解法测规定非比例扭转 应力的曲线,同样应使曲线的弹 性直线段的高度超过扭矩轴量程 的以上,扭角轴的放大倍数应使 图1-25中的OC段大于5mm。 C 0 2n P L 0 / d 0 2. 点击测试软样运行窗口,正式 测试,直至试件变形开始急剧增 加时,停止实验,取下试样。保 图1- 25图解法求规定 非比例扭转应力 存实验数据。打印试验曲线。

金属材料扭转实验报告

金属材料扭转实验报告

金属材料扭转实验报告小组成员:谭晓霞张丽丽张贺郭超凡一、实验目的:扭转实验是了解材料抗剪能力的一项基本实验,本实验着重了解塑性材料(低碳钢)和脆性材料(铸铁)受扭转时的机械性能,测定sτ 、bτ 绘制φ−T 图,并比较两种材料的破坏情况及原因。

二、实验原理:圆轴扭转时横截面上的剪应力为最大剪应力产生在试件的横截面的边缘处,其值等于式中: T—截面上的扭矩pI—圆截面的极惯性矩pW—圆截面的抗扭截面模量由理论可知,圆轴扭转时其横截面上任意一点处于平面应力状态,沿与轴线夹角成45°的方向上的最大拉应力大小为由于各种材料抵抗剪切与抵抗拉伸的能力不同,因此不同材料的扭转破坏方式也不同,如图4.2所示。

低碳钢圆试件扭转到破坏时,已超过屈服阶段。

如对材料作理想塑性考虑(图4.3),此时截面上的剪应力的分布随着扭矩的增大趋于均匀,如图4.3(c)所示,假设应力为sτ(屈服极限),则这时截面上应力sτ与相应扭矩的Ts的关系为同理可计算塑性材料在扭转时的剪切强度极限对于铸铁等脆性材料在扭转至破坏时,因其变形较小无屈服现象,故可近似地用弹性应力公式进行计算,若破坏时的扭矩为Tb,则得到剪切强度极限为三、实验仪器1、扭转测试机2、游标卡尺四、试样NDW31000扭转试验机的试样夹持直径在8~40mm。

本试验使用标距L=100mm,标距部分直径d=10mm 的圆形截面标准试件五、实验步骤1、试样准备在试样标距段的两端及中间截面处,沿两相互垂直方向测量直径各一次,并计算各截面直径的算术平均值。

选用三个截面中平均直径的最小值计算试样截面的扭转截面系数。

2、实验机准备①估计载荷,确定载荷在试验机量程范围之内。

②打开试验机开关;打开计算机主机及显示屏。

③打开控制主程序,联机。

3、装夹试样①将试样轻夹于两夹头上,使试样的纵轴线与试验机夹头的轴线要重合。

②松开被动夹头,拧紧主动夹头。

在控制程序的试验界面中选“扭矩清零”。

扭转试验材料力学实验报告docx(二)2024

扭转试验材料力学实验报告docx(二)2024

扭转试验材料力学实验报告docx(二)引言:扭转试验是材料力学实验中常用的一种试验方法,通过对材料在扭转载荷下的变形与破坏进行观察和分析,可以获得关于材料力学性能的重要数据。

本文档将对扭转试验的原理和实验过程进行详细介绍,并结合相应的示意图和数据进行分析和解读。

一、扭转试验原理1. 扭转载荷的作用机理2. 扭转角与转矩之间的关系3. 扭转试验的应用领域二、扭转试验的实验准备1. 试验设备和装置的选用2. 样品的制备和处理3. 扭转试验条件的设定4. 扭转试验的安全注意事项5. 实验前的校验和预处理三、扭转试验的实验步骤1. 材料样品的固定和装夹2. 扭转试验条件的设定和调整3. 开始扭转试验并记录相关数据4. 观察和记录样品的变形和破坏情况5. 扭转试验结束后的数据处理和分析四、扭转试验结果的数据分析1. 扭转角与转矩的关系曲线分析2. 弹性区和塑性区的划分及标定3. 材料的扭转刚度和扭转强度计算4. 扭转试验结果与其他力学性能指标的关联性分析5. 结果的可靠性评估和误差分析五、扭转试验的优化和改进1. 设备和装置的改进方向2. 试验方法和参数的优化建议3. 数据处理和分析方法的改进思路4. 实验结果和结论的潜在影响和应用方向5. 对未来扭转试验的展望和研究方向总结:通过对扭转试验的详细介绍和分析,本文档对扭转试验的原理、实验步骤、数据分析等方面进行了全面的阐述。

扭转试验对于研究材料的力学性能具有重要意义,但仍存在一些局限性和改进空间。

随着科学技术的不断进步,我们可以预见,在未来的研究中,扭转试验将得到更广泛和深入的应用,并为材料科学领域的发展做出更大的贡献。

实验4_金属材料扭转实验

实验4_金属材料扭转实验
等量逐级加载法:G DPal I p Dj
P P
Dj Dd
b
实验四 金属材料扭转实验
2.测定低碳钢屈服切应力ts、抗切强度tb
T Mb
T= T< b T= TTs
tb ts
Ms
j
O
ts tb
屈服切 应力:
ts Ms Wp
Mb 抗切 ts Wp 强度:
实验四 金属材料扭转实验
低碳钢扭转试验现象:
实验四 金属材料扭转实验
实验背景:
工程中,有很多构件都在扭转条 件下工作。(如传递转动的发动机的主 轴、内燃机的曲轴) 圆轴扭转时,材料处于纯剪切应 力状态,是拉伸以外的又一重要应力 状态。
常用扭转试验研究材料在纯剪切时 的力学性能。
实验四 金属材料扭转实验
一、实验目的 1.学会测定低碳钢切变模量G; 2.学会测定低碳钢屈服切应力ts、抗切强度tb; 3.学会测定铸铁抗切强度tb; 4.学会分析低碳钢和铸铁两种材料破坏情况。
屈服:
tmax引起
断裂:
实验四 金属材料扭转实验
3.测定铸铁抗切强度tb
T
Tb
j
O
抗切 t Tb 强度: b Wp
铸铁扭转试验现象: 断裂:
拉应力引起
二、实验仪器 1.CTT502型微机控制电子扭转试验机; 2.刻度机。
实验四 金属材料扭转实验
三、试样
1.测低碳钢G采用自制试样:
d l
2.测低碳钢ts、tb、铸铁tb采用标准试样:
d0
实验四 金属材料扭转实验
四、实验原理: 1.低碳钢剪切弹性模量G:
Mn l
j
O
Dd
b
ቤተ መጻሕፍቲ ባይዱ

材料力学扭转实验报告

材料力学扭转实验报告

材料力学扭转实验报告1. 实验目的。

本实验旨在通过材料力学扭转实验,探究材料在受力情况下的扭转性能,了解材料的力学特性和扭转变形规律,为工程应用提供理论依据。

2. 实验原理。

材料在受到扭转力矩作用下,会产生扭转变形。

根据弹性力学理论,扭转角度与扭转力矩成正比,而与材料长度和材料性质有关。

材料的扭转刚度可用扭转角度与扭转力矩的比值来表示,即扭转角度和扭转力矩的比值为材料的剪切模量G。

3. 实验装置。

本实验采用材料力学扭转实验机进行测试,实验机由电机、扭转传感器、数据采集系统等部分组成。

在实验中,通过控制电机输出的扭转力矩和测量相应的扭转角度,可以得到材料的扭转刚度和剪切模量等参数。

4. 实验步骤。

(1)将待测试的材料样品装入扭转实验机夹具中,保证样品的两端固定。

(2)设置实验机的扭转力矩和扭转角度采集参数。

(3)启动实验机,施加不同的扭转力矩,记录相应的扭转角度。

(4)根据实验数据计算材料的扭转刚度和剪切模量。

5. 实验结果与分析。

通过实验数据处理和分析,得到了材料在不同扭转力矩下的扭转角度数据。

根据实验结果,可以绘制出材料的扭转曲线,进一步分析材料的扭转特性和力学性能。

6. 结论。

通过本次材料力学扭转实验,得到了材料的扭转刚度和剪切模量等重要参数,为了解材料的力学性能提供了重要参考。

同时,实验结果也为工程应用提供了理论基础,具有一定的实用价值。

7. 实验心得。

本次实验通过操作实验装置、处理实验数据等环节,对材料力学扭转实验有了更加深入的认识,增强了对材料力学知识的理解和应用能力。

综上所述,本次材料力学扭转实验取得了一定的成果,为深入研究材料的力学性能和工程应用提供了重要参考,具有一定的理论和实用价值。

材料力学扭转实验报告

材料力学扭转实验报告

材料力学扭转实验报告一、实验目的。

本实验旨在通过材料力学扭转实验,探究材料在扭转加载下的力学性能,了解材料在扭转过程中的变形规律,为工程应用提供参考依据。

二、实验原理。

材料在扭转加载下的应力和应变关系可由以下公式描述:\[ τ = \frac{T \cdot r}{J} \]\[ γ = \frac{θ \cdot r}{L} \]式中,τ为剪应力,T为扭矩,r为半径,J为极化面积惯性矩,γ为剪应变,θ为扭转角度,L为长度。

三、实验装置。

本实验采用扭转试验机进行扭转实验,实验装置包括扭转试验机、扭转夹具、力传感器、位移传感器等。

四、实验步骤。

1. 将试样装入扭转夹具中,并固定好。

2. 调整扭转试验机,使其处于工作状态。

3. 开始施加扭转力,记录下扭转角度和扭矩的变化。

4. 持续施加扭转力,直至试样发生破坏或达到设定的扭转角度。

五、实验数据处理。

1. 根据实验记录的扭转角度和扭矩数据,绘制扭转曲线。

2. 通过扭转曲线,计算出试样的剪应力-剪应变曲线。

3. 分析试样在扭转加载下的力学性能,如极限剪应力、屈服剪应力等。

六、实验结果与分析。

通过对实验数据的处理和分析,得到了试样在扭转加载下的力学性能参数。

根据实验结果,可以得出试样的扭转强度、剪切模量等力学性能指标,为材料的工程应用提供了重要参考。

七、实验结论。

本实验通过材料力学扭转实验,深入了解了材料在扭转加载下的力学性能,得到了试样的力学性能参数,为工程设计和材料选用提供了重要参考。

八、实验总结。

本实验通过扭转实验,深化了对材料力学的理解,掌握了材料在扭转加载下的力学性能特点,为工程实践提供了重要的理论支持。

通过本次实验,我深刻认识到了材料力学扭转实验在工程领域的重要性,也加深了对材料力学理论的理解和应用。

希望今后能够继续深入学习和探索材料力学领域,为工程实践和科学研究做出更多贡献。

扭转实验报告

扭转实验报告

扭转实验报告摘要:本次扭转实验主要考察了金属杆的扭转弹性和塑性变形特性。

通过对实验数据的分析,得出了杆的杨氏模量和屈服点。

实验结果表明,金属杆在一定范围内具有较好的弹性特性,但在超过其屈服点后,杆将发生塑性变形。

介绍:扭转实验是一种常用的力学实验,它能够管窥物质的一些属性,如强度、塑性和弹性等。

在本次实验中,我们将研究金属杆的扭转性能,以了解材料的性质,为实际应用提供指导。

实验过程:1. 实验仪器准备:本次实验主要使用扭转弹簧、细杆、千分尺、游标卡尺等工具。

2. 样品制备:将金属杆置于扭转弹簧中,用千分尺和游标卡尺测量出杆的直径和长度,并计算出横截面积。

3. 装置校准:将扭转弹簧固定在一个转动机构上,并将预备好的样品固定在转动手柄上。

4. 实验操作:控制扭簧的扭转角度,保持恒定的转动速度,记录下杆的变形数据。

5. 数据处理:分析实验结果,计算出杆的杨氏模量和屈服点。

实验结果:通过实验数据的处理和分析,我们得到了以下结论:1. 杆的杨氏模量为x N/m²。

2. 杆的屈服点为x N/m²。

3. 杆在未达到屈服点时表现出较好的弹性特性,但在超过其屈服点后,杆将发生塑性变形。

结论:本次实验成功地测量出杆的杨氏模量和屈服点。

通过实验数据的分析,我们发现,金属杆具有较强的弹性和一定的塑性,但在超过其屈服点后,其将发生塑性变形。

在实际应用中,我们需要根据材料的性质,合理选取材料,以保证产品的质量和安全性。

因此,扭转实验是一项非常有用的力学实验,可以帮助我们更好地了解材料的性质,为产品的设计和制造提供指导。

金属材料的扭转实验报告

金属材料的扭转实验报告

金属材料的扭转实验报告金属材料的扭转实验报告引言金属材料是工程领域中广泛应用的一类材料,其力学性能对于工程设计和材料选择具有重要的意义。

本实验旨在通过扭转实验来研究金属材料的力学行为和材料性能,为工程实践提供参考。

一、实验目的本实验的主要目的是通过扭转实验,研究金属材料在扭转加载下的力学行为和材料性能,包括材料的刚度、强度、塑性变形等方面的特性。

二、实验原理扭转实验是通过施加扭矩来加载金属材料,使其发生扭转变形。

扭转实验中,材料受到的扭矩与扭角之间的关系可以用扭转弹性模量和剪切应力来描述。

扭转弹性模量是材料在弹性阶段扭转变形时的比例系数,剪切应力则是材料受到的扭矩与截面积之比。

三、实验步骤1. 准备工作:选择一块金属样品,将其加工成圆柱形,并测量其长度和直径,计算出截面积。

2. 搭建实验装置:将金属样品固定在扭转试验机上,确保其能够自由扭转。

3. 施加加载:通过扭矩传感器施加扭矩,同时记录下扭矩和扭角的变化。

4. 数据处理:根据实验数据计算出扭转弹性模量和剪切应力,并绘制相应的应力-应变曲线。

四、实验结果与讨论通过实验得到的数据可以得出金属材料的扭转弹性模量和剪切应力。

扭转弹性模量是材料在弹性阶段扭转变形时的比例系数,可以反映材料的刚度。

剪切应力则是材料受到的扭矩与截面积之比,可以反映材料的强度。

根据实验结果,我们可以观察到金属材料在扭转加载下的力学行为。

在加载初期,材料的扭转弹性模量较高,表现出较大的刚度,扭转变形较小。

随着加载的增加,材料逐渐进入塑性变形阶段,扭转弹性模量下降,塑性变形增加。

当达到一定扭矩时,材料会发生破坏,出现断裂现象。

五、结论通过本实验,我们研究了金属材料在扭转加载下的力学行为和材料性能。

实验结果表明,金属材料在扭转加载下具有一定的刚度和强度,同时也具有一定的塑性变形能力。

这些性能对于工程设计和材料选择具有重要的意义。

六、实验总结本实验通过扭转实验研究了金属材料的力学行为和材料性能,为工程实践提供了参考。

材料力学金属扭转实验报告

材料力学金属扭转实验报告

材料力学金属扭转实验报告实验报告标题:材料力学金属扭转实验摘要:本实验旨在探究金属材料在扭转加载下的力学性能,并通过实际测量数据分析验证材料力学的相关理论。

实验通过制备试样、设计测试装置、施加扭转力、测量材料的应变和转动角度等步骤完成。

实验结果表明,金属材料在扭转过程中呈现出线性弹性行为,并根据实测数据计算得到了杨氏模量和剪切模量等材料力学参数。

关键词:材料力学、金属扭转、应变、转动角度、弹性行为、杨氏模量、剪切模量引言:金属材料是工程领域中常用的材料之一,其力学性能的研究对于提高材料的应用性能、设计结构的可靠性有着重要意义。

材料力学的研究主要包括拉伸、压缩、扭转等,本实验主要关注金属材料在扭转加载下的力学性能。

扭转是指通过对材料施加扭转矩,使其绕轴转动一定角度的过程。

通过测量应变和转动角度等参数,可以计算得到杨氏模量和剪切模量等材料力学性质的参数。

实验目的:1.了解金属材料在扭转加载下的力学性能。

2.掌握金属材料力学实验的基本操作流程。

3.熟悉测量应变和转动角度的相关方法。

4.计算得到金属材料的杨氏模量和剪切模量。

实验原理:金属材料在扭转加载下的力学行为可以用材料力学的相关理论进行描述。

杨氏模量是指材料的拉伸应力和应变之间的比值,可以用来衡量材料的刚度。

剪切模量是指材料在剪切应力作用下所表现出的抗剪切性能。

实验装置及试样制备:本实验采用扭转仪作为实验装置,配有测力传感器和角度测量装置。

所用试样为金属圆管,长度为L,外径为D,厚度为δ,可以通过所施加的扭转角度的测量反映材料的力学性能。

实验步骤:1.制备金属圆管试样:根据要求切割金属圆管,并记录其几何参数。

2.安装试样:将金属圆管试样安装在扭转仪上,并保证试样与仪器的接触面完全平行。

3.调整扭转仪:调整扭转仪使其垂直于试样轴线,并调节扭转仪的零位。

4.校准测力传感器:根据实验装置的要求对测力传感器进行校准。

5.施加扭转力:根据实验设计的负荷标准和实验要求,施加扭转力,并记录施加扭转力的数值。

金属轴向拉压和扭转实验报告_工程力学

金属轴向拉压和扭转实验报告_工程力学

金属轴向拉压和扭转实验报告_工程力学一、实验目的1. 了解金属材料在轴向拉伸和压缩过程中的变形规律,并掌握试验数据的处理方法。

2. 了解金属材料在扭矩作用下的变形规律,并掌握试验数据的处理方法。

二、实验原理1. 轴向拉伸和压缩实验在材料测试机上进行轴向拉伸和压缩试验时,样品首先在载荷作用下发生弹性形变,之后随着载荷的增大,样品开始发生塑性形变,最终断裂。

在轴向拉伸和压缩过程中,由于样品的截面积随着应变的增大而发生变化,因此要得到真实的应力应变曲线,需进行截面积的修正。

修正后的应力可以表示为:σ = F/A0,其中,F为试验时所施加的载荷,A0为试验前的原始截面积;修正后的应变可以表示为:ε = ln(L/L0),其中,L0为试验前的原始长度,L为载荷作用下试验中材料的长度。

2. 扭转试验在扭转试验中,试样在两端被夹持并扭转,当扭矩载荷增加时,试样在弹性阶段会发生弹性变形,而在塑性阶段则会发生塑性变形,最终达到破坏。

扭转弹性变形的大小与材料受到的扭转力矩、试样的几何尺寸、材质以及试验中使用的设备的刚度有关。

可以通过测量扭转角度和扭矩来得到真实的应力应变曲线。

三、实验内容1. 准备两根长度分别为25mm和30mm的测试圆柱材料,直径分别为6mm和8mm。

2. 对于轴向拉伸和压缩实验:(1)将试样夹在材料测试机上,贴上标定纸。

(2)测量原始样品的长度和直径,并计算出截面积。

(3)运行测试仪器,添加增量载荷,持续施加载荷,收集各个载荷下的抗拉性能数据。

(4)计算每个试验点的应力和应变,并绘制出应力-应变曲线。

3. 对于扭转实验:四、实验结果及分析经过轴向拉伸和压缩实验和扭转实验,得出各个试验点的应力和应变、剪切应力和角位移数据,并绘制出相应的应力-应变曲线和剪切应力-角位移曲线。

根据曲线分析,可以发现材料在弹性阶段是呈线性变化的,而在超过一定载荷后,就会进入塑性状态,呈明显的非线性变化,最终会破裂。

五、实验结论通过本次实验,得出以下结论:1. 在轴向拉伸和压缩试验中,材料的应力-应变曲线显示出材料具有明显的弹性阶段和塑性阶段。

(2023)金属材料的扭转实验报告(一)

(2023)金属材料的扭转实验报告(一)

(2023)金属材料的扭转实验报告(一)(2023)金属材料的扭转实验报告实验目的•了解金属材料的扭转性能•掌握扭转实验的基本操作和流程•探究金属材料的力学性质对其扭转性能的影响实验原理金属材料的扭转性能与其抗扭转强度、剪切模量等力学性质密切相关。

扭转实验的基本原理是在金属杆的两端施加相反的扭矩,使其发生变形,并测量扭矩和扭转角度之间的关系,推导出金属材料的力学性质。

实验器材•扭转实验机•金属杆样品实验步骤1.将金属杆样品固定在扭转实验机上,确定扭转轴。

2.根据实验要求,在样品的两端施加相反的扭矩,使其发生扭转变形。

3.测量扭矩和扭转角度,记录数据。

4.根据测量的数据,计算出金属材料的扭转模量、抗扭转强度等参数。

实验结果经过多次实验与数据处理,我们得出了以下的实验结果:•样品扭转角度与扭矩呈线性关系•材料的抗扭转强度随材料的强度和硬度增加而升高•材料的扭转模量随材料的强度和硬度增加而降低实验结论本次实验通过对金属材料的扭转实验,我们深入了解了金属材料的扭转性能,并发现了其与材料力学性质之间的密切关系。

同时,我们也掌握了扭转实验的基本操作和流程,为以后的实验提供了很大的帮助。

实验分析从实验结果可以看出,金属材料的扭转性能受到多个因素的影响。

抗扭转强度是材料的一种重要性能指标,其大小决定了材料在实际应用中最大可承受的扭转力矩。

与此同时,材料的硬度和强度也影响其扭转性能,硬度大的材料对扭转的抵抗力相对较大,但其扭转变形程度可能随之降低。

因此,在选择材料时,需要综合考虑多个因素,以保证材料在实际应用中具有较好的性能表现。

实验不足本次实验还存在着一些不足之处。

首先,实验数据量较少,其可靠性有待进一步提高。

其次,我们并没有对不同材料的扭转性能进行对比分析,这可能导致实验结果的局限性。

因此,需要在今后的实验中进一步完善实验方案,提高实验数据的可靠性,同时开展更加广泛的材料扭转试验,以期获得更加全面的实验结论。

金属拉伸扭转实验报告

金属拉伸扭转实验报告

金属拉伸扭转实验报告金属拉伸扭转实验报告引言金属材料是工业中最常用的材料之一,了解金属材料的力学性能对于工程设计和材料选择至关重要。

本实验旨在通过金属拉伸和扭转实验,探究金属材料的力学行为,并分析其力学性能。

实验材料和方法本次实验选择了常见的金属材料——铁。

实验中使用的仪器设备包括拉伸试验机和扭转试验机。

首先,将铁材料制成标准试样,分别用于拉伸和扭转实验。

然后,将试样固定在试验机上,并进行相应的拉伸和扭转实验。

拉伸实验中,逐渐增加载荷,记录下载荷与试样伸长量之间的关系。

扭转实验中,逐渐增加扭转力矩,记录下扭转力矩与试样扭转角之间的关系。

实验结果与讨论拉伸实验结果显示,随着载荷的增加,试样开始发生塑性变形,伸长量逐渐增加。

当载荷达到一定值时,试样发生断裂。

通过实验数据的分析,可以得到应力-应变曲线,进而计算出金属的屈服强度、抗拉强度和断裂强度等力学性能参数。

此外,还可以通过拉伸实验了解金属的延展性和韧性。

扭转实验结果显示,随着扭转力矩的增加,试样开始发生塑性变形,扭转角逐渐增加。

当扭转力矩达到一定值时,试样发生断裂。

通过实验数据的分析,可以得到扭转刚度和扭转强度等力学性能参数。

此外,还可以通过扭转实验了解金属的抗扭性能。

综合分析通过对金属的拉伸和扭转实验,我们可以得到金属的力学性能参数,进而评估其适用范围和应用场景。

例如,在工程设计中,我们需要选择适合承受拉伸载荷的金属材料,因此需要了解金属的屈服强度和抗拉强度。

另外,在某些特定工况下,需要考虑金属材料的抗扭性能,以确保其在扭转载荷下的稳定性。

此外,金属的力学性能还与其微观结构密切相关。

通过拉伸和扭转实验,我们可以观察到金属试样的塑性变形和断裂行为,从而了解金属内部的晶体结构变化。

这对于理解金属的力学行为和改善金属材料的性能具有重要意义。

结论金属的拉伸和扭转实验是了解金属材料力学性能的重要手段。

通过实验可以得到金属的力学性能参数,评估其适用范围和应用场景。

金属材料扭转实验

金属材料扭转实验

9 操作面板
2 导轨 1 机座 3 溜板
操作面板 9 放大为图 4.5,面板上按钮 12 控制实验机的正、反加载和停
车。加载速度分 0~36°/min 和 0~360°min 两档,由转速选择开关 13 选
择,多圈电位器 14 调节。
17 记录开关
16 电流表
15 加载速度表 13 转速选择开关
图 4.5
b)手动检测状态试验时,任意检测点的确认键。 (2)操作(见附图)
设置 总清 打印
7
8
9
时钟
4
5
6
查询
1
2
3
校准
0
补偿 确认 复位
操作面板图
(3)自动检测: a)打开电源开关(电器机箱上的空气开关),试验机进入测试状态,此时
- 12 -
试验扭矩 和位移均自动清零;将机器预热 20 分钟; b)将试样安装在两夹头间,塞入夹块,把内六角螺钉拧紧; c)根据被动夹头的受力方向选择旋向(被动夹头顺时针受力为正向,逆
2 最大显示扭矩(Nm)
3 扭矩最小读数值(Nm)
4 扭矩精确测量范围(Nm)
5 扭转角最大讯数值(°)
6 扭转角最小读数值(°)
7 扭矩示值相对误差
8 扭矩示值重复性相对误差
9 零点相对误差
10 试样直径(㎜)
表 4.3
规格、参数及指标 NJS-01 150 0.06 20—100 99999.9 0.1
设备名称
实验 最大量程
设备 使用量程
精度
试 件 尺寸
直 径 d (mm)
最小抗扭截
横截面Ⅰ (1) (2)
横截面Ⅱ (1) (2)
横截面Ⅲ (1) (2)

4 实验四金属材料扭转实验

4 实验四金属材料扭转实验

4 实验四金属材料扭转实验
一、实验目的
研究实验材料进行扭转变形后其力学性能。

二、实验原理
扭转变形是指在无限长假想杆材料横截面仅施加弯曲力的完全变形,其中应力均匀分
布于断面,杆材料的截面形状由圆形变成椭圆形。

三、实验环境
良好的室内环境,无电磁干扰,无固体颗粒,提供适当的实验操作场所,如实验室、
实验台等。

四、实验内容
1. 收集相关实验物料:金属标样、变形设备、实验软件等。

2. 安装变形设备,调试设备,使金属标样处于位置稳定性状态;
3. 按照实验计划,在变形设备上,施加一定大小的拉力,观察金属标样形变情况;
4. 在实验软件中,记录金属标样变形、错断、最终变形等信息;
5.根据实验数据对实验结果进行测试,分析实验结果,计算实验结果的重要力学参数;
6. 总结本次实验;
五、实验结果
在实验过程中,金属标样的形状出现变形,横截面形状由圆形变成椭圆形。

另外,通
过计算,可以得出实验材料的断裂应力为450MPa,变形能为385J,变形塑性指数为0.87。

金属材料的扭转实验报告

金属材料的扭转实验报告

金属材料的扭转实验报告1.实验目的(1)测定低碳钢扭转时的强度性能指标:剪切屈服极限和剪切强度极限(2)测定灰铸铁扭转时的强度性能指标:剪切强度极限。

(3)绘制低碳钢和灰铸铁的扭转图,比较低碳钢和灰铸铁的扭转破坏形式。

(4)了解电子式扭转实验机的构造,原理和操作方法。

2.实验设备和仪器(1)扭转实验机(2)游标卡尺3.实验试样按照国家标准GB10128-2007《金属室温扭转实验方法》,金属扭转试样的形状随着产品的品种、规格以及实验目的的不同而分别为圆形截面试样和管形截面试样两种。

其中最常用的是圆形截面试样。

4.实验步骤(1)测量试样的直径。

(2)将试样安装到扭转实验机上,运行应用软件,预制实验条件、参数。

(3)开始“实验”按钮,匀速缓慢加载,跟踪观察试样的屈服现象和实时曲线,待屈服过程之后,提高实验机的加载速度,直至试样被扭断为止。

(4)取下拉断的试样,进行实验数据和曲线及实验报告处理。

(5)测定灰铸铁扭转时的强度性能指标步骤与低碳钢扭转基本一致,但只需要测量扭断值。

5.实验原理与方法(1)扭转力学性能试验式样在外力偶矩的作用下,其上任意一点处于纯剪切应力状态。

随着外力偶矩的增加,力矩与扭转角呈线性关系,直至力矩的示数值出现一个维持的平台,这是所指示的外力偶矩的数值即为屈服扭矩Te。

按弹性扭转公式计算的剪切屈服应力为τe=Te/Wp,式中:Wp=πd3/16为式样在标距内的抗扭截面系数。

在测出屈服扭矩Te后,可加快实验机加载速度,直到式样被扭断为止。

实验机记录下最大扭矩Tm,剪切强度极限为τm=Tm/Wp。

如上所述,名义剪切应力τe,τm等,是按弹性公式计算的,他是假设式样横截面上的剪切应力为线性分布,外表最大,形心为零,这在现行弹性阶段是对的。

(2)测定灰铸铁扭转时的强度性能指标对于灰铸铁式样,只需测出其承受的最大外力偶矩Mem,抗扭强度为Τm=Mem/Wp,低碳钢式样的断口与轴线垂直,表明破坏是由切应力引起的;而灰铸铁式样的断口则沿螺旋线方向与轴线约成45°角,表明破坏是由拉应力引起的。

金属材料的扭转试验

金属材料的扭转试验

将(a)式代入,上式化为
∑ G = L0∆T ∑ IP
i2
i (ϕi −ϕ G
通过试验机配备的扭矩传感器以及小角度扭角仪,可自动
记录扭矩-扭转角(T-ϕ )曲线,如图 2-2 所示。 在所记录的曲线的弹性直线段上,选取扭矩增量 ∆T 和相
∆T ∆ϕ
2. 点击测试软样运行窗口,正式测试,直至试件变形开始急剧增加时,停止实验,取
7
下试样。保存实验数据。打印 T − ϕ 试验曲线。
(3) 测屈服点及抗扭强度 点击运行按钮,按预先设定的测试程序对试件进行加载,直至试件断裂。保存实验数据, 同时输出试验数据。 在测屈服点及抗扭强度时,应注意观察试样变形及破坏情况。取下试样,观察并分析断 口形貌和形成原因。
图 2- 6 图解法求规定 非比例扭转应力
扭矩即为与非比例切应变规定值 γ p 所对应的扭矩 Tp ,按下式计算规定非比例扭转应力:
6
测试方法
τp
=
Tp WP
(2-12)
(1)测 G ① 测 G(逐级加载法)
试验过程采用手动方式进行。先施加 3N.m 的初始扭矩,记下初始角度ϕ 0 ;然后采用等
增量( ∆T =5N.m)分五级加载,记录每次对应的角度值(在对应显示窗口显示)。重复测试
5
到规定数值时,按弹性扭转公式计算得到的切应力称为“规定非比例扭转应力”。相应应力附
以下标说明非比例切应变规定值
γ
p
τ ,如 p 0.015
和τ
p 0.3
分别表示规定的非比例切应变
γ
p

0.015%和 0.3%时的应力。
一般把τ p0.015 称为条件扭转比例极限,τ p0.3 称为扭转屈服强度。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

b

3 4
M eb Wp
M eb Wp
由上述扭转破坏的试样可以看出:低碳钢试样的断口与轴线垂直,表明破
坏是由切应力引起的;而灰铸铁试样的断口则沿螺旋线方向与轴线约成 45 角,
表明破坏是由拉应力引起的。
【实验步骤】
一、低碳钢 1、试件准备:在标距的两端及中部三个位置上,沿两个相互垂直方向各测 量一次直径取平均值,再从三个平均值中取最小值作为试件的直径 d。 在低碳钢试件表面画上一条纵向线和两条圆周线,以便观察扭转变形。 2、试验机准备:按试验机→计算机→打印机的顺序开机,开机后须预热十 分钟才可使用。根据计算机的提示,设定试验方案,试验参数。 3、装夹试件: (1)先将一个定位环夹套在试件的一端,装上卡盘,将螺钉拧紧。再将另 一个定位环夹套在试件的另一端,装上另一卡盘;根据不同的试件标距 要求,将试件搁放在相应的 V 形块上,使两卡盘与 V 形块的两端贴紧, 保证卡盘与试件垂直,以确保标距准确。将卡盘上的螺钉拧紧。 (2)先按“对正”按键,使两夹头对正。如发现夹头有明显的偏差,请按 下“正转”或“反转”按键进行微调。将已安装卡盘的试件的一端放入 从动夹头的钳口间,扳动夹头的手柄将试件夹紧。按“扭矩清零”按键 或试验操作界面上的扭矩“清零”按钮。推动移动支座移动,使试件的 头部进入主动夹头的钳口间。先按下“试件保护”按键,然后慢速扳动 夹头的手柄,直至将试件夹紧。
材料力学金属扭转实验
材料力学金属扭转实验报告
【实验目的】
1、验证扭转变形公式,测定低碳钢的切变模量 G。;测定低碳钢和铸铁的 剪切强度极限b 握典型塑性材料(低碳钢)和脆性材料(铸铁)的扭转性能;
2、绘制扭矩一扭角图; 3、观察和分析上述两种材料在扭转过程中的各种力学现象,并比较它们性 质的差异; 4、了解扭转材料试验机的构造和工作原理,掌握其使用方法。

2 s
s

d/2 2d
0
3 4
PAGE OF
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电,力根通保据过护生管高产线中工敷资艺设料高技试中术卷资,配料不置试仅技卷可术要以是求解指,决机对吊组电顶在气层进设配行备置继进不电行规保空范护载高与中带资负料荷试下卷高问总中题体资,配料而置试且时卷可,调保需控障要试各在验类最;管大对路限设习度备题内进到来行位确调。保整在机使管组其路高在敷中正设资常过料工程试况中卷下,安与要全过加,度强并工看且作护尽下关可都于能可管地以路缩正高小常中故工资障作料高;试中对卷资于连料继接试电管卷保口破护处坏进理范行高围整中,核资或对料者定试对值卷某,弯些审扁异核度常与固高校定中对盒资图位料纸置试,.卷保编工护写况层复进防杂行腐设自跨备动接与处地装理线置,弯高尤曲中其半资要径料避标试免高卷错等调误,试高要方中求案资技,料术编试交写5、卷底重电保。要气护管设设装线备备置敷4高、调动设中电试作技资气高,术料课中并3中试、件资且包卷管中料拒含试路调试绝线验敷试卷动槽方设技作、案技术,管以术来架及避等系免多统不项启必方动要式方高,案中为;资解对料决整试高套卷中启突语动然文过停电程机气中。课高因件中此中资,管料电壁试力薄卷高、电中接气资口设料不备试严进卷等行保问调护题试装,工置合作调理并试利且技用进术管行,线过要敷关求设运电技行力术高保。中护线资装缆料置敷试做设卷到原技准则术确:指灵在导活分。。线对对盒于于处调差,试动当过保不程护同中装电高置压中高回资中路料资交试料叉卷试时技卷,术调应问试采题技用,术金作是属为指隔调发板试电进人机行员一隔,变开需压处要器理在组;事在同前发一掌生线握内槽图部内 纸故,资障强料时电、,回设需路备要须制进同造行时厂外切家部断出电习具源题高高电中中源资资,料料线试试缆卷卷敷试切设验除完报从毕告而,与采要相用进关高行技中检术资查资料和料试检,卷测并主处且要理了保。解护现装场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
扭矩 Ts 为
(a) T Tp
T
Me B
A M ep M es
O
s
图 1-3-2 低碳钢的扭转图
T
M eb Wp
M ep Wp
(b) Tp T Ts
图 1-3-3 低碳钢圆柱形试样扭转时横截面上的切应力分布
Ts
由于 Ts M es ,因此,由上式可以得到
d/2
0

s

2d
材料力学金属扭转实验
(3)将扭角测量装置的转动臂的距离调好,转动转动臂,使测量辊压在卡 盘上。
4、开始试验:按“扭转角清零”按键,使电脑显示屏上的扭转角显示值为 零。按“运行”键,开始试验。
5、记录数据:试件断裂后,取下试件,观察分析断口形貌和塑性变形能力, 填写实验数据和计算结果。
6、试验结束:试验结束后,清理好机器,以及夹头中的碎屑,关断电源。 二、铸铁
【实验仪器】
仪器名称
游标卡尺 CTT502 微机控制电液伺
服扭转试验机 低碳钢、铸铁
【实验原理和方法】
数量 1 1
各1
1.测定低碳钢扭转时的强度性能指标 试样在外力偶矩的作用下,其上任意一点处于纯剪切应力状态。随着外力 偶矩的增加,当达到某一值时,测矩盘上的指针会出现停顿,这时指针所指示
的外力偶矩的数值即为屈服力偶矩 M es ,低碳钢的扭转屈服应力为
1、试件准备:在标距的两端及中部三个位置上,沿两个相互垂直方向各测 量一次直径取平均值,再从三个平均值中取最小值作为试件的直径 d。在 低碳钢试件表面画上一条纵向线和两条圆周线,以便观察扭转变形。
M es Wp
s

d 3 12
C
M eb
s

4 3
T
Wp
s
材料力学金属扭转实验
(c) T Ts

s
无论从测矩盘上指针前进的情况,还是从自动绘图装置所绘出的曲线来看, A 点的位置不易精确判定,而 B 点的位置则较为明显。因此,一般均根据由 B 点测定的 M es 来求扭转切应力s 。当然这种计算方法也有缺陷,只有当实际的 应力分布与图 1-7c 完全相符合时才是正确的,对塑性较小的材料差异是比较大 的。从图 1-6 可以看出,当外力偶矩超过 M es 后,扭转角 增加很快,而外力偶
式中:Wp d 3 /16 为试样在标距内的抗扭截面系数。
s

3 4
在测出屈服扭矩Ts 后,改用电动快速加载,直到试样被扭断为止。这时测
矩盘上的从动指针所指示的外力偶矩数值即为最大力偶矩 M eb ,低碳钢的抗扭
PAGE OF
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电,力根通保据过护生管高产线中工敷资艺设料高技试中术卷资,配料不置试仅技卷可术要以是求解指,决机对吊组电顶在气层进设配行备置继进不电行规保空范护载高与中带资负料荷试下卷高问总中题体资,配料而置试且时卷可,调保需控障要试各在验类最;管大对路限设习度备题内进到来行位确调。保整在机使管组其路高在敷中正设资常过料工程试况中卷下,安与要全过加,度强并工看且作护尽下关可都于能可管地以路缩正高小常中故工资障作料高;试中对卷资于连料继接试电管卷保口破护处坏进理范行高围整中,核资或对料者定试对值卷某,弯些审扁异核度常与固高校定中对盒资图位料纸置试,.卷保编工护写况层复进防杂行腐设自跨备动接与处地装理线置,弯高尤曲中其半资要径料避标试免高卷错等调误,试高要方中求案资技,料术编试交写5、卷底重电保。要气护管设设装线备备置敷4高、调动设中电试作技资气高,术料课中并3中试、件资且包卷管中料拒含试路调试绝线验敷试卷动槽方设技作、案技术,管以术来架及避等系免多统不项启必方动要式方高,案中为;资解对料决整试高套卷中启突语动然文过停电程机气中。课高因件中此中资,管料电壁试力薄卷高、电中接气资口设料不备试严进卷等行保问调护题试装,工置合作调理并试利且技用进术管行,线过要敷关求设运电技行力术高保。中护线资装缆料置敷试做设卷到原技准则术确:指灵在导活分。。线对对盒于于处调差,试动当过保不程护同中装电高置压中高回资中路料资交试料叉卷试时技卷,术调应问试采题技用,术金作是属为指隔调发板试电进人机行员一隔,变开需压处要器理在组;事在同前发一掌生线握内槽图部内 纸故,资障强料时电、,回设需路备要须制进同造行时厂外切家部断出电习具源题高高电中中源资资,料料线试试缆卷卷敷试切设验除完报从毕告而,与采要相用进关高行技中检术资查资料和料试检,卷测并主处且要理了保。解护现装场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
这时,试样表面处的切应力达到了材料的扭转屈服应力s ,如能测得此时相应
的外力偶矩 M ep ,如图 1-3-3a 所示,则扭转屈服应力为
s

经过 A 点后,横截面上出现了一个环状的塑性区,如图 1-3-3b 所示。若材 料的塑性很好,且当塑性区扩展到接近中心时,横截面周边上各点的切应力仍 未超过扭转屈服应力,此时的切应力分布可简化成图 1-7c 所示的情况,对应的
PAGE OF
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电,力根通保据过护生管高产线中工敷资艺设料高技试中术卷资,配料不置试仅技卷可术要以是求解指,决机对吊组电顶在气层进设配行备置继进不电行规保空范护载高与中带资负料荷试下卷高问总中题体资,配料而置试且时卷可,调保需控障要试各在验类最;管大对路限设习度备题内进到来行位确调。保整在机使管组其路高在敷中正设资常过料工程试况中卷下,安与要全过加,度强并工看且作护尽下关可都于能可管地以路缩正高小常中故工资障作料高;试中对卷资于连料继接试电管卷保口破护处坏进理范行高围整中,核资或对料者定试对值卷某,弯些审扁异核度常与固高校定中对盒资图位料纸置试,.卷保编工护写况层复进防杂行腐设自跨备动接与处地装理线置,弯高尤曲中其半资要径料避标试免高卷错等调误,试高要方中求案资技,料术编试交写5、卷底重电保。要气护管设设装线备备置敷4高、调动设中电试作技资气高,术料课中并3中试、件资且包卷管中料拒含试路调试绝线验敷试卷动槽方设技作、案技术,管以术来架及避等系免多统不项启必方动要式方高,案中为;资解对料决整试高套卷中启突语动然文过停电程机气中。课高因件中此中资,管料电壁试力薄卷高、电中接气资口设料不备试严进卷等行保问调护题试装,工置合作调理并试利且技用进术管行,线过要敷关求设运电技行力术高保。中护线资装缆料置敷试做设卷到原技准则术确:指灵在导活分。。线对对盒于于处调差,试动当过保不程护同中装电高置压中高回资中路料资交试料叉卷试时技卷,术调应问试采题技用,术金作是属为指隔调发板试电进人机行员一隔,变开需压处要器理在组;事在同前发一掌生线握内槽图部内 纸故,资障强料时电、,回设需路备要须制进同造行时厂外切家部断出电习具源题高高电中中源资资,料料线试试缆卷卷敷试切设验除完报从毕告而,与采要相用进关高行技中检术资查资料和料试检,卷测并主处且要理了保。解护现装场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
相关文档
最新文档