直线的参数方程的全部

合集下载

选修4-4 第五节几种常见的参数方程

选修4-4 第五节几种常见的参数方程

x=1+2cos t, (0≤t≤π),把它化为普通 y=-2+2sin t
方程,并判断该曲线表示什么图形.
所求的曲线的参数方程为 (x-1)2+(y+2)2=4(-2≤y≤0). 这是一个半圆,其圆心为(1,-2),半径为 2.
例2
已知圆的普通方程为
x2+y2+2x-6y+9=0, 将它化为参
轴上,所以椭圆的标准方程为 + =1, 25 16 x=4cos θ , 故参数方程为 (θ 为参数). y=5sin θ
y2
x2
(x-1)2 (y+2)2 1. 写出圆锥曲线 + =1 的 3 5
例1
x=5+3t, 设直线的参数方程为 y=10-4t.
(1)求直线的普通方程; (2)化参数方程为标准形式.
解析:(1) 4x+3y-50=0.
3 4 4 k tan (2) 3 cos α =- ,sin α = . 5 5 3 x=5- u, 5 则参数方程的标准形式为: 4 y=10+ u. 5
例 3 已知直线 l 的方程为 3x-4y+1=0,点 P(1,1)在 直线 l 上,写出直线 l 的参数方程,并求点 P 到点 M(5,4)和 点 N(-2,6)的距离.
3 解析:由直线方程 3x-4y+1=0 可知,直线的斜率为 ,设直线的 4 3 3 4 则 tan α = ,sin α = ,cos α = . 4 5 5
制作人:葛海泉
课前预习
1.பைடு நூலகம்线的参数方程
x=x0+tcosα , 1. 经过点 M0(x0, y0), 倾斜角为 α 的直线 l 的参数方程为 y=y0+tsinα
(t 为参数).
t0

直线的参数方程(最全)

直线的参数方程(最全)

则 t 的几何意义:t=M0M
t>0
M 在 M0 的上方
t=0 M 与 M0 重合
t<0
M 在 M0 的下方
非标准形式 一般说来,t 不具有上述 几何意义
x x0 at
y
y0
bt
(t 为参数)
表示过定点(x0,y0),斜率
为 b 的直线的参数方程
a
例1
已知直线 L 过点 M0(4,0),倾为
(t为参数)
b ( a2 b2 t)
a2 b2
设: a = cos; b sin; a2 b2t t,则
a2 b2
a2 b2
x y
x0 y0
tcos(t为参数) tsin
当b 0时,t有上述的几何意义。
基础训练
1
直线
x y
2t 1
sin 200 t cos 200
直线的参数方程
2020/7/4
请同学们回忆:
直线的普通方程都有哪些?
点斜式: y y0 k(x x0) y kx b
两点式: y y1 x x1
y2 y1 x2 x1
x y 1 ab
一般式: Ax By C 0
法线式: Ax By C 0 (直线l的法向量(A,B))
t cos t sin
(t为参数)
思考
由M0M te,你能得到直线l的参数方程中
参数t的几何意义吗?
解: M0M te M0M te
y M
又 e是单位向量, e 1
M0M t e t
M0
所以,直线参数方程中
参数t的绝对值等于直
线上动点M到定点M0的 距离. |t|=|M0M|

直线的参数方程标准式

直线的参数方程标准式

直线的参数方程标准式直线是几何学中最基本的概念,它是空间中所有点组成的连续一维线段,可以用参数方程表示。

什么是参数方程标准式?数方程标准式是用数学公式来表示空间直线的形状和特征,它是由平面直角坐标系上任意两点确定的,具有特定形状和方向。

以二维直角坐标系为例,参数方程标准式用如下公式表示:直线方程为 y=kx+b 其中,k 为斜率,b 为截距,结合两个坐标点的坐标值,就可以求出 k b值,当给定三点的坐标时,可以利用克莱姆法,把原始的三点坐标转换为两个一元二次方程,求解得到斜率 k截距b 。

如果以三维直角坐标系为例,参数方程标准式用如下公式表示:直线方程为 z=ax+by+c,其中, a单位向量 $vec{i}$系数,b单位向量 $vec{j}$系数,c截距,它们可以由三维坐标系下三点确定。

例如,如果有三点 $(x_1, y_1, z_1)$,$(x_2, y_2, z_2)$ $(x_3, y_3, z_3)$,那么可以使用下面的克莱姆法求出 a,b,c:$$begin{aligned}&vec{i}=(x_2-x_1,y_2-y_1,z_2-z_1)&vec{j}=(x_3-x_1,y_3-y_1,z_3-z_1)&vec{k}=vec{i}timesvec{j}&(a,b,c)=vec{k}/|vec{k}|end{aligned}$$根据以上参数方程标准式,当有任意两点或三点坐标值时,就可以求出直线上任意一点的坐标。

直线的参数方程标准式在几何学中有着重要的应用,可以帮助我们求解直线的各种性质,比如直线和其他特征的位置关系,如两直线的相交、平行和垂直等;可以用一阶和二阶微分求解直线的切线方程,可以用它绘制直线图,求解几何特征,如弧长、斜率等。

另外,参数方程标准式也可以用于求解非线性方程,此时可将非线性方程转换为一阶或二阶参数方程,然后根据参数方程标准式对参数进行求解。

直线的参数方程

直线的参数方程

直线的参数方程1.直线的参数方程经过点M 0(x 0,y 0),倾斜角为α的直线l 的参数方程为⎩⎪⎨⎪⎧x =x 0+t cos αy =y 0+t sin α(t 为参数).2.直线的参数方程中参数t 的几何意义(1)参数t 的绝对值表示参数t 所对应的点M 到定点M 0的距离.(2)当M 0M →与e (直线的单位方向向量)同向时,t 取正数.当M 0M →与e 反向时,t 取负数,当M 与M 0重合时,t =0.3.直线参数方程的其他形式对于同一条直线的普通方程,选取的参数不同,会得到不同的参数方程.我们把过点M 0(x 0,y 0),倾斜角为α的直线,选取参数t =M 0M 得到的参数方程⎩⎪⎨⎪⎧x =x 0+t cos αy =y 0+t sin α(t 为参数)称为直线参数方程的标准形式,此时的参数t 有明确的几何意义.一般地,过点M 0(x 0,y 0),斜率k =ba (a ,b 为常数)的直线,参数方程为⎩⎪⎨⎪⎧x =x 0+at y =y 0+bt (t为参数),称为直线参数方程的一般形式,此时的参数t 不具有标准式中参数的几何意义.1.已知直线l 的方程⎩⎪⎨⎪⎧x =1-t sin 25°,y =2+t cos 25°(t 为参数),则直线l 的倾斜角为( )A .65°B .25°C .155°D .115°解析:选D.方程⎩⎪⎨⎪⎧x =1-t sin 25°,y =2+t cos 25°(t 为参数),化为标准形式⎩⎪⎨⎪⎧x =1+t cos 115°,y =2+t sin 115°(t为参数),倾斜角为115°.故选D.2.已知直线l 的参数方程为⎩⎪⎨⎪⎧x =-1-22t ,y =2+22t (t 为参数),则直线l 的斜率为( )A .1B .-1 C.22D .-22解析:选B.直线l 的普通方程为x +y -1=0,斜率为-1.故选B.3.以t 为参数的方程⎩⎪⎨⎪⎧x =1-12t ,y =-2+32t表示( )A .过点(1,-2)且倾斜角为π3的直线B .过点(-1,2)且倾斜角为π3的直线C .过点(1,-2)且倾斜角为2π3的直线D .过点(-1,2)且倾斜角为2π3的直线解析:选C.化参数方程⎩⎪⎨⎪⎧x =1-12t ,y =-2+32t (t 为参数)为普通方程得y +2=-3(x -1).直线过定点(1,-2),斜率为-3,倾斜角为2π3,故选C.4.过抛物线y 2=4x 的焦点F 作倾斜角为π3的弦AB ,则弦AB 的长是________.解析:由已知焦点F (1,0),又倾斜角为π3,cos π3=12,sin π3=32.所以弦AB 所在直线的参数方程为⎩⎪⎨⎪⎧x =1+12t ,y =32t (t 为参数),代入抛物线的方程y 2=4x ,得⎝ ⎛⎭⎪⎫32t 2=4⎝ ⎛⎭⎪⎫1+12t .整理得3t 2-8t -16=0.设方程两根分别为t 1,t 2,则有⎩⎪⎨⎪⎧t 1+t 2=83,t 1·t 2=-163.由参数t 的几何意义得|AB |=|t 1-t 2|=(t 1+t 2)2-4t 1t 2=⎝ ⎛⎭⎪⎫832+643=163.答案:163根据直线的参数方程求直线的倾斜角、斜率已知直线l 的参数方程是⎩⎪⎨⎪⎧x =1+t sin αy =-2+t cos α,(t 为参数),其中实数α的取值范围是⎝ ⎛⎭⎪⎫π2,π.求直线l 的倾斜角. [解] 设直线l 的倾斜角为θ,则由题意知tan θ=cos αsin α=1tan α=tan ⎝ ⎛⎭⎪⎫3π2-α,所以θ=3π2-α.所以直线l 的倾斜角为3π2-α.由直线的参数方程求倾斜角与斜率的方法已知直线l 的参数方程(1)若是标准式⎩⎪⎨⎪⎧x =x 0+t cos αy =y 0+t sin α(t 为参数),则可直接得出倾斜角即方程中的α,否则需化成标准式再求α.(2)若是一般式⎩⎪⎨⎪⎧x =x 0+at y =y 0+bt ,则当a ≠0时,斜率k =b a ,再由tan α=ba 及0≤α<π求出α,当a =0时,显然直线与x 轴垂直,倾斜角为α=π2.(3)若是其他形式,则通过消参化成普通方程,再求斜率及倾斜角.1.若直线的参数方程为⎩⎪⎨⎪⎧x =3+12t y =3-32t,(t为参数),则此直线的斜率为( )A. 3 B .- 3 C .33D .-33解析:选B.直线的参数方程⎩⎪⎨⎪⎧x =3+12t y =3-32t,(t为参数)可化为标准形式⎩⎪⎨⎪⎧x =3+⎝ ⎛⎭⎪⎫-12(-t )y =3+32(-t ),(-t 为参数). 所以直线的斜率为- 3.2.若直线的参数方程为⎩⎪⎨⎪⎧x =2-3ty =1+t ,(t 为参数),求直线的斜率.解:法一:把直线的参数方程⎩⎪⎨⎪⎧x =2-3ty =1+t ,消去参数t 得x +3y -5=0, 所以其斜率k =-13.法二:由⎩⎪⎨⎪⎧x =2-3t y =1+t ,得⎩⎪⎨⎪⎧x -2=-3ty -1=t ,所以k =y -1x -2=t -3t =-13. 直线参数方程中参数几何意义的应用已知过点M (2,-1)的直线l :⎩⎪⎨⎪⎧x =2-t2,y =-1+t2(t 为参数),与圆x 2+y 2=4交于A ,B 两点,求|AB |及|AM |·|BM |.[解] l 的参数方程为⎩⎪⎨⎪⎧x =2-22⎝ ⎛⎭⎪⎫t 2,y =-1+22⎝ ⎛⎭⎪⎫t 2(t 为参数).令t ′=t2,则有⎩⎪⎨⎪⎧x =2-22t ′,y =-1+22t ′(t ′为参数).其中t ′是点M (2,-1)到直线l 上的一点P (x ,y )的有向线段的数量,代入圆的方程x 2+y 2=4,化简得t ′2-32t ′+1=0.因为Δ>0,可设t 1′,t 2′是方程的两根,由根与系数的关系得t 1′+t 2′=32,t 1′t 2′=1.由参数t ′的几何意义得|MA |=|t 1′|,|MB |=|t 2′|,所以|MA |·|MB |=|t 1′·t 2′|=1,|AB |=|t 1′-t 2′|=(t 1′+t 2′)2-4t 1′t 2′=14.(1)在直线参数方程的标准形式下,直线上两点之间的距离可用|t 1-t 2|来求.本题易错的地方是:将题目所给参数方程直接代入圆的方程求解,忽视了参数t 的几何意义.(2)根据直线的参数方程的标准式中t 的几何意义,有如下常用结论: ①直线与圆锥曲线相交,交点对应的参数分别为t 1,t 2,则弦长l =|t 1-t 2|; ②定点M 0是弦M 1M 2的中点⇒t 1+t 2=0;③设弦M 1M 2中点为M ,则点M 对应的参数值t M =t 1+t 22(由此可求|M 1M 2|及中点坐标).在极坐标系中,已知圆心C ⎝⎛⎭⎪⎫3,π6,半径r =1.(1)求圆的直角坐标方程;(2)若直线⎩⎪⎨⎪⎧x =-1+32t ,y =12t(t 为参数)与圆交于A ,B 两点,求弦AB 的长.解:(1)由已知得圆心C ⎝ ⎛⎭⎪⎫332,32,半径为1,圆的方程为⎝⎛⎭⎪⎫x -3322+⎝ ⎛⎭⎪⎫y -322=1,即x 2+y 2-33x -3y +8=0.(2)由⎩⎪⎨⎪⎧x =-1+32t ,y =12t (t 为参数)得直线的直角坐标方程x -3y +1=0,圆心到直线的距离d =⎪⎪⎪⎪⎪⎪332-332+12=12,所以⎝ ⎛⎭⎪⎫|AB |22+d 2=1,解得|AB |= 3. 直线参数方程的综合应用已知直线l 过定点P (3,2)且与x 轴和y 轴的正半轴分别交于A ,B 两点,求|PA |·|PB |的值为最小时的直线l 的方程.[解] 设直线的倾斜角为α,则它的方程为⎩⎪⎨⎪⎧x =3+t cos α,y =2+t sin α(t 为参数).由A ,B 是坐标轴上的点知y A =0,x B =0,所以0=2+t sin α, 即|PA |=|t |=2sin α,0=3+t cos α,即|PB |=|t |=-3cos α,故|PA |·|PB |=2sin α·⎝ ⎛⎭⎪⎫-3cos α=-12sin 2α. 因为90°<α<180°,所以当2α=270°,即α=135°时, |PA |·|PB |有最小值.所以直线方程为⎩⎪⎨⎪⎧x =3-22t ,y =2+22t (t 为参数),化为普通方程为x +y -5=0.利用直线的参数方程,可以求一些距离问题,特别是求直线上某一定点与曲线交点距离时使用参数的几何意义更为方便.在直角坐标系xOy 中,直线l 的参数方程为⎩⎪⎨⎪⎧x =3-22t ,y =5+22t (t 为参数).在极坐标系(与直角坐标系xOy 取相同长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,圆C 的方程为ρ=25sin θ.(1)求圆C 的直角坐标方程;(2)设圆C 与直线l 交于点A ,B .若点P 的坐标为(3,5),求|PA |+|PB |. 解:(1)由ρ=25sin θ,得ρ2=25ρsin θ. 所以x 2+y 2-25y =0,即x 2+(y -5)2=5. (2)法一:直线l 的普通方程为y =-x +3+5,与圆C :x 2+(y -5)2=5联立,消去y ,得x 2-3x +2=0,解之得⎩⎨⎧x =1y =2+5或⎩⎨⎧x =2,y =1+ 5.不妨设A (1,2+5),B (2,1+5). 又点P 的坐标为(3,5), 故|PA |+|PB |=8+2=3 2.法二:将l 的参数方程代入x 2+(y -5)2=5,得⎝⎛⎭⎪⎫3-22t 2+⎝ ⎛⎭⎪⎫22t 2=5,即t 2-32t +4=0,① 由于Δ=(32)2-4×4=2>0. 故可设t 1,t 2是①式的两个实根. 所以t 1+t 2=32,且t 1t 2=4. 所以t 1>0,t 2>0.又直线l 过点P (3,5),所以由t 的几何意义,得|PA |+|PB |=|t 1|+|t 2|=3 2.1.对直线参数方程标准形式中参数t 的理解从参数方程推导的过程中可知参数t 应理解为直线l 上有向线段M 0M →的数量,它的几何意义可以与数轴上点A 的坐标的几何意义作类比,|t |=|M 0M →|代表有向线段M 0M →的长度.另外,将直线的点斜式方程y -y 0=k (x -x 0)改写成y -y 0sin α=x -x 0cos α,其中k =tan α,α为直线倾斜角,则t =y -y 0sin α=x -x 0cos α,则有⎩⎪⎨⎪⎧x =x 0+t cos αy =y 0+t sin α,从中不难看出直线的普通方程(点斜式)与参数方程(标准式)的联系.2.化直线的参数方程一般式⎩⎪⎨⎪⎧x =x 0+at y =y 0+bt (t 为参数)为标准式⎩⎪⎨⎪⎧x =x 0+t cos αy =y 0+t sin α(t 为参数),由⎩⎪⎨⎪⎧x =x 0+aty =y 0+bt 变形为⎩⎪⎨⎪⎧x =x 0+a a 2+b 2·a 2+b 2ty =y 0+b a 2+b2·a 2+b 2t,令cos α=aa 2+b2,sin α=b a 2+b2,t ′=a 2+b 2 t ,则可得标准式⎩⎪⎨⎪⎧x =x 0+t ′cos αy =y 0+t ′sin α(t ′为参数),其中α为直线的倾斜角,k =tan α=ba 为直线的斜率.1.直线⎩⎪⎨⎪⎧x =1+t cos αy =-2+t sin α,(α为参数,0≤α<π)必过点( )A .(1,-2)B .(-1,2)C .(-2,1)D .(2,-1)解析:选A.由参数方程可知该直线是过定点(1,-2),倾斜角为α的直线.2.已知直线l 1:⎩⎪⎨⎪⎧x =1+3ty =2-4t ,(t 为参数)与直线l 2:2x -4y =5相交于点B ,且点A (1,2),则|AB |=________.解析:将⎩⎪⎨⎪⎧x =1+3t y =2-4t,代入2x -4y =5,得t =12,则B ⎝ ⎛⎭⎪⎫52,0.而A (1,2),得|AB |=52.答案:523.已知曲线C 的极坐标方程为ρ=1,以极点为平面直角坐标系的原点,极轴为x 轴正半轴,建立平面直角坐标系,直线l的参数方程是⎩⎪⎨⎪⎧x =-1+4ty =3t ,(t 为参数),则直线l与曲线C 相交所截得的弦长为________.解析:曲线C的直角坐标方程为x 2+y 2=1,将⎩⎪⎨⎪⎧x =-1+4ty =3t ,代入x 2+y 2=1中得25t 2-8t =0,解得t 1=0,t 2=825.故直线l 与曲线C 相交所截得的弦长l =42+32·|t 2-t 1|=5×825=85.答案:85[A 基础达标]1.直线⎩⎪⎨⎪⎧x =2+3ty =-1+t ,(t 为参数)上对应t =0,t =1两点间的距离是( )A .1B .10C .10D .2 2解析:选B.将t =0,t =1代入参数方程可得两点坐标为(2,-1)和(5,0), 所以d =(2-5)2+(-1-0)2=10.2.若⎩⎪⎨⎪⎧x =x 0-3λ,y =y 0+4λ(λ为参数)与⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数)表示同一条直线,则λ与t 的关系是( )A .λ=5tB .λ=-5tC .t =5λD .t =-5λ解析:选C.由x -x 0,得-3λ=t cos α,由y -y 0,得4λ=t sin α,消去α的三角函数,得25λ2=t 2,得t =±5λ,借助于直线的斜率,可排除t =-5λ,所以t =5λ.3.经过点M (1,5)且倾斜角为π3的直线,以定点M 到动点P 的位移t 为参数的参数方程是( )A.⎩⎪⎨⎪⎧x =1+12t ,y =5-32t(t 为参数)B .⎩⎪⎨⎪⎧x =1-12t ,y =5+32t (t 为参数)C.⎩⎪⎨⎪⎧x =1-12t ,y =5-32t(t 为参数)D .⎩⎪⎨⎪⎧x =1+12t ,y =5+32t(t 为参数)解析:选D.该直线的参数方程为⎩⎪⎨⎪⎧x =1+t cos π3,y =5+t sin π3(t 为参数),即⎩⎪⎨⎪⎧x =1+12t ,y =5+32t(t 为参数),选D.4.若直线⎩⎪⎨⎪⎧x =-2t ,y =-12+at (t 为参数)与直线⎩⎪⎨⎪⎧x =1-s ,y =1+s (s 为参数)互相垂直,那么a 的值等于( )A .1B .-13C .-23D .-2解析:选D.直线⎩⎪⎨⎪⎧x =-2t ,y =-12+at (t 为参数)的斜率为y +12x =-a2,直线⎩⎪⎨⎪⎧x =1-s ,y =1+s (s 为参数)的斜率为y -1x -1=-1,由两直线垂直得-a2×(-1)=-1得a =-2.故选D. 5.对于参数方程⎩⎪⎨⎪⎧x =1-t cos 30°y =2+t sin 30°和⎩⎪⎨⎪⎧x =1+t cos 30°y =2-t sin 30°,下列结论正确的是( )A .是倾斜角为30°的两平行直线B .是倾斜角为150°的两重合直线C .是两条垂直相交于点(1,2)的直线D .是两条不垂直相交于点(1,2)的直线 解析:选B.因为参数方程⎩⎪⎨⎪⎧x =1-t cos 30°,y =2+t sin 30°可化为标准形式⎩⎪⎨⎪⎧x =1+t cos 150°,y =2+t sin 150°,所以其倾斜角为150°.同理,参数方程⎩⎪⎨⎪⎧x =1+t cos 30°,y =2-t sin 30°,可化为标准形式⎩⎪⎨⎪⎧x =1+(-t )cos 150°,y =2+(-t )sin 150°,所以其倾斜角也为150°.又因为两直线都过点(1,2),故两直线重合.6.若直线⎩⎪⎨⎪⎧x =1-2ty =2+3t ,(t 为参数)与直线4x +ky =1垂直,则常数k =________.解析:由直线的参数方程可得直线的斜率为-32,由题意得直线4x +ky =1的斜率为-4k ,故-32×⎝ ⎛⎭⎪⎫-4k =-1,解得k =-6.答案:-67.已知直线l 的斜率k =-1,经过点M 0(2,-1).点M 在直线上,以M 0M →的数量t 为参数,则直线l 的参数方程为____________.解析:因为直线的斜率为-1, 所以直线的倾斜角α=135°. 所以cos α=-22,sin α=22. 所以直线l 的参数方程为⎩⎪⎨⎪⎧x =2-22t y =-1+22t ,(t 为参数).答案:⎩⎪⎨⎪⎧x =2-22t y =-1+22t ,(t 为参数)8.已知直线l 的参数方程为⎩⎪⎨⎪⎧x =-1+t ,y =1+t (t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρ2cos 2θ=4⎝ ⎛⎭⎪⎫ρ>0,3π4<θ<5π4,则直线l 与曲线C 的交点的极坐标为________.解析:直线l 的普通方程为y =x +2,曲线C 的直角坐标方程为x 2-y 2=4(x ≤-2),故直线l 与曲线C 的交点为(-2,0),对应极坐标为(2,π).答案:(2,π)9.已知曲线C :ρ=2cos θ,直线l :⎩⎪⎨⎪⎧x =2-t ,y =32+34t ,(t 为参数).(1)写出曲线C 的参数方程,直线l 的普通方程;(2)过曲线C 上任一点P 作与l 夹角为45°的直线,交l 于点A ,求|PA |的最大值与最小值.解:(1)曲线C 的参数方程为⎩⎪⎨⎪⎧x =1+cos α,y =sin α,(α是参数).直线l 的普通方程为3x +4y -12=0.(2)曲线C 上任意一点P (1+cos α,sin α)到l 的距离为d =15|3cos α+4sin α-9|,则|PA |=d sin 45°=2⎪⎪⎪⎪⎪⎪sin(α+φ)-95,且tan φ=34. 当sin(α+φ)=-1时,|PA |取得最大值1425; 当sin(α+φ)=1时,|PA |取得最小值425. 10.(2016·高考全国卷甲)在直角坐标系xOy 中,圆C 的方程为(x +6)2+y 2=25.(1)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求C 的极坐标方程;(2)直线l 的参数方程是⎩⎪⎨⎪⎧x =t cos α,y =t sin α(t 为参数),l 与C 交于A ,B 两点,|AB |=10,求l 的斜率.解:(1)由x =ρcos θ,y =ρsin θ可得圆C 的极坐标方程为ρ2+12ρcos θ+11=0.(2)在(1)中建立的极坐标系中,直线l 的极坐标方程为θ=α(ρ∈R).设A ,B 所对应的极径分别为ρ1,ρ2,将l 的极坐标方程代入C 的极坐标方程得ρ2+12ρcos α+11=0.于是ρ1+ρ2=-12cos α,ρ1ρ2=11.|AB |=|ρ1-ρ2|=(ρ1+ρ2)2-4ρ1ρ2=144cos 2α-44. 由|AB |=10得cos 2α=38,tan α=±153. 所以l 的斜率为153或-153. [B 能力提升]11.在平面直角坐标系xOy 中,若直线l :⎩⎪⎨⎪⎧x =t ,y =t -a (t 为参数)过椭圆C :⎩⎪⎨⎪⎧x =3cos φ,y =2sin φ(φ为参数)的右顶点,则常数a 的值为( )A .1B .2C .3D .4 解析:选C.直线l :⎩⎪⎨⎪⎧x =t ,y =t -a消去参数t 后得y =x -a . 椭圆C :⎩⎪⎨⎪⎧x =3cos φ,y =2sin φ消去参数φ后得x 29+y 24=1. 又椭圆C 的右顶点为(3,0),代入y =x -a 得a =3.12.给出两条直线l 1和l 2,斜率存在且不为0,如果满足斜率互为相反数,且在y 轴上的截距相等,那么直线l 1和l 2叫做“孪生直线”.现在给出4条直线的参数方程如下:l 1:⎩⎪⎨⎪⎧x =2+2t ,y =-4-2t (t 为参数); l 2:⎩⎪⎨⎪⎧x =3-22t ,y =4-22t (t 为参数); l 3:⎩⎪⎨⎪⎧x =1+t ,y =1-t (t 为参数); l 4:⎩⎪⎨⎪⎧x =6+22t ,y =8+22t (t 为参数). 其中能构成“孪生直线”的是________.解析:根据条件,两条直线构成“孪生直线”意味着它们的斜率存在且不为0,且互为相反数,且在y 轴上的截距相等,也就是在y 轴上交于同一点.对于本题,首先可以判断出其斜率分别为-1,1,-1,1,斜率互为相反数条件很明显.再判断在y 轴上的截距,令x =0得出相应的t 值,代入y 可得只有直线l 3和直线l 4在y 轴上的截距相等,而其斜率又恰好互为相反数,可以构成“孪生直线”.答案:直线l 3和直线l 413.在直角坐标系中,以原点为极点,x 轴的正半轴为极轴建立极坐标系,已知曲线C :ρsin 2θ=2a cos θ(a >0),过点P (-2,-4)的直线l 的参数方程为:⎩⎪⎨⎪⎧x =-2+22t y =-4+22t ,(t 为参数),直线l 与曲线C 分别交于M ,N 两点.(1)写出曲线C 的直角坐标方程和直线l 的普通方程;(2)若|PM |,|MN |,|PN |成等比数列,求a 的值.解:(1)曲线的极坐标方程变为ρ2sin 2θ=2aρcos θ,化为直角坐标方程为y 2=2ax ;直线⎩⎪⎨⎪⎧x =-2+22t y =-4+22t ,(t 为参数)化为普通方程为y =x -2. (2)将⎩⎪⎨⎪⎧x =-2+22t y =-4+22t ,代入y 2=2ax 得 t 2-22(4+a )t +8(4+a )=0.则有t 1+t 2=22(4+a ),t 1t 2=8(4+a ),因为|MN |2=|PM |·|PN |,所以(t 1-t 2)2=t 1·t 2,即(t 1+t 2)2-4t 1t 2=t 1t 2,(t 1+t 2)2-5t 1t 2=0,故8(4+a )2-40(4+a )=0,解得a =1或a =-4(舍去).故所求a 的值为1.14.(选做题)以直角坐标系原点O 为极点,x 轴正半轴为极轴,并在两种坐标系中取相同的长度单位,已知直线l 的参数方程为⎩⎪⎨⎪⎧x =12+t cos αy =t sin α,(t 为参数,0<α<π),曲线C的极坐标方程ρ=2cos θsin 2θ. (1)求曲线C 的直角坐标方程;(2)设直线l 与曲线C 相交于A ,B 两点,当α变化时,求|AB |的最小值.解:(1)由ρ=2cos θsin 2θ得ρ2sin 2θ=2ρcos θ,所以曲线C 的直角坐标方程为y 2=2x . (2)将直线l 的参数方程代入y 2=2x ,得t 2sin 2α-2t cos α-1=0,设A ,B 两点对应的参数分别为t 1,t 2,则t 1+t 2=2cos αsin 2α,t 1·t 2=-1sin 2α, 所以|AB |=|t 1-t 2| =(t 1+t 2)2-4t 1t 2 =4cos 2αsin 4α+4sin 2α=2sin 2α, 当α=π2时,|AB |取得最小值2.。

直线的参数方程

直线的参数方程

直线的参数方程直线是平面上最简单的几何图形之一,在数学中直线可以用多种方式来表示,其中一种常用的表示方式是参数方程。

本文将介绍直线的参数方程及其相关概念和性质。

什么是参数方程?参数方程是用参数表示的方程,其中参数是一个变量,可以取不同的值。

对于直线来说,参数方程可以用来描述直线上各点的坐标。

直线的参数方程表示设直线上一点的坐标为(x, y),参数方程可以表示为:x = x0 + aty = y0 + bt其中 (x0, y0) 是直线上一点的坐标,a 和 b 是常数,t 是参数。

直线的参数方程的意义直线的参数方程的意义在于,通过改变参数 t 的取值,我们可以得到直线上不同点的坐标。

参数方程使我们能够更加灵活地描述直线,并进行计算和分析。

值得注意的是,直线的参数方程在某些特殊情况下可能并不唯一。

例如,在平行于坐标轴的直线上,参数方程可以有多种不同的表示方式。

直线的参数方程的性质直线的参数方程具有以下性质:1.直线上的任意两点,都可以通过参数方程表示。

2.参数方程中的参数 t 是一个实数,可以取任意值,因此可以描述出直线上的每一个点。

3.相同的直线可以有不同的参数方程表示,但所有的参数方程都会描述出同一条直线。

直线参数方程的应用直线的参数方程在数学和物理中有广泛应用。

例如,在几何学中,我们可以利用参数方程求直线的长度、直线与其他几何图形的交点等问题。

在物理学中,直线的参数方程可以用来描述物体的运动轨迹。

通过改变参数的取值,我们可以得到物体在不同时刻的位置坐标,从而研究其运动规律。

直线的参数方程是一种常见的表示直线的方法。

通过参数方程,我们可以更加灵活地描述直线上的各个点,进行计算和分析。

直线的参数方程具有多种性质,可以在几何学和物理学等领域中得到广泛的应用。

希望通过本文的介绍,读者对直线的参数方程有了更加深入的理解,能够灵活应用于实际问题的解决中。

直线参数方程标准形式

直线参数方程标准形式

直线参数方程标准形式直线是平面几何中的基本概念,而直线的参数方程标准形式是描述直线的一种重要方式。

在学习直线参数方程标准形式之前,我们首先要了解直线的一般方程和点斜式方程,这样才能更好地理解参数方程标准形式的概念和应用。

一、直线的一般方程和点斜式方程。

1. 直线的一般方程。

直线的一般方程通常表示为Ax + By + C = 0,其中A、B、C为常数,且A和B不全为零。

这种形式的方程可以表示任意一条直线,但并不直观,不利于直线的直观理解和运用。

2. 直线的点斜式方程。

直线的点斜式方程通常表示为y y1 = k(x x1),其中(x1, y1)为直线上的一点,k 为直线的斜率。

点斜式方程直观地表示了直线的斜率和一点坐标,更容易理解和使用。

二、直线参数方程标准形式。

直线的参数方程标准形式是另一种描述直线的方式,它的形式为:x = x1 + at。

y = y1 + bt。

其中(x1, y1)为直线上的一点,a和b为参数。

直线的参数方程标准形式比点斜式方程更加灵活,可以更直观地描述直线的方向和位置。

三、直线参数方程标准形式的应用。

1. 直线的平行和垂直关系。

通过直线的参数方程标准形式,我们可以很容易地判断两条直线是否平行或垂直。

如果两条直线的参数a和b分别成比例,那么它们平行;如果两条直线的参数a和b的乘积为-1,那么它们垂直。

2. 直线的交点。

两条直线的交点可以通过它们的参数方程标准形式求解。

将两条直线的参数方程联立,解出交点的坐标,即可得到它们的交点。

3. 直线的平移和旋转。

直线的参数方程标准形式可以很方便地描述直线的平移和旋转。

对参数a和b进行变换,即可得到平移或旋转后的直线方程。

四、总结。

直线的参数方程标准形式是描述直线的一种重要方式,它比一般方程和点斜式方程更加灵活和直观。

通过参数方程标准形式,我们可以更方便地判断直线的性质、求解直线的交点,以及描述直线的平移和旋转。

因此,掌握直线参数方程标准形式对于理解和运用直线的性质具有重要意义。

直线的参数方程怎么求直线的参数方程及其推导过程直线的参数方程t的意义

直线的参数方程怎么求直线的参数方程及其推导过程直线的参数方程t的意义

直线的参数方程:过定点倾斜角为α的直线的参数方程为(t为参数)。

过定点倾斜角为α的直线的参数方程为(t为参数)。

直线的参数方程及其推导过程:设e是与直线l平行且方向向上(l的倾斜角不为0)或向右(l的倾斜角为0)的单位方向向量(单位长度与坐标轴的单位长度相同).直线l的倾斜角为α,定点M0、动点M的坐标分别为直线的参数方程中参数t的几何意义是:表示参数t对应的点M 到定点Mo的距离,当同向时,t取正数;当异向时,t取负数;当点M与Mo重合时,t=0.直线参数方程何时必须化为标准形式在求解直线与圆相交得到的弦的长度问题时,可以采用的思路很多:①利用几何方法,即利用弦心距、半弦长、半径组成的Rt△Rt△来求解决;②弦长公式,即|AB|=1+k2−−−−−√⋅|x1−x2||AB|=1+k2⋅|x1−x2|来求解;③利用直线的参数方程的参数的几何意义来求解;从平面解析几何的角度来看,平面上的直线就是由平面直角坐标系中的一个二元一次方程所表示的图形。

求两条直线的交点,只需把这两个二元一次方程联立求解,当这个联立方程组无解时,两直线平行;有无穷多解时,两直线重合;只有一解时,两直线相交于一点。

常用直线向上方向与 X 轴正向的夹角(叫直线的倾斜角)或该角的正切(称直线的斜率)来表示平面上直线(对于X轴)的倾斜程度。

可以通过斜率来判断两条直线是否互相平行或互相垂直,也可计算它们的交角。

直线与某个坐标轴的交点在该坐标轴上的坐标,称为直线在该坐标轴上的截距。

直线在平面上的位置,由它的斜率和一个截距完全确定。

在空间,两个平面相交时,交线为一条直线。

因此,在空间直角坐标系中,用两个表示平面的三元一次方程联立,作为它们相交所得直线的方程。

直线标准参数方程

直线标准参数方程

直线标准参数方程
x
《直线标准参数方程》
直线的标准参数方程是一种几何形式,用于描述直线的性质,表示直线的位置,方向,长度,以及与其他直线之间的关系。

它可以用一个公式表示,为:
Ax + By + C = 0
其中,A,B和C是实数,A和B不能同时为零。

当A和B都不为0时,以A和B确定直线的斜率,C确定直线与原点的距离。

在这里,A,B,C的取值受到斜率和距离的限制,且有一定的规律:
(1)当A,B和C都不为0时,C的符号取决于斜率是否小于1,即:
①当斜率小于1时,C为正;
②当斜率大于1时,C为负。

(2)当A或B不为0时,当斜率大于或小于1时,A,B及C的符号可能不一定;
(3)当A不为0而B为0时,A为正,C,B及C不一定。

符号及规律只影响参数A,B,C的取值,不影响直线的位置,方向和长度。

因此,直线的标准参数方程可以表示为:Ax + By + C = 0,它
与斜率和距离之间有着紧密的联系,且可根据斜率及距离的不同来决定A,B和C的取值。

直线的参数方程

直线的参数方程

1.运动(一般)式:
x y
x0 y0
vx vy
t t
(t为参数) (t为时间)
vy
M(x,y)
vx
M0(x0,y0)
2.数量(标准)式:
(t为参数) M0(x0,y0)
(t为数量)
M(x,y)
x
注1.区分: 运动特例数量式 非负为1平方和
运动(一般)式
x y
x0 y0
at bt
数量(标准)式 a2 b2 1
x y
1 2t at 2 .
,(t为为参参数
,aa∈ R
)) ,且点M(5,4)在C
则常数a=__1_____
(4)若曲线M:
x
y
sin cos 2
A.(2,7)
B. (1 , 1) 32
(θ为参数) ,则在M上的点是
C. (1 , 1) 22
【C】 D.(1,0)
二、直线的参数方程
一、以焦点F为极点,以对称轴为极轴的极坐标系:
建立如图所示的极坐标系,
则圆锥曲线有统一的极坐标方程
M(ρ,θ)
ep
F
x
1 e cos
注1:椭圆(双曲线)的焦参数 p b2c注2:若AB为焦源自弦,则|AB|
2ep
1 e2 cos2
;
1 1 2 | AF | | BF | ep
二、以直角坐标系的x正半轴为极轴的极坐标系:
cos 20
数形结合巧转化 类比三角辅助角
除以振幅正余弦 同+异-纵为正
(7)将直线的普通方程 x 3y 1 0 改写成参数方程
析①
:直线的参数方程为
x
y
x0 y0
t t

直线参数方程标准形式

直线参数方程标准形式

直线参数方程标准形式直线是平面上的一种基本几何图形,它具有许多重要的性质和特点。

在解析几何中,我们常常需要描述直线的位置和性质,因此需要引入直线的参数方程标准形式来进行描述和分析。

本文将从直线的参数方程入手,介绍直线参数方程的标准形式及其相关知识。

一、直线的参数方程。

直线的参数方程是指用参数表示直线上的任意一点的坐标的方程。

设直线上一点的坐标为(x, y),直线的参数方程可以表示为:x = x0 + at。

y = y0 + bt。

其中(x0, y0)为直线上一点的已知坐标,a和b为常数,t为参数。

二、直线参数方程的标准形式。

直线的参数方程有多种形式,其中最常用的是标准形式。

直线参数方程的标准形式可以表示为:x = x0 + t (x1 x0)。

y = y0 + t (y1 y0)。

其中(x0, y0)和(x1, y1)分别为直线上的两个已知点的坐标,t为参数。

三、直线参数方程标准形式的性质。

1. 直线参数方程标准形式中(x1 x0)和(y1 y0)分别表示直线在x轴和y轴上的方向向量。

2. 当t取不同的值时,直线上的点的坐标也会随之变化,从而描述了直线上的所有点。

3. 当t取0时,得到直线上的一个已知点的坐标;当t取1时,得到直线上另一个已知点的坐标。

4. 直线参数方程标准形式可以简洁地描述直线的位置和方向,便于分析和计算。

四、直线参数方程标准形式的应用。

1. 在解析几何中,直线参数方程标准形式可以方便地描述直线的位置和方向,从而进行直线的性质分析和计算。

2. 在物理学和工程学中,直线参数方程标准形式可以用于描述物体的运动轨迹和位置变化。

3. 在计算机图形学中,直线参数方程标准形式可以用于描述和绘制直线。

五、总结。

直线参数方程标准形式是描述直线位置和方向的重要工具,它简洁而准确地描述了直线上的所有点的坐标。

通过学习和掌握直线参数方程标准形式,我们可以更好地理解和应用直线的性质和特点,为解决实际问题提供了重要的数学工具。

直线的参数方程

直线的参数方程
'2
t t ( t t ) 4t t
' 1 ' 2 ' 1 ' 2 2 ' ' 1 2
4 17
.
练习
2.动点M作匀速直线运动,它在x轴和y轴方向的 分速度分别是3m/s和4m/s,直角坐标系的长 度单位是1cm,点M的起始位置在点M0(2,1)处, 求点M的轨迹的参数方程.
y
B
A M(x,y)
0
(t是参数)
M0(x0,y0)
0
O
x •t表示有向线段M0P的数量。|t|=| M0M|
若M 0为中点, t 0 t1+t 2 0
•t只有在标准式中才有上述几何意义 设A,B为直线上任意两点,它们所对应的参 数值分别为t1,t2. (1)|AB|= t1 t 2
直线的参数方程
直线的参数方程(标准式)
x x 0 t cos 直线的参数方程 ( t为参数) y y 0 t sin
其中(x 0 , y0 )时直线上的定点, 是倾斜角; 其对应的 普通方程为y y0 k ( x x0 )或x x0。 t表示几何意义: M( (x, y )(不同于点M 0)的 0 x0 , y0 )到直线上的点M 有向线段M 0 P的数量.
(2)M是AB的中点,求M对应的参数
t1 t 2 2
1 x 1 t 2 5.一条直线的参数方程是 (t为参数), y 5 3 t 2 另一条直线的方程是x-y-2 3 0, 则两直线的交点 与点(1,-5)间的距离是
4 3
6.动点M作等速直线运动,它在x轴和y轴方向分 速度分别为9,12,运动开始时,点M位于A(1,1), 求点M的轨迹的参数方程. x 1 9t (t为参数) y 1 12t

空间中直线的方程式

空间中直线的方程式

空间中直线的方程式
在三维空间中,直线是一种基本的几何体。

直线的方程式描述了
直线的位置和方向。

直线的方程式有多种表示方法,其中最常用的是
向量表示和参数方程表示。

向量表示法是将直线看作是一个向量加上某一点,直线方向由这
个向量所表示。

设直线上一点为P,方向向量为v,则直线的向量表示
为L = P + tv,其中t为任意实数。

参数方程表示法是用一个参数t表示直线上所有点的坐标。

设直
线上一点为P0,方向向量为v,则直线的参数方程表示为x = x0 + tvx,y = y0 + tvy,z = z0 + tvz。

对于给定的两个不同的点P1和P2,可以通过它们的坐标求出直线的向量表示和参数方程表示。

设P1的坐标为(x1, y1, z1),P2的坐标为(x2, y2, z2),则直线的向量表示为L = (x1, y1, z1) + t(x2 -
x1, y2 - y1, z2 - z1),直线的参数方程表示为x = x1 + t(x2 -
x1),y = y1 + t(y2 - y1),z = z1 + t(z2 - z1)。

直线的方程式可以用来描述空间中的直线的位置和方向。

在工程、物理等领域,直线方程式是十分重要的数学工具。

掌握直线方程式的
基本知识,有助于理解空间几何学的其他概念和应用。

参数方程最全版

参数方程最全版

参数方程1.直线的参数方程(1)标准式 过点Po(x 0,y 0),倾斜角为α的直线l(如图)的参数方程是(t 为参数) (2)一般式 :过定点P 0(x 0,y 0)斜率k=tg α=的直线的参数方程是 (t 不参数) 2.圆的参数方程圆心在(a,b),半径为r 的圆的参数方程是(φ是参数)a,b 是圆的圆心坐标,半径为r 的圆,标准方程为:3.椭圆椭圆(a >b >0)的参数方程是(φ为参数)得出圆的方程4.极坐标互化公式常用的公式:sin(α±β)=sin αcos β±cos αsin β.⎩⎨⎧+=+=a t y y at x x sin cos 00ab⎩⎨⎧+=+=bt y y atx x 00⎩⎨⎧+=+=ϕϕsin cos r b y r a x ()()222r b y a x =-+-12222=+by a x ⎩⎨⎧==ϕϕsin cos b y a x 12222=+by a x ⎩⎨⎧=='sin cos θρθρy x ⎪⎩⎪⎨⎧≠=+=)0(222x x ytg y x θρcos(α±β)=cos αcos β∓sin αsin β.1、已知直线的参数方程为,圆C 的参数方程为. (1)求直线和圆C 的普通方程; (2)若直线与圆C 有公共点,求实数的取值范围.2.. 在平面直角坐标系xOy 中,已知直线l 的参数方程为⎩⎪⎨⎪⎧x =1-22t ,y =2+22t (t 为参数),直线l 与抛物线y2=4x 相交于A ,B 两点,求线段AB 的长.3在平面直角坐标系xOy 中, 直线的参数方程为(t 为参数),曲线C 的参数方程为 (为参数).试求直线和曲线C 的普通方程, 并求出它们的公共点的坐标.4.在直角坐标系中,以坐标原点为极点,x 轴的非负半轴为极轴建立极坐标系.已知点A 的极坐标为,直线的极坐标方程为,且点A 在直线上。

直线的参数方程

直线的参数方程

8 由根与系数的关系,t′1+t′2=- , 5 t′1· t′2=-4. 根据参数 t′的几何意义. 12 5 |t′1-t2′|= t′1+t′2 -4t′1t′2= 5 . 12 5 故直线被圆截得的弦长为 5 .
x x0 at (t为参数) y y0 bt
a 2 2 x x ( a b t) 0 2 2 a b b y y0 ( a 2 b 2 t) 2 2 a b
x 1 t y 3 3 t
1 2 2 x 1 ( 1 ( 3 ) t) 2 2 1 ( 3) 3 y 3 ( 12 ( 3 ) 2 t ) 2 2 1 ( 3 )
【自主解答】
x=1+2t, 将参数方程 y=2+t
(t 为参数)转化
为直线参数方程的标准形式为 x=1+ y=2+ 2 t′, 5 1 t′ 5
(t′为参数)
代入圆方程 x2+y2=9, 2 1 2 得(1+ t′) +(2+ t′)2=9, 5 5 整理,有 5t′2+8t′-4 5=0.
(θ 为参数)交于 A,
B 两点,求|PA|· |PB|. 【解】 (1)直线 l 的参数方程为
5 3 x=-3+tcos6π=-3- 2 t, y=3+t sin5π=3+ t . 6 2
(t 为参数)
(2)把曲线 C 的参数方程中参数 θ 消去,得 4x2+y2-16 =0. 把直线 l 的参数方程代入曲线 C 的普通方程中,得 3 2 1 2 4(-3- t) +(3+ t) -16=0. 2 2 即 13t2+4(3+12 3)t+116=0. 由 t 的几何意义,知 |PA |· |PB |=|t1· t2|, 116 故|PA |· |PB |= |t1· t2|= 13 .

直线的参数方程及应用

直线的参数方程及应用

直线的参数方程及应用基础知识点击: 1、 直线参数方程的标准式 (1)过点P 0(00,y x ),倾斜角为α的直线l 的参数方程是 ⎩⎨⎧+=+=ααsin cos 00t y y t x x (t 为参数)t 的几何意义:t 表示有向线段P P 0的数量,P(y x ,)P 0P=t ∣P 0P ∣=t为直线上任意一点.(2)若P 1、P 2是直线上两点,所对应的参数分别为t 1、t 2,则P 1P 2=t 2-t 1 ∣P 1P 2∣=∣t 2-t1∣(3) 若P 1、P 2、P 3是直线上的点,所对应的参数分别为t 1、t 2、t 3则P 1P 2中点P 3的参数为t 3=221t t +,∣P 0P 3∣=221t t + (4)若P 0为P 1P 2的中点,则t 1+t 2=0,t 1·t 2<02、 直线参数方程的一般式过点P 0(00,y x ),斜率为abk =的直线的参数方程是⎩⎨⎧+=+=bty y atx x 00 (t 为参数)点击直线参数方程:一、直线的参数方程问题1:(直线由点和方向确定)求经过点P 0(00,y x ),倾斜角为α的直线l 的参数方程. ⎩⎨⎧+=+=ααsin cos 00t y y t x x 是所求的直线l 的参数方程∵P 0P =t ,t 为参数,t 的几何意义是:有向直线l 上从已知点P 0(00,y x )到点 P(y x ,)的有向线段的数量,且|P 0P|=|t|① 当t>0时,点P 在点P 0的上方;② 当t =0时,点P 与点P 0重合; ③ 当t<0时,点P 在点P 0的下方; 特别地,若直线l 的倾斜角α=0时,直线l 的参数方程为⎩⎨⎧=+=00y y tx x④ 当t>0时,点P 在点P 0的右侧;⑤ 当t =0时,点P 与点P 0重合; ⑥ 当t<0时,点P 在点P 0的左侧; 问题2:直线l 上的点与对应的参数t 是一一对应关系.问题3:P 1、P 2为直线l 上两点所对应的参数分别为t 1、t 2 ,则P 1P 2=?,∣P 1P 2∣=?P 1P 2=P 1P 0+P 0P 2=-t 1+t 2=t 2-t 1,∣P 1P 2∣=∣ t 2-t 1∣问题4:一般地,若P 1、P 2、P 3是直线l 上的点, 所对应的参数分别为t 1、t 2、t 3, P 3为P 1、P 2的中点则t 3=221t t + 基础知识点拨:1、参数方程与普通方程的互化 例1:化直线1l 的普通方程13-+y x =0为参数方程,并说明参数的几何意 义,说明∣t ∣的几何意义. 点拨:求直线的参数方程先确定定点,再求倾斜角,注意参数的几何意义.例2⎩⎨⎧+=+-= t 313y tx (t.2中,参数t 的1l 的参数方程 例301,3),倾斜角yx ,为3π,判断方程⎪⎪⎩⎪⎪⎨⎧+=+=t y t x 233211(t为参数)和方程⎩⎨⎧+=+= t 331y t x (t 为参数)是否为直线l 的参数方程?如果是直线l 的参数方程,指出方程中的参数t 是否具有标准形式中参数t 的几何意义.点拨:直线的参数方程不唯一,对于给定的参数方程能辨别其标准形式,会利用参数t 的几何意义解决有关问题.问题5:直线的参数方程⎩⎨⎧+=+= t331y tx 能否化为标准形式?是可以的,只需作参数t 的代换.(构造勾股数,实现标准化)2、直线非标准参数方程的标准化 一般地,对于倾斜角为α、过点M 0(00,y x )直线l 参数方程的一般式为,. 例4:写出经过点M 0(-2,3),倾斜角为43π的直线l 的标准参数方程,并且 求出直线l 上与点M 0相距为2的点的坐标.点拨:若使用直线的普通方程利用两点间的距离公式求M 点的坐标较麻烦, 而使用直线的参数方程,充分利用参数t 的几何意义求M 点的坐标较 容易.例5:直线⎩⎨⎧-=+=20cos 420sin 3t y t x (t 为参数)的倾斜角 .基础知识测试1:1、 求过点(6,7),倾斜角的余弦值是23的直线l 的标准参数方程.2、 直线l 的方程:⎩⎨⎧+=-=25cos 225sin 1t y t x (t 为参数),那么直线l 的倾斜角( )A 65°B 25°C 155°D 115°3、 直线⎪⎪⎩⎪⎪⎨⎧+-=-=ty tx 521511(t 为参数)的斜率和倾斜角分别是( )A) -2和arctg(-2) B) -21和arctg(-21)C) -2和π-arctg2 D) -21和π-arctg 21 4、 已知直线⎩⎨⎧+=+=ααsin cos 00t y y t x x (t 为参数)上的点A 、B 所对应的参数分别为t 1,t 2,点P 分线段BA 所成的比为λ(λ≠-1),则P 所对应的参数是 .5、直线l 的方程: ⎩⎨⎧+=+=bty y atx x 00 (t 为参数)A 、B 是直线l 上的两个点,分别对应参数值t 1、t 2,那么|AB|等于( )A ∣t 1-t 2∣B 22b a +∣t 1-t 2∣C 2221ba t t +- D ∣t 1∣+∣t 2∣6、 已知直线l :⎩⎨⎧+-=+= t 351y tx (t 为参数)与直线m :032=--y x 交于P 点,求点M(1,-5)到点P 的距离. 二、直线参数方程的应用 例6:已知直线l 过点P (2,0),斜率为34,直线l和抛物线x y 22=相交于A 、B 两点,设线段AB 的中点为M,求:(1)P 、M 两点间的距离|PM|;(2)M 点的坐标; (3)线段AB 的长|AB| 点拨:利用直线l 的标准参数方程中参数t 的几何意义,在解决诸如直线l 上两点间的距离、直线l 上某两点的中点以及与此相关的一些问题时,比用直线l 的普通方程来解决显得比较灵活和简捷. 例7:已知直线l 经过点P (1,-33),倾斜角为3π,(1)求直线l 与直线l ':32-=x y 的交点Q 与P 点的距离| PQ|;(2)求直线l 和圆22y x +=16的两个交点A ,B 与P 点的距离之积.点拨:利用直线标准参数方程中的参数t 的几何意义解决距离问题、距离的乘积(或商)的问题,比使用直线的普通方程,与另一曲线方程联立先求得交点坐标再利用两点间的距离公式简便. 例8:设抛物线过两点A(-1,6)和B(-1,-2),对称轴与x 轴平行,开口向右, 直线y=2x +7被抛物线截得的线段长是410,求抛物线方程.点拨:(1)(对称性) 由两点A(-1,6)和B(-1,-2)的对称性及抛物线的对称性质,设出抛物线的方程(含P 一个未知量,由弦长AB 的值求得P ).(2)利用直线标准参数方程解决弦长问题.此题也可以运用直线的普通方程与抛物线方程联立后,求弦长。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

自学探究:
0001(,),,M x y α问题:已知一条直线过点倾斜角 求这条直线的方程.
00tan ()y y x x α-=-解:直线的普通方程为0002(,),,M x y α问题:已知一条直线过点倾斜角 求这条直线的参数方程.
M 0(x 0,y 0)αM(x,y)e
(cos ,sin )ααx
O y 0002(,),,M x y α问题:已知一条直线过点倾斜角 求这条直线的参数方程.)
sin ,(cos )1(αα=e ),(),(),()2(00000y y x x y x y x M M --=-=e M M //0 又e
t M M R t =∈∴0,使得存在惟一实数解:00cos sin x x t t y y t αα=+⎧⎨=+⎩所以,该直线的参数方程为
(为参数)
自学探究:0001(,),,M x y α问题:已知一条直线过点倾斜角 求这条直线的方程.
00tan ()y y x x α-=-解:直线的普通方程为0002(,),,M x y α问题:已知一条直线过点倾斜角 求这条直线的参数方程.
________。

0的一个参数方程是_1y (2)直线x D.160
C.110B.70A.20)是((t为参数)的倾斜角tcos20
y tsin203x (1)直线000000=-+⎩⎨⎧=+=B 为参数)(t t y t x ⎪⎪⎩
⎪⎪⎨⎧=-=22221练习
01M M te l
= 问题:由,你能得到直线的参数方程
互动交流:
问题4:(1)利用t 的几何意义,如何求过M 0直线上两点AB 的距离?M 0
A(t 1)B(t 2)
M 0A(t 1)B(t 2)|t 2-t 1|
|t 2-t 1|在M 0同侧在M 0异侧
注:直线上两点AB 的距离为|t 2-t 1|.
(2)线段AB 的中点C 对应的参数t 的值是什么?122
t t t +=注:
三、例题讲解
如果在学习直线的参数方程之前,你会怎样求解本题呢?
(*)010122=-+⎩⎨⎧==-+x x x
y y x 得:解:由1
12121-=⋅-=+∴x x x x ,由韦达定理得:10
524)(1212212=⋅=-++=∴x x x x k AB 251251(*)21--=+-=x x ,解得:由2
5325321+=-=∴y y ,)2
53,251()253,251(+---+-B A ,坐标记直线与抛物线的交点2222)2
532()2511()2532()2511(+-+----⋅--++---=⋅MB MA 则2
45353==-⋅+=


四、课堂练习
课堂小结
)的联系;
x tanα(x y y 与普通方程
(1)直线的参数方程00-=-与向量知识的联系;
(2)直线的参数方程义;
(3)参数t的几何意中点对应的参数t.
线所截得的弦的长,与点间的距离、直线被曲两表示点的坐标、直线上(4)应用:用参数t
001212121212cos 1.(sin ().||
.||.||||.||||||
x x t t y y t a
t t A B A B A t t B t t C t t D t t α=+⎧⎨=+⎩+-+-直线为参数)上有参数分别为和对应的两点和,则,两点的
距离为
B 课下作业:
{
1212121212cos 2()sin ()||||....2222x a t t y b t B C t t BC M t t t t t t t t A B C D θθ=+=+-+-+.在参数方程为参数所表示的曲线上有,两点,它们对应的参数值分别为、,则线段的中点对应的参数值是B 1123.()3530(15)___________________.x t t y t x y ⎧=+⎪⎨⎪=-+⎩--=-一条直线的参数方程是为参数,另一条直线的方程是,则两直线的交点与点,间的距离是43
1.直线参数方程
2.利用直线参数方程中参数t 的几何意义,简化求直线上两点间的距离.
3.注意向量工具的使用.探究:直线的
参数方程形
式是不是唯
一的
|t|=|M 0M|
四、课堂小结
的点的坐标是距离等于上与点为参数、直线练习:
2)
3,2()(2322{1-+=--=P t t y t
x A(-4,5) B(-3,4) C(-3,4)或(-1,2) D(-4,5)(0,1)
( )
C
_______________)6,3()(421{2到直线的距离是则点为参数、设直线的参数方程为t t
y t x -=+-=17
1720等于的倾斜角为参数、直线α
)(60sin 330
cos 2{300t t y t x -=+-=0000135.45.60.30.D C B A -D
( )。

相关文档
最新文档