直线的参数方程其应用举例

合集下载

直线的参数方程及应用

直线的参数方程及应用

直线的参数方程及应用直线的参数方程及应用直线参数方程的标准式过点P(x,y),倾斜角为α的直线l的参数方程是x = x + tcosαy = y + tsinα其中t为参数,表示有向线段PP的数量,P(x,y)为直线上的任意一点。

直线l上的点与对应的参数t是一一对应关系。

若P1、P2是直线上两点,所对应的参数分别为t1、t2,则P1P2 = t2 - t1,|P1P2| = |t2 - t1|。

若P1、P2、P3是直线上的点,所对应的参数分别为t1、t2、t3,则P1P2中点P3的参数为t3 = (t1 + t2)/2,|PP3| = |(t1 + t2)/2|。

若P为P1P2的中点,则t1 + t2 = 0,t1·t2 < 0.直线参数方程的一般式过点P(xb,y),斜率为k = a的直线的参数方程是x = x + aty = y + bt其中t为参数,表示有向线段PP的数量,P(xb,y)为直线上的任意一点。

直线的参数方程给定点P(xl,y),倾斜角为α,求经过该点的直线l的参数方程。

直线l的参数方程为x = x + tcosαy = y + tsinα其中t为参数,表示有向线段PP的数量,P(xl,y)为直线上的任意一点。

特别地,若直线l的倾斜角α = 90°,直线l的参数方程为x = x + ty = y其中t为参数,表示有向线段PP的数量,P(xl,y)为直线上的任意一点。

2、直线的参数方程与标准形式如果直线的方向已知,那么可以使用参数方程来表示直线。

对于倾斜角为 $\alpha$,过点 $M(x,y)$ 的直线 $l$,其参数方程一般式为:begin{cases}x=x_M+t\cos\alpha \\y=y_M+t\sin\alphaend{cases}其中 $t$ 是参数,表示从点 $M$ 沿着直线 $l$ 方向前进的距离。

如果要将参数方程转化为标准形式,可以通过以下步骤:1.消去参数 $t$,得到 $y-y_M=\dfrac{\sin\alpha}{\cos\alpha}(x-x_M)$。

直线的参数方程及其应用举例

直线的参数方程及其应用举例

-.直线的参数方程及应用问题1:〔直线由点和方向确定〕求经过点P 0(00,y x ),倾斜角为α的直线l设点P(y x ,)是直线l 上任意一点,方向为直线L 的正方向〕过点P 作y P 0作x 轴的平行线,两条直线相交于Q 点.1)当P P 0与直线l 同方向或P 0和P 重合时, P 0P =|P 0P| 那么P 0Q =P 0Pcos α Q P =P 2)当P P 0与直线l 反方向时,P 0P 、P 0Q 、Q P P 0P =-|P 0P| P 0Q =P 0Pcos α Q P =P 0Psin α 设P 0P =t ,t 为参数,又∵P 0Q =0x x -, 0x x -=tcos αQ P =0y y -∴0y y -=t sin α 即⎩⎨⎧+=+=ααsin cos 00t y y t x x 是所求的直线l 的参数方程∵P 0P =t ,t 为参数,t 的几何意义是:有向直线l 上从点P 0(00,y x )到点P(y x ,)的有向线段的数量,且|P 0P|=|t|① 当t>0时,点P 在点P 0的上方;② 当t =0时,点P 与点P 0重合;③ 当t<0时,点P 在点P 0的下方;特别地,假设直线l 的倾斜角α=0⎧+=0t x x ④ 当t>0时,点P 在点P 0的右侧; ⑤ 当t =0时,点P 与点P 0重合;⑥ 当t<0时,点P 在点P 0的左侧; 问题2:直线l 上的点与对应的参数t 是不是一 对应关系?我们把直线l 看作是实数轴, 以直线l 向上的方向为正方向,以定点 这样参数t 便和这条实数轴上的点P 一一对应关系.xx- . 问题3:P 1、P 2为直线l 上两点所对应的参数分别为t 1、t 2 ,那么P 1P 2=?,∣P 1P 2∣=?P 1P 2=P 1P 0+P 0P 2=-t 1+t 2=t 2-t 1,∣P 1P 2∣=∣ t-t ∣问题4:假设P 0为直线l 上两点P 1、P 2的中点,P 1、P 2 参数分别为t 1、t 2 ,那么t 1、t 2 根据直线l 参数方程t 的几何意义,P 1P =t 1,P 2P =t 2,∵P 0为直线l 上两点P 1、P 2的中点,∴|P 1P|=|P 2P| P 1P =-P 2P ,即t 1=-t 2, t 1t 2<0 一般地,假设P 1、P 2、P 3是直线l 上的点,所对应的参数分别为t 1、t 2、t 3,P 3为P 1、P 2 那么t 3=221t t +〔∵P 1P 3=-P 2P 3, 根据直线l 参数方程t 的几何意义,∴P 1P 3= t 3-t 1,P 2P 3=t 3-t 2,∴t 3-t 1=-(t 3-t 2,) 〕总结:1、 直线参数方程的标准式(1)过点P 0(00,y x ),倾斜角为α的直线l 的参数方程是⎩⎨⎧+=+=ααsin cos 00t y y t x x 〔t 为参数〕t 的几何意义:t 表示有向线段P P 0的数量,P(y x ,) P 0P=t ∣P 0P ∣=t 为直线上任意一点.(2)假设P 1、P 2是直线上两点,所对应的参数分别为t 1、t 2,那么P 1P 2=t 2-t 1∣P 1P 2∣=∣t 2-t 1∣(3) 假设P 1、P 2、P 3是直线上的点,所对应的参数分别为t 1、t 2、t 3那么P 1P 2中点P 3的参数为t 3=221t t +,∣P 0P 3∣=221t t + (4)假设P 0为P 1P 2的中点,那么t 1+t 2=0,t 1·t 2<02、 直线参数方程的一般式过点P 0(00,y x ),斜率为ab k =的直线的参数方程是 ⎩⎨⎧+=+=bty y at x x 00 〔t 为参数〕 x例题:1、参数方程与普通方程的互化例1:化直线1l 的普通方程13-+y x =0为参数方程,并说明参数的几何意 义,说明∣t ∣的几何意义.解:令y=0,得x =1,∴直线1l 过定点(1,0). k =-31=-33 设倾斜角为α,tg α=-33,α=π65, cos α =-23, sin α=21 1l 的参数方程为⎪⎪⎩⎪⎪⎨⎧=-=t y t x 21231 〔t 为参数〕t 是直线1l 上定点M 0〔1,0〕到t 对应的点M(y x ,)的有向线段M M 0的数量.由⎪⎪⎩⎪⎪⎨⎧=-=-(2) 21(1) 231t y t x (1)、(2)两式平方相加,得222)1(t y x =+-∣t ∣=22)1(y x +-∣t ∣是定点M 0〔1,0〕到t 对应的点M(y x ,)的有向线段M M 0的长.点拨:求直线的参数方程先确定定点,再求倾斜角,注意参数的几何意义.例2:化直线2l 的参数方程⎩⎨⎧+=+-= t 313y t x 〔t 为参数〕为普通方程,并求倾斜角, 说明∣t ∣的几何意义.解:原方程组变形为⎩⎨⎧=-=+ (2) t31 (1) 3y t x (1)代入(2)消去参数t , 得)3(31+=-x y (点斜式) 可见k=3, tg α=3,倾斜角α=3π 普通方程为 01333=++-y x(1)、(2)两式平方相加,得2224)1()3(t y x =-++∴∣t ∣=2)1()3(22-++y x ∣t ∣是定点M 0〔3,1〕到t 对应的点M(y x ,)的有向线段M M 0的长的一半.点拨:注意在例1、例2中,参数t 的几何意义是不同的,直线1l 的参数方程 为⎪⎪⎩⎪⎪⎨⎧=-=t y t x 21231即⎪⎩⎪⎨⎧=+=ππ65sin 65cos 1t y t x 是直线方程的标准形式,(-23)2+(21)2=1, t 的几何意义是有向线段M M 0的数量.直线2l 的参数方程为⎩⎨⎧+=+-= t 313y t x 是非标准的形式,12+(3)2=4≠1,此时t 的几何意义是有向线段M M 0的数量的一半.你会区分直线参数方程的标准形式吗?例3:直线l 过点M 0〔1,3〕,倾斜角为3π,判断方程⎪⎪⎩⎪⎪⎨⎧+=+=t y t x 233211〔t 为参数〕和方程⎩⎨⎧+=+= t331y t x 〔t 为参数〕是否为直线l 的参数方程?如果是直线l 的参数方程,指出方程中的参数t 是否具有标准形式中参数t 的几何意义.解:由于以上两个参数方程消去参数后,均可以得到直线l 的的普通方程 0333=+--y x ,所以,以上两个方程都是直线l 的参数方程,其中⎪⎪⎩⎪⎪⎨⎧+=+=t y t x 233211 cos α =21, sin α=23,是标准形式,参数t 是有向线段M M 0的数量.,而方程⎩⎨⎧+=+= t331y t x 是非标准形式,参数t 不具有上述的几何意义. 点拨:直线的参数方程不唯一,对于给定的参数方程能区分其标准形式,会利用参数t 的几何意义解决有关问题.问题5:直线的参数方程⎩⎨⎧+=+= t 331y t x 能否化为标准形式? 是可以的,只需作参数t 的代换.(构造勾股数,实现标准化)⎩⎨⎧+=+= t 331y t x ⇔⎪⎪⎩⎪⎪⎨⎧+++=+++=))3(1()3(13 3))3(1()3(11122222222t y t x 令t '=t 22)3(1+ 得到直线l 参数方程的标准形式⎪⎪⎩⎪⎪⎨⎧'+='+=t 233211y t x t '的几何意义是有向线段 M M 0的数量.2、直线非标准参数方程的标准化一般地,对于倾斜角为α、过点M 0(00,y x )直线l 参数方程的一般式为,.⎩⎨⎧+=+=bty y at x x 00〔t 为参数〕, 斜率为a b tg k ==α(1)当22b a +=1时,那么t 的几何意义是有向线段M M 0的数量.(2) 当22b a +≠1时,那么t 不具有上述的几何意义.⎩⎨⎧+=+=bt y y at x x 00可化为⎪⎪⎩⎪⎪⎨⎧+++=+++=)()(2222022220t b a b a b y y t b a b a a x x 令t '=t b a 22+ 那么可得到标准式⎪⎪⎩⎪⎪⎨⎧'++='++=t b a b y y t b a a x x 220220 t '的几何意义是有向线段M M 0的数量.例4:写出经过点M 0〔-2,3〕,倾斜角为43π的直线l 的标准参数方程,并且 求出直线l 上与点M 0相距为2的点的坐标. 解:直线l 的标准参数方程为⎪⎩⎪⎨⎧+=+-=ππ43sin 343cos 2t y t x 即⎪⎪⎩⎪⎪⎨⎧+=--=t y t x 223222〔t 为参数〕〔1〕 设直线l 上与点M 0相距为2的点为M 点,且M 点对应的参数为t, 那么| M 0M|=|t| =2, ∴t=±2 将t 的值代入(1)式当t=2时,M 点在 M 0点的上方,其坐标为〔-2-2,3+2〕;当t=-2时,M 点在 M 0点的下方,其坐标为〔-2+2,3-2〕.点拨:假设使用直线的普通方程利用两点间的距离公式求M 点的坐标较麻烦, 而使用直线的参数方程,充分利用参数t 的几何意义求M 点的坐标较 容易.例5:直线⎩⎨⎧-=+= 20cos 420sin 3t y t x 〔t 为参数〕的倾斜角 . 解法1:消参数t,的34--x y =-ctg20°=tg110°解法2:化为标准形式:⎩⎨⎧-+=-+= 110sin )(4110cos )(3t y t t x 〔-t 为参数〕 ∴此直线的倾斜角为110°根底知识测试1:1、 求过点(6,7),倾斜角的余弦值是23的直线l 的标准参数方程.2、 直线l 的方程:⎩⎨⎧+=-=25cos 225sin 1t y t x 〔t 为参数〕,那么直线l 的倾斜角( ) A 65° B 25° C 155° D 115°3、 直线⎪⎪⎩⎪⎪⎨⎧+-=-=t y t x 521511〔t 为参数〕的斜率和倾斜角分别是( ) A) -2和arctg(-2) B) -21和arctg(-21) C) -2和π-arctg2 D) -21和π-arctg 21 4、 直线⎩⎨⎧+=+=ααsin cos 00t y y t x x 〔t 为参数〕上的点A 、B 所对应的参数分别为t 1,t 2,点P 分线段BA 所成的比为λ〔λ≠-1〕,那么P 所对应的参数是.5、直线l 的方程: ⎩⎨⎧+=+=bt y y at x x 00 〔t 为参数〕A 、B 是直线l 上的两个点,分别对应参数值t 1、t 2,那么|AB|等于( )A ∣t 1-t 2∣ B22b a +∣t 1-t 2∣ C 2221b a t t +- D ∣t 1∣+∣t 2∣ 6、 直线l :⎩⎨⎧+-=+= t 351y tx (t 为参数)与直线m :032=--y x 交于P 点,求点M(1,-5)到点P 的距离.例6:直线l 过点P 〔2,0〕,斜率为34,直线l和抛物线x y 22=相交于A 、B 两点,设线段AB 的中点为M,求: (1)P 、M 两点间的距离|PM|; (2)M 点的坐标; (3)线段AB 的长|AB|解:(1)∵直线l 过点P 〔2,0〕,斜率为34,设直线的倾斜角为α,tg α=34 cos α =53, sin α=54∴直线l 的标准参数方程为⎪⎩⎪⎨⎧=+=t y t x 54532〔t 为参数〕* ∵直线l 和抛物线相交,将直线的参数方程代入抛物线方程x y 22=中,整理得 8t 2-15t -50=0 Δ=152+4×8×50>0,设这个二次方程的两个根为t 1、t 2,由韦达定理得 t 1+t 2=815, t 1t 2=425- ,由M 为线段AB 的中点,根据t 的几何意义,得| PM|=221t t +=1615 ∵中点M 所对应的参数为t M =1615,将此值代入直线的标准参数方程*, M 点的坐标为⎪⎩⎪⎨⎧=•==•+=4316155416411615532y x 即 M 〔1641,43〕 (3) |AB|=∣t 2-t 1∣= 222114)(t t t t -+=7385 点拨:利用直线l 的标准参数方程中参数t 的几何意义,在解决诸如直线l 上两点间的距离、直线l 上某两点的中点以及与此相关的一些问题时,比用直线l 的普通方程来解决显得比拟灵活和简捷. 例7:直线l 经过点P 〔1,-33〕,倾斜角为3π, (1)求直线l 与直线l ':32-=x y 的交点Q 与P 点的距离| PQ|;(2)求直线l 和圆22y x +=16的两个交点A ,B 与P 点的距离之积.解:(1)∵直线l 经过点P 〔1,-33〕,倾斜角为3π,∴直线l 的标准参数方 程为⎪⎩⎪⎨⎧+-=+=3sin 333cos 1ππt y t x ,即⎪⎪⎩⎪⎪⎨⎧+-=+=t y t x 2333211〔t 为参数〕代入直线l ':32-=x y 得032)2333()211(=-+--+t t 整理,解得t=4+23 t=4+23即为直线l 与直线l '的交点Q 所对应的参数值,根据参数t 的几 何意义可知:|t|=| PQ|,∴| PQ|=4+23.(2) 把直线l 的标准参数方程为⎪⎪⎩⎪⎪⎨⎧+-=+=t y t x 2333211〔t 为参数〕代入圆的方程22y x +=16,得16)2333()211(22=+-++t t ,整理得:t 2-8t+12=0, Δ=82-4×12>0,设此二次方程的两个根为t 1、t 2 那么t 1t 2=12根据参数t 的几何意义,t 1、t 2 分别为直线和圆22y x +=16的两个交点A, B 所对应的参数值,那么|t 1|=| PA|,|t 2|=| PB|,所以| PA|·| PB|=|t 1 t 2|=12点拨:利用直线标准参数方程中的参数t 的几何意义解决距离问题、距离的乘- . 积〔或商〕的问题,比使用直线的普通方程,与另一曲线方程联立先求得交点坐标再利用两点间的距离公式简便.例8:设抛物线过两点A(-1,6)和B(-1,-2),对称轴与x 轴平行,开口向右, 直线y=2x +7被抛物线截得的线段长是410,求抛物线方程.解:由题意,得抛物线的对称轴方程为y=2.设抛物线顶点坐标为〔a ,2〕 方程为(y ―2)2=2P(x -a ) (P>0) ①∵点B(-1,-2)在抛物线上,∴(―2―2)2=2P(-1-a )a P=-8-P 代入① 得(y ―2)2=2P x +2P+16 ②将直线方程y=2x +7化为标准的参数方程tg α=2,α为锐角,cos α =51, sin α=52 得⎪⎪⎩⎪⎪⎨⎧+=+-=t y t x 525511〔t 为参数〕 ③ ∵直线与抛物线相交于A ,B, ∴将③代入②并化简得:75212542--+t P t =0 ,由Δ=355)6(42+-P >0,可设方程的两根为t 1、t 2, 又∵|AB|=∣t 2-t 1∣= 222114)(t t t t -+=4104354]4)212(5[2⨯+-P =(410)2 化简,得(6-P)2=100 ∴ P=16 或P=-4(舍去) 所求的抛物线方程为(y ―2)2=32x +48点拨:(1)〔对称性〕由两点A(-1,6)和B(-1,-2)的对称性及抛物线的对称性质,设出抛物线的方程〔含P 一个未知量,由弦长AB 的值求得P 〕.(2)利用直线标准参数方程解决弦长问题.此题也可以运用直线的普通方程与抛物线方程联立后,求弦长。

参数方程的应用

参数方程的应用

参数方程的应用在数学解题方法中,参数法是给人印象最深的一种,对参数方程中参数的几何意义和物理意义的了我解,是正确选取参数的前提,正确的选取参数,往往能使得一些看似复杂的问题,变得简单。

一、利用参数方程求点的坐标例1、已知直线1经过点P (1,2),且倾斜角为,求直线1上到点P 的距离为 的点的坐标。

分析:写出1的参数方程之后,要求点的坐标,关键在于对参数t 的几何意义的了解。

解:直线1的参数方程为x=1+tCosx=1+ t(t 为参数)y=2+tStn即y=2+ t 在直线1上到点P 的距离为的点所对应的参数t 满足|t|=即t=± ,代入1的参数方程,得或。

所以,所求点的坐标为(3,4)和(-1,0)例2、已知P 为圆x 2+y 2-6x-8y+21=0上一点,且A (-1,0),B (1,0),求使|AP|2+|BP|2为最小值的点P 的坐标(x,y )。

分析:将圆配方,(x-3)2+(y-4)2=4,圆上动点P 用参数形式给出,可使问题简化。

解:配方,得(x-3)2+(y-4)2=4圆的参数方程为设P(3+2cosθ,4+2sinθ)为圆上任意一点,则|AP|2+|BP|2=(3+2cosθ+1)2+(4+2sinθ)2+(3+2cosθ-1)2+(4+2sinθ)2=60+8(3cosθ+4sinθ)=60+40sin((θ+φ)(其中:φ=arctan )当sin(θ+φ)=-1时,|AP|2+|BP|2=取得最小值20。

此时,θ+φ= , θ=-φ∴cosθ=-sinφ=- ,sinθ=-cosθ=-∴所求点P 坐标为( , )一、利用参数方程求长度例3、已知椭圆 + =1,和点P (2,1),过P 作椭圆的弦,使P 是弦的中点,求弦长。

解:设弦所在的直线方程为:(t 为参数)代入椭圆方程,得(2+tcosθ)2+4(1+tsinθ)2=16化简:得(cos 2θ+4sin 2θ)2+4(cosθ+2sinθ)-8=0P 为中点,弦长=x=2+tcos θ成师=例4、已知两圆x 2+y 2=9和(x-3)2+y 2=27,求大圆被小圆截得劣弧的长度。

直线参数方程的应用

直线参数方程的应用

由题意得,离心率为 e 2 , 焦参数为 p 2
1050
Fx Q
建立如图所示的极坐标系,则双曲线的极坐标方程为
2
1 2 cos
故 | FP | | FQ |
2
2
1 2 cos1050 1 2 cos1050
4
1 2 cos2 1050
4 cos 2100
8 3 3
(7)(2007年重庆)过双曲线 x2 y 2 4的右焦点F作倾斜角
M始(x0 , y0 )
M 0 (x0 , y0 )
M终 (x, y) M (x, y)
x
二、直线参数方程的应用:
(t为参数)
1.求直线上某一个点的坐标:
2.求直线上某线段中点的坐标:
3.求直线上两点间的距离:
4.求直线的方程:
注:若l 上两点M1,M2对应的参数分别为t1,t2.则
① | M1 M2 || t1 t2 |
y x
求极坐标方程常用的方法
公式法 方程法
直接法 间接法
1.公式法:知型巧用公式法 建系设式求系数 2.方程法: 未知型状方程法 建系设需列方程 ①直接法:一般地,与正余弦定理有关 ②间接法:先求出普通方程,再转成为极坐标方程
特殊直线的极坐标方程

l
θ0
O
x

l
(a,0)
Ox
l
(a, )
Ox
l
(a, )
A.
30 3
B.6
C.12
法3:参数方程+设而不求
D.7 3
由题意得AB:x
3 4
y
t 2
3t 2 (t为参数)
F B
A

直线参数方程的应用

直线参数方程的应用

直线参数方程的应用直线是平面几何中最基本的图形之一,具有广泛的应用。

直线参数方程是表示直线的一种常用方法,它通过参数化的方式,将直线上的每一个点表示为一个参数关于坐标的函数。

直线参数方程的应用范围广泛,涉及到建模、计算、曲线运动等多个领域。

下面将介绍一些直线参数方程的应用。

1.绘制直线图形直线参数方程可以用于绘制各种直线图形,如图形学中的线段、射线等。

通过给定直线的起点和终点,可以根据参数方程计算出每一个点的坐标,然后将这些点连起来,就可以得到一条直线。

绘制直线图形在计算机图形学、几何学等领域有广泛的应用,如绘制曲线、图形变换等。

2.直线的交点计算3.直线的切线计算直线参数方程可以用于计算曲线在其中一点的切线。

给定曲线的参数方程,通过对参数进行微分,求解导数,可以得到曲线在其中一点的切线的斜率,然后根据切线方程的形式,可以计算出切线的方程。

直线的切线计算在微积分、物理学、工程学等领域有广泛的应用,如计算物体运动轨迹、求解函数的导数等。

4.直线的方向向量计算直线参数方程可以表示直线的方向向量。

给定直线的参数方程,可以通过计算参数的变化量,得到直线上两个点的连线向量,从而得到直线的方向向量。

直线的方向向量计算在几何学、物理学、机器学习等领域有广泛的应用,如计算导航路径、计算梯度向量等。

5.表示平面内直线的垂线、平行线直线参数方程可以用于表示平面内直线的垂线、平行线。

给定直线的参数方程,可以通过求解两条直线的参数之间的关系,判断它们是否垂直或平行。

垂线、平行线的计算在几何学、物理学、工程学等领域有广泛的应用,如计算平行导线的电阻、计算直线的交点等。

6.参数方程与一般方程的转化直线的参数方程与一般方程之间可以相互转化。

给定直线的参数方程,可以通过计算参数表达式,得到直线的一般方程。

同样地,给定直线的一般方程,可以通过求解参数方程的参数,得到直线的参数方程。

参数方程与一般方程的转化在几何学、代数学等领域有广泛的应用,如计算函数的参数表示、计算曲线的方程等。

直线的参数方程及应用

直线的参数方程及应用

直线的参数方程及应用x = x0 + aty = y0 + bt其中(x0,y0)是直线上的一个固定点,a和b是表示直线方向的参数。

参数t的取值范围根据实际问题的情况来确定,可以是实数、整数或者其他范围。

1.直线与平面的交点在三维空间中,直线与平面的交点可以通过参数方程求解。

假设平面的方程为Ax+By+Cz+D=0,直线的参数方程为:x = x0 + aty = y0 + btz = z0 + ct将直线的参数方程代入平面的方程,可以得到一个关于参数t的二次方程:A(x0+at) + B(y0+bt) + C(z0+ct) + D = 0通过求解这个二次方程,可以得到直线与平面的交点坐标。

2.直线的斜率直线的斜率是表示直线的倾斜程度的一个重要指标,可以通过直线的参数方程求得。

考虑直线上两个点P(x1,y1)和Q(x2,y2),它们对应的参数分别为t1和t2、直线的斜率可以表示为:m=(y2-y1)/(x2-x1)=(y0+b*t2-y0-b*t1)/(x0+a*t2-x0-a*t1)=b/a因此,直线的斜率可以通过参数a和b的比值得到。

当a=0时,直线是垂直于x轴的;当b=0时,直线是垂直于y轴的。

3.直线的长度直线的长度可以通过参数方程和积分来求解。

考虑直线上两个点P(x1,y1)和Q(x2,y2),它们对应的参数分别为t1和t2、直线的长度可以表示为:L = ∫√((dx/dt)²+(dy/dt)²) dt (t=t1到t2)其中 dx/dt 和 dy/dt 分别是直线参数方程关于 t 的导数。

将直线的参数方程代入到上式中,化简可得:L = ∫√(a²+b²) dt (t=t1到t2)=√(a²+b²)*(t2-t1)因此,直线的长度可以通过直线参数方程中的参数a和b计算得到。

4.直线的切线和法线y = y0 + (dy/dt) * (t-t0)其中 dy/dt 是直线参数方程关于 t 的导数。

总结参数方程的题型

总结参数方程的题型

总结参数方程的题型在高等数学中,我们经常会遇到参数方程的题型。

参数方程由多个参数联立起来,通过给定的参数值,我们可以确定曲线或曲面上的点的位置。

在本文中,我们将总结几种常见的参数方程题型,包括直线、圆、椭圆和抛物线等。

直线的参数方程直线的参数方程可以通过已知的点和方向向量来确定。

我们以直线过点A(x₁,y₁)和B(x₂, y₂)为例。

设直线的参数为t,则参数方程可以表示为:x = (1-t)x₁ + tx₂ y = (1-t)y₁ + ty₂其中,t的范围取决于所给的参数范围。

在数学的几何应用中,参数t通常取值于[0, 1],表示直线上从点A到点B的过程。

圆的参数方程圆的参数方程可以通过给定的圆心坐标和半径来确定。

设圆的圆心为C(a, b),半径为r,则参数方程可以表示为:x = a + rcosθ y = b + rsinθ其中,θ为参数,表示角度的变化,范围一般取[0, 2π)。

当θ取遍这个范围时,参数方程描述了圆上所有的点。

椭圆的参数方程椭圆是一个类似于圆的曲线,其形状更加扁平或拉长。

椭圆的参数方程可以通过给定的椭圆中心坐标、长半轴a和短半轴b来确定。

设椭圆的中心为C(h, k),则参数方程可以表示为:x = h + acosθ y = k + bsinθ其中,θ为参数,表示角度的变化,范围一般取[0, 2π)。

当θ取遍这个范围时,参数方程描述了椭圆上所有的点。

抛物线的参数方程抛物线是一个常见的曲线形状,其参数方程可以通过给定的抛物线的顶点坐标和焦点坐标来确定。

设抛物线的顶点为V(h, k),焦点为F(a, b),则参数方程可以表示为:x = h + pt² y = k + 2pt其中,p为参数,表示抛物线的形状和方向。

当p>0时,抛物线开口向上;当p<0时,抛物线开口向下。

参数t的取值范围可以是全体实数。

总结通过以上几种常见的参数方程题型的总结,我们了解到参数方程在数学中的广泛应用。

点斜式直线参数方程解题举隅

点斜式直线参数方程解题举隅

点斜式直线参数方程解题举隅点斜式直线参数方程是解直线方程的一种常用方法。

通过给定的一个点和直线的斜率,可以得到直线的参数方程,进而求解相关问题。

首先,我们来看一个例子来说明点斜式直线参数方程的应用。

例题:已知直线L经过点A(2,3),斜率为m=2,求直线L的参数方程。

解题思路:首先,我们知道直线的斜率m可以表示为直线上任意两点的纵坐标差除以横坐标差。

根据已知条件可得:m = (y-3)/(x-2)接下来,我们将直线的参数方程表示为x = x0 + mt和y = y0 + t,其中t为参数。

将已知点A的坐标代入参数方程中,可以得到:x = 2 + 2ty = 3 + t这样,我们就得到了直线L的参数方程。

通过上述例题,我们可以看到点斜式直线参数方程的求解过程。

接下来,我们来看几个更复杂的例题,加深对点斜式直线参数方程的理解。

例题1:已知直线L经过点A(-1,4),斜率为m=3/2,求直线L的参数方程。

解题思路:根据已知条件可得:m = (y-4)/(x-(-1))3/2 = (y-4)/(x+1)将直线的参数方程表示为x = x0 + mt和y = y0 + t,代入已知点A的坐标,可以得到:x = -1 + (3/2)ty = 4 + t这样,我们就得到了直线L的参数方程。

例题2:已知直线L经过点A(-3,2),斜率为m=-1/3,求直线L的参数方程。

解题思路:根据已知条件可得:m = (y-2)/(x-(-3))-1/3 = (y-2)/(x+3)将直线的参数方程表示为x = x0 + mt和y = y0 + t,代入已知点A的坐标,可以得到:x = -3 + (-1/3)ty = 2 + t这样,我们就得到了直线L的参数方程。

通过以上例题,我们可以看到点斜式直线参数方程的解题过程。

对于已知直线经过的点和斜率,我们可以通过点斜式直线参数方程得到直线的参数方程,从而求解相关问题。

需要注意的是,在使用点斜式直线参数方程时,我们需要确保斜率m存在且非零。

直线的参数方程及应用

直线的参数方程及应用

直线的参数方程及其应用在必修本和选修本中分别学习了直线的方程和圆锥曲线的内容,它们都是高考的重点内容,也是学生学习的难点之一,若将两者结合起来,复杂的推理和大量的运算更使学生望而生畏。

如果通过直线方程的另一种形式——参数式,则可能使问题的解决变得简单了,而且可以让我们从一个崭新的角度去认识这些问题。

一、求直线上点的坐标例1.一个小虫从P (1,2)出发,已知它在 x 轴方向的分速度是−3,在y 轴方向的分速度是4,问小虫3s 后的位置Q 。

分析:考虑t 的实际意义,可用直线的参数方程⎩⎨⎧x = x 0 +at ,y = y 0 +bt(t 是参数)。

解:由题意知则直线PQ 的方程是⎩⎨⎧x = 1 − 3 t ,y = 2 + 4 t,其中时间t 是参数,将t =3s代入得Q (−8,12)。

例2.求点A (−1,−2)关于直线l :2x −3y +1 =0的对称点A ' 的坐标。

解:由条件,设直线AA ' 的参数方程为 ⎩⎨⎧x = −1 −213t ,y = −2+313t (t 是参数), ∵A 到直线l 的距离d =513, ∴ t = AA ' = 1013, 代入直线的参数方程得A ' (− 3313,413)。

点评:求点关于直线的对称点的基本方法是先作垂线,求出交点,再用中点公式,而此处则是充分利用了参数 t 的几何意义。

二、 求定点到过定点的直线与其它曲线的交点的距离例3.设直线l 经过点)5,1(0M ,倾斜角为3π, 1)求直线l 和直线032=--y x 的交点到点0M 的距离; 2)求直线l 和圆1622=+y x 的两个交点到点0M 的距离的和与积.解:直线l 的参数方程为⎪⎪⎩⎪⎪⎨⎧+=+=t y t x 235211( t 为参数)1)将直线l 的参数方程中的x,y 代入032=--y x ,得t=)3610(+-.所以,直线l 和直线032=--y x 的交点到点0M 的距离为t =3610+2)将直线的方程中的x,y 代入,得设此方程的两根为,则==10.可知均为负值,所以=点评:解决本题的关键一是正确写出直线的参数,二是注意两个点对应的参数的符号的异同。

直线参数方程x的几何意义应用

直线参数方程x的几何意义应用

直线参数方程x的几何意义应用直线是几何学中非常重要的概念,而直线的参数方程是一种用参数表示直线上的点的方法。

x的几何意义是指在直线上取不同的x值时对应的点在几何空间中的位置和性质。

下面介绍一些直线参数方程x的几何意义的应用。

1. 直线的位置:通过改变参数的取值范围,可以获得直线上的不同部分。

例如,在参数方程x=a*t中,通过改变参数a的值,可以获得直线上以不同点为起点的不同直线段。

当a为0时,直线上的点为起点;当a为正数时,直线上的点在起点之后,当a为负数时,直线上的点在起点之前。

2. 直线的方向:通过改变参数的变化规律,可以得到直线的不同方向。

例如,在参数方程x=cos(t)中,t表示一个角度,当t逐渐增大时,x的值在[-1,1]之间变化,对应的点在平面上画出一条正弦曲线,其中x值的变化取决于t的增大方向和速度。

这样的参数方程描述了一条直线的周期性运动。

3. 直线的长度:通过参数方程可以计算直线的长度。

例如,在参数方程x=2t中,t的取值范围为[0,1],则对应的直线的长度为2。

这种方法可以应用于坐标轴上的线段,以及任意维度空间中的线段。

4. 直线的交点:通过求解直线的参数方程,可以确定直线的交点。

例如,给定两个直线的参数方程为x=a*t和y=b*t,通过解方程组可以得到直线的交点的值。

此外,通过参数方程可以判断两条直线是否平行或重合。

5. 直线的区域:直线的参数方程可以用来描述直线所围成的区域。

例如,给定一个参数方程为x=2t,y=3t,z=t的直线,通过改变参数的取值范围,可以在三维空间中画出一段直线,并得到这段直线所围成的区域。

直线参数方程x的几何意义应用非常广泛,以上只是其中的一些例子。

在实际问题中,我们可以利用直线参数方程来描述和分析直线的性质,从而解决具体的几何问题。

直线参数方程c的几何意义应用

直线参数方程c的几何意义应用

直线参数方程c的几何意义应用直线的参数方程c是描述直线上各点坐标的一种方式。

在几何学中,直线参数方程c的几何意义可以从多个角度来解释和应用。

1. 直线的方向和斜率直线参数方程c通常包含参数t,表示直线上的点在参数t变化时的位置。

通过观察参数t的系数,可以得出直线的方向和斜率。

例如,如果参数方程为 c: (x, y) = (a + bt, c + dt),其中a、b、c 和d为常数,那么直线的斜率就是 b/d。

这个斜率可以告诉我们直线的倾斜方向和陡峭程度。

2. 直线的截距直线参数方程c还可以帮助我们计算直线和坐标轴的交点,从而得到直线的截距。

例如,如果参数方程为 c: (x, y) = (a + bt, c + dt),那么当t为0时,直线与y轴交点的坐标为 (a, c),而当t为0时,直线与x轴交点的坐标为 (a, c)。

3. 直线的长度和方向向量直线参数方程c可以帮助我们计算直线的长度和方向向量。

根据参数方程中的点坐标,我们可以使用距离公式来计算直线的长度。

例如,如果参数方程为 c: (x, y) = (a + bt, c + dt),我们可以计算点A(a, c)和点B(a + b, c + d)之间的距离。

这个距离可以作为直线的长度。

同时,直线的方向向量可以通过参数方程的系数得到。

对于上述参数方程,直线的方向向量为 (b, d)。

4. 直线的平行和垂直关系直线参数方程c可以帮助我们判断两条直线之间的平行和垂直关系。

如果两条直线的参数方程分别为 c1: (x, y) = (a1 + b1t, c1 + d1t) 和 c2: (x, y) = (a2 + b2t, c2 + d2t),那么这两条直线平行的条件是b1/b2 = d1/d2。

而这两条直线垂直的条件是 b1d2 - b2d1 = 0。

5. 直线与其他几何图形的关系直线参数方程c在几何学中还有许多其他的应用。

例如,我们可以使用参数方程来描述直线与平面的交点、直线与曲线的切点、直线与圆的交点等等。

空间直线参数方程

空间直线参数方程

空间直线参数方程空间直线是指在三维空间中由两点确定的一条线,以下通过参数方程来表达。

其参数方程为:x = x1 + (x2 - x1)ty = y1 + (y2 - y1)tz = z1 + (z2 - z1)t其中,(x1, y1, z1)和(x2, y2, z2)是直线上的两个点,t是参数,代表直线上的任意一点。

这个参数方程可以表示三维空间中所有的直线,也可以方便地对其进行计算和操作。

直线的参数方程可以分为以下几个部分来进行理解和应用:1. 直线段的长度和方向通过直线上的两个点来确定直线的位置和方向,可以得到直线的长度和方向。

直线上的任意一点可以通过参数方程来表示,根据不同的参数值t,可以得到直线上的不同点,从而确定直线的长度和方向。

2. 直线的距离通过直线上的一点到某个平面或直线的距离来进行计算。

根据点到平面或点到直线的距离公式,可以将直线的参数方程代入公式中,求解得到直线到某个平面或直线的距离。

3. 直线的交点当两条直线相交时,可以通过对其参数方程求解得到交点的坐标。

对于两条不平行的直线,可以联立其参数方程,解出参数t和s,进而求解得到交点的坐标。

4. 直线的夹角和垂直两条直线之间的夹角可以通过将它们的方向向量进行点乘,得到它们之间的夹角。

如果点乘结果为0,则两条直线垂直。

5. 直线的平移和旋转直线在三维空间中可以进行平移和旋转,这可以通过将直线的参数方程代入平移和旋转矩阵中进行计算得出。

根据平移和旋转矩阵的不同选择,可以得到不同的平移和旋转效果。

综上所述,空间直线的参数方程可以方便地对其进行计算和操作,并且可以应用于多个方面。

对于学习三维空间的学生和从事相关领域的专业人员来说,了解和掌握空间直线参数方程是十分重要的。

直线的参数方程及其应用举例

直线的参数方程及其应用举例

直线的参数方程及其应用举例一条直线的参数方程由以下形式给出:x = x₀ + aty = y₀ + bt其中,(x₀,y₀)是直线上的一点,a和b是常数,t是参数。

在这个参数方程中,通过改变参数t的值,我们可以得到直线上的每一个点的坐标。

例如,考虑一个小车在直线上做匀速运动的例子。

假设小车的初始位置为(x₀,y₀),它向右移动,速度为v。

那么小车的位置可以用参数方程来描述:x = x₀ + vty=y₀对于给定的t值,我们可以根据这个参数方程计算小车在其中一时刻的位置。

通过改变参数t的值,我们可以得到小车在线上的每一个点的坐标。

这个参数方程可以帮助我们分析小车的运动过程,比如计算其中一点的速度、加速度等。

x = r*cos(θ)y = r*sin(θ)其中,r是点到原点的距离。

这个参数方程描述了点在以原点为中心的圆上运动的轨迹。

通过改变参数θ的值,我们可以得到圆上的每一个点的坐标。

这个参数方程可以帮助我们分析旋转体的运动规律,比如计算旋转角速度、加速度等。

此外,直线的参数方程还可以用于表示平面内的曲线。

例如,椭圆的参数方程可以表示为:x = a*cos(t)y = b*sin(t)其中,a和b分别是椭圆主轴和副轴的长度,t是参数。

通过改变参数t的值,我们可以得到椭圆上的每一个点的坐标。

这个参数方程描述了椭圆的形状和位置。

总结起来,直线的参数方程在几何学和物理学中有广泛的应用。

它可以用于描述物体的运动轨迹、旋转体的轨迹以及平面内的曲线等。

直线的参数方程可以帮助我们分析和理解各种物理现象和几何问题,从而推导出更多的结论和结果。

用好直线的参数方程

用好直线的参数方程

龙源期刊网
用好直线的参数方程
作者:徐敏
来源:《高中生·高考指导》2013年第07期
过点M0(x0,y0)、倾斜角为θ的直线l的参数方程为x=x0 + tcos θ,y=y0 + tsin θ(t为参数),其中M(x,y)是直线l上的任意一点.当点M在点M0的上方时,|MM0|= t,当点
M在点M0的下方时,|MM0|=-t.课本介绍如何用直线的参数方程求线段长、中点弦的方程,其实,还有很多问题可以利用直线的参数方程来解决.
小结本题若用常规的点斜式方程求解,容易陷入困境.用好参数t的几何意义,可以方便
地解决线段的倍分关系问题.
小结本题利用参数t的几何意义,当直线与双曲线相切时有t1=t2,再用韦达定理求解.
例3 如果在抛物线y=ax2-1上总有两个不同的点A、B关于直线l:x+y=0对称,求实数a 的取值范围.
小结本题在求解时设出直线OA的参数方程,根据OA⊥OB,得到直线OB的参数方程,将两个参数方程分别代入双曲线的方程中,使解题过程直观、简捷.
例5 求过抛物线y2=2px(p>0)的焦点的弦长的最小值.
物线交于两点的所有情况.
(责任编校冯琪)。

直线参数方程的几何意义

直线参数方程的几何意义

一、参数方程及参数等的几何意义★ 若倾斜角为α的直线过点)(00y x M ,,t 为参数,则该直线的参数方程可写为★ 若直线过点M ,直线与圆锥曲线交于两点P 、Q ,则|MP|、|MQ|的几何意义就是:||||||||21t MQ t MP ==,; |MP|+|MQ|的几何意义就是:=+||||MQ MP |t ||t |21+; |MP|·|MQ|的几何意义就是:||||||21t t MQ MP ⋅=⋅; |PQ|的几何意义就是:2122121214)(|||PQ ||||PQ |t t t t t t t t ⋅-+=-=-=,即.例1:已知直线l :01=-+y x 与抛物线2x y =交于B A ,两点,求线段AB 的长与点)2,1(-M 到B A ,两点的距离之积。

(1)如何写出直线l 的参数方程解:因为直线l 过定点M ,且l 的倾斜角为43π,所以它的参数方程是⎪⎪⎩⎪⎪⎨⎧+=+-=ππ43sin 243cos 1t y t x ,(t 为参数),即⎪⎪⎩⎪⎪⎨⎧+=--=t y t x 222221,(t 为参数)① (2)如何求出交点A ,B 所对应的参数21t t ,?把①代入抛物线的方程,得 0222=-+t t ,(3)||||||MB MA AB ⋅、与21t t ,有什么关系? 由参数方程的几何意义可得:二、求弦的中点坐标★ 若过点M )(00y x ,、倾斜角为α的直线l 与圆锥曲线交于A 、B 两点,则弦的中点坐标公式为:⎪⎪⎩⎪⎪⎨⎧+++=+=+++=+=2)sin ()sin (22)cos ()cos (2201021'201021'ααααt y t y y y y t x t x x x x 或⎪⎪⎩⎪⎪⎨⎧++=+++=+=++=+++=+=)(22)()(2)(22)()(2212022012021'211021011021't t p y t p y t p y y y y t t p x t p x t p x x x x ,21p p ,为常数,均不为零(其中 中点M 的相应参数为t ,而221t t t +=,所以中点坐标也为:⎩⎨⎧+=+=t p y y tp x x 2010 ) ★ 若过点M )(00y x ,、倾斜角为α的直线l 与圆锥曲线交于A 、B 两点,且M 恰为弦AB 中点,则中点M 的相应参数:221t t t +==0(因为⎩⎨⎧+=+=t p y y tp x x 200100,而21p p ,均不为0,所以t=0)例2:直线l )(542531为参数,t t y t x ⎪⎪⎩⎪⎪⎨⎧+=+-=与双曲线1)2(22=--x y 相交于A 、B两点,求弦AB 中点M 的坐标。

例谈直线参数方程及其应用

例谈直线参数方程及其应用
2 2
消去 y , 得 x 2 -
y = t sin α
( 2 + k) x + 2 = 0 .
2
代入双曲线方程 x - y = a , 得
因 Δ = ( 2 + k) 2 - 8 ≥0 , 故 k ≥2 2 - 2 , 此时
中学数学月刊 2010 年第 3 期 ・38 ・
1
OP 1 +
线 x 2 - y 2 = 1 截得的弦长 . 分析 把直线方程代入双曲线方程中 , 得 t2 4 t - 6 = 0 . 于 是 所 求 弦 长 为 | t1 - t2 | =
( t1 + t2 )
2
1
OP 2
=
1
t1
+
1
t2
=
- 4 t1 t2 = 2
10 .
t1 + t2 t1 t2
6
4
( i H i ) = .
2 2ห้องสมุดไป่ตู้
例 3 已知直线 y = kx 与抛物线 y = x 2 - 2 x + 2 交于 P1 , P2 两点 , 点 Q 在线段 P 1 P2 上 , 且满足 π 1 1 2 + = , 当直线的倾斜角在 ( 0 , ) 内变动
OP 1 OP 2 OQ
2
( 3)
时 , 求点 Q 的轨迹的普通方程 . 分析 由于题目中有条件
2010 年第 3 期 中学数学月刊 ・37 ・
例谈直线参数方程及其应用
章玉龙 杜今芳 ( 江苏省张家港高级中学 215633)
2
直线的参数方程是解析几何中的重要内容 , 新 课程把参数方程列入到选修 4 24 的教学内容中 , 但 教材的要求不高 , 整个参数方程的内容是 5 课时 , 要 求较原来明显降低了 , 重点是了解参数思想的应用 . 由于参数方程表现出较大的灵活性和深刻性 , 也使 直线的参数方程更显其特质 , 使其有了用武之地 . 下 面就来谈谈直线参数方程给我们解题带来的便利 .

直线的参数方程在解题中的应用

直线的参数方程在解题中的应用

直线的参数方程在解题中的应用作者:吴燕来源:《考试周刊》2014年第11期在新课程标准下,苏教版《数学选修4-4》中安排了直线的参数方程,它是对《数学必修2》第二章平面解析几何初步中直线方程知识的进一步延伸,同时也为研究直线与圆、直线与圆锥曲线的问题提供了另一条途径.数学实践和学生体会表明:用直线的参数方程解决一些问题,有时更方便和简捷,本文通过具体的例子加以说明.一、计算问题利用直线参数方程x=x■+tcosαy=y■+tsinα(t为参数)中参数t的几何意义解决与距离、弦长、线段长、点的坐标有关的问题.例1:已知直线l过点P(2,0),斜率为■,直线l和抛物线y■=2x相交于A、B两点,设线段AB的中点为M,求:(1)|PM|;(2)M点的坐标.解:(1)设直线的倾斜角为α,依题意可得tanα=■,∴sinα=■,cosα=■,∴直线l的参数方程为x=2+■ty=■t(t为参数)(*).∵直线l和抛物线相交,将直线的参数方程代入抛物线方程y■=2x中,整理得8t■-15-50=0且Δ>0.设方程的两个根为t■,t■,∴t■+t■=■,t■t■=-■.由于M为线段AB的中点,根据t的几何意义,得|PM|=|■| =■.(2)∵中点M所对应的参数为t■=■=■,将此值代入直线的参数方程(*),点M的坐标为x=2+■×■=■y=■×■=■,M(■,■)即为所求.一般地,直线x=x■+tcosαy=y■+tsinα(t为参数)与曲线y=f(x)交于A,B两点,对应的参数分别为t■、t■,则线段|AB|的中点M对应的参数t=■.由t的几何意义得|PA|+|PB|=|t■|+|t■|=t■+t■=3■.一般地,直线与二次曲线相交,用直线参数方程解题时,则有弦长为|t■-t■|;直线上的点P到两交点的距离和为|t■|+|t■|,距离涉及t的正负时要加以区分.因为,直线参数方程的标准方程中含有三角函数cosα,sinα(α是直线的倾斜角),所以,在解决直线与圆锥曲线有关问题时,可以将其转化为三角函数问题解决,体现了转化、化归的数学思想,达到数学知识的综合运用,在解高考数学试题时也有用武之地.下面我们以高考题为例加以说明.二、范围问题求参数的取值范围,是高考的热点和难点问题,由于求参数范围的方法众多,如何选择往往成为考生思考的难点.如果选择直线的参数方程,利用三角函数的值域求解,则比较简单.例2(2008年高考福建卷理科第21题):如图,椭圆■+■=1(a>b>0)的一个焦点是F (1,0),O为坐标原点.(Ⅰ)已知椭圆短轴的两个三等分点与一个焦点构成正三角形,求椭圆的方程;(Ⅱ)设过点F的直线l交椭圆于A、B两点.若直线l绕点F任意转动,恒有|OA|■+|OB|■解:(Ⅰ)略,椭圆方程为■+■=1.(Ⅱ)设直线AB的参数方程为x=1+tcosθy=tsinθ(t为参数),代入■+■=1得(b■cos■θ+a■sin■θ)t■+2b■cosθt+b■-a■b■=0.设上述方程的两根为t■,t■,由韦达定理知:t■+t■=-■t■t■=■①根据t的几何意义,不妨设|FA|=t■,则|FB|=-t■,|AB|=t■-t■,又设A(1+t■cosθ,t■sinθ),B(1+t■cosθ,t■sinθ),∵|OA|■+|OB|■∴(1+t■cosθ)■+(t■sinθ)■+(1+t■cosθ)■+(t■sinθ)■化简得:1+(t■+t■)cosθ+t■t■1-■+■∴■显然有a■sin■θ-b■cos■θ+b■-a■b■即(a■+b■)sin■θ-a■b■∴■>sin■θ恒成立,∵sinθ∈[0,1],∴■>1,②∵椭圆的一个焦点F(1,0),∴C=1,b■=a■-c■=a■-1③由②,③得a■因为a>0,b>0,所以a0,解得a>■或a■.本例在解题中,充分发挥了直线参数方程在解题中的优势(参数的几何意义、三角函数变换),由恒成立问题、三角函数的值域,巧妙地利用椭圆中a、b、c的关系实施转化,得到了关于a的二次不等式使问题获解,解题目标明确,思路清晰,方法可行.三、证明问题例3(2013年全国理科高考卷第21题):已知双曲线C:■-■=1(a>0,b>0)的左、右焦点分别为F■,F■,离心率为3,直线y=2与C的两个交点间的距离为■.(Ⅰ)求a,b;(Ⅱ)设过F■的直线l与C的左、右两支分别相交于A,B两点,且|AF■|=|BF■|,证明:|AF■|,|AB|,|BF■|成等比数列.解:(Ⅰ)易得a=1,b=2■,c=3,双曲线方程为x■-■=1.(Ⅱ)如图,∵F■(3,0)∴设过F■的直线为x=3+tcosκy=tsinα(t为参数)其中|AF■|=-t■,|BF■|=-t■,|AB|=|AF■|-|BF■|=|AF■|+2a-|BF■|+2a=4a=4,即-t■+t■=4①将直线参数方程代入双曲线方程,得8(3+tcosθ)■-t■sin■θ=8,化简得(9cos■θ-1)t■+48cosθ·t+64=0.由韦达定理知,t■+t■=■,t■t■=■.由①式知|AB|=|t■-t■|=4,∴|AB|■=16②另一方面,(t■-t■)■=(t■+t■)■-4t■t■=(■)■-4×■=16,解得cos■θ=■.∴|AF■|·|BF■|=t■t■=■=16③由②③知,|AF■|·|BF■|=|AB|■,即|AF■|,|AB|,|BF■|成等比数列.该题的常规解题思路有两种:(1)涉及直线与圆锥曲线综合问题时,就是联立方程组用韦达定理求解,该思路清晰,但因其运算量较大,学生常常望而生畏.特别用该方法求|AF■|、|AF■|、|BF■|、|BF■|时还需用到两点间距离公式,无疑运算量又会增大.(2)涉及在求|AF■|、|AF■|、|BF■|、|BF■|时可以用双曲线的焦半径公式,但这又超出考试大纲的要求.而利用直线参数方程求解,简洁明快,是一种较好的选择.。

直线的参数方程的应用

直线的参数方程的应用

直线的参数方程的应用直线的参数方程是解析几何中一个重要的概念,在数学和物理学等领域都有广泛的应用。

本文将以直线的参数方程的应用为主题,探讨其在几何学、物理学和工程学中的应用。

一、直线的参数方程在几何学中的应用直线的参数方程是指通过给定点和方向向量来表示直线的方程。

在几何学中,直线的参数方程可以被用来描述直线的位置、方向和形状。

例如,在平面几何中,我们可以通过直线的参数方程来确定直线的斜率、截距和方向角等属性。

通过这些属性,我们可以更加准确地描述和分析直线在平面上的位置和性质。

二、直线的参数方程在物理学中的应用直线的参数方程在物理学中也有广泛的应用,特别是在描述物体的运动轨迹和路径时。

例如,在力学中,我们可以通过直线的参数方程来描述物体在空间中的运动轨迹。

通过给定物体的初始位置和速度,我们可以使用参数方程来计算物体在不同时间点的位置和速度。

这种方法在研究天体运动、机械运动等领域都有重要的应用。

三、直线的参数方程在工程学中的应用直线的参数方程在工程学中也有广泛的应用。

例如,在机械工程中,我们可以使用直线的参数方程来描述物体在机械装置中的运动轨迹。

通过给定装置的初始状态和运动速度,我们可以使用参数方程来计算物体在不同时间点的位置和速度,从而优化机械装置的设计和性能。

以下是一些直线的参数方程的应用案例,以进一步说明其在实际问题中的应用价值。

1. 车辆运动轨迹的计算:通过给定车辆的初始位置和速度,可以使用直线的参数方程来计算车辆在不同时间点的位置和速度,从而更好地分析和优化车辆的行驶路径和效率。

2. 轨道设计与建设:在轨道交通和航天工程中,直线的参数方程可以用来描述车辆或火箭的运动轨迹,从而指导轨道的设计和建设。

3. 机器人运动规划:在机器人控制和路径规划中,直线的参数方程可以用来描述机器人的运动轨迹,从而实现自动化和智能化的机器人操作。

4. 管道布置和优化:在管道工程中,直线的参数方程可以用来描述管道的布置和路径,从而优化管道的设计和布置,提高工程效率和安全性。

连接两点的直线段的参数方程

连接两点的直线段的参数方程

连接两点的直线段的参数方程连接两点的直线段的参数方程连接两点的直线段是初中数学中的基础知识,也是高中数学中的重要内容。

在平面直角坐标系中,连接两点的直线段可以用参数方程来表示。

假设直线段的两个端点分别为$A(x_1,y_1)$和$B(x_2,y_2)$,则直线段的参数方程为:$$\begin{cases}x=x_1+t(x_2-x_1)\\y=y_1+t(y_2-y_1)\end{cases}$$其中,$t$为参数,表示直线段上任意一点的位置。

这个参数方程的意义是,当$t=0$时,直线段上的点为$A(x_1,y_1)$;当$t=1$时,直线段上的点为$B(x_2,y_2)$;当$t$取任意值时,直线段上的点为直线段上的任意一点。

例如,连接点$A(1,2)$和点$B(4,5)$的直线段的参数方程为:$$\begin{cases}x=1+3t\\y=2+3t\end{cases}$$当$t=0$时,直线段上的点为$A(1,2)$;当$t=1$时,直线段上的点为$B(4,5)$;当$t=\frac{1}{2}$时,直线段上的点为$(\frac{5}{2},\frac{7}{2})$。

参数方程的优点是可以方便地求出直线段上的任意一点的坐标,也可以方便地求出直线段的长度、斜率等性质。

例如,直线段的长度可以用勾股定理求出:$$AB=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}$$直线段的斜率可以用两点式求出:$$k=\frac{y_2-y_1}{x_2-x_1}$$参数方程还可以用于描述其他几何图形,例如圆、椭圆、双曲线等。

在高中数学中,参数方程是解析几何的重要内容之一,是学习曲线、曲面、空间直线、空间曲线等知识的基础。

总之,连接两点的直线段的参数方程是初中数学中的基础知识,也是高中数学中的重要内容。

掌握参数方程的求法和应用,对于学习解析几何和数学建模都有很大的帮助。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

直线的参数方程及应用问题1:(直线由点和方向确定)求经过点P 0(00,y x ),倾斜角为α的直线l设点P(y x ,)是直线l 上任意一点,方向为直线L 的正方向)过点P 作y P 0作x 轴的平行线,两条直线相交于Q 点.1)当P P 0与直线l 同方向或P 0和P 重合时,P 0P =|P 0P | 则P 0Q =P 0Pcos α Q P =P 02)当P P 0与直线l 反方向时,P 0P 、P 0Q 、Q P P 0P =-|P 0P | P 0Q =P 0Pcos α Q P =P 0Psin α 设P 0P =t ,t 为参数,又∵P 0Q =0x x -, 0x x -=tcos αQ P =0y y - ∴ 0y y -=t sin α 即⎩⎨⎧+=+=ααsin cos 00t y y t x x 是所求的直线l 的参数方程∵P 0P =t ,t 为参数,t 的几何意义是:有向直线l 上从已知点P 0(00,y x )到点 P(y x ,)的有向线段的数量,且|P 0P |=|t|① 当t>0时,点P 在点P 0的上方;② 当t =0时,点P 与点P 0重合;③ 当t<0时,点P 在点P 0的下方;特别地,若直线l 的倾斜角α=0时,直线⎧+=0t x x ④ 当t>0时,点P 在点P 0的右侧; ⑤ 当t =0时,点P 与点P 0重合;⑥ 当t<0时,点P 在点P 0的左侧; 问题2:直线l 上的点与对应的参数t 是不是一 对应关系?我们把直线l 看作是实数轴, 以直线l 向上的方向为正方向,以定点 这样参数t 便和这条实数轴上的点P 一一对应关系.问题3:P 1、P 2为直线l 则P 1P 2=?,∣P 1P 2∣=?P 1P 2=P 1P 0+P 0P 2=-t 1+t 2=t 2-t 1,∣P 1P 2∣=∣ t 2-t 1∣ xx问题4:若P 0为直线l 上两点P 1、P 2的中点,P 1、P 2参数分别为t 1、t 2 ,则t 1、t 2之间有何关系? 根据直线l 参数方程t 的几何意义,P 1P =t 1,P 2P =t 2,∵P 0为直线l 上两点P 1、P 2的中点,∴|P 1P |=|P 2P |P 1P =-P 2P ,即t 1=-t 2, t 1t 2<0一般地,若P 1、P 2、P 3是直线l 上的点, 所对应的参数分别为t 1、t 2、t 3,P 3为P 1、P 2 则t 3=221t t + (∵P 1P 3=-P 2P 3, 根据直线l 参数方程t 的几何意义, ∴P 1P 3= t 3-t 1, P 2P 3= t 3-t 2, ∴t 3-t 1=-(t 3-t 2,) )总结:1、直线参数方程的标准式(1)过点P 0(00,y x ),倾斜角为α的直线l 的参数方程是⎩⎨⎧+=+=ααsin cos 00t y y t x x (t 为参数)t 的几何意义:t 表示有向线段P P 0的数量,P(y x ,) P 0P=t ∣P 0P ∣=t 为直线上任意一点.(2)若P 1、P 2是直线上两点,所对应的参数分别为t 1、t 2,则P 1P 2=t 2-t 1 ∣P 1P 2∣=∣t 2-t 1∣(3) 若P 1、P 2、P 3是直线上的点,所对应的参数分别为t 1、t 2、t 3则P 1P 2中点P 3的参数为t 3=221t t +,∣P 0P 3∣=221t t + (4)若P 0为P 1P 2的中点,则t 1+t 2=0,t 1·t 2<02、直线参数方程的一般式过点P 0(00,y x ),斜率为ab k =的直线的参数方程是 ⎩⎨⎧+=+=bty y at x x 00 (t 为参数) 例题:1、参数方程与普通方程的互化例1:化直线1l 的普通方程13-+y x =0为参数方程,并说明参数的几何意 义,说明∣t ∣的几何意义.解:令y=0,得x =1,∴直线1l 过定点(1,0). k =-31=-33 x设倾斜角为α,tg α=-33,α= π65, cos α =-23, sin α=21 1l 的参数方程为⎪⎪⎩⎪⎪⎨⎧=-=t y t x 21231 (t 为参数)t 是直线1l 上定点M 0(1,0)到t 对应的点M(y x ,)的有向线段M M 0的数量.由⎪⎪⎩⎪⎪⎨⎧=-=-(2) 21(1) 231t y t x (1)、(2)两式平方相加,得222)1(t y x =+-∣t ∣=22)1(y x +-∣t ∣是定点M 0(1,0)到t 对应的点M(y x ,)的有向线段M M 0的长.点拨:求直线的参数方程先确定定点,再求倾斜角,注意参数的几何意义.例2:化直线2l 的参数方程⎩⎨⎧+=+-= t313y t x (t 为参数)为普通方程,并求倾斜角,说明∣t ∣的几何意义.解:原方程组变形为⎩⎨⎧=-=+ (2) t 31(1) 3y t x (1)代入(2)消去参数t ,得)3(31+=-x y (点斜式) 可见k=3, tg α=3,倾斜角α=3π 普通方程为 01333=++-y x(1)、(2)两式平方相加,得2224)1()3(t y x =-++∴∣t ∣=2)1()3(22-++y x ∣t ∣是定点M 0(3,1)到t 对应的点M(y x ,)的有向线段M M 0的长的一半. 点拨:注意在例1、例2中,参数t 的几何意义是不同的,直线1l 的参数方程 为⎪⎪⎩⎪⎪⎨⎧=-=t y t x 21231即⎪⎩⎪⎨⎧=+=ππ65sin 65cos 1t y t x 是直线方程的标准形式,(-23)2+(21)2=1, t 的几何意义是有向线段M M 0的数量.直线2l 的参数方程为⎩⎨⎧+=+-= t313y t x 是非标准的形式,12+(3)2=4≠1,此时t 的几何意义是有向线段M M 0的数量的一半.你会区分直线参数方程的标准形式吗?例3:已知直线l 过点M 0(1,3),倾斜角为3π,判断方程⎪⎪⎩⎪⎪⎨⎧+=+=t y t x 233211(t 为参数)和方程⎩⎨⎧+=+= t331y t x (t 为参数)是否为直线l 的参数方程?如果是直线l 的参数方程,指出方程中的参数t 是否具有标准形式中参数t 的几何意义.解:由于以上两个参数方程消去参数后,均可以得到直线l 的的普通方程 0333=+--y x ,所以,以上两个方程都是直线l 的参数方程,其中⎪⎪⎩⎪⎪⎨⎧+=+=t y t x 233211 cos α =21, sin α=23,是标准形式,参数t 是有向线段M M 0的数量.,而方程⎩⎨⎧+=+= t331y t x 是非标准形式,参数t 不具有上述的几何意义.点拨:直线的参数方程不唯一,对于给定的参数方程能辨别其标准形式,会利用参数t 的几何意义解决有关问题.问题5:直线的参数方程⎩⎨⎧+=+= t331y t x 能否化为标准形式?是可以的,只需作参数t 的代换.(构造勾股数,实现标准化)⎩⎨⎧+=+= t 331y t x ⇔⎪⎪⎩⎪⎪⎨⎧+++=+++=))3(1()3(13 3))3(1()3(11122222222t y t x 令t '=t 22)3(1+ 得到直线l 参数方程的标准形式⎪⎪⎩⎪⎪⎨⎧'+='+=t 233211y t x t '的几何意义是有向线段 M M 0的数量.2、直线非标准参数方程的标准化一般地,对于倾斜角为α、过点M 0(00,y x )直线l 参数方程的一般式为,.⎩⎨⎧+=+=bty y at x x 00 (t 为参数), 斜率为a b tg k ==α (1)当22b a +=1时,则t 的几何意义是有向线段M M 0的数量.(2) 当22b a +≠1时,则t 不具有上述的几何意义.⎩⎨⎧+=+=bt y y at x x 00可化为⎪⎪⎩⎪⎪⎨⎧+++=+++=)()(2222022220t b a b a b y y t b a b a a x x 令t '=t b a 22+则可得到标准式⎪⎪⎩⎪⎪⎨⎧'++='++=t b a b y y t b a a x x 220220 t '的几何意义是有向线段M M 0的数量. 例4:写出经过点M 0(-2,3),倾斜角为43π的直线l 的标准参数方程,并且 求出直线l 上与点M 0相距为2的点的坐标.解:直线l 的标准参数方程为⎪⎩⎪⎨⎧+=+-=ππ43sin 343cos 2t y t x 即⎪⎪⎩⎪⎪⎨⎧+=--=t y t x 223222(t 为参数)(1) 设直线l 上与已知点M 0相距为2的点为M 点,且M 点对应的参数为t,则| M 0M |=|t| =2, ∴t=±2 将t 的值代入(1)式当t=2时,M 点在 M 0点的上方,其坐标为(-2-2,3+2); 当t=-2时,M 点在 M 0点的下方,其坐标为(-2+2,3-2).点拨:若使用直线的普通方程利用两点间的距离公式求M 点的坐标较麻烦, 而使用直线的参数方程,充分利用参数t 的几何意义求M 点的坐标较 容易.例5:直线⎩⎨⎧-=+=οο20cos 420sin 3t y t x (t 为参数)的倾斜角 . 解法1:消参数t,的34--x y =-ctg20°=tg110°解法2:化为标准形式: ⎩⎨⎧-+=-+=οο110sin )(4110cos )(3t y t t x (-t 为参数) ∴此直线的倾斜角为110°基础知识测试1:1、 求过点(6,7),倾斜角的余弦值是23的直线l 的标准参数方程. 2、 直线l 的方程:⎩⎨⎧+=-=οο25cos 225sin 1t y t x (t 为参数),那么直线l 的倾斜角( ) A 65° B 25° C 155° D 115°3、 直线⎪⎪⎩⎪⎪⎨⎧+-=-=t y t x 521511(t 为参数)的斜率和倾斜角分别是( ) A) -2和arctg(-2) B) -21和arctg(-21)C) -2和π-arctg2 D) -21和π-arctg 21 4、 已知直线⎩⎨⎧+=+=ααsin cos 00t y y t x x (t 为参数)上的点A 、B 所对应的参数分别为t 1,t 2,点P 分线段BA 所成的比为λ(λ≠-1),则P 所对应的参数是 . 5、直线l 的方程: ⎩⎨⎧+=+=bt y y at x x 00 (t 为参数)A 、B 是直线l 上的两个点,分别对应参数值t 1、t 2,那么|AB|等于( )A ∣t 1-t 2∣B 22b a +∣t 1-t 2∣ C2221b a t t +- D ∣t 1∣+∣t 2∣ 6、 已知直线l :⎩⎨⎧+-=+= t 351y tx (t 为参数)与直线m :032=--y x 交于P 点,求点M(1,-5)到点P 的距离.例6:已知直线l 过点P (2,0),斜率为34和抛物线x y 22=相交于A 、B 两点,设线段AB 的中点为M,求: (1)P 、M 两点间的距离|PM|; (2)M 点的坐标; (3)线段AB 的长|AB|解:(1)∵直线l 过点P (2,0),斜率为34,3cos α =53, sin α=54∴直线l 的标准参数方程为⎪⎩⎪⎨⎧=+=t y t x 54532(t 为参数)* ∵直线l 和抛物线相交,将直线的参数方程代入抛物线方程x y 22=中, 整理得 8t 2-15t -50=0 Δ=152+4×8×50>0,设这个二次方程的两个根为t 1、t 2,由韦达定理得 t 1+t 2=815, t 1t 2=425- ,由M 为线段AB 的中点,根据t 的几何意义,得| PM |=221t t + =1615 ∵中点M 所对应的参数为t M =1615,将此值代入直线的标准参数方程*, M 点的坐标为⎪⎩⎪⎨⎧=•==•+=4316155416411615532y x 即 M (1641,43) (3) |AB|=∣t 2-t 1∣= 222114)(t t t t -+=7385点拨:利用直线l 的标准参数方程中参数t 的几何意义,在解决诸如直线l 上两点间的距离、直线l 上某两点的中点以及与此相关的一些问题时,比用直线l 的普通方程来解决显得比较灵活和简捷.例7:已知直线l 经过点P (1,-33),倾斜角为3π, (1)求直线l 与直线l ':32-=x y 的交点Q 与P 点的距离| PQ |;(2)求直线l 和圆22y x +=16的两个交点A ,B 与P 点的距离之积. 解:(1)∵直线l 经过点P (1,-33),倾斜角为3π,∴直线l 的标准参数方 程为⎪⎩⎪⎨⎧+-=+=3sin 333cos 1ππt y t x ,即⎪⎪⎩⎪⎪⎨⎧+-=+=t y t x 2333211(t 为参数)代入直线l ':32-=x y 得032)2333()211(=-+--+t t 整理,解得t=4+23 t=4+23即为直线l 与直线l '的交点Q 所对应的参数值,根据参数t 的几 何意义可知:|t |=| PQ |,∴| PQ |=4+23.(2) 把直线l 的标准参数方程为⎪⎪⎩⎪⎪⎨⎧+-=+=t y t x 2333211(t 为参数)代入圆的方程22y x +=16,得16)2333()211(22=+-++t t ,整理得:t 2-8t+12=0, Δ=82-4×12>0,设此二次方程的两个根为t 1、t 2 则t 1t 2=12根据参数t 的几何意义,t 1、t 2 分别为直线和圆22y x +=16的两个交点A, B 所对应的参数值,则|t 1|=| PA |,|t 2|=| PB |,所以| PA |·| PB |=|t 1 t 2|=12点拨:利用直线标准参数方程中的参数t 的几何意义解决距离问题、距离的乘积(或商)的问题,比使用直线的普通方程,与另一曲线方程联立先求得交点坐标再利用两点间的距离公式简便.例8:设抛物线过两点A(-1,6)和B(-1,-2),对称轴与x 轴平行,开口向右, 直线y=2x +7被抛物线截得的线段长是410,求抛物线方程.解:由题意,得抛物线的对称轴方程为y=2.设抛物线顶点坐标为(a ,2) 方程为(y ―2)2=2P(x -a ) (P>0) ①∵点B (-1,-2)在抛物线上,∴(―2―2)2=2P(-1-a )a P=-8-P 代入① 得(y ―2)2=2P x +2P+16 ②将直线方程y=2x +7化为标准的参数方程tg α=2, α为锐角,cos α =51, sin α=52 得⎪⎪⎩⎪⎪⎨⎧+=+-=t y t x 525511(t 为参数) ③ ∵直线与抛物线相交于A ,B, ∴将③代入②并化简得: 75212542--+t P t =0 ,由Δ=355)6(42+-P >0,可设方程的两根为t 1、t 2, 又∵|AB|=∣t 2-t 1∣=222114)(t t t t -+=410 4354]4)212(5[2⨯+-P =(410)2 化简,得(6-P)2=100 ∴ P=16 或P=-4(舍去) 所求的抛物线方程为(y ―2)2=32x +48点拨:(1)(对称性) 由两点A(-1,6)和B(-1,-2)的对称性及抛物线的对称性质,设出抛物线的方程(含P 一个未知量,由弦长AB 的值求得P ).(2)利用直线标准参数方程解决弦长问题.此题也可以运用直线的普通方程与抛物线方程联立后,求弦长。

相关文档
最新文档