第五章 一次函数 第4节 一次函数的应用(2)
北师大版数学八年级上册教材最新目录
北师大版数学八年级上册教材最新目录第一章勾股定理
1、索勾股定理
2、一定是直角三角形吗
3、勾股定理的应用
第二章实数
1、认识无理数
2、平方根
3、立方根
4、估算
5、用计算器开方
6、实数
7、二次根式
第三章位置与坐标
1、确定位置
2、平面直角坐标系
3、轴对称与坐标变换
第四章一次函数
1、函数
2、一次函数与正比例函数
3、一次函数的图像
4、一次函数的应用
第五章二元一次方程组
1、认识二元一次方程组
2、求解二元一次方程组
3、应用二元一次方程组——鸡兔同笼
4、应用二元一次方程组——增收节支
5、应用二元一次方程组——里程碑上的数
6、二元一次方程与一次函数
7、用二元一次方程组确定一次函数表达式
8、三元一次方程组
第六章数据的分析
1、平均数
2、中位数与众数
3、从统计图分析数据的集中趋势
4、数据的离散程度
第七章平行线的证明
1、为什么要证明
2、定义与命题
3、平行线的判定
4、平行线的性质
5、三角形内角和定理。
一次函数的应用(第2 课时) 教学设计
一次函数的应用(第2课时)
一、教学目标
(一)知识与技能:1.理解一次函数与一元-次方程的关系;2.会用函数的方法求解一元一次方程.
(二)过程与方法:经历探索一元一次方程与一次函数的内在联系的过程,体会数形结合的数学思想.
(三)情感态度与价值观:通过教学活动,让学生学会从不同角度认识事物本质的方法,建立自信心,提高学生自主合作探究学习的意识和能力,激发学生学习的兴趣,让学生体验数学的价值.
二、教学重点、难点
重点:1.对一次函数与一元-次方程的关系的理解;2.应用函数求解一元一次方程.
难点:对一次函数与一元一次方程的关系的理解.
三、教学过程。
一次函数的应用
一次函数的应用一次函数的应用一、学习目标:1. 巩固一次函数的知识,灵活运用变量关系解决相关实际问题.2. 熟练掌握一次函数与方程,不等式的关系,有机地把各种数学模型通过函数统一起来使用,提高解决实际问题的能力.二、重点、难点:运用一次函数与正比例函数的图象和性质解决实际问题。
各种数学思想的渗透和应用。
三、考点分析:利用函数解决实际问题,并求最值,这是近三年中考应用题的新特点。
一次函数的概念、图象和性质是中考的必考内容,一次函数的应用是中考的热点内容。
中考对这部分内容的要求是结合具体情境体会一次函数的意义,根据已知条件确定一次函数的表达式;会画一次函数的图象,根据图象与表达式探索并理解其性质;根据一次函数的图象求二元一次方程组的近似解;利用一次函数解决实际问题。
利用一次函数解决实际问题的题型多样,填空、选择、解答、综合题都有,主要考查学生应用函数知识分析、解决问题的能力.典型例题此前我们学习了有关一次函数的一些知识,认识了变量间的变化情况,并系统学习了一次函数的有关概念及应用,且用函数观点重新认识了方程及不等式,利用函数观点把方程(组)、不等式有机地统一起来,使我们解决相关实际问题时更方便了.例1. 乘坐某种出租汽车,当行驶路程小于2千米时,乘车费用都是4元(即起步价4元);当行驶路程大于或等于2千米时,超过2千米的部分每千米收费1.5元.(1)请你求出x≥2时乘车费用y(元)与行驶路程x(千米)之间的函数关系式;(2)按常规,乘车付费时按计费器上显示的金额进行“四舍五入”后取整(如计费器上的数字显示范围大于或等于9.5而小于10.5时,应付车费10元),小红一次乘车后付了车费8元,请你确定小红这次乘车路程x的范围。
思路分析:1)题意分析:本题考查一次函数与不等式的综合运用。
2)解题思路:注意审题。
注意考虑函数的取值范围,能灵活应用所学知识解决问题。
解答过程:(1)根据题意可知:y=4+1.5(x-2),∴y=1.5x+1(x≥2)(2)依题意得:7.5≤1.5x+1<8.5∴≤x<5解题后的思考:一次函数的性质:当k>0,时y随x的增大而增大,当k<0时,y随x的增大而减小。
北师大版八年级数学上册课件 4.4 一次函数的应用(共28张PPT)
5. 某地长途汽车客运公司规定旅客可随身携带一定质 量的行李,如果超过规定,则需要购买行李票,行李 票费用y元与行李质量的关系如图:
(1)旅客最多可免费携带多少 千克行李?
30千克
⑵超过30千克ห้องสมุดไป่ตู้,每千克需 付多少元?
0。2元
课堂小结
1、确定正比例函数 y kx的表达式: 只需要正比例函数 y kx的一组变量对应值
新知探究
Ⅱ、在弹性限度内,弹簧的长度y(厘米)是所挂物 体质量x(千克)的一次函数。一根弹簧不挂物体时 长14.5厘米;当所挂物体的质量为3千克时,弹簧 长16厘米。写出y与x之间的关系式,并求当所挂 物体的质量为4千克时弹簧的长度。
解:设一次函数的表达式为:ykxb
x=0时,y=14.5;x=3时,y=16
4.4 一次函数的应用〔1〕
新知探究 Ⅰ、某物体沿一个斜坡下滑,它的速度v(米/秒)与 其下滑时间t(秒)的关系如下图。 (1)写出v与t之间的关系式;
解:正比例函数的表达式为:vkt
当t=2时,v=5
5t2
(2, 5)
k5 2
v 5t 2
确定正比例函数的表达式需要几个条件?
要求出k值,只需要一个点的坐标。
引例、由于持续高温和连日无雨,某水库的蓄水量随时间的增 加而减少。干旱持续时间t(天)与蓄水量v(万米3)的关系如下图, 答复以下问题: (2)蓄水量小于400万米3时,将发出严重干旱警报,干旱多少 天后将发出严重干旱警报? (3)按照这个规律,预计持续 多少天水库将干涸?
解〔1〕因为一次函数解析式为y=-20x+1200 蓄水量小于400万米3,即y=400时, -20x+1200=400 得
解:设干旱持续时间t与蓄水量v的关系式为y=kx+b 由图上可知:当x=0时,y=1200;当x=60时,y=0;
北师大版数学八年级上册4《一次函数的应用》说课稿3
北师大版数学八年级上册4《一次函数的应用》说课稿3一. 教材分析《一次函数的应用》是北师大版数学八年级上册第4节的内容。
本节主要让学生了解一次函数在实际生活中的应用,学会用一次函数解决实际问题。
教材通过实例引导学生认识一次函数的图像和性质,以及如何用一次函数解决实际问题。
二. 学情分析八年级的学生已经学习了初中数学的前置知识,对函数的概念和性质有了一定的了解。
但学生在解决实际问题时,往往不知道如何将数学知识与实际问题相结合。
因此,在教学过程中,教师需要引导学生将数学知识运用到实际问题中,提高学生的应用能力。
三. 说教学目标1.让学生了解一次函数在实际生活中的应用,体会数学与生活的紧密联系。
2.培养学生用数学的眼光观察生活,提高学生的数学应用能力。
3.帮助学生掌握一次函数的图像和性质,为后续学习打下基础。
四. 说教学重难点1.教学重点:一次函数在实际生活中的应用,一次函数的图像和性质。
2.教学难点:如何将一次函数与实际问题相结合,解决实际问题。
五. 说教学方法与手段1.采用问题驱动的教学方法,引导学生从实际问题中发现数学规律。
2.利用多媒体课件,展示一次函数的图像,帮助学生直观理解一次函数的性质。
3.创设生活情境,让学生在实践中感受一次函数的应用。
4.分组讨论与合作,培养学生团队合作精神,提高学生的解决问题能力。
六. 说教学过程1.导入:通过展示实际问题,引导学生思考如何用数学知识解决问题。
2.新课导入:介绍一次函数的定义和性质,让学生了解一次函数的基本概念。
3.实例讲解:通过生活实例,讲解一次函数在实际中的应用,让学生体会数学与生活的联系。
4.课堂练习:让学生独立解决实际问题,巩固一次函数的应用。
5.分组讨论:让学生围绕实际问题展开讨论,探讨如何用一次函数解决问题。
6.总结提升:总结一次函数的图像和性质,强化学生对一次函数的认识。
7.课后作业:布置相关练习题,巩固课堂所学知识。
七. 说板书设计板书设计应突出一次函数的图像和性质,以及一次函数在实际中的应用。
关注过程 领悟思想——“一次函数的应用(2)”教学案例及反思
的。教 学的基本思路是 以学生熟悉 的一次 函数的图像 及性质 为铺
垫。 以学生感兴趣的现实 问题 为素材 , 以交流合作 、 自主探 究为主要
形式展 开学习活动 。教 学时 , 应让学 生经历 数学知识 的应 用过程 , 关注 问题的分析过程 , 积极调动 自己的知识储备来分析实例 。
关键词 : 函数 图像 函数模型 设计意 图 自我反思
“
一
次 函数 的应用 ( ) 是 苏科 版数 学八 2”
问题 中变量间的关系 , 建立 、 用一次 函数模 应
型解决实际问题 。 在实际教学 中 , 该节 内容划
年级下册第五章第 4节 内容 , 其学 习 目标是 : () 1 能根据实际问题 中变量之间的关 系 , 确定
教育研究与评论 ・ 中学教育教学
21 年第 1 期 01 2
图像设计一个实 际背景并提 出问题吗?
4 0 00
3 o 0 o 2 o O o
1/ 、 0 0 O
0
1 0 0 0 3 0 0 0i 0 0 20 0 0 4 0
图 1
师
从“ 数”来看 , z: 时 ,1一 Y ; 当 Y 2 从
“ 形结合”思想的作 用。 别是 第 ()小题 , 数 特 3
师
很有创 意 , 刚才 同学们 设计 的实 际 问题
都很好 , 选择 的是 现实生 活 中经 常遇 到
学生若能够 自主 地设 计 一些 问题 , 明他们 说
对数形 结合 思想有 了一定的认识 。 】
的问题 , 而且 大多 与经济效益 有关 。 师 老 这里也设计 了一 个实 际 问题 , 我们 一 起
你能说 出用哪种运输方式好 吗?如何 决
八年级数学北师大版上册 第4章《4.4 一次函数的应用》教学设计 教案
第四章第四节一次函数的应用(2)一、教材分析本节课内容选自义务教育课程标准实验教科书北京师范大学版的数学教材八年级上册的第四章第四节,课题为《一次函数图象的应用》。
本节课为第2课时。
其主要内容是学生已经学习掌握了一次函数的意义、一次函数的图象及其性质、确定一次函数的表达式的基础之上,通过开展经历体验探究活动,进行应用一次函数的图象解决简单的实际问题并发现一元一次方程与一次函数之间关系的过程。
使学生体会到数学学习过程中“数形结合”思想的重要性。
在整个函数知识体系中,对于图象的感受、解读、分析特别是应用函数的图象解决问题是极其重要的内容,而一次函数图象的应用是学生在整个学习生涯中所接触的第一个相关内容,对于后续其它函数图象应用的学习将积累宝贵的学习经验和经历,因此本节课内容的重要性不言而喻。
二、教学目标及分析知识与能力目标:(1)能通过函数图象获取信息,发展形象思维。
(2)能利用函数图象解决简单的实际问题,发展学生的数学应用能力。
过程与方法目标:(1)在亲身的经历与实践探索过程中体会数学问题解决的办法。
(2)初步体会方程与函数的关系,体会数形结合思想。
情感态度与价值观目标:(1)进一步体会数学知识与现实生活的密切联系,丰富数学情感。
(2)树立良好的环境保护意识,引发热爱自然、热爱家乡的情感。
重点:利用函数图象解决简单的实际问题,提高数学的应用意识和能力。
难点:体会函数与方程的关系,发展“数形结合”的思想”。
三、教学对象分析学生已学习了一次函数及其图象,认识了一次函数的性质。
在现实生活中也见识过大量的函数图象,所以具备了从函数图象中获取信息,并借助这些信息分析问题、解决问题的基础。
但由于初中学生的年龄特点,他们认识事物还不够全面、系统,所以还需通过具体实例来培养他们这方面的能力。
四、教法学法根据本节课的特点、目标要求及学生的实际情况,在教法上主要采用探究式教学法,引导学生进行观察探索、合作交流、归纳总结等学习活动。
八年级数学上册(北师大版)第四章第四节《一次函数的应用(第2课时)》课件
全国每年都有大量土地 被沙漠吞没,改造沙漠, 保护土地资源已经成为 一项十分紧迫的任务.
某地区现有土地面积100万 千米2,沙漠面积200万千米2, 土地沙漠化的变化情况如图 所示. 根据图象回答下列问题:
(1)如果不采取任何措施, 那么到第5年底,该地区沙 漠面积将增加多少万千米2?
(10万千米2)
·
20t ( 天 )
根据图象回答下列问题: (7)写出活动开展的第t天节 约的水量y与天数t的函数关系。
()Y 4t 20
课堂小结
今天,你有什么收获?
课外探究
在生活中,你还遇到过哪些可以 用一次函数关系来表示的实际问题? 选择你感兴趣的问题,编制一道数学 题与同学交流。
课外作业:
习题4.6
23天呢?
(3)蓄水量小于400万米3时,将
发生严重干旱警报.干旱多少
天后将发出严重干旱警报?
(4)按照这个规律,预计 持续干旱多少天水库将干 涸?
当得知周边地区的干旱情况后,育才学校的 小明意识到节约用水的重要性,当天在班上 倡议节约用水,得到全班乃至全校师生的积 极响应。
做一做
从宣传活动开始,假设每天参加该活动的家庭 数增加数量相同,最后全校师生都参加了活动, 并且参加该活动的家庭数S(户)与宣传时间t (天)的函数关系如图所示。
·
20t ( 天 )
根据图象回答下列问题: (6)若每户每天节约用水0.1吨, 那么活动第20天可节约多少吨水?
(第20天可节约100吨水)
探究升级
S(户)
从宣传活动开始,假设每天参加 1000 该活动的家庭数增加数量相同, 最后都参加了活动,并且参加该 200 活动的家庭数S(户)与宣传时 0 间t(天)的函数关系如图所示。
第五章 一次函数 第4节 一次函数的应用(1)
第4节 一次函数的应用(1)一、选择题1.小明的父亲饭后出去散步,从家走20分钟到一个离家900米的报亭,看10分钟报纸后,用15分钟返回家里.下列图象中,表示小明父亲的离家距离与时间之间关系的是( )2.水池的容量为50米3,每时灌水量为n 米3,灌满水所需时间为t (时),那么t 与n 之间的函数关系式是 ( )A .t =50nB .t =50-nC .t =50nD .t =50+n 3.某公司市场部的营销人员的个人收入与其每月的销售业绩满足一次函数关系,其图象如图所示,由图中给出的信息可知:营销人员没有销售业绩时的收入是 ( )A .280元B .290元C .300元D .310元4.如图,小亮在操场上玩,一段时间内沿M →A →B →M 的路径匀速散步,能近似刻画小亮到出发点M 的距离y 与时间x 之间关系的函数图象是 ( )5.汽车开始行驶时,油箱内有油40升,如果每小时耗油5升.则油箱内余油量Q(升)与行驶时间t (小时)的函数关系用图象表示为 ( )6.(2011绍兴)小敏从A 地出发向B 地行走,同时小聪从B 地出发向A 地行走,如图所示,相交于点P 的两条线段l 1、l 2分别表示小敏、小聪离B 地的距离y(km)与已用时间x (h )之间的关系,则小敏、小聪行走的速度分别是( )A .3km/h 和4km/hB .3km/h 和3km/hC .4km/h 和4km/hD .4km/h 和3km/h7.(2011南通)甲、乙两人沿相同的路线由A 地到B 地匀速前进,A 、B 两地间的路程为20km .他们前进的路程为s (km ),甲出发后的时间为t (h ),甲、乙前进的路程与时间的函数图象如图所示.根据图象信息,下列说法正确的是( ) A .甲的速度是4km/h B .乙的速度是10km/h C .乙比甲晚出发1hD .甲比乙晚到B 地3h二、填空题 8.观察下列各正方形图案,每条边上有n(n>2)个圆点,每个图案中圆点的总数是S .按此规律推断出S 与n 的关系式为_______.9.一辆汽车在行驶过程中,路程y (千米)与时间x (小时)之间的函数关系如图所示,当0≤x ≤1,y 关于x 的函数关系式为y =60x,那么当1≤x <2时,y 关于x 的函数关系式为_______.10.影碟出租店开设两种租碟方式:一种是零星租碟;另一种是会员卡租碟,两种出租方式每月收取的金额y 元与租碟的数量x 张关系如图所示:若小松每月租碟数量为28张,小松选取_______租碟方式较合算,能节省_______元.三、解答题11.我们知道,海拔高度每上升1千米,温度下降6℃.某时刻,某地地面温度为20℃,设高出地面x 千米处的温度为y ℃.(1)写出y 与x 之间的函数关系式;(2)已知该地碧云峰高出地面约500米,求这时山顶的温度大约是多少℃?(3)此刻,有一架飞机飞过该地上空,若机舱内仪表显示飞机外面的温度为-34℃,求飞机离地面的高度为多少千米?12.(2011南京)小颖和小亮上山游玩,小颖乘会缆车,小亮步行,两人相约在山顶的缆车终点会合.已知小亮行走到缆车终点的路程是缆车到山顶的线路长的2倍,小颖在小亮出发后50 min 才乘上缆车,缆车的平均速度为180 m /min .设小亮出发x min 后行走的路程为y m .图中的折线表示小亮在整个行走过程中y 与x 的函数关系.⑴小亮行走的总路程是____________㎝,他途中休息了________min .⑵①当50≤x ≤80时,求y 与x 的函数关系式;②当小颖到达缆车终点为时,小亮离缆车终点的路程是多少?13.某空军加油飞机接到命令,立即给另一架正在飞行的运输飞机进行空中加油.在加油过程中,设运输飞机的油箱余油量为Q 1吨,加油飞机的加油油箱余油量为Q 2吨,加油时间为t 分钟,Q 1、Q 2与t 之间的函数 图象如图所示,结合图象回答下列问题:(1)加油飞机的加油油箱中装载了_____吨油,将这些油全部加给运输飞机需____分钟.(2)运输飞机加完油后,以原速继续飞行,需10小时到达目的地,油料是否够用?请说明理由.14.如图所示,直线l 1的表达式为y =-3x +3,且l 1与x 轴交于点D .直线l 2经过点A ,B ,直线l 1,l 2交于点C .(1)求点D 的坐标;(2)求直线l 2的函数关系式;(3)求△ADC 的面积;(4)在直线l 2上存在异于点C 的另一点P ,使得△ADP与△ADC 的面积相等,请直接写出点P 的坐标.(第12题)参考答案1.B 2.C 3.C 4.C 5.B 6.D 7.A8.S =4n -49.y =100x -4010.会员 211.(1)y =20-6x (x >0).(2)这时山顶的温度大约是17℃.(3)9千米.12.⑴3600,20. (2) ①55800y x =- ②1100m13.(1)30 10 (2)油料够用14.(1)D(1,0) (2)y =32x -6(3)92 (4)P(6,3)。
第5章一次函数单元整理分析教案浙教版八年级数学上册
《第五章一次函数》单元教学设计
教学建议:
建议:注重对基本知识和基本技能的掌握,提高基本能力.
(1)函数的基本概念、函数的一般表示法和一次函数的概念图象性质等是基础知识,能画一次函数的图象,能结合图象讨论这些函数的基本性质等是基本技能,能利用一次函数解决简单实际问题是基本能力;
(2)函数的图象,是函数关系的直观表现,它的本质是“坐标系中的曲线上的点的坐标反映变量之间的对应关系”;
(3)求两个图像的交点坐标,就是联立解方程组;
(4)计算直线与坐标轴交点时,只会机械地模仿,而不理解其几何意义;
(5)不能很好地区别正比例与正比例函数是学生学习感到困难的一个主要因素:小学时学生学到的正比例与反比例是一种最初级的“变化与对应”,学生体会到的是两个变量同时扩大(或同时缩小)相同的倍数即为正比例;反之,一个扩大(或缩小)一定的倍数,而一个缩小(或扩大)相同的倍数即为反比例. 这一先入为主的理解使得学生在数系扩充到有理数(增加了负数)后对正比例函数的概念不能进行有效地顺应与正迁移,进而影响对一次函数增减性的正确理解.。
专题5 一次函数的应用-重难点题型(举一反三)(浙教版)(原卷版)
专题5.5 一次函数的应用-重难点题型【浙教版】【例1】(2021春•海门市期中)甲、乙两人分别从笔直道路上的A、B两地同时出发相向匀速而行,已知甲比乙先出发6分钟,两人在C地相遇,相遇后甲立即按原速原路返回A地,乙继续向A地前行,约定先到A地者停止运动就地休息.若甲、乙两人相距的路程y(米)与甲行走的时间x(分钟)之间的关系如图所示,有下列说法:①甲的速度是60米/分钟,乙的速度是80米/分钟;②甲出发30分钟时,两人在C地相遇;③乙到达A地时,甲与A地相距450米,其中正确的说法有()A.0个B.1个C.2个D.3个【变式1-1】(2021春•巴彦淖尔期末)如图,折线ABCDE描述了一辆汽车在某一直线上的行驶过程中,汽车离出发地的距离s(km)与行驶时间t(h)之间的函数关系,根据图中提供的信息,判断下列结论正确的选项是()①汽车在行驶途中停留了0.5h;②汽车在整个行驶过程的平均速度是40km/h;③汽车共行驶了240km;④汽车出发4h离出发地40km.A.①②④B.①②③C.①③④D.①②③④【变式1-2】(2021•沙坪坝区校级开学)某天上午,大学生小南从学校出发去重庆市图书馆查阅资料,同时他的同学小开从该图书馆看完书回学校.两人在途中相遇,于是马上就各自最近的研究课题交流了6分钟,又各自按原速前往自己的目的地.直到小开回到学校并电话告知小南后,小南决定提速25%到达图书馆(接打电话的时间忽略不计).在整个运动过程中,小南和小开之间的距离y(m)与小南所用的时间x(min)之间的函数关系如图所示,则下列说法中正确的是()A.学校和图书馆的之间的距离为1200m B.小南提速前,小开的速度是小南的1.8倍C.m=1500D.n=62【变式1-3】(2021•蒙阴县二模)甲、乙两车从M地到480千米的N地,甲车比乙车晚出发2小时,乙车途中因故停车检修,图中线段DE、折线OABC分别表示甲、乙两车所行路程y(千米)与时间x(小时)之间的函数图象,请根据图象所提供的信息,解决如下问题:(1)求两车在途中第二次相遇时,它们距目的地的路程;(2)甲车出发多长时间,两车在途中第一次相遇?【题型2 一次函数的应用(调运问题)】【例2】(2021春•大安市期末)A城有肥料400吨,B城有肥料300吨,现要把这些肥料全部运往C、D两乡镇,从A城运往C、D两乡镇肥料费为20元/吨和25元/吨;从B城往C、D两乡镇运肥料的费用分别为15元/吨和24元/吨,C乡镇需要肥料340吨,D乡镇需要肥料360吨.设A城运往C乡镇x吨肥料,请解答下列问题:(1)根据题意,填写下列表格:城、乡/吨数C DA xB(2)设总运费为W(元),求出W(元)与x(吨)的函数关系式,并写出自变量的取值范围;(3)求怎样调运可使总运费最少?最少为多少元?【变式2-1】(2021•寻乌县模拟)疫情期间,甲、乙两个仓库要向M,N两地运送防疫物资,已知甲仓库可调出50吨防疫物资,乙仓库可调出40吨防疫物资,M地需35吨防疫物资,N地需55吨防疫物资,两仓库到M,N两地的路程和运费如下表:路程/千米运送1千米所需运费/(元/吨)甲仓库乙仓库甲仓库乙仓库M地20151212N地2520108(1)设从甲仓库运往M地防疫物资x吨,两仓库运往M,N两地的总费用为y元,求y关于x的函数关系式.(2)如何调运才能使总运费最少?总运费最少是多少?【变式2-2】(2021春•满洲里市期末)已知A地有蔬菜200t,B地有蔬菜300t,现决定将这些蔬菜全部调运给C,D两地,C,D两地分别需要调运蔬菜240t和260t.其中从A地运往C,D两处的费用分别为每吨20元和25元,从B地运往C,D两处的费用分别为每吨15元和18元.设从B地运往C地的蔬菜为x吨.设A,B两个蔬菜基地的总运费为w元,求出w与x之间的函数关系式,并求总运费最小的调运方案.【变式2-3】(2021春•昆明期末)某市A、B两个仓库分别有救灾物资200吨和300吨,2021年5月18日起云南大理州漾濞县已连续发生多次地震,最高震级为5月21日发生的6.4级地震,为援助灾区,现需将这些物资全部运往甲,乙两个受灾村.已知甲村需救灾物资240吨,乙村需救灾物资260吨,从A仓库运往甲,乙两村的费用分别为每吨20元和每吨25元,从B仓库运往甲,乙两村的费用分别为每吨15元和24元.设A仓库运往甲村救灾物资x吨,请解答下列问题:(1)根据题意,填写下表格:仓库甲村乙村A x①B②③①=;②=;③=.(2)设总运费为W(元),求出W(元)与x(吨)的函数关系式.(3)求怎么调运可使总运费最少?最少运费为多少元?【题型3 一次函数的应用(利润最大化)】【例3】(2021•镇雄县二模)2020年6月1日上午,国务院总理在山东烟台考察时表示,地摊经济是就业岗位的重要来源,是人间的烟火,和“高大上”一样,是中国的生机.“地摊经济”成为了社会关注的热门话题.小明从市场得知如表信息:甲商品乙商品进价(元/件)355售价(元/件)458小明计划购进甲、乙商品共100件进行销售,设小明购进甲商品x件,甲、乙商品全部销售完后获得利润为y 元.(1)求出y与x之间的函数关系式;(2)小明用不超过2000元资金一次性购进甲,乙两种商品,求x的取值范围;(3)在(2)的条件下,若要求甲,乙商品全部销售完后获得的利润不少于632.5元,请说明小明有哪些可行的进货方案,并计算哪种进货方案的利润最大.【变式3-1】(2021•青白江区模拟)在近期“抗疫”期间,某药店销售A,B两种型号的口罩,已知销售80只A 型和45只B型的利润为21元,销售40只A型和60只B型的利润为18元.(1)求每只A型口罩和B型口罩的销售利润;(2)该药店计划一次购进两种型号的口罩共2000只,其中B型口罩的进货量不少于A型口罩的进货量且不超过它的3倍,则该药店购进A型、B型口罩各多少只,才能使销售总利润y最大?【变式3-2】(2021春•连山区期末)由于新能源汽车越来越受到消费者的青睐,某经销商决定分两次购进甲、乙两种型号的新能源汽车(两次购进同一种型号汽车的每辆的进价相同).第一次用270万元购进甲型号汽车30辆和乙型号汽车20辆;第二次用128万元购进甲型号汽车14辆和乙型号汽车10辆.(1)求甲、乙两种型号汽车每辆的进价;(2)经销商分别以每辆甲型号汽车8.8万元,每辆乙型号汽车4.2万元的价格销售后,根据销售情况,决定再次购进甲、乙两种型号的汽车共100辆,且乙型号汽车的数量不少于甲型号汽车数量的3倍,设再次购进甲型汽车a辆,这100辆汽车的总销售利润为W万元.①求W关于a的函数关系式;并写出自变量的取值范围;②若每辆汽车的售价和进价均不变,该如何购进这两种汽车,才能使销售利润最大?最大利润是多少?【变式3-3】(2021•鹿邑县一模)草莓是一种极具营养价值的水果,当下正是草莓的销售旺季.某水果店以2850元购进两种不同品种的盒装草莓.若按标价出售可获毛利润1500元(毛利润=售价﹣进价),这两种盒装草莓的进价、标价如表所示:价格/品种A品种B品种进价(元/盒)4560标价(元/盒)7090(1)求这两个品种的草莓各购进多少盒;(2)该店计划下周购进这两种品种的草莓共100盒(每种品种至少进1盒),并在两天内将所进草莓全部销售完毕(损耗忽略不计).因B品种草莓的销售情况较好,水果店计划购进B品种的盒数不低于A品种盒数的2倍,且A品种不少于20盒.如何安排进货,才能使毛利润最大,最大毛利润是多少?【题型4 一次函数的应用(费用最低)】【例4】(2021春•广安期末)为积极响应垃圾分类的号召,某街道决定在街道内的所有小区安装垃圾分类的温馨提示牌和垃圾箱.已知购买3个垃圾箱和2个温馨提示牌需要280元,购买2个垃圾箱和3个温馨提示牌需要270元.(1)每个垃圾箱和每个温馨提示牌各多少元?(2)若购买垃圾箱和温馨提示牌共100个(两种都买),且垃圾箱的个数不少于温馨提示牌个数的3倍,请写出总费用w(元)与垃圾箱个数m(个)之间的函数关系式,并说明当购买垃圾箱和温馨提示牌各多少个时,总费用最低,最低费用为多少元?【变式4-1】(2021春•环江县期末)某县园林局打算购买三角梅、水仙装点城区道路,负责人小李去花卉基地调查发现:购买1盆三角梅和2盆水仙需要14元,购买2盆三角梅和1盆水仙需要13元.(1)求三角梅、水仙的单价各是多少元?(2)购买三角梅、水仙共10000盆,且购买的三角梅不少于3000盆,但不多于5000盆.①设购买的三角梅种花a盆,总费用为W元,求W与a的关系式;②当总费用最少时,应选择哪一种购买方案?最少费用为多少元?【变式4-2】(2021•三水区校级二模)截至2021年4月10日,全国累计报告接种新冠疫苗16447.1万剂次,接种总剂次数为全球第二.某社区有80000人每人准备接种两剂次相同厂家生产的新冠疫苗并被分配到A 、B 两个接种点,A 接种点有5个接种窗口,B 接种点有4个接种窗口.每个接种窗口每天的接种量相同,并且在独立完成20000人的两剂次新冠疫苗接种时,A 接种点比B 接种点少用5天.(1)求A 、B 两个接种点每天接种量;(2)设A 接种点工作x 天,B 接种点工作y 天,刚好完成该社区80000人的新冠疫苗接种任务,求y 关于x 的函数关系式;(3)在(2)的条件下,若A 接种点每天耗费6.5万元,B 接种点每天耗费为4万元,且A 、B 两个接种点的工作总天数不超过85天,则如何安排A 、B 两个接种点工作的天数,使总耗费最低?并求出最低费用.【变式4-3】(2021春•大同期末)在新冠疫情防控期间,某校新购进A 、B 两种型号的电子体温测量仪共20台,其中A 型仪器的数量不少于B 型仪器的23,已知A 、B 两种测温仪的价格如表所示,请问购买A 、B 两种测温仪各多少台时,可使所购仪器的总费用最少?最少需多少元? 型号 AB价格 800元/台 600元/台【题型5 一次函数的应用(工程问题)】【例5】(2021•汇川区三模)为了主题为“醉美遵义,酒都仁怀”第十三届遵义文化旅游产业发展大会召开,仁怀某社区计划对面积为2000m 2的区域进行绿化,经投标,由甲、乙两个工程队来完成,已知甲队每天能完成绿化的面积是乙队每天能完成绿化面积的2.5倍,并且在独立完成面积为500m 2区域的绿化时,甲队比乙队少用6天. (1)求甲、乙两工程队每天能完成绿化的面积.(2)设甲工程队施工x 天,乙工程队施工y 天,刚好完成绿化任务,求y 与x 的函数解析式.(3)若甲队每天绿化费用是1.5万元,乙队每天绿化费用为0.5万元,且甲乙两队施工的总天数不超过19天,则如何安排甲、乙两队施工的天数,使施工总费用最低?并求出最低费用.【变式5-1】(2021春•青羊区期末)甲、乙两个工程队分别同时铺设两条公路,所铺设公路的长度y (m )与铺设时间x (h )之间的关系如图所示,根据图象所提供的信息分析,解决下列问题: (1)在2时~6时段时,乙队的工作效率为 5 m /h ;(2)分别求出乙队在0时~2时段和2时~6时段,y 与x 的关系式,并求出甲乙两队所铺设公路长度相等时x 的值; (3)求出当两队所铺设的公路长度之差为5m 时x 的值.【变式5-2】(2021春•沙坪坝区校级期末)甲、乙两人同时开始共同组装一批零件,工作两小时后,乙因事离开,停止工作.一段时间后,乙重新回到岗位并提高了工作效率.最后40分钟,甲休息,由乙独自完成剩余零件的组装.甲在工作过程中工作效率保持不变,乙在每个工作阶段的工作效率保持不变.甲、乙两人组装零件的总数y(个)与工作时间x(小时)之间的图象如图.(1)这批零件一共有多少个?(2)在整个组装过程中,当甲、乙各自组装的零件总数相差40个时,求x的值.【变式5-3】(2020秋•郑州期末)工厂某车间需加工一批零件,甲组工人加工中因故停产检修机器一次,然后以原来的工作效率继续加工,由于时间紧任务重,乙组工人也加入共同加工零件.设甲组加工时间t(时),甲组加工零件的数量为y甲(个),乙组加工零件的数量为y乙(个),其函数图象如图所示.(1)求y乙与t之间的函数关系式,并写出t的取值范围;(2)求a的值,并说明a的实际意义;(3)甲组加工多长时间时,甲、乙两组加工零件的总数为480个.【题型6 一次函数的应用(其他问题)】【例6】(2021春•沙河口区期末)为预防疫情传播,学校对教室定期喷药消毒.如图为一次消毒中,某教室每立方米空气中含药量y(mg/m3)与药物在空气中的持续时间x(min)的函数图象,它是由关闭门窗集中喷药,通风前和打开门窗后通风三段不同的一次函数组成的.在下面四个选项中,错误的是()A.经过5min集中喷药,教室每立方米空气中含药量最高达到10mg/m3B.持续11min室内空气中的含药量不低于8mg/m3C.当室内空气中的含药量不低于5mg/m3且持续时间不低于35分钟,才有效杀灭病毒.由此判断此次消毒有效D.当室内空气中的含药量低于4mg/m3时,对人体是安全的.从室内空气中的含药量达到10mg/m3开始,需经过40min后学生才能进入室内【变式6-1】(2021春•朝阳区校级期末)某地自来水公司为限制单位用水,每月只给某单位计划内用水3000吨,计划内用水每吨收费0.5元,超计划部分每吨按0.8元收费.(1)某月该单位用水3200吨,水费是元;若用水2800吨,水费是元;(2)写出该单位水费y(元)与每月用水量x(吨)之间的函数关系式;(3)若某月该单位缴纳水费1540元,则该单位这个月的用水量为多少吨?【变式6-2】(2021春•河东区期末)一个水库的水位在某段时间内持续上涨,表格中记录了连续5h内6个时间点的水位高度,其中x表示时间,y表示水位高度.0123453 3.3 3.6 3.9 4.2 4.5(1)水位高度y是否为时间x的函数?若是,请求出这个函数解析式;(2)据估计,这种上涨规律还会持续,并且当水位高度达到8m时,水库报警系统会自动发出警报.请预测再过多久系统会发出警报?【变式6-3】(2021•涧西区三模)某大型商场为了提高销售人员的积极性,对原有的薪酬计算方式进行了修改,设销售人员一个月的销售量为x(件),销售人员的月收入为y(元),原有的薪酬计算方式y1元采用的是底薪+提成的方式,且y1=k1x+b,已知每销售一件商品另外获得15元的提成修改后的薪酬计算方式为y2(元),且y2=k2x+b,根据图象回答下列问题:(1)求y1和y2的解析式,并说明b的实际意义;(2)求两个函数图象的交点F的坐标,并说明交点F的实际意义;(3)根据函数图象请判断哪种薪酬计算方式更适合销售人员.。
42一次函数的应用(第2课时)教学设计
答案:(1)200 户;
(2)全校师生共有 1000 户,该活动持续了 20 天;
(3)平均每天增加了 40 户;
(4)第 15 天时,参加该活动的家庭数达到 800 户;
(5) S 40t 200 .
目的:通过创设情境,让学生进一步认识到一次函数图象的应用,倡导节约用
水.同时,通过练习以检验学生对已学内容是否掌握.
第六环节 探究升级
内容:(续前一问题)当得知周边地区的干
S(户)
旱情况后,育才学校的小明意识到节约用水的 1000
·
0
重要性,当天在班上倡议节约用水,得到全班
同学乃至全校师生的积极响应.从宣传活动开 200
始,假设每天参加该活动的家庭数增加数量相
0
20 t(天)
同,最后都参加了活动,并且参加该活动的家庭数 S (户)与宣传时间 t (天)的函
S (户)与宣传时间 t (天)的函数关系如图所示.
根据图象回答下列问题:
(1)活动开始当天,全校有多少户家庭参加了该活动?
(2)全校师生共有多少户?该活动持续了几天?
(3)你知道平均每天增加了多少户?
(4)活动第几天时,参加该活动的家庭数达到 800 户?
(5)写出参加活动的家庭数 S 与活动时间 t 之间的函数关系式
第八环节 布置作业
内容: 1. 课外探究 在生活中,你还遇到过哪些可以用一次函数关系来表示的实际问题?选择你感 兴趣的问题,编制一道数学题与同学交流. 2.课外作业 习题 4.6
教学设计反思
(1)设计理念 一次函数是刻画现实世界变量间关系的最为简单的模型,其应用比比皆是.在
教学设计中,争取选用最具有现实生活背景,与学生生活密切相关的问题,一方面
一次函数的实际应用(经典)
一次函数的应用用一次函数解决实际生活问题:常见类型:(1)求一次函数的解析式;(2)利用一次函数的图象与性质解决某些问题,如最大(小)值问题等.一次函数解决实际问题的步骤:(1)认真分析实际问题中变量之间的关系;(2)若具有一次函数关系,则建立一次函数的关系式;(3)利用一次函数的有关知识解题探究类型之一利用一个一次函数的方案选择例1:某商店欲购进甲、乙两种商品,已知甲的进价是乙的进价的一半,购进3件甲商品和1件乙商品恰好用200元.甲、乙两种商品的售价每件分别为80元、130元,该商店决定用不少于6 710元且不超过6 810元购进这两种商品共100件.(1)求这两种商品的进价;(2)该商店有几种进货方案?哪种进货方案可获得最大利润,最大利润是多少?类似性问题1.某中学计划购买A型和B型课桌凳共200套.经招标,购买一套A型课桌凳比购买一套B型课桌凳少用40元,且购买4套A型和5套B型课桌凳共需1820元.(1)求购买一套A型课桌凳和一套B型课桌凳各需多少元?(2)学校根据实际情况,要求购买这两种课桌凳的总费用不能超过40880元,并且购买A型课桌凳的数量不能超过B型课桌凳的23,求该校本次购买A型和B 型课桌凳共有几种方案?哪种方案的总费用最低?2.建设环境优美、文明和谐的新农村,某村村委会决定在村道两旁种植A,B两种树木,需要购买这两种树苗1000棵.A,B两种树苗的相关信息如下表:设购买A种树苗x棵,绿化村道的总费用为y元.解答下列问题:(1)写出y(元)与x(棵)之间的函数关系式;(2)若这批树苗种植后成活了925棵,则绿化村道的总费用需要多少元?(3)若绿化村道的总费用不超过31000元,则最多可购买B种树苗多少棵?探究类型之二利用两个一次函数的方案选择例3 川省第十二届运动会将于2014年8月18日在我市隆重开幕,根据大会组委会安排,某校接受了开幕式大型团体操表演任务.为此,学校需要采购一批演出服装,A、B两家制衣公司都愿成为这批服装的供应商.经了解:两家公司生产的这款演出服装的质量和单价都相同,即男装每套120元,女装每套100元.经洽谈协商:A公司给出的优惠条件是全部服装按单价打七折,但校方需承担2200元的运费;B公司的优惠条件是男女装均按每套100元打八折,公司承担运费.另外根据大会组委会要求,参加演出的女生人数应是男生人数的2倍少100人,如果设参加演出的男生有x人.(1)分别写出学校购买A、B两公司服装所付的总费用y1(元)和y2(元)与参演男生人数x之间的函数关系式.(2)问:该学校购买哪家制衣公司的服装比较合算?请说明理由.探究类型之三利用一次函数与不等式的关系进行方案选择例4 某校实行学案式教学,需印制若干份数学学案,印刷厂有甲、乙两种收费方式,除按印数收取印刷费外,甲种方式还需收取制版费而乙种不需要.两种印刷方式的费用y(元)与印刷份数x(份)之间的关系如图所示.(1)填空:甲种收费的函数关系式是___________________,乙种收费的函数关系式是___________________.(2)该校某年级每次需印制100~450(含100和450)份学案,选择哪种印刷方式较合算?类似性问题1、某社区活动中心为鼓励居民加强体育锻炼,准备购买10副某种品牌的羽毛球拍,每副球拍配x(x≥2)个羽毛球,供社区居民免费借用.该社区附近A、B两家超市都有这种品牌的羽毛球拍和羽毛球出售,且每副球拍的标价均为30元,每个羽毛球的标价均为3元,目前两家超市同时在做促销活动:A超市:所有商品均打九折(按标价的90%)销售;B超市:买一副羽毛球拍送2个羽毛球.设在A超市购买羽毛球拍和羽毛球的费用为y A(元),在B超市购买羽毛球拍和羽毛球的费用为y B(元).请解答下列问题:(1)分别写出y A和y B与x之间的关系式.(2)若该活动中心只在一家超市购买,你认为在哪家超市购买更划算?(3)若每副球拍配15个羽毛球,请你帮助该活动中心设计出最省钱的购买方案.2、某工厂有甲种原料130 kg,乙种原料144 kg. 现用这两种原料生产出A,B 两种产品共30件. 已知生产每件A产品需甲种原料5 kg,乙种原料4 kg,且每件A产品可获利700元;生产每件B产品需甲种原料3 kg,乙种原料6 kg,且每件B产品可获利900元. 设生产A产品x件(产品件数为整数件),根据以上信息解答下列问题:(1)生产A,B两种产品的方案有哪几种;(2)设生产这30件产品可获利y元,写出y关于x的函数解析式,写出(1)中利润最大的方案,并求出最大利润.探究类型之四利用一次函数与图像解决问题。
一次函数的图像((2) 教案
一次函数的图像((2) 教案教学目标:1.理解k值对一次函数图像的位置关系的影响。
2.掌握一次函数图像的性质及其简单应用。
3.通过观察和分析图像,探究一次函数的性质。
4.培养学生的观察分析、自主探索和合作交流能力。
5.激发学生研究数学的兴趣,形成合作交流、独立思考的研究惯。
教学流程:一、课前回顾1.作一个函数的图像需要三个步骤:列表、描点、连线,这种画函数图像的方法叫做描点法。
2.正比例函数y=kx的图像是一条经过原点的直线。
我们发现,k越大,直线越靠近y轴。
图像必经过(0,0)和(1,k)这两个点。
二、情境引入探究1:既然正比例函数是特殊的一次函数,正比例函数的图像是直线,那么一次函数的图像也会是一条直线吗?它们图像之间有什么关系?一次函数又有什么性质呢?画出正比例函数y=-2x+1的图像。
列表:取自变量的值,求出对应的函数值,填入表格。
描点:以表中各组对应值作为点的坐标,在直角坐标系内描出相应的点。
连线:把这些点依次连结起来,得到y=-2x+1的图像。
总结:1.正比例函数y=kx的图像是一条经过原点的直线。
同样地,一次函数y=kx+b的图像是一条直线,画一次函数图像时只需确定两个点,再过这两点画直线就可以了,一次函数y=kx+b也称直线y=kx+b。
2.如何画出一次函数的图像?以坐标轴上坐标特点来确定两点(0,b)和(-b/k。
0),或以确定特殊自变量1来定两点(1.k+b)和(0.b)。
练1:画出一次函数y=2x+1的图像。
先列表:取自变量的值,求出对应的函数值,填入表格。
再描点连线。
三、求下图中直线的函数表达式。
观察图像,发现该直线经过点(2,1)和(0,-3)。
用点斜式或两点式求出函数表达式为y=2x-3.总结:本节课主要探究了一次函数图像的性质及其简单应用,通过观察和分析图像,培养了学生的观察分析、自主探索和合作交流能力,同时激发了学生研究数学的兴趣,形成了合作交流、独立思考的研究惯。
一次函数的应用 课标分析
一次函数应用的课标要求:
1.体验从具体情境中抽象出数学符号的过程,理解函数;探索具体问题中的数量关系和变化规律。
2.通过用函数表述数量关系的过程,体会模型的思想,建立符号意识;能独立思考,体会数学基本的思想和模式方式.
3初步学会在具体的情境中从数学的角度发现问题和提出问题,并综合运用数学知识和方法等解决简单的实际问题,增强应用意识,提高实践能力。
4.在运用数学表述和解决问题的过程中,认识数学具有抽象、严谨和应用广泛的特点,体会数学的价值。
5.探索简单实例中数量关系和变化规律,了解常量、变量的意义。
6.结合实例,了解函数的概念和三种表示法,能举出函数的事例。
7.能结合图象对简单问题中函数关系进行分析。
8.能确定简单实际问题中函数自变量的取值范围。
并会求出函数值。
9.能用适当的函数表示法刻画简单的实际问题中变量之间的关系。
10.结合对函数关系的分析。
能对变量的变化情况进行初步讨论。
11.结合具体情境体会一次函数的意义,能根据已知条件确定一次函数的表达式。
12.能利用待定系数法确定一次函数的表达式。
13.能画出一次函数的图象,根据一次函数的图象和表达式)0(y
kbkx探索并理解k>0和k<0时,图象的变化情况。
14.理解正比例函数。
15.理解一次函数和二元一次方程的关系。
16.能用一次函数解决简单的实际问题。
北师大版八年级数学上章节目标及课标要求
北师大版八年级数学上章节目标及课标要求第一章:勾股定理1.教学目标(3)通过实例了解勾股定理的历史与应用,体会勾股定理的文化价值。
2.《课程标准》要求1.在研究图形性质和运动等过程中,进一步发展空间观念。
2.在多种形式的数学活动中,发展合情推理能力。
3.经历从不同角度寻求分析问题和解决问题的方法和过程,体验解决问题方法的多样性。
4.探索勾股定理及其逆定理,并能运用它们解决一些简单的实际问题。
第二章:实数1.教学目标(1)经历数系扩张、探求实数性质及其运算规律、借助计算器探索数学规律等活动过程,发展抽象概括能力,并在活动中进一步发展学生独立思考、合作交流的意识和能力。
(2)结合具体情境,让学生理解估算的意义,能进行简单的估算,发展学生的数感和估算能力。
(3)了解平方根、立方根、实数及其相关概念;会求平方根、立方根;能进行有关实数的简单四则运算和简单的二次根式化简。
(4)能运用实数的运算解决简单的实际问题,提高学生的应用意识,发展学生解决问题的能力,从中体会数学的应用价值。
2.《课程标准》要求1.体验从具体情境中抽象出数学符号的过程,理解实数。
2.掌握必要的运算(包括估算)技能。
3.了解平方根、算术平方根、立方根的概念,会用根号表示数的平方根、算术平方根、立方根。
4.了解乘方与开方互为逆运算,会用平方运算求百以内整数的平方根,会用立方根运算求百以内整数(对应的负整数)的立方根,会用计算器求平方根和立方根。
5.了解无理数和实数的概念,知道实数与数轴上的点一一对应,能求实数的相反数与绝对值。
6.能用有理数估计一个无理数的大致范围。
7.了解近似数,在解决实际问题中,能用计算器进行近似计算,并会按问题的要求对结果取近似值。
8.了解二次根式、最简二次根式的概念,了解二次根式(根号校仅限于数)加、减、乘、除运算法则,会用它们进行有关简单四则运算。
第三章:位置与坐标1.教学目标(1)从事对现实世界中确定位置的现象进行观察、分析、抽象和概括的活动,进一步发展学生的空间观念.(2)经历探索图形坐标的变化与图形位置变化之间关系的过程,进一步发展学生的数形结合意识、形象思维能力和数学应用能力。
一次函数的应用课件
正比例函数 y=kx(k≠0)
确定一次函数 表达式
一次函数 y=kx+b(k≠0)
从一次函数图象可获得哪些信息?
1.由一次函数的图象可确定k 和 b 的符号; 2.由一次函数的图象可估计函数的变化趋势; 3.可直接视察出:x与y 的对应值; 4.由一次函数的图象与y 轴的交点的坐标可确定b值 , 从而确定一次函数的图象的表达式.
3
x.
4
∵OA= 32 42=5,且OA=2OB,
∴OB=
5 2
.
∵点B在y轴的负半轴上,
∴B点的坐标为(0,- 5 ).
2
又∵点B在一次函数y2=k2x+b的图象上,
∴- 5 =b,
代 ∴入 一3次2=函4数k2+的b表中达,式得为k2y=2=18118.1x-
5 2
.
某种拖拉机的油箱可储油40L,加满油并开始工作后, 油箱中的剩余油量y(L)与工作时间x(h) 之间为 一次函数关系,函数图象如图所示. (1)求y关于x的函数表达式;
第四章 ·一次函数
第4节一次函数的应用
前面,我们学习了一次函数及其图象和性质,
你能写出两个具体的一次函数解析式吗?如何画
出它们的图象? y=3x-1
y=-2x+3
两点法——两点确定一条直线
思考: 反过来,已知一个一次函数的图象经过两个 具体的点,你能求出它的解析式吗?
一 确定正比例函数的表达式
引例:某物体沿一个斜坡下滑,它的速度v(m/s)与
方法总结:利用正比例函数的定义确定表达式: 自变量的指数为1,系数不为0.
想一想:确定正比例函数的表达式需要几个条件? 一个
确定一次函数的表达式呢? 两个
二 确定一次函数的表达式
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第4节一次函数的应用(2)
一、选择题
1.某天早晨,小强从家出发,以v1的速度前往学校,途中在一饮食店吃早点,之后以v2的速度向学校行进,已知v1>v2,下面的图象中表示小强从家到学校的时间t(分钟)与路程s(千米)之间的关系的是( )
2.如图,点P按A→B→C→M的顺序在边长为1的正方形边上运动,M是CD边上的中点.设点P经过的路程x为自变量,△APM的面积为y,则函数y的大致图象是( )
3.打开某洗衣机开关,在洗涤衣服时(洗衣机内无水),洗衣机经历了进水、清洗、排水、脱水四个连续过程,其中进水、清洗、排水时洗衣机中的水量y(升)与时间x(分钟)之间满足某种函数关系,其函数图象大致为( )
4.小明所在学校离家距离为2千米,某天他放学后骑自行车回家,行驶了5分钟后,因故停留10分钟,继续骑了5分钟到家.下面哪一个图象能大致描述他回家过程中离家的距离s(千米)与所用时间t(分)之间的关系( )
5.沪杭高速铁路已通车运营,某校研究性学习以此为课题,
在研究列车的行驶速度时,得到一个数学问题,如图,若v 是
关于t 的函数,图象为折线O -A -B -C .其中A(t 1,350),
B(t 2 ,350) ,C (1780
,0),四边形OABC 的面积为70, 则t 2-t 1= ( )
A .15
B .316
C .780
D .31160
6.(2011天津)一家电信公司给顾客提供两种上网收费方式:方式A 以每分0.1元的价格按上网所用时间计算;方式B 除收月基费20元外.再以每分0.05元的价格按上网所用时间计费。
若上网所用时问为x 分.计费为y 元,如图.是在同一直角坐标系中.分别描述
两种计费方式的函救的图象,有下列结论: ( )
① 图象甲描述的是方式A :
② 图象乙描述的是方式B ;
③ 当上网所用时间为500分时,选择方式B 省钱.
其中,正确结论的个数是
A . 3
B .2
C .1
D .0
二、填空题
7.某厂现在的年产值是15万元,计划今后每年增加2万元,年产值y 与年数x 之间的函数关系为_______,五年后产值是_______.
8.据调查,某公园自行车存放处在某一星期日的存放量为4000辆,其中变速车存放车费是每辆一次0.30元,普通车存车费是每辆一次0. 20元.若普通车存放车数为x 辆次,存车费总收入y 元,则y 关于x 的函数关系是_______,
三、解答题
9.如图所示,L 1,L 2分别表示一种白炽灯和一种节能灯的费用y (费用=灯的售价+电费,单位:元)与照明时间x (h)的函数关系图象,假设两种灯的使用寿命都是2000 h ,照明效果一样.
(1)根据图象分别求出L 1,L 2的函数关系式.
(2)当照明时间为多少时,两种灯的费用相等?
(3)小亮房间计划照明2500h ,他买了一个白炽灯和一个节
能灯,请你帮他设计最省钱的用灯方法.
10.(2011茂名)某学校要印制一批《学生手册》,甲印刷厂提出:每本收1元印刷费,另收500元制版费;乙印刷厂提出:每本收2元印刷费,不收制版费.
(1)分别写出甲、乙两厂的收费甲y (元) 、乙y (元)与印制数量x (本)之间的关系式;
(2)问:该学校选择哪间印刷厂印制《学生手册》比较合算?请说明理由.
t (h ) Q (万m 3) A B C
D 80 40 20 O a 400 500 600 (第27题图) 11.(2011连云港)因长期干旱,甲水库蓄水量降到了正常水位的最低值.为灌溉需要,
由乙水库向甲水库匀速供水,20h 后,甲水库打开一个排灌闸为农田匀速灌溉,又经过20h ,甲水库打开另一个排灌闸同时灌溉,再经过40h ,乙水库停止供水.甲水库每个排泄闸的灌溉速度相同,图中的折线表示甲水库蓄水量Q (万m 3) 与时间t (h) 之间的函数关系.
求:(1)线段BC 的函数表达式;
(2)乙水库供水速度和甲水库一个排灌闸的灌溉速度;
(3)乙水库停止供水后,经过多长时间甲水库蓄水量又降到了正常水位的最低值?
12.在一次远足活动中,某班学生分成两组,第一组由甲地匀速步行到乙地后原路返回,
第二组由甲地匀速步行经乙地继续前行到丙地后原路返回,两组同时出发,设步行的时间为t(h),两组离乙地的距离分别为S 1(km)和S 2(km),图中的折线分别表示S 1、S 2与t 之间的函数关系.
(1)甲、乙两地之间的距离为_______km ,乙、丙两地之间的距离为_______km ;
(2)求第二组由甲地出发首次到达乙地及由乙地到达丙地所用的时间分别是多少?
(3)求图中线段AB 所表示的S 2与t 间的函数关系式,并写出自变量t 的取值范围.
参考答案
1.A 2.A 3.D .4 D 5.B 6.A
7.y =2x +15 25万元
8.y =0.2x +0.3(4000-x ) 即y =-0.1x +1200
9.(1)L 1:y 1=0.03x +2. L 2:y 2=0.012x +20 (2)当照明时间为1000小时时,费用一样.
(3)应多用节能灯
10.(1)500+=x y 甲 ,x y 2=乙 .
(2)当甲y >乙y 时,即500+x >x 2,则x <500 ,
当甲y =乙y 时, 即500+x =x 2,则x =500,
当甲y <乙y 时,即500+x <x 2,则x >500,
∴该学校印制学生手册数量小于500本时应选择乙厂合算,当印制学生手册数量大于500本时应选择甲厂合算,当印制学生手册数量等于500本时选择两厂费用都一样 .
9.(1)y 1=4x (0<x <2.5),y 2=-5x +10(0≤x ≤2) (2)
109(小时) 409
(千米).(3)23小时. 11.
12.(1)8 2 (2) 0.8(小时). 0.2(小时).(3)S 2=10t -8,取值范围是:0.8≤t ≤1。