2020高考数学 总复习 5.2 平面向量基本定理及向量的坐标表示
2020年高考数学一轮复习专题5.2平面向量的基本定理练习(含解析)
5.2 平面向量的坐标运算一、平面向量的坐标运算 1.向量坐标的求法(1)若向量的起点是坐标原点,则终点坐标即为向量的坐标. (2)设A (x 1,y 1),B (x 2,y 2),则AB =(x 2-x 1,y 2-y 1). 2.向量加法、减法、数乘向量及向量的模设a =(x 1,y 1),b =(x 2,y 2),则a +b =(x 2+x 1,y 2+y 1),a -b =(x 1-x 2,y 1-y 2),λa =(λx 1,λy 1), |a |a +b 3.平面向量共线的坐标表示设a =(x 1,y 1),b =(x 2,y 2),则a ∥b ⇔x 1y 2-x 2y 1=0. 4.向量的夹角已知两个非零向量a 和b ,作OA =a ,OB =b ,则∠AOB =θ(0°≤θ≤180°)叫做向量a 与b 的夹角.如果向量a 与b 的夹角是90°,我们说a 与b 垂直,记作a ⊥b .考向一 坐标运算【例1】(1)已知点M (5,-6)和向量a =(1,-2),若MN →=-3a ,则点N 的坐标为.(2)已知A (-2,4),B (3,-1),C (-3,-4).设AB →=a ,BC →=b ,CA →=c ,a =m b +n c (m ,n ∈R ),则m +n = 【答案】(1)(2,0) (2)-2【解析】(1) 设N (x ,y ),则(x -5,y +6)=(-3,6),∴x =2,y =0. (2)由已知得a =(5,-5),b =(-6,-3),c =(1,8).∵m b +n c =(-6m +n ,-3m +8n ),∴⎩⎪⎨⎪⎧-6m +n =5,-3m +8n =-5,解得⎩⎪⎨⎪⎧m =-1,n =-1.∴m +n =-2.【举一反三】1.设OA →=(1,-2),OB →=(a ,-1),OC →=(-b,0),a >0,b >0,O 为坐标原点,若A ,B ,C 三点共线,则1a+2b的最小值是( )A .2B .4C .6D .8【答案】 D【解析】 由题意可得,OA →=(1,-2),OB →=(a ,-1),OC →=(-b,0),所以AB →=OB →-OA →=(a -1,1),AC →=OC →-OA →=(-b -1,2).又∵A ,B ,C 三点共线,∴AB →∥AC →,即(a -1)×2-1×(-b -1)=0,∴2a +b =1,又∵a >0,b >0,∴1a +2b =⎝ ⎛⎭⎪⎫1a +2b (2a +b )=4+⎝ ⎛⎭⎪⎫b a +4a b ≥4+4=8,当且仅当b a =4a b时,取“=”.故选D.2.已知点P (-1,2),线段PQ 的中点M 的坐标为(1,-1).若向量PQ →与向量a =(λ,1)共线,则λ=________. 【答案】 -23【解析】 点P (-1,2),线段PQ 的中点M 的坐标为(1,-1), ∴向量PQ →=2PM →=2(1+1,-1-2)=(4,-6).又PQ →与向量a =(λ,1)共线,∴4×1+6λ=0,即λ=-23.3.已知a =(5,-2),b =(-4,-3),若a -2b +3c =0,则c 等于( )A.⎝ ⎛⎭⎪⎫1,83 B.⎝ ⎛⎭⎪⎫-133,83 C.⎝⎛⎭⎪⎫133,43D.⎝ ⎛⎭⎪⎫-133,-43【解析】 由已知3c =-a +2b =(-5,2)+(-8,-6)=(-13,-4).所以c =⎝ ⎛⎭⎪⎫-133,-43.考向二 平面向量在几何中 的运用【例2】已知△ABC 的三个顶点的坐标为A (0,1),B (1,0),C (0,-2),O 为坐标原点,动点M 满足|CM →|=1,则|OA →+OB →+OM →|的最大值是( )A.2+1B.7+1C.2-1D.7-1 【答案】 A【解析】 设点M 的坐标是(x ,y ),∵C (0,-2),且|CM →|=1,∴x 2+(y +2)2=1,则x 2+(y +2)2=1, 即动点M 的轨迹是以C 为圆心、1为半径的圆, ∵A (0,1),B (1,0),∴OA →+OB →+OM →=(x +1,y +1),则|OA →+OB →+OM →|=(x +1)2+(y +1)2,几何意义表示:点M (x ,y )与点N (-1,-1)之间的距离,即圆C 上的点与点N (-1,-1)的距离,∵点N (-1,-1)在圆C 外部,∴|OA →+OB →+OM →|的最大值是|NC |+1=(0+1)2+(-2+1)2+1=2+1.故选A. 【举一反三】1.在平面直角坐标系中,为坐标原点,直线与圆相交于两点,.若点在圆上,则实数( )A .B .C .D .O :10l x ky -+=22:4C x y +=, A B OM OA OB =+M C k =2-1-01考向三 向量中的坐标【例3】给定两个长度为1的平面向量,OA OB ,它们的夹角为120.如图1所示,点C 在以O 为圆心的圆弧AB 上变动.若,OC xOA yOB =+其中,x y R ∈,则x y +的最大值是______. 【答案】2【解析】解法1( 考虑特值法) 当C 与A 重合时,10,OC OA OB =⨯+⨯1x y +=,当C 与B 重合时,01,OC OA OB =⨯+⨯1x y +=, 当C 从AB 的端点向圆弧内部运动时,1x y +>, 于是猜想当C 是AB 的中点时,x y +取到最大值.当C 是AB 的中点时,由平面几何知识OACB 是菱形, ∴,OC OA OB =+∴11 2.x y +=+= 猜想x y +的最大值是2.解法二(考虑坐标法)建立如图3,所示的平面直角坐标系,设AOC α∠=,则1(1,0),((cos ,sin )2A B C αα-.于是OC xOA yOB =+可化为:1(cos ,sin )(1,0)(,22x y αα=+-,∴1cos ,2sin .x y y αα⎧=-⎪⎪⎨⎪=⎪⎩(1)解法2 函数法求最值由方程组(1)得:cos ,.x y ααα⎧=+⎪⎪⎨⎪=⎪⎩∴cos 2sin(30)x y ααα+=+=+,又0120α≤≤, ∴当30α=时,max () 2.x y += 解法3 不等式法求最值由方程组(1)得:222221sin cos ()3x y xy x y xy αα=+=+-=+-,∴211()33xy x y =+-, 由0,0x y >>,及x y +≥2()4x y xy +≥, ∴2()4x y +≤,∴2x y +≤,当且仅当1x y ==时取等号. ∴max () 2.x y +=思考方向三 考虑向量的数量积的运算 解法4 两边点乘同一个向量∵,OC xOA yOB =+∴,.OC OA xOA OA yOB OA OC OB xOA OB yOB OB ⎧⋅=⋅+⋅⎪⎨⋅=⋅+⋅⎪⎩ 设AOC α∠=,则 120BOC α∠=-,又||||||1OC OA OB ===,∴1cos ,21cos(120).2x y x y αα⎧=-⎪⎪⎨⎪-=-+⎪⎩∴2[cos cos(120)]2sin(30)x y ααα+=+-=+, ∴当30α=时,max () 2.x y += 解法5 两边平方法∵,OC xOA yOB =+∴22(),OC xOA yOB =+∴2221()3x y xy x y xy =+-=+-222()()()344x y x y x y ++≥+-⋅=, ∴2x y +≤,当且仅当1x y ==时取等号, ∴max () 2.x y +=思考方向四 考虑平行四边形法则过C 作CM ∥OB 交OA 于M ,作CN ∥OA 交OB 于N ,则OM CN 是平行四边形,由向量加法的平行四边形法则得:OC OM ON =+,在OMC ∆中,设AOC α∠=,则 120BOC α∠=-, 且||,||.OM x MC y == 解法6 利用正弦定理sin sin sin OM MC OCOCM COM OMC==∠∠∠, 1sin(60)sin sin 60x y αα==+,由等比性值得:1sin(60)sin sin 60x y αα+=++,∴2sin(30)x y α+=+,∴当30α=时,max () 2.x y += 解法7 利用余弦定理222||||||2||||cos60,OC OM MC OM MC =+-⋅∴2221()3x y xy x y xy =+-=+-222()()()344x y x y x y ++≥+-⋅=,∴2x y +≤,当且仅当1x y ==时取等号, ∴max () 2.x y += 【举一反三】1.如图,已知平面内有三个向量OA →,OB →,OC →,其中OA →与OB →的夹角为120°,OA →与OC →的夹角为30°,且|OA →|=|OB →|=1,|OC →|=2 3.若OC →=λOA →+μOB →(λ,μ∈R ),求λ+μ的值.【答案】6【解析】 方法一 如图,作平行四边形OB 1CA 1,则OC →=OB 1→+OA 1→,因为OA →与OB →的夹角为120°,OA →与OC →的夹角为30°, 所以∠B 1OC =90°.在Rt △OB 1C 中,∠OCB 1=30°,|OC →|=23, 所以|OB 1→|=2,|B 1C →|=4,所以|OA 1→|=|B 1C →|=4, 所以OC →=4OA →+2OB →,所以λ=4,μ=2,所以λ+μ=6.方法二 以O 为原点,建立如图所示的平面直角坐标系,则A (1,0),B ⎝ ⎛⎭⎪⎫-12,32,C (3,3).由OC →=λOA →+μOB →,得⎩⎪⎨⎪⎧3=λ-12μ,3=32μ,解得⎩⎪⎨⎪⎧λ=4,μ=2.所以λ+μ=6.2.如图,四边形ABCD 是正方形,延长CD 至E ,使得DE =CD ,若点P 为CD 的中点,且AP →=λAB →+μAE →,则λ+μ=.【答案】 52【解析】 由题意,设正方形的边长为1,建立平面直角坐标系如图,则B (1,0),E (-1,1), ∴AB →=(1,0),AE →=(-1,1), ∵AP →=λAB →+μAE →=(λ-μ,μ), 又∵P 为CD 的中点,∴AP →=⎝ ⎛⎭⎪⎫12,1,∴⎩⎪⎨⎪⎧λ-μ=12,μ=1,∴λ=32,μ=1,∴λ+μ=52.1.在▱ABCD 中,AC 为一条对角线,AB →=(2,4),AC →=(1,3),则向量BD →的坐标为__________. 【答案】 (-3,-5)【解析】 ∵AB →+BC →=AC →,∴BC →=AC →-AB →=(-1,-1),∴BD →=AD →-AB →=BC →-AB →=(-3,-5).2.已知向量a =(3,1),b =(0,-1),c =(k ,3),若a -2b 与c 共线,则k =________. 【答案】 1【解析】 ∵a -2b =(3,3),且a -2b ∥c ,∴3×3-3k =0,解得k =1.3.线段AB 的端点为A (x,5),B (-2,y ),直线AB 上的点C (1,1),使|AC →|=2|BC →|,则x +y =. 【答案】 -2或6【解析】 由已知得AC →=(1-x ,-4),2BC →=2(3,1-y ).由|AC →|=2|BC →|,可得AC →=±2BC →,则当AC →=2BC →时,有⎩⎪⎨⎪⎧1-x =6,-4=2-2y ,解得⎩⎪⎨⎪⎧x =-5,y =3,此时x +y =-2;当AC →=-2BC →时,有⎩⎪⎨⎪⎧1-x =-6,-4=-2+2y ,解得⎩⎪⎨⎪⎧x =7,y =-1,此时x +y =6.综上可知,x +y =-2或6.4. 已知O 为坐标原点,点A (4,0),B (4,4),C (2,6),则AC 与OB 的交点P 的坐标为. 【答案】 (3,3)【解析】 方法一 由O ,P ,B 三点共线,可设OP →=λOB →=(4λ,4λ),则AP →=OP →-OA →=(4λ-4,4λ).又AC →=OC →-OA →=(-2,6),由AP →与AC →共线,得(4λ-4)×6-4λ×(-2)=0, 解得λ=34,所以OP →=34OB →=(3,3),所以点P 的坐标为(3,3).方法二 设点P (x ,y ),则OP →=(x ,y ),因为OB →=(4,4),且OP →与OB →共线,所以x 4=y 4,即x =y .又AP →=(x -4,y ),AC →=(-2,6),且AP →与AC →共线,所以(x -4)×6-y ×(-2)=0,解得x =y =3,所以点P 的坐标为(3,3).5.已知向量a =⎝ ⎛⎭⎪⎫8,x 2,b =(x,1),其中x >0,若(a -2b )∥(2a +b ),则x =.【答案】 4【解析】 ∵向量a =⎝ ⎛⎭⎪⎫8,x 2,b =(x,1),∴a -2b =⎝ ⎛⎭⎪⎫8-2x ,x2-2,2a +b =(16+x ,x +1),∵(a -2b )∥(2a +b ),∴(8-2x )(x +1)-(16+x )⎝ ⎛⎭⎪⎫x2-2=0,即-52x 2+40=0,又∵x >0,∴x =4.6.在矩形ABCD 中,AB =1,AD =2,动点P 在以点C 为圆心且与BD 相切的圆上.若AP →=λAB →+μAD →,则λ+μ的最大值为. 【答案】 3【解析】 建立如图所示的平面直角坐标系,则C 点坐标为(2,1).设BD 与圆C 切于点E ,连结CE ,则CE ⊥BD . ∵CD =1,BC =2, ∴BD =12+22=5,EC =BC ·CD BD =25=255,即圆C 的半径为255,∴P 点的轨迹方程为(x -2)2+(y -1)2=45.设P (x 0,y 0),则⎩⎪⎨⎪⎧x 0=2+255cos θ,y 0=1+255sin θ(θ为参数),而AP →=(x 0,y 0),AB →=(0,1),AD →=(2,0).∵AP →=λAB →+μAD →=λ(0,1)+μ(2,0)=(2μ,λ), ∴μ=12x 0=1+55cos θ,λ=y 0=1+255sin θ.两式相加,得λ+μ=1+255sin θ+1+55cos θ=2+sin(θ+φ)≤3⎝ ⎛⎭⎪⎫其中sin φ=55,cos φ=255, 当且仅当θ=π2+2k π-φ,k ∈Z 时,λ+μ取得最大值3.7.在直角梯形ABCD 中,AB ⊥AD ,DC ∥AB ,AD =DC =2,AB =4,E ,F 分别为AB ,BC 的中点,点P 在以A 为圆心,AD 为半径的圆弧DEM 上变动(如图所示).若AP →=λED →+μAF →,其中λ,μ∈R ,则2λ-μ的取值范围是.【答案】 ⎣⎢⎡⎦⎥⎤-22,12 【解析】 建立如图所示的平面直角坐标系,则A (0,0),E (2,0),D (0,2),F (3,1),P (cos α,sin α)⎝⎛⎭⎪⎫-π2≤α≤π2,即AP →=(cos α,sin α),ED →=(-2,2),AF →=(3,1). ∵AP →=λED →+μAF →,∴(cos α,sin α)=λ(-2,2)+μ(3,1), ∴cos α=-2λ+3μ,sin α=2λ+μ,∴λ=18(3sin α-cos α),μ=14(cos α+sin α),∴2λ-μ=12sin α-12cos α=22sin ⎝ ⎛⎭⎪⎫α-π4.∵-π2≤α≤π2,∴-3π4≤α-π4≤π4.∴-22≤22sin ⎝⎛⎭⎪⎫α-π4≤12.8.如图,在边长为2的正六边形ABCDEF 中,动圆Q 的半径为1,圆心在线段CD (含端点)上运动,P 是圆Q 上及内部的动点,设向量AP →=mAB →+nAF →(m ,n 为实数),求m +n 的最大值.【答案】5【解析】如图所示,①设点O 为正六边形的中心, 则AO →=AB →+AF →.当动圆Q 的圆心经过点C 时,与边BC 交于点P ,点P 为边BC 的中点.连结OP , 则AP →=AO →+OP →, ∵OP →与FB →共线,∴存在实数t ,使得OP →=tFB →, 则AP →=AO →+tFB →=AB →+AF →+t (AB →-AF →) =(1+t )AB →+(1-t )AF →,∴此时m +n =1+t +1-t =2,取得最小值.②当动圆Q 的圆心经过点D 时,取AD 的延长线与圆Q 的交点为P ,则AP →=52AO →=52()AB →+AF →=52AB →+52AF →,此时m +n =5,为最大值.9.在△ABC 中,AB =3,AC =2,∠BAC =60°,点P 是△ABC 内一点(含边界),若AP →=23AB →+λAC →,则|AP →|的最大值为________. 【答案】2133【解析】 以A 为原点,以AB 所在的直线为x 轴,建立如图所示的坐标系,∵AB =3,AC =2,∠BAC =60°, ∴A (0,0),B (3,0),C (1,3),设点P 为(x ,y ),0≤x ≤3,0≤y ≤3, ∵AP →=23AB →+λAC →,∴(x ,y )=23(3,0)+λ(1,3)=(2+λ,3λ),∴⎩⎨⎧x =2+λ,y =3λ,∴y =3(x -2),① 直线BC 的方程为y =-32(x -3),② 联立①②,解得⎩⎪⎨⎪⎧x =73,y =33,此时|AP →|最大,∴|AP →|=499+13=2133. 10.已知三角形ABC 中,AB =AC ,BC =4,∠BAC =120°,BE →=3EC →,若点P 是BC 边上的动点,则AP →·AE →的取值范围是________.【答案】 ⎣⎢⎡⎦⎥⎤-23,103 【解析】 因为AB =AC ,BC =4,∠BAC =120°,所以∠ABC =30°,AB =433.因为BE →=3EC →,所以BE →=34BC →.设BP →=tBC →,则0≤t ≤1,所以AP →=AB →+BP →=AB →+tBC →,又AE →=AB →+BE →=AB →+34BC →,所以AP →·AE →=(AB →+tBC →)·⎝⎛⎭⎪⎫AB →+34BC →=AB →2+tBC →·AB →+34BC →·AB →+34tBC →2=163+t ×4×433cos150°+34×4×433cos150°+34t ×42=4t -23, 因为0≤t ≤1,所以-23≤4t -23≤103,即AP →·AE →的取值范围是⎣⎢⎡⎦⎥⎤-23,103.11在矩形ABCD 中,AB =5,BC =3,P 为矩形内一点,且AP =52,若AP →=λAB →+μAD →(λ,μ∈R ),则5λ+3μ的最大值为______. 【答案】102【解析】 建立如图所示的平面直角坐标系,设P (x ,y ),B (5,0),C (5,3),D (0,3).∵AP =52,∴x 2+y 2=54. 点P 满足的约束条件为 ⎩⎪⎨⎪⎧0≤x ≤5,0≤y ≤3,x 2+y 2=54,∵AP →=λAB →+μAD →(λ,μ∈R ), ∴(x ,y )=λ(5,0)+μ(0,3),∴⎩⎨⎧x =5λ,y =3μ,∴x +y =5λ+3μ.∵x +y ≤2(x 2+y 2)=2×54=102, 当且仅当x =y 时取等号, ∴5λ+3μ的最大值为102. 12.如图所示,A ,B ,C 是圆O 上的三点,线段CO 的延长线与BA 的延长线交于圆O 外的一点D ,若OC →=mOA →+nOB →,则m +n 的取值范围是________.【答案】 (-1,0)【解析】 由题意得,OC →=kOD →(k <0), 又|k |=|OC →||OD →|<1,∴-1<k <0.又∵B ,A ,D 三点共线,∴OD →=λOA →+(1-λ)OB →, ∴mOA →+nOB →=k λOA →+k (1-λ)OB →, ∴m =k λ,n =k (1-λ), ∴m +n =k ,从而m +n ∈(-1,0).。
平面向量基本定理及坐标表示
B.(2, 1) 2
D.(1,3)
解析 ∵A(0,2),B(-1,-2),C(3,1), ∴BC=(3,1)-(-1,-2)=(4,3). 设D(x,y),∵AD =(x,y-2)B,C =2AD , ∴(4,3)=(2x,2y-4).∴x=2,y=7 .
2
2.已知a=(4,2),b=(x,3),且a∥b,则x等于(B )
2
8-2x= (16+x)
题型分类 深度剖析
题型一 平面对量基本定理 【例1】如图所示,在平行四边形ABCD中,
M,N分别为DC,BC旳中点,已知AM =c, AN =d,试用c,d表达AB ,AD .
思维启迪 直接用c、d表达AB、AD有难度,可换一 种角度,由 AB、AD表达 AM、AN ,进而解方程组可 求 AB、 A.D
(x-4)2+(y-1)2=1,
2分 4分 6分
8分
解得
x 4
5 5
或x 4
5 5
.
y
1
25 5
y
1
2
5
5
10分
d ( 20 5 , 5 2 5 )或d ( 20 5 , 5 2 5 ). 12分
5
5
5
5
探究提向升量平行旳坐标公式实质是把向量问题转 化为实数旳运算问题.经过坐标公式建立参数旳方 程,经过解方程或方程组求得参数,充分体现了方程 思想在向量中旳应用.
知能迁移3 已知点O(0,0),A(1,2),B(4, 5)且 OP OA t AB, (1)求点P在第二象限时,实数t旳取值范围; (2)四边形OABP能否为平行四边形?若能,求出 相应旳实数t;若不能,请阐明理由. 解 ∵O(0,0),A(1,2),B(4,5), ∴ OA =(1,2),AB =(4-1,5-2)=(3,3). (1)设P(x,y),则OP =(x,y),若点P在第 二象限, 则 x<0 且(x,y)=(1,2)+t(3,3), y>0
高考数学一轮总复习 52平面向量基本定理及向量的坐标表示课后强化作业 新人教B版
高考数学一轮总复习 52平面向量基本定理及向量的坐标表示课后强化作业 新人教B 版基础巩固强化一、选择题1.(文)已知向量a =(1,k ),b =(2,2),且a +b 与a 共线,那么a ·b 的值为( ) A .1 B .2 C .3 D .4 [答案] D[解析] ∵a =(1,k ),b =(2,2), ∴a +b =(3,k +2), ∵(a +b )∥a ,∴1·(k +2)=3k ,∴k =1,∴a =(1,1), ∴a ·b =2+2=4.(理)(2013·荆州质检)已知向量a =(2,3),b =(-1,2),若m a +n b 与a -2b 共线,则m n =( )A .-2B .2C .-12D.12[答案] C[解析] 由向量a =(2,3),b =(-1,2)得m a +n b =(2m -n,3m +2n ),a -2b =(4,-1),因为m a +n b 与a -2b 共线,所以(2m -n )×(-1)-(3m +2n )×4=0,整理得m n =-12.2.(文)已知点A (-1,0),B (1,3),向量a =(2k -1,2),若AB →⊥a ,则实数k 的值为( ) A .-2 B .-1 C .1 D .2 [答案] B[解析] AB →=(2,3),∵AB →⊥a ,∴2(2k -1)+3×2=0,∴k =-1,∴选B.(理)(2013·广州综合测试二)已知向量OA →=(3,-4),OB →=(6,-3),OC →=(m ,m +1),若AB →∥OC →,则实数m 的值为( )A .-32B .-14C.12D.32[答案] A[解析] 依题意得,AB →=(3,1),由AB →∥OC →得3(m +1)-m =0,m =-32,选A.3.在四边形ABCD 中,AB →=a +2b ,BC →=-4a -b ,CD →=-5a -3b ,其中a ,b 不共线,则四边形ABCD 为( )A .平行四边形B .矩形C .梯形D .菱形[答案] C[解析] ∵AD →=AB →+BC →+CD →=-8a -2b =2BC →, ∴四边形ABCD 为梯形.4.(文)(2012·天津文,8)在△ABC 中,∠A =90°,AB =1,AC =2,设点P ,Q 满足AP →=λAB →,AQ →=(1-λ)AC →,λ∈R ,若BQ →·CP →=-2,则λ=( )A.13B.23C.43 D .2 [答案] B[解析] 由题意,BQ →=AQ →-AB →=(1-λ)AC →-AB →,CP →=CA →+AP →=-AC →+λAB →,BQ →·CP →=(λ-1)AC →2-λAB →2=3λ-4=-2,∴λ=23.用模与夹角都已知的AC →,AB →来表示BQ →,CP →是解题关键,(AC →,AB →看作一组基底).另外本题可以将向量坐标化去解答.(理)在△ABC 中,M 为边BC 上任意一点,N 为AM 的中点,AN →=λAB →+μAC →,则λ+μ的值为( )A.12B.13C.14 D .1[答案] A[解析] 本题考查向量的线性运算.据已知N 为AM 的中点,可得AN →=12AM →=λAB →+μAC →,整理得AM →=2λAB →+2μAC →,由于点M 在直线BC 上,故有2λ+2μ=1,即λ+μ=12.5.已知平行四边形ABCD ,点P 为四边形内部或者边界上任意一点,向量AP →=xAB →+yAD →,则“0≤x ≤12,0≤y ≤23”的概率是( )A.13 B.23 C.14 D.12[答案] A [解析]根据平面向量基本定理,点P 只要在如图所示的区域AB 1C 1D 1内即可,这个区域的面积是整个四边形面积的12×23=13,故所求的概率是13.6.(文)(2013·安庆二模)已知a ,b 是不共线的两个向量,AB →=x a +b ,AC →=a +y b (x ,y∈R ),若A ,B ,C 三点共线,则点P (x ,y )的轨迹是( )A .直线B .双曲线C .圆D .椭圆[答案] B[解析] ∵A ,B ,C 三点共线,∴存在实数λ,使AB →=λAC →.则x a +b =λ(a +y b )⇒⎩⎪⎨⎪⎧x =λ,1=λy⇒xy =1,故选B.(理)如图,△ABC 中,AD =DB ,AE =EC ,CD 与BE 交于F ,设AB →=a ,AC →=b ,AF →=x a +y b ,则(x ,y )为( )A.⎝⎛⎭⎫12,12 B.⎝⎛⎭⎫23,23 C.⎝⎛⎭⎫13,13 D.⎝⎛⎭⎫23,12[答案] C[解析] 设CF →=λCD →,∵E 、D 分别为AC 、AB 的中点, ∴BE →=BA →+AE →=-a +12b ,BF →=BC →+CF →=(b -a )+λ(12a -b )=⎝⎛⎭⎫12λ-1a +(1-λ)b , ∵BE →与BF →共线,∴12λ-1-1=1-λ12,∴λ=23,∴AF →=AC →+CF →=b +23CD →=b +23⎝⎛⎭⎫12a -b =13a +13b ,故x =13,y =13. 二、填空题7.(文)(2014·金山中学月考)已知向量a =(sin x,1),b =(cos x ,-3),且a ∥b ,则tan x =________.[答案] -13[解析] ∵a ∥b ,∴sin x cos x =1-3,∴tan x =-13.(理)已知a =(2,-3),b =(sin α,cos 2α),α∈⎝⎛⎭⎫-π2,π2,若a ∥b ,则tan α=________. [答案] -33[解析] ∵a ∥b ,∴sin α2=cos 2α-3,∴2cos 2α=-3sin α,∴2sin 2α-3sin α-2=0, ∵|sin α|≤1,∴sin α=-12,∵α∈⎝⎛⎭⎫-π2,π2,∴cos α=32,∴tan α=-33. 8.已知G 是△ABC 的重心,直线EF 过点G 且与边AB 、AC 分别交于点E 、F ,AE →=αAB →,AF →=βAC →,则1α+1β=________.[答案] 3[解析] 连结AG 并延长交BC 于D ,∵G 是△ABC 的重心,∴AG →=23AD →=13(AB →+AC →),设EG →=λGF →,∴AG →-AE →=λ(AF →-AG →),∴AG →=11+λAE →+λ1+λAF →,∴13AB →+13AC →=α1+λAB →+λβ1+λAC →, ∴⎩⎪⎨⎪⎧ α1+λ=13,λβ1+λ=13,∴⎩⎪⎨⎪⎧1α=31+λ,1β=3λ1+λ,∴1α+1β=3. 9.(文)(2013·烟台调研)在等腰直角三角形ABC 中,D 是斜边BC 的中点,如果AB 的长为2,则(AB →+AC →)·AD →的值为________.[答案] 4[解析] 由题意可知,AD =12BC =222=2,(AB →+AC →)·AD →=2AD →·AD →=2|AD →|2=4.(理)在△ABC 中,过中线AD 的中点E 任作一条直线分别交AB 、AC 于M 、N 两点,若AM →=xAB →,AN →=yAC →,则4x +y 的最小值为________.[答案] 94[解析]如图所示,由题意知AD →=12(AB →+AC →),AE →=12AD →,又M ,E ,N 三点共线,所以AE →=λAM →+(1-λ)AN →(其中0<λ<1), 又AM →=xAB →,AN →=yAC →,所以14(AB →+AC →)=λx AB →+(1-λ)yAC →,因此有⎩⎪⎨⎪⎧4λx =1,4(1-λ)y =1,解得x =14λ,y =14(1-λ),令1λ=t ,∴t >1, 则4x +y =1λ+14(1-λ)=t +t4(t -1)=(t -1)+14(t -1)+54≥94,当且仅当t =32,即λ=23时取得等号.三、解答题10.(文)已知O (0,0)、A (2,-1)、B (1,3)、OP →=OA →+tOB →,求 (1)t 为何值时,点P 在x 轴上?点P 在y 轴上?点P 在第四象限? (2)四点O 、A 、B 、P 能否成为平行四边形的四个顶点,说明你的理由.[解析] (1)OP →=OA →+tOB →=(t +2,3t -1). 若点P 在x 轴上,则3t -1=0,∴t =13;若点P 在y 轴上,则t +2=0,∴t =-2;若点P 在第四象限,则⎩⎪⎨⎪⎧t +2>03t -1<0,∴-2<t <13.(2)OA →=(2,-1),PB →=(-t -1,-3t +4).若四边形OABP 为平行四边形,则OA →=PB →.∴⎩⎪⎨⎪⎧-t -1=2-3t +4=-1无解. ∴ 四边形OABP 不可能为平行四边形.同理可知,当t =1时,四边形OAPB 为平行四边形,当t =-1时,四边形OP AB 为平行四边形.(理)已知向量a =(1,2),b =(cos α,sin α),设m =a +t b (t 为实数). (1)若α=π4,求当|m |取最小值时实数t 的值;(2)若a ⊥b ,问:是否存在实数t ,使得向量a -b 和向量m 的夹角为π4,若存在,请求出t ;若不存在,请说明理由.[解析] (1)∵α=π4,∴b =(22,22),a ·b =322,∴|m |=(a +t b )2=5+t 2+2t a ·b =t 2+32t +5=(t +322)2+12, ∴当t =-322时,|m |取到最小值,最小值为22.(2)由条件得cos π4=(a -b )·(a +t b )|a -b ||a +t b |,∵|a -b |=(a -b )2=6,|a +t b |=(a +t b )2=5+t 2,(a -b )·(a +t b )=5-t ,∴5-t 65+t 2=22,且t <5, ∴t 2+5t -5=0,∴存在t =-5±352满足条件.能力拓展提升一、选择题11.平面上有四个互异的点A 、B 、C 、D ,满足(AB →-BC →)·(AD →-CD →)=0,则三角形ABC是( )A .直角三角形B .等腰三角形C .等腰直角三角形D .等边三角形[答案] B[解析] (AB →-BC →)·(AD →-CD →) =(AB →-BC →)·(AD →+DC →) =(AB →-BC →)·AC →=(AB →-BC →)·(AB →+BC →) =|AB →|2-|BC →|2=0, 故|AB →|=|BC →|,即△ABC 是等腰三角形.12.如图,在四边形ABCD 中,AB =BC =CD =1,且∠B =90°,∠BCD =135°,记向量AB →=a ,AC →=b ,则AD →=( )A.2a -(1+22)b B .-2a +(1+22)b C .-2a +(1-22)b D.2a +(1-22)b [答案] B [解析]根据题意可得△ABC 为等腰直角三角形,由∠BCD =135°,得∠ACD =135°-45°=90°,以B 为原点,AB 所在直线为x 轴,BC 所在直线为y 轴建立如图所示的直角坐标系,并作DE ⊥y 轴于点E ,则△CDE 也为等腰直角三角形,由CD =1,得CE =ED =22,则A (1,0),B (0,0),C (0,1),D (22,1+22),∴AB →=(-1,0),AC →=(-1,1),AD →=(22-1,1+22),令AD →=λAB →+μAC →,则有⎩⎨⎧-λ-μ=22-1,μ=1+22,得⎩⎪⎨⎪⎧λ=-2,μ=1+22.∴AD →=-2a +(1+22)b . 13.(2013·济宁模拟)给定两个长度为1的平面向量OA →和OB →,它们的夹角为90°,如图所示,点C 在以O 为圆心的圆弧AB 上运动,若OC →=xOA →+yOB →,其中x ,y ∈R ,则x +y 的最大值是( )A .1B. 2C. 3 D .2[答案] B[解析] 方法一:以O 为原点,向量OA →,OB →所在直线分别为x 轴,y 轴建立直角坐标系,设〈OA →,OC →〉=θ,θ∈[0,π2],则OA →=(1,0),OB →=(0,1),OC →=(cos θ,sin θ).∵OC →=xOA →+yOB →,∴⎩⎪⎨⎪⎧x =cos θ,y =sin θ.∴x +y =cos θ+sin θ=2sin(θ+π4),又θ+π4∈[π4,3π4],∴x +y 的最大值为 2.方法二:因为点C 在以O 为圆心的圆弧AB 上,所以|OC →|2=|xOA →+yOB →|2=x 2+y 2+2xyOA →·OB →=x 2+y 2=1≥(x +y )22.所以x +y ≤2,当且仅当x =y =22时等号成立. 二、填空题14.(2013·广东江门质检)设a ,b 是两个不共线向量,AB →=2a +p b ,BC →=a +b ,CD →=a-2b ,若A 、B 、D 三点共线,则实数p 的值是________.[答案] -1[解析] ∵A 、B 、D 三点共线,∴AB →与BD →共线, ∵AB →=2a +p b ,BD →=BC →+CD →=2a -b , ∴存在实数λ,使2a +p b =λ(2a -b ), ∵a 与b 不共线,∴λ=1,p =-1. 三、解答题 15.(2013·天津一模)如图所示,P 是△ABC 内一点,且满足P A →+2PB →+3PC →=0,设Q 为CP 延长线与AB 的交点.令CP →=p ,试用p 表示PQ →.[解析] 设P A →=a ,PB →=b ,由已知条件得3CP →=P A →+2PB →,即3p =a +2b , 设PQ →=λCP →(λ为实数),则PQ →=λ3(a +2b ).设AQ →=μAB →(μ为实数), 又PQ →=P A →+AQ →=P A →+μAB →=P A →+μ(PB →-P A →) =(1-μ)a +μb ,由平面向量基本定理知⎩⎨⎧λ3=1-μ,2λ3=μ.解得λ=1,因此PQ →=λCP →=p .16.(文)设△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,已知c =2b ,向量m =⎝⎛⎭⎫sin A ,32,n =(1,sin A +3cos A ),且m 与n 共线.(1)求角A 的大小; (2)求ac的值.[解析] (1)∵m ∥n ,∴sin A (sin A +3cos A )-32=0,即sin ⎝⎛⎭⎫2A -π6=1.∵A ∈(0,π),∴2A -π6∈⎝⎛⎭⎫-π6,11π6. ∴2A -π6=π2.∴A =π3.(2)由余弦定理及c =2b 、A =π3得,a 2=⎝⎛⎭⎫c 22+c 2-2·c 2·c cos π3, a 2=34c 2,∴a c =32.(理)设a 、b 是不共线的两个非零向量,(1)若OA →=2a -b ,OB →=3a +b ,OC →=a -3b ,求证:A 、B 、C 三点共线; (2)若8a +k b 与k a +2b 共线,求实数k 的值;(3)设OM →=m a ,ON →=n b ,OP →=αa +βb ,其中m 、n 、α、β均为实数,m ≠0,n ≠0,若M 、P 、N 三点共线,求证:αm +βn=1.[解析] (1)∵AB →=(3a +b )-(2a -b )=a +2b . 而BC →=(a -3b )-(3a +b )=-2a -4b =-2AB →,∴AB →与BC →共线,且有公共端点B ,∴A 、B 、C 三点共线. (2)∵8a +k b 与k a +2b 共线,∴存在实数λ使得 (8a +k b )=λ(k a +2b )⇒(8-λk )a +(k -2λ)b =0,∵a 与b 不共线,∴⎩⎪⎨⎪⎧8-λk =0,k -2λ=0.⇒8=2λ2⇒λ=±2,∴k =2λ=±4.(3)证法1:∵M 、P 、N 三点共线,∴存在实数λ,使得MP →=λPN →,∴OP →=OM →+λON →1+λ=m1+λa +λn1+λb , ∵a 、b 不共线,∴⎩⎪⎨⎪⎧α=m1+λ,β=λn1+λ∴αm +βn =11+λ+λ1+λ=1. 证法2:∵M 、P 、N 三点共线,∴OP →=xOM →+yON →且x +y =1, 由已知可得:xm a +yn b =αa +βb , ∴x =αm ,y =βn ,∴αm +βn=1.考纲要求了解平面向量的基本定理及其意义.掌握平面向量的正交分解及其坐标表示.会用坐标表示平面向量的加法、减法与数乘运算.理解用坐标表示的平面向量共线的条件.补充材料1.证明共线(或平行)问题的主要依据:(1)对于向量a ,b ,若存在实数λ,使得b =λa ,则向量a 与b 共线(平行). (2)a =(x 1,y 1),b =(x 2,y 2),若x 1y 2-x 2y 1=0,则向量a ∥b . (3)对于向量a ,b ,若|a ·b |=|a |·|b |,则a 与b 共线. 要注意向量平行与直线平行是有区别的.2.用已知向量来表示另外一些向量是用向量解题的基本功.在进行向量运算时,要尽可能将它们转化到平行四边形或三角形中,以便使用向量的运算法则进行求解.充分利用平面几何的性质,可把未知向量用已知向量表示出来.3.平面向量基本定理的本质是运用向量加法的平行四边形法则,将向量进行分解. 备选习题1.已知两不共线向量a =(cos α,sin α),b =(cos β,sin β),则下列说法不正确的是( ) A .(a +b )⊥(a -b ) B .a 与b 的夹角等于α-β C .|a +b |+|a -b |>2D .a 与b 在a +b 方向上的射影相等 [答案] B[解析] 注意到|a |=|b |=1,因此(a +b )·(a -b )=a 2-b 2=0,所以(a +b )⊥(a -b );注意到α-β未必属于(0,π),因此a ,b 的夹角未必等于α-β;由三角形法则可知,|a +b |+|a -b |2>1,于是有|a +b |+|a -b |>2;结合三角形法则及一个向量在另一个向量上的射影的意义可知,a ,b 在a +b 方向上的射影相等.综上所述,其中不正确的说法是B ,选B.2.在平面直角坐标系中,O 为原点,设向量OA →=a ,OB →=b ,其中a =(3,1),b =(1,3).若OC →=λa +μb ,且0≤λ≤μ≤1,C 点的所有可能位置区域用阴影表示正确的是( )[答案] A[解析] OC →=λa +μb =(3λ+μ,λ+3μ), 令OC →=(x ,y ),则x -y =(3λ+μ)-(λ+3μ) =2(λ-μ)≤0,∴点C 对应区域在直线y =x 的上方,故选A.3.(2013·福建)在四边形ABCD 中,AC →=(1,2),BD →=(-4,2),则该四边形的面积为( ) A. 5 B .2 5 C .5 D .10[答案] C[解析] ∵AC →·BD →=(1,2)·(-4,2)=0,∴AC ⊥BD , 又|AC →|=5,|BD →|=25, ∴S =12×5×25=5.4.(2013·哈尔滨质检)已知平面向量a =(2m +1,3),b =(2,m ),且a 与b 反向,则|b |等于( )A.1027B .2 2 C.52 D.52或2 2 [答案] B[解析] 据题意a ∥b 则m (2m +1)-3×2=0,解得m =-2或m =32,当m =32时a =(4,3),b =(2,32),则a =2b ,此时两向量同向,与已知不符,故m =-2,此时b =(2,-2),故|b |=2 2.5.(2013·铜陵一模)如图,菱形ABCD 的边长为2,∠A =60°,M 为DC 的中点,若N 为菱形内任意一点(含边界),则AM →·AN →的最大值为( )A .3B .2 3C .6D .9[答案] D[解析] 以A 为坐标原点,AB 所在直线为x 轴建立直角坐标系,如图所示,因为∠A =60°,菱形的边长为2,所以D (1,3),B (2,0),C (3,3).因为M 为DC 的中点,所以M (2,3),设N (x ,y ),则N 点的活动区域为四边形ABCD 内(含边界),则AM →·AN →=(2,3)·(x ,y )=2x +3y ,令z =2x +3y ,得y =-23x +z3,由线性规划知识可知,当直线经过点C 时,直线y =-23x +z3的截距最大,此时z 最大,所以最大值为z =2x +3y =2×3+3×3=6+3=9.故选D.6.已知向量OA →=(1,-3),OB →=(2,-1),OC →=(k +1,k -1),若A 、B 、C 三点不能构成三角形,则实数k 应满足的条件是( )A .k =-2B .k =12C .k =1D .k =2[答案] D[解析] ∵A 、B 、C 三点构不成三角形, ∴A 、B 、C 三点在同一条直线上,∴存在实数λ,使OC →=λOA →+(1-λ)OB →, ∴(k +1,k -1)=(2-λ,-2λ-1),∴⎩⎪⎨⎪⎧k +1=2-λ,k -1=-2λ-1,解之得k =2. [点评] 由于三点A 、B 、C 构不成三角形,∴A 、B 、C 共线,∴AB →与AC →共线,∴存在λ,使AC →=λAB →,解λ、k 的方程可得k 值.。
5.2 平面向量的基本定理及坐标表示
5.2 平面向量的基本定理及坐标表示1.平面向量基本定理如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1,λ2,使_______________________________.我们把不共线的向量e 1,e 2叫做表示这一平面内所有向量的一组__________.2.向量的夹角(1)已知两个________向量a 和b ,作OA →=a , OB →=b ,则∠AOB =θ叫做向量a 与b 的夹角(如图).(2)向量夹角θ的范围是_______________.a 与b 同向时,夹角θ=________;a 与b 反向时,夹角θ=____________.(3)如果向量a 与b 的夹角是____________,我们就说a 与b 垂直,记作____________.3.平面向量的正交分解及坐标表示 (1)平面向量的正交分解把一个向量分解为两个____________的向量,叫做向量的正交分解.(2)在平面直角坐标系内,分别取与x 轴、y 轴方向相同的两个单位向量i ,j 作为基底.任作一个向量a ,由平面向量基本定理知,有且只有一对实数x ,y ,使得a =x i +y j .则实数对__________叫做向量a 的(直角)坐标,记作a =__________,其中x 叫做a 在x 轴上的坐标,y 叫做a 在y 轴上的坐标,该式叫做向量的坐标表示.与a 相等的向量的坐标也为________.显然,i =__________, j =__________,0=__________.4.平面向量的坐标运算(1)已知a =(x 1,y 1),b =(x 2,y 2),则a ±b =___________________________________________.(2)如果A (x 1,y 1),B (x 2,y 2),则AB →=___________________________________________.(3)若a =(x ,y ),则λa =____________.(4)如果a =(x 1,y 1),b =(x 2,y 2)(b ≠0),则a ∥b的充要条件是____________________.自查自纠: 1.a =λ1e 1+λ2e 2 基底2.(1)非零 (2)0°≤θ≤180° 0° 180° (3)90° a ⊥b3.(1)互相垂直 (2)(x ,y ) (x ,y ) (x ,y ) (1,0) (0,1) (0,0)4.(1)(x 1±x 2,y 1±y 2) (2)(x 2-x 1,y 2-y 1) (3)(λx ,λy ) (4)x 1y 2-x 2y 1=0在△ABC 中,已知A (2,1),B (0,2),BC →=(1,-2),则向量AC →= ( )A .(0,0)B .(2,2)C .(-1,-1)D .(-3,-3) 解:因为A (2,1),B (0,2),所以AB →=(-2,1).又因为BC →=(1,-2),所以AC →=AB →+BC →=(-2,1)+(1,-2)=(-1,-1).故选C .(2017·杭州模拟)已知e 1,e 2是表示平面内所有向量的一组基底,则下列四组向量中,不能作为一组基底的是 ( )A .e 1+e 2和e 1-e 2B .3e 1-2e 2和4e 2-6e 1C .e 1+2e 2和e 2+2e 1D .e 2和e 1+e 2解:因为4e 2-6e 1=-2(3e 1-2e 2),所以3e 1-2e 2与4e 2-6e 1共线,又作为一组基底的两个向量一定不共线,所以它们不能作为一组基底.故选B .(2018·北京朝阳高三一模)已知平面向量 a =(x ,1),b =(2,x -1)且a ∥b ,则实数x 的值是( )A .-1B .1C .2D .-1或2 解:由a =(x ,1),b =(2,x -1)且a ∥b ,可以得到x (x -1)=2,即(x -2)(x +1)=0,所以x =-1或x =2.故选D .(2017·全国卷Ⅲ)已知向量a =(-2,3), b =(3,m ),且a ⊥b ,则m =________.解:由题意可得,-2×3+3m =0,所以m =2.故填2.在正方形ABCD 中,M ,N 分别是BC ,CD的中点,若AC →=λAM →+μBN →,则实数λ+μ=________.解法一:因为AC →=AB →+BC →,AM →=AB →+BM →=AB →+12BC →,BN →=BC →+CN →=BC →-12AB →,所以由AC →=λAM →+μBN →有⎩⎨⎧1=λ-12μ,1=12λ+μ,解得⎩⎨⎧λ=65,μ=25,所以λ+μ=85. 解法二:不妨设正方形边长为2,以A 为坐标原点,AB →方向为x 轴正方向,AD →方向为y 轴正方向建立平面直角坐标系,则AC →=(2,2),AM →=(2,1),BN →=(-1,2).由AC →=λAM →+μBN →有⎩⎪⎨⎪⎧2λ-μ=2,λ+2μ=2,解得λ=65,μ=25,λ+μ=85.故填85.类型一 向量共线充要条件的坐标表示(1)(2018·全国卷Ⅲ)已知向量a =(1,2),b =(2,-2),c =(1,λ),若c ∥(2a +b ),则λ=________.解:由题可得2a +b =(4,2),因为c ∥(2a +b ),c =(1,λ),所以4λ-2=0,即λ=12.故填12.(2)已知平面向量a =(2m +1,3),b =(2,m ),且a 与b 反向,则|b |等于( )A .1027B .2 2C .52D .52或2 2解:根据题意a ∥b 知m (2m +1)-3×2=0,解得m =-2或m =32.当m =32时,a =(4,3),b =⎝⎛⎭⎫2,32,则a =2b ,此时两向量同向,与已知不符,故m =-2,此时b =(2,-2),故|b |=22.故选B .点 拨:两平面向量共线的充要条件有两种形式:①若a =(x 1,y 1),b =(x 2,y 2),则a ∥b (b ≠0)的充要条件是x 1y 2-x 2y 1=0;②a ∥b (a ≠0),当且仅当唯一一个实数λ,使b =λa .向量共线的坐标表示既可以判定两向量平行,也可以由平行求参数.当两向量的坐标均非零时,也可以利用坐标对应成比例来求解.(1) (2017·郑州月考)已知向量a = (1-sin θ,1),b =⎝⎛⎭⎫12,1+sin θ,若a ∥b ,则锐角 θ=________.解:由a ∥b ,得(1-sin θ)(1+sin θ)=12,所以cos 2θ=12,所以cos θ=22或cos θ=-22,又θ为锐角,所以θ=45°.故填45°.(2)已知向量OA →=(1,-3),OB →=(2,-1), OC →=(k +1,k -2),若A ,B ,C 三点能构成三角形,则实数k 的取值范围是________.解:若点A ,B ,C 能构成三角形,则向量AB →,AC →不共线.因为AB →=OB →-OA →=(2,-1)-(1,-3)=(1,2),AC →=OC →-OA →=(k +1,k -2)-(1,-3)=(k ,k +1),所以1×(k +1)-2k ≠0,解得k ≠1. 故填{k |k ∈R ,且k ≠1}.类型二 平面向量基本定理及其应用(1)如图,已知平面内有三个向量OA →,OB →,OC →,其中OA →与OB →的夹角为120°,OA →与OC →的夹角为30°,且|OA →|=|OB →|=1,|OC →|=23,若 OC →=λOA →+μOB →(λ,μ∈R ),则λ+μ的值为________.解法一:以λOA →和μOB →为邻边作平行四边形OB 1CA 1,如图,则OC →=OB 1→+OA 1→.因为OA →与OB →的夹角为120°, OA →与OC →的夹角为30°,所以∠B 1OC =90°,在Rt △OB 1C 中,|OC →|=23,所以|OB 1→|=2,|B 1C →|=4,所以|OA 1→|=|B 1C →|=4, 所以OC →=4OA →+2OB →,即λ+μ=6. 解法二:以O 为原点,建立如图所示的平面直角坐标系,则A (1,0),C (23cos30°,23sin30°),B (cos120°,sin120°).即A (1,0),C (3,3),B ⎝⎛⎭⎫-12,32.由OC →=λOA →+μOB →=λ(1,0)+μ⎝⎛⎭⎫-12,32=⎝⎛⎭⎫λ-12μ,32μ,即⎝⎛⎭⎫λ-12μ,32μ=(3,3),得⎩⎨⎧λ-12μ=3,32μ=3,所以⎩⎪⎨⎪⎧μ=2,λ=4, 即λ+μ=6.故填6.(2)已知向量AC →,AD →和AB →在正方形网格中的位置如图所示,若AC →=λAB →+μAD →,则λμ=________.解:建立如图所示的平面直角坐标系xAy ,则 AC →=(2,-2),AB →=(1,2),AD →=(1,0).由题意可知(2,-2)=λ(1,2)+μ(1,0),即⎩⎪⎨⎪⎧2=λ+μ,-2=2λ, 解得⎩⎪⎨⎪⎧λ=-1,μ=3,所以λμ=-3.故填 -3.点 拨:应用平面向量基本定理应注意:①平面向量基本定理中的基底必须是两个不共线的向量;②选定基底后,通过向量的加、减、数乘以及向量平行的充要条件,把相关向量用这一组基底表示出来;③强调几何性质在向量运算中的作用,用基底表示未知向量,常借助图形的几何性质,如平行、相似等;④在基底未给出的情况下,合理地选取基底会给解题带来方便.(1)设向量a ,b 不平行,向量λa +b与a +2b 平行,则实数λ=________.解:由于λa +b 与a +2b 平行,且a +2b ≠0,所以存在唯一的实数μ∈R ,使得λa +b =μ(a +2b ),即(λ-μ)a +(1-2μ)b =0.因为a ,b 不平行,所以⎩⎪⎨⎪⎧λ-μ=0,1-2μ=0, 解得λ=μ=12.故填12.(2)向量a ,b ,c 在正方形网格中的位置如图所示.若c =λa +μb (λ,μ∈R ),则λμ=________.解:设i ,j 分别为水平向右和竖直向上的单位向量,则a =-i +j ,b =6i +2j ,c =-i -3j ,所以-i -3j =λ(-i +j )+μ(6i +2j ),即-i -3j =(-λ+6μ)i +(λ+2μ)j ,根据平面向量基本定理得⎩⎪⎨⎪⎧-1=-λ+6μ,-3=λ+2μ, 解得⎩⎪⎨⎪⎧λ=-2,μ=-12.所以λμ=4.故填4.类型三 求向量的坐标已知梯形ABCD ,其中AB ∥CD ,且DC =2AB ,三个顶点A (1,2),B (2,1),C (4,2),则点D 的坐标为________.解:因为在梯形ABCD 中,DC =2AB ,AB ∥CD ,所以DC →=2AB →.设点D 的坐标为(x ,y ),则DC →=(4,2)-(x ,y )=(4-x ,2-y ), AB →=(2,1)-(1,2)=(1,-1),所以(4-x ,2-y )=2(1,-1),即(4-x ,2-y )=(2,-2),所以⎩⎪⎨⎪⎧4-x =2,2-y =-2, 解得⎩⎪⎨⎪⎧x =2,y =4,故点D 的坐标为(2,4).故填(2,4).点 拨:平面向量坐标运算的技巧:①向量的坐标运算常建立在向量的线性运算的基础之上,若已知有向线段两端点的坐标,则应考虑坐标运算;②解题过程中,常利用“向量相等,则其坐标相同”这一原则,通过列方程(组)进行求解.已知三点A (a ,0),B (0,b ),C (2,2),其中a >0,b >0.(1)若O 是坐标原点,且四边形OACB 是平行四边形,试求a ,b 的值;(2)若A ,B ,C 三点共线,试求1a +1b 的值.解:(1)因为四边形OACB 是平行四边形,所以OA →=BC →,即(a ,0)=(2,2-b ),⎩⎪⎨⎪⎧a =2,2-b =0, 解得⎩⎪⎨⎪⎧a =2,b =2. 故a =2,b =2.(2)因为AB →=(-a ,b ),BC →=(2,2-b ), 由A ,B ,C 三点共线,得AB →∥BC →, 所以-a (2-b )-2b =0,即2(a +b )=ab , 因为a >0,b >0, 所以1a +1b =12.类型四 向量坐标的应用(2018·天津)如图,在平面四边形ABCD 中,AB ⊥BC ,AD ⊥CD ,∠BAD =120°,AB =AD =1.若点E 为边CD 上的动点,则AE →·BE →的最小值为 ( )A .2116B .32C .2516D .3解法一:以点A 为原点,以AB 所在的直线为x 轴,建立如图(1)所示的平面直角坐标系,依题意得,A (0,0),B (1,0).因为AD =1,∠BAD =120°,所以D ⎝⎛⎭⎫-12,32,且直线CD 的倾斜角为30°,所以直线CD 的方程为y -32=33⎝⎛⎭⎫x +12,即y =33(x +2).由⎩⎪⎨⎪⎧y =33(x +2),x =1,得⎩⎨⎧x =1,y =3,所以点C 的坐标为(1,3).因为点E 为边CD 上的动点,故可设E ⎝⎛⎭⎫t ,33(t +2),-12≤t ≤1,所以AE →=⎝⎛⎭⎫t ,33(t +2),BE →=⎝⎛⎭⎫t -1,33(t +2),所以AE →·BE →=t (t -1)+⎣⎡⎦⎤33(t +2)2=43⎝⎛⎭⎫t +182+2116,所以当t =-18时,AE →·BE →取最小值,为2116.图(1) 图(2)解法二:易知DC =3,∠CAD =60°,设DE =x (0≤x ≤3),则AE →·BE →=(AD →+DE →)·(BA →+AD →+DE →)=1×1×cos60°+12+0+x ×1×cos150°+0+x 2=⎝⎛⎭⎫x -342+2116≥2116.解法三:如图(2),取AB 的中点F ,连接EF ,则AE →·BE →=EA →·EB →=(EF →+F A →)·(EF →-F A →)=EF →2- F A →2=EF →2-14.可知当且仅当|EF →|最小时AE →·BE →取最小值,分别过F ,B 作CD 的垂线,垂足分别为H ,G ,当点E 与H 重合时,EF 取到最小值,易知EF 为梯形DABG 的中位线,由已知得|BG |=32,|AD |=1,则|HF |=|EF |=12(|BG |+|AD |)=54.故AE →·BE →的最小值为2116.故选A .点 拨:向量的坐标运算,往往能降低推理的难度,与向量相关的最值、范围问题,可优先考虑坐标运算.用向量法解决平面几何相关问题的步骤是:①建立平面几何与向量的联系,用向量表示问题中涉及的几何元素,将平面几何问题转化为向量问题;②通过向量运算,研究几何元素之间的关系,如长度、距离、夹角等问题;③把运算结果“翻译”成几何关系,从而解决问题.(2017·安徽联考)在边长为1的正△ABC 中,D ,E 是边BC 的两个三等分点(D 靠近点B ),则AD →·AE →等于 ( )A .16B .29C .1318D .13解法一:建立如图所示的直角坐标系,则A ⎝⎛⎭⎫0,32,D ⎝⎛⎭⎫-16,0,E ⎝⎛⎭⎫16,0,所以AD →=⎝⎛⎭⎫-16,-32,AE →=⎝⎛⎭⎫16,-32,AD →·AE →=-16×16+⎝⎛⎭⎫-32×⎝⎛⎭⎫-32=1318.解法二:取BC 中点O ,则AD →·AE →=(AO →+OD →)·(AO →+OE →)=AO →2-OE →2=34-136=1318.解法三:如图,|AB →|=|AC →|=1,〈AB →,AC →〉=60°.因为D ,E 是边BC 的两个三等分点,所以AD →·AE →=⎝⎛⎭⎫AB →+13BC →·⎝⎛⎭⎫AC →+13CB →=AB →·AC →-13AB →·BC →+13BC →·AC →-19BC →2=1×1×cos60°-13×1×1×cos120°+13×1×1×cos60°-19=12+16+16-19=1318.故选C .1.对平面向量基本定理的理解(1)平面向量基本定理实际上是向量的分解定理,并且是平面向量正交分解的理论依据,也是向量坐标表示的基础.(2)平面向量的一组基底是两个不共线向量,平面向量基底可以有无穷多组.(3)用平面向量基本定理可将平面中任一向量分解成形如a =λ1e 1+λ2e 2(λ1,λ2∈R ,e 1,e 2为同一平面内不共线的两个向量)的形式,它是向量线性运算知识的延伸.(4)如果e 1,e 2是同一平面内的一组基底,且λ1e 1+λ2e 2=0(λ1,λ2∈R ),那么λ1=λ2=0.2.对两向量夹角的理解两向量的夹角是指当两向量的起点相同时,表示两向量的有向线段所形成的角.若起点不同,则应通过平移,使其起点相同.3.向量的坐标表示向量用坐标表示后,向量的计算和证明都归结为数的运算,这使问题大大简化.一个向量的坐标等于表示此向量的有向线段的终点坐标减去始点的坐标,当且仅当向量的起点为原点时,向量的坐标才等于其终点的坐标.两个向量相等,当且仅当其坐标相同.4.向量坐标的应用向量具有代数和几何的双重特征,如向量运算的平行四边形法则、三角形法则、平面向量基本定理等都可以认为是从几何的角度来研究向量的特征;而引入坐标后,就可以通过代数运算来研究向量,凸显出了向量的代数特征,为用代数的方法研究向量问题奠定了基础.在处理很多与向量有关的问题时,坐标化是一种常见的思路,利用坐标可以使许多问题的解决变得更加简捷.1.下列向量组中,能作为表示它们所在平面内所有向量的一组基底的是 ( )A .a =(1,2),b =(0,0)B .a =(1,-2),b =(3,5)C .a =(3,2),b =(9,6)D .a =⎝⎛⎭⎫-34,12, b =(3,-2) 解:在平面内,根据向量基底的定义知,两个向量不共线即可作为基底.故选B .2.设向量a =(2,4)与向量b =(x ,6)共线,则实数x = ( )A .2B .3C .4D .6 解:因为a ∥b ,所以2×6-4x =0,解得x =3.故选B .3.(2017·抚州模拟)若向量a =(1,1),b =(-1,1),c =(4,2),则c = ( )A .3a +bB .3a -bC .-a +3bD .a +3b解法一:设c =m a +n b ,则(4,2)=(m -n ,m +n ),所以⎩⎪⎨⎪⎧m -n =4,m +n =2, 所以⎩⎪⎨⎪⎧m =3,n =-1, 所以c =3a -b .解法二:代入验证法.对于A ,3a +b =3(1,1)+(-1,1)=(2,4)≠c ,故A 不正确;同理选项C 、D 也不正确;对于B ,3a -b =(4,2)=c ,故B 正确.故选B .4.已知M (3,-2),N (-5,-1),且MP →=12MN →,则P 点的坐标为 ( )A .(-8,1)B .⎝⎛⎭⎫-1,-32 C .⎝⎛⎭⎫1,32 D .(8,-1) 解:设P (x ,y ),则MP →=(x -3,y +2), 而12MN →=12(-8,1)=⎝⎛⎭⎫-4,12, 所以⎩⎪⎨⎪⎧x -3=-4,y +2=12, 解得⎩⎪⎨⎪⎧x =-1,y =-32.所以P 点坐标为⎝⎛⎭⎫-1,-32.故选B . 5.如图,e 1,e 2为互相垂直的单位向量,向量a ,b 如图,则向量a -b 可表示为 ( )A .3e 2-e 1B .-2e 1-4e 2C .e 1-3e 2D .3e 1-e 2解:由图易知a -b =-3e 2+e 1=e 1-3e 2.故选C .6.(2018·浙江)已知a ,b ,e 是平面向量,e 是单位向量,若非零向量a 与e 的夹角为π3,向量b满足b 2-4e ·b +3=0,则|a -b |的最小值是( )A .3-1B .3+1C .2D .2- 3解:不妨设e =(1,0),b =(x ,y ),则由b 2-4e ·b +3=0⇒(x -2)2+y 2=1,再由a 与e 的夹角为π3可知,所求为如图两条射线上的点到圆上的点距离的最小值,即为2sin60°-1=3-1.故选A . 7.已知向量e 1,e 2是两个不共线的向量,若a =2e 1-e 2与b =e 1+λe 2共线,则λ=________. 解:若a =2e 1-e 2与b =e 1+λe 2共线,则 2e 1-e 2=k (e 1+λe 2)=k e 1+λk e 2,得⎩⎪⎨⎪⎧k =2,λk =-1, 解得λ=-12.故填-12.8.(2018·山东菏泽高三一模)已知在△ABC 中,D 为边BC 上的点,且BD =3DC ,点E 为AD 的中点,BE →=mAB →+nAC →,则m +n =________.解:BE →=BD →+DE →=BD →-12AD →=BD →-12(AB →+BD →)=12BD →-12AB →=12×34BC →-12AB →=38BC →-12AB →=38(AC →-AB →)-12AB →=-78AB →+38AC →.又BE →=mAB →+nAC →,所以mAB →+nAC →=-78AB→+38AC →.又因为AB →与AC →不共线,所以m =-78,n =38,所以m +n =-12.故填-12. 9.已知a =(1,0),b =(2,1).求:(1)|a +3b |;(2)当k 为何实数时,k a -b 与a +3b 平行,平行时它们是同向还是反向?解:(1)因为a =(1,0),b =(2,1), 所以a +3b =(7,3),故|a +3b |=72+32=58.(2)k a -b =(k -2,-1),a +3b =(7,3), 因为k a -b 与a +3b 平行, 所以3(k -2)+7=0,即k =-13.此时k a -b =(k -2,-1)=⎝⎛⎭⎫-73,-1, a +3b =(7,3),则a +3b =-3(k a -b ),即此时向量a +3b 与k a -b 方向相反.10.已知点O (0,0),A (1,2),B (4,5)及OP →=OA →+tAB →,试问: (1)当t 为何值时,P 在x 轴上?P 在y 轴上?P在第三象限内?(2)四边形OABP 能否成为平行四边形?若能,求出t 的值;若不能,请说明理由. 解:(1)依题意,得AB →=(3,3),所以OP →=OA →+tAB →=(1+3t ,2+3t ),即P (1+3t ,2+3t ).若P 在x 轴上,则2+3t =0,所以t =-23;若P 在y 轴上,则1+3t =0,所以t =-13;若P 在第三象限内,则⎩⎪⎨⎪⎧1+3t <0,2+3t <0, 所以t <-23. (2)因为OA →=(1,2),PB →=(3-3t ,3-3t ),若OABP 是平行四边形,则OA →=PB →,所以⎩⎪⎨⎪⎧3-3t =1,3-3t =2. 此方程无解.故四边形OABP 不可能成为平行四边形. 11.已知平行四边形三个顶点的坐标分别为(-1,0),(3,0),(1,-5),求第四个顶点的坐标.解:如图所示,令A (-1,0),B (3,0),C (1,-5),D (x ,y ).(1)若四边形ABCD 1为平行四边形, 则AD 1→=BC →,且AD 1→=(x +1,y ),BC →=(-2,-5).所以⎩⎪⎨⎪⎧x +1=-2,y =-5,解得⎩⎪⎨⎪⎧x =-3,y =-5. 所以D 1(-3,-5).(2)若四边形ACD 2B 为平行四边形,则AB →=CD 2→,且AB →=(4,0),CD 2→=(x -1,y +5).所以⎩⎪⎨⎪⎧x -1=4,y +5=0, 解得⎩⎪⎨⎪⎧x =5,y =-5. 所以D 2(5,-5).(3)若四边形ACBD 3为平行四边形,则AD 3→=CB →,且AD 3→=(x +1,y ),CB →=(2,5),所以⎩⎪⎨⎪⎧x +1=2,y =5, 解得⎩⎪⎨⎪⎧x =1,y =5. 所以D 3(1,5).综上所述,平行四边形第四个顶点的坐标为(-3,-5)或(5,-5)或(1,5).如图所示,在△ABC 中,点M 是AB的中点,且AN →=12NC →,BN 与CM 相交于点E ,设AB →=a ,AC →=b ,用基底a ,b 表示向量AE →=________.解:易得AN →=13AC →=13b ,AM →=12AB →=12a ,由N ,E ,B 三点共线知,存在实数m ,满足AE →=mAN →+ (1-m )AB →=13m b +(1-m )a .由C ,E ,M 三点共线知存在实数n ,满足AE →=nAM →+(1-n )AC →=12n a +(1-n )b .所以13m b +(1-m )a =12n a +(1-n )b .由于a ,b为基底,所以⎩⎨⎧1-m =12n ,13m =1-n ,解得⎩⎨⎧m =35,n =45. 所以AE →=25a +15b .故填25a +15b .5.2 平面向量的基本定理及坐标表示1.平面向量基本定理如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1,λ2,使_______________________________.我们把不共线的向量e 1,e 2叫做表示这一平面内所有向量的一组__________.2.向量的夹角(1)已知两个________向量a 和b ,作OA →=a , OB →=b ,则∠AOB =θ叫做向量a 与b 的夹角(如图).(2)向量夹角θ的范围是_______________.a 与b 同向时,夹角θ=________;a 与b 反向时,夹角θ=____________.(3)如果向量a 与b 的夹角是____________,我们就说a 与b 垂直,记作____________.3.平面向量的正交分解及坐标表示 (1)平面向量的正交分解把一个向量分解为两个____________的向量,叫做向量的正交分解.(2)在平面直角坐标系内,分别取与x 轴、y 轴方向相同的两个单位向量i ,j 作为基底.任作一个向量a ,由平面向量基本定理知,有且只有一对实数x ,y ,使得a =x i +y j .则实数对__________叫做向量a 的(直角)坐标,记作a =__________,其中x 叫做a 在x 轴上的坐标,y 叫做a 在y 轴上的坐标,该式叫做向量的坐标表示.与a 相等的向量的坐标也为________.显然,i =__________, j =__________,0=__________.4.平面向量的坐标运算(1)已知a =(x 1,y 1),b =(x 2,y 2),则a ±b =___________________________________________.(2)如果A (x 1,y 1),B (x 2,y 2),则AB →=___________________________________________.(3)若a =(x ,y ),则λa =____________.(4)如果a =(x 1,y 1),b =(x 2,y 2)(b ≠0),则a ∥b 的充要条件是____________________.自查自纠: 1.a =λ1e 1+λ2e 2 基底2.(1)非零 (2)0°≤θ≤180° 0° 180° (3)90° a ⊥b3.(1)互相垂直 (2)(x ,y ) (x ,y ) (x ,y ) (1,0) (0,1) (0,0)4.(1)(x 1±x 2,y 1±y 2) (2)(x 2-x 1,y 2-y 1) (3)(λx ,λy ) (4)x 1y 2-x 2y 1=0在△ABC 中,已知A (2,1),B (0,2),BC →=(1,-2),则向量AC →= ( )A .(0,0)B .(2,2)C .(-1,-1)D .(-3,-3) 解:因为A (2,1),B (0,2),所以AB →=(-2,1).又因为BC →=(1,-2),所以AC →=AB →+BC →=(-2,1)+(1,-2)=(-1,-1).故选C .(2017·杭州模拟)已知e 1,e 2是表示平面内所有向量的一组基底,则下列四组向量中,不能作为一组基底的是 ( )A .e 1+e 2和e 1-e 2B .3e 1-2e 2和4e 2-6e 1C .e 1+2e 2和e 2+2e 1D .e 2和e 1+e 2解:因为4e 2-6e 1=-2(3e 1-2e 2),所以3e 1-2e 2与4e 2-6e 1共线,又作为一组基底的两个向量一定不共线,所以它们不能作为一组基底.故选B .(2018·北京朝阳高三一模)已知平面向量 a =(x ,1),b =(2,x -1)且a ∥b ,则实数x 的值是( )A .-1B .1C .2D .-1或2 解:由a =(x ,1),b =(2,x -1)且a ∥b ,可以得到x (x -1)=2,即(x -2)(x +1)=0,所以x =-1或x =2.故选D .(2017·全国卷Ⅲ)已知向量a =(-2,3),b =(3,m ),且a ⊥b ,则m =________.解:由题意可得,-2×3+3m =0,所以m =2.故填2.在正方形ABCD 中,M ,N 分别是BC ,CD的中点,若AC →=λAM →+μBN →,则实数λ+μ=________.解法一:因为AC →=AB →+BC →,AM →=AB →+BM →=AB →+12BC →,BN →=BC →+CN →=BC →-12AB →,所以由AC →=λAM →+μBN →有⎩⎨⎧1=λ-12μ,1=12λ+μ,解得⎩⎨⎧λ=65,μ=25,所以λ+μ=85. 解法二:不妨设正方形边长为2,以A 为坐标原点,AB →方向为x 轴正方向,AD →方向为y 轴正方向建立平面直角坐标系,则AC →=(2,2),AM →=(2,1),BN →=(-1,2).由AC →=λAM →+μBN →有⎩⎪⎨⎪⎧2λ-μ=2,λ+2μ=2,解得λ=65,μ=25,λ+μ=85.故填85.类型一 向量共线充要条件的坐标表示(1)(2018·全国卷Ⅲ)已知向量a =(1,2),b =(2,-2),c =(1,λ),若c ∥(2a +b ),则λ=________.解:由题可得2a +b =(4,2),因为c ∥(2a +b ),c =(1,λ),所以4λ-2=0,即λ=12.故填12.(2)已知平面向量a =(2m +1,3),b =(2,m ),且a 与b 反向,则|b |等于( )A .1027B .2 2C .52D .52或2 2解:根据题意a ∥b 知m (2m +1)-3×2=0,解得m =-2或m =32.当m =32时,a =(4,3),b =⎝⎛⎭⎫2,32,则a =2b ,此时两向量同向,与已知不符,故m =-2,此时b =(2,-2),故|b |=22.故选B .点 拨:两平面向量共线的充要条件有两种形式:①若a =(x 1,y 1),b =(x 2,y 2),则a ∥b (b ≠0)的充要条件是x 1y 2-x 2y 1=0;②a ∥b (a ≠0),当且仅当唯一一个实数λ,使b =λa .向量共线的坐标表示既可以判定两向量平行,也可以由平行求参数.当两向量的坐标均非零时,也可以利用坐标对应成比例来求解.(1) (2017·郑州月考)已知向量a = (1-sin θ,1),b =⎝⎛⎭⎫12,1+sin θ,若a ∥b ,则锐角 θ=________.解:由a ∥b ,得(1-sin θ)(1+sin θ)=12,所以cos 2θ=12,所以cos θ=22或cos θ=-22,又θ为锐角,所以θ=45°.故填45°.(2)已知向量OA →=(1,-3),OB →=(2,-1), OC →=(k +1,k -2),若A ,B ,C 三点能构成三角形,则实数k 的取值范围是________.解:若点A ,B ,C 能构成三角形,则向量AB →,AC →不共线.因为AB →=OB →-OA →=(2,-1)-(1,-3)=(1,2),AC →=OC →-OA →=(k +1,k -2)-(1,-3)=(k ,k +1),所以1×(k +1)-2k ≠0,解得k ≠1. 故填{k |k ∈R ,且k ≠1}.类型二 平面向量基本定理及其应用(1)如图,已知平面内有三个向量OA →,OB →,OC →,其中OA →与OB →的夹角为120°,OA →与OC →的夹角为30°,且|OA →|=|OB →|=1,|OC →|=23,若 OC →=λOA →+μOB →(λ,μ∈R ),则λ+μ的值为________.解法一:以λOA →和μOB →为邻边作平行四边形OB 1CA 1,如图,则OC →=OB 1→+OA 1→.因为OA →与OB →的夹角为120°, OA →与OC →的夹角为30°,所以∠B 1OC =90°,在Rt △OB 1C 中,|OC →|=23,所以|OB 1→|=2,|B 1C →|=4,所以|OA 1→|=|B 1C →|=4, 所以OC →=4OA →+2OB →,即λ+μ=6. 解法二:以O 为原点,建立如图所示的平面直角坐标系,则A (1,0),C (23cos30°,23sin30°),B (cos120°,sin120°).即A (1,0),C (3,3),B ⎝⎛⎭⎫-12,32.由OC →=λOA →+μOB →=λ(1,0)+μ⎝⎛⎭⎫-12,32=⎝⎛⎭⎫λ-12μ,32μ,即⎝⎛⎭⎫λ-12μ,32μ=(3,3),得⎩⎨⎧λ-12μ=3,32μ=3,所以⎩⎪⎨⎪⎧μ=2,λ=4, 即λ+μ=6.故填6.(2)已知向量AC →,AD →和AB →在正方形网格中的位置如图所示,若AC →=λAB →+μAD →,则λμ=________.解:建立如图所示的平面直角坐标系xAy ,则 AC →=(2,-2),AB →=(1,2),AD →=(1,0).由题意可知(2,-2)=λ(1,2)+μ(1,0),即⎩⎪⎨⎪⎧2=λ+μ,-2=2λ, 解得⎩⎪⎨⎪⎧λ=-1,μ=3,所以λμ=-3.故填 -3.点 拨:应用平面向量基本定理应注意:①平面向量基本定理中的基底必须是两个不共线的向量;②选定基底后,通过向量的加、减、数乘以及向量平行的充要条件,把相关向量用这一组基底表示出来;③强调几何性质在向量运算中的作用,用基底表示未知向量,常借助图形的几何性质,如平行、相似等;④在基底未给出的情况下,合理地选取基底会给解题带来方便.(1)设向量a ,b 不平行,向量λa +b与a +2b 平行,则实数λ=________.解:由于λa +b 与a +2b 平行,且a +2b ≠0,所以存在唯一的实数μ∈R ,使得λa +b =μ(a +2b ),即(λ-μ)a +(1-2μ)b =0.因为a ,b 不平行,所以⎩⎪⎨⎪⎧λ-μ=0,1-2μ=0, 解得λ=μ=12.故填12.(2)向量a ,b ,c 在正方形网格中的位置如图所示.若c =λa +μb (λ,μ∈R ),则λμ=________.解:设i ,j 分别为水平向右和竖直向上的单位向量,则a =-i +j ,b =6i +2j ,c =-i -3j ,所以-i -3j =λ(-i +j )+μ(6i +2j ),即-i -3j =(-λ+6μ)i +(λ+2μ)j ,根据平面向量基本定理得⎩⎪⎨⎪⎧-1=-λ+6μ,-3=λ+2μ, 解得⎩⎪⎨⎪⎧λ=-2,μ=-12.所以λμ=4.故填4.类型三 求向量的坐标已知梯形ABCD ,其中AB ∥CD ,且DC =2AB ,三个顶点A (1,2),B (2,1),C (4,2),则点D 的坐标为________.解:因为在梯形ABCD 中,DC =2AB ,AB ∥CD ,所以DC →=2AB →.设点D 的坐标为(x ,y ),则DC →=(4,2)-(x ,y )=(4-x ,2-y ), AB →=(2,1)-(1,2)=(1,-1),所以(4-x ,2-y )=2(1,-1),即(4-x ,2-y )=(2,-2),所以⎩⎪⎨⎪⎧4-x =2,2-y =-2, 解得⎩⎪⎨⎪⎧x =2,y =4,故点D 的坐标为(2,4).故填(2,4).点 拨:平面向量坐标运算的技巧:①向量的坐标运算常建立在向量的线性运算的基础之上,若已知有向线段两端点的坐标,则应考虑坐标运算;②解题过程中,常利用“向量相等,则其坐标相同”这一原则,通过列方程(组)进行求解.已知三点A (a ,0),B (0,b ),C (2,2),其中a >0,b >0.(1)若O 是坐标原点,且四边形OACB 是平行四边形,试求a ,b 的值;(2)若A ,B ,C 三点共线,试求1a +1b 的值.解:(1)因为四边形OACB 是平行四边形,所以OA →=BC →,即(a ,0)=(2,2-b ),⎩⎪⎨⎪⎧a =2,2-b =0, 解得⎩⎪⎨⎪⎧a =2,b =2. 故a =2,b =2.(2)因为AB →=(-a ,b ),BC →=(2,2-b ), 由A ,B ,C 三点共线,得AB →∥BC →, 所以-a (2-b )-2b =0,即2(a +b )=ab , 因为a >0,b >0, 所以1a +1b =12.类型四 向量坐标的应用(2018·天津)如图,在平面四边形ABCD 中,AB ⊥BC ,AD ⊥CD ,∠BAD =120°,AB =AD =1.若点E 为边CD 上的动点,则AE →·BE →的最小值为 ( )A .2116B .32C .2516D .3解法一:以点A 为原点,以AB 所在的直线为x 轴,建立如图(1)所示的平面直角坐标系,依题意得,A (0,0),B (1,0).因为AD =1,∠BAD =120°,所以D ⎝⎛⎭⎫-12,32,且直线CD 的倾斜角为30°,所以直线CD 的方程为y -32=33⎝⎛⎭⎫x +12,即y =33(x +2).由⎩⎪⎨⎪⎧y =33(x +2),x =1,得⎩⎨⎧x =1,y =3,所以点C 的坐标为(1,3).因为点E 为边CD 上的动点,故可设E ⎝⎛⎭⎫t ,33(t +2),-12≤t ≤1,所以AE →=⎝⎛⎭⎫t ,33(t +2),BE →=⎝⎛⎭⎫t -1,33(t +2),所以AE →·BE →=t (t -1)+⎣⎡⎦⎤33(t +2)2=43⎝⎛⎭⎫t +182+2116,所以当t =-18时,AE →·BE →取最小值,为2116.图(1) 图(2)解法二:易知DC =3,∠CAD =60°,设DE =x (0≤x ≤3),则AE →·BE →=(AD →+DE →)·(BA →+AD →+DE →)=1×1×cos60°+12+0+x ×1×cos150°+0+x 2=⎝⎛⎭⎫x -342+2116≥2116.解法三:如图(2),取AB 的中点F ,连接EF ,则AE →·BE →=EA →·EB →=(EF →+F A →)·(EF →-F A →)=EF →2- F A →2=EF →2-14.可知当且仅当|EF →|最小时AE →·BE →取最小值,分别过F ,B 作CD 的垂线,垂足分别为H ,G ,当点E 与H 重合时,EF 取到最小值,易知EF 为梯形DABG 的中位线,由已知得|BG |=32,|AD |=1,则|HF |=|EF |=12(|BG |+|AD |)=54.故AE →·BE →的最小值为2116.故选A .点 拨:向量的坐标运算,往往能降低推理的难度,与向量相关的最值、范围问题,可优先考虑坐标运算.用向量法解决平面几何相关问题的步骤是:①建立平面几何与向量的联系,用向量表示问题中涉及的几何元素,将平面几何问题转化为向量问题;②通过向量运算,研究几何元素之间的关系,如长度、距离、夹角等问题;③把运算结果“翻译”成几何关系,从而解决问题.(2017·安徽联考)在边长为1的正△ABC 中,D ,E 是边BC 的两个三等分点(D 靠近点B ),则AD →·AE →等于 ( )A .16B .29C .1318D .13解法一:建立如图所示的直角坐标系,则A ⎝⎛⎭⎫0,32,D ⎝⎛⎭⎫-16,0,E ⎝⎛⎭⎫16,0,所以AD →=⎝⎛⎭⎫-16,-32,AE →=⎝⎛⎭⎫16,-32,AD →·AE →=-16×16+⎝⎛⎭⎫-32×⎝⎛⎭⎫-32=1318.解法二:取BC 中点O ,则AD →·AE →=(AO →+OD →)·(AO →+OE →)=AO →2-OE →2=34-136=1318.解法三:如图,|AB →|=|AC →|=1,〈AB →,AC →〉=60°.因为D ,E 是边BC 的两个三等分点,所以AD →·AE →=⎝⎛⎭⎫AB →+13BC →·⎝⎛⎭⎫AC →+13CB →=AB →·AC →-13AB →·BC →+13BC →·AC →-19BC →2=1×1×cos60°-13×1×1×cos120°+13×1×1×cos60°-19=12+16+16-19=1318.故选C .1.对平面向量基本定理的理解(1)平面向量基本定理实际上是向量的分解定理,并且是平面向量正交分解的理论依据,也是向量坐标表示的基础.(2)平面向量的一组基底是两个不共线向量,平面向量基底可以有无穷多组.(3)用平面向量基本定理可将平面中任一向量分解成形如a =λ1e 1+λ2e 2(λ1,λ2∈R ,e 1,e 2为同一平面内不共线的两个向量)的形式,它是向量线性运算知识的延伸.(4)如果e 1,e 2是同一平面内的一组基底,且λ1e 1+λ2e 2=0(λ1,λ2∈R ),那么λ1=λ2=0.2.对两向量夹角的理解两向量的夹角是指当两向量的起点相同时,表示两向量的有向线段所形成的角.若起点不同,则应通过平移,使其起点相同.3.向量的坐标表示向量用坐标表示后,向量的计算和证明都归结为数的运算,这使问题大大简化.一个向量的坐标等于表示此向量的有向线段的终点坐标减去始点的坐标,当且仅当向量的起点为原点时,向量的坐标才等于其终点的坐标.两个向量相等,当且仅当其坐标相同.4.向量坐标的应用向量具有代数和几何的双重特征,如向量运算的平行四边形法则、三角形法则、平面向量基本定理等都可以认为是从几何的角度来研究向量的特征;而引入坐标后,就可以通过代数运算来研究向量,凸显出了向量的代数特征,为用代数的方法研究向量问题奠定了基础.在处理很多与向量有关的问题时,坐标化是一种常见的思路,利用坐标可以使许多问题的解决变得更加简捷.1.下列向量组中,能作为表示它们所在平面内所有向量的一组基底的是 ( )A .a =(1,2),b =(0,0)B .a =(1,-2),b =(3,5)C .a =(3,2),b =(9,6)D .a =⎝⎛⎭⎫-34,12, b =(3,-2) 解:在平面内,根据向量基底的定义知,两个向量不共线即可作为基底.故选B .2.设向量a =(2,4)与向量b =(x ,6)共线,则实数x = ( )A .2B .3C .4D .6 解:因为a ∥b ,所以2×6-4x =0,解得x =3.故选B .3.(2017·抚州模拟)若向量a =(1,1),b =(-1,1),c =(4,2),则c = ( )A .3a +bB .3a -bC .-a +3bD .a +3b解法一:设c =m a +n b ,则(4,2)=(m -n ,m +n ),所以⎩⎪⎨⎪⎧m -n =4,m +n =2, 所以⎩⎪⎨⎪⎧m =3,n =-1, 所以c =3a -b .解法二:代入验证法.对于A ,3a +b =3(1,1)+(-1,1)=(2,4)≠c ,故A 不正确;同理选项C 、D 也不正确;对于B ,3a -b =(4,2)=c ,故B 正确.故选B .4.已知M (3,-2),N (-5,-1),且MP →=12MN →,则P 点的坐标为 ( )A .(-8,1)B .⎝⎛⎭⎫-1,-32 C .⎝⎛⎭⎫1,32 D .(8,-1) 解:设P (x ,y ),则MP →=(x -3,y +2), 而12MN →=12(-8,1)=⎝⎛⎭⎫-4,12, 所以⎩⎪⎨⎪⎧x -3=-4,y +2=12, 解得⎩⎪⎨⎪⎧x =-1,y =-32.所以P 点坐标为⎝⎛⎭⎫-1,-32.故选B . 5.如图,e 1,e 2为互相垂直的单位向量,向量a ,b 如图,则向量a -b 可表示为 ( )A .3e 2-e 1B .-2e 1-4e 2C .e 1-3e 2D .3e 1-e 2解:由图易知a -b =-3e 2+e 1=e 1-3e 2.故选C .6.(2018·浙江)已知a ,b ,e 是平面向量,e 是单位向量,若非零向量a 与e 的夹角为π3,向量b满足b 2-4e ·b +3=0,则|a -b |的最小值是( )A .3-1B .3+1C .2D .2- 3解:不妨设e =(1,0),b =(x ,y ),则由b 2-4e ·b +3=0⇒(x -2)2+y 2=1,再由a 与e 的夹角为π3可知,所求为如图两条射线上的点到圆上的点距离的最小值,即为2sin60°-1=3-1.故选A . 7.已知向量e 1,e 2是两个不共线的向量,若a =2e 1-e 2与b =e 1+λe 2共线,则λ=________. 解:若a =2e 1-e 2与b =e 1+λe 2共线,则 2e 1-e 2=k (e 1+λe 2)=k e 1+λk e 2,得⎩⎪⎨⎪⎧k =2,λk =-1, 解得λ=-12.故填-12.8.(2018·山东菏泽高三一模)已知在△ABC 中,D 为边BC 上的点,且BD =3DC ,点E 为AD 的中点,BE →=mAB →+nAC →,则m +n =________.解:BE →=BD →+DE →=BD →-12AD →=BD →-12(AB →+BD →)=12BD →-12AB →=12×34BC →-12AB →=38BC →-12AB →=38(AC →-AB →)-12AB →=-78AB →+38AC →.又BE →=mAB →+nAC →,所以mAB →+nAC →=-78AB→+38AC →.又因为AB →与AC →不共线,所以m =-78,n =38,所以m +n =-12.故填-12. 9.已知a =(1,0),b =(2,1).求:(1)|a +3b |;(2)当k 为何实数时,k a -b 与a +3b 平行,平行时它们是同向还是反向?解:(1)因为a =(1,0),b =(2,1), 所以a +3b =(7,3),故|a +3b |=72+32=58.(2)k a -b =(k -2,-1),a +3b =(7,3), 因为k a -b 与a +3b 平行, 所以3(k -2)+7=0,即k =-13.此时k a -b =(k -2,-1)=⎝⎛⎭⎫-73,-1, a +3b =(7,3),则a +3b =-3(k a -b ),即此时向量a +3b 与k a -b 方向相反.10.已知点O (0,0),A (1,2),B (4,5)及OP →=OA →+tAB →,试问: (1)当t 为何值时,P 在x 轴上?P 在y 轴上?P在第三象限内?(2)四边形OABP 能否成为平行四边形?若能,求出t 的值;若不能,请说明理由. 解:(1)依题意,得AB →=(3,3),所以OP →=OA →+tAB →=(1+3t ,2+3t ),即P (1+3t ,2+3t ).若P 在x 轴上,则2+3t =0,所以t =-23;若P 在y 轴上,则1+3t =0,所以t =-13;若P 在第三象限内,则⎩⎪⎨⎪⎧1+3t <0,2+3t <0, 所以t <-23. (2)因为OA →=(1,2),PB →=(3-3t ,3-3t ),若OABP 是平行四边形,则OA →=PB →,所以⎩⎪⎨⎪⎧3-3t =1,3-3t =2. 此方程无解.故四边形OABP 不可能成为平行四边形. 11.已知平行四边形三个顶点的坐标分别为(-1,0),(3,0),(1,-5),求第四个顶点的坐标.解:如图所示,令A (-1,0),B (3,0),C (1,-5),D (x ,y ).(1)若四边形ABCD 1为平行四边形, 则AD 1→=BC →,且AD 1→=(x +1,y ),BC →=(-2,-5).所以⎩⎪⎨⎪⎧x +1=-2,y =-5,解得⎩⎪⎨⎪⎧x =-3,y =-5. 所以D 1(-3,-5).(2)若四边形ACD 2B 为平行四边形,则AB →=CD 2→,且AB →=(4,0),CD 2→=(x -1,y +5).所以⎩⎪⎨⎪⎧x -1=4,y +5=0, 解得⎩⎪⎨⎪⎧x =5,y =-5. 所以D 2(5,-5).(3)若四边形ACBD 3为平行四边形,则AD 3→=CB →,且AD 3→=(x +1,y ),CB →=(2,5),所以⎩⎪⎨⎪⎧x +1=2,y =5, 解得⎩⎪⎨⎪⎧x =1,y =5. 所以D 3(1,5).综上所述,平行四边形第四个顶点的坐标为(-3,-5)或(5,-5)或(1,5).如图所示,在△ABC 中,点M 是AB的中点,且AN →=12NC →,BN 与CM 相交于点E ,设AB →=a ,AC →=b ,用基底a ,b 表示向量AE →=________.解:易得AN →=13AC →=13b ,AM →=12AB →=12a ,由N ,E ,B 三点共线知,存在实数m ,满足AE →=mAN →+ (1-m )AB →=13m b +(1-m )a .由C ,E ,M 三点共线知存在实数n ,满足AE →=nAM →+(1-n )AC →=12n a +(1-n )b .所以13m b +(1-m )a =12n a +(1-n )b .由于a ,b为基底,所以⎩⎨⎧1-m =12n ,13m =1-n ,解得⎩⎨⎧m =35,n =45. 所以AE →=25a +15b .故填25a +15b .。
平面向量的基本定理及坐标表示
平面向量的基本定理及坐标表示全文共四篇示例,供读者参考第一篇示例:平面向量是我们在高中数学学习中接触到的一个重要知识点,它在几何学和代数学中都有着重要的作用。
平面向量本质上是有大小和方向的量,它可以用箭头表示出来,箭头的长度表示向量的大小,箭头的方向表示向量的方向。
而平面向量的基本定理和坐标表示是我们学习平面向量的重要内容,下面我就来详细介绍一下。
一、平面向量的基本定理1. 平行向量的概念两个向量如果它们的方向相同或者相反,那么我们称这两个向量为平行向量。
平行向量的特点是它们的模相等,方向相同或者相反。
2. 向量的加法如果有两个向量a和b,它们的起点相同,那么我们可以通过平行四边形法则将这两个向量相加,即将向量b平移至向量a的终点,然后连接向量a的起点和向量b的终点,这条连接线就是向量a+b的结果。
3. 向量的数量积向量的数量积,也称为点积或内积,是两个向量的特殊乘积。
设有两个向量a和b,它们之间夹角为θ,那么a·b=|a||b|cosθ,其中|a|和|b|分别表示向量a和b的模长。
二、平面向量的坐标表示在平面直角坐标系中,我们可以用坐标表示一个向量。
设有一个向量a,它在平面直角坐标系中的起点为O(0,0),终点为A(x,y),那么我们可以用坐标(x,y)表示向量a。
在平面直角坐标系中,向量a与坐标轴之间的夹角为θ,那么向量a的方向角为θ。
根据三角函数的定义,我们有cosθ=x/|a|,sinθ=y/|a|,tanθ=y/x,这三个公式可以帮助我们求解向量的方向角。
对于向量的数量积和叉积,我们也可以通过向量的坐标表示来进行计算。
设向量a在坐标系中的起点为O(0,0),终点为A(x1,y1),向量b在坐标系中的起点为O(0,0),终点为B(x2,y2),那么向量a和向量b 的数量积为x1x2+y1y2,向量a和向量b的叉积为x1y2-x2y1。
平面向量的基本定理和坐标表示是我们学习平面向量的重要内容,通过深入理解这些知识点,我们可以更好地解决平面向量的相关问题,为我们的数学学习打下坚实的基础。
高考数学(文)人教A课件52平面向量基本定理及向量的坐标表示
-5-
知识梳理
双基自测
1
2
3
4
5
5.向量的夹角
已知两个 非零
向量a和b,作 =a,=b, 则
∠AOB=θ(0°≤θ≤180°)叫做向量a与b的夹角.如果向量a与b的夹角
a⊥b
是90°,那么我们说a与b垂直,记作
.
-6-
知识梳理
双基自测
1
2
3
4
5
1.下列结论正确的打“√”,错误的打“×”.
5.2 平面向量基本定理及
向量
的坐标表示
知识梳理
双基自测
1
2
3
4
5
1.平面向量基本定理
如果e1,e2是同一平面内的两个 不共线 向量,那么对于这一平
面内的任意向量a,有且只有一对实数λ1,λ2,使a= λ1e1+λ2e2
.其
中,不共线的向量e1,e2叫做表示这一平面内所有向量的一
组 基底 .把一个向量分解为两个 互相垂直 的向量,叫做把
(x1-x2,y1-y2)
a-b=
,λa= (λx1,λy1)
,
|a|= 12 + 12 ,|a+b|= (2 + 1 )2 + (2 + 1 )2 .
-4-
知识梳理
双基自测
1
2
3
4.平面向量共线的坐标表示
设a=(x1,y1),b=(x2,y2),则a∥b⇔
4
5
x1y2-x2y1=0 .
(2)||=||=1,| |=√2,
π
由 tan α=7,α∈[0,π]得 0<α<2 ,sin α>0,cos α>0,
2020届高三理数一轮讲义:5.2-平面向量基本定理及坐标表示(含答案)
考点二 平面向量的坐标运算
【例2】(1)设A(0,1),B(1,3),C(-1,5),D(0,-1),则 + 等于()
A.-2 B.2 C.-3 D.3
(2)向量a,b,c在正方形网格中的位置如图所示,若c=λa+μb(λ,μ∈R),则 =()
A.1B.2C.3D.4
解析(1)由题意得 =(1,2), =(-1,4), =(0,-2),所以 + =(0,6)=-3(0,-2)=-3 .
∴x=2,y=2,则点P(2,2).
答案A
4.(2015·全国Ⅰ卷)已知点A(0,1),B(3,2),向量 =(-4,-3),则向量 =()
A.(-7,-4)B.(7,4)
C.(-1,4)D.(1,4)
解析根据题意得 =(3,1),∴ = - =(-4,-3)-(3,1)=(-7,
-4),故选A.
答案A
(3)设a,b是平面内的一组基底,若实数λ1,μ1,λ2,μ2满足λ1a+μ1b=λ2a+μ2b,则λ1=λ2,μ1=μ2.()
(4)若a=(x1,y1),b=(x2,y2),则a∥b的充要条件可以表示成 = .()
解析(1)共线向量不可以作为基底.
(2)同一向量在不同基底下的表示不相同.
(4)若b=(0,0),则 = 无意义.
由 与 共线,得(4λ-4)×6-4λ×(-2)=0,
解得λ= ,
所以 = =(3,3),
所以点P的坐标为(3,3).
法二设点P(x,y),则 =(x,y),因为 =(4,4),且 与 共线,所以 = ,即x=y.
又 =(x-4,y), =(-2,6),且 与 共线,
所以(x-4)×6-y×(-2)=0,解得x=y=3,
平面向量基本定理及坐标表示
平面向量基本定理及坐标表示1.平面向量基本定理如果e 1、e 2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a ,存在唯一一对实数λ1、λ2,使a =λ1e 1+λ2e 2,其中,不共线的向量e 1、e 2叫做表示这一平面内所有向量的一组基底.2.平面向量的坐标运算(1)向量加法、减法、数乘及向量的模设a =(x 1,y 1),b =(x 2,y 2),则a +b =(x 1+x 2,y 1+y 2),a -b =(x 1-x 2,y 1-y 2),λa =(λx 1,λy 1),|a |=x 21+y 21.(2)向量坐标的求法①若向量的起点是坐标原点,则终点坐标即为向量的坐标. ②设A (x 1,y 1),B (x 2,y 2),则AB →=(x 2-x 1,y 2-y 1),|AB →|=x 2-x 12+y 2-y 12.3.平面向量共线的坐标表示设a =(x 1,y 1),b =(x 2,y 2),其中b ≠0,a 、b 共线⇔x 1y 2-x 2y 1=0.选择题:设e 1,e 2是平面内一组基底,那么( ) A .若实数λ1,λ2使λ1e 1+λ2e 2=0,则λ1=λ2=0B .空间内任一向量a 可以表示为a =λ1e 1+λ2e 2(λ1,λ2为实数)C .对实数λ1,λ2,λ1e 1+λ2e 2不一定在该平面内D .对平面内任一向量a ,使a =λ1e 1+λ2e 2的实数λ1,λ2有无数对下列各组向量中,可以作为基底的是( )A .e 1=(0,0),e 2=(1,-2)B .e 1=(-1,2),e 2=(5,7)C .e 1=(3,5),e 2=(6,10)D .e 1=(2,-3),e 2=⎝ ⎛⎭⎪⎫12,-34解析 两个不共线的非零向量构成一组基底,故选B.已知平面向量a =(1,1),b =(1,-1),则向量12a -32b 等于( )A .(-2,-1)B .(-2,1)C .(-1,0)D .(-1,2) 解析 12a =(12,12),32b =(32,-32),故12a -32b =(-1,2).已知a =(1,1),b =(1,-1),c =(-1,2),则c 等于( )A .-12a +32b a -32b C .-32a -12b D .-32a +12b解析 设c =λa +μb ,∴(-1,2)=λ(1,1)+μ(1,-1),∴⎩⎨⎧-1=λ+μ,2=λ-μ,∴⎩⎪⎨⎪⎧λ=12,μ=-32,∴c =12a -32b .已知向量a =(1,2),b =(1,0),c =(3,4).若λ为实数,(a +λb )∥c ,则λ等于( ) C .1 D .2 解析 ∵a +λb =(1+λ,2),c =(3,4),且(a +λb )∥c ,∴1+λ3=24,∴λ=12已知a =(5,-2),b =(-4,-3),若a -2b +3c =0,则c 等于( )解析 由已知3c =-a +2b =(-5,2)+(-8,-6)=(-13,-4),∴c =⎝ ⎛⎭⎪⎫-133,-43.已知向量OA→=(k,12),OB →=(4,5),OC →=(-k,10),且A ,B ,C 三点共线,则k 的值是( )A .-23解析 AB→=OB →-OA →=(4-k ,-7),AC →=OC →-OA →=(-2k ,-2),∵A ,B ,C 三点共线,∴AB →,AC →共线,∴-2×(4-k )=-7×(-2k ),解得k =-23已知点A (1,3),B (4,-1),则与向量A B →同方向的单位向量为( )解析 A B →=O B →-O A →=(4,-1)-(1,3)=(3,-4),∴与A B →同方向的单位向量为A B →|A B →|=⎝⎛⎭⎪⎫35,-45.已知点A (-1,5)和向量a =(2,3),若AB→=3a ,则点B 的坐标为( )A .(7,4)B .(7,14)C .(5,4)D .(5,14)解析 设点B 的坐标为(x ,y ),则AB →=(x +1,y -5),由AB →=3a ,得⎩⎨⎧ x +1=6,y -5=9,解得⎩⎨⎧x =5,y =14.已知向量a =(-1,2),b =(3,m ),m ∈R ,则“m =-6”是“a ∥(a +b )”的( ) A .充分必要条件 B .充分不必要条件 C .必要不充分条件 D .既不充分也不必要条件解析 由题意得a +b =(2,2+m ),由a ∥(a +b ),得-1×(2+m )=2×2,∴m =-6,则“m =-6”是“a∥(a +b )”的充要条件,故选A已知在□ABCD 中,AD→=(2,8),AB →=(-3,4),则AC →=( )A .(-1,-12)B .(-1,12)C .(1,-12)D .(1,12) 解析 ∵四边形ABCD 是平行四边形,∴AC →=AB →+AD →=(-1,12)在△ABC 中,点D 在BC 边上,且CD→=2DB →,CD →=rAB →+sAC →,则r +s 等于( )C .-3D .0解析 ∵CD →=2DB →,∴CD →=23CB →=23(AB →-AC →)=23AB →-23AC →,则r +s =23+⎝ ⎛⎭⎪⎫-23=0已知点M 是△ABC 的边BC 的中点,点E 在边AC 上,且EC→=2AE →,则向量EM →=( )AC →+13AB → AC →+16AB → AC →+12AB → AC →+32AB →解析 如图,∵EC →=2AE →,∴EM →=EC →+CM →=23AC →+12CB →=23AC →+12(AB →-AC →)=12AB →+16AC →在△ABC 中,点P 在BC 上,且BP→=2PC →,点Q 是AC 的中点,若PA →=(4,3),PQ →=(1,5),则BC →等于( )A .(-2,7)B .(-6,21)C .(2,-7)D .(6,-21)解析 BC →=3PC →=3(2PQ →-PA →)=6PQ →-3PA →=(6,30)-(12,9)=(-6,21).在梯形ABCD 中,AB ∥CD ,AB =2CD ,M ,N 分别为CD ,BC 的中点,若AB →=λAM →+μAN →,则λ+μ等于( )解析 ∵AB →=AN →+NB →=AN →+CN →=AN →+(CA →+AN →)=2AN →+CM →+MA →=2AN →-14AB →-AM →,∴AB →=85AN →-45AM →,∴λ+μ=45.填空题:已知平面向量a =(1,2),b =(-2,m ),且a ∥b ,则2a +3b =________. 解析 由a =(1,2),b =(-2,m ),且a ∥b ,得1×m =2×(-2),即m =-4. 从而b =(-2,-4),那么2a +3b =2(1,2)+3(-2,-4)=(-4,-8).已知向量a =(x,1),b =(2,y ),若a +b =(1,-1),则x +y =________.解析 ∵(x,1)+(2,y )=(1,-1),∴⎩⎨⎧ x +2=1,y +1=-1,解得⎩⎨⎧x =-1,y =-2,∴x +y =-3.已知向量a =(1,2),b =(0,1),设u =a +k b ,v =2a -b ,若u ∥v ,则实数k 的值为( ) A .-1 B .-12 D .1解析 ∵u =(1,2)+k (0,1)=(1,2+k ),v =(2,4)-(0,1)=(2,3),又u ∥v ,∴1×3=2(2+k ),得k =-12已知向量a =(1,2),b =(x,1),u =a +2b ,v =2a -b ,且u ∥v ,则实数x 的值为________.解析 ∵a =(1,2),b =(x,1),u =a +2b ,v =2a -b ,∴u =(1,2)+2(x,1)=(2x +1,4),v =2(1,2)-(x,1)=(2-x,3).又∵u ∥v ,∴3(2x +1)-4(2-x )=0,即10x =5,解得x =12. 若三点A (1,-5),B (a ,-2),C (-2,-1)共线,则实数a 的值为________解析 AB →=(a -1,3),AC →=(-3,4),根据题意AB →∥AC →,∴4(a -1)=3×(-3),即4a =-5,∴a =-54在□ABCD 中,AC 为一条对角线,AB→=(2,4),AC →=(1,3),则向量BD →的坐标为__________.解析 ∵AB →+BC →=AC →,∴BC →=AC →-AB →=(-1,-1),∴BD →=AD →-AB →=BC →-AB →=(-3,-5).已知□ABCD 的顶点A (-1,-2),B (3,-1),C (5,6),则顶点D 的坐标为________ 解析 设D (x ,y ),则由AB →=DC →,得(4,1)=(5-x,6-y ),即⎩⎨⎧ 4=5-x ,1=6-y ,解得⎩⎨⎧x =1,y =5.已知梯形ABCD ,其中AB ∥CD ,且DC =2AB ,三个顶点A (1,2),B (2,1),C (4,2),则点D 的坐标为_______ 解析 ∵在梯形ABCD 中,AB ∥CD ,DC =2AB ,∴DC→=2AB →.设点D 的坐标为(x ,y ),则DC→=(4,2)-(x ,y )=(4-x,2-y ),AB →=(2,1)-(1,2)=(1,-1),∴(4-x,2-y )=2(1,-1),即(4-x,2-y )=(2,-2), ∴⎩⎨⎧ 4-x =2,2-y =-2,解得⎩⎨⎧x =2,y =4,故点D 的坐标为(2,4).如图,在△ABC 中,AN →=13NC →,P 是BN 上的一点,若AP →=mAB →+211AC →,则实数m 的值为________. 解析:设BP→=kBN →,k ∈R .∵AP →=AB →+BP →=AB →+kBN →=AB →+k (AN →-AB →)=AB →+k (14AC →-AB →)=(1-k )AB →+k 4AC →, 且AP →=mAB →+211AC →,∴1-k =m ,k 4=211,解得k =811,m =311.在□ABCD 中,AB →=e 1,AC →=e 2,NC →=14AC →,BM →=12MC →,则MN →=________(用e 1,e 2表示) 解析 如图,MN →=CN →-CM →=CN →+2BM →=CN →+23BC →=-14AC →+23(AC →-AB →)=-14e 2+23(e 2-e 1)=-23e 1+512e 2如图,已知AB→=a ,AC →=b ,BD →=3DC →,用a ,b 表示AD →,则AD →=____________解析 AD →=AB →+BD →=AB →+34BC →=AB →+34(AC →-AB →)=14AB →+34AC →=14a +34b若三点A (2,2),B (a,0),C (0,b )(ab ≠0)共线,则1a +1b 的值为________.解析 AB →=(a -2,-2),AC →=(-2,b -2),则(a -2)(b -2)-4=0,即ab -2a -2b =0,∴1a +1b =12.设OA →=(-2,4),OB →=(-a,2),OC →=(b,0),a >0,b >0,O 为坐标原点,若A ,B ,C 三点共线,则1a +1b 的最小值为________解析 由题意得AB→=(-a +2,-2),AC →=(b +2,-4), 又AB →∥AC →,∴(-a +2,-2)=λ(b +2,-4),即⎩⎨⎧-a +2=λb +2,-2=-4λ,整理得2a +b =2,∴1a +1b =12(2a +b )(1a +1b )=12(3+2a b +b a )≥12(3+22a b ·b a )=3+222(当且仅当b =2a 时,等号成立).已知A (7,1),B (1,4),直线y =12ax 与线段AB 交于点C ,且AC →=2CB →,则实数a =________.解析 设C (x ,y ),则AC→=(x -7,y -1),CB →=(1-x,4-y ),∵AC →=2CB →,∴⎩⎨⎧ x -7=21-x ,y -1=24-y ,解得⎩⎨⎧x =3,y =3.∴C (3,3).又∵C 在直线y =12ax 上,∴3=12a ·3,∴a =2.已知向量OA→=(1,-3),OB →=(2,-1),OC →=(k +1,k -2),若A ,B ,C 三点能构成三角形,则实数k 应满足的条件是________解析 若点A ,B ,C 能构成三角形,则向量AB →,AC →不共线.∵AB →=OB →-OA →=(2,-1)-(1,-3)=(1,2),AC→=OC →-OA →=(k +1,k -2)-(1,-3)=(k ,k +1), ∴1×(k +1)-2k ≠0,解得k ≠1.设0<θ<π2,向量a =(sin2θ,cos θ),b =(cos θ,1),若a ∥b ,则tan θ=________.解析 ∵a ∥b ,∴sin2θ×1-cos 2θ=0,∴2sin θcos θ-cos 2θ=0, ∵0<θ<π2,∴cos θ>0,∴2sin θ=cos θ,∴tan θ=12解答题:已知A (1,1),B (3,-1),C (a ,b ).(1)若A ,B ,C 三点共线,求a ,b 的关系式; (2)若AC→=2AB →,求点C 的坐标. 解析 (1)由已知得AB→=(2,-2),AC →=(a -1,b -1),∵A ,B ,C 三点共线,∴AB→∥AC →,∴2(b -1)+2(a -1)=0,即a +b =2.(2)∵AC→=2AB →,∴(a -1,b -1)=2(2,-2). ∴⎩⎨⎧ a -1=4,b -1=-4,解得⎩⎨⎧a =5,b =-3.∴点C 的坐标为(5,-3).已知点O 为坐标原点,A (0,2),B (4,6),OM →=t 1OA →+t 2AB →. (1)求点M 在第二或第三象限的充要条件;(2)求证:当t 1=1时,不论t 2为何实数,A ,B ,M 三点共线. (1)解 OM →=t 1OA →+t 2AB →=t 1(0,2)+t 2(4,4)=(4t 2,2t 1+4t 2). 当点M 在第二或第三象限时,有⎩⎨⎧4t 2<0,2t 1+4t 2≠0,故所求的充要条件为t 2<0且t 1+2t 2≠0.(2)证明 当t 1=1时,由(1)知OM →=(4t 2,4t 2+2).∵AB →=OB →-OA →=(4,4),AM →=OM →-OA →=(4t 2,4t 2)=t 2(4,4)=t 2AB →, ∴AM→与AB →共线,又有公共点A ,∴A ,B ,M 三点共线.能力提升题组已知向量a =(2,3),b =(-1,2),若(m a +n b )∥(a -2b ),则mn 等于( ) A .-2 B .2 C .-12 解析 由题意得m a +n b =(2m -n,3m +2n ),a -2b =(4,-1),∵(m a +n b )∥(a -2b ),∴-(2m -n )-4(3m +2n )=0,∴m n =-12已知|OA →|=1,|OB →|=3,OA →·OB →=0,点C 在∠AOB 内,且OC →与OA →的夹角为30°,设OC →=mOA →+nOB →(m ,n ∈R ),则mn 的值为( )A .2 C .3 D .4 解析 ∵OA →·OB→=0,∴OA →⊥OB →,以OA 为x 轴,OB 为y 轴建立直角坐标系,OA →=(1,0),OB →=(0,3),OC →=mOA →+nOB →=(m ,3n ).∵tan 30°=3n m =33,∴m =3n ,即m n =3如图,在△OAB 中,P 为线段AB 上的一点,OP →=xOA →+yOB →,且B P →=2P A →,则( )A .x =23,y =13B .x =13,y =23C .x =14,y =34D .x =34,y =14 解析 由题意知O P →=O B →+B P →,又B P →=2P A →,∴O P →=O B →+23B A →=O B →+23(O A →-O B →)=23O A →+13O B →,∴x =23,y =13.已知点A (-1,2),B (2,8),AC →=13AB →,DA →=-13BA →,则CD →的坐标为________解析 设点C ,D 的坐标分别为(x 1,y 1),(x 2,y 2).由题意得AC →=(x 1+1,y 1-2),AB →=(3,6),DA →=(-1-x 2,2-y 2),BA →=(-3,-6).∵AC →=13AB →,DA →=-13BA →,∴有⎩⎨⎧ x 1+1=1,y 1-2=2和⎩⎨⎧-1-x 2=1,2-y 2=2.解得⎩⎨⎧ x 1=0,y 1=4和⎩⎨⎧x 2=-2,y 2=0.∴点C ,D 的坐标分别为(0,4),(-2,0),从而CD→=(-2,-4).已知向量a =(1,1),b =(1,-1),c =(2cos α,2sin α)(α∈R ),实数m ,n 满足m a +n b =c ,则(m -3)2+n 2的最大值为________解析 由m a +n b =c ,可得⎩⎨⎧m +n =2cos α,m -n =2sin α,故(m +n )2+(m -n )2=2,即m 2+n 2=1,故点M (m ,n )在单位圆上,则点P (3,0)到点M 的距离的最大值为|OP |+1=3+1=4,故(m -3)2+n 2的最大值为42=16.已知△ABC 和点M 满足MA→+MB →+MC →=0.若存在实数m ,使得AB →+AC →=mAM →成立,则m =________.解析∵MA→+MB →+MC →=0,∴M 为△ABC 的重心.如图所示,连接AM 并延长交BC 于D ,则D 为BC 的中点. ∴AM →=23AD →.又AD →=12(AB →+AC →),∴AM →=13(AB →+AC →), 即AB →+AC →=3AM →,∴m =3.如图所示,A ,B ,C 是圆O 上的三点,线段CO 的延长线与BA 的延长线交于圆O 外的一点D ,若OC →=mOA→+nOB →,则m +n 的取值范围是________ 解析 由题意得,OC→=kOD →(k <0),又|k |=|OC→||OD →|<1,∴-1<k <0.又∵B ,A ,D 三点共线,∴OD →=λOA →+(1-λ)OB →,∴mOA→+nOB →=kλOA →+k (1-λ)OB →, ∴m =kλ,n =k (1-λ),∴m+n=k,从而m+n∈(-1,0).。
2020届高三文理科数学一轮复习《平面向量基本定理及坐标表示》专题汇编(学生版)
《平面向量基本定理及坐标表示》专题一、相关知识点1.平面向量基本定理(1)定理:如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,存在唯一一对实数λ1,λ2,使a =λ1e 1+λ2e 2.(2)基底:不共线的向量e 1,e 2叫做表示这一平面内所有向量的一组基底. 2.平面向量的坐标表示在平面直角坐标系中,分别取与x 轴、y 轴方向相同的两个单位向量i ,j 作为基底,该平面内的任一向量a 可表示成a =xi +yj ,把有序数对(x ,y )叫做向量a 的坐标,记作a =(x ,y ). 3.平面向量的坐标运算(1)向量加法、减法、数乘及向量的模 设a =(x 1,y 1),b =(x 2,y 2),则a +b =(x 1+x 2,y 1+y 2),a -b =(x 1-x 2,y 1-y 2),λa =(λx 1,λy 1),|a |=x 21+y 21.(2)向量坐标的求法①若向量的起点是坐标原点,则终点坐标即为向量的坐标.②设A (x 1,y 1),B (x 2,y 2),则AB →=(x 2-x 1,y 2-y 1),|AB →|=(x 2-x 1)2+(y 2-y 1)2. 4.平面向量共线的坐标表示设a =(x 1,y 1),b =(x 2,y 2),其中b ≠0.a ,b 共线⇔x 1y 2-x 2y 1=0. 5.常用结论(1)若a 与b 不共线,且λa +μb =0,则λ=μ=0.(2)设a =(x 1,y 1),b =(x 2,y 2),如果x 2≠0,y 2≠0,则a ∥b ⇔x 1x 2=y 1y 2.(3)已知P 为线段AB 的中点,若A (x 1,y 1),B (x 2,y 2),则P 点坐标为⎝⎛⎭⎫x 1+x 22,y 1+y 22;已知△ABC 的顶点A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),则△ABC 的重心G 的坐标为⎝⎛⎭⎫x 1+x 2+x 33,y 1+y 2+y 33题型一 平面向量基本定理及其应用1.设e 1,e 2是平面内一组基底,若λ1e 1+λ2e 2=0,则λ1+λ2=________. 2.下列各组向量中,可以作为基底的是( )A .e 1=(0,0),e 2=(1,2)B .e 1=(-1,2),e 2=(5,7)C .e 1=(3,5),e 2=(6,10)D .e 1=(2,-3),e 2=⎝⎛⎭⎫12,-343.在下列向量组中,可以把向量a =(3,2)表示出来的是( )A .e 1=(0,0),e 2=(1,2)B .e 1=(-1,2),e 2=(5,-2)C .e 1=(3,5),e 2=(6,10)D .e 1=(2,-3),e 2=(-2,3)4.已知向量e 1,e 2不共线,实数x ,y 满足(3x -4y )e 1+(2x -3y )e 2=6e 1+3e 2,则2x -y =_______.5.在平行四边形ABCD 中,E 为DC 边的中点,且AB →=a ,AD →=b ,则BE →等于( )A .b -12aB .b +12aC .a +12bD .a -12b6.在△ABC 中,P ,Q 分别是AB ,BC 的三等分点,且AP =13AB ,BQ =13BC ,若AB →=a ,AC →=b ,则PQ →=( )A .13a +13bB .-13a +13bC .13a -13bD .-13a -13b7.如图,在△ABC 中,BE 是边AC 的中线,O 是边BE 的中点,若AB →=a ,AC →=b ,则AO →=( )A .12a +12bB .12a +13bC .14a +12bD .12a +14b8.在平行四边形ABCD 中,AC 与BD 交于点O ,F 是线段DC 上的点.若DC =3DF ,设AC ―→=a ,BD ―→=b ,则AF ―→=( )A.14a +12bB.23a +13bC.12a +14bD.13a +23b9.在直角梯形ABCD 中,AB =2AD =2DC ,E 为BC 边上一点,BC ―→=3EC ―→,F 为AE 的中点,则BF ―→=( )A.23AB ―→-13AD ―→B.13AB ―→-23AD ―→ C .-23AB ―→+13AD ―→ D .-13AB ―→+23AD ―→10.在梯形ABCD 中,AB ∥CD ,AB =2CD ,M ,N 分别为CD ,BC 的中点.若AB ―→=λAM ―→+μAN ―→,则λ+μ等于( )A.15B.25C.35D.4511.在平行四边形ABCD 中,E 和F 分别是边CD 和BC 的中点,若AC →=λAE →+μAF →,其中λ,μ∈R ,则λ+μ=_______.12.在△ABC 中,点P 是AB 上一点,且CP ―→=23CA ―→+13CB ―→,Q 是BC 的中点,AQ 与CP 的交点为M ,又CM―→=t CP ―→,则实数t 的值为________.13.在△ABC 所在平面上有三点P ,Q ,R ,满足PA ―→+PB ―→+PC ―→=AB ―→,QA ―→+QB ―→+QC ―→=BC ―→,RA ―→+RB ―→+RC ―→=CA ―→,则△PQR 的面积与△ABC 的面积之比是( )A .1∶2B .1∶3C .1∶4D .1∶514.已知G 是△ABC 的重心,过点G 作直线MN 与AB ,AC 分别交于点M ,N ,且AM ―→=x AB ―→,AN ―→=y AC ―→(x ,y >0),则3x +y 的最小值是( )A.83B.72C.52D.43+23315.在△ABC 中,点D 满足BD →=34BC →,当点E 在射线AD (不含点A )上移动时,若AE →=λAB →+μAC →,则λ+1μ的最小值为________.16.如图,已知△OCB 中,点C 是以A 为中点的点B 的对称点,D 是将OB →分为2∶1的一个内分点,DC 和OA 交于点E ,设OA →=a ,OB →=b .(1)用a 和b 表示向量OC →、DC →;(2)若OE →=λOA →,求实数λ的值.题型二 平面向量的坐标运算1.若a =(2,3),b =(-1,4),则2a -b =________.2.如果向量a =(1,2),b =(4,3),那么a -2b =3.已知平面向量a =(2,-1),b =(1,3),那么|a +b |等于4.已知▱ABCD 的顶点A (-1,-2),B (3,-1),C (5,6),则顶点D 的坐标为________.5.已知点A (0,1),B (3,2),向量AC →=(-4,-3),则向量BC →=6.若向量a =(1,1),b =(-1,1),c =(4,2),则c 等于( )A .3a +bB .3a -bC .-a +3bD .a +3b7.已知a =(1,2),b =(-1,1),c =2a -b ,则|c |=8.已知A (1,4),B (-3,2),向量BC ―→=(2,4),D 为AC 的中点,则BD ―→=________.9.已知在平行四边形ABCD 中,AD ―→=(3,7),AB ―→=(-2,3),对角线AC 与BD 交于点O ,则CO ―→的坐标为( )A.⎝⎛⎭⎫-12,5B.⎝⎛⎭⎫12,5C.⎝⎛⎭⎫-12,-5D.⎝⎛⎭⎫12,-510.已知点 A (1,3),B (4,-1),则与AB →同方向的单位向量是( )A .⎝⎛⎭⎫35,-45B .⎝⎛⎭⎫45,-35C .⎝⎛⎭⎫-35,45D .⎝⎛⎭⎫-45,3511.在平面直角坐标系xOy 中,已知A (1,0),B (0,1),C 为坐标平面内第一象限内一点且∠AOC =π4,|OC ―→|=2,若OC ―→=λOA ―→+μOB ―→,则λ+μ=12.已知a =(5,-2),b =(-4,-3),若a -2b +3c =0,则c 等于13.已知向量a =(2,1),b =(1,-2).若ma +nb =(9,-8)(m ,n ∈R),则m -n 的值为________.14.平面直角坐标系xOy 中,已知A (1,0),B (0,1),C (-1,c ),(c >0),且|OC →|=2,若OC →=λOA →+μOB →,则实数λ+μ的值为________.题型三 平面向量共线的坐标表示1.已知向量a =(1,-1),则下列向量中与向量a 平行且同向的是( )A .b =(2,-2)B .b =(-2,2)C .b =(-1,2)D .b =(2,-1)2.已知向量a =(1,2),b =(-2,3),若m a -n b 与2a +b 共线(其中n ∈R ,且n ≠0),则mn =________.3.已知向量a =(m ,4),b =(3,-2),且a ∥b ,则m =________.4.已知向量a =(1,2),b =(2,-2),c =(1,λ).若c ∥(2a +b ),则λ=________.5.设向量a =(x,1),b =(4,x ),若a ,b 方向相反,则实数x 的值为________.6.已知A (-2,-3),B (2,1),C (1,4),D (-7,t ),若AB →与CD →共线,则t =________.7已知向量a =(1,2),a -b =(4,5),c =(x,3),若(2a +b )∥c ,则x =________.8.已知向量OA ―→=(k ,12),OB ―→=(4,5),OC ―→=(-k ,10),且A ,B ,C 三点共线,则k 的值是9.若三点A (1,-5),B (a ,-2),C (-2,-1)共线,则实数a 的值为____.10.向量a =⎝⎛⎭⎫13,tan α,b =(cos α,1),且a ∥b ,则cos 2α=11.已知向量a =(1-sin θ,1),b =⎝⎛⎭⎫12,1+sin θ,若a ∥b ,则锐角θ=12.已知点A (2,3),B (4,5),C (7,10),若AP ―→=AB ―→+λAC ―→(λ∈R),且点P 在直线x -2y =0上,则λ=13.已知平面向量a =(1,m ),b =(-3,1)且(2a +b )∥b ,则实数m 的值为14.已知向量a =(1,2),b =(x,1),u =a +2b ,v =2a -b ,且u ∥v ,则实数x 的值为________.15.已知平面直角坐标系内的两个向量a =(m ,3m -4),b =(1,2),且平面内的任意向量c 都可以唯一地表示成c =λa +μb (λ,μ为实数),则m 的取值范围是( )A .(-∞,4)B .(4,+∞)C .(-∞,4)∪(4,+∞)D .(-∞,+∞)16.已知向量OA →=(1,-3),OB →=(2,-1),OC →=(k +1,k -2),若A ,B ,C 三点能构成三角形,则实数k 应满足的条件是________.17.已知a =(1,0),b =(2,1).(1)当k 为何值时,ka -b 与a +2b 共线?(2)若AB →=2a +3b ,BC →=a +mb 且A ,B ,C 三点共线,求m 的值.18.平面内给定三个向量a =(3,2),b =(-1,2),c =(4,1).(1)求满足a =mb +nc 的实数m ,n ;(2)若(a +kc )∥(2b -a ),求实数k .19.平面内给定三个向量a =(3,2),b =(-1,2),c =(4,1).(1)若(a +kc )∥(2b -a ),求实数k ;(2)若d 满足(d -c )∥(a +b ),且|d -c |=5,求d 的坐标.。
2020届高三文科数学一轮复习课件5.2平面向量的基本定理及向量坐标运算
(2)同一向量在不同的基底下的表示是相同的. ( ) (3)在△ABC中,设 AB =a, BC =b,则a与b的夹角为 ∠ABC. ( ) (4)若a,b不共线,且λ 1a+μ 1b=λ 2a+μ 2b,则λ 1=λ 2, μ 1=μ 2. ( )
【解析】(1)×.因为一组不共线的向量可以作为一组 基底,所以平面内的任意两个向量都可以作为一组基底 错误. (2)×.由平面向量基本定理可知,平面内的任意向量都 可以由一组基向量唯一线性表示,而同一向量在不同的 基底下的表示是不同的.
2.(必修四P101A组T2改编)已知三个力F1=(-2,-1),F2=
(-3,2),F3=(4,-3)同时作用于某物体上一点,为使物体
保持平衡,现加上一个力F4,则F4等于 ( )
A.(-1,-2)
B.(1,-2)
C.(-1,2)
D.(1,2)
【解析】选D.根据力的平衡原理有F1+F2+F3+F4=0,所 以F4=-(F1+F2+F3)=(1,2).
3.已知△ABC的三个顶点A,B,C的坐标分别为(0,1),
( 2 ,0),(0,-2),O为坐标原点,动点P满足| CP |=1,则
| OA OB OP |的最小值是 ( )
A. 3 -1
B. 11 -1
C. 3 +1
D. 11 +1
【解析】选A.设P(cos θ ,-2+sin θ ),则 OA OB OP
A.(2,2)
B.(-2,-2)
C.(4,6)
D.(-4,-6)
【解析】选C.向量加法法则可知: AC = AB + BC =(1,2)+(3,4)=(4,6).
第2讲-平面向量基本定理及向量的坐标表示
平面向量基本定理及其坐标表示学习目标1、掌握平面向量的基本定理2、掌握平面向量的坐标表示及相关运算3、掌握向量平行、垂直的坐标法定义及三点共线的基本性质4、掌握函数图像平移中的按向量平移1.向量的坐标表示我们知道:两个向量如果长度相等,方向相同,则可将他们视为同一个向量。
因此,对于平面上任意一个向量a ,我们过坐标原点O 作一个向量OA ,使得OA a =,此时,如果A 点的坐标为(,)x y ,我们就记(,)a x y =,这就是向量a 的坐标表示。
显然(1) 如(,)a x y =,则22||a x y =+(2) 如1122(,),(,)A x y B x y ,则2121(,)AB x x y y =--2.基于坐标表示的向量之运算规则。
如1122(,),(,)a x y b x y ==,则(1)1212(,)a b x x y y ±=±± (2)11(,)a x y λλλ=3.向量的共线与垂直设1122(,),(,)a x y b x y ==为两个非零向量,则(1)//a b 12210x y x y ⇔-=; (2)a b ⊥12120x x y y ⇔+=;证明:(1)//a b ⇔存在实数λ,使得a b λ=,即1122(,)(,)x y x y λ=,也即1212,x x y y λλ==,故122122220x y x y x y x y λλ-=-=(2)不妨设,OA a OB b ==,即1122(,),(,)A x y B x y ,不妨设120x x ≠a b ⊥12121212110OA OB y y OA OB k k x x y y x x ⇔⊥⇔=-⇔⨯=-⇔+=; 120x x =时的特殊情况留给读者自己证明。
4.平面向量基本定理如果12,e e 是同一平面内的两个不共线向量,那么对于该平面内的任意向量a ,有且只有一对实数12,λλ,使1122a e e λλ=+,向量12,e e 叫表示这一平面内所有向量的一组基底.5.基于坐标表示的向量的内积设1122(,),(,)a x y b x y ==,则:1212a b x x y y ⋅=+读者可利用向量余弦定理自行证明:这里定义的内积跟前面定义的内积||||cos a b a b α⋅=⋅(其中α为,a b 的夹角)是一致的。
2020高考数学一轮复习第五章平面向量5-2平面向量基本定理及坐标表示学案理
【2019最新】精选高考数学一轮复习第五章平面向量5-2平面向量基本定理及坐标表示学案理考纲展示►1.了解平面向量基本定理及其意义.2.掌握平面向量的正交分解及坐标表示.3.会用坐标表示平面向量的加法、减法与数乘运算.4.理解用坐标表示的平面向量共线的条件.考点1 平面向量基本定理及其应用1.平面向量基本定理如果e1,e2是同一平面内的两个________向量,那么对于这一平面内的任意向量a,________一对实数λ1,λ2,使a=λ1e1+λ2e2.其中,不共线的向量e1,e2叫做表示这一平面内所有向量的一组________.答案:不共线有且只有基底2.平面向量的正交分解把一个向量分解为两个________的向量,叫做把向量正交分解.答案:互相垂直向量相等的常见两种形式:用基底表示的向量相等;用坐标表示的向量相等.(1)已知向量a,b不共线,若λ1a+b=-a+μ1b,则λ1=__________,μ1=__________.答案:-1 1解析:根据平面向量基本定理,用一组基底表示一个向量,基底的系数是唯一的,则有λ1=-1,μ1=1.(2)已知向量a=(1,2),b=(2,3),c=(3,4),若c=λa+μb,则2λ+μ=__________.答案:0解析:由c=λa+μb,得(3,4)=λ(1,2)+μ(2,3)=(λ+2μ,2λ+3μ),∴ 解得故2λ+μ=0.向量易忽略的两个问题:向量的夹角;单位向量.(1)等边三角形ABC 中,若=a ,=b, 则a ,b 的夹角为__________.答案:120°解析:求两向量的夹角要求两向量的起点是同一点,因此a ,b 的夹角为120°.(2)已知A(1,3),B(4,-1),则与向量共线的单位向量为__________.答案:或⎝ ⎛⎭⎪⎫-35,45 解析:由已知得=(3,-4),所以||=5,因此与共线的单位向量为=或-=.[典题1] (1)如果e1,e2是平面α内一组不共线的向量,那么下列四组向量中,不能作为平面内所有向量的一组基底的是( )A .e1与e1+e2B .e1-2e2与e1+2e2C .e1+e2与e1-e2D .e1+3e2与6e2+2e1 [答案] D[解析] 选项A 中,设e1+e2=λe1,则无解;选项B 中,设e1-2e2=λ(e1+2e2),则无解;选项C 中,设e1+e2=λ(e1-e2),则无解;选项D 中,e1+3e2=(6e2+2e1),所以两向量是共线向量.(2)[2017·山东济南调研]如图,在△ABC 中,=,P 是BN 上的一点,若=m +,则实数m 的值为________.[答案] 311[解析] 设=k ,k∈R.因为=+=+k BN→=+k(-)=+k ⎝ ⎛⎭⎪⎫14AC →-AB → =(1-k)+,且=m +,所以解得⎩⎪⎨⎪⎧k =811,m =311. [点石成金] 用平面向量基本定理解决问题的一般思路(1)先选择一组基底,并运用该基底将条件和结论表示为向量的形式,再通过向量的运算来解决.(2)在基底未给出的情况下,合理地选取基底会给解题带来方便.另外,要熟练运用平面几何的一些性质定理.考点2 平面向量的坐标运算平面向量的坐标运算(1)向量加法、减法、数乘向量及向量的模设a =(x1,y1),b =(x2,y2),则a +b =________,a -b =________,λa =________,|a|=________.(2)向量坐标的求法①若向量的起点是坐标原点,则终点的坐标即为向量的坐标.②设A(x1,y1),B(x2,y2),则=________,||=________.答案:(1)(x1+x2,y1+y2) (x1-x2,y1-y2) (λx1,λy1) x21+y21(2)②(x2-x1,y2-y1)(1)[教材习题改编]已知A(-1,-1),B(1,3),C(2,λ),若A ,B ,C 三点共线,则λ=________.答案:5(2)[教材习题改编]设P 是线段P1P2上的一点,若P1(2,3),P2(4,7)且P 是P1P2的一个四等分点,则P 的坐标为________.答案:或⎝ ⎛⎭⎪⎫72,6 [典题2] (1)在平行四边形ABCD 中,AC 为一条对角线,若=(2,4),=(1,3),则=() A .(-2,-4)B .(-3,-5)C .(3,5)D .(2,4) [答案] B[解析] 由题意,得=-AB→=-=(-)-=-2AB→=(1,3)-2(2,4)=(-3,-5).(2)[2017·广东六校联考]已知A(-3,0),B(0,2),O 为坐标原点,点C 在∠AOB内,|OC|=2,且∠AOC=,设= λ+(λ∈R),则λ的值为() A .1B. C.D.23 [答案] D[解析] 过C 作CE⊥x 轴于点E.由∠AOC=知,|OE|=|CE|=2,所以=+=λ+,即=λ,所以(-2,0)=λ(-3,0),故λ=.[点石成金] 平面向量坐标运算的技巧(1)向量的坐标运算主要是利用向量加、减、数乘运算的法则来进行求解的,若已知有向线段两端点的坐标,则应先求向量的坐标.(2)解题过程中,常利用“向量相等,则其坐标相同”这一原则,通过列方程(组)来进行求解.考点3 平面向量共线的坐标表示平面向量共线的坐标表示设a=(x1,y1),b=(x2,y2),则a∥b⇔________.答案:x1y2-x2y1=0(1)[教材习题改编]已知a=(3,4),b=(sin β,cos β),且a∥b,则tan β=__________.答案:34解析:由a∥b,得b=λa,∴sin β=3λ,cos β=4λ(λ≠0),∴=,即tan β=. (2)[教材习题改编]已知e1,e2是平面向量的一组基底,且a=λ1e1+λ2e2.若a∥e2,则λ1=________;a和e1共线的条件是________.答案:0 λ2=0解析:若a∥e2,则设a=λe2(λ≠0),于是λe2=λ1e1+λ2e2,即(λ-λ2)e2=λ1e1.又e1,e2不共线,所以λ-λ2=0且λ1=0.同理a和e1共线有λ2=0. [考情聚焦] 平面向量共线的坐标表示是高考的常考内容,多以选择题或填空题的形式出现,难度较小,属容易题.主要有以下几个命题角度:角度一利用向量共线求参数或点的坐标[典题3] (1)已知向量a=(2,3),b=(-1,2),若ma+4b与a-2b共线,则m=________.[答案] -2[解析] ma +4b =(2m -4,3m +8),a -2b =(4,-1),由于ma +4b 与a -2b 共线,∴-(2m -4)=4(3m +8),解得m =-2.(2)已知梯形ABCD ,其中AB∥CD,且DC =2AB ,三个顶点A(1,2),B(2,1),C(4,2),则点D 的坐标为________.[答案] (2,4)[解析] ∵在梯形ABCD 中,DC =2AB ,AB∥CD,∴=2.设点D 的坐标为(x ,y),则=(4-x,2-y),=(1,-1),∴(4-x,2-y)=2(1,-1),即(4-x,2-y)=(2,-2),∴解得⎩⎪⎨⎪⎧x =2,y =4, 故点D 的坐标为(2,4).[点石成金] 1.利用两向量共线求参数.如果已知两向量共线,求某些参数的取值时,则利用“若a =(x1,y1),b =(x2,y2),则a∥b 的充要条件是x1y2=x2y1”解题比较方便.2.利用两向量共线的条件求向量坐标.一般地,在求与一个已知向量a 共线的向量时,可设所求向量为λa(λ∈R),然后结合其他条件列出关于λ的方程,求出λ的值后代入λa 即可得到所求的向量.角度二利用向量共线解决三点共线问题[典题4] 已知向量=(1,-3),=(2,-1),=(k +1,k -2),若A ,B ,C 三点不能构成三角形,则k =________.[答案] 1[解析] 若A ,B ,C 不能构成三角形,则向量,共线.∵=-=(2,-1)-(1,-3)=(1,2),AC →=-=(k +1,k -2)-(1,-3)=(k ,k +1),∴1×(k +1)-2k =0,解得k =1.[点石成金] 向量共线的充要条件用坐标可表示为x1y2-x2y1=0.[方法技巧] 1.两向量平行的充要条件若a =(x1,y1),b =(x2,y2),其中b≠0,则a∥b 的充要条件是a =λb ,这与x1y2-x2y1=0在本质上是没有差异的,只是形式上不同.2.三点共线的判断方法判断三点是否共线,先求由三点组成的任两个向量,然后再按两向量共线进行判定.3.若a 与b 不共线且λa +μb =0,则λ=μ=0.[易错防范] 1.若a ,b 为非零向量,当a∥b 时,a ,b 的夹角为0°或180°,求解时容易忽视其中一种情形而导致出错.2.若a =(x1,y1),b =(x2,y2),则a∥b 的充要条件不能表示成=,因为x2,y2有可能等于0,所以应表示为x1y2-x2y1=0.真题演练集训1.[2016·新课标全国卷Ⅱ]已知向量a =(1,m),b =(3,-2),且(a +b)⊥b,则m =( )A .-8B .-6C .6D .8 答案:D解析:由向量的坐标运算,得a +b =(4,m -2),由(a +b) ⊥b,得(a +b)·b=12-2(m -2)=0,解得m =8,故选D.2.[2015·四川卷]设向量a =(2,4)与向量b =(x,6)共线,则实数x =( )A .2B .3C .4D .6 答案:B解析:∵ a∥b,∴ 2×6-4x =0,解得x =3.3.[2014·福建卷]在下列向量组中,可以把向量a =(3,2)表示出来的是( )A .e1=(0,0),e2=(1,2)B .e1=(-1,2),e2=(5,-2)C .e1=(3,5),e2=(6,10)D .e1=(2,-3),e2=(-2,3)答案:B解析:解法一:若e1=(0,0),e2=(1,2),则e1∥e2,而a 不能由e1,e2表示,排除A ;若e1=(-1,2),e2=(5,-2),因为≠,所以e1,e2不共线,根据共面向量的基本定理,可以把向量a =(3,2)表示出来,故选B.解法二:因为a =(3,2),若e1=(0,0),e2=(1,2),不存在实数λ,μ,使得a =λe1+μe2,排除A ;若e1=(-1,2),e2=(5,-2),设存在实数λ,μ,使得a =λe1+μe2,则(3,2)=(-λ+5μ,2λ-2μ),所以解得所以a =2e1+e2,故选B.4.[2015·新课标全国卷Ⅱ]设向量a ,b 不平行,向量λa +b 与a +2b 平行,则实数λ=________.答案:12解析:∵ λa +b 与a +2b 平行,∴ λa +b =t(a +2b), 即λa +b =ta +2tb ,∴ 解得⎩⎪⎨⎪⎧λ=12,t =12. 5.[2015·北京卷]在△ABC 中,点M ,N 满足=2,=.若=x +y ,则x =________,y =________. 答案: -16解析:∵ =2,∴ =.∵ =,∴ =(+),∴=-=(+)-23AC →=-.又=x+y,∴ x=,y=-.课外拓展阅读向量问题坐标化向量具有代数和几何的双重特征,比如向量运算的平行四边形法则、三角形法则、平面向量基本定理等都可以认为是从几何的角度来研究向量的特征.而引入坐标后,就可以通过代数运算来研究向量,凸显出了向量的代数特征,为用代数的方法研究向量问题奠定了基础.在处理很多与向量有关的问题时,坐标化是一种常见的思路,利用坐标可以使许多问题的解决变得更加简捷.[典例1] 向量a,b,c在正方形网格中的位置如图所示.若c=λa+μb(λ,μ∈R),则=________. [解析] 设i,j分别为水平方向和竖直方向上的正向单位向量,则a=-i+j,b=6i+2j,c=-i-3j,所以-i-3j=λ(-i+j)+μ(6i+2j),根据平面向量基本定理得,λ=-2,μ=-,所以=4.[答案] 4[典例2] 给定两个长度为1的平面向量和,它们的夹角为.如图所示,点C在以O为圆心的圆弧上运动.若=x+y,其中x,y∈R,求x+y的最大值.[思路分析][解] 以O为坐标原点,所在的直线为x轴建立平面直角坐标系,如图所示,则A(1,0),B,设∠AOC=α,α∈,则C(cos α,sin α),由=x+y,得所以x=cos α+sin α,y=sin α,所以x+y=cos α+sin α=2sin,又α∈,所以当α=时,x+y取得最大值2.方法探究典例2首先通过建立平面直角坐标系,引入向量的坐标运算,然后用三角函数的知识求出x+y的最大值.引入向量的坐标运算使得本题比较容易解决,体现了坐标法解决问题的优势.。
平面向量的基本定理及坐标表示重难点解析版
突破6.3 平面向量的基本定理及坐标表示一、学情分析二、学法指导与考点梳理知识点一 平面向量基本定理如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e 2.其中,不共线的向量e 1,e 2叫做表示这一平面内所有向量的一组基底. 知识点二 平面向量的坐标运算运算 坐标表示和(差) 已知a =(x 1,y 1),b =(x 2,y 2),则a +b =(x 1+x 2,y 1+y 2),a -b =(x 1-x 2,y 1-y 2) 数乘 已知a =(x 1,y 1),则λa =(λx 1,λy 1),其中λ是实数 任一向量的坐标已知A (x 1,y 1),B (x 2,y 2),则AB ―→=(x 2-x 1,y 2-y 1)设a =(x 1,y 1),b =(x 2,y 2),其中b≠0,则a ∥b ⇔x 1y 2-x 2y 1=0.,(1)基底e 1,e 2必须是同一平面内的两个不共线向量,零向量不能作为基底; (2)基底给定,同一向量的分解形式唯一;(3)如果对于一组基底e 1,e 2,有a =λ1e 1+λ2e 2=μ1e 1+μ2e 2,则可以得到⎩⎪⎨⎪⎧λ1=μ1,λ2=μ2.三、重难点题型突破重难点题型突破1 平面向量的实际背景与概念(一) 平面向量的基本定理与坐标表示 知识点1 平面向量基本定理如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e 2,其中e 1,e 2是一组基底.例1.(1).(2019·江西高一期末)设12,e e 是平面内的一组基底,则下面四组向量中,能作为基底的是( ) A .21e e -与12e e - B .1223e e +与1246e e -- C .12e e +与12e e - D .121128e e -+与1214e e - 【答案】C 【解析】由12,e e 是平面内的一组基底,所以1e 和2e 不共线,对应选项A :21e e -()12e e =--,所以这2个向量共线,不能作为基底; 对应选项B :1223e e +()121462e e =---,所以这2个向量共线,不能作为基底; 对应选项D :121128e e -+121124e e ⎛⎫=-- ⎪⎝⎭,所以这2个向量共线,不能作为基底;对应选项C :12e e +与12e e -不共线,能作为基底. 故选:C .(2).(2022·内蒙古·阿拉善盟第一中学高一期末)如图,等腰梯形ABCD 中,3AB BC CD AD ===,点E 为线段CD 上靠近D 的三等分点,点F 为线段BC 的中点,则FE =( )A .21318BA BC -+B .21318BA BC +C .41318BA BC +D .21318BA BC -【答案】B 【解析】 【分析】利用平面向量的加法和减法以及平面向量的基本定理求解. 【详解】由题可得:FE FC CE =+ 1232BC CD =+ ()1223BC CB BA AD =+++ 121233BC BC BA BC ⎛⎫=+-++ ⎪⎝⎭21318BA BC =+. 故选:B .【变式训练1-1】、(2021·全国·高一课时练习)若{}12e e ,是平面内的一个基底,则下列四组向量能作为平面向量的基底的是( ) A .12e e -,21e e - B .12e e -,12e e + C .212e e -,212e e -+ D .122e e +,124e 2e +【答案】B 【解析】 【分析】不共线的向量能作为基底,逐一判断选项即可. 【详解】不共线的向量能作为基底,因为()1221e e e e -=--,所以向量12e e -,21e e -共线,故排除A ;假设1212(e e e e λ-=+),解得=1=1λλ⎧⎨-⎩,无解,所以向量12e e -,12e e +不共线,故B 正确;因为()212122e e e e =-+--,所以212e e -,212e e +-共线,故排除C ; 因为()121212422e e e e =++,所以122e e +,1224e e +共线,故排除D , 故选:B【变式训练1-2】、(2022·江西上饶·一模(理))如图,在ABM 中,3BM CM =,27AN AM =,若AN AB AC λμ=+,则λμ+=( )A .17-B .17C .27-D .27【答案】D 【解析】 【分析】由向量的线性运算把AN 用,AB AC 表示出来后可得结论. 【详解】 ()22227777AN AM AB BM AB BM ==+=+ 2232313()7727777AB BC AB BA AC AB AC =+⨯=++=-+, 所以13,77λμ=-=,132777λμ+=-+=,故选:D(二) 平面向量的坐标运算知识点2 平面向量的坐标运算(1)若a =(x 1,y 1),b =(x 2,y 2)(b ≠0),则a±b =(x 1±x 2,y 1±y 2). (2)若A (x 1,y 1),B (x 2,y 2),则AB →=(x 2-x 1,y 2-y 1). (3)若a =(x ,y ),λ∈R ,则λa =(λx ,λy ). (4)a ·b =x 1x 2+y 1y 2.(5)|a |=x 21+y 21.若A (x 1,y 1),B (x 2,y 2),则|AB →|=(x 1-x 2)2+(y 1-y 2)2.例2.(1).(2021·安徽·泾县中学高三阶段练习(文))已知平面向量()()2,3,24,5a a b =--=,则a b =___________.【答案】3 【解析】 【分析】设(),=b x y ,利用()24,5-=a b ,求得b ,再利用数量积公式可得多大啊. 【详解】设(),=b x y ,由已知得224325x y --=⎧⎨-=⎩,解得31x y =-⎧⎨=-⎩,即()3,1b =--,所以()()2,33,1633⋅=-⋅--=-=a b . 故答案为:3.(2).(2022·全国·高一专题练习)已知A (1,2),B (3,-1),C (3,4),则AB AC ⋅等于( ) A .11 B .5 C .-1 D .-2【答案】D 【解析】 【分析】直接利用向量数量积的坐标运算即可解决 【详解】∵()2,3AB =-,()2,2AC = ∴()22322AC AB ⋅=⨯+-⨯=- 故选: D .(3).(2022·山东济南·二模)若平面向量a 与b 同向,(2,1)a =,||25b =,则b =( ) A .(4,2)B .(2,4)C .(6,3)D .(4,2)或(2,4)【答案】A 【解析】 【分析】根据题意,设()0b a λλ→→=>,进而根据||25b →=b →. 【详解】因为,a b →→同向,所以设()0b a λλ→→=>,则22||215252b λλλ→=+==,于是,()4,2b →=. 故选:A.【变式训练2-1】、(2022·全国·高三专题练习)已知向量()()2,6,1,a b λ==-,若//a b ,则a b λ+=______. 【答案】(5,15) 【解析】 【分析】由向量平行得3λ=-,再进行向量的坐标运算即可得答案. 【详解】解:因为()()2,6,1,a b λ==-,//a b , 所以62λ-=,解得3λ=-, 所以()()()2,631,35,15a b λ+=---=. 故答案为:()5,15【变式训练2-2】、(2022·青海西宁·高一期末)设()3,1OM =,()5,1ON =--,则MN =( ). A .()8,2-- B .()8,2C .()8,2-D .()2,2-【答案】A 【解析】 【分析】由向量坐标的减法运算可得答案. 【详解】因为()3,1OM =,()5,1ON =--,所以()()()5,13,18,2=-=---=--MN ON OM . 故选:A.(三) 平面向量的数量积 知识点3.平面向量数量积1.平面向量数量积的有关概念(1)向量的夹角:已知两个非零向量a 和b ,记OA →=a ,OB →=b ,则∠AOB =θ(0°≤θ≤180°)叫作向量a 与b 的夹角.(2)数量积的定义:已知两个非零向量a 和b ,它们的夹角为θ,则数量|a ||b |cos θ叫作a 与b 的数量积,记作a ·b ,即a ·b =|a ||b |cos θ.规定:0·a =0.(3)数量积的几何意义:数量积a ·b 等于a 的模|a |与b 在a 的方向上的投影|b |cos θ的乘积. 2.平面向量数量积的性质设a ,b 都是非零向量,e 是与b 方向相同的单位向量,θ是a 与e 的夹角,则 (1)e·a =a·e =|a|cos θ.(2)当a 与b 同向时,a·b =|a||b|;当a 与b 反向时,a·b =-|a||b|. 特别地,a·a =|a|2或|a|=a ·a . (3)cos θ=a·b |a||b|. (4)|a·b|≤|a||b|.3.平面向量数量积的坐标表示设a =(x 1,y 1),b =(x 2,y 2),a ,b 的夹角为θ,则 (1)a ·b =x 1x 2+y 1y 2.(2)|a |=x 21+y 21.若A (x 1,y 1),B (x 2,y 2),则|AB →|=(x 1-x 2)2+(y 1-y 2)2. (3)cos θ=x 1x 2+y 1y 2x 21+y 21·x 22+y 22. (4)a ⊥b ⇔a ·b =0⇔x 1x 2+y 1y 2=0.例3.(1).(2022·陕西·高三期末(文))已知向量(1,7a =-,3b =,36a b ⋅=,则a 与b 的夹角为( ) A .6πB .4π C .3π D .23π 【答案】A 【解析】 【分析】先计算向量a 的模,再根据向量数量积的定义,将36a b ⋅=展开,即可求得答案.因为(1,7a =-,所以22||1(7)22a =+-= 又因为36a b ⋅=,设a 与b 的夹角为θ ,[0,]θπ∈ , 所以||||cos 36a b θ=,即23cos 36θ⨯=, 解得3cos θ=,故6πθ= ,故选:A.(2).(2021·重庆一中高三阶段练习)(多选题)已知平面向量()1,2a =,()2,1b =--,则下列命题中正确的有( ) A .a b > B .2a b +=C .a b ⊥D .4cos ,5a b =-【答案】BD 【解析】 【分析】由向量的定义判断A ,由模的坐标表示求出模判断B ,根据垂直的坐标表示判断C ,由数量积求得向量的夹角余弦判断D . 【详解】对于A ,由于向量不能比较大小,故A 错误; 对于B ,∵()1,1a b =-+,∴()22112a b +=-+=B 正确;对于C ,∵()()122140a b ⋅=⨯-+⨯-=-≠,∴a b ⊥不成立,故C 错误; 对于D ,∵(12214cos ,555a b a b a b⨯-+⨯-⋅===-⨯,故D 正确.故选:BD .【变式训练3-1】.(2021·河北·武安市第一中学高一阶段练习)(多选题)向量(cos ,sin )a θθ=,(3,1)b =,则2a b -的值可以是( ) A .2 B .22C .4D .2【答案】ABC 【解析】 【分析】利用公式表达出2a b -,利用三角函数恒等变换,求出2a b -的范围,进而求出结果.())()22cos ,2sin 3,12cos 3,2sin 1a b θθθθ-=-=-,所以()()22π22cos 32sin 1843cos 4sin 88sin 3a b θθθθθ⎛⎫-=-+----+ ⎪⎝⎭因为[]πsin 1,13θ⎛⎫+∈- ⎪⎝⎭,所以[]π88sin 0,163θ⎛⎫-+∈ ⎪⎝⎭,[]20,4a b -∈,显然ABC 均满足题意.故选:ABC【变式训练3-2】.(2022·山东济南·高三期末)(多选题)已知平面向量()1,0a =,()1,23b =,则下列说法正确的是( ) A .16a b +=B .()2a b a +⋅=C .向量a b +与a 的夹角为30°D .向量a b +在a 上的投影向量为2a【答案】BD 【解析】 【分析】根据向量坐标得线性运算和模的坐标表示即可判断A ; 根据向量数量积的坐标表示即可判断B ; 根据()cos ,a b a a b aa b a+⋅+=+即可判断C ; 根据投影向量的定义即可判断D. 【详解】解:(2,23a b +=,则4124a b +=+,故A 错误;()2a b a +⋅=,故B 正确;()1cos ,2a b a a b aa b a+⋅+==+,又0,180a b a ︒≤+≤︒,所以向量a b +与a 的夹角为60°,故C 错误;向量a b +在a 上的投影向量为()2a b a a a a+⋅=,故D 正确. 故选:BD.(四) 平面向量的应用(平行与垂直)知识点1 平面向量的平行与垂直若a =(x 1,y 1),b =(x 2,y 2)(b ≠0),则a±b =(x 1±x 2,y 1±y 2).(1)如果a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件为x 1y 2-x 2y 1=0.a ∥b 的充要条件不能表示成x 1x 2=y 1y 2,因为x 2,y 2有可能等于0.判断三点是否共线,先求每两点对应的向量,然后再按两向量共线进行判定.(2)如果a =(x 1,y 1),b =(x 2,y 2),则a ⊥b ⇔a ·b =0⇔x 1x 2+y 1y 2=0.x 1y 2-x 2y 1=0与x 1x 2+y 1y 2=0不同,前者是两向量a =(x 1,y 1),b =(x 2,y 2)共线的充要条件,后者是它们垂直的充要条件.例4.(1)、(2021·安徽·六安一中高三阶段练习(文))已知()1,2a m =+-,()2,3b m =+,若a b ⊥,则m =______. 【答案】1或4- 【解析】 【分析】根据向量垂直得到等量关系,求出结果. 【详解】由题意得:()()1260m m ++-=,解得:1m =或4-,经检验,均符合要求. 故答案为:1或4-(2)、(2022·陕西宝鸡·一模(理))已知平面向量()1,a m =-,()2,3b m =-,若a b ∥,则m =___________. 【答案】3- 【解析】 【分析】由a b ∥,列方程求解即可 【详解】因为平面向量()1,a m =-,()2,3b m =-,且a b ∥, 所以23m m =-,得3m =-, 故答案为:3-(3)、(2022·辽宁·高一期末)已知向量()1,a m =-,()2,4b =,若a 与b 共线,则m =( ) A .1-B .1C .2-D .2【答案】C 【解析】 【分析】根据平面向量共线坐标表示可得答案. 【详解】由题意得24m =-,即2m =-. 故选:C【变式训练4-1】、(2022·广东湛江·高二期末)已知向量()2,3a =-,()1,2b =-,且()a kb a +⊥,则k =___________.【答案】138【解析】 【分析】求出向量a kb +的坐标,利用平面向量垂直的坐标表示可得出关于实数k 的等式,即可解得k 的值. 【详解】由题意可得()2,32a kb k k +=--+,因为()a kb a +⊥,所以()()()223320a kb a k k +=---+=⋅,即1380k -=,解得138k =. 故答案为:138. 【变式训练4-2】.(2022·全国·高三专题练习)已知向量()12a =,,()22b =-,,()1c λ=,.若()//2c a b +,则λ=________. 【答案】12 【解析】 【分析】由两向量共线的坐标关系计算即可. 【详解】由题可得()24,2a b +=, ()//2c a b +,又()1,c λ=, 4λ20∴-=,1λ2∴=.故答案为:12.【变式训练4-3】.(2022·辽宁葫芦岛·高一期末)已知向量()1,1a =,()2,1b =-,若()a b λ+∥()2a b -,则实数λ=( ) A .12B .12-C .2D .-2【答案】B 【解析】 【分析】由平面向量线性运算的坐标表示出a b λ+,2a b -,再由平面向量共线的坐标表示即可得解. 【详解】由已知得()2,1a b =++-λλλ,()23,3a b -=-, 又因为()a b λ+∥()2a b -,所以有()()3231+=--λλ,解得12λ=-.故选:B例5.(2022·重庆八中高一期末)已知3a =,4b =. (1)若a 与b 的夹角为60︒,求()2a b a +⋅;(2)若a 与b 不共线,当k 为何值时,向量a kb +与a kb -互相垂直? 【答案】(1)21 (2)34k =±【解析】 【分析】(1)结合向量数量积运算与运算律计算求解即可; (2)根据()()0a kb a kb +-=解方程即可得答案. (1)解: ()21229234212a b a a b a +⋅=+⋅=+⨯⨯⨯= (2)解:∵向量a kb +与a kb -互相垂直,∴()()0a kb a kb +-=,整理得2220a k b -=,又3a =,4b =,∴29160k -=,解得34k =±.∴当34k =±时,向量a kb +与a kb -互相垂直.【变式训练5-1】.(2022·全国·高三专题练习)已知向量(cos ,sin ),(3,3),[0,π].a x x b x ==-∈ (1)若a b ⊥,求x 的值;(2)记()f x a b =⋅,解不等式()3f x ≥【答案】(1)3π(2)[0,]6π 【解析】 【分析】(1)根据向量垂直的坐标运算,数量积为零得到关于x 的方程,即可得答案. (2)先根据数量积的坐标运算得到()f x a b =⋅的表达式,确定π31cos()62x -+,再解不等式,结合6x π+的范围,求得结果. (1)因为(cos ,sin )a x x =,(3,3b =-,a b ⊥, 所以3cos 30x x =, 所以tan 3x =因为[0,]x π∈,所以3x π=.(2)()(π()cos ,sin 3,33cos 323)6f x a b x x x x x =⋅=⋅-==+.因为[]0,πx ∈,所以ππ7π[,]666x +∈,从而π31cos()62x -+. 由()3f x ≥1cos()62x π+≥,所以1π3cos()262x +,所以663x πππ≤+≤,即06x π≤≤,故不等式()3f x ≥[0,]6π.四、课堂定时训练(45分钟)1.(2021·全国·高一课时练习)设12e e ,是不共线的两个向量,则下列四组向量不能构成基底的是( ) A .1e 与12e e + B .12e 2e -与21e 2e - C .12e 2e -与214e 2e - D .12e e +与12e e -【答案】C 【解析】 【分析】在同一平面内,只要两个向量不共线,就可以作为这个平面的一组基底,逐项判断即可. 【详解】对于A 选项:设121e e e =λ+,12e e ,是不共线的两个向量,1=1=0λ⎧∴⎨⎩,无解,1e ∴与12e e +不共线,1e ∴与12e e +可以构成一组基底;对于B 选项:设()1221=e 2e 2e e λ--,12e e ,是不共线的两个向量,1=22=λλ-⎧∴⎨-⎩,无解,12e 2e ∴-与21e 2e -不共线,12e 2e ∴-与21e 2e -可以构成一组基底;对于C 选项:设()1221=e 24e 2e e λ--,12e e ,是不共线的两个向量,1=21=2=42λλλ-⎧∴∴-⎨-⎩,,()21212e 2e 1=4e 2e ∴---,12e 2e ∴-与214e 2e -共线,12e 2e ∴-与214e 2e -不能构成一组基底; 对于D 选项:设()1212=e e e e λ-+,12e e ,是不共线的两个向量,1=1=λλ⎧∴⎨-⎩,无解, 12e e +∴与12e e -不共线,12e e +∴与12e e -可以构成一组基底; 故选:C2.(2022·全国·高一专题练习)已知向量(1,)a m =,(,2)b m =,若//a b ,则实数m 等于( ) A 2B 2C 22D .0【答案】C 【解析】 【分析】应用向量平行的坐标表示列方程求参数值即可. 【详解】由//a b 知:1×2-m 2=0,即2m 2-故选:C.3.(2022·江西·高三期末(文))已知平面向量()1,3a =,()2,1b =-,若()a ab λ⊥+,则实数λ的值为( ) A .10 B .8C .5D .3【答案】A 【解析】 【分析】由()a ab λ⊥+,得()0a a b λ⋅+=,将坐标代入化简计算可得答案 【详解】因为()1,3a =,()2,1b =-, 所以()12,3a b λλλ+=+-. 因为()a ab λ⊥+,所以()12330λλ++-=,解得10λ=. 故选:A.4.(2021·辽宁·沈阳二中高三阶段练习)(多选题)已知平面向量()1,2a =,()2,1b =-,()2,c t =,下列说法正确的是( ) A .若()a b +//c ,则6t = B .若()a b +⊥c ,则23t =C .若1t =,则4cos ,5a c <>=D .若向量a 与向量c 夹角为锐角,则1t >- 【答案】BC 【解析】 【分析】若()()1122,,,a x y b x y ==,根据a ∥b 时1221x y x y =判断A 选项是否正确;根据a b ⊥时12120x x y y +=判断B 选项是否正确;根据121222221122cos ,x a b a b a bx y x y <>==++判断C 选项是否正确;根据向量a 与向量c 夹角为锐角时0a c >,且向量a 与向量c 不平行,判断C 选项是否正确. 【详解】()1,2a =,()2,1b =-,()=1,3a b ∴+-,()2,c t ==22a c t ∴+若()a b +//c ,()2,c t =123t ∴-⨯=⨯6t ∴=-,故A 不正确;若()a b +⊥c ,()2,c t =123=0t ∴-⨯+⨯23t ∴=,故B 正确; 若1t =,则()2,1c =,=22=4a c t +,=5a ,5c =44cos ,555a c a c a c∴<>==⨯,故C 正确; 若向量a 与向量c 夹角为锐角, 则0a c >()1,2a =(),2,c t ==1220a c t ∴⨯+⨯>1t∴>-若向量a 与向量c 平行,则1=22t ⨯⨯,=4t ,故向量a 与向量c 夹角为锐角时1t >-且4t ≠.故D 不正确; 故选:BC5.(2021·广东·仲元中学高一期末)(多选题)已知向量()2,1a =,()3,1b =-,则( ) A .a 与a b -25B .()//a b a +C .向量a 在向量b 10D .若525,5c ⎛= ⎝⎭,则a c ⊥【答案】ACD 【解析】 【分析】对于A :由已知得()50a b -=,,根据向量夹角的计算公式计算可判断; 对于B :由已知得()+a b a ⊥,由此可判断;对于C :由已知得向量a 在向量b 上的投影,从而可判断; 对于D :由5252+105a c ⎛⋅=⨯⨯= ⎝⎭,可判断. 【详解】解:对于A :因为向量()2,1a =,()3,1b =-,所以()50a b -=,,所以a 与a b -的夹角余弦值为2225215+⨯,故A 正确; 对于B :因为()+12a b =-,,所以()+12+120a b a ⋅=-⨯⨯=,所以()+a b a ⊥,故B 不正确; 对于C :向量a 在向量b 上的投影为(()2223+11101031a b b⨯-⨯===-+⋅,所以向量a 在向量b 上的投影向量10C 正确;对于D :因为525,55c ⎛⎫=- ⎪ ⎪⎝⎭,所以5252+1055a c ⎛⎫⋅=⨯⨯-= ⎪ ⎪⎝⎭,所以a c ⊥,故D 正确, 故选:ACD.6.(2022·安徽亳州·高三期末(理))如图,在平面四边形ACDE 中,点B 在边AC 上,ABE △是等腰直角三角形,四边形BCDE 是边长为1的正方形,则AD CE ⋅=___________.【答案】-1 【解析】 【分析】以B 为原点,BC BE 、分别为x 、y 轴正方向建立直角坐标系,用坐标法求解. 【详解】如图示,以B 为原点,BC BE 、分别为x 、y 轴正方向建立直角坐标系.则()1,0A -、()1,0C 、()1,1D 、()0,1E ,所以()21AD =,,()11CE =-,, 所以211AD CE ⋅=-+=-. 故答案为:-17.(2021·江西·赣州市赣县第三中学高三期中(文))已知向量()2,1a =-,10a b ⋅=,52a b +=,则b =___________.【答案】5 【解析】 【分析】由已知,利用向量数量积的运算律有22250a b a b ++⋅=,结合向量模的坐标计算求||a ,进而求b . 【详解】∵52a b +=,则250a b +=,即22250a b a b ++⋅=, ∴252050b ++=,可得5b =. 故答案为:58.(2022·全国·高三专题练习)已知平面向量(),0,0αβαβ≠≠,β与αβ-的夹角为23π,且()0t t t αββ-=>,则t 的最小值是____________.【答案】233- 【解析】 【分析】作半径为2的圆O ,圆O 上取三点,,A B C ,(3,1)C --,(3,1)B -,A 在,B C 两点的优弧上,3BAC π∠=,这样CB α=,CA β=,满足β与αβ-的夹角为23π,然后把模式平方求得t ,可得最小值. 【详解】如图,设圆O 半径为2,,,A B C 在圆O ,设(3,1)C --,(3,1)B -,3BAC π∠=,CB α=,CA β=,设(2cos ,2sin )A θθ,7(,)66ππθ∈-,(23,0)α=,(2cos 3,2sin 1)βθθ=++,由t t αββ-=得222()t t αββ-=,因为0t >,所以21233233243(2cos 3)2cos 323t ααβθθ===≥=-⋅+++,cos 1θ=时等号成立.故答案为:233-.【点睛】本题考查由模求平面向量的数量积,解题关键是用图形表示出向量α,β,确定点,,A B C 的关系,引入坐标后用坐标表示向量的数量积,从而得出最值.。
平面向量的基本定理及坐标表示一
02
知识点二:向量的基本定理
平行四边形定则
总结词
向量加法的平行四边形定则
详细描述
对于两个向量$\overset{\longrightarrow}{a}$和 $\overset{\longrightarrow}{b}$。它们的和 $\overset{\longrightarrow}{c}$可以由一个以 $\overset{\longrightarrow}{a}$和 $\overset{\longrightarrow}{b}$为邻边的平行四边形 $OACB$的对角线表示
零向量
零向量表示为$\mathbf{0}$,它的长度为$0$ 。
3
向量的相等
两个向量$\mathbf{a}$和$\mathbf{b}$相等当 且仅当它们的长度相等且方向相同。
向量的运算
向量的加法
两个向量$\mathbf{a}$和$\mathbf{b}$的加法表示为$\mathbf{a} + \mathbf{b}$,其 结果是两个向量的尾部相接,形成一个新的向量。
向量在空间几何中的应用
向量夹角公式
向量垂直公式
$\overset{\longrightarrow}{a} \cdot \overset{\longrightarrow}{b} = 0$
向量平行公式
ห้องสมุดไป่ตู้
06
知识点六:向量在物理中的应用
向量在力学中的应用
力的表示
向量可以用物理中的力、速度和加速度等矢量来表示。
三角形法则
若$\overset{\longrightarrow}{AB} = \overset{\longrightarrow}{m} + \overset{\longrightarrow}{n}$
第二节 平面向量的基本定理及坐标表示
第二节平面向量的基本定理及坐标表示【最新考纲】 1.了解平面向量的基本定理及其意义.2.掌握平面向量的正交分解及其坐标表示.3.会用坐标表示平面向量的加法、减法与数乘运算.4.理解用坐标表示的平面向量共线的条件.1.平面向量基本定理如果e1,e2是同一平面内的两个不共线向量,那么对于该平面内任意向量ɑ,有且只有一对实数λ1,λ2,使ɑ=λ1e1+λ2e2.2.平面向量的坐标表示在平面直角坐标系中,分别取与x轴、y轴方向相同的两个单位向量i、j作为基底.对于平面内的一个向量ɑ,有且只有一对实数x、y,使ɑ=xi+yj,把有序数对(x,y)叫做向量ɑ的坐标,记作ɑ=(x,y).3.平面向量的坐标运算(1)向量加法、减法、数乘向量及向量的模设ɑ=(x1,y1),b=(x2,y2),则ɑ+b=(x1+x2,y1+y2),ɑ-b=(x1-x2,y1-y2),λɑ=(λx1,λy1),|ɑ|(2)向量坐标的求法①若向量的起点是坐标原点,则终点坐标为向量的坐标. ②设A(x 1,y 1),B(x 2,y 2),则AB →=(x 2-x 1,y 2-y 1),|AB →|=4.平面向量共线的坐标表示设ɑ=(x 1,y 1),b =(x 2,y 2),其中b ≠0.ɑ∥b ⇔x 1y 2-x 2y 1=0.1.(质疑夯基)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)在△ABC 中,AB→,AC →可以作为基底.( ) (2)在△ABC 中,设AB →=ɑ,BC →=b ,则向量ɑ与b 的夹角为∠ABC.( )(3)若ɑ,b 不共线,且λ1ɑ+μ1b =λ2ɑ+μ2b ,则λ1=λ2,μ1=μ2.( )(4)若ɑ=(x 1,y 1),b =(x 2,y 2),则ɑ∥b 的充要条件可以表示成x 1x 2=y 1y 2.( ) 答案:(1)√ (2)× (3)√ (4)×2.(2015·四川卷)设向量ɑ=(2,4)与向量b =(x ,6)共线,则实数x =( )A .2B .3C .4D .6解析:∵ɑ∥b,∴2×6-4x=0,解得x=3.答案:B3.已知平面向量ɑ=(2,-1),b=(1,3),那么|ɑ+b|等于() A.5 B.13 C.17 D.13解析:因为ɑ+b=(2,-1)+(1,3)=(3,2),所以|ɑ+b|=32+22=13.答案:B4.已知向量ɑ=(2,4),b=(-1,1),则2ɑ-b=()A.(5,7) B.(5,9)C.(3,7) D.(3,9)解析:2ɑ-b=(4,8)-(-1,1)=(5,7).答案:A5.在下列向量组中,可以把向量ɑ=(3,2)表示出来的是() A.e1=(0,0),e2=(1,2)B.e1=(-1,2),e2=(5,-2)C.e1=(3,5),e2=(6,10)D.e1=(2,-3),e2=(-2,3)解析:由题意知,A选项中e1=0,C、D选项中两向量均共线,都不符合基底条件,故选B(事实上,ɑ=(3,2)=2e1+e2).答案:B一个区别在平面直角坐标系中,以原点为起点的向量OA→=ɑ,点A 的位置被向量ɑ唯一确定,此时点A 的坐标与ɑ的坐标统一为(x ,y).但表示形式与意义不同,如点A(x ,y),向量ɑ=OA →=(x ,y),向量坐标中既有大小信息又有方向信息.两点提醒1.若ɑ,b 为非零向量,当ɑ∥b 时,ɑ,b 的夹角为0°或180°,求解时容易忽视其中一种情形而导致出错.2.若ɑ=(x 1,y 1),b =(x 2,y 2),则ɑ∥b 的充要条件是x 1y 2-x 2y 1=0,不能表示成x 1x 2=y 1y 2,因为x 2,y 2有可能等于0.三个结论1.若ɑ与b 不共线,λɑ+μb =0,则λ=μ=0.2.已知OA →=λOB →+μOC →(λ,μ为常数),则A ,B ,C 三点共线的充要条件是λ+μ=1.3.平面向量的基底中一定不含零向量.一、选择题1.已知点A(1,3),B(4,-1),则与向量AB →同方向的单位向量为( )A.⎝ ⎛⎭⎪⎫35,-45B.⎝ ⎛⎭⎪⎫45,-35C.⎝ ⎛⎭⎪⎫-35,45D.⎝ ⎛⎭⎪⎫-45,35 解析:AB →=(3,-4),则与其同方向的单位向量e =AB →|AB →|=15(3,-4)=⎝ ⎛⎭⎪⎫35,-45.答案:A2.已知向量ɑ=(3,1),b =(0,-2).若实数k 与向量c 满足ɑ+2b =kc ,则c 可以是( )A .(3,-1)B .(-1,-3)C .(-3,-1)D .(-1,3)解析:∵ɑ+2b =kc ,∴(3,1)+2(0,-2)=kc ,则c =1k (3,-3).答案:D3.(2017·朝阳一模)在△ABC 中,M 为边BC 上任意一点,N 为AM 的中点,AN→=λAB →+μAC →,则λ+μ的值为( ) A.12 B.13 C.14 D .1 解析:∵M 为边BC 上任意一点, ∴可设AM→=xAB →+yAC →(x +y =1). ∵N 为AM 的中点,∴AN→=12AM →=12xAB →+12yAC →=λAB →+μAC →. ∴λ+μ=12(x +y)=12.答案:A4.若α,β是一组基底,向量γ=xα+yβ(x ,y ∈R),则称(x ,y)为向量γ在基底α,β下的坐标,现已知向量α在基底p =(1,-1),q =(2,1)下的坐标为(-2,2),则ɑ在另一组基底m =(-1,1),n =(1,2)下的坐标为( )A .(2,0)B .(0,-2)C .(-2,0)D .(0,2)解析:∵ɑ在基底p ,q 下的坐标为(-2,2),即ɑ=-2p +2q =(2,4),令ɑ=xm +yn =(-x +y ,x +2y),∴⎩⎨⎧-x +y =2,x +2y =4,即⎩⎨⎧x =0,y =2.∴ɑ在基底m ,n 下的坐标为(0,2). 答案:D5.(2017·大连模拟)已知平面向量ɑ=(1,x),b =⎝ ⎛⎭⎪⎫12x -3,y -1,若ɑ与b 共线,则y =f(x)的最小值是( )A .-92B .-4C .-72D .-3解析:因为ɑ与b 共线,所以y -1-x ⎝ ⎛⎭⎪⎫12x -3=0,则y =12x 2-3x +1=12(x -3)2-72,所以当x =3时,y min =-72.答案:C6.已知ɑ,b 是不共线的向量,AB→=λɑ+b ,AC →=ɑ+μb ,λ,μ∈R ,那么A 、B 、C 三点共线的充要条件为( )A .λ+μ=2B .λ-μ=1C .λμ=-1D .λμ=1解析:∵A 、B 、C 三点共线,∴存在实数t ,满足AB →=tAC →,即λɑ+b =t ɑ+μtb ,又ɑ,b 是不共线的向量,∴⎩⎨⎧λ=t1=μt,∴λμ=1. 答案:D二、填空题7.已知两点A(-1,0),B(1,3),向量ɑ=(2k -1,2),若AB →∥ɑ,则实数k 的值为________.解析:因为A(-1,0),B(1,3),所以AB →=(2,3). 又因为AB →∥ɑ,所以2k -12=23,故k =76.答案:768.(2015·江苏卷)已知向量ɑ=(2,1),b =(1,-2),若m ɑ+nb =(9,-8)(m ,n ∈R),则m -n 的值为________.解析:∵m ɑ+nb =(2m +n ,m -2n)=(9,-8),∴⎩⎨⎧2m +n =9,m -2n =-8,∴⎩⎨⎧m =2,n =5,∴m -n =2-5=-3. 答案:-39.设e 1、e 2是平面内一组基向量,且ɑ=e 1+2e 2,b =-e 1+e 2,则向量e 1+e 2可以表示为另一组基向量ɑ,b 的线性组合,即e 1+e 2=________.解析:由题意,设e 1+e 2=m ɑ+nb. 因为ɑ=e 1+2e 2,b =-e 1+e 2,所以e 1+e 2=m(e 1+2e 2)+n(-e 1+e 2)=(m -n)e 1+(2m +n)e 2. 由平面向量基本定理,得⎩⎨⎧m -n =1,2m +n =1,所以⎩⎪⎨⎪⎧m =23,n =-13.即e 1+e 2=23ɑ-13b.答案:23ɑ-13b三、解答题10.(2016·郑州一中月考)已知A(-2,4),B(3,-1),C(-3,-4).设AB→=ɑ,BC →=b ,CA →=c ,且CM →=3c ,CN →=-2b. (1)求3ɑ+b -3c ;(2)求满足ɑ=mb +nc 的实数m 、n 的值;(3)求M ,N 的坐标及向量MN→的坐标. 解:由已知得ɑ=(5,-5),b =(-6,-3),c =(1,8). (1)3ɑ+b -3c =3(5,-5)+(-6,-3)-3(1,8)=(15-6-3,-15-3-24)=(6,-42).(2)∵mb +nc =(-6m +n ,-3m +8n)=(5,-5),∴⎩⎨⎧-6m +n =5,-3m +8n =-5, 解得⎩⎨⎧m =-1,n =-1.(3)设O 为坐标原点, ∵CM→=OM →-OC →=3c , ∴OM →=3c +OC →=(3,24)+(-3,-4)=(0,20), ∴M(0,20).又∵CN→=ON →-OC →=-2b , ∴ON →=-2b +OC →=(12,6)+(-3,-4)=(9,2), ∴N(9,2), ∴MN→=(9,-18).。
高三数学一轮复习第五章 平面向量5.2 平面向量的基本定理及向量坐标运算课件
【解析】由题意得
uur P1P
=
1 3
uuur P1P2
或
uur P1P
=
2 uuur 3 P1P2
,
uuur P1P2
=(3,-3).
设P(x,y),则
uur P1P
=(x-1,y-3),
当
uur P1P
=
1 uuur 3 P1P2时,(x-1,ຫໍສະໝຸດ -3)=1 (3,-3),
3
所以x=2,y=2,即P(2,2).
【解析】因为a∥b,所以4×3-2x=0,所以x=6. 答案:6
2.(必修4P79练习T7改编)已知三个力F1=(-2,-1),F2= (-3,2),F3=(4,-3)同时作用于某物体上一点,为使物体 保持平衡,现加上一个力F4,则F4=________.
【解析】根据力的平衡原理有F1+F2+F3+F4=0,所以F4= -(F1+F2+F3)=(1,2). 答案:(1,2)
(2)基底:不共线的向量e1,e2叫做表示这一平面内所有 向量的一组基底. (3)平面向量的正交分解. 向量正交分解是把一个向量分解为两个_互__相__垂__直__的向 量.
2.平面向量的坐标表示 (1)平面向量的坐标表示: 在平面直角坐标系中,分别取与x轴、y轴方向相同的两 个单位向量i,j作为基底,由平面向量基本定理知,该平 面内的任一向量a可表示成a=x i+y j,由于a与有序数 对(x,y)是一一对应的,因此向量a的坐标是(x,y),记作 _a_=_(_x_,_y_)_.
2
2
于是得
1 2
1 2
1, 解得
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
OD 的中点,AE 的延长线与 CD 相交于点 F.若������������=a,������������=b,则
������������=( C )
A.14a+12b
B.12a+14b
C.23a+13b D.13a+23b
(2)设 e1,e2 是不共线的向量,若������������=e1-λe2,������������=2e1+e2,������������=3e1-e2,
������������|= |������������|,则 x+y 的最大值为( C )
A.2
B.4
C.2√2
D.4√2
考点1
考点2
考点3
-15-
解析:(1)������������ + ������������ = ������������=(1,-3)+(-1,-2)=(0,-5),
∵������������ =(2,4),
5.(2018全国3,理13)已知向量a=(1,2),b=(2,-2),c=(1,λ).若c∥(2a+b),
1
则λ= 2
.
解析:2a+b=2(1,2)+(2,-2)=(4,2),c=(1,λ), 由 c∥(2a+b),得 4λ-2=0,得 λ=12.
-7-
考点1
考点2
考点3
平面向量基本定理的应用
例 1(1)在平行四边形 ABCD 中,AC 与 BD 相交于点 O,E 是线段
2.平面向量的坐标表示
在平面直角坐标系中,分别取与x轴、y轴方向相同的两个单位向
量i,j作为基底,a为坐标平面内的任意向量,以坐标原点O为起点
������������=a,由平面向量基本定理可知,有且只有一对实数x,y,使得 ������������ =xi+yj,因此a=xi+yj,我们把实数对 (x,y) 叫做向量a的坐标,
=
1 2
������������
+
1 2
������������
=
1 2
������������
+
1 4
������������ ,由平面向量基
本定理可得 λ=12,μ=14,所以 λ+μ=34.
(3)由题意,设 e1+e2=ma+nb.
因为 a=e1+2e2,b=-e1+e2,
所以 e1+e2=m(e1+2e2)+n(-e1+e2)=(m-n)e1+(2m+n)e2.
且 A,B,D 三点共线,则 λ 的值为 2
.
考点1
考点2
考点3
-8-
(3)(2018 浙江教育评价联盟 5 月模拟)如图,在△ABC 中,点 D,E
是线段
BC
上两个动点,且������������
+
������������ =x������������ +y������������ ,则1������
知识梳理 考点自诊
-4-
1.判断下列结论是否正确,正确的画“√”,错误的画“×”.
(1)平面内的任何两个向量都可以作为一组基底. ( × )
(2)平面向量不论经过怎样的平移变换之后其坐标不变. ( √ )
(3)在△ABC中,向量 ������������, ������������ 的夹角为∠ABC. ( × )
=
1 2
1 ������
+
4 ������
(x+y)=12(5+������������ + 4������������)≥12(5+2
������ ������
·4������������)=92,
则1
������
+
4������的最小值为92,故选
D.
考点1
考点2
考点3
-11-
思考用平面向量基本定理解决问题的一般思路是什么? 解题心得1.应用平面向量基本定理表示向量的实质是利用平行 四边形法则或三角形法则进行向量的加、减或数乘运算. 2.用平面向量基本定理解决问题的一般思路是:先选择一组基底, 再通过向量的加、减、数乘以及向量平行的充要条件,把相关向量 用这一组基底表示出来.
∴������������ = ������������ − ������������=(2,4)-(0,-5)=(2,9),故选 D. (2)∵a∥b, ∴13×1-tan αcos α=0,
解得 sin α=13,cos(π2+α)=-sin α=-13,故选 A.
(3)∵|������������|=√2 + 2=2,|������������ − ������������|=|������������|,
∵B,D,E,C 共线,∴m+n=1,λ+μ=1,
∵������������ + ������������=x������������+y������������=(m+λ)������������+(n+μ)������������,
则 x+y=m+n+λ+μ=2,
∴1
������
+
4 ������
-12-
考点1
考点2
考点3
对点训练 1(1)已知点 M 是△ABC 的边 BC 的中点,点 E 在边 AC
上,且������������=2������������,则向量������������=( C )
A.12
������������
+
1 3
������������
C.16
������������
2. 已知向量a=(1,m),b=(m,1),则“m=1”是“a∥b”的( A )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
解析:当m=1时,a=b,可以推出a∥b;当a∥b时,m2=1,解得m=±1,不
能推出m=1.所以“m=1”是“a∥b”的充分不必要条件.故选A.
a-b= (x1-x2,y1-y2)
,λa= (λx1,λy1) ,
|a|= ������12 + ������12,|a+b|= (������1 + ������2)2 + (������1 + ������2)2.
4.平面向量共线的坐标表示 设a=(x1,y1),b=(x2,y2),则a∥b⇔ x1y2-x2y1=0 .
=
12a+12b.
∵E 是 OD 的中点,∴||������������������������|| = 13,
∴|DF|=13|AB|.
∴������������
=
1 3
������������
=
1 3
(������������
−
������������ )
=13
-
1 2
������������ -
.
e1+e2(可3)设以表e1,示e2为是另平一面组内基一向组量基向a,b量的,且线a性=e组1+合2e,2即,b=e-1e+1e+2e=2,则23a向-13b量 .
考点1
考点2
考点3
-13-
解析:(1)如图,∵������������ =2������������ ,
∴������������
=
∴存在 μ∈R 使得������������=μ������������,
即
e1-λe2=μ(e1-2e2).由
e1,e2 是不共线的向量,得
1 = ������, -������ = -2������,
解得 λ=2.
(3)如题图可知 x,y 均为正,设������������=m������������+n������������, ������������=λ������������+μ������������,
3.已知向量 a=(x,y),b=(-1,2),且 a+b=(1,3),则|a-2b|等于( C )
A.√2
B.√3
C.5
D.√5
知识梳理 考点自诊
-6-
4.(2018 衡水中学月考,13)已知向量 a=
sin
π3,cos
π 6
,b=(k,1),若
a∥b,则 k= 1
.
解析:由 a∥b,得 sin π3-kcos π6=0,即√23 − √23k=0,解得 k=1.
������������
+
������������
=
2 3
������������
+
1 2
������������
=
2 3
������������
+
1 2
(������������
−
������������ )
=12
������������
+
1 6
������������ .
(2)由题意可得������������
由平面向量基本定理,得
������-������ = 1, 2������ + ������ =
所以 1,
������
=
2 3
,
������
=
-
12
考点3
平面向量的坐标运算
例 2(1)已知向量������������=(1,-3),������������=(-1,-2),������������=(2,4),则������������=( D )