【考前三个月】2015届高考数学(人教通用,文科)练透高考必会题型:专题7 第34练
【考前三个月】2015届高考数学(人教通用,文科)练透高考必会题型:专题3 第10练
A.2B.-2C.8D.-8
答案D
解析∵f(x)为偶函数,
∴f(1)=f(-1)=4,f(-3)=f(3),
当x=1时,f(2+1)=(-2)·f(2-1),
∴f(3)=(-2)×4=-8,∴f(-3)=-8.
④函数f(x)在某区间上具有单调性,则f(x)一定是单函数.
其中的真命题是________.(写出所有真命题的序号)
答案②③
解析当f(x)=x2时,不妨设f(x1)=f(x2)=4,有x1=2,x2=-2,此时x1≠x2,故①不正确;由f(x1)=f(x2)时总有x1=x2可知,当x1≠x2时,f(x1)≠f(x2),故②正确;若b∈B,b有两个原象时,不妨设为a1,a2,可知a1≠a2,但f(a1)=f(a2),与题中条件矛盾,故③正确;函数f(x)在某区间上具有单调性时整个定义域上不一定单调,因而f(x)不一定是单函数,故④不正确.故答案为②③.
∴f(x)+|g(x)|为偶函数.
5.定义在R上的偶函数f(x)满足f(2-x)=f(x),且在[-3,-2]上是减函数,α,β是钝角三角形的两个锐角,则下列不等式中正确的是()
A.f(sinα)>f(cosβ)B.f(sinα)<f(cosβ)
C.f(cosα)<f(cosβ)D.f(cosα)>f(cosβ)
答案B
解析因为f(x)为R上的偶函数,所以f(-x)=f(x),
又f(2-x)=f(x),所以f(x+2)=f(2-(x+2))=f(-x)=f(x),
所以函数f(x)以2为周期,
因为f(x)在[-3,-2]上是减函数,
2015年普通高等学校招生全国统一考试文科数学精彩试题及问题详解.
绝密★启封并使用完毕前2015年普通高等学校招生全国统一考试文科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至3页,第Ⅱ卷4至6页。
注意事项:1. 答题前,考生务必将自己的准考证号、姓名填写在答题卡上。
考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致。
2. 第Ⅰ卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,在选涂其他答案标号。
第Ⅱ卷必须用0.5毫米黑色签字笔书写作答.若在试题卷上作答,答案无效。
3. 考试结束,监考员将试题卷、答题卡一并收回。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)已知集合A={x|x=3n+2,n ∈N},B={6,8,12,14},则集合A ⋂B中元素的个数为(A)5 (B)4 (C)3 (D)2(2)已知点A(0,1),B(3,2),向量AC=(-4,-3),则向量BC=(A)(-7,-4)(B)(7,4)(C)(-1,4)(D)(1,4)(3)已知复数z满足(z-1)i=i+1,则z=(A)-2-I (B)-2+I (C)2-I (D)2+i(4)如果3个整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从1,2,3,4,5中任取3个不同的数,则3个数构成一组勾股数的概率为(A)103(B)15(C)110(D)120(5)已知椭圆E的中心在坐标原点,离心率为12,E的右焦点与抛物线C:y²=8x的焦点重合,A,B是C的准线与E的两个焦点,则|AB|= (A)3 (B)6 (C)9 (D)12(6)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺。
问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧度为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放斛的米约有A.14斛B.22斛C.36斛D.66斛(7)已知是公差为1的等差数列,则=4,= (A)(B)(C)10 (D)12(8)函数f(x)=的部分图像如图所示,则f(x)的单调递减区间为(A)(k-, k-),k(A)(2k-, 2k-),k(A)(k-, k-),k(A)(2k-, 2k-),k(9)执行右面的程序框图,如果输入的t=0.01,则输出的n=(A)5 (B)6 (C)7 (D)8(10)已知函数,且f(a)=-3,则f(6-a)=(A)-74(B)-54(C)-34(D)-14(11)圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示,若该几何体的表面积为16+20π,则r=(A )1 (B) 2 (C) 4 (D) 8(12)设函数y=f (x )的图像关于直线y=-x 对称,且f (-2)+f (-4)=1,则a= (A )-1 (B )1 (C )2 (D )4第Ⅱ卷注意事项:第Ⅱ卷共3页,须用黑色墨水签字笔在答题卡上作答。
2015年高考文科数学押题试卷及答案(word版可打印)
2015年高考文科数学押题试卷及答案(word 版可打印)第I 卷(共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中。
只有一项是符合题目要求的.1.已知全集{}{}{}1,2,3,4,5,6,=1246=135U U A B A C B =⋃集合,,,,集合,,,则= A.{}123456,,,,, B.{}1,2,4,6 C.{}2,4,6 D.{}2,3,4,5,62.已知复数12,z z 在复平面上对应的点分别为()()211,2,1,3,z A B z -=则 A.1i + B.i C.1i - D.i -3.设,a b R ∈,则“1a ≥且1b ≥”是“2a b +≥”的 A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件4.已知椭圆方程22143x y +=,双曲线的焦点是椭圆的顶点,顶点是椭圆的焦点,则双曲线的离心率为C.2D.35.已知变量,x y 满足约束条件230,330,10,x y x y y +-≤⎧⎪+-≥⎨⎪-≤⎩则目标函数2z x y =+的最大值是A.6B.3C.32D.16.下列函数中,既是偶函数,又在()0,1上单调递增的函数是A.3log y x =B.3y x =C.x y e =D.cos y x = 7.命题1:0:x a p q y a a-=>;命题是R 上的增函数,则p 是q 的 A.必要不充分条件 B.充分不必要条件 C.充分且必要条件 D.既不充分也不必要条件8.设l m n 、、为不同的直线,αβ、为不同的平面,如下四个命题中,正确的有①若//l l αβαβ⊥⊥,则 ②若,,l l αβαβ⊥⊂⊥则③若,,//l m m n l n ⊥⊥则 ④若,////,m n m n αβαβ⊥⊥且则 A.0个 B.1个 C.2个 D.3个9.若某几何体的三视图(单位:cm )如图所示,则此几何体的体积是A.336cmB.348cmC.360cmD.372cm10.右图是某程序的流程图,则其输出结果为A.20102011 B.12011 C.20122013D.1201211.已知P 是直线:34110l x y -+=上的动点,PA 、PB 是圆222210x y x y +--+=的两条切线,C 是圆心,那么四边形PACB 面积的最小值是B.D.12.给定方程1sin 102xx ⎛⎫+-= ⎪⎝⎭,有下列命题:(1)该方程没有小于0的实数解;(2)该方程有无数个实数解;(3)该方程在(),0-∞内有且只有一个实数解;(4)若0x 是该方程的实数解,01x -则>.其中正确命题的个数是A.1B.2C.3D.4第II 卷(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分.13.以椭圆2213x y +=的右焦点为焦点,且顶点在原点的抛物线标准方程为______.14.若函数()2log ,0,21,0,x x x f x x ⎧=⎨-+≤⎩>则函数()f x 的零点为_________.15.已知O 是坐标原点,点M 的坐标为(2, 1),若点N (),x y 为平面区域2,1,2x y x y x+≤⎧⎪⎪≥⎨⎪≥⎪⎩上的一个动点,则OM ON 的最大值是_______. 16.已知点()()1212,,x x A x a B x a 、是函数x y a =的图象上任意不同两点,依据图象可知,线段AB 总是位于A 、B 两点之间函数图象的上方,因此有结论121222x x x x a a a ++>成立.运用类比思想方法可知,若点()()()1122,sin ,sin sin 0,A x x B x x y x x π=∈⎡⎤⎣⎦、是函数图象上的不同两点,则类似地有________________成立.三、解答题:本大题共6小题,共74分.解答应写出文字说明、证明过程或演算步骤.17.(本小题满分12分)在ABC ∆中,已知角A 、B 、C 所对的边分别为a 、b 、c ,直线1:10l ax y ++=与直线()222:40l b c bc x ay +-++=互相平行(其中4a ≠). (I )求角A 的值, (II )若22,,sin cos 2232A CB B ππ+⎡⎫∈+⎪⎢⎣⎭求的取值范围.18.(本小题满分12分)某省重点中学从高二年级学生中随机抽取120名学生,测得身高(单位:cm )情况如下图所示:(1)请在频率分布表中的①②位置上填上适当的数据,并补全频率分布直方图;(II)现从身高在180~190cm的这些同学中随机地抽取两名,求身高为185cm以上(包括185cm)的同学被抽到的概率.19.(本小题满分12分)如图,点C是以AB为直径的圆上一点,直角梯形BCDE所在平面与圆O所在平面垂直,且DE//BC,DC ⊥BC,DE=12 3.2BC AC CD ===, (I )证明:EO//平面ACD ; (II )证明:平面ACD ⊥平面BCDE ; (III )求三棱锥E —ABD 的体积.20.(本小题满分12分)已知{}n a 是一个公差大于0的等差数列,且满足362755,16.a a a a =+=(I )求数列{}n a 的通项公式;(II )若数列{}n a 和数列{}n b 满足等式123232222nn n b b b b a =+++⋅⋅⋅+(n 为正整数),求数列{}n b 的前n 项和n S .21.(本小题满分12分)已知2212221x y F F a b +=、是椭圆的左、右焦点,O 为坐标原点,点1,2P ⎛- ⎝⎭在椭圆上,线段PF 2与轴的交点M 满足20PM F M +=;(I )求椭圆的标准方程;(II )O 是以12F F 为直径的圆,一直线:l y kx m =+与相切,并与椭圆交于不同的两点A 、B.当23,34OA OB AOB λλ⋅=≤≤∆且满足时,求面积S 的取值范围.22.(本小题满分14分)已知函数()()()12ln 20f x a x ax a x=-++≤. (I )当0a =时,求()f x 的极值; (II )当0a <时,讨论()f x 的单调性; (III)若对任意的()[]()()()12123,2,,1,3,ln 32ln 3a x x m a f x f x ∈--∈+--恒有成立,求实数m 的取值范围.。
2015届高考数学(文科)一轮总复习导数及其应用
2015 届高考数学(文科)一轮总复习导数及其应用第三篇导数及其应用第 1 讲导数的观点及运算基础稳固题组( 建议用时: 40 分钟 )一、填空题1.(2014 ?深圳中学模拟 ) 曲线 y =x3 在原点处的切线方程为 ________.分析∵ y′= 3x2 ,∴= y′ |x = 0= 0,∴曲线 y= x3 在原点处的切线方程为y= 0.答案y= 02 .已知 f(x)=xlnx,若f′ (x0)=2,则x0=________.分析f(x)的定义域为(0,+∞ ),f′ (x)=lnx+1,由 f ′ (x0) = 2,即 lnx0 + 1= 2,解得 x0= e.答案 e3 .(2014 ?辽宁五校联考 ) 曲线 y= 3lnx +x+ 2 在点 P0 处的切线方程为 4x- y- 1= 0,则点 P0 的坐标是 ________.分析由题意知 y′= 3x+1= 4,解得 x= 1,此时 4× 1 -y- 1=0,解得 y= 3,∴点 P0 的坐标是 (1,3) .答案 (1,3)4 .(2014 ?烟台期末 ) 设函数 f(x)=xsinx+cosx的图象在点 (t ,f(t))处切线的斜率为,则函数=g(t)的部分图象为 ________.分析函数 f(x)的导函数为 f ′ (x) =(xsinx+cosx)′=xcosx ,即= g(t) = tcost ,则函数 g(t) 为奇函数,图象对于原点对称,清除①,③ . 当 0< t <π 2 时, g(t) > 0,因此清除④,选② .答案②5.曲线 y= sinxsinx + cosx - 12 在点π 4, 0 处的切线的斜率为 ________.分析y′= cos2x + sin2x sinx + cosx2= 11+sin2x ,故所求切线斜率==12.答案126.(2013 ?广东卷 ) 若曲线 y= ax2 - lnx 在点 (1 ,a) 处的切线平行于 x 轴,则 a= ________.分析y′= 2ax- 1x ,∴ y′ |x = 1=2a- 1= 0,∴a=12.7 答案12.已知 f(x)=x2+3xf′ (2),则f′ (2)=________. 分析由题意得 f ′ (x) = 2x+ 3f ′ (2) ,∴f ′ (2) = 2× 2+ 3f ′(2) ,∴ f ′ (2) =- 2.答案- 28 .(2013 ?江西卷 ) 若曲线 y=xα+ 1( α∈ R)在点 (1,2) 处的切线经过坐标原点,则α= ________.分析y′=α xα- 1,∴斜率= y ′ |x = 1=α= 2- 01-0= 2,∴α= 2.答案 2二、解答题9.求以下函数的导数:(1)y=ex?lnx;(2)y=xx2+1x+1x3;(3)y=x-sinx2cosx2;(4)y=(x+1)1x-1.解(1)y ′= (ex ?lnx) ′= exlnx + ex ?1x = exlnx +1x.(2)∵ y= x3 +1+ 1x2,∴ y ′= 3x2- 2x3.(3)先使用三角公式进行化简,得y =x- sinx2cosx2 = x- 12sinx ,∴ y′=x- 12sinx ′= x′-12(sinx) ′= 1- 12cosx.(4)先化简, y = x?1x-x+ 1x - 1=,∴y′= n=- 12x1+ 1x.10 .(2014 ?南通二模 )f(x)=ax-1x,g(x)=lnx,x>0,a∈ R 是常数.(1)求曲线 y = g(x) 在点 P(1 , g(1)) 处的切线 l.(2)能否存在常数 a,使 l 也是曲线 y= f(x) 的一条切线.若存在,求 a 的值;若不存在,简要说明原因.解 (1) 由题意知, g(1) = 0,又 g′(x) = 1x, g′ (1)=1,因此直线 l 的方程为 y= x- 1.(2)设 y=f(x) 在 x= x0 处的切线为 l ,则有ax0 - 1x0= x0- 1, a+1x20 = 1,解得 x0= 2,a= 34,此时 f(2)=1,即当 a=34 时, l 是曲线 y= f(x)在点Q(2,1)的切线.能力提高题组( 建议用时: 25 分钟 )一、填空题1.(2014 ?盐城一模 ) 设 P 为曲线 c :y= x2+ 2x+ 3 上的点,且曲线 c 在点 P 处切线倾斜角的取值范围是0,π 4,则点 P 横坐标的取值范围是________.分析设 P(x0 , y0) ,倾斜角为α,y′= 2x+2,则=tan α= 2x0+ 2∈ [0,1],解得x0∈-1,-12.答案- 1,- 122 .设f0(x)=sinx,f1(x)=f0′ (x),f2(x)=f1′(x) ,, fn(x)=f′ n-1(x),n∈ N*,则f2013(x)=________.分析f1(x) = f0 ′ (x) = cosx , f2(x) = f1 ′ (x) =-4 / 6sinx ,f3(x) =f2 ′(x) =-cosx ,f4(x) =f3 ′(x) =sinx ,,由规律知,这一系列函数式值的周期为4,故f2013(x)f1(x) = cosx.答案cosx3 .(2014 ?武汉中学月考) 已知曲线f(x) = xn+ 1(n ∈ N*)与直线 x= 1 交于点轴交点的横坐标为P,设曲线y= f(x)xn ,则log2013x1在点 P 处的切线与x+ log2013x2 ++log2013x2012 的值为________.分析 f ′ (x) = (n + 1)xn ,=f ′(1) = n+1,点 P(1,1) 处的切线方程为y- 1= (n + 1)(x - 1) ,令 y= 0,得 x = 1- 1n+ 1= nn+1,即 xn= nn+ 1,∴ x1 ?x2 ? ? x2012 = 12 × 23 × 34 × × 20112012 ×20122013 = 12013 ,则log2013x1+log2013x2++log2013x2012=log2013(x1x2x2012) =- 1.答案- 1二、解答题4 .设函数处的切线方程为f(x)=ax-bx,曲线7x- 4y- 12= 0.y= f(x) 在点(2 ,f(2))(1)求 f(x) 的分析式;(2)证明:曲线 y= f(x) 上任一点处的切线与直线x= 0和直线 y= x 所围成的三角形面积为定值,并求此定值.(1)解方程 7x-4y- 12=0 可化为 y= 74x-3,当 x= 2 时, y= 12. 又 f ′(x) = a+ bx2,于是 2a- b2=12, a+b4= 74,解得 a=1, b= 3. 故 f(x)=x-3x.(2)证明设P(x0,y0)为曲线上任一点,由 f ′ (x) = 1+ 3x2 知曲线在点 P(x0 ,y0) 处的切线方程为 y- y0= 1+ 3x20(x - x0) ,即 y- (x0 - 3x0) = 1+3x20(x - x0) .令 x=0,得 y=- 6x0,进而得切线与直线x= 0 交点坐标为0,- 6x0.令 y= x,得 y= x= 2x0,进而得切线与直线 y= x 的交点坐标为 (2x0,2x0) .因此点 P(x0 ,y0) 处的切线与直线x=0,y=x 所围成的三角形面积为12- 6x0|2x0| = 6.故曲线y= f(x) 上任一点处的切线与直线x= 0 和直线y = x 所围成的三角形面积为定值,此定值为 6.。
【纯手打原创】2015高考真题文科数学(新课标Ⅱ卷)【逐题解析版】
������+������+������ ������
,
������+ ������+ ������ ������
) ,所以 E 的坐标为(1,
�����长度为
������ ������ ������
������
2
B ( 0, 3 )
+
������������
2015 普通高等学校招生统一考试
文科数学(新课标Ⅱ卷)
第Ⅰ卷
一、 选择题:本小题共 12 小题,每小题 5 分,共 60 分.在每小题给出的四个 选项中,只有一项是符合题目要求的.
(1) 已知集合������ = ������ −1 < ������ < 2 ,������ = ������ 0 < ������ < 3 ,则������ ∪ ������ = (A) −1,3 (B) −1,0 (C) 0,2 (D) 2,3
=
������������ ������
1
D
C ( 2, 3 )
E
O
A(1,0)
1
2
3
x
(8)右边程序框图得算法思路源于我国古代数学名著 《九章算术》中的“更相减损法” ,执行该程序框图,若 输入������, ������分别是 14,18,则输出的������ =
2015年高考数学文科证明题整理
高中数学文科在高考中可能考的证明题必修1:P52,P84必修2:P15,P27第二题,P41第二题, P49第四题,P56第一题 必修3:P104,P111,P160一、对数的运算性质的证明1、log log log a a a MN M N =+ (a >0且a ≠1,M >0,N >0) 证明:,,mnm nm n a a aM a N a +⋅===设。
于是,m nMN a += 由对数的定义得到log ,log m n a a M a m M N a n N =⇔==⇔= log m n a MN a m n MN +=⇔+=log log log ()a a a M N MN ∴+=放出投影2、log log log aa a MM N N=- 证明:令,mnM a N a == 则:m n m n Ma a a N-=÷= l o g aM m n N∴-=又由,m nM a N a == log ,log a a m M n N ∴==即:log log log a a aM M N m n N-=-= 3、log log ()na a M n Mn R =∈证明: 0,l o g ,N nna n N M M a ≠==时令则l o g ,bna b n M M a ==则Nb n na a ∴= Nb ∴=log log na a M n M ∴=二、换底公式证明设㏒b N=x,根据对数定义,有N=b x ,两边取以a 为底的对数,得㏒a N =㏒a b x 故 x ㏒a b =㏒a N ,由于b ≠1则㏒a b ≠0,解得 x=b N a a log log 故㏒ b N=bNa a log log 由换底公式易知㏒a b=ab l o g 1三、两点间的距离公式已知平面上的两点111222(,),(,)P x y P x y ,()()22122121PP x x y y =-+-证明:由图易知11221PQ N N x x ==-21221P Q M M y y ==- ∴2221212P P P Q P Q=+()()22122121PP x x y y ⇒=-+-四、点到直线的距离公式设点p (X0,Y0),直线方程为Ax+By+C=0,那么点到直线的距离为d=(Ax0+By0+C )的绝对值/ √A^2+B^2五、勾股定理的证明a^2+b^2=c^2证明:作四个全等的直角三角形,设它们的两条直角边长分别为a、b ,斜边长为c. 把它们拼成如图那样的一个多边形,使D、E、F在一条直线上. 过C作AC的延长线交DF 于点P.∵ D、E、F在一条直线上, 且RtΔGEF ≌ RtΔEBD, ∴∠EGF = ∠BED,∵∠EGF + ∠GEF = 90°,∴∠BED + ∠GEF = 90°,∴∠BEG =180°―90°= 90°又∵ AB = BE = EG = GA = c,∴ ABEG是一个边长为c的正方形. ∴∠ABC + ∠CBE = 90°∵ RtΔABC ≌ RtΔEBD,∴∠ABC = ∠EBD. ∴∠EBD + ∠CBE = 90°即∠CBD= 90°又∵∠BDE = 90°,∠BCP = 90°,BC = BD = a.∴ BDPC是一个边长为a的正方形.同理,HPFG是一个边长为b的正方形.设多边形GHCBE的面积为S,则∴ BDPC的面积也为S,HPFG的面积也为S由此可推出:a^2+b^2=c^2六、勾股定理的逆定理证明内容:在一个三角形中,两条边的平方和等于第三边的平方,那么这个三角形就是直角三角形已知△ABC的三边AB=c,BC=a,CA=b,且满足a^2+b^2=c^2,证明∠C=90°。
人教版通用2015年高考数学文科大题部分专练11份
目录中档大题规范练——导数的应用 ........................................................................................... 1 中档大题规范练——概率与统计 ........................................................................................... 7 中档大题规范练——立体几何 ............................................................................................. 11 中档大题规范练——三角函数 ............................................................................................. 15 中档大题规范练——数列 ..................................................................................................... 18 中档大题规范练——圆锥曲线 ............................................................................................. 24 中档大题规范练——直线与圆 ............................................................................................. 31 压轴大题突破练——函数与导数(一) .................................................................................. 35 压轴大题突破练——函数与导数(二) .................................................................................. 40 压轴大题突破练——直线与圆锥曲线(一) .......................................................................... 44 压轴大题突破练——直线与圆锥曲线(二) .. (47)中档大题规范练——导数的应用1.已知函数f (x )=x 3-2x +1,g (x )=ln x . (1)求F (x )=f (x )-g (x )的单调区间和极值;(2)是否存在实常数k 和m ,使得x >0时,f (x )≥kx +m 且g (x )≤kx +m ?若存在,求出k 和m 的值;若不存在,说明理由.解 (1)由F (x )=x 3-2x +1-ln x (x >0), 得F ′(x )=3x 3-2x -1x(x >0),令F ′(x )=0得x =1,易知F (x )在(0,1)上单调递减,在(1,+∞)上单调递增,从而F (x )的极小值为F (1)=0.(2)易知f (x )与g (x )有一个公共点(1,0),而函数g (x )在点(1,0)处的切线方程为y =x -1,下面只需验证⎩⎪⎨⎪⎧f (x )≥x -1g (x )≤x -1都成立即可.设h (x )=x 3-2x +1-(x -1)(x >0), 则h ′(x )=3x 2-3=3(x +1)(x -1)(x >0).易知h (x )在(0,1)上单调递减,在(1,+∞)上单调递增, 所以h (x )的最小值为h (1)=0, 所以f (x )≥x -1恒成立.设k (x )=ln x -(x -1),则k ′(x )=1-x x(x >0).易知k (x )在(0,1)上单调递增,在(1,+∞)上单调递减, 所以k (x )的最大值为k (1)=0, 所以g (x )≤x -1恒成立.故存在这样的实常数k =1和m =-1,使得x >0时,f (x )≥kx +m 且g (x )≤kx +m .2.设函数f (x )=ax 3+bx 2+cx 在区间[0,1]上单调递增,在区间(-∞,0),(1,+∞)上单调递减,又f ′(12)=32. (1)求f (x )的解析式.(2)若在区间[0,m ](m >0)上恒有f (x )≤x 成立,求m 的取值范围. 解 (1)f ′(x )=3ax 2+2bx +c , 由已知f ′(0)=f ′(1)=0,即⎩⎪⎨⎪⎧c =0,3a +2b +c =0,解得⎩⎪⎨⎪⎧b =-32a ,c =0.所以f ′(x )=3ax 2-3ax , 所以f ′(12)=3a 4-3a 2=32,所以a =-2,b =3, 所以f (x )=-2x 3+3x 2.(2)令f (x )≤x ,即-2x 3+3x 2-x ≤0, 所以x (2x -1)(x -1)≥0, 所以0≤x ≤12或x ≥1.又f (x )≤x 在区间[0,m ]上恒成立, 所以0<m ≤12.3.已知函数f (x )=ax 3+x 2+bx (其中常数a ,b ∈R ),g (x )=f (x )+f ′(x )是奇函数.(1)求f (x )的表达式;(2)讨论g (x )的单调性,并求g (x )在区间[1,2]上的最大值与最小值. 解 (1)由题意得f ′(x )=3ax 2+2x +b ,因此g (x )=f (x )+f ′(x )=ax 3+(3a +1)x 2+(b +2)x +b . 因为函数g (x )是奇函数,所以g (-x )=-g (x ), 即对任意实数x ,有a (-x )3+(3a +1)(-x )2+ (b +2)(-x )+b =-[ax 3+(3a +1)x 2+(b +2)x +b ], 从而3a +1=0,b =0,解得a =-13,b =0,因此f (x )的表达式为f (x )=-13x 3+x 2.(2)由(1)知g (x )=-13x 3+2x ,所以g ′(x )=-x 2+2.令g ′(x )=0,解得x 1=-2,x 2=2, 则当x <-2或x >2时,g ′(x )<0,从而g (x )在区间(-∞,- 2 ),(2,+∞)上是减函数; 当-2<x <2时,g ′(x )>0,从而g (x )在区间(-2,2)上是增函数.由上述讨论知,g (x )在区间[1,2]上的最大值与最小值只能在x =1,2,2时取得, 而g (1)=53,g (2)=423,g (2)=43,因此g (x )在区间[1,2]上的最大值为g (2)=423,最小值g (2)=43.4.甲方是一农场,乙方是一工厂.由于乙方生产需占用甲方的资源,因此甲方有权向乙方索赔以弥补经济损失并获得一定净收入,在乙方不赔付甲方的情况下,乙方的年利润x (元)与年产量t (吨)满足函数关系x =2 000t .若乙方每生产一吨产品必须赔付甲方S 元(以下称S 为赔付价格).(1)将乙方的年利润ω(元)表示为年产量t (吨)的函数,并求出乙方获得最大利润的年产量;(2)甲方每年受乙方生产影响的经济损失金额y =0.002t 2(元),在乙方按照获得最大利润的产量进行生产的前提下,甲方要在索赔中获得最大净收入,应向乙方要求的赔付价格S 是多少? 解 (1)因为赔付价格为S 元/吨, 所以乙方的实际年利润为ω=2 000t -St . ω′=1 000t -S =1 000-S t t ,令ω′=0,得t =t 0=(1 000S)2.当t <t 0时,ω′>0;当t >t 0时,ω′<0, 所以t =t 0时,ω取得最大值.因此乙方获得最大利润的年产量t 0=(1 000S )2(吨).(2)设甲方净收入为v 元,则v =St -0.002t 2 将t =(1 000S )2代入上式,得到甲方净收入v 与赔付价格S 之间的函数关系式. v =1 0002S -2×1 0003S 4.又v ′=-1 0002S 2+8×1 0003S 5=1 0002×(8 000-S 3)S 5,令v ′=0,得S =20.当S <20时,v ′>0;当S >20时,v ′<0, 所以S =20时,v 取得最大值.因此甲方向乙方要求的赔付价格S =20(元/吨)时,获得最大净收入. 5.已知函数f (x )=ln x +2ax,a ∈R .(1)若函数f (x )在[2,+∞)上是增函数,求实数a 的取值范围; (2)若函数f (x )在[1,e]上的最小值为3,求实数a 的值. 解 (1)∵f (x )=ln x +2a x ,∴f ′(x )=1x -2a x 2.∵f (x )在[2,+∞)上是增函数,∴f ′(x )=1x -2ax 2≥0在[2,+∞)上恒成立,即a ≤x2在[2,+∞)上恒成立.令g (x )=x2,则a ≤g (x )min ,x ∈[2,+∞),∵g (x )=x2在[2,+∞)上是增函数,∴g (x )min =g (2)=1.∴a ≤1.所以实数a 的取值范围为(-∞,1]. (2)由(1)得f ′(x )=x -2ax2,x ∈[1,e].①若2a <1,则x -2a >0,即f ′(x )>0在[1,e]上恒成立, 此时f (x )在[1,e]上是增函数.所以f (x )min =f (1)=2a =3,解得a =32(舍去).②若1≤2a ≤e ,令f ′(x )=0,得x =2a . 当1<x <2a 时,f ′(x )<0,所以f (x )在(1,2a )上是减函数,当2a <x <e 时,f ′(x )>0,所以f (x )在(2a ,e)上是增函数. 所以f (x )min =f (2a )=ln(2a )+1=3, 解得a =e 22(舍去).③若2a >e ,则x -2a <0,即f ′(x )<0在[1,e]上恒成立,此时f (x )在[1,e]上是减函数. 所以f (x )min =f (e)=1+2ae=3,得a =e.适合题意. 综上a =e.6.已知函数f (x )=a ln x +12ax 2+bx (a ≠0).(1)若函数f (x )的图象在x =1处的切线方程为y =3x -32b ,求a 、b 的值;(2)若a =2时,函数f (x )是增函数,求实数b 的取值范围; (3)设函数g (x )=lnx 的图象C 1与函数h (x )=f (x )-ag (x )的图象C 2交于点P 、Q ,过线段PQ 的中点R 作x 轴的垂线分别交C 1、C 2于点M 、N ,问是否存在点R ,使C 1在M 处的切线与C 2在N 处的切线平行?若存在,求出R 的横坐标;若不存在,请说明理由.解 (1)函数f (x )=a ln x +12ax 2+bx 的定义域为(0,+∞),f ′(x )=ax +ax +b =ax 2+bx +a x,当x =1时,f ′(1)=2a +b =3,f (1)=12a +b ,所以函数f (x )的图象在x =1处的切线方程为y -(12a +b )=3(x -1),即y =3x +(12a +b -3),所以12a +b -3=-32b ,解方程组⎩⎪⎨⎪⎧2a +b =3,12a +b -3=-32b ,得a =b =1. (2)由(1)知,f ′(x )=2x +2x +b ,则f ′(x )≥0在(0,+∞)上恒成立,即b ≥-2x-2x 在(0,+∞)上恒成立,因为2x +2x ≥22x·2x =4(当且仅当x =1时等号成立), 所以-2x -2x ≤-4,所以b ≥-4,故实数b 的取值范围为[-4,+∞).(3)设点P 、Q 的坐标分别为(x 1,y 1)、(x 2,y 2), 且0<x 1<x 2,则点M 、N 的横坐标均为x =x 1+x 22.C 1在点M 处的切线斜率为k 1=1x |x =x 1+x 22=2x 1+x 2.C 2在点N 处的切线斜率为k 2=(ax +b )|x =x 1+x 22=a (x 1+x 2)2+b . 假设C 1在点M 处的切线与C 2在点N 处的切线平行, 则k 1=k 2,则2x 1+x 2=a (x 1+x 2)2+b ,即2(x 2-x 1)x 1+x 2=a (x 22-x 21)2+b (x 2-x 1)=(a 2x 22+bx 2)-(a 2x 21+bx 1) =y 2-y 1=ln x 2-ln x 1=lnx 2x 1, 所以ln x 2x 1=2(x 2-x 1)x 1+x 2=2(x 2x 1-1)1+x 2x 1,令u =x 2x 1>1,则ln u =2(u -1)1+u ,u >1,①令r (u )=ln u -2(u -1)1+u ,u >1,则r ′(u )=1u -4(1+u )2=(u -1)2u (u +1)2.因为u >1,所以r ′(u )>0,所以r (u )在(1,+∞)上单调递增, 故r (u )>r (1)=0,则ln u >2(u -1)1+u,这与①矛盾,故假设不成立. 即不存在满足题意的点R .中档大题规范练——概率与统计1.第12届全运会已于2013年8月31日在辽宁沈阳举行,组委会在沈阳某大学招募了12名男志愿者和18名女志愿者,将这30名志愿者的身高编成如图所示的茎叶图(单位:cm),身高在175 cm 以上(包括175 cm)定义为“高个子”,身高在175 cm 以下(不包括175 cm)定义为“非高个子”.(1)如果用分层抽样的方法从“高个子”和“非高个子”中共抽取5人,再从这5人中选2人,求至少有一人是“高个子”的概率;(2)若从身高180 cm 以上(包括180 cm)的志愿者中选出男、女各一人,求这2人身高相差5 cm 以上的概率. 解 (1)根据茎叶图知,“高个子”有12人,“非高个子”有18人, 用分层抽样的方法,每个人被抽中的概率是530=16,所以抽取的5人中,“高个子”有12×16=2人,“非高个子”有18×16=3人.“高个子”用A ,B 表示,“非高个子”用a ,b ,c 表示,则从这5人中选2人的情况有(A ,B ),(A ,a ),(A ,b ),(A ,c ),(B ,a ),(B ,b ),(B ,c ),(a ,b ),(a ,c ),(b ,c ),共10种,至少有一名“高个子”被选中的情况有(A ,B ),(A ,a ),(A ,b ),(A ,c ),(B ,a ),(B ,b ),(B ,c ),共7种.因此,至少有一人是“高个子”的概率是P =710.(2)由茎叶图知,有5名男志愿者身高在180 cm 以上(包括180 cm),身高分别为181 cm,182 cm,184 cm,187 cm,191 cm ;有2名女志愿者身高为180 cm 以上(包括180 cm),身高分别为180 cm,181 cm.抽出的2人用身高表示,则有(181,180),(181,181),(182,180),(182,181),(184,180),(184,181),(187,180),(187,181),(191,180),(191,181),共10种情况, 身高相差5 cm 以上的有(187,180),(187,181),(191,180),(191,181),共4种情况,故这2人身高相差5 cm 以上的概率为410=25.2.(2013·北京)如图是某市3月1日至14日的空气质量指数趋势图,空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染.某人随机选择3月1日至3月13日中的某一天到达该市,并停留2天.(1)求此人到达当日空气质量优良的概率;(2)求此人在该市停留期间只有1天空气重度污染的概率;(3)由图判断从哪天开始连续三天的空气质量指数方差最大?(结论不要求证明)解 (1)在3月1日至3月13日到达这13天中,1日,2日,3日,7日,12日,13日共6天的空气质量优良.所以,此人到达当日空气质量优良的概率P =613.(2)事件“此人在该市停留期间只有1天空气重度污染”发生,则该人到达日期应在4日,5日,7日或8日.所以,只有一天空气重度污染的概率P =413.(3)从3月5日开始连续三天的空气质量指数方差最大.3.先后随机投掷2枚正方体骰子,其中x 表示第1枚骰子出现的点数,y 表示第2枚骰子出现的点数. (1)求点P (x ,y )在直线y =x -2上的概率; (1)求点P (x ,y )满足y 2<2x 的概率.解 每枚骰子出现的点数都有6种情况, 所以,基本事件总数为6×6=36(个).(1)记“点P (x ,y )在直线y =x -2上”为事件A , 则事件A 有4个基本事件:(3,1),(4,2),(5,3),(6,4), 所以,P (A )=436=19.(2)记“点P (x ,y )满足y 2<2x ”为事件B ,则事件B 有12个基本事件:(1,1),(2,1),(3,1),(3,2),(4,1),(4,2),(5,1),(5,2),(5,3),(6,1),(6,2),(6,3), 所以,P (B )=1236=13.4.(2013·福建)某工厂有25周岁以上(含25周岁)工人300名,25周岁以下工人200名.为研究工人的日平均生产量是否与年龄有关,现采用分层抽样的方法,从中抽取了100名工人,先统计了他们某月的日平均生产件数,然后按工人年龄在“25周岁以上(含25周岁)”和“25周岁以下”分为两组,再将两组工人的日平均生产件数分成5组:[50,60),[60,70),[70,80),[80,90),[90,100]分别加以统计,得到如图所示的频率分布直方图.(1)从样本中日平均生产件数不足60件的工人中随机抽取2人,求至少抽到一名“25周岁以下组”工人的概率; (2)规定日平均生产件数不少于80件者为“生产能手”,请你根据已知条件完成2×2列联表,并判断是否有90%的把握认为“生产能手与工人所在的年龄组有关”?附:χ2=n (n 11n 22-n 12n 21)2n 1+n 2+n +1n +2P (χ2≥k )0.100 0.050 0.010 0.001 k2.7063.8416.63510.828(注:此公式也可以写成 K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d ))解 (1)由已知得,样本中有25周岁以上组工人60名,25周岁以下组工人40名. 所以,样本中日平均生产件数不足60件的工人中,25周岁以上组工人有60×0.05=3(人), 记为A 1,A 2,A 3;25周岁以下组工人有40×0.05=2(人),记为B 1,B 2.从中随机抽取2名工人,所有的可能结果共有10种,它们是(A 1,A 2),(A 1,A 3),(A 2,A 3),(A 1,B 1),(A 1,B 2),(A 2,B 1),(A 2,B 2),(A 3,B 1),(A 3,B 2),(B 1,B 2).其中,至少有1名“25周岁以下组”工人的可能结果共有7种,它们是(A 1,B 1),(A 1,B 2),(A 2,B 1),(A 2,B 2),(A 3,B 1),(A 3,B 2),(B 1,B 2).故所求的概率P =710.(2)由频率分布直方图可知,在抽取的100名工人中,“25周岁以上组”中的生产能手60×0.25=15(人),“25周岁以下组”中的生产能手40×0.375=15(人),据此可得2×2列联表如下:生产能手 非生产能手合计 25周岁以上组 15 45 60 25周岁以下组15 25 40 合计3070100所以得K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d )=100×(15×25-15×45)260×40×30×70=2514≈1.79. 因为1.79<2.706.所以没有90%的把握认为“生产能手与工人所在的年龄组有关”.5.有编号为1,2,3的三个白球,编号为4,5,6的三个黑球,这六个球除编号和颜色外完全相同,现从中任意取出两个球.(1)求取得的两个球颜色相同的概率; (2)求取得的两个球颜色不相同的概率.解 从六个球中取出两个球的基本事件有(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)共计15个基本事件.(1)记事件A 为“取出的两个球是白球”,则这个事件包含的基本事件的是(1,2),(1,3),(2,3),共计3个基本事件,故P (A )=315=15.记事件B 为“取出的两个球是黑球”,同理可得P (B )=15.记事件C 为“取出的两个球的颜色相同”,则C =A +B ,且A ,B 互斥,根据互斥事件的概率加法公式,得P (C )=P (A +B )=P (A )+P (B )=25.(2)记事件D 为“取出的两个球的颜色不相同”,则事件C ,D 互斥,根据互斥事件概率之间的关系,得P (D )=1-P (C )=1-25=35.6.(2014·福建)根据世行2013年新标准,人均GDP 低于1 035美元为低收入国家;人均GDP 为1035~4085美元为中等偏下收入国家;人均GDP 为4085~12616美元为中等偏上收入国家;人均GDP 不低于12616美元为高收入国家.某城市有5个行政区,各区人口占该城市人口比例及人均GDP 如下表:行政区 区人口占城市人口比例 区人均GDP(单位:美元) A 25% 8 000 B 30% 4 000 C 15% 6 000 D 10% 3 000 E20%10 000(1)判断该城市人均GDP 是否达到中等偏上收入国家标准;(2)现从该城市5个行政区中随机抽取2个,求抽到的2个行政区人均GDP 都达到中等偏上收入国家标准的概率. 解 (1)设该城市人口总数为a ,则该城市人均GDP 为1a (8 000×0.25a +4 000×0.30a +6000×0.15a +3 000×0.10a +10 000×0.20a )=6 400. 因为6 400∈[4 085,12 616),所以该城市人均GDP 达到了中等偏上收入国家标准.(2)“从5个行政区中随机抽取2个”的所有的基本事件是{A ,B},{A ,C},{A ,D},{A ,E},{B ,C},{B ,D},{B ,E},{C ,D},{C ,E},{D ,E},共10个. 设事件“抽到的2个行政区人均GDP 都达到中等偏上收入国家标准”为M ,则事件M 包含的基本事件是:{A ,C},{A ,E},{C ,E},共3个,所以所求概率为P (M )=310.中档大题规范练——立体几何1.如图所示,已知三棱锥A -BPC 中,AP ⊥PC ,AC ⊥BC ,M 为AB 的中点,D 为PB 的中点,且△PMB 为正三角形.(1)求证:DM ∥平面APC ;(2)求证:平面ABC ⊥平面APC ;(3)若BC =4,AB =20,求三棱锥D -BCM 的体积.(1)证明 由已知,得MD 是△ABP 的中位线,所以MD ∥AP .又MD ⊄平面APC ,AP ⊂平面APC ,故MD ∥平面APC .(2)证明 因为△PMB 为正三角形,D 为PB 的中点,所以MD ⊥PB .所以AP ⊥PB .又AP ⊥PC ,PB ∩PC =P ,所以AP ⊥平面PBC .因为BC ⊂平面PBC ,所以AP ⊥BC .又BC ⊥AC ,AC ∩AP =A ,所以BC ⊥平面APC .因为BC ⊂平面ABC ,所以平面ABC ⊥平面APC .(3)解 由(2)知,可知MD ⊥平面PBC ,所以MD 是三棱锥D -BCM 的一条高,又AB =20,BC =4,△PMB 为正三角形,M ,D 分别为AB ,PB 的中点,经计算可得MD =53,DC =5,S △BCD =12×BC ×BD ×sin ∠CBD =12×5×4×215=221. 所以V D -BCM =V M -DBC =13×S △BCD ×MD =13×221×53=107. 2.如图,在Rt △ABC 中,AB =BC =4,点E 在线段AB 上.过点E 作EF ∥BC 交AC 于点F ,将△AEF 沿EF 折起到△PEF 的位置(点A 与P 重合),使得∠PEB =30°.(1)求证:EF ⊥PB ;(2)试问:当点E 在何处时,四棱锥P —EFCB 的侧面PEB 的面积最大?并求此时四棱锥P —EFCB 的体积.(1)证明 ∵EF ∥BC 且BC ⊥AB ,∴EF ⊥AB ,即EF ⊥BE ,EF ⊥PE .又BE ∩PE =E ,∴EF ⊥平面PBE ,又PB ⊂平面PBE ,∴EF ⊥PB .(2)解 设BE =x ,PE =y ,则x +y =4.∴S △PEB =12BE ·PE ·sin ∠PEB =14xy ≤14⎝⎛⎭⎫x +y 22=1. 当且仅当x =y =2时,S △PEB 的面积最大.此时,BE =PE =2.由(1)知EF ⊥平面PBE ,∴平面PBE ⊥平面EFCB ,在平面PBE 中,作PO ⊥BE 于O ,则PO ⊥平面EFCB .即PO 为四棱锥P —EFCB 的高.又PO =PE ·sin 30°=2×12=1. S 梯形EFCB =12×(2+4)×2=6. ∴V P —BCFE =13×6×1=2.3.如图,在矩形ABCD 中,AB =2BC ,P 、Q 分别是线段AB 、CD 的中点,EP ⊥平面ABCD .(1)求证:DP ⊥平面EPC ;(2)问在EP 上是否存在点F ,使平面AFD ⊥平面BFC ?若存在,求出FP AP的值;若不存在,说明理由.(1)证明 ∵EP ⊥平面ABCD ,∴EP ⊥DP .又ABCD 为矩形,AB =2BC ,P 、Q 分别为AB 、CD 的中点,连接PQ ,则PQ ⊥DC 且PQ =12DC . ∴DP ⊥PC .∵EP ∩PC =P ,∴DP ⊥平面EPC .(2)解 假设存在F 使平面AFD ⊥平面BFC ,∵AD ∥BC ,BC ⊂平面BFC ,AD ⊄平面BFC ,∴AD ∥平面BFC .∴AD 平行于平面AFD 与平面BFC 的交线l .∵EP ⊥平面ABCD ,∴EP ⊥AD ,而AD ⊥AB ,AB ∩EP =P ,∴AD ⊥平面EAB ,∴l ⊥平面F AB .∴∠AFB 为平面AFD 与平面BFC 所成二面角的平面角.∵P 是AB 的中点,且FP ⊥AB ,∴当∠AFB =90°时,FP =AP .∴当FP =AP ,即FP AP =1时,平面AFD ⊥平面BFC .4.(2013·课标全国Ⅱ)如图,直三棱柱ABC -A 1B 1C 1中,D ,E 分别是AB ,BB 1的中点.(1)证明:BC 1∥平面A 1CD ;(2)设AA 1=AC =CB =2,AB =22,求三棱锥C -A 1DE 的体积.(1)证明 连接AC 1交A 1C 于点F ,则F 为AC 1中点.又D 是AB 中点,连接DF ,则BC 1∥DF .因为DF ⊂平面A 1CD ,BC 1⊄平面A 1CD ,所以BC 1∥平面A 1CD .(2)解 因为ABC -A 1B 1C 1是直三棱柱,所以AA 1⊥CD .又因为AC =CB ,D 为AB 的中点,所以CD ⊥AB .又AA 1∩AB =A ,于是CD ⊥平面ABB 1A 1.由AA 1=AC =CB =2,AB =22,得∠ACB =90°,CD =2,A 1D =6,DE =3,A 1E =3,故A 1D 2+DE 2=A 1E 2,即DE ⊥A 1D .所以1C A DE V -=13×S △A 1ED ×CD =13×12×6×3×2=1.5.(2013·辽宁)如图,AB 是圆O 的直径,P A 垂直圆O 所在的平面,C 是圆O 上的点.(1)求证:BC ⊥平面P AC ;(2)设Q 为P A 的中点,G 为△AOC 的重心,求证:QG ∥平面PBC .证明 (1)由AB 是圆O 的直径,得AC ⊥BC ,由P A ⊥平面ABC ,BC ⊂平面ABC ,得P A ⊥BC .又P A ∩AC =A ,P A ⊂平面P AC ,AC ⊂平面P AC ,所以BC ⊥平面P AC .(2)连接OG 并延长交AC 于M ,连接QM ,QO ,由G 为△AOC 的重心,得M 为AC 中点.由Q 为P A 中点,得QM ∥PC ,又O 为AB 中点,得OM ∥BC .因为QM ∩MO =M ,QM ⊂平面QMO ,MO ⊂平面QMO ,BC ∩PC =C ,BC ⊂平面PBC ,PC ⊂平面PBC .所以平面QMO ∥平面PBC .因为QG ⊂平面QMO ,所以QG ∥平面PBC .6.(2014·四川)在如图所示的多面体中,四边形ABB 1A 1和ACC 1A 1都为矩形.(1)若AC ⊥BC ,证明:直线BC ⊥平面ACC 1A 1;(2)设D ,E 分别是线段BC ,CC 1的中点,在线段AB 上是否存在一点M ,使直线DE ∥平面A 1MC ?请证明你的结论.(1)证明 因为四边形ABB 1A 1和ACC 1A 1都是矩形,所以AA 1⊥AB ,AA 1⊥AC .因为AB ∩AC =A ,AB ⊂平面ABC ,AC ⊂平面ABC ,所以AA 1⊥平面ABC .因为直线BC ⊂平面ABC ,所以AA 1⊥BC .又由已知,AC ⊥BC ,AA 1∩AC =A ,AA 1⊂平面ACC 1A 1,AC ⊂平面ACC 1A 1,所以BC ⊥平面ACC 1A 1.(2)解 取线段AB 的中点M ,连接A 1M ,MC ,A 1C ,AC 1,设O 为A 1C ,AC 1的交点. 由题意知,O 为AC 1的中点.连接MD ,OE ,OM ,则MD ,OE 分别为△ABC ,△ACC 1的中位线,所以MD 綊12AC ,OE 綊12AC , 因此MD 綊OE .从而四边形MDEO 为平行四边形,则DE ∥MO .因为直线DE ⊄平面A 1MC ,MO ⊂平面A 1MC ,所以直线DE ∥平面A 1MC .即线段AB 上存在一点M (线段AB 的中点),使直线DE ∥平面A 1MC .中档大题规范练——三角函数1.已知函数f (x )=(sin x -cos x )sin 2x sin x. (1)求f (x )的定义域及最小正周期;(2)求f (x )的单调递增区间.解 (1)由sin x ≠0得x ≠k π(k ∈Z ),故f (x )的定义域为{x ∈R |x ≠k π,k ∈Z }.因为f (x )=(sin x -cos x )sin 2x sin x=2cos x (sin x -cos x )=sin 2x -2cos 2x=sin 2x -(1+cos 2x ) =2sin ⎝⎛⎭⎫2x -π4-1, 所以f (x )的最小正周期T =2π2=π. (2)函数y =sin x 的单调递增区间为⎣⎡⎦⎤2k π-π2,2k π+π2(k ∈Z ). 由2k π-π2≤2x -π4≤2k π+π2,x ≠k π(k ∈Z ), 得k π-π8≤x ≤k π+3π8,x ≠k π(k ∈Z ). 所以f (x )的单调递增区间为⎣⎡⎭⎫k π-π8,k π和⎝⎛⎦⎤k π,k π+3π8(k ∈Z ). 2.已知△ABC 的三个内角A ,B ,C 成等差数列,角B 所对的边b =3,且函数f (x )=23sin 2x +2sin x cos x -3在x =A 处取得最大值.(1)求f (x )的值域及周期;(2)求△ABC 的面积.解 (1)因为A ,B ,C 成等差数列,所以2B =A +C ,又A +B +C =π,所以B =π3,即A +C =2π3. 因为f (x )=23sin 2x +2sin x cos x - 3 =3(2sin 2x -1)+sin 2x =sin 2x -3cos 2x=2sin ⎝⎛⎭⎫2x -π3, 所以T =2π2=π. 又因为sin ⎝⎛⎭⎫2x -π3∈[-1,1], 所以f (x )的值域为[-2,2].(2)因为f (x )在x =A 处取得最大值,所以sin ⎝⎛⎭⎫2A -π3=1. 因为0<A <23π,所以-π3<2A -π3<π, 故当2A -π3=π2时,f (x )取到最大值, 所以A =512π,所以C =π4. 由正弦定理,知3sin π3=c sin π4⇒c = 2. 又因为sin A =sin ⎝⎛⎭⎫π4+π6=2+64, 所以S △ABC =12bc sin A =3+34. 3.已知函数f (x )=3sin 2x +2cos 2x +a .(1)求函数f (x )的最小正周期以及单调递增区间;(2)当x ∈[0,π4]时,函数f (x )有最大值4,求实数a 的值. 解 f (x )=3sin 2x +2cos 2x +a=cos 2x +3sin 2x +1+a=2sin(2x +π6)+a +1. (1)函数f (x )的最小正周期为2π2=π, 由2k π-π2≤2x +π6≤2k π+π2,k ∈Z , 解得k π-π3≤x ≤k π+π6,k ∈Z .故函数f (x )的单调递增区间为[k π-π3,k π+π6](k ∈Z ). (2)∵x ∈[0,π4],∴2x +π6∈[π6,2π3], 从而sin(2x +π6)∈[12,1]. ∴f (x )=2sin(2x +π6)+a +1∈[a +2,a +3], ∵f (x )有最大值4,∴a +3=4,故a =1.4.设向量a =(3sin x ,sin x ),b =(cos x ,sin x ),x ∈[0,π2]. (1)若|a |=|b |,求x 的值;(2)设函数f (x )=a ·b ,求f (x )的最大值.解 (1)由|a |2=(3sin x )2+(sin x )2=4sin 2x ,|b |2=(cos x )2+(sin x )2=1,由|a |=|b |,得4sin 2x =1.又x ∈[0,π2],从而sin x =12, 所以x =π6. (2)f (x )=a ·b =3sin x ·cos x +sin 2x =32sin 2x -12cos 2x +12=sin(2x -π6)+12. 当x =π3∈[0,π2]时,sin(2x -π6)取最大值1, 所以f (x )的最大值为32. 5.已知函数f (x )=4cos ωx ·sin(ωx -π6)+1(ω>0)的最小正周期是π. (1)求f (x )的单调递增区间;(2)求f (x )在[π8,3π8]上的最大值和最小值. 解 (1)f (x )=4cos ωx ·sin(ωx -π6)+1 =23sin ωx cos ωx -2cos 2ωx +1=3sin 2ωx -cos 2ωx =2sin(2ωx -π6). 最小正周期是2π2ω=π,所以,ω=1,从而f (x )=2sin(2x -π6). 令-π2+2k π≤2x -π6≤π2+2k π,k ∈Z . 解得-π6+k π≤x ≤π3+k π,k ∈Z . 所以函数f (x )的单调递增区间为[-π6+k π,π3+k π](k ∈Z ). (2)当x ∈[π8,3π8]时,2x -π6∈[π12,7π12], f (x )=2sin(2x -π6)∈[6-22,2], 所以f (x )在[π8,3π8]上的最大值和最小值分别为2,6-22. 6.在斜度一定的山坡上的一点A 测得山顶上一建筑物顶端对于山坡的斜度为15°,如图所示,向山顶前进100 m 后,又从B 点测得斜度为45°,设建筑物的高为50 m .求此山对于地平面的斜度θ的余弦值.解 在△ABC 中,∠BAC =15°,∠CBA =180°-45°=135°,AB =100 m ,所以∠ACB =30°. 由正弦定理,得100sin 30°=BC sin 15°,即BC =100sin 15°sin 30°. 在△BCD 中,因为CD =50,BC =100sin 15°sin 30°,∠CBD =45°,∠CDB =90°+θ, 由正弦定理,得50sin 45°=100sin 15°sin 30°sin (90°+θ), 解得cos θ=3-1.因此,山对地面的斜度的余弦值为3-1.中档大题规范练——数列1.已知公差大于零的等差数列{a n }的前n 项和S n ,且满足:a 2a 4=64,a 1+a 5=18.(1)若1<i <21,a 1,a i ,a 21是某等比数列的连续三项,求i 的值.(2)设b n =n (2n +1)S n,是否存在一个最小的常数m 使得b 1+b 2+…+b n <m 对于任意的正整数n 均成立,若存在,求出常数m ;若不存在,请说明理由.解 (1)数列{a n }为等差数列,因为a 1+a 5=a 2+a 4=18,又a 2a 4=65,所以a 2,a 4是方程x 2-18x +65=0的两个根,又公差d >0,所以a 2<a 4,所以a 2=5,a 4=13.所以⎩⎪⎨⎪⎧a 1+d =5,a 1+3d =13,① 所以a 1=1,d =4.所以a n =4n -3.由1<i <21,a 1,a i ,a 21是某等比数列的连续三项,所以a 1a 21=a 2i ,即1×81=(4i -3)2,解得i =3.(2)由(1)知,S n =n ×1+n (n -1)2×4=2n 2-n , 所以b n =1(2n -1)(2n +1)=12(12n -1-12n +1),② 所以b 1+b 2+…+b n=12(1-13+13-15+…+12n -1-12n +1)=n 2n +1, 因为n 2n +1=12-12(2n +1)<12,③ 所以存在m =12使b 1+b 2+…+b n <m 对于任意的正整数n 均成立. 2.设S n 为数列{a n }的前n 项和,已知a 1≠0,2a n -a 1=S 1·S n ,n ∈N *.(1)求a 1,a 2,并求数列{a n }的通项公式;(2)求数列{na n }的前n 项和.解 (1)令n =1,得2a 1-a 1=a 21,即a 1=a 21.因为a 1≠0,所以a 1=1.令n =2,得2a 2-1=S 2=1+a 2,解得a 2=2.当n ≥2时,由2a n -1=S n,2a n -1-1=S n -1,两式相减得2a n -2a n -1=a n ,即a n =2a n -1.于是数列{a n }是首项为1,公比为2的等比数列.因此,a n =2n -1. 所以数列{a n }的通项公式为a n =2n -1. (2)由(1)知,na n =n ·2n -1. 记数列{n ·2n -1}的前n 项和为B n ,于是 B n =1+2×2+3×22+…+n ×2n -1.① 2B n =1×2+2×22+3×23+…+n ×2n .②①-②,得-B n =1+2+22+…+2n -1-n ·2n =2n -1-n ·2n . 从而B n =1+(n -1)·2n .即数列{na n }的前n 项和为1+(n -1)·2n .3.设数列{a n }的前n 项和为S n ,满足2S n =a n +1-2n +1+1,n ∈N *,且a 1=1,设数列{b n }满足b n =a n +2n .(1)求证数列{b n }为等比数列,并求出数列{a n }的通项公式;(2)若数列c n =6n -3b n,T n 是数列{c n }的前n 项和,证明:T n <3. (1)解 当n ≥2时,由⎩⎪⎨⎪⎧2S n =a n +1-2n +1+1,2S n -1=a n -2n +1 ⇒2a n =a n +1-a n -2n⇒a n +1=3a n +2n ,从而b n +1=a n +1+2n +1=3(a n +2n )=3b n , 故{b n }是以3为首项,3为公比的等比数列,b n =a n +2n =3×3n -1=3n , a n =3n -2n (n ≥2),因为a 1=1也满足,于是a n =3n -2n .(2)证明 c n =6n -3b n =2n -13n -1, 则T n =130+331+532+…+2n -33n -2+2n -13n -1,① 13T n =131+332+533+…+2n -33n -1+2n -13n ,② ①-②,得23T n =130+231+232+…+23n -1-2n -13n =1+23·1-13n -11-13-2n -13n =2-13n -1-2n -13n =2-2(n +1)3n, 故T n =3-n +13n -1<3. 4.已知单调递增数列{a n }的前n 项和为S n ,满足S n =12(a 2n+n ). (1)求数列{a n }的通项公式;(2)设c n =⎩⎪⎨⎪⎧ 1a 2n +1-1,n 为奇数,3×2a n -1+1,n 为偶数,求数列{c n }的前n 项和T n .解 (1)n =1时,a 1=12(a 21+1),得a 1=1, 由S n =12(a 2n +n ),① 则当n ≥2时,S n -1=12(a 2n -1+n -1),② ①-②得a n =S n -S n -1=12(a 2n -a 2n -1+1), 化简得(a n -1)2-a 2n -1=0,a n -a n -1=1或a n +a n -1=1(n ≥2),又{a n }是单调递增数列,故a n -a n -1=1,所以{a n }是首项为1,公差为1的等差数列,故a n =n .(2)c n =⎩⎪⎨⎪⎧1a 2n +1-1,n 为奇数,3×2a n -1+1,n 为偶数,当n 为偶数时,T n =(c 1+c 3+…+c n -1)+(c 2+c 4+…+c n )=(122-1+142-1+…+1n 2-1)+3×(21+23+…+2n -1)+n 2 =11×3+13×5+…+1(n -1)×(n +1)+3×2(1-4n 2)1-4+n 2 =12×(11-13+13-15+…+1n -1-1n +1)+2×(4n 2-1)+n 2 =2n +1+n 2-2n -42(n +1). 当n 为奇数时,T n =(c 1+c 3+…+c n )+(c 2+c 4+…+c n -1)=[122-1+142-1+…+1(n +1)2-1]+3×(21+23+…+2n -2)+n -12 =12×(11-13+13-15+…+1n -1n +2)+2×(4n -12-1)+n -12=2n+n 2-2n -92(n +2). 所以T n =⎩⎪⎨⎪⎧ 2n +n 2-2n -92(n +2)(n 为奇数),2n +1+n 2-2n -42(n +1)(n 为偶数).5.已知函数f (x )=2x +33x ,数列{a n }满足a 1=1,a n +1=f (1a n),n ∈N *. (1)求数列{a n }的通项公式;(2)令b n =1a n -1a n (n ≥2),b 1=3,S n =b 1+b 2+…+b n ,若S n <m -2 0142对一切n ∈N *恒成立,求最小正整数m .解 (1)∵a n +1=f (1a n )=2a n +33a n=2+3a n 3=a n +23, ∴{a n }是以1为首项,23为公差的等差数列. ∴a n =1+(n -1)×23=23n +13. (2)当n ≥2时,b n =1a n -1a n =1(23n -13)(23n +13) =1(2n -1)(2n +1)9=92(12n -1-12n +1), 又b 1=3=92(1-13), ∴S n =b 1+b 2+…+b n =92(1-13+13-15+…+12n -1-12n +1)=92(1-12n +1)=9n 2n +1, ∵S n <m -2 0142对一切n ∈N *恒成立, 即9n 2n +1<m -2 0142对一切n ∈N *恒成立, 又9n 2n +1<92,∴m -2 0142≥92, 即m ≥2 023.∴最小正整数m 为2 023.6.某工厂为扩大生产规模,今年年初新购置了一条高性能的生产线,该生产线在使用过程中的维护费用会逐年增加,第一年的维护费用是4万元,从第二年到第七年,每年的维护费用均比上年增加2万元,从第八年开始,每年的维护费用比上年增加25%.(1)设第n 年该生产线的维护费用为a n ,求a n 的表达式;(2)若该生产线前n 年每年的平均维护费用大于12万元时,需要更新生产线.求该生产线前n 年每年的平均维护费用,并判断第几年年初需要更新该生产线?解 (1)由题意知,当n ≤7时,数列{a n }是首项为4,公差为2的等差数列,所以a n =4+(n -1)×2=2n +2.当n ≥8时,数列{a n }从a 7开始构成首项为a 7=2×7+2=16,公比为1+25%=54的等比数列, 则此时a n =16×⎝⎛⎭⎫54n -7,所以a n =⎩⎪⎨⎪⎧ 2n +2,n ≤7,16×⎝⎛⎭⎫54n -7,n ≥8. (2)设S n 为数列{a n }的前n 项和,当1≤n ≤7时,S n =4n +n (n -1)2×2=n 2+3n , 当n ≥8时,由S 7=72+3×7=70,则S n =70+16×54×1-⎝⎛⎭⎫54n -71-54=80×⎝⎛⎭⎫54n -7-10, ∴该生产线前n 年每年的平均维护费用为S n n =⎩⎨⎧ n +3,1≤n ≤7,80×⎝⎛⎭⎫54n -7-10n ,n ≥8.当1≤n ≤7时,⎩⎨⎧⎭⎬⎫S n n 为递增数列, 当n ≥8时,∵S n +1n +1-S n n =80×⎝⎛⎭⎫54n -6-10n +1-80×⎝⎛⎭⎫54n -7-10n =80×⎝⎛⎭⎫54n -7·⎝⎛⎭⎫n 4-1+10n (n +1)>0, ∴S n +1n +1>S n n. ∴⎩⎨⎧⎭⎬⎫S n n 也为递增数列. 又∵S 77=10<12,S 88=80×54-108=11.25<12, S 99=80×⎝ ⎛⎭⎪⎫542-109≈12.78>12,则第9年年初需更新生产线.中档大题规范练——圆锥曲线1.已知中心在原点的双曲线C 的右焦点为(2,0),实半轴长为3.(1)求双曲线C 的方程;(2)若直线l :y =kx +2与双曲线C 的左支交于A ,B 两点,求k 的取值范围;(3)在(2)的条件下,线段AB 的垂直平分线l 0与y 轴交于M (0,b ),求b 的取值范围.解 (1)设双曲线方程为x 2a 2-y 2b 2=1 (a >0,b >0), 由已知,得a =3,c =2,b 2=c 2-a 2=1,故双曲线方程为x 23-y 2=1. (2)设A (x A ,y A ),B (x B ,y B ),将y =kx +2代入x 23-y 2=1, 得(1-3k 2)x 2-62kx -9=0.由题意,知⎩⎪⎨⎪⎧ 1-3k 2≠0,Δ=36(1-k 2)>0,x A +x B =62k 1-3k2<0,x A x B =-91-3k 2>0,解得33<k <1. 所以当33<k <1时,直线l 与双曲线C 的左支有两个交点. (3)由(2),得x A +x B =62k 1-3k 2, 所以y A +y B =(kx A +2)+(kx B +2)=k (x A +x B )+22=221-3k 2, 所以AB 中点P 的坐标为⎝ ⎛⎭⎪⎫32k 1-3k 2,21-3k 2. 设l 0的方程为y =-1k x +b ,将P 点的坐标代入l 0的方程,得b =421-3k 2, ∵33<k <1,∴-2<1-3k 2<0,∴b <-2 2. ∴b 的取值范围是(-∞,-22).2.已知离心率为12的椭圆C 1的左,右焦点分别为F 1,F 2,抛物线C 2:y 2=4mx (m >0)的焦点为F 2,设椭圆C 1与抛物线C 2的一个交点为P (x 0,y 0),|PF 1|=73. (1)求椭圆C 1的标准方程及抛物线C 2的标准方程;(2)直线x =m 与椭圆C 1在第一象限的交点为Q ,若存在过点A (4,0)的直线l 与椭圆C 1相交于不同的两点M ,N ,使得36|AQ |2=35|AM |·|AN |,求出直线l 的方程.解 (1)∵在椭圆C 1中c =m ,e =12, ∴a =2m ,b 2=3m 2,设椭圆C 1的方程为x 24m 2+y 23m 2=1, 联立x 24m 2+y 23m 2=1与y 2=4mx , 得3x 2+16mx -12m 2=0,即(x +6m )·(3x -2m )=0,得x =2m 3或-6m (舍去), 代入y 2=4mx 得y =±26m 3, ∴设点P 的坐标为(2m 3,26m 3), |PF 2|=2m 3+m =5m 3, |PF 1|=2a -5m 3=7m 3=73, ∴m =1, 此时,椭圆C 1的标准方程为x 24+y 23=1, 抛物线C 2的标准方程为y 2=4x .(2)由题设知直线l 的斜率存在,设直线l 的方程为y =k (x -4),由⎩⎪⎨⎪⎧y =k (x -4),x 24+y 23=1, 消去y 整理,得(3+4k 2)x 2-32k 2x +64k 2-12=0.由题意知Δ=(32k 2)2-4(3+4k 2)(64k 2-12)>0,解得-12<k <12. 设M (x 1,y 1),N (x 2,y 2),则x 1+x 2=32k 23+4k 2,x 1x 2=64k 2-123+4k 2.由(1)知m =1,∴⎩⎪⎨⎪⎧ x =1,x 24+y 23=1,解得⎩⎪⎨⎪⎧x =1,y =±32, ∴点Q 的坐标是(1,32). ∴|AQ |2=454, 由已知条件可知|AM |·|AN |=3635×454=817. 又|AM |·|AN |=(4-x 1)2+y 21·(4-x 2)2+y 22 =(4-x 1)2+k 2(4-x 1)2·(4-x 2)2+k 2(4-x 2)2=(k 2+1)·(4-x 1)·(4-x 2)=(k 2+1)[x 1x 2-4(x 1+x 2)+16]=(k 2+1)(64k 2-123+4k 2-4×32k 23+4k 2+16) =(k 2+1)·363+4k 2. ∴(k 2+1)·363+4k 2=817, 解得k =±24,经检验成立. ∴直线l 的方程为x -22y -4=0或x +22y -4=0.3.(2013·课标全国Ⅱ)平面直角坐标系xOy 中,过椭圆M :x 2a 2+y 2b2=1(a >b >0)右焦点的直线x +y -3=0交M 于A ,B 两点,P 为AB 的中点,且OP 的斜率为12. (1)求M 的方程;(2)C ,D 为M 上的两点,若四边形ACBD 的对角线CD ⊥AB ,求四边形ACBD 面积的最大值.解 (1)设A (x 1,y 1),B (x 2,y 2),则x 21a 2+y 21b2=1,① x 22a 2+y 22b2=1,② ①-②,得(x 1-x 2)(x 1+x 2)a 2+(y 1-y 2)(y 1+y 2)b 2=0. 因为y 1-y 2x 1-x 2=-1,设P (x 0,y 0), 因为P 为AB 的中点,且OP 的斜率为12,所以y 0=12x 0,即y 1+y 2=12(x 1+x 2). 所以可以解得a 2=2b 2,即a 2=2(a 2-c 2),即a 2=2c 2,又因为右焦点(c,0)在直线x +y -3=0上,解得c =3,所以a 2=6,所以M 的方程为x 26+y 23=1. (2)因为CD ⊥AB ,直线AB 方程为x +y -3=0,所以设直线CD 方程为y =x +m ,将x +y -3=0代入x 26+y 23=1得: 3x 2-43x =0,即A (0,3),B ⎝⎛⎭⎫433,-33, 所以可得|AB |=463; 将y =x +m 代入x 26+y 23=1得: 3x 2+4mx +2m 2-6=0,设C (x 3,y 3),D (x 4,y 4),则|CD |=2(x 3+x 4)2-4x 3x 4=22318-2m 2, 又因为Δ=16m 2-12(2m 2-6)>0,即-3<m <3,所以当m =0时,|CD |取得最大值4,所以四边形ACBD 面积的最大值为12|AB |·|CD |=863. 4.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0),⊙O :x 2+y 2=b 2,点A ,F 分别是椭圆C 的左顶点和左焦点,点P 是⊙O 上的动点.(1)若P (-1,3),P A 是⊙O 的切线,求椭圆C 的方程.(2)是否存在这样的椭圆C ,使得|P A ||PF |恒为常数?如果存在,求出这个常数及C 的离心率e ;如果不存在,说明理由.解 (1)由P (-1,3)在⊙O :x 2+y 2=b 2上,得b 2=1+3=4.直线P A 的斜率k P A =3-0-1-(-a )=3a -1,而直线P A 的斜率k P A =-1k OP =13,所以3a -1=13,解得a =4.所以a 2=16,所以椭圆C 的方程为x 216+y 24=1. (2)假设存在椭圆C ,使得|P A ||PF |恒为常数. 设椭圆C 的半焦距为c ,当P (-b,0)时,则有|P A ||PF |=a -b |c -b |; 当P (b,0)时,|P A ||PF |=a +b b +c. 依假设有a -b |c -b |=a +b b +c. ①当c -b >0时,有a -b c -b =a +b b +c, 所以(a -b )(b +c )=(a +b )(c -b ),化简整理得a =c ,这是不可能的.②当c -b <0时,有a -b b -c =a +b b +c. 所以(a -b )(b +c )=(a +b )(b -c ),化简整理得ac -b 2=0.所以c 2-a 2+ac =0,两边同除以a 2,得e 2+e -1=0.解得e =-1+52,或e =-1-52∉(0,1)(舍去). 可见,若存在椭圆C 满足题意,只可能离心率e =-1+52. 设P (x ,y )为⊙O :x 2+y 2=b 2上任意一点, 则|P A ||PF |=(x +a )2+y 2(x +c )2+y 2|P A |2|PF |2=(x +a )2+b 2-x 2(x +c )2+b 2-x 2=2ax +a 2+b 22cx +c 2+b 2=2ax +2a 2-c 22cx +a 2.(*) 由上c 2-a 2+ac =0,得a 2-c 2=ac ,所以2a 2-c 2a 2·c a =a 2+ac a 2·c a=a +c a 2·c =ac +c 2a 2=a 2a 2=1, 从而2a 2-c 2a 2=a c. 代入(*)式得|P A |2|PF |2=a c =5+12, 所以存在满足题意的椭圆C ,这个常数为5+12, 椭圆C 的离心率为e =-1+52. 5.已知平面内一动点P 到点F (1,0)的距离与点P 到y 轴的距离的差等于1.(1)求动点P 的轨迹C 的方程;(2)过点F 作两条斜率存在且互相垂直的直线l 1,l 2,设l 1与轨迹C 相交于点A ,B ,l 2与轨迹C 相交于点D ,E ,求AD →·EB →的最小值.解 (1)设动点P 的坐标为(x ,y ),由题意有(x -1)2+y 2-|x |=1. 化简得y 2=2x +2|x |.当x ≥0时,y 2=4x ;当x <0时,y =0.所以,动点P 的轨迹C 的方程为y 2=4x (x ≥0)和y =0 (x <0).(2)由题意知,直线l 1的斜率存在且不为0,设为k ,则l 1的方程为y =k (x -1).由⎩⎪⎨⎪⎧y =k (x -1),y 2=4x ,得k 2x 2-(2k 2+4)x +k 2=0. 设A (x 1,y 1),B (x 2,y 2),则x 1,x 2是上述方程的两个实根,于是x 1+x 2=2+4k2,x 1x 2=1. 因为l 1⊥l 2,所以l 2的斜率为-1k. 设D (x 3,y 3),E (x 4,y 4),则同理可得x 3+x 4=2+4k 2,x 3x 4=1.故AD →·EB →=(AF →+FD →)·(EF →+FB →)=AF →·EF →+AF →·FB →+FD →·EF →+FD →·FB →=|AF →|·|FB →|+|FD →|·|EF →|=(x 1+1)(x 2+1)+(x 3+1)(x 4+1)。
2015高考数学(文科)试题汇编及答案----4解三角形
2015高考数学(文科---解三角形)试题汇编及答案1(15北京文科)在C ∆AB 中,3a =,b =23π∠A =,则∠B = . 【答案】4π【解析】试题分析:由正弦定理,得sin sin a b A B ==sin B =4B π∠=. 考点:正弦定理.2.(15年广东文科)设C ∆AB 的内角A ,B ,C 的对边分别为a ,b ,c .若2a =,c =,cos A =b c <,则b =( )A B .2 C . D .3【答案】B【解析】试题分析:由余弦定理得:2222cos a b c bc =+-A ,所以(22222b b =+-⨯⨯,即2680b b -+=,解得:2b =或4b =,因为b c <,所以2b =,故选B .考点:余弦定理.3.(15年安徽文科)在ABC ∆中,6=AB , 75=∠A , 45=∠B ,则=AC 。
【答案】2【解析】 试题分析:由正弦定理可知:45sin )]4575(180sin[AC AB =+-245sin 60sin 6=⇒=⇒AC AC 考点:正弦定理.4.(15年福建文科)若ABC ∆中,AC =045A =,075C =,则BC =_______.【解析】试题分析:由题意得0018060B A C =--=.由正弦定理得sin sin AC BC B A=,则sin sin AC A BC B =, 所以232232BC ⨯==.考点:正弦定理.5.(15年新课标2文科)△ABC 中D 是BC 上的点,AD 平分∠BAC ,BD =2DC .(I )求sin sin B C∠∠ ; (II )若60BAC ∠=,求B ∠.【答案】(I )12;30.考点:解三角形6.(15年陕西文科)ABC ∆的内角,,A B C 所对的边分别为,,a b c ,向量(,3)m a b =与(cos ,sin )n A B =平行.(I)求A ;(II)若7,2a b ==求ABC ∆的面积.【答案】(I) 3A π=;(II) 33试题解析:(I)因为//m n ,所以sin 3cos 0a B b A =由正弦定理,得sin sin 3sin cos 0A B B A =,又sin 0B ≠,从而tan 3A =由于0A π<<所以3A π=(II)解法一:由余弦定理,得2222cos a b c bc A =+-,而7,2a b ==,3A π=,得2742c c =+-,即2230c c --= 因为0c >,所以3c =,故ABC ∆面积为133sin 22bc A =. 72sin sin 3B π= 从而21sin 7B =又由a b >知A B >,所以7cos 7B =故sin sin()sin()3C A B B π=+=+321sin cos cos sin 3314B B ππ=+=, 所以ABC ∆面积为133sin 22ab C =. 考点:1.正弦定理和余弦定理;2.三角形的面积.7.(15年天津文科)△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知△ABC 的面积为315,12,cos ,4b c A -==- (I )求a 和sin C 的值;(II )求cos 26A π⎛⎫+ ⎪⎝⎭的值. 【答案】(I )a =8,15sin 8C =;(II )157316-. 【解析】考点:1.正弦定理、余弦定理及面积公式;2三角变换.。
【状元之路】2015高考数学(人教A版,文)一轮开卷速查:7-5数列的综合应用
开卷速查 规范特训课时作业 实效精炼 开卷速查(35) 数列的综合应用一、选择题1.已知等差数列{a n }中,a 7=π4,则tan(a 6+a 7+a 8)等于( ) A .-33 B .-3 C .-1 D .1解析:由等差中项的性质得a 6+a 7+a 8=3a 7=3π4,故tan(a 6+a 7+a 8)=tan 3π4=-1.答案:C2.已知等差数列{a n }的公差和首项都不等于0,且a 2,a 4,a 8成等比数列,则a 1+a 5+a 9a 2+a 3=( )A .2B .3C .5D .6解析:∵a 2,a 4,a 8成等比数列,∴a 24=a 2a 8,即(a 1+3d )2=(a 1+d )(a 1+7d ),∴a 1=d ,∴a 1+a 5+a 9a 2+a 3=3a 1+12d 2a 1+3d=3.答案:B3.正项等比数列{a n }中,存在两项a m ,a n (m ,n ∈N *)使得a m a n =4a 1,且a 7=a 6+2a 5,则1m +5n 的最小值是( )A.74 B .1+53 C.256D.253解析:根据题意,a 7=a 6+2a 5,∴q 2=q +2,解得q =-1或q =2.∵a n >0,∴q >0,∴q =2.由a m a n =4a 1,即a 21·q m +n -2=16a 21得m +n =6.而1m +5n =m +n6⎝ ⎛⎭⎪⎫1m +5n =16+5m 6n +n 6m +56≥16+53+56=1+53,故选B.答案:B4.数列{a n }的通项a n =n 2⎝⎛⎭⎪⎫cos 2n π3-sin 2n π3,其前n 项和为S n ,则S 30为( )A .470B .490C .495D .510解析:a n =n 2·cos 2n 3π,a 1=12⎝ ⎛⎭⎪⎫-12,a 2=22⎝ ⎛⎭⎪⎫-12,a 3=32,a 4=42⎝ ⎛⎭⎪⎫-12, …S 30=⎝ ⎛⎭⎪⎫-12(12+22-2·32+42+52-2·62+…+282+292-2·302)=⎝ ⎛⎭⎪⎫-12∑k =110[(3k -2)2+(3k -1)2-2·(3k )2] =⎝ ⎛⎭⎪⎫-12∑k =110(-18k +5) =-12⎣⎢⎡⎦⎥⎤-18×10×(1+10)2+50 =470. 答案:B5.设函数f (x )=(x -3)3+x -1,{a n }是公差不为0的等差数列,f (a 1)+f (a 2)+…+f (a 7)=14,则a 1+a 2+…+a 7=( )A .0B .7C .14D .21解析:由f (a 1)+f (a 2)+…+f (a 7)=14知,(a 1-3)3+(a 2-3)3+…+(a 7-3)3+(a 1+a 2+…+a 7)-7=14.∵{a n }是公差不为0的等差数列,∴(a 1-3)3+(a 2-3)3+…+(a 7-3)3+7(a 4-3)=0.∵(a 1-3)3+(a 7-3)3=[(a 1-3)+(a 7-3)]·[(a 1-3)2+(a 7-3)2-(a 1-3)(a 7-3)]=2(a 4-3)⎩⎨⎧⎭⎬⎫⎣⎢⎡⎦⎥⎤(a 1-3)-12(a 7-3)2+34(a 7-3)2=2(a 4-3)⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫(a 1-12a 7-322+34(a 7-3)2,令2⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫a 1-12a 7-322+34(a 7-3)2=M 1>0,同理(a 2-3)2+(a 6-3)3=2(a 4-3)·⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫a 2-12a 6-322+34(a 6-3)2=(a 4-3)·M 2,(a 3-3)3+(a 5-3)3=2(a 4-3)·⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫a 3-12a 5-322+34(a 5-3)2=(a 4-3)·M 3, (a 4-3)3=(a 4-3)(a 4-3)2,其中M 2>0,M 3>0, ∴(a 1-3)3+(a 2-3)3+…+(a 7-3)3+7(a 4-3)=(a 4-3)M 1+(a 4-3)M 2+(a 4-3)M 3+(a 4-3)·(a 4-3)2+7(a 4-3) =(a 4-3)[M 1+M 2+M 3+(a 4-3)2+7]=0, ∵M 1+M 2+M 3+(a 4-3)2+7>0恒成立,∴a 4-3=0,a 4=3,而a 1+a 2+…+a 7=7a 4=21.故选D. 答案:D6.一个球从100米高处自由落下,每次着地后又跳回至前一次高度的一半落下,当它第10次着地时,共经过的路程为(结果精确到1米)( )A .199米B .200米C .300米D .100米解析:从球落下到球第一次着地时经过了100米,从球第一次着地到球第二次着地时共经过了2×1002=100米,因此从球落下到球第10次着地时共经过的路程为100+100+1002+10022+10023+…+10028=100+100×⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫1291-12≈300(米).答案:C7.据科学计算,运载“神舟”的“长征”二号系列火箭在点火后第一秒钟通过的路程为2 km ,以后每秒钟通过的路程增加2 km ,在到达离地面240 km 的高度时,火箭与飞船分离,则这一过程需要的时间是( )A .10秒钟B .13秒钟C .15秒钟D .20秒钟解析:设每一秒钟通过的路程依次为a 1,a 2,a 3,…a n 则数列{a n }是首项a 1=2,公差d =2的等差数列,由求和公式有na 1+n (n -1)d2=240,即2n +n (n -1)=240,解得n =15.答案:C8.已知数列{a n }满足a n +1+a n -1=2a n ,n ≥2,点O 是平面上不在l 上的任意一点,l 上有不重合的三点A 、B 、C ,又知a 2OA →+a 2 009OC →=OB →,则S 2 010=( )A .1 004B .2 010C .2 009D .1 005解析:如图所示,设AB →=λAC →,则a 2OA →+a 2 009OC →=OB →=OA →+AB →=OA →+λAC →=OA →+λ(OC→-OA →). 故(a 2-1+λ)OA →=(λ-a 2 009)OC →. 又∵A 、B 、C 三点不重合,∴⎩⎪⎨⎪⎧a 2-1+λ=0,λ-a 2 009=0,∴a 2+a 2 009=1. 又∵a n +1+a n -1=2a n ,n ≥2,∴{a n }为等差数列. ∴S 2 010=2 010×(a 1+a 2 010)2 =2 010×(a 2+a 2 009)2 =1 005. 答案:D9.抛物线y =(n 2+n )x 2-(2n +1)x +1与x 轴交点分别为A n ,B n (n ∈N *),以|A n B n |表示该两点的距离,则|A 1B 1|+|A 2B 2|+…+|A 2 010B 2 010|的值是( )A.2 0092 010B.2 0102 011C.2 0112 012D.2 0122 013解析:令y =0,则(n 2+n )x 2-(2n +1)x +1=0. 设两根分别为x 1,x 2,则x 1+x 2=2n +1n 2+n ,x 1x 2=1n 2+n .解得x 1=1n ,x 2=1n +1∴|A n B n |=1n -1n +1,∴|A 1B 1|+|A 2B 2|+…+|A n B n |=⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1n +1=1-1n +1=nn +1. ∴|A 1B 1|+|A 2B 2|+…+|A 2 010B 2 010|=2 0102 011. 答案:B10.已知数列{a n },{b n }满足a 1=1,且a n ,a n +1是函数f (x )=x 2-b n x +2n 的两个零点,则b 10等于( )A .24B .32C .48D .64解析:依题意有a n a n +1=2n ,所以a n +1a n +2=2n +1,两式相除,得a n +2a n=2,所以a 1,a 3,a 5,…成等比数列,a 2,a 4,a 6,…成等比数列.而a 1=1,a 2=2,所以a 10=2·24=32,a 11=1·25=32.又因为a n +a n +1=b n ,所以b 10=a 10+a 11=64. 答案:D 二、填空题11.设关于x 的不等式x 2-x <2nx (n ∈N *)的解集中整数的个数为a n ,数列{a n }的前n 项和为S n ,则S 100的值为________.解析:由x 2-x <2nx (n ∈N *),得0<x <2n +1,因此知a n =2n .故S 100=100(2+200)2=10 100. 答案:10 10012.植树节某班20名同学在一段直线公路一侧植树,每人植一棵,相邻两棵树相距10米.开始时需将树苗集中放置在某一树坑旁边.使每位同学从各自树坑出发前来领取树苗往返所走的路程总和最小,这个最小值为________米.解析:当放在最左侧坑时,路程和为2×(0+10+20+…+190);当放在左侧第2个坑时,路程和为2×(10+0+10+20+…+180)(减少了360米);当放在左侧第3个坑时,路程和为2×(20+10+0+10+20+…+170)(减少了680米);依次进行,显然当放在中间的第10、11个坑时,路程和最小,为2×(90+80+…+0+10+20+…+100)=2 000米.答案:2 00013.已知数列{a n }满足3a n +1+a n =4且a 1=9,其前n 项之和为S n ,则满足不等式|S n -n -6|<1125的最小整数n 为________.解析:由递推式变形得3(a n +1-1)=-(a n -1),则a n -1=8·⎝ ⎛⎭⎪⎫-13n -1, 所以|S n -n -6|=|a 1-1+a 2-1+…+a n -1-6|=⎪⎪⎪⎪⎪⎪⎪⎪8⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫-13n 1+13-6=6×⎝ ⎛⎭⎪⎫13n <1125,即3n -1>250,所以满足条件的最小整数n 是7. 答案:714.在各项均为正数的数列{a n }中,S n 为前n 项和,na 2n +1=(n +1)a 2n +a n a n +1且a 3=π,则tan S 4=__________.解析:由na 2n +1=(n +1)a 2n +a n a n +1.可得(a n +a n +1)(na n +1-na n -a n )=0. ∵数列{a n }各项都为正数,∴a n +a n +1>0,∴na n +1-na n -a n =0. ∴a n a n +1=n n +1. ∴a 3a 4=34,a 4a 5=45,…,a n -1a n =n -1n .各式相乘,得a 3a n =3n .∵a 3=π,∴a n =n π3.∴S 4=a 1+a 2+a 3+a 4=π3+2π3+3π3+4π3=10π3. ∴tan S 4=tan 10π3=tan π3= 3. 答案: 3 三、解答题15.[2013·江西]正项数列{a n }的前n 项和S n 满足:S 2n -(n 2+n -1)S n -(n 2+n )=0.(1)求数列{a n }的通项公式a n ;(2)令b n =n +1(n +2)2a 2n,数列{b n }的前n 项和为T n .证明:对于任意的n ∈N *,都有T n <564.解析:(1)由S 2n -(n 2+n -1)S n -(n 2+n )=0,得[S n-(n 2+n )](S n +1)=0. 由于{a n }是正项数列,所以S n >0,S n =n 2+n .于是a 1=S 1=2,n ≥2时,a n =S n -S n -1=n 2+n -(n -1)2-(n -1)=2n . 综上,数列{a n }的通项a n =2n .(2)证明:由于a n =2n ,b n =n +1(n +2)2a 2n ,则b n =n +14n 2(n +2)2=116⎣⎢⎡⎦⎥⎤1n 2-1(n +2)2.T n =116⎣⎢⎡⎦⎥⎤1-132+122-142+132-152+…+1(n -1)2-1(n +1)2+1n 2-⎣⎢⎡⎦⎥⎤1(n +2)2=116⎣⎢⎡⎦⎥⎤1+122-1(n +1)2-1(n +2)2<116⎝ ⎛⎭⎪⎫1+122=564.答案:(1)a n =2n ;(2)证明略.16.[2013·广东]设数列{a n }的前n 项和为S n .已知a 1=1,2S n n =a n +1-13n 2-n -23,n ∈N *.(1)求a 2的值;(2)求数列{a n }的通项公式;(3)证明:对一切正整数n ,有1a 1+1a 2+…+1a n<74.解析:(1)依题意,2S 1=a 2-13-1-23,又S 1=a 1=1,所以a 2=4. (2)当n ≥2时,2S n =na n +1-13n 3-n 2-23n , 2S n -1=(n -1)a n -13(n -1)3-(n -1)2-23(n -1),两式相减得2a n =na n +1-(n -1)a n -13(3n 2-3n +1)-(2n -1)-23, 整理得(n +1)a n =na n +1-n (n +1), 即a n +1n +1-a n n=1,又a 22-a 11=1,故数列{a n n }是首项为a 11=1,公差为1的等差数列, 所以a nn =1+(n -1)×1=n ,所以a n =n 2.(3)当n =1时,1a 1=1<74;当n =2时,1a 1+1a 2=1+14=54<74;当n ≥3时,1a n=1n 2<1(n -1)n =1n -1-1n ,此时1a 1+1a 2+…+1a n =1+14+132+142+…+1n 2<1+14+⎝ ⎛⎭⎪⎫12-13+⎝ ⎛⎭⎪⎫13-14+…+⎝⎛⎭⎪⎫1n -1-1n =1+14+12-1n =74-1n <74.综上,对一切正整数n ,有1a 1+1a 2+…+1a n <74.答案:(1)a 2=4;(2)a n =n 2;(3)证明略.创新试题 教师备选教学积累 资源共享教师用书独具1.[2014·四川]设函数f (x )=2x -cos x ,{a n }是公差为π8的等差数列,f (a 1)+f (a 2)+…+f (a 5)=5π,则[f (a 3)]2-a 1a 5=( )A .0 B.116π2 C.18π2 D.1316π2 解析:∵{a n }是以π8为公差的等差数列,∴a 1=a 3-π4,a 2=a 3-π8,a 4=a 3+π8,a 5=a 3+π4,则f (a 1)=2a 3-π2-cos ⎝ ⎛⎭⎪⎫a 3-π4,f (a 2)=2a 3-π4-cos ⎝ ⎛⎭⎪⎫a 3-π8,f (a 3)=2a 3-cos a 3, f (a 4)=2a 3+π4-cos ⎝ ⎛⎭⎪⎫a 3+π8,f (a 5)=2a 3+π2-cos ⎝ ⎛⎭⎪⎫a 3+π4. ∴f (a 1)+f (a 2)+f (a 3)+f (a 4)+f (a 5)=10a 3-⎣⎢⎡⎦⎥⎤cos ⎝ ⎛⎭⎪⎫a 3-π4+cos ⎝ ⎛⎭⎪⎫a 3-π8+cos a 3+cos ⎝ ⎛⎭⎪⎫a 3+π8+⎣⎢⎡⎦⎥⎤cos ⎝ ⎛⎭⎪⎫a 3+π4=10a 3-⎝ ⎛⎭⎪⎫2cos a 3+cos a 3+2cos π8cos a 3 =10a 3-⎝ ⎛⎭⎪⎫2+1+2cos π8cos a 3=5π.则a 3=π2. 于是a 1=a 3-π4=π4,a 5=a 3+π4=3π4,f (a 3)=2×π2-cos π2=π. 故[f (a 3)]2-a 1a 5=π2-π4×3π4=1316π2. 答案:D2.[2013·课标全国Ⅰ]设△A n B n C n 的三边长分别为a n ,b n ,c n ,△A n B n C n的面积为S n ,n =1,2,3,….若b 1>c 1,b 1+c 1=2a 1,a n +1=a n ,b n +1=c n +a n2,c n +1=b n +a n2,则( )A .{S n }为递减数列B .{S n }为递增数列C .{S 2n -1}为递增数列,{S 2n }为递减数列D .{S 2n -1}为递减数列,{S 2n }为递增数列 解析:∵a n +1=a n ,∴数列{a n }为常数列, ∴a n =a 1,记a 1=a .又∵b n +1=c n +a n 2,a n +1=b n +a n2, ∴b n +1+c n +1=a n +b n +c n2. ∵b 1+c 1=2a ,∴数列{b n +1+c n +1}为常数列,即b n +1+c n +1=2a . ∴在系列△A n B n C n 中,B n C n =a n =a , A n B n +A n C n =b n +1+c n +1=2a .∴B n 、C n 为定点,A n 是以B n 、C n 为焦点2a 为长轴长的椭圆上的动点. 设A n (x n ,y n ),则由椭圆的第二定义知, b n -c n =(ex n +a )-(a -ex n )=2ex n .另一方面,b n +1-c n +1=⎝ ⎛⎭⎪⎫-12(b n -c n ),∴x n +1=⎝ ⎛⎭⎪⎫-12x n ,即{x 2n }为无穷递缩等比数列. 由x 2n a 2+4y 2n3a 2=1,知{y 2n }是无穷递增等比数列.又∵S n =12×a ×|y n |,∴{S n }为递增数列,故选B. 答案:B3.[2013·安徽]设函数f n (x )=-1+x +x 222+x 332+…+x nn 2(x ∈R ,n ∈N *).证明:(1)对每个n ∈N *,存在唯一的x n ∈⎣⎢⎡⎦⎥⎤23,1,满足f n (x n )=0;(2)对任意p ∈N *,由(1)中x n 构成的数列{x n }满足0<x n -x n +p <1n .证明:(1)对每个n ∈N *,当x >0时,f ′n (x )=1+x2+…+x n -1n >0.故f n (x )在(0,+∞)内单调递增.由于f 1(1)=0,当n ≥2时,f n (1)=122+132+…+1n 2>0,故f n (1)≥0.又f n ⎝ ⎛⎭⎪⎫23=-1+23+∑n k =2 ⎝ ⎛⎭⎪⎫23kk 2≤-13+14∑n k =2 ⎝ ⎛⎭⎪⎫23k =-13+14·⎝ ⎛⎭⎪⎫232⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫23n -11-23=-13·⎝ ⎛⎭⎪⎫23n -1<0, 所以存在唯一的x n ∈⎣⎢⎡⎦⎥⎤23,1,满足f n (x n )=0.(2)当x >0时,f n +1(x )=f n (x )+x n +1(n +1)2>f n (x ),故f n +1(x n )>f n (x n )=f n +1(x n +1)=0.由f n +1(x )在(0,+∞)内单调递增知,x n +1<x n ,故{x n }为单调递减数列, 从而对任意n ,p ∈N *,x n +p <x n . 对任意p ∈N *,由于f n (x n )=-1+x n +x 2n 22+…+x n nn 2=0,①f n +p (x n +p )=-1+x n +p +x 2n +p 22+…+x n n +p n 2+x n +1n +p (n +1)2+…+x n +pn +p(n +p )2=0.②①式减去②式并移项,利用0<x n +p <x n ≤1,得x n -x n +p =∑nk =2 x k n +p -x k n k 2+∑n +p k =n +1 x k n +pk 2≤∑n +p k =n +1 x k n +p k 2≤∑n +pk =n +1 1k 2<∑n +p k =n +1 1k (k -1)=1n -1n +p <1n . 因此,对任意p ∈N *,都有0<x n -x n +p <1n .4.[2013·天津]已知首项为32的等比数列{a n }的前n 项和为S n (n ∈N *),且-2S 2,S 3,4S 4成等差数列.(1)求数列{a n }的通项公式; (2)证明S n +1S n≤136(n ∈N *).解析:(1)设等比数列{a n }的公比为q ,因为-2S 2,S 3,4S 4成等差数列, 所以S 3+2S 2=4S 4-S 3,即S 4-S 3=S 2-S 4, 可得2a 4=-a 3,于是q =a 4a 3=-12.又a 1=32,所以等比数列{a n }的通项公式为 a n =32×⎝ ⎛⎭⎪⎫-12n -1=(-1)n -1·32n . (2)证明:S n =1-⎝ ⎛⎭⎪⎫-12n,S n +1S n=1-⎝ ⎛⎭⎪⎫-12n +11-⎝ ⎛⎭⎪⎫12n=⎩⎨⎧2+12n (2n +1),n 为奇数,2+12n(2n-1),n 为偶数.当n 为奇数时,S n +1S n随n 的增大而减小,所以S n +1S n≤S 1+1S 1=136.当n 为偶数时,S n +1S n 随n 的增大而减小,所以S n +1S n ≤S 2+1S 2=2512.故对于n ∈N *,有S n +1S n≤136.。
2015年高考化学(人教通用)考前三个月专题复习:专题4 常见金属元素及其化合物(13页)
常见金属元素及其化合物最新考纲展示 1.了解常见金属的活动性顺序。
2.了解常见金属元素(Na、Al、Fe、Cu)及其重要化合物的主要性质及其应用。
3.了解合金的概念及其重要应用。
基础回扣1.典型元素及化合物的特征性质(1)Na、Al、Fe、Cu四种元素的单质中:①能与水剧烈反应的是____________,反应的离子方程式:________________________________________________________________________;②能与NaOH溶液反应的是________,反应的离子方程式:________________________________________________________________________,其中作氧化剂的是______________________________________________________________;③Cu在潮湿的空气中被腐蚀的化学方程式:________________________________________________________________________;④与氧气反应条件不同,反应产物不同的是________________________________________________________________________。
(2)上述四种金属的氧化物中:①能用作供氧剂的是________,写出一个化学方程式:________________________________________________________________________;②既能溶于酸溶液又能溶于强碱溶液的是______________________________________,离子方程式分别为__________________,______________________________________;③常温下为黑色固体的是____________________________________________________。
2015年高考文科数学押题密卷word版含答案
2015年高考文科数学押题密卷(全国新课标Ⅰ卷)说明:一、本试卷分为第Ⅰ卷和第Ⅱ卷.第Ⅰ卷为选择题;第Ⅱ卷为非选择题,分为必考和选考两部分.二、答题前请仔细阅读答题卡上的“注意事项”,按照“注意事项”的规定答题. 三、做选择题时,每小题选出答案后,用铅笔把答题卡上对应题目的标号涂黑.如需改动,用橡皮将原选涂答案擦干净后,再选涂其他答案.四、考试结束后,将本试卷与原答题卡一并交回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,有且只有一项符合题目要求.(1)设集合{}{}21,0,1,|M N x x x =-==,则M N ⋂=(A ){}1,0,1-(B ){}0,1(C ){}1 (D ){}0(2)复数z =1-3i1+2i,则(A )|z |=2 (B )z 的实部为1 (C )z 的虚部为-i (D )z 的共轭复数为-1+i (3)不等式x -1x 2-4>0的解集是(A )(-2,1)∪(2,+∞) (B )(2,+∞)(C )(-2,1)(D )(-∞,-2)∪(1,+∞)(4)执行右面的程序框图,若输出的k =2,则输入x 的取值范围是(A )(21,41) (B )[21,41] (C )(21,41] (D )[21,41) (5)已知p : ∀x ∈R ,ax 2-ax +1≥0,q :(a -1)2≤1;则p 是q 成立的(A )充分不必要条件 (B )必要不充分条件 (C )充要条件 (D )既不充分也不必要条件 (6)函数f (x )=(x +2)3-(1 2)x的零点所在区间是(A )(-2,-1) (B )(-1,0) (C )(0,1) (D )(1,2)(7)已知向量a=(1, 2),b=(2,3)若(c +a )∥b ,c ⊥(b +a ),则c=(A )( 79 , 73 ) (B )( 73 , 79 )(C )(73 , 79 ) (D )(- 79 ,- 73)(8)某几何体的三视图如图所示,则该几何体的体积为(A )1136(B ) 3俯视图(C )533(D )433(9)已知等比数列{a n }的前n 项和为S n , a 1+a 3= 5 2,且a 2+a 4= 5 4,则S na n=(A )4n -1 (B )4n-1 (C )2n -1 (D )2n -1(10)已知函数f (x )=cos (2x +π 3),g (x )=sin (2x +2π3),将f (x )的图象经过下列哪种变换可以与g (x )的图象重合(A )向右平移 π12(B )向左平移 π6(C )向左平移 π12(D )向右平移 π6(11)过双曲线x 2a 2-y 2b2=1的一个焦点F 作一条渐近线的垂线,若垂足恰在线段OF (O 为原点)的垂直平分线上,则双曲线的离心率为 (A ) 2 (B )2 (C ) 5 (D ) 3(12)函数xx x x 2cos 21)(f +-=,其图像的对称中心是(A )(1,-1) (B )(-1,1) (C )(0,1)(D )(0,-1)第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分,把答案填写在题中横线上. (13)在等差数列{a n }中,a 7=8,前7项和S 7=42,则其公差是为_________.(14)四棱锥P -ABCD 的底面是边长为42的正方形,侧棱长都等于45,则经过该棱锥五个顶点的球面面积为_________. (15)点P 在△ABC 内部(包含边界),|AC|=3, |AB|=4,|BC|=5,点P 到三边的距离分别是d 1, d 2 , d 3 ,则d 1+d 2+d 3的取值范围是_________.(16)△ABC 的顶点A 在圆O :x 2+y 2=1上,B ,C 两点在直线3x+y+3=0上,若|-AC |=4,则△ABC 面积的最小值为_____.三、解答题:本大题共70分,其中(17)—(21)题为必考题,(22),(23),(24)题为选考题.解答应写出文字说明、证明过程或演算步骤. (17)(本小题满分12分)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且a ≥b ,sin A +3cos A =2sin B . (Ⅰ)求角C 的大小;(Ⅱ)求a +bc 的最大值.(18)(本小题满分12分)(Ⅰ(Ⅱ)从乙比赛得分在20分以下的6场比赛中随机抽取2场进行失误分析,求抽到恰好有1场得分不足10分的概率.(19)(本小题满分12分)如图,三棱柱ABC -A 1B 1C 1的侧面AB 1B 1A 为正方形,侧面BB 1C 1C 为菱形,∠CBB 1=60 ,AB ⊥B 1C . (Ⅰ)求证:平面AB 1B 1A ⊥BB 1C 1C ; (Ⅱ)若AB =2,求三棱柱ABC -A 1B 1C 1体积.B CB 1BAC 1A 1A(20)(本小题满分12分)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)经过点M (-2,-1),离心率为22.过点M 作倾斜角互补的两条直线分别与椭圆C 交于异于M 的另外两点P 、Q . (Ⅰ)求椭圆C 的方程; (Ⅱ)试判断直线PQ 的斜率是否为定值,证明你的结论.(21)(本小题满分12分)已知函数 x 轴是函数图象的一条切线. (Ⅰ)求a ; (Ⅱ)已知 .请考生在第(22),(23),(24)三题中任选一题作答,如果多做,则按所做的第一题记分.作答时用2B 铅笔在答题卡上把所选题目对应的题号涂黑. (22)(本小题满分10分)选修4-1:几何证明选讲如图所示,AC 为⊙O 的直径,D 为BC ︵的中点,E 为BC 的中点. (Ⅰ)求证:DE ∥AB ; (Ⅱ)求证:AC ·BC =2AD ·CD .(23)(本小题满分10分)选修4-4:坐标系与参数方程在极坐标系Ox 中,直线C 1的极坐标方程为ρsin θ=2,M 是C 1上任意一点,点P 在射线OM 上,且满足|OP |·|OM |=4,记点P 的轨迹为C 2. (Ⅰ)求曲线C 2的极坐标方程;(Ⅱ)求曲线C 2上的点到直线ρcos (θ+4)=2距离的最大值.(24)(本小题满分10分)选修4-5:不等式选讲设f (x )=|x -3|+|x -4|. (Ⅰ)解不等式f (x )≤2; (Ⅱ)若存在实数x 满足f (x )≤ax -1,试求实数a 的取值范围.2015年高考文科数学押题密卷(全国新课标Ⅰ卷)参考答案一、选择题:BDACB BDCDA A C 二、填空题:(13)23;(14)100π;(15)[ 12 5,4];(16)1.三、解答题:(17)解:(Ⅰ)sin A+3cos A=2sin B即2sin(A+π3)=2sin B,则sin(A+π3)=sin B.…3分因为0<A,B<π,又a≥b进而A≥B,所以A+π3=π-B,故A+B=2π3,C=π3.……………………………6分(Ⅱ)由正弦定理及(Ⅰ)得a+b c =sin A+sin Bsin C=23[sin A+sin(A+π3)]=3sin A+cos A=2sin(A+π6). (10)分当A=π3时,a+bc取最大值2.……………………………12分(18)解:(Ⅰ)x-甲=18(7+9+11+13+13+16+23+28)=15,x-乙=18(7+8+10+15+17+19+21+23)=15,s2甲=18[(-8)2+(-6)2+(-4)2+(-2)2+(-2)2+12+82+132]=44.75,s2乙=18[(-8)2+(-7)2+(-5)2+02+22+42+62+82]=32.25.甲、乙两名队员的得分均值相等;甲的方差较大(乙的方差较小).…4分(Ⅱ)题设所述的6个场次乙得分为:7,8,10,15,17,19.……………………………7分从中随机抽取2场,这2场比赛的得分如下:(7,8),(7,10),(7,15),(7,17),(7,19),(8,10),(8,15),(8,17),(8,19),(10,15),(10,17),(10,19),(15,17),(15,19),(17,19),共15种可能,……………………………9分其中恰好有1场得分在10分以下的情形是:(7,10),(7,15),(7,17),(7,19),(8,10),(8,15),(8,17),(8,19),共8种可能,所求概率P=815.……………………………12分(19)解:(Ⅰ)由侧面AB1B1A为正方形,知AB⊥BB1.又AB⊥B1C,BB1∩B1C=B1,所以AB⊥平面BB1C1C,又AB⊂平面AB1B1A,所以平面AB1B1A⊥BB1C1C.…4分(Ⅱ)设O 是BB 1的中点,连结CO ,则CO ⊥BB 1.由(Ⅰ)知,CO ⊥平面AB 1B 1A ,且CO =32BC =32AB =3.连结AB 1,则V C -ABB 1= 1 3S △ABB 1·CO = 1 6AB 2·CO =233. …8分因V B 1-ABC =V C -ABB 1= 1 3V ABC -A 1B 1C 1=233,故三棱柱ABC -A 1B 1C 1的体积V ABC -A 1B 1C 1=23. ………………………12分 (20)解:(Ⅰ)由题设,得4a 2+1b2=1, ①且a 2-b 2a =22, ②由①、②解得a 2=6,b 2=3,椭圆C 的方程为x 26+y 23=1.………………………………………………5分(Ⅱ)记P (x 1,y 1)、Q (x 2,y 2).设直线MP 的方程为y +1=k (x +2),与椭圆C 的方程联立,得 (1+2k 2)x 2+(8k 2-4k )x +8k 2-8k -4=0,-2,x 1是该方程的两根,则-2x 1=8k 2-8k -41+2k 2,x 1=-4k 2+4k +21+2k 2.设直线MQ 的方程为y +1=-k (x +2),同理得x 2=-4k 2-4k +21+2k 2.………………………………………………9分因y 1+1=k (x 1+2),y 2+1=-k (x 2+2),故k PQ =y 1-y 2x 1-x 2=k (x 1+2)+k (x 2+2)x 1-x 2=k (x 1+x 2+4)x 1-x 2=8k1+2k28k 1+2k 2=1,因此直线PQ 的斜率为定值. ……………………………………………12分 (21)解:(Ⅰ)f '(x ) = 当x ∈(0,a )时,f '(x )<0,f (x )单调递减, 当x ∈(a ,+∞)时,f '(x )>0,f (x )单调递增. …………………………2分 ∵ x 轴是函数图象的一条切线,∴切点为(a ,0).f (a )=lna +1=0,可知a =1. ……………………………5分 (Ⅱ)令1+,由x>0得知t>1,,于是原不等式等价于: . ……………………………7分 取,由(Ⅰ)知: 当t ∈(0,1)时,g '(t )<0,g (t )单调递减, 当t ∈(1,+∞)时,g '(t )>0,g (t )单调递增. ∴ g (t )> g (1)=0,也就是.BCB 1BAC 1A 1AO∴ . ……………………………12分 (22)证明:(Ⅰ)连接OE ,因为D 为BC ︵的中点,E 为BC 的中点,所以OED 三点共线. 因为E 为BC 的中点且O 为AC 的中点,所以OE ∥AB ,故DE ∥AB .(Ⅱ)因为D 为BC ︵的中点,所以∠BAD =∠DAC ,又∠BAD =∠DCB ⇒∠DAC =∠DCB . 又因为AD ⊥DC ,DE ⊥CE ⇒△DAC ∽△ECD . ⇒AC CD =ADCE ⇒AD ·CD =AC ·CE⇒ 2AD ·CD =AC ·2CE⇒ 2AD ·CD =AC ·BC . (23)解:(Ⅰ)设P (ρ,θ),M (ρ1,θ),依题意有 ρ1sin θ=2,ρρ1=4. ……………………………3分 消去ρ1,得曲线C 2的极坐标方程为ρ=2sin θ. ………………………5分(Ⅱ)将C 2,C 3的极坐标方程化为直角坐标方程,得 C 2:x 2+(y -1)2=1,C 3:x -y =2. ………………………… …7分C 2是以点(0,1)为圆心,以1为半径的圆,圆心到直线C 3的距离d =322,故曲线C 2上的点到直线C 3距离的最大值为1+322. ………………………10分(24)(Ⅰ)f (x )=|x -3|+|x -4|=⎩⎪⎨⎪⎧7-2x ,x <3,1,3≤x ≤4,2x -7,x >4.………………………2分作函数y =f (x )的图象,它与直线y =2交点的横坐标为 5 2和 92,由图象知不等式f (x )≤2的解集为[5 2, 92]. ………………………5分(Ⅱ)函数y =ax -1当且仅当函数y =f (x )与直线y =ax -1有公共点时,存在题设的x .由图象知,a 取值范围为(-∞,-2)∪[ 12,+∞). …………………10分= 1 2A。
2015年高考数学必做解答题
2015年高考数学必做解答题
作者:吴文尧
来源:《数学金刊·高考版》2015年第08期
(★★★)必做1 已知等差数列{an}的首项a1=2,a7=4a3,前n项和为Sn.
极速突击众所周知,在应试中,最理想的做法是在解题前就能设计好一个完整的解题计划,但有时“理想很丰满,现实很骨感”,对于本题来说,要在下手前就有完整的计划很不现实,所以只能选择分层推进的办法解决. 本题的主题是数列求和,即如何由数列的通项公式,得到数列的前n项和;数列求和的常用方法有:公式法、错位相减法、裂项消去法、重新组合法等;能根据通项公式的特点,选择合适的方法显得非常重要.。
2015高考数学核心必考点名师终极密押(文科全套)含解析 (1)
绝密★启封并使用完毕前2015高考数学核心必考点名师终极密押(文科)(考试时间120分钟满分150分)注意事项:1.答卷前,考生务必填写答题卷上的有关项目.2.选择题每小题选出答案后,用2B 铅笔把答案涂在答题卷相应的位置上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液,不按以上要求作答的答案无效.4.请考生保持答题卷的整洁.考试结束后,将答题卷交回.本试卷分为选择题(共40分)和非选择题(共110分)两部分第一部分(选择题共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.(1)已知全集{,,,}U a b c d =,集合{,},{,}A a b B b c ==,则()U A B ð等于A.{}b B.{}d C.{,,}a c d D.{,,}a b c (2)已知命题:p x ∀∈R ,sin 1x ≤,则A.:p ⌝x ∀∈R ,sin 1x ≥B.:p ⌝x ∀∈R ,sin 1x >C.:p ⌝0x ∃∈R ,0sin 1x ≥D.:p ⌝0x ∃∈R ,0sin 1x >(3)若抛物线22(0)y px p =>的焦点与双曲线222x y -=的右焦点重合,则p 的值为A.2B.2C.4D.22(4)如图所示的程序框图表示的算法功能是A.计算123456S =⨯⨯⨯⨯⨯的值B.计算12345S =⨯⨯⨯⨯的值C.计算1234S =⨯⨯⨯的值D.计算1357S =⨯⨯⨯的值结束是1,2S t ==否输出S 开始100?S ≤S S t =⨯1t t =+第(4)题图(5)已知113log 2x =,1222x -=,3x 满足3331()log 3x x =,则A.123x x x <<B.132x x x <<C.213x x x <<D.312x x x <<(6)函数ππ()2sin()cos()66f x x x =--图象的一条对称轴方程是A.π6x = B.π3x = C.5π12x = D.2π3x =(7)已知实数x ,y 满足20,20,0,x y x y y t +≥⎧⎪-≤⎨⎪≤≤⎩其中0t >.若3z x y =+的最大值为5,则z 的最小值为A.52B.1C.0D.1-(8)已知边长为3的正方形ABCD 与正方形CDEF 所在的平面互相垂直,M 为线段CD 上的动点(不含端点),过M 作//MH DE 交CE 于H ,作//MG AD 交BD 于G ,连结GH .设CM x =(03)x <<,则下面四个图象中大致描绘了三棱锥C GHM -的体积y 与变量x变化关系的是A B C D第二部分(非选择题共110分)二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡上.(9)i 为虚数单位,计算1i 1i +-=.(10)已知平面向量a ,b 满足1==a b ,a 与b 的夹角为60︒,则()⋅+=a a b .(11)圆22:(2)(2)8C x y -+-=与y 轴相交于,A B 两点,则弦AB 所对的圆心角的大小为.(12)一个四棱锥的三视图如图所示,其中侧视图为正三角形,则该四棱锥的体积是,四棱锥侧面中最大侧面的面积是.(13)稿酬所得以个人每次取得的收入,定额或定率减除规定费用后的余额为应纳税所得额,每次收入不超过4000元,定额减除费用800元;每次收入在4000元以上的,定率减除20%的费用.适用20%的比例税率,并按规定对应纳税额减征30%,计算公式为:(1)每次收入不超过4000元的:应纳税额=(每次收入额-800)×20%×(1-30%)(2)每次收入在4000元以上的:应纳税额=每次收入额×(1-20%)×20%×(1-30%).已知某人出版一份书稿,共纳税280元,这个人应得稿费(扣税前...)为元.(14)记12x x -为区间12[,]x x 的长度.已知函数2x y =,x ∈[]2,a -(0a ≥),其值域为[],m n ,则区间[],m n 的长度的最小值是.三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.(15)(本小题满分13分)在ABC ∆中,π3A =,6cos 3B =,6BC =.(Ⅰ)求AC 的长;(Ⅱ)求ABC ∆的面积.第(12)题图(16)(本小题满分13分)某次考试结束后,为了解甲、乙两所学校学生的数学考试情况,随机抽取甲、乙两校各10名学生的考试成绩,得茎叶图如图所示(部分数据不清晰):(Ⅰ)请根据茎叶图判断哪个学校的数学成绩平均水平较高(直接写出结果);(Ⅱ)若在抽到的这20名学生中,分别从甲、乙两校随机各抽取1名成绩不低于90分的学生,求抽到的学生中,甲校学生成绩高于乙校学生成绩的概率.(17)(本小题满分14分)如图,在三棱柱111C B A ABC -中,各个侧面均是边长为2的正方形,D 为线段AC 的中点.(Ⅰ)求证:BD ⊥平面11A ACC ;(Ⅱ)求证:直线1AB ∥平面D BC 1;(Ⅲ)设M 为线段1BC 上任意一点,在D D BC 1内的平面区域(包括边界)是否存在点E ,使CE ⊥DM ,并说明理由.(18)(本小题满分13分)设数列{}n a 的前n 项和为n S ,且14a =,1n n a S +=,n *∈N .(Ⅰ)写出2a ,3a ,4a 的值;(Ⅱ)求数列{}n a 的通项公式;(Ⅲ)已知等差数列{}n b 中,有22b a =,33b a =,求数列{}n n a b ⋅的前n 项和n T .A B C D A 1B 1C 1(19)(本小题满分14分)已知椭圆2222:1(0)x y C a b a b+=>>的两个焦点分别为12(2,0),(2,0)F F -,离心率为63.过焦点2F 的直线l (斜率不为0)与椭圆C 交于,A B 两点,线段AB 的中点为D ,O 为坐标原点,直线OD 交椭圆于,M N 两点.(Ⅰ)求椭圆C 的方程;(Ⅱ)当四边形12MF NF 为矩形时,求直线l 的方程.(20)(本小题满分13分)已知函数()()e x a f x x x=+,a ∈R .(Ⅰ)当0a =时,求曲线()y f x =在点(1,(1))f 处的切线方程;(Ⅱ)当1a =-时,求证:()f x 在(0,)+∞上为增函数;(Ⅲ)若()f x 在区间(0,1)上有且只有一个极值点,求a 的取值范围.。
2015届高考数学(人教通用,文科)练透高考必会题型:专题3 第14练
第14练导数与单调性[内容精要]利用导数研究函数的单调性是必考内容,多以综合题中某一问的形式考查,其出题内容也多种多样,最根本的还是定义中提到的.单调性主要是由函数的导函数在某个区间上的符号来确定.题型一利用导数求函数的单调区间例1 函数y=错误!x2-ln x的单调递减区间为( )A.(-1,1]B.(0,1]C.[1,+∞) D.(0,+∞)破题切入点求出函数的导函数f′(x),根据定义解不等式f′(x)〈0即可,求解时注意函数的定义域.答案B解析根据函数的导数小于0的解集就是函数的单调减区间求解.由题意知,函数的定义域为(0,+∞),又由y′=x-错误!≤0,解得0<x≤1,所以函数的单调递减区间为(0,1].题型二已知函数在某区间上的单调性求参数的值或范围例2 已知函数f(x)=x2-ax+3在(0,1)上为减函数,函数g(x)=x2-a ln x在(1,2)上为增函数,则a的值等于( )A.1 B.2 C.0 D.错误!破题切入点函数f(x)在(0,1)上为减函数,g(x)在(1,2)上为增函数,利用导函数f′(x)≤0在[0,1]上恒成立,g′(x)≥0在[1,2]上恒成立解出两个a的取值范围,求出交集即可.答案B解析∵函数f(x)=x2-ax+3在(0,1)上为减函数,∴错误!≥1,得a≥2.又∵g′(x)=2x-错误!,依题意g′(x)≥0在x∈(1,2)上恒成立,得2x2≥a在x∈(1,2)上恒成立,有a≤2,∴a=2。
题型三与函数导数、单调性有关的图象问题例3 已知函数y=-xf′(x)的图象如图所示(其中f′(x)是函数f(x)的导函数),下面四个图象中,y=f(x)的图象可能是()破题切入点先由y=-xf′(x)的图象找出f′(x)的符号,再根据f′(x)的符号找出f(x)的大致图象.答案B解析由函数y=-xf′(x)的图象知,x<-1时,f′(x)>0,f(x)为增函数;-1<x〈0时,f′(x)<0,f(x)为减函数;0<x<1时,f′(x)<0,f(x)为减函数;x〉1时,f′(x)〉0,f(x)为增函数.故B选项的图象符合.总结提高(1)利用导数判断函数单调性的一般步骤:①确定函数的定义域.②求导函数f′(x).③若求单调区间或证明单调性,只需在函数f(x)的定义域内解或证明不等式f′(x)〉0或f′(x)〈0;若已知函数f(x)的单调性则转化为f′(x)≥0或f′(x)≤0在单调区间上恒成立问题来求解,一般是利用函数与方程思想,将字母分离出来.(2)利用导数解决函数单调性应注意的问题:①单调区间是函数定义域的子区间,所以求解函数的单调区间,首先要求函数的定义域,因为函数求导之后,自变量的取值范围可能会发生变化.②求可导函数的单调区间即为解不等式,若已知函数单调性求参数范围,转化为恒成立问题,注意验证所得参数范围的端点值.。
2015全国II高考数学文科word版
普通高等学校招生全国统一考试文科数学一.选择题. 12题. 每题5分.1.已知集合{|12}A x x =-<<,{}03B x x =<<,则=B A ( ).A.()13,-B.()10,-C.()02,D.()23,2.若a 为实数,且2i 3i 1ia +=++,则=a ( ). A.4- B.3- C.3 D.43. 根据下面给出的2004年至2013年我国二氧化碳年排放量(单位:万吨)柱形图,以下结论中不正确的是( ).A.逐年比较,2008年减少二氧化碳排放量的效果显著B.2007年我国治理二氧化碳排放显现成效C.2006年以来我国二氧化碳年排放量呈逐渐减少趋势D.2006年以来我国二氧化碳年排放量与年份正相关4.向量()11,=-a ,()12,=-b ,则()2+=a b a ( ).A.1-B.0C.1D.25. 设n S 是等差数列}{n a 的前n 项和,若3531=++a a a ,则=5S ( ).A.5B.7C.9D.116. 一个正方体被一个平面截取一部分后,剩余部分的三视图如图,则截去部分体积与剩余部分体积的比值为( ).A.81 B.71 C.61 D.517.已知三点()10A ,,(0B ,(2C ,则ABC ∆外接圆的圆心到原点的距离为( ). A.35 B.321 C.352 D.34 8.如图程序框图的算法思路源于我国古代数学名著《九章算术》中“更相减损术”.执行该程序框图,若输入的a 、b 分别为14、18,则输出的=a ( ).A.0B.2C.4D.149.已知等比数列{}n a 满足411=a ,()35441a a a =-,则=2a ( ). A. 2 B. 1 C. 21 D. 81 10.已知A 、B 是球O 的球面上两点,90AOB ∠=,C 为该球面上的动点.若三棱锥O ABC ﹣体积的最大值为36,则球O 的表面积为( ).A. 36πB. 64πC. 144πD. 256π11.如图所示,长方形ABCD 的边2=AB ,1=BC ,O 是AB 的中点,点P 沿着BC 、CD 与DA 运动,记BOP x ∠=.将动点P 到A 、B 两点距离之和表示为x 的函数()f x ,则()y f x =的图象大致为( ).12. 设函数()()2111f x ln |x |x =+-+,则使得()()21f x f x >-成立的x 的取值范围是( ). A. 113,⎛⎫ ⎪⎝⎭ B. ()113,,⎛⎫-∞+∞ ⎪⎝⎭ C. 1133,⎛⎫- ⎪⎝⎭ D. 1133,,⎛⎫⎛⎫-∞-+∞ ⎪ ⎪⎝⎭⎝⎭二.填空题:共4小题,每小题5分.13. 已知函数()32f x ax x =-的图象过点()14,-,则=a .14.若x 、y 满足约束条件50210210x y x y x y +-⎧⎪--⎨⎪-+⎩,则y x z +=2的最大值为 .15.已知双曲线过点(4,且渐近线方程为x y 21±=,则该双曲线的标准方程为 . 16.已知曲线ln y x x =+在点处的切线与曲线()221y ax a x =+++相切,则=a .三、解答题:解答应写出文字说明,证明过程或演算步骤.17、△AD 平分BAC ∠, 2BD DC =.(I )(II 60,求.18、(本小题满分12分)某公司为了解用户对其产品的满意度,从A ,B 两地区分别随机调查了40个用户,根据用户对产品的满意度评分,得分A 地区用户满意评分的频率分布直方图和B 地区用户满意度评分的频数分布表.19、(本小题满分12分)如图所示,长方体1111ABCDA B C D ﹣中,16AB =,10BC =,18AA =,点E ,F 分别在11A B , 11D C 上,114AE D F ==.过点E ,F 的平面α与此长方体的面相交,交线围成一个正方形.(Ⅰ)在图中画出这个正方形(不必说明画法和理由)(Ⅱ)求平面α把该长方体分成的两部分体积的比值.上. ,线段AB 的21、(本小题满分12分)已知函数()()=ln +1f x x a x -.(Ⅰ)讨论()f x 的单调性;(Ⅱ)当()f x 有最大值,且最大值大于22a -时,求a 的取值范围.α.0π24、(本小题满分10分)选修4-5:不等式选讲。
2015届高考数学 考前三个月 练透高考必会题型 穿插滚动练(一) 文 新人教版
穿插滚动练(一)1.(2013·某某)已知集合A ={0,1,2},则集合B ={x -y |x ∈A ,y ∈A }中元素的个数是( ) A .1 B .3 C .5 D .9 答案 C解析 x -y ∈{}-2,-1,0,1,2.2.已知集合A ={x |y =lg(x -x 2)},B ={x |x 2-cx <0,c >0},若A ⊆B ,则实数c 的取值X 围是( )A .(0,1]B .[1,+∞)C .(0,1)D .(1,+∞) 答案 B解析 方法一 A ={x |y =lg(x -x 2)}={x |x -x 2>0}=(0,1),B ={x |x 2-cx <0,c >0}=(0,c ),因为A ⊆B ,画出数轴,如图所示,得c ≥1.应选B. 方法二 因为A ={x |y =lg(x -x 2)}={x |x -x 2>0}=(0,1), 取c =1,则B =(0,1),所以A ⊆B 成立,故可排除C 、D ; 取c =2,则B =(0,2),所以A ⊆B 成立, 故可排除A ,选B.3.命题“若α=π3,则cos α=12”的逆命题是( )A .若α=π3,则cos α≠12B .若α≠π3,则cos α≠12C .若cos α=12,则α=π3D .若cos α≠12,则α≠π3答案 C解析 命题“若α=π3,则cos α=12”的逆命题是“若cos α=12,则α=π3”.4.(2013·某某改编)设函数f (x )=ln x ,g (x )=x 2-4x +4,则方程f (x )-g (x )=0的实根个数是( )A .0B .1C .2D .3答案 C解析 由f (x )-g (x )=0,得f (x )=g (x ).在同一坐标系内作出函数y =f (x )与y =g (x )的图象,由图知f (x ),g (x )的图象有两个交点. 因此方程f (x )-g (x )=0有两个不相等的实根. 5.已知a =2log 3.45,b =4log 3.65,c =3log 0.315,则( )A .a >b >cB .b >a >cC .a >c >bD .c >a >b 答案 C 解析 a =2log 3.45,b =4log 3.65,c =3log 0.315=310log 35,又log 23.4>1,log 43.6<1,log 3103>1,故b <a ,b <c ,又log 23.4>log 3103,因此b <c <a .6.设0<a <b ,则下列不等式中正确的是( ) A .a <b <ab <a +b2B .a <ab <a +b2<b C .a <ab <b <a +b2D.ab <a <a +b2<b答案 B解析 ∵0<a <b ,∴ab >a ·a =a ,ab <b ·b =b ,b =b +b 2>a +b2,又ab <a +b2,所以a <ab <a +b2<b ,故选B.7.下列关于函数f (x )=(2x -x 2)·e x的判断正确的是( )①f(x)>0的解集是{x|0<x<2};②f(-2)是极小值,f(2)是极大值;③f(x)没有最小值,也没有最大值.A.①③ B.①②③ C.② D.①②答案 D解析f′(x)=[(2x-x2)e x]′=(2x-x2)e x+e x(2-2x)=e x(2-x2),令f′(x)=0,则x=± 2.可得当x>2或x<-2时,f′(x)<0,当-2<x<2时,f′(x)>0,据极值概念可得①②是正确的,结合图象可知函数有最大值.8.如图所示是函数f(x)的导函数f′(x)的图象,则下列判断中正确的是( )A.函数f(x)在区间(-3,0)上是减函数B.函数f(x)在区间(-3,2)上是减函数C.函数f(x)在区间(0,2)上是减函数D.函数f(x)在区间(-3,2)上是单调函数答案 A解析当x∈(-3,0)时,f′(x)<0,则f(x)在(-3,0)上是减函数.其他判断均不正确.9.设函数f(x)在R上可导,其导函数为f′(x),且函数y=(1-x)f′(x)的图象如图所示,则下列结论中一定成立的是( )A.函数f(x)有极大值f(2)和极小值f(1)B.函数f(x)有极大值f(-2)和极小值f(1)C.函数f(x)有极大值f(2)和极小值f(-2)D.函数f(x)有极大值f(-2)和极小值f(2)答案 D解析 利用极值的存在条件判定.当x <-2时,y =(1-x )f ′(x )>0,得f ′(x )>0; 当-2<x <1时,y =(1-x )f ′(x )<0,得f ′(x )<0; 当1<x <2时,y =(1-x )f ′(x )>0,得f ′(x )<0; 当x >2时,y =(1-x )f ′(x )<0,得f ′(x )>0,∴f (x )在(-∞,-2)上是增函数,在(-2,1)上是减函数,在(1,2)上是减函数,在(2,+∞)上是增函数,∴函数f (x )有极大值f (-2)和极小值f (2).10.设函数y =f (x )在R 上有意义,对于给定的正数M ,定义函数f M (x )=⎩⎪⎨⎪⎧f (x ),f (x )≤MM ,f (x )>M ,则称函数f M (x )为f (x )的“孪生函数”.若给定函数f (x )=2-x 2,M =1,则f M (0)的值为( ) A .2 B .1 C. 2 D .- 2 答案 B解析 由题意,当f (x )=2-x 2≤1,即x ≤-1或x ≥1时,f M (x )=2-x 2.当-1<x <1时,f M (x )=1. ∴f M (0)=1.11.(2014·课标全国Ⅰ)设函数f (x )=⎩⎪⎨⎪⎧e x -1, x <1,13x , x ≥1,则使得f (x )≤2成立的x 的取值X 围是________. 答案 (-∞,8]解析 当x <1时,x -1<0,e x -1<e 0=1≤2,∴当x <1时满足f (x )≤2.当x ≥1时,13x ≤2,x ≤23=8,1≤x ≤8.综上可知x ∈(-∞,8].12.(2013·某某)已知a ,b ,c ∈R ,a +2b +3c =6,则a 2+4b 2+9c 2的最小值为________. 答案 12解析 ∵(x +y +z )2=x 2+y 2+z 2+2xy +2yz +2zx ≤3(x 2+y 2+z 2), ∴a 2+4b 2+9c 2≥13(a +2b +3c )2=363=12.∴a 2+4b 2+9c 2的最小值为12.13.(2013·某某)设z =kx +y ,其中实数x ,y 满足⎩⎪⎨⎪⎧x +y -2≥0,x -2y +4≥0,2x -y -4≤0.若z 的最大值为12,则实数k =________. 答案 2解析 作出可行域如图阴影部分所示:由图可知当0≤-k <12时,直线y =-kx +z 经过点M (4,4)时z 最大,所以4k +4=12,解得k=2(舍去);当-k ≥12时,直线y =-kx +z 经过点(0,2)时z 最大,此时z 的最大值为2,不合题意;当-k <0时,直线y =-kx +z 经过点M (4,4)时z 最大,所以4k +4=12,解得k =2,符合题意.综上可知,k =2.14.设f (x )=-13x 3+12x 2+2ax ,若f (x )在(23,+∞)上存在单调递增区间,则a 的取值X 围为________. 答案 (-19,+∞)解析 由f ′(x )=-x 2+x +2a =-(x -12)2+14+2a ,得当x ∈⎣⎢⎡⎭⎪⎫23,+∞时,f ′(x )的最大值为f ′(23)=29+2a .令29+2a >0,得a >-19.所以a >-19时,f (x )在(23,+∞)上存在单调递增区间.15.设f (x )是定义在R 上的偶函数,对任意x ∈R ,都有f (x -2)=f (x +2),且当x ∈[-2,0]时,f (x )=(12)x-1,若在区间(-2,6]内关于x 的方程f (x )-log a (x +2)=0(a >1)恰有3个不同的实数根,则a 的取值X 围是________. 答案 (34,2)解析 由f (x -2)=f (x +2),知f (x )是周期为4的周期函数,于是可得f (x )在(-2,6]上的草图如图中实线所示,而函数g (x )=log a (x +2)(a >1)的图象如图中虚线所示,结合图象可知,要使得方程f (x )-log a (x +2)=0(a >1)在区间(-2,6]内恰有3个不同的实数根,必需且只需⎩⎪⎨⎪⎧g (2)<3,g (6)>3.所以⎩⎪⎨⎪⎧log a 4<3,log a 8>3.解得34<a <2.16.设全集是实数集R ,A ={x |2x 2-7x +3≤0},B ={x |x 2+a <0}. (1)当a =-4时,求A ∩B 和A ∪B ; (2)若(∁R A )∩B =B ,某某数a 的取值X 围. 解 (1)∵A ={x |12≤x ≤3},当a =-4时,B ={x |-2<x <2}, ∴A ∩B ={x |12≤x <2},A ∪B ={x |-2<x ≤3}.(2)∁R A ={x |x <12或x >3},当(∁R A )∩B =B 时,B ⊆∁R A ,即A ∩B =∅. ①当B =∅,即a ≥0时,满足B ⊆∁R A ;②当B ≠∅,即a <0时,B ={x |--a <x <-a }, 要使B ⊆∁R A ,需-a ≤12,解得-14≤a <0.综上可得,实数a 的取值X 围是[-14,+∞).17.设命题p :实数x 满足x2-4ax +3a 2<0,其中a >0,命题q :实数x 满足⎩⎪⎨⎪⎧x 2-x -6≤0,x 2+2x -8>0.(1)若a =1,且p ∧q 为真,某某数x 的取值X 围; (2)綈p 是綈q 的充分不必要条件,某某数a 的取值X 围. 解 (1)由x 2-4ax +3a 2<0, 得(x -3a )(x -a )<0.又a >0,所以a <x <3a .当a =1时,1<x <3,即p 为真命题时, 实数x 的取值X 围是1<x <3.由⎩⎪⎨⎪⎧x 2-x -6≤0,x 2+2x -8>0,解得⎩⎪⎨⎪⎧-2≤x ≤3,x <-4或x >2,即2<x ≤3.所以q 为真时实数x 的取值X 围是2<x ≤3.若p ∧q 为真,则⎩⎪⎨⎪⎧1<x <3,2<x ≤3⇔2<x <3,所以实数x 的取值X 围是(2,3).(2)綈p 是綈q 的充分不必要条件,即綈p ⇒綈q 且綈q綈p .设A ={x |x ≤a 或x ≥3a },B ={x |x ≤2或x >3},则A B . 所以0<a ≤2且3a >3,即1<a ≤2. 所以实数a 的取值X 围是(1,2].18.(2013·某某)已知函数f (x )=x -a ln x (a ∈R ).(1)当a =2时,求曲线y =f (x )在点A (1,f (1))处的切线方程; (2)求函数f (x )的极值.解 函数f (x )的定义域为(0,+∞),f ′(x )=1-ax. (1)当a =2时,f (x )=x -2ln x ,f ′(x )=1-2x(x >0),因而f (1)=1,f ′(1)=-1,所以曲线y =f (x )在点A (1,f (1))处的切线方程为y -1=-(x -1),即x +y -2=0.(2)由f ′(x )=1-a x =x -ax,x >0知:①当a ≤0时,f ′(x )>0,函数f (x )为(0,+∞)上的增函数,函数f (x )无极值; ②当a >0时,由f ′(x )=0,解得x =a .又当x ∈(0,a )时,f ′(x )<0;当x ∈(a ,+∞)时,f ′(x )>0,从而函数f (x )在x =a 处取得极小值,且极小值为f (a )=a -a ln a ,无极大值. 综上,当a ≤0时,函数f (x )无极值;当a >0时,函数f (x )在x =a 处取得极小值a -a ln a ,无极大值.19.若x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥1,x -y ≥-1,2x -y ≤2,(1)求目标函数z =12x -y +12的最值;(2)若目标函数z =ax +2y 仅在点(1,0)处取得最小值,求a 的取值X 围. 解 (1)作出可行域如图,可求得A (3,4),B (0,1),C (1,0).平移初始直线12x -y =0,过A (3,4)时,z 取最小值-2,过C (1,0)时,z 取最大值1.∴z 的最大值为1,最小值为-2.(2)直线ax +2y =z 仅在点(1,0)处取得最小值,由图象可知-1<-a2<2,解得-4<a <2.故所求a 的取值X 围为(-4,2).20.某商店预备在一个月内分批购入每X 价值为20元的书桌共36台,每批都购入x 台(x 为正整数),且每批均需付运费4元,储存购入的书桌一个月所付的保管费与每批购入书桌的总价值(不含运费)成正比,若每批购入4台,则该月需用去运费和保管费共52元,现在全月只有48元资金可以用于支付运费和保管费. (1)求该月需用去的费用和保管费的总费用f (x );(2)能否恰当地安排每批进货的数量,使资金够用?写出你的结论,并说明理由. 解 (1)设题中比例系数为k ,若每批购入x 台, 则共需分36x批,每批价值为20x 元.由题意得f (x )=36x·4+k ·20x ,由x =4时,y =52得k =1680=15,∴f (x )=144x+4x (0<x ≤36,x ∈N *).(2)由(1)知f (x )=144x+4x (0<x ≤36,x ∈N *),∴f (x )≥2144x×4x =48(元).当且仅当144x=4x ,即x =6时,上式等号成立.故只需每批购入6X 书桌,可以使资金够用.21.(2014·某某)已知函数f (x )=13x 3+x 2+ax +1(a ∈R ).(1)求函数f (x )的单调区间;(2)当a <0时,试讨论是否存在x 0∈(0,12)∪(12,1),使得f (x 0)=f (12).解 (1)f ′(x )=x 2+2x +a 开口向上,Δ=4-4a =4(1-a ). ①当1-a ≤0,即a ≥1时,f ′(x )≥0恒成立,f (x )在R 上单调递增. ②当1-a >0时,即a <1时,令f ′(x )=0,解得x 1=-2-4(1-a )2=-1-1-a ,x 2=-1+1-a .令f ′(x )>0,解得x <-1-1-a 或x >-1+1-a ; 令f ′(x )<0,解得-1-1-a <x <-1+1-a ;所以f (x )的单调递增区间为(-∞,-1-1-a )和(-1+1-a ,+∞);f (x )的单调递减区间为(-1-1-a ,-1+1-a ).综上所述:当a ≥1时,f (x )在R 上单调递增;当a <1时,f (x )的单调递增区间为(-∞,-1-1-a )和(-1+1-a ,+∞),f (x )的单调递减区间为(-1-1-a ,-1+1-a ). (2)当a <0时,x 1=-1-1-a <0,x 2=-1+1-a >0.①当-1+1-a ≥1时,即a ≤-3时,f (x )在(0,1)上单调递减,不满足题意;②当-1+1-a <1时,即-3<a <0时,f (x )在(0,-1+1-a )上单调递减,在(-1+1-a ,1)上单调递增,所以f (x )min =f (-1+1-a ),由题意知-1+1-a ≠12,所以a ≠-54.f (x )max =max{f (0),f (1)};f (0)=1,f (1)=a +73.a .当a +73≥1时,即-43≤a <0时,f (x )max =f (1).令f (12)<f (0),解得a <-712,又因为-43≤a <0,所以-43≤a <-712且a ≠-54.b .当a +73<1时,即a <-43时,f (x )max =f (0).令f (12)<f (1),解得-2512<a <-43.综上所述,当a ∈{a |-2512<a <-54或-54<a <-712}时,存在x 0∈(0,12)∪(12,1),使得f (x 0)=f (12).。
2015届高考数学 考前三个月 练透高考必会题型 穿插滚动练(六) 文 新人教版
穿插滚动练(六)1.已知集合A ={x |x 2-2 015x +2 014<0},B ={x |log 2x <m },若A ⊆B ,则整数m 的最小值是( ) A .9 B .10 C .11 D .12 答案 C解析 由x 2-2 015x +2 014<0,解得1<x <2 014, 故A ={x |1<x <2 014}.由log 2x <m ,解得0<x <2m ,故B ={x |0<x <2m}. 由A ⊆B ,可得2m≥2 014, 因为210=1 024,211=2 048, 所以整数m 的最小值为11,故选C.2.在复平面内,复数z =2+i2 0151+i 对应的点位于( )A .第四象限B .第三象限C .第二象限D .第一象限 答案 A解析 z =2+i 2 0151+i =2-i 1+i =(2-i )(1-i )2=1-3i 2=12-32i , 因此复数z 对应的点在第四象限.故选A.3.(2014·某某)若将一个质点随机投入如图所示的长方形ABCD 中,其中AB =2,BC =1,则质点落在以AB 为直径的半圆内的概率是( ) A.π2B.π4 C.π6D.π8 答案 B解析 设质点落在以AB 为直径的半圆内为事件A , 则P (A )=阴影面积长方形面积=12π·121×2=π4.4.已知数列{a n }的通项公式a n =log 2n +1n +2(n ∈N *),设{a n }的前n 项和为S n ,则使S n <-5成立的自然数 n ( )A .有最大值63B .有最小值63C .有最大值31D .有最小值31 答案 B解析 S n =a 1+a 2+…+a n =log 223+log 234+…+log 2n +1n +2=log 2(23×34×…×n +1n +2)=log 22n +2<-5, ∴2n +2<2-5,∴n +2>26,∴n >62. 又n ∈N *,∴n 有最小值63.5.若平面向量a =(2,3)和b =(x +2,-2)垂直,则|a -b |等于( ) A.26B .5 C .26 D .2 6 答案 A解析 由a ⊥b ,可得a ·b =2×(x +2)+3×(-2)=0,解得x =1. 故b =(3,-2),所以a -b =(-1,5). 所以|a -b |=(-1)2+52=26.故选A.6.(2014·大纲全国)正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为( ) A.81π4 B .16π C.9π D.27π4答案 A解析 如图,设球心为O ,半径为r , 则Rt△AOF 中, (4-r )2+(2)2=r 2, 解得r =94,∴该球的表面积为4πr 2=4π×(94)2=814π.7.(2014·某某)在平面直角坐标系中,A ,B 分别是x 轴和y 轴上的动点,若以AB 为直径的圆C 与直线2x +y -4=0相切,则圆C 面积的最小值为( ) A.45π B.34π C .(6-25)π D.54π答案 A解析 ∵∠AOB =90°,∴点O 在圆C 上. 设直线2x +y -4=0与圆C 相切于点D ,则点C 与点O 间的距离等于它到直线2x +y -4=0的距离, ∴点C 在以O 为焦点,以直线2x +y -4=0为准线的抛物线上, ∴当且仅当O ,C ,D 共线时,圆的直径最小为|OD |. 又|OD |=|2×0+0-4|5=45,∴圆C 的最小半径为25,∴圆C 面积的最小值为π(25)2=45π.8.函数f (x )=(x -1)ln|x |的图象可能为( )答案 A解析 函数f (x )的定义域为(-∞,0)∪(0,+∞),可排除B. 当x ∈(0,1)时,x -1<0,ln x <0,所以(x -1)ln x >0,可排除D ; 当x ∈(1,+∞)时,x -1>0,ln x >0,所以(x -1)ln x >0,可排除C.故只有A 项满足,选A.9.已知动点P (x ,y )满足约束条件⎩⎪⎨⎪⎧y ≥2|x |-1,y ≤x +1,则z =|2x -3y -6|的最小值是( )A .11B .3 C.253 D.31313答案 B解析 z =|2x -3y -6|的几何意义为可行域内的点到直线2x -3y -6=0的距离的13倍,其可行域如图中阴影部分所示,由图知点C 到直线2x -3y -6=0的距离最短.由⎩⎪⎨⎪⎧2x +y +1=0,2x -y -1=0,得点C (0,-1),则z min =13×|2×0-3×(-1)-6|13=3,故选B.10.(2014·某某)已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的一条渐近线平行于直线l :y =2x +10,双曲线的一个焦点在直线l 上,则双曲线的方程为( ) A.x 25-y 220=1 B.x 220-y 25=1 C.3x 225-3y 2100=1 D.3x 2100-3y225=1 答案 A解析 双曲线的渐近线方程为y =±bax ,因为一条渐近线与直线y =2x +10平行,所以b a=2. 又因为双曲线的一个焦点在直线y =2x +10上, 所以-2c +10=0,所以c =5.由⎩⎪⎨⎪⎧b a =2,c =a 2+b 2=5得⎩⎪⎨⎪⎧a 2=5,b 2=20.故双曲线的方程为x 25-y 220=1.11.(2014·课标全国Ⅰ)将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为________. 答案 23解析 两本不同的数学书用a 1,a 2表示,语文书用b 表示,则Ω={(a 1,a 2,b ),(a 1,b ,a 2),(a 2,a 1,b ),(a 2,b ,a 1),(b ,a 1,a 2),(b ,a 2,a 1)}. 于是两本数学书相邻的情况有4种, 故所求概率为46=23.12.某时段内共有100辆汽车经过某一雷达地区,时速频率分布直方图如下图所示,则时速超过60 km/h 的汽车数量为________.答案 38解析 由直方图可得时速超过60 km/h 的汽车所占频率为10×(0.028+0.010)=0.38,又样本容量为100,故时速超过60 km/h 的汽车共有100×0.38=38(辆). 13.如图,在一个塔底的水平面上的点A 处测得该塔顶P 的仰角为θ,由点A 向塔底D 沿直线行走了30 m 到达点B ,测得塔顶P 的仰角为2θ,再向塔底D 前进10 3 m 到达点C ,又测得塔顶的仰角为4θ,则塔PD 的高度为________. 答案 15 m解析 依题意有PD ⊥AD ,BA =30 m ,BC =10 3 m , ∠PAD =θ,∠PBD =2θ,∠PCD =4θ, 所以∠APB =∠PBD -∠PAD =θ=∠PAD . 所以PB =BA =30 m. 同理可得PC =BC =103m. 在△BPC 中,由余弦定理,得cos 2θ=(103)2+302-(103)22×103×30=32,所以2θ=30°,4θ=60°.在△PCD 中,PD =PC ×sin 4θ=103×32=15(m). 14.已知集合M ={x |y =lg (x +2)3-x ,x ∈R },N ={x |x 2-3x +2≤0},在集合M 中任取一个元素x ,则“x ∈M ∩N ”的概率是________. 答案 15解析 因为M ={x |y =lg (x +2)3-x,x ∈R }=(-2,3),N ={x |x 2-3x +2≤0}=[1,2],所以M ∩N =[1,2].所以“x ∈M ∩N ”的概率P =2-13-(-2)=15.15.(2014·某某)对于c >0,当非零实数a ,b 满足4a 2-2ab +4b 2-c =0且使|2a +b |最大时,3a -4b +5c的最小值为________.答案 -2解析 设2a +b =x ,则2a =x -b , ∴(x -b )2-b (x -b )+4b 2-c =0,x 2-3bx +6b 2-c =0,即6b 2-3xb +x 2-c =0,∴Δ=9x 2-4×6×(x 2-c )≥0, ∴3x 2-8x 2+8c ≥0,∴x 2≤85c .当|2a +b |=|x |取最大值时,有(2a +b )2=85c ,∴4a 2+4ab +b 2=85c ,又∵4a 2-2ab +4b 2=c ,①∴b a =23,∴b =23a , 代入①得4a 2-2a ·23a +49a 2·4=c ,∴a =32c10,b =c 10,或a =-32c10,b =-c10.当a =32c10,b =c10时,有3a -4b +5c =332c10-4c 10+5c =210c -410c +5c =5(1c-105)2-2≥-2,当1c=105,即c =52时等号成立. 此时a =34,b =12.当a =-32c10,b =-c10时,3a -4b +5c=-210c +410c+5c=210c+5c>0,综上可知c =52,a =34,b =12时,(3a -4b +5c)min =-2.16.(2014·某某)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知a ≠b ,c =3,cos 2A -cos 2B =3sin A cos A -3sin B cos B . (1)求角C 的大小;(2)若sin A =45,求△ABC 的面积.解 (1)由题意得1+cos 2A 2-1+cos 2B 2=32sin 2A -32sin 2B , 即32sin 2A -12cos 2A =32sin 2B -12cos 2B , sin ⎝ ⎛⎭⎪⎫2A -π6=sin ⎝⎛⎭⎪⎫2B -π6.由a ≠b ,得A ≠B .又A +B ∈(0,π),得 2A -π6+2B -π6=π,即A +B =2π3,所以C =π3.(2)由c =3,sin A =45,a sin A =c sin C ,得a =85.由a <c ,得A <C ,从而cos A =35,故sin B =sin(A +C )=sin A cos C +cos A sin C =4+3310, 所以,△ABC 的面积为S =12ac sin B =83+1825. 17.如图,三棱锥A -BCD 中,AB ⊥平面BCD ,CD ⊥BD .(1)求证:CD ⊥平面ABD ;(2)若AB =BD =CD =1,M 为AD 中点,求三棱锥A -MBC 的体积.方法一 (1)证明 ∵AB ⊥平面BCD ,CD ⊂平面BCD , ∴AB ⊥CD .又∵CD ⊥BD ,AB ∩BD =B ,AB ⊂平面ABD ,BD ⊂平面ABD ,∴CD ⊥平面ABD .(2)解 由AB ⊥平面BCD ,得AB ⊥BD , ∵AB =BD =1,∴S △ABD =12.∵M 是AD 的中点,∴S △ABM =12S △ABD =14.由(1)知,CD ⊥平面ABD , ∴三棱锥C -ABM 的高h =CD =1, 因此三棱锥A -MBC 的体积V A -MBC =V C -ABM =13S △ABM ·h =112.方法二 (1)同方法一.(2)解 由AB ⊥平面BCD 知,平面ABD ⊥平面BCD , 又平面ABD ∩平面BCD =BD ,如图,过点M 作MN ⊥BD 交BD 于点N ,则MN ⊥平面BCD ,且MN =12AB =12.又CD ⊥BD ,BD =CD =1, ∴S △BCD =12.∴三棱锥A -MBC 的体积V A -MBC =V A -BCD -V M -BCD =13AB ·S △BCD -13MN ·S △BCD =112.18.已知等差数列{a n },公差d >0,前n 项和为S n ,S 3=6,且满足a 3-a 1,2a 2,a 8成等比数列. (1)求{a n }的通项公式; (2)设b n =1a n ·a n +2,求数列{b n }的前n 项和T n 的值.解 (1)由S 3=6,得a 2=2. ∵a 3-a 1,2a 2,a 8成等比数列,∴(2d )·(2+6d )=42, 解得d =1或d =-43,∵d >0,∴d =1.∴数列{a n }的通项公式为a n =n . (2)T n =11·3+12·4+13·5+…+1n (n +2)=12[(1-13)+(12-14)+(13-15)+(14-16)+…+(1n -1n +2)] =12(32-1n +1-1n +2)=3n 2+5n 4(n +1)(n +2). 19.某高校共有学生15 000人,其中男生10 500人,女生4 500人,为调查该校学生每周平均体育运动时间的情况,采用分层抽样的方法,收集300位学生每周平均体育运动时间的样本数据(单位:小时).(1)应收集多少位女生的样本数据?(2)根据这300个样本数据,得到学生每周平均体育运动时间的频率分布直方图(如图所示),其中样本数据的分组区间为:[0,2],(2,4],(4,6],(6,8],(8,10],(10,12],估计该校学生每周平均体育运动时间超过4小时的概率.(3)在样本数据中,有60位女生的每周平均体育运动时间超过4小时,请完成每周平均体育运动时间与性别列联表,并判断是否有95%的把握认为“该校学生的每周平均体育运动时间与性别有关”.P (K 2≥k 0)0.10 0.05 0.010 0.005 k 02.7063.8416.6357.879附:K 2=n ((a +b )(c +d )(a +c )(b +d ).解 (1)300×4 50015 000=90,所以应收集90位女生的样本数据. (2)由频率分布直方图得 1-2×(0.025+0.100)=0.75,所以该校学生每周平均体育运动时间超过4小时的概率的估计值为0.75.(3)由(2)知,300位学生中有300×0.75=225(人)的每周平均体育运动时间超过4小时,75人的每周平均体育运动时间不超过4小时.又因为样本数据中有210份是关于男生的,90份是关于女生,所以每周平均体育运动时间与性别列联表如下: 每周平均体育运动时间与性别列联表结合列联可算得K 2=75×225×210×90=21≈4.762>3.841.所以,有95%的把握认为“该校学生的每周平均体育运动时间与性别有关”.20.(2014·某某)已知函数f (x )=e x-ax (a 为常数)的图象与y 轴交于点A ,曲线y =f (x )在点A 处的切线斜率为-1. (1)求a 的值及函数f (x )的极值; (2)证明:当x >0时,x 2<e x;(3)证明:对任意给定的正数c ,总存在x 0,使得当x ∈(x 0,+∞)时,恒有x <c e x. 方法一 (1)解 由f (x )=e x -ax ,得f ′(x )=e x-a . 又f ′(0)=1-a =-1,得a =2. 所以f (x )=e x -2x ,f ′(x )=e x-2. 令f ′(x )=0,得x =ln 2.当x <ln 2时,f ′(x )<0,f (x )单调递减; 当x >ln 2时,f ′(x )>0,f (x )单调递增. 所以当x =ln 2时,f (x )有极小值, 且极小值为f (ln 2)=eln 2-2ln 2=2-ln 4,f (x )无极大值.(2)证明 令g (x )=e x -x 2,则g ′(x )=e x-2x . 由(1)得,g ′(x )=f (x )≥f (ln 2)=2-ln 4>0, 即g ′(x )>0.所以g (x )在R 上单调递增. 又g (0)=1>0,所以当x >0时,g (x )>g (0)>0,即x 2<e x. (3)证明 对任意给定的正数c ,取x 0=1c,由(2)知,当x >0时,x 2<e x.所以当x >x 0时,e x >x 2>1cx ,即x <c e x . 因此,对任意给定的正数c ,总存在x 0,当x ∈(x 0,+∞)时,恒有x <c e x .方法二 (1)同方法一(2)同方法一(3)证明 令k =1c(k >0),要使不等式x <c e x 成立,只要e x >kx 成立. 而要使e x >kx 成立,则只需要x >ln(kx ),即x >ln x +ln k 成立.①若0<k ≤1,则ln k ≤0,易知当x >0时,x >ln x ≥ln x +ln k 成立.即对任意c ∈[1,+∞),取x 0=0,当x ∈(x 0,+∞)时,恒有x <c e x .②若k >1,令h (x )=x -ln x -ln k ,则h ′(x )=1-1x =x -1x, 所以当x >1时,h ′(x )>0,h (x )在(1,+∞)内单调递增.取x 0=4k ,h (x 0)=4k -ln(4k )-ln k =2(k -ln k )+2(k -ln 2),易知k >ln k ,k >ln 2,所以h (x 0)>0.因此对任意c ∈(0,1),取x 0=4c,当x ∈(x 0,+∞)时,恒有x <c e x . 综上,对任意给定的正数c ,总存在x 0,当x ∈(x 0,+∞)时,恒有x <c e x .方法三 (1)同方法一.(2)同方法一.(3)证明 ①若c ≥1,取x 0=0,由(2)的证明过程知,e x >2x ,所以当x ∈(x 0,+∞)时,有c e x ≥e x >2x >x ,即x <c e x .②若0<c <1,令h (x )=c e x -x ,则h ′(x )=c e x -1.令h ′(x )=0得x =ln 1c. 当x >ln 1c时,h ′(x )>0,h (x )单调递增. 取x 0=2ln 2c ,h (x 0)=c e2ln 2c -2ln 2c =2(2c -ln 2c), 易知2c -ln 2c>0,又h (x )在(x 0,+∞)内单调递增, 所以当x ∈(x 0,+∞)时,恒有h (x )>h (x 0)>0,即x <c e x.综上,对任意给定的正数c ,总存在x 0,当x ∈(x 0,+∞)时,恒有x <c e x . 21.(2014·某某)在平面直角坐标系xOy 中,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,直线y =x 被椭圆C 截得的线段长为4105. (1)求椭圆C 的方程;(2)过原点的直线与椭圆C 交于A ,B 两点(A ,B 不是椭圆C 的顶点).点D 在椭圆C 上,且AD ⊥AB ,直线BD 与x 轴、y 轴分别交于M ,N 两点.①设直线BD ,AM 的斜率分别为k 1,k 2,证明:存在常数λ使得k 1=λk 2,并求出λ的值; ②求△OMN 面积的最大值. 解 (1)由题意知a 2-b 2a =32,可得a 2=4b 2. 椭圆C 的方程可简化为x 2+4y 2=a 2.将y =x 代入可得x =±5a 5, 因此2×25a 5=4105,可得a =2. 因此b =1,所以椭圆C 的方程为x 24+y 2=1. (2)①设A (x 1,y 1)(x 1y 1≠0),D (x 2,y 2),则B (-x 1,-y 1).因为直线AB 的斜率k AB =y 1x 1,又AB ⊥AD ,所以直线AD 的斜率k =-x 1y 1.设直线AD 的方程为y =kx +m ,由题意知k ≠0,m ≠0. 由⎩⎪⎨⎪⎧ y =kx +m ,x 24+y 2=1可得(1+4k 2)x 2+8mkx +4m 2-4=0. 所以x 1+x 2=-8mk 1+4k2, 因此y 1+y 2=k (x 1+x 2)+2m =2m 1+4k 2. 由题意知x 1≠-x 2,所以k 1=y 1+y 2x 1+x 2=-14k =y 14x 1.所以直线BD 的方程为y +y 1=y 14x 1(x +x 1). 令y =0,得x =3x 1,即M (3x 1,0),可得k 2=-y 12x 1. 所以k 1=-12k 2,即λ=-12. 因此存在常数λ=-12使得结论成立. ②直线BD 的方程y +y 1=y 14x 1(x +x 1), 令x =0,得y =-34y 1,即N ⎝⎛⎭⎪⎫0,-34y 1. 由①知M (3x 1,0),可得△OMN 的面积 S =12×3|x 1|×34|y 1|=98|x 1||y 1|.因为|x 1||y 1|≤x 214+y 21=1, 当且仅当|x 1|2=|y 1|=22时等号成立,此时S 取得最大值98. 所以△OMN 面积的最大值为98.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
由方程①,得x1+x2=-.②
又y1+y2=k(x1+x2)+2.③
而A(,0),B(0,1),=(-,1).
=.
由(1)知k<-或k>,
故不存在符合题意的常数k.
2.已知双曲线方程为x2-=1,问:是否存在过点M(1,1)的直线l,使得直线与双曲线交于P、Q两点,且M是线段PQ的中点?如果存在,求出直线的方程,如果不存在,请说明理由.
(2)点Ak的坐标为(-k,2),
S△AkF1F2=×|F1F2|×2=×6×2=6.
(3)若k≥0,由62+02+12k-0-21=15+12k>0,可知点(6,0)在圆Ck外;
若k<0,由(-6)2+02-12k-0-21=15-12k>0,可知点(-6,0)在圆Ck外.
所以不论k为何值,圆Ck都不能包围椭圆G.
解(1)依题意得b=,e==,a2=b2+c2,
∴a=2,c=1,∴椭圆C的方程为+=1.
(2)因直线l与y轴相交于点M,故斜率存在,
又F坐标为(1,0),设直线l方程为
y=k(x-1),求得l与y轴交于M(0,-k),
设l交椭圆A(x1,y1),B(x2,y2),
由
消去y得(3+4k2)x2-8k2x+4k2-12=0,
(2)假设满足条件的直线l存在,其方程为y=a,
则以AC为直径的圆的方程为
(x-0)(x-x1)-(y-p)(y-y1)=0,
将直线方程y=a代入得x2-x1x+(a-p)(a-y1)=0,
则Δ=x-4(a-p)(a-y1)
=4[(a-)y1+a(p-a)].
设直线l与以AC为直径的圆的交点为P(x3,y3),Q(x4,y4),
(1)求椭圆E的方程;
(2)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且⊥?若存在,写出该圆的方程,并求|AB|的取值范围;若不存在,请说明理由.
解(1)因为椭圆E:+=1(a,b>0)过M(2,),N(,1)两点,
所以解得
所以椭圆E的方程为+=1.
(2)假设存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且⊥,设该圆的切线方程为y=kx+m,A(x1,y1),B(x2,y2),解方程组得x2+2(kx+m)2=8,
(2)是否存在垂直于y轴的直线l,使得l被以AC为直径的圆截得的弦长恒为定值?若存在,求出l的方程;若不存在,请说明理由.
破题切入点假设符合条件的直线存在,求出弦长;利用变量的系数恒为零求解.
解方法一(1)依题意,点N的坐标为N(0,-p),
可设A(x1,y1),B(x2,y2),
直线AB的方程为y=kx+p,
第
[内容精要]本部分主要以解答题形式考查,往往是试卷的压轴题之一,一般以椭圆或抛物线为背景,考查弦长、定点、定值、最值范围问题或探索性问题,试题难度较大.
题型一定值、定点问题
例1已知椭圆C:+=1经过点(0,),离心率为,直线l经过椭圆C的右焦点F交椭圆于A、B两点.
(1)求椭圆C的方程;
解显然x=1不满足条件,设l:y-1=k(x-1).
联立y-1=k(x-1)和x2-=1,
消去y得(2-k2)x2+(2k2-2k)x-k2+2k-3=0,
由Δ>0,得k<,x1+x2=,
由M(1,1)为PQ的中点,得==1,
解得k=2,这与k<矛盾,
所以不存在满足条件的直线l.
3.设椭圆E:+=1(a,b>0)过M(2,),N(,1)两点,O为坐标原点.
(3)定直线问题一般都为特殊直线x=x0或y=y0型.
1.在平面直角坐标系xOy中,经过点(0,)且斜率为k的直线l与椭圆+y2=1有两个不同的交点P和Q.
(1)求k的取值范围;
(2)设椭圆与x轴正半轴、y轴正半轴的交点分别为A,B,是否存在常数k,使得向量+与共线?如果存在,求k值;如果不存在,请说明理由.
(1)求椭圆G的方程;
(2)求△AkF1F2的面积;
(3)问是否存在圆Ck包围椭圆G?请说明理由.
破题切入点(1)根据定义待定系数法求方程.
(2)直接求.
(3)关键看长轴两端点.
解(1)设椭圆G的方程为+=1(a>b>0),半焦距为c,则解得
所以b2=a2-c2=36-27=9.
所以所求椭圆G的方程为+=1.
令a-=0,得a=,
此时|PQ|=p为定值,故满足条件的直线l存在,
其方程为y=,即抛物线的通径所在的直线.
方法二(1) 前同方法一,再由弦长公式得
|AB|=|x1-x2|
=·
=·
=2p·,
又由点到直线的距离公式得d=.
从而S△ABN=·d·|AB|
=·2p··
=2p2.
∴当k=0时,(S△ABN)min=2p2.
AC的中点为O′,l与以AC为直径的圆相交于点P,Q,PQ的中点为H,
则O′H⊥PQ,Q′点的坐标为(,).
∵|O′P|=|AC|==,
|O′H|==|2a-y1-p|,
∴|PH|2=|O′P|2-|O′H|2
=(y+p2)-(2a-y1-p)2
=(a-)y1+a(p-a),
∴|PQ|2=(2|PH|)2=4[(a-)y1+a(p-a)].
与x2=2py联立得
消去y得x2-2pkx-2p2=0.
由根与系数的关系得x1+x2=2pk,x1x2=-2p2.
于是S△ABN=S△BCN+S△ACN=·2p|x1-x2|
=p|x1-x2|=p
=p=2p2,
∴当k=0时,(S△ABN)min=2p2.
(2)假设满足条件的直线l存在,其方程为y=a,
即不存在圆Ck包围椭圆G.
总结提高(1)定值问题就是在运动变化中寻找不变量的问题,基本思想是使用参数表示要解决的问题,证明要解决的问题与参数无关.在这类试题中选择消元的方向是非常关键的.
(2)由直线方程确定定点,若得到了直线方程的点斜式:y-y0=k(x-x0),则直线必过定点(x0,y0);若得到了直线方程的斜截式:y=kx+m,则直线必过定点(0,m).
(2)若直线l交y轴于点M,且=λ,=μ,当直线l的倾斜角变化时,探求λ+μ的值是否为定值?若是,求出λ+μ的值;否则,请说明理由.
破题切入点(1)待定系数法.
(2)通过直线的斜率为参数建立直线方程,代入椭圆方程消y后可得点A,B的横坐标的关系式,然后根据向量关系式=λ,=μ.把λ,μ用点A,B的横坐标表示出来,只要证明λ+μ的值与直线的斜率k无关即证明了其为定值,否则就不是定值.
解(1)由已知条件,得直线l的方程为y=kx+,
代入椭圆方程得+(kx+)2=1.
整理得(+k2)x2+2kx+1=0.①
直线l与椭圆有两个不同的交点P和Q等价于Δ=8k2-4(+k2)=4k2-2>0,
解得k<-或k>.
即k的取值范围为(-∞,-)∪(,+∞).
(2)设P(x1,y1),Q(x2,y2),
即(1+2k2)x2+4kmx+2m2-8=0,
则Δ=16k2m2-4(1+2k2)(2m2-8)=8(8k2-m2+4)>0,即8k2-m2+4>0.
故
y1y2=(kx1+m)(kx2+m)=k2x1x2+km(x1+x2)+m2
=-+m2=.
要使⊥,需使x1x2+y1y2=0,
则有|PQ|=|x3-x4|=
=2.
令a-=0,得a=,
此时|PQ|=p为定值,故满足条件的直线l存在,
其方程为y=,即抛物线的通径所在的直线.
题型三定圆问题
例3已知椭圆G的中心在坐标原点,长轴在x轴上,离心率为,两个焦点分别为F1和F2,椭圆G上一点到F1和F2的距离之和为12,圆Ck:x2+y2+2kx-4y-21=0(k∈R)的圆心为点Ak.
∴x1+x2=,x1x2=,
又由=λ,∴(x1,y1+k)=λ(1-x1,-y1),
∴λ=,同理μ=,
∴λ+μ=+=
==-.
所以当直线l的倾斜角变化时,直线λ+μ的值为定值-.
题型二定直线问题
例2 在平面直角坐标系xOy中,过定点C(0,p)作直线与抛物线x2=2py(p>0)相交于A,B两点.
(1)若点N是点C关于坐标原点O的对称点,求△ANB面积的最小值;