第2章_平面力系(汇交、力偶)7版

合集下载

第二章平面汇交力系及平面力偶系

第二章平面汇交力系及平面力偶系
一、几何法合成(作图法)
1、两力的合成方法——平行四边形法则。
2、多个力的合成。方法——力多边形法 则(依据平行四边形法则)。将汇交
力系各力平行移至首尾相接,起点至

终点连线为合力。
一 章
静 力 学 基 础
理论力学教学课件
第一节 平面汇交力系的合成
一、几何法(作图法)
F1
R12
O
F2
F3
R123
同理 :Ry= F1y+ F2y+ F3y
R FX 2 Fy 2
第二节 平面汇交力系合成的解析法
例 用 解 析 法 求 三 力 的 合 力 。 已 知 F1=100N ,
F2=200N,F3=300N 。
F1
45°
O
F2
解:F1X=F1COS45°=71N F1y=F1sin45°=71N F2X=F2=200N
静 力
自行封闭。
学 基

第二节 平面汇交力系的合成与 平衡的解析法
一、解析法合成(计算 ) 1、力在直角坐标轴上的投影
y
a’
A
αF
B
b’
oa
b
x
ab:F在x轴上的投影(Fx). a’b’:F在y轴上的投影(Fy)。
Fx=ab=Fsinα


Fy=a’ b’= - Fcosα

静 力 学 基 础
第二节 平面汇交力系合成的解析法
解:据平衡方程:ΣFx=0 ΣFy=0
ΣFy=-P- FD cos30°-FCBsin30°=0 FCB=-74.6 KN (BC杆受压) ΣF x=-FAB - FD sin30°FCBcos30°=0 FAB =54.6 KN (AB杆受拉)

第二章--平面汇交力系

第二章--平面汇交力系
2a P
B
C
a
A
D
RA
RD
2.画力三角形。因为力系平衡所以力三角形 自行封闭,力的箭头首尾相接。如果不能满足 首尾相接的条件,说明原来假设的力的方向
有误,则应把受力图中力的指向改正过来
[力三角形见图] P
B
C
A
D
RA
RD
2.画力三角形。因为力系平衡所以力三角形 自行封闭,力的箭头首尾相接。如果不能满足 首尾相接的条件,说明原来假设的力的方向 有误,则应把受力图中力的指向改正过来 [力三角形见图]
力的多边形 自行封闭.
必要充分条件
设刚体上作用一平面汇交力系(图)。现按 力的多边形法则合成:
F4
F3
F1 F2
若第一个力的起点与最后一个力的终点恰好 互相连接而构成一个自行封闭的力多边形, 即表示力系的合力 R 等于零,则此力系为 平衡力系.
例 刚体上作用一平面汇交力系,五个力大小
相等,彼此夹72°角
cos RX
R
4170
0.834
5000
Y RX O

X
RY
RX = ∑FX = - 4170N
RY = ∑FY = - 2750N
R 5000N
由于RX和RX都是负值, 所以合力只应在第三象限 α = 33.5 °
2.2平面汇交力系的平衡条件 及应用
1 平衡的几何条件:
要使平面汇交力 系成为平衡力系,
②求分力在坐标轴上的代数和:
RX = ∑FX RY = ∑FY
③合力的大小和方向用 R, 角度 α, β 表示 Y
RY β R
α
RX
X
Y
RY β R

平面汇交力系和平面力偶系

平面汇交力系和平面力偶系

第二章 平面汇交力系与平面力偶系§2.1平面汇交力系合成与平衡的几何法一、汇交力系合成与平衡的几何法 汇交力系:是指各力的作用线汇交于同一点的力系。

若汇交力系中各力的作用线位于同一平面内时,称为平面汇交力系,否则称为空间汇交力系。

1、平面汇交力系的合成先讨论3个汇交力系的合成。

设汇交力系1F ,2F ,3F汇交于O (图1),由静力学公理3:力的平行四边形法则(力的三角形)可作图2,说明)(),,(321F F F F=如图和图所示,其中321F F F F ++=F2F 3F OFO1F 2F 3F12F讨论:1)图2中的中间过程12F 可不必求,去掉12F 的图称为力多边形,由力多边形求合力大小和方向的方法称为合力多边形法则。

2)力多边形法则:各分力矢依一定次序首尾相接,形成一力矢折线链,合力矢是封闭边,合力矢的方向是从第一个力矢的起点指向最后一个力矢的终点。

3)上述求合力矢的方法可推广到几个汇交力系的情况。

结论:汇交力系合成的结果是一个合力,合力作用线通过汇交点,合力的大小和方向即:∑=i F F用力多边形法则求合力的大小和方向的方法称为合成的几何法。

2.平面汇交力系的平衡1F 2F iF 2-n F 1-n F n F设作用在刚体上的汇交力系),,(21n F F F 为平衡力系,即 0),,(21≡n F F F先将121,,-n F F F 由力多边形法合成为一个力1-N F,(∑-=-=111n i i N F F )0),(),,(121≡≡-n N n F F F F F由静力公理1,作用在刚体上二力平衡的必要充分条件是:1-N F 与n F等值,反向,共线,即n N F F =-1, 可得01=+-n N F F,或0=∑i F结论:平面汇交力系平衡的必要与充分条件是:力系中各力的乖量和为零,用几何法表示的平衡条件是0=∑i F,力多边形自行封闭。

例1. 已知:简支梁AB ,在中点作用力F,方向如图,求反力FA B C45F AF BACα 45FF BF α解:1。

第二章-平面汇交力系与平面力偶系

第二章-平面汇交力系与平面力偶系
负号说明FA方向设反了
FC FA
2FC sin 30 Q 0 FC Q FA Q
例2-3:重物P=20kN,用钢丝绳挂在支架 的滑轮B上,钢丝绳的另一端缠绕在绞车D 上。杆AB 与BC 铰接,并以铰链A、C与 墙连接。如两杆和滑轮的自重不计,并忽 略摩擦和滑轮的大小,试求平衡时杆AB 和BC 所受的力。
平面汇交力系与平面力偶系是两种简单力系, 是研究复杂力系的基础。 本章研究问题: (1)平面汇交力系的几何法与解析法 (2)平面力偶的基本特性 (3)平面力偶系的合成与平衡
§2-1 平面汇交力系合成与平衡的几何法
所有的力在同个平面内且作用线交于一点为平面 汇交力系,三力平衡为其一。
几何法:根据力的平行四边形规则作图得出。
FNA
A
B
FNA
水平坐标系:
FNB
F
y`
30 60 °
x`
FNB F
o`
A B
FNA
FNB
FNA
同样得:
也可以用几何法,画出封闭的力三角形求解,解得此结果。
工件对V形铁的压力与FNA、FNB等值反向。
例:在图示结构中各构件的自重略去不计。在构件AB上作用 一力偶矩为M的力偶,求支座A和C的约束反力。
(a) (b)
FBC、 FAB 均为正值,表示力的假设方向与实际方向 相同,即杆 BC 受压,杆 AB 受拉力。
例:不计杆重。D处受力G,求A、 C处的约束反力。 解:
画受力图
FLASH
Sa大小、方向不知,Sb大小不知,三个未知数
由几何关系:
1 tg tg 3
X 0, Y 0,
SB cos SA cos 0
SB sin SA sin G 0

第2章平面汇交力系与第3章平面力偶系

第2章平面汇交力系与第3章平面力偶系

2. 解析法:
Fx 0 Fy 0
[例1] 图示杆AB长为l, AC=BC, =45°,F=10N。求:
A、B处反力。 解1: 几何法
O F
研究AB杆,画受力图,并
作力旳三角形
由正弦定理
FA sin 45
sin(180
F 90
1)
FA
A
10 FA 4 F 7.9N
F
1
C
45°
B
FNB
反作用。
28
[例] 画出每个构件旳受力图
C
C
C
OI
B
K
H
D
B
I
D
A
D
Q
B
O
IK
A
29
解:
C
OI K
H D
A Q
FC
FC'
C
FI
B
FT
D
FRD
B
FB
FR' D FOY
FOX O
I
A
Q
C
I
D
SI B
K
S B
NK
30
二、几种注意点 1. 明确画旳是受力图,而不是施力图; 2. 每一种力都要有施力者——不多画力; 3. 每解除一种约束都要画出相应旳约束反力—不错画 力,不漏画力; 4. 刚体系各刚体之间旳力要成对出现——不错画力; 5. 整体受力分析时不出现内力。
定理:平面汇交力系旳合力对平面内任一点旳矩,等于全
部各分力对同一点旳矩旳代数和
即:
n
mO (R )mO (Fi )
i 1
[证] 由合力投影定理有: od=ob+oc

第二章-1 平面汇交力系与平面力偶系

第二章-1  平面汇交力系与平面力偶系

第二章-1 平面汇交力系与平面力偶系一、判别题(正确和是用√,错误和否×,填入括号内。

)2-1 平面汇交力系平衡的充分与必要的几何条件是:力多边形自行封闭。

(√)2-2 力在某一固定面上的投影是一个代数量。

(×)2-3 两个力F1、F2大小相等,则它们在同一轴上的投影也相等。

(×)2-4 一个力不可能分解为一个力偶;一个力偶也不可能合成一个力。

(√)2-5 力偶无合力、不能用一个力来等袒代替,也不能用一个力来平衡;(√)2-6 力偶无合力,也就是说力偶的合力等于零。

(×)2-7 力偶矩和力对点之矩本质上是二样的,讲的是一回事。

(×)2-8 力偶的作用效果取决于力偶矩的大小和转向。

(√)2-9 只要两力偶的力偶矩代数值相等,就是等效力偶。

(√)2-10 力偶中的两个力对同平面内任一点之矩的代数和等于力偶矩。

(√)2-11 力偶只能用力偶来平衡。

(√)2-12 平面力偶系可简化为一个合力偶。

(√)2-13 力偶可任意改变力的大小和力偶臂的长短。

(×)2-14 力偶的两力在其作用面内任意轴上的投影的代数和都等于零。

(√)2-15 若两个力F1、F2在同一轴上的投影相等,则这两个力相等,即F1 = F2。

(×)2-16 若两个力F1、F2大小相等,则在同一轴Ox上投影相等,即F1x = F2x。

(×)2-17 若两个力F1、F2大小、方向、作用点完全相同,则这两个力在任一轴上的投影相等。

(√)2-18 若两个力大小相等、方向相反,则在任一轴Ox上的投影大小相等。

(√)2-19 若两个力平行,则它们在任一轴上的投影相等。

(×)2-20 若两个力在某轴上的投影均为零,则该两力平行。

(√)2-21 图示为分别作用在刚体上A、B、C、D点的4个共面力,它们所构成的力多边形自行封闭且为平行四边形。

由于力多边形自行封闭,所以是平衡的。

第二章:平面汇交力系与平面力偶系

第二章:平面汇交力系与平面力偶系

第二章平面汇交力系与平面力偶系一、要求1、掌握平面汇交力系合成(分解)的几何法。

能应用平衡的几何条件求解平面汇交力系的平衡问题。

2、能正确地将力沿坐标轴分解和求力在坐标轴上的投影。

对合力投影定理应有清晰的理解。

3、能熟练地运用平衡方程求解平面汇交力系的平衡问题。

4、对于力对点的矩应有清晰的理解,并能熟练地计算。

5、深入理解力偶和力偶矩的概念。

明确平面力偶的性质和平面力偶的等效条件。

6、掌握平面力偶系的合成方法,能应用平衡条件求解力偶系的平衡问题。

二、重点、难点1、 力在坐标轴上的投影,合力投影定理,平面汇交力系的平衡条件及求解平衡问题的解析法。

2、 力对点之矩的计算,力偶矩的概念,平面力偶性质和力偶等效条件。

三、学习指导平面汇交力系合成的结果是一个合力,合力作用线通过力系的汇交点,合力的大小和方向等于力系的矢量和,即∑==+⋅⋅⋅⋅⋅⋅++=ni i n F F F F R 121或简化为∑=F R上式是平面矢量方程,只可以求解两个未知数。

每一个力都有大小和方向两个要素(因为力的汇交点是已知的),因此,方程中只能有两个要素是未知的。

矢量方程的解法有:几何法和解析法。

只有力沿直角坐标轴分解的平行四边形才是矩形。

力在轴上投影的大小等于分力的大小,投影的正负表示分力沿坐标轴的方向。

平面汇交力系平衡的必要和充分条件是力系的合力为零。

即∑R=F这个平面的矢量方程可解两个未知数,解法有几何法和解析法。

(1)平衡的几何条件:平面汇交力系的力多边形封闭。

(2)平衡的解析条件:平面汇交力系的各分力在两个坐标轴上投影的代数和分别等于零即:∑=0YX;∑=0对于平衡方程,和平面汇交力系合成与分解的解析法一样,一般也选直角坐标系。

但在特殊情况下,有时选两个相交的相互不垂直的坐标轴,可使问题的求解简化。

这是因为平衡时合力恒等于零,合力在任一坐标轴的投影也恒等于零,所以,不一定局限在直角坐标系。

合力投影定理与合力矩定理是结构静力计算经常要用到的两个定理。

第2章平面汇交力系与平面力偶系

第2章平面汇交力系与平面力偶系
FBA
FBC
FAB
A
' F' FBA BC
B B
B
P
C
F2 F1
C
FCB
解:
y
FBA F2
600
300
(1) 取滑轮为研究对象,将其视为 一个几何点。受力如图所示。
其中 F1= F2 =P = 20 kN (2)选取图示坐标系。列方程
B
FBC
F1
x
X 0, Y 0,
FBA F1cos600 F2cos300 0 FBC F1cos300 F2cos600 0
解:(1)取碾子为研究对 象。 画受力图。
F
F
O B
O B
FB
P
P
A FA
A
(2)根据力系平衡的几何条件,作封闭的力多边形。
按比例,先画已知力,各力矢首位相接。
FB
a.从图中按比例量得
FA=11.4 kN , FB=10 kN 5 kN
FA
0

P
b.也可由几何关系计算
Rh cos 0.866 R
即:若作用在刚体上 {F1 , F2 ,, Fn } {FR }
则:
M O ( FR ) MO (Fi )
i 1
n
在古代,人们没有大型的 起重工具,只能依靠人力和畜力 。在建造宏伟的建筑物时,为了 将巨大的石柱竖立起来,可能采 用了右图所示的方法。其中起关 键作用的是用木材作成的 A 字形 支架。试从力学角度说明采用此 项措施的必要性。
P
解: 取梁为研究对象。 画受力图。
注意:这里所设力 FA 的方向与 实际方向相反。
解:取横梁为研究对象。画受力图。 建立图示直角坐标系。 由平面汇交力系的平衡条件列方程

理论力学第二章平面汇交力系与平面力偶系

理论力学第二章平面汇交力系与平面力偶系
FR FRx 2 FRy 2
合力作用点:为该力系的汇交点
2-2 平面汇交力系合成与平衡的解析法
(2)平面汇交力系平衡的充要条件: 各力在两个坐标轴上投影的代数和分别等于零。 ——平面汇交力系的平衡方程
X0,
Y
i 1
n
i
0
只可求解两个未知量
[ 例1 ] 系统如图,不计杆、轮自重,忽略滑轮大小, 已知: P=20kN; 求:系统平衡时,杆AB、BC受力。
解:AB、BC杆为二力杆,
取滑轮B(或点B),画受力图。 用解析法,建图示坐标系
Fix 0
FBA F1 cos 60 F2 cos 30 0

Fiy 0
FBC F1 cos 30 F2 cos 60 0
F1 F2 P
解得: FBC
27.32kN
②应用合力矩定理
mO ( F ) Fx l F y l ctg

m o (Q ) Q l
[例P28 2-4,习题P38 2-10]

[例2]水平梁AB受按三角型分布的载荷作用,如图所示。 载荷的最大值为q,梁长l ,试求合力作用线的位置。
解:在距A端x 的微段dx上, 作用力的大小为q’dx,其中 q’ 为该处的载荷强度。由图可知 ,q’=xq/l。,因此分布载荷合 力的大小为: l
2-2 平面汇交力系合成与平衡的解析法
二、平面汇交力系合成的解析法:
各分力在x轴和在y轴投影的代数 和 等于合力在对应轴上的投影。
FR x X 1 X 2 X 4
X
FR y Y1 Y2 Y3 Y4

Y

i
i

第2章:平面汇交力系

第2章:平面汇交力系

A B
30°
30°
C
P
a
y
SAB B
x
30°
SBC Q 30° P
b
解:
1. 取滑轮B 轴销作为研究对象。
2. 画出受力图(b)。
§2–4 共点力系合成与平衡的解析法
3. 列出平衡方程:
y
Fx 0 SBCcon 30 SAB Qsin 30 0 Fy 0 SBCcos 60 P Q cos 30 0
FB
A
α
x
a
b
x
§2–3 力的投影.力沿坐标轴的分解
Fx F cos Fy F cos Fz F cos
F Fx2 Fy2 Fz2
cos Fx
F
cos Fy
F
cos Fz
F
§2–3 力的投影.力沿坐标轴的分解
二、力在平面上的投影:
由力矢F 的始端A 和末端B向投影平面oxy引
SAB B
30°
x
4. 联立求解,得
SAB 54.5kN
SBC Q 30° P
b
SBC 74.5kN
反力SAB 为负值,说明该力实际指向与图上假
定指向相反。即杆AB 实际上受拉力。
§2–4 共点力系合成与平衡的解析法
例题 2-4-3 如图所示,用
起重机吊起重物。起重杆的A
端用球铰链固定在地面上,
证明:
以三个力组成的共点力系为例。设有三个共点力
F1、F2、F3 如图。
F1 A
ห้องสมุดไป่ตู้F2 F3
F1 A
B F2 C
R D F3
x
(a)
(b)
§2–4 共点力系合成与平衡的解析法

第2章 平面汇交力系与平面力偶理论

第2章 平面汇交力系与平面力偶理论
且在同一平面内,由平面力偶系的合成理论.其合力偶矩为
式中,负号表示合力偶的转向为顺时针方向转动。
欲求作用在A、B处的水平力,应以工件为研究对象,受力分析如图 2—13所示,由于工件在水平面内受四个力偶和两个螺栓的水平反力 的作用下而平衡。因为力偶只能与力偶平衡,故两个螺栓的水平反 力N一和jv”必然组成一个力偶。由平面力偶系的平衡方程
二、平面汇交力系合成与平衡的解析法
根据合力投影定理,可计算出合力R的投影Rx和Ry
合力R与x轴正向间的夹角为
平面汇交力系平衡的充要条件是该力系的合力R等于0,则有
上式成立,必须同时满足
平面汇交力系解析法平衡的必要与充分条件是:力系中所有 各力在两个坐标轴上投影的代数和分别等于零。
例2-2 图2-5(a)所示圆柱体A重Q,在中心上系着两条绳AB和 AC,并分别经过滑轮B和C,两端分别挂重为P和2P的重物,试 求平衡时绳AC和水平线所构成的角α及D处的约束反力。 解 选圆柱为研究对象,取分离体画受
(2)作用在同一平面内的两个力偶,只要它的力偶矩的大 小相等、转向相同,则该两个力偶彼此等效。这就是平面力 偶的等效定理。
定理的推论
(1)力偶可以在其作用面内任意移动,而不影响它对 刚体的作用效应。 (2)只要保持力偶矩大小和转向不变,可以任意改变 力偶中力的大小和相应力偶臂的长短。而不改变它 对刚体的作用效应 上述推论表明,在研究同一平面内有关力偶问题时, 只需考虑力偶矩的代数值,而不必研究其中力的大 小和力偶臂的长短。
从而解得
所以
例 图a 所示结构中,各构件自重不计。在构件AB 上作用1力 偶矩为M 的力偶,求支座A 和C 的约束力。
解(1)BC为二力杆: F c= −F B(图c) (2)研究对象AB,受力如图b 所示, F AFB' 构成力偶, 则

静力学第二章平面汇交力系与力偶系

静力学第二章平面汇交力系与力偶系

请思考:力矩和力偶矩的异同?
力偶矩:度量力偶对物体转动效应 的量。记作:M(F, F′)或M
A
F C d F′
M Fd
力偶矩正负号规定:
逆时针转动为正,反之为负
B
力偶矩正负号意义:表示力偶转向
请思考:平面(内)力偶等效的条件?
力偶矩大小相等、转动方向相同
平面力偶的性质
性质1 : 力偶无合力,即FR=0
第二章 平面汇交力系与平面力偶系
本章重点:
1、平面汇交力系(几何法、解析法)
2、力偶的概念
3、平面力偶系
§2-1 平面汇交力系
汇交力系:所有力的作用线
汇交于一点的力系。
共点力系:所有力的作用点为同一点的力系。
平面汇交力系合成—几何法
力多边形
平面汇交力系平衡—几何法
平衡几何条件:汇交力系的力多边形自行封闭。
平面力偶系的简化结果: Mo
平面力偶系的平衡条件:Mo = 0
平衡方程:
M
0
例5 图中M, r 均为已知, 且 l=2r, 各杆自重不计。
求:C 处的约束力。
解:取 BDC 为研究对象
作出受力图 由力偶理论,知 FB = FC M 0
2 2 FB r FB 2r M 0 2 2 注意:计算(FB,FC )的力偶矩
性质2 : 力偶作用效应只与力偶矩有关 性质3 : 力偶只能与力偶矩相等的另一力偶等效 性质4 : 力偶对其作用面上任一点的矩等于力偶矩
F

F

F
F´ F/2
(d)
F´/ 2
只要保持力偶矩不变,力偶必等效
F

M
M
M

理论力学第二章平面汇交力系与平面力偶系思维导图

理论力学第二章平面汇交力系与平面力偶系思维导图

①掌握力偶、力偶矩的基本概念及其力偶的基本性质。

力沿坐标轴的分力是一矢量,其合力和分力之间应满足力的平行四边形规则。

一般情况下,力在坐标轴上投
影的大小不等于力沿坐标轴分解的分力的大小。

只有当α(由平行四边形面积表达式证出)平面力对点之矩简称力矩,是一代数量,其绝对值等于力的大小与力臂的乘
积,正负号表示力矩的转向,一般以逆时针转向为正,反之为负
平面力对点之矩还可应用合力矩定理求解。

特别是在力臂计算不方便时,若将其分解
为两个正交分力并用合力矩定理计算则较方便,注意表达中的负号。

由等值、反向、不共线的两个平行力组成的力系效应用力偶矩来度量。

力偶没有合力,力偶只能用力偶来平衡力偶力偶矩
在平面问题中,力偶矩是一个代数量,其绝对值等于力的大小与力偶臂的乘积
解析法根据合力投影定理求出合力在
合力的大小和方向余弦
平衡的几何条件:力多边形自行封闭
平衡的解析条件:力系中各分力在两个坐标轴上的投影的代数和分
别等于零
平面力偶系可合成为一个力偶,称为合力偶。

合力偶矩等于各分力偶矩的代数和
(注意区分转向,即正负号)
平面力偶系平衡的充分和必要条件是:所有各分力偶矩的代数和等于零。

山东大学《理论力学》教案第2章 平面汇交力系与平面力偶系

山东大学《理论力学》教案第2章  平面汇交力系与平面力偶系

第2章 平面汇交力系与平面力偶系一、目的要求1.平面汇交力系(多个力)合成与平衡的几何法,并能应用平衡的几何条件求解平面汇交力系的平衡问题。

2.能正确地将力沿坐标轴分解和求力在坐标轴上的投影,对合力投影定理有清晰的理解,掌握汇交力系合成的解析法和平衡方程,并能熟练的应用平衡方程求解汇交力系的平衡问题。

3. 理解力对点之矩的概念,并能熟练地计算。

4.深入理解力偶和力偶矩的概念,明确平面力偶的性质和平面力偶的等效条件。

二、基本内容1.平面汇交力系合成的几何法·力多边形法则平面汇交力系可合成为通过汇交点的合力,其大小和方向等于各分力的矢量和。

即∑==+++=n i i 11F F F F F n 2R 或 ∑=F F R合力R F 的大小和方向可用力三角形法则或力多边形法则得到。

作出图示首尾相接的开口的力多边形,封闭边矢量即所求的合力。

2.平面汇交力系平衡的几何条件平面汇交力系平衡的必要和充分条件是:力系的合力等于零。

其矢量表达式为∑==0F F R (2-2) 力系平衡的几何条件是:力系的力多边形自行封闭。

如图2-4所示。

3.力在正交坐标轴系的投影与力的解析表达式力F 在y x ,轴上的投影分别为cos cos sin x y F F F F F αβα=⎫⎪⎬==⎪⎭力的投影是代数量。

4.平面汇交力系合成的解析法合力投影定理:合力在某轴上的投影等于各分力在同一轴上投影的代数和。

平面汇交力系平衡的必要和充分条件是:各力在两个坐标轴上的投影的代数和分别为零。

即00x y F F ⎫=⎪⎬=⎪⎭∑∑ 两个独立的平衡方程,可解两个未知量。

5.平面内的力对点O 之矩是代数量,记为M o (F )ABO Fh M o ∆±=±=2)(F其中F 为力的大小,h 为力臂,∆ABO 为力矢AB 与矩心O 组成三角形的面积。

一般以逆时针转向为正,反之为负。

力矩的解析表达式为: 合力矩定理: 6.力偶和力偶矩:·大小相等,方向相反,作用线平行的两个力称为力偶。

第2章 平面汇交力系与平面力偶系

第2章 平面汇交力系与平面力偶系

离d称为该力偶的力偶臂。
力偶的作用面:力偶所在的平面称为力偶的作用面。
力偶矩:力偶中一个力的大小与力偶臂的乘积,并 取以正负号,称为该力偶的力偶矩。
表示为: m
m Fd 2S ABC
31
§2.3 平面力偶系
2.力偶的基本特性 不能合成一个合力,本身不能平衡,也不能被一个 力平衡,它只能由力偶来平衡。 对物体只能产生转动效应,不能产生移动效应,即 只能原地转动。 组成力偶的两个力对其作用面内任一点的矩的代数 和恒等于该力偶的力偶矩。
D
6cm
DE=6 cm点E在铅直线DA上
,又B ,C ,D都是光滑铰
(a)
链,机构的自重不计。
7
§2.1 平面汇交力系的合成与平衡的几何法
例 题 2-1
解: 几何法
AF
1.取制动蹬ABD作为研究对象, 并画出受力图。
BE
O
FD
FB
D
(b)
I
F
FD
J
FB
K
(c)
2.作出相应的力多边形。
3. 由图b几何关系得:
15
§2.2 平面汇交力系的合成与平衡的解析法 1.力在坐标轴上的投影与力沿轴的分解
✓力向坐标轴的投影是代数量 ✓力沿坐标轴方向的分量是矢量
16
§2.2 平面汇交力系的合成与平衡的解析法
2.合成的解析法 合力投影定理:
平面汇交力系的合力在某一轴上的投影等 于各分力在同一轴上投影的代数和。
y
F4 F1
FA=0, 得封闭力三角形abc。
a
FB G
F G tan 11.5 kN
FB
G
cos
23.09
kN

建筑力学第2章平面汇交力系和平面力偶系

建筑力学第2章平面汇交力系和平面力偶系

图 2.14
25
小结
本章主要研究了两种特殊力系———平面汇交 力系、平面力偶系的合成与平衡问题。 (1)平面汇交力系
1)平面汇交力系的合成 ①几何法:用力的多边形法则求合力。特点是形象 、直观,但不精确。主要用在定性分 析上。 ②代数法:用合力投影定理求合力。这是一种精确 方法,也是常用的方法。
26
7
图 2.2
8
(2)力在平面直角坐标系中的投影 如果把力 F 依次在其作用面内的两个正交轴 x 、y上投影(图 2.3),则有
9
(3)合力投影定理 合力在任一轴上的投影,等于各个分力在同一轴上 的投影的代数和。这就是合力投影定理。
10
图 2.3
图 2.4
11
(4)平面汇交力系合成的代数法假设有一平 面汇交力系作用在刚体上的 O 点,现要求其合力 。为此,首先建立一个合适的平面直角坐标系,为 了简化计算,应让尽量多的力位于坐标轴上。然后 再把每个力进行投影;并利用式(2.4)求出合力 FR在这两个轴上的投影。于是,合力的大小和方 向可由下式确定:
20
图 2.9
图 2.10
21
图 2.11
图 2.12
22
图 2.13
23
2.3.2 平面力偶系的平衡 与平面汇交力系的平衡条件类似,平面力偶系 的平衡条件是:平面力偶系平衡的充分必要 条件是组成力偶系的各力偶的力偶矩的代数和为零 。即
24
2.3.3 平面力偶系平衡方程的应用 求解物体在平面力偶系作用下的平衡问题时, 一定要注意:力偶只能由力偶去平衡。
2
2.1.1 平面汇交力系合成的几何法 我们知道,若平面汇交力系是由两个力组成, 则可用力的平行四边形法则去求它们的合力。若平 面汇交力系是由两个以上的力组成时,只要先求出 任意两个力的合力,再求出这个合力和另一个力的 合力,这样继续下去,最后得出的就是这许多力的 合力。

建筑力学 第二章 平面汇交力系

建筑力学 第二章 平面汇交力系
11
图示三角支架,求两杆所受的力。 例 1 图示三角支架,求两杆所受的力。 解:取B节点为研究对象, 节点为研究对象, 画受力图 建立平衡方程: 由 ∑FY = 0 ,建立平衡方程:
− FNBC sin 30 0 − F = 0
解得: 解得:
FNBA FNBC
FNBC = −2 F = −60 KN
5
力投影的要点: 力投影的要点:
①力平移,力在坐标轴上投影不变; 力平移,力在坐标轴上投影不变; 力垂直于某轴,力在该轴上投影为零; ②力垂直于某轴,力在该轴上投影为零; 力平行于某轴, ③力平行于某轴,力在该轴上投影的绝对 值为力的大小。 值为力的大小。
平面汇交力系的合力在任一轴上的投影, 平面汇交力系的合力在任一轴上的投影, 等于各分力在同一轴上投影的代数和。 等于各分力在同一轴上投影的代数和。即:
合力投影定理: 合力投影定理:
FRX = FX 1 + FX 2 + ⋅⋅⋅ + FXn = ∑ FXi FRY = FY 1 + FY 2 + ⋅⋅⋅ + FYn = ∑ FYi
6
平面平行力系:各力作用线平行的力系。 平面平行力系:各力作用线平行的力系。
平面一般力系:除了平面汇交力系、平面力偶系、 平面一般力系:除了平面汇交力系、平面力偶系、 平面平行力系之外的平面力系。 平面平行力系之外的平面力系。
解: 轴销作为研究对象,画出其受力图。 1. 取滑轮B 的轴销作为研究对象,画出其受力图。
13
2、列出平衡方程: 列出平衡方程: 建立平衡方程: 由 ∑FY = 0 ,建立平衡方程:
解得: 解得: 建立平衡方程: 由 ∑FX = 0 ,建立平衡方程: 解得: 解得: 为负值, 反力FNBA 为负值,说明该力实际指向与图上假定 实际上受拉力。 指向相反。即杆AB 实际上受拉力。 指向相反。

理论力学第二章课后习题答案

理论力学第二章课后习题答案

理论力学第二章课后习题答案·12·理论力系第2章平面汇交力系与平面力偶系一、是非题(恰当的在括号内踢“√”、错误的踢“×”)1.力在两同向平行轴上投影一定相等,两平行相等的力在同一轴上的投影一定相等。

2.用解析法求平面呈报力系的合力时,若挑选出相同的直角坐标轴,其税金的合力一定相同。

(√)3.在平面汇交力系的平衡方程中,两个投影轴一定要互相垂直。

(×)4.在维持力偶矩大小、转为维持不变的条件下,可以将例如图2.18(a)右图d处为平面力偶m移至例如图2.18(b)所示e处,而不改变整个结构的受力状态。

(×)(a)图2.185.如图2.19所示四连杆机构在力偶m1m2的作用下系统能保持平衡。

6.例如图2.20右图皮带传动,若仅就是包角发生变化,而其他条件均维持维持不变时,并使拎轮旋转的力矩不能发生改变。

(√图2.19图2.201.平面呈报力系的均衡的充要条件就是利用它们可以解言的约束反力。

2.三个力汇交于一点,但不共面,这三个力3.例如图2.21右图,杆ab蔡国用数等,在五个力促进作用下处在平衡状态。

则促进作用于点b的四个力的合力fr=f,方向沿4.如图2.22所示结构中,力p对点o的矩为plsin。

5.平面呈报力系中作力多边形的矢量规则为:各分力的矢量沿着环绕着力多边形边界的某一方向首尾相接,而合力矢量沿力多边形半封闭边的方向,由第一个分力的起点指向最后一个分力的终第面汇交力系与平面力偶图2.21图2.226.在直角坐标系中,力对坐标轴的投影与力沿坐标轴分解的分力的大小但在非直角坐标系中,力对坐标轴的投影与力沿坐标轴分解的分力的大小不相等。

1.例如图2.23右图的各图为平面呈报力系所作的力多边形,下面观点恰当的就是(c)。

(a)图(a)和图(b)就是平衡力系则(b)图(b)和图(c)就是平衡力系则(c)图(a)和图(c)就是平衡力系则(d)图(c)和图(d)就是平衡力系则f2f2f1(a)(b)(c)2.关于某一个力、分力与投影下面说法正确的是(b)。

第二章 平面汇交力系与平面力偶系

第二章 平面汇交力系与平面力偶系
第二章 平面汇交力系和平面力偶系
1
引 言
力系 平面力系
空间力系
平面力系 ①平面汇交力系 ②平面平行力系 ③平面一般力系/平面任意力系
平面汇交力系:各力的作用线都在同一平面内且 汇交于一点的力系。 平面平行力系: 各力的作用线都在同一平面内且相互平行的力系。 平面力偶系是其中的一种特殊情况。 平面一般力系:各力的作用线都在同一平面内但既不 汇交于一点 也 不相互平行的力系。
2
§2-1 平面汇交力系合成与平衡的几何法
一、合成的几何法 1.两个力的合成
力的平行四边形法
力的三角形法
3
2. 多个力的合成 F1+F2 =R12; F1+F2 +F3 =R12 +F3 =R123;
F1
F2 F1 o F4 R12 R R123
F1+F2 +F3 +F4 =R123 +F4 =R

n
mi 0
i 1
26
[例] 在一钻床上水平放置工件,在工件上同时钻四个等直径
的孔,每个钻头的力偶矩为
m 1 m 2 m 3 m 4 15 N m
求工件的总切削力偶矩和A 、B端水平反力? 解: 各力偶的合力偶距为
M m1 m 2 m 3 m 4 4 ( 15 ) 60 N m
m 2 F2 d 2
合力矩
M R A d ( P1 P2' ) d P1 d P2' d m 1 m 2
25
结论:
M m1 m 2 m n m i
i 1
n
平面力偶系合成结果还是一个力偶,其力偶矩为各力偶矩 的代数和。 平面力偶系平衡的充要条件是:所有各力偶矩的代数和 等于零。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
B A 45° 90° F1 30° 60° F2
C
D
19
§2–1 平面汇交力系
解题技巧及说明:
1、一般地,对于只受三个共面力作用的物体,且角
度特殊时用几何法(解力三角形)比较简便。
2、一般对于受多个力作用的物体,且角度不特殊或
特殊,都用解析法。 3、投影轴常选择与未知力垂直,最好使每个方程中
只有一个未知数。

F
力多边形
FR
即:汇交力系各分力的矢量和。
几何意义:汇交力系的合力为力多边形的封闭边。
6
§2–1 平面汇交力系
1、平面汇交力系合成的几何法、力多边形法则
平面汇交力系(F1,F2, F3,F4,F5,)的力 多边形如图所示,则该力系的合力FR等于( A.F3 B.-F3
而与矩心的位置无关。
mO (F ) mO (F )
F ( x h ) F ' x Fh
h
由于O点是任取的
m F h
+

§2–1 平面力对点之矩 平面力偶
4、同平面内力偶的等效定理
定理:作用在同一平面内的两个力偶,只要它的力偶矩的 大小相等,转向相同,则该两个力偶彼此等效。
M
O
( F ) F d
说明:
+
23
§2–1 平面力对点之矩 平面力偶
说明:

M
O
B F
M O (F )
( F ) 是代数量。
r
② F↑, h↑转动效应明显。
O
A
h
M ③ 当F = 0或h = 0时, O ( F ) = 0。
④ 几何意义:2倍⊿OAB面积。
24
§2–1 平面力对点之矩 平面力偶
§2–1 平面力对点之矩 平面力偶 (1)平面力偶系的合成 结论:
M M1 M
2 n
M
n


i 1
M
i
平面力偶系合成结果还是一个力偶,其力偶矩为各力
偶矩的代数和。 (2)平面力偶系的平衡条件 平面力偶系平衡的充要条件是:所有各力偶矩的代
数和等于零。

M
i 1
n
i
0
43
§2–1 平面力对点之矩 平面力偶
38
M O R
P
关于力偶性质的推论
试确定图示结构A、O处约束力的方向
FA
A B C
§2–1 平面力对点之矩 平面力偶
m
FO
D O O E D E
FO
39
§2–1 平面力对点之矩 平面力偶
5、平面力偶系的合成和平衡条件
平面力偶系 作用在物体同一平面的一群力偶
合力偶: 与一平面力偶系作用等效的力偶。
2、合力矩定理与力矩的解析表达式
合力矩定理
平面汇交力系的合力
Fi r
O
FR
F2
A
对平面内任一点的矩,等
于所有各分力对同一点的
F1
矩的代数和,即:
M O ( FR )
Fn

i 1
n
M O ( Fi )
注:任意力系均成立
25
§2–1 平面力对点之矩 平面力偶
2、合力矩定理与力矩的解析表达式 力矩的解析表达式
两个推论:
② 只要保持力偶矩大小和转向不变,可以任意改 变力偶中力的大小和相应力偶臂的长短,而不改变 它对刚体的作用效应。
§2–1 平面力对点之矩 平面力偶
F

F/2
F´/ 2
M
36
§2–1 平面力对点之矩 平面力偶 力与力偶的比较
P
C
P
C
P
C
F
C
P′
F′
37
§2–1 平面力对点之矩 平面力偶 [ 讨论 ] 从力偶的性质知,力偶 无合力,故一个力不能与 力偶平衡。为什么图示的 轮子上作用的力偶矩M = PR的力偶能与重物的重 力P相平衡?
FR ( Fix ) ( F iy )
2 2
0

Fx 0 Fy 0
各分力在任一轴上投 影的代数和等于零。
16
§2–1 平面汇交力系
例 题
A D
60o
B
已知:G =20 kN,
求:平衡时杆AB和BC
30o
所受的力。
G
C
17
§2–1 平面汇交力系
例 题
A D
60o
解:
力多边形自行封闭
8
§2–1 平面汇交力系
例 题 1
支架的横梁AB与斜杆DC彼此
以铰链C连接,并各以铰链A 、 D连接于铅直墙上,如图所示。 已知杆AC=CB;杆DC与水平线 成 45o 角 ; 铅 直 载 荷 F=10kN ,
A 45o C B F
作用于B处。设梁和杆的重量忽
略不计,求铰链A的约束力和杆 DC所受的力。

平面汇交力系 空间汇交力系
3
§2–1 平面汇交力系
1、平面汇交力系合成的几何法、力多边形法则
力的平行四边形法
F12
F1 F2
力的三角形法
F2 F1
F123
A
F2 F1 F4 F3 F4 F3
FR
F1
F12 F123 F4 FR
20
§2–1 平面汇交力系
4、对力的方向判定不准的,一般用解析法。 5、解析法解题时,力的指向可以任意设,如果求
出负值,说明力的指向与假设相反。对于二力构件,
一般先设为拉力,如果求出负值,说明物体受压力。
21
第2章
平面力系
§2–1 平面力对点之矩 平面力偶
1、力对点之矩(力矩)
F
22
§2–1 平面力对点之矩 平面力偶 1、力对点之矩(力矩) 力对物体转动效应的度量。
M O ( F ) M O ( Fy ) M O ( Fx ) x F sin y F cos x Fy y Fx
y Fy A

F Fx x
A(x,y)
O
合力矩的解析表达式
M O ( FR )
(x F
i i 1
n
yi
yi Fxi )
新力偶矩
又 M1 P d 1
M2 P d 2
'
F P P 1 2
F '= P1 '–P2'
'
M F d ( P P2 )d F1d F2 d M1 M 2 1
41
§2–1 平面力对点之矩 平面力偶
5、平面力偶系的合成和平衡条件
(1)平面力偶系的合成
42
3、平面汇交力系合成的解析法 (1)力在坐标轴上的投影 Fx=F· : cos
Fy
Fy=F· =F · sin cos
F Fx F y
2 2
Fx
cos Fx F
cos
Fy F
13
§2–1 平面汇交力系
(2)合力投影定理
F4y F Ry F3y F2y F1y
FRx F4x
FC
F FC FA
d
11
FA =22.4kN
FC =28.3kN
b
§2–1 平面汇交力系
几何法解题步骤:1. 取研究对象;2. 画受力图; 3. 选比例尺; 5. 解出未知数。 4.作力多边形;
几何法解题不足: 1. 作图要求精度高;
2. 量取数据误差较大;
3. 计算较繁。
12
§2–1 平面汇交力系
F3F 2
F3
力的多边形法
FR
FR
F4
4
§2–1 平面汇交力系
1、平面汇交力系合成的几何法、力多边形法则
5
§2–1 平面汇交力系
1、平面汇交力系合成的几何法、力多边形法则 结论: 即:
F R F1 F 2 F3 F 4
FR
F2 F1 F3 F4
40
§2–1 平面力对点之矩 平面力偶
5、平面力偶系的合成和平衡条件
(1)平面力偶系的合成
F2
F1 推论1 P2 A 推论2 P1 F1´ P2´ d P1´ B F´=P1´ -P2´ F F=P1-P2
设有两个力偶

d
d1
F2´
因为 M1 F1d1 ; 所以: M 2 F2 d 2
F1 F2 F4 F5 F3
)。
C.F2
D.-F2
答案: B
7
§2–1 平面汇交力系 2、平面汇交力系平衡的几何条件 平面汇交力系平衡的充要条件是:
F2 F1 F3
FR

F 0
平面汇交力系平衡的必要与充 分的几何条件是:
F5 FR
F4
F5 F R
D
9
§2–1 平面汇交力系
例 题 1
解:
1. 取AB梁为研究对象;
2. 画AB梁的受力图:
E
A 45o C B F
FA
A
F

C 45o
B
D
二力杆
FC
10
§2–1 平面汇交力系
例 题 1
3. 作封闭的力多边形:
5 kN
d A E
FA
F

C 45o
B
FA
a
封闭力三角形也 可如下图所示。
a
FC

F
45o b
相关文档
最新文档