2013年全国高考理科数学试题分类汇编4:数列
2013年全国高考理科数学试题分类汇编4:数列Word版含答案
2013 年全国高考理科数学试题分类汇编 4:数列一、选择题1 .( 2013 年高考上海卷(理) ) 在数列 { a n } 中, a n 2n1, 若一个 7 行 12 列的矩阵的第 i行第 j 列的元素 aa a j a a j ,( i 1,2, ,7; j 1,2, ,12 ) 则该矩阵元素能取到 i,j i i 的不同数值的个数为( ) (A)18 (B)28 (C)48 (D)63【答案】 A.2 .( 2013 年普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对) ) 已知数列 a n 满足 3a n 1 a n 0, a 2 4 的前10, 则 a n 项和等于 3 (A) 6 1 3 10 (B) 1 1 3 10 (C) 3 1 3 10 (D) 3 1+3 10 9【答案】 C3 .( 2013 年高考新课标1(理)) 设 A n B n C n 的三边长分别为 a n , b n , c n , A n B n C n 的面积为 S n , n 1,2,3, , 若 b 1 c 1,b 1 c 1 2a 1 , a n 1 a n , b n 1cn an, c n 1 b n a n , 则 ( )2 2 A.{ Sn} 为递减数列B.{ Sn} 为递增数列C.{ S2n-1 } 为递增数列 ,{ S2n} 为递减数列D.{ S2n-1 } 为递减数列 ,{ S2n} 为递增数列【答案】 B4 .( 2013 年普通高等学校招生统一考试安徽数学(理)试题(纯WORD 版))函数y=f (x) 的图 像如图所示 , 在区间a,b 上可找到 n(n 2) 个不同的数 x 1,x 2 ...,x n , 使得 f (x 1 ) f (x 2 ) f (x n )则 n 的取值范围是x 1 = = ,x 2 x n(A) 3,4 (B) 2,3,4 (C) 3,4,5 (D) 2,3【答案】 B5 .( 2013 年普通高等学校招生统一考试福建数学(理)试题(纯 WORD版))已知等比数列{ a n }第 1 页共 19 页的公比为q, 记 b n a m( n 1) 1 a m( n 1) 2 ... a m (n 1) m ,cn am(n 1) 1 am( n 1) 2 ... am (n1) m (m, n N * ), 则以下结论一定正确的是 ( ) A. 数列 {b n } 为等差数列 , 公差为 q mB. 数列 { b n } 为等比数列 , 公比为 q 2mC.数列 { c n }为等比数列, 公比为 q m2D. 数列 { c n } 为等比数列 , 公比为 q mm【答案】 C6 (. 2013 年普通高等学校招生统一考试新课标Ⅱ 卷数学(理)(纯 WORD 版含答案))等比数列 a n 的前 n 项和为 S n , 已知 S 3a 2 10a 1 , a 5 9 , 则 a 1 1 (B) 1 1 1(A) 3 (C) (D)3 9 9 【答案】 C7 (. 2013 年高考新课标 1(理))设等差数列 a n 的前 n 项和为 S n , S m 1 2, S m 0,S m 1 3 , 则 m ( )A.3B.4C.5D.6【答案】 C8 .( 2013 年普通高等学校招生统一考试辽宁数学 (理)试题( WORD 版))d 0 下面是关于公差的等差数列a n 的四个命题 : p 1 : 数列 a n 是递增数列; p 2 : 数列 na n 是递增数列; p 3 : 数列a n 是递增数列;p 4 : 数列 a n 3nd 是递增数列; n 其中的真命题为(A)p 1, p 2 (B) p 3 , p 4 (C) p 2 , p 3 (D) p 1, p 4 【答案】 D9 .( 2013 年高考江西卷(理) ) 等比数列 x,3x+3,6x+6,.. 的第四项等于A.-24B.C.12D.240 【答案】 A 二、填空题10.( 2013 年高考四川卷(理))在等差数列 { a n } 中 , a2a18 , 且 a4为 a2和 a3的等比中项 ,求数列 { a n} 的首项、公差及前n 项和 .【答案】解 : 设该数列公差为 d , 前 n 项和为s n . 由已知 , 可得第2 页共 19 页2a 1 2d 8, a 1 3d2a 1 d a 1 8d .所以 a 1 d 4,d d 3a 10 ,解得a 14,d 0 , 或 a 1 1,d 3 , 即数列a n 的首相为 4, 公差为 0, 或首相为 1,公差为 3.所以数列的前 n项和 s4n 或s n 3n 2 nn 211(. 2013 年普通高等学校招生统一考试新课标Ⅱ 卷数学(理)(纯 WORD 版含答案))等差数列 an 的前 n 项和为 S , 已知 S0, S 25 , 则 nS 的最小值为 ________. n 10 15 n 【答案】49 12.( 2013 年高考湖北卷(理) ) 古希腊毕达哥拉斯学派的数学家研究过各种多边形数. 如三角 形 数 1,3,6,10,, 第 n 个 三 角 形 数为n n11 n2 1n . 记 第 n 个k 边 形 数为2 2 2 N n,k k3 , 以下列出了部分 k 边形数中第 n 个数的表达式 : 三角形数N n,3 1 n 2 1 n2 2 正方形数N n,4 n 2 五边形数N n,5 3 n 2 1 n 2 2 六边形数N n,6 2n 2 n可以推测 N n,k 的表达式 , 由此计算 N 10,24 ___________.选考题【答案】 100013.( 2013 年普通高等学校招生全国统一招生考试江苏卷(数学) (已校对纯 WORD 版含附加题) )在正项等比数列{ an } 中 , a5 12 ,a6a7 3, 则满足a1 a2an a1a2an的最大正整数n 的值为_____________.【答案】1214.( 2013 年高考湖南卷(理))设Sn 为数列an的前n 项和 , Sn( 1)nan12n,nN , 则(1) a3 _____;(2)S1S2 S100___________.【答案】1 ; 1( 110016 3 21)第3 页共19页15.( 2013 年普通高等学校招生统一考试福建数学 (理) 试题(纯 WORD版))当 x R, x1时 ,有如下表达式 : 1x x 2 ... x n... 1 1 .x 1 1 1 1 1 1 两边同时积分得 :21dx 2 xdx 2 x 2dx ... 2 x n dx ... 2 dx. 0 0 0 00 1 x从而得到如下等式 : 11 1 ( 1 )21 ( 1 ) 3 ... 1 ( 1 )n1 ... ln 2.2 2 23 2 n 1 2 请根据以下材料所蕴含的数学思想方法, 计算 :0 11 1 1 2 1 2 1 3 1 n 1 n1 C n2 2C n( 2 )3 C n ( 2 ) ... n 1C n ( 2)_____ 【答案】 n 1 [( 3 ) n 1 1]1 216.( 2013 年普通高等学校招生统一考试重庆数学(理)试题(含答案)) 已知a n 是等差数 列, a 1 1, 公差 d0 , S n 为其前 n 项和 , 若 a 1 , a 2 , a 5 成等比数列 , 则S 8 _____【答案】6417.( 2013 年上海市春季高考数学试卷( 含答案 ) )若等差数列的前 6 项和为 23, 前 9 项和为57, 则数列的前 n 项和 S n =__________.【答案】 5 n 27 n6 618.( 2013 年普通高等学校招生统一考试广东省数学(理)卷(纯 WORD 版))在等差数列 an 中 , 已知 a 3 a 8 10 , 则 3a5 a 7 _____. 【答案】2019.( 2013 年高考陕西卷(理) )观察下列等式 :12 112 2 2 3 122232 61222324210照此规律 ,2- 2232-n-1n2 (- 1) n 1第 n 个等式可为___1( -1)2n(n 1)____.【答案】2- 2232-n-1n2( -1)n1n(n 1) 1 ( -1)220.( 2013 年高考新课标1(理))若数列 { a n } 的前 n项和为 Sn=2a n1, 则数列 {a n } 的通项3 3第 4 页共 19 页公式是 a n =______.【答案】 a n = ( 2)n 1 .21.( 2013年普通高等学校招生统一考试安徽数学(理)试题(纯WORD 版))如图 , 互不 - 相同的点 A1 , A2, X n , 和 B1, B2, B n , 分别在角 O的两条边上 , 所有 A n B n相互平行 , 且所有梯形 A n B n B n 1 A n 1的面积均相等 . 设 OA n a n . 若 a11, a22, 则数列a n的通项公式是_________.【答案】 a n3n 2, n N *22.( 2013 年高考北京卷(理))若等比数列 { an} 满足a2+a4=20, a3+a5=40, 则公比q=_______;前n 项和 Sn=___________.【答案】 2, 2n 1 223.( 2013 年普通高等学校招生统一考试辽宁数学(理)试题( WORD版))已知等比数列a n是递增数列 , S n是a n 的前 n 项和 , 若 a1,a3是方程 x25x 4 0 的两个根 , 则S6____________. 【答案】63三、解答题24.( 2013 年普通高等学校招生统一考试安徽数学(理)试题(纯WORD版))设函数f n (x) 1 x x2x2x n n) , 证明 : 22 2n2(x R, n N3( Ⅰ) 对每个 n N n , 存在唯一的x n[ 2,1] , 满足 f n( x n )0 ;31( Ⅱ ) 对任N n , 由 ( Ⅰ ) 中x n构成的数列x n满足0 x n x n p .意pn【答案】解: ( Ⅰ) n 2 3 4 n当 x 0时,y x 2是单调递增的f n( x) 1 x x 2 x2x2x 2是 x的n 2 3 4n第 5 页共 19 页单调递增函数 , 也是 n 的单调递增函数 .且 f n (0) 1 0, f n (1) 1 1 0 . 存在唯一 x n (0,1], 满足 f n( x n ) 0,且1 x 1 x 2 x 3 x n 0 当 x (0,1).时, f n ( x) 1 xx 2 x 3 x 4x n1 x2 1 x n 1 x x 2122 22 22 22x 14 1 x4 1 x0 f n ( x n ) 1 x n x n 21 (x n 2)(3x n 2) 0 x n24 1 x n [ ,1]3 综上 , 对每个 n N n , 存在唯一的x n [ 2 ,1] , 满足 f n ( x n ) 0 ;( 证毕 )3( Ⅱ) 由题知1x n x n p 0, f n ( x n ) 1 x n x n 2 x n 3 x n 4 x n n 022 32 42 n 223 4 n n 1 n pf n p ( x n p ) 1 x n p x n p x n p x n px n p x n p x n p 0 22 32 4 2 n 2 (n 1)2 (n p)2上 式 相 减: x n 2 x n 3 x n 4 x n n 2 x n p 3 x n p 4 x n p n x n p n 1 npx n x n x n p x n p22 32 42 n 2 p 22 32 42 n 2 ( n 1) 2 ( n p) 22 23 34 4 n n n1 n px n - x n p ( xn p - xnxn p -xn xn p - xn xn p - xn )( xn p xn p ) 2 2 3 2 4 2 n 2 (n 1) 2 (n p)21 1 1 xn - xn 1 .n n p n pn法二 :第 6 页共 19 页25 .( 2013 年高考上海卷(理)) (3 分 +6 分+9分 ) 给定常数 c0 , 定义函数f ( x) 2 | x c 4 | | x c |, 数列 a1 , a2 ,a3 , 满足 a n 1 f (a n ), n N * .(1) 若 a c 2 , 求 a 及 a ;(2) 求证 : 对任意 nN* , a1a c ,;1 2 3n n(3 ) 是否存在 a1 , 使得 a1 ,a2 ,a n ,成等差数列 ? 若存在 , 求出所有这样的a1 , 若不存在 , 说明理由 .【答案】 :(1) 因为c 0 , a1( c2) , 故 a2 f (a1) 2| a1 c4| |a1 c | 2 ,a3 f (a1) 2| a2 c 4| | a2 c | c 10第 7 页共 19 页(2) 要证明原命题 , 只需证明 f ( x) x c 对任意 x R 都成立 ,f ( x) x c2 | x c 4 | | x c | x c即只需证明2 | x c 4 | | x c | +x c 若 x c 0 , 显然有 2 | x c 4 | | x c | +x c=0 成立 ; 若 x c 0 , 则 2 |xc 4 | |x c | + x c x c 4 x c 显然成立 综上 , f ( x) x c 恒成立 , 即对任意的 nN *, a n 1 a n c (3) 由 (2)知, 若 { a n } 为等差数列 ,则公差 d c 0 , 故 n 无限增大时 , 总有 a n 0 此时 ,a n 1 f (a n ) 2(a nc 4)(a n c) a n c 8即 d c 8故a 2f (a 1 ) 2| a 1c 4| | a 1 c | a 1 c 8,即2 | a 1 c 4 | | a 1 c | a 1 c 8 ,当 a c 0 时 , 等式成立 , 且 n 2 时 , a 0 , 此时 { a } 为等差数列 , 满足题意 ; 1 n n 若 a 1 c 0 , 则 |a 1 c 4| 4 a 1 c 8 , 此时 , a 20,a 3 c 8, , a n ( n 2)(c 8) 也满足题意 ; 综上 , 满足题意的 a 1 的取值范围是 [c, ) { c 8}.26.( 2013 年普通高等学校招生全国统一招生考试江苏卷(数学) (已校对纯 WORD 版含附加题) ) 本小题满分10分 . k 个:1, 2, 2 , 3,,3 ,,3 ,4 , k- 1 k -1设 数 列 ( ) , ,( ) , 即 当 a n - -- , ,4 4- 1k - - - - 1 k( k )k ( ) k 11n k k 1k N 时 , a n k , 记 S n a 1 a 2 a n n N , 对2 2 (-1)于 l N , 定义集合 P ln S n 是 a n 的整数倍, n N ,且 1 n l (1) 求集合 P 11 中元素的个数 ; (2) 求集合 P 2000 中元素的个数 .【答案】 本题主要考察集合. 数列的概念与运算 . 计数原理等基础知识 , 考察探究能力及运用 数学归纳法分析解决问题能力及推理论证能力.第 8页 共 19页(1) 解 :由 数列a n 的 定义 得 : a 11 , a 22 , a3 2 , a 43 , a 5 3 , a 6 3 , a 74 , a 8 4 , a 94 , a104 , a 11 5∴ S 1 1 , S 2 1 , S 3 3 , S 4 0 , S 3 , S 6 , S 2 , S 8 2 , S 9 6 , 5 6 7 S10 10 , S 11 5∴ S 1 1 a 1 , S 4 0 a 4 , S 5 1 a 5 , S 6 2 a 6 , S 111 a 11 ∴集合 P 11 中元素的个数为5 (2) 证明 : 用数学归纳法先证 (21) S i ( 2i 1) i i事实上 ,① 当 i 1时 ,Si( 2i 1) S 31 (2 1)3 故原式成立 ② 假设当 i m 时 , 等式成立 , 即(2 1)故原式成立 Sm(2 m 1) m m则: i m 1, 时 ,S( m 1)[ 2( m 1) 1} S ( m 1)( 2m 3} S m(2m 1) ( 2m 1) 2 (2m 2)2 m(2m 1) (2m 1) 2 (2m 2) 2(2m 2 5m 3) ( m 1)( 2m 3)综合①②得 :Si (2 i 1) i (2 i 1) 于是S( i 1)[ 2i 1} Si ( 2i 1} (2i 1) 2 i (2i 1) (2i 1)2 (2i 1)(i 1) 由上可知 : S i ( 2i 1} 是 (2i1) 的倍数 而 a1)( 2i 1} j 2i 1( j 1,2, ,2i 1) , 所以S S j i 1) 是 ( i i (2i 1) j i (2 i 1) ( 2a(i 1)( 2i 1} j ( j 1,2,,2i 1) 的倍数又S( i 1)[2i1}(i1)(2 1)不是2i2 的倍数 ,i而( 2 2)( 1,2, ,2 2) a(i1)(2i1} j i j i所以(22) (2 1)( 1) (22)不是S( i1)( 2i1) j S(i1)(2i1) j i i i j i第 9 页共 19 页a(i 1)( 2 i 1} j ( j 1,2, ,2i 2) 的倍数故当 l i(2i1) 时, 集合 P l 中元素的个数为 1 3 (2i -1) i 2 于是当 li( 2i 1) j (1 j 2i 1)时 , 集合 P l 中元素的个数为 i 2 j 又 2000 31 (2 31 1) 47 故集合 P 2000 中元素的个数为312 47 100827.( 2013 年普通高等学校招生统一考试浙江数学(理)试题(纯WORD 版)) 在公差为 d 的等 差数列 { a n } 中 , 已知 a 1 10 , 且 a 1 ,2a 2 2,5a 3 成等比数列 .(1) 求 d, a n ; (2) 若 d 0 , 求 | a 1 | | a 2 | | a 3 | | a n | . 【答案】 解:( Ⅰ) 由已知得到 :(2 a 2 2) 2 5a a 4(a d 1)2 50(a 2d ) (11 d ) 225(5 d )1 3 1 1 121 22d d2 125 25d d 2 3d 4 0d 4d 1 a n 4n 或 6 a n 11 n ; ( Ⅱ) 由 (1) 知 ,当 d0 时 , a n 11 n , ①当 1 n 11 时 ,a n0 | a 1 | | a 2 | | a 3 | | a n | a 1 a 2a 3a n n(10 11 n)n(21 n)2 2②当 12n 时 ,a n 0 | a 1 | | a 2 | | a 3 | | a n | a 1a 2 a 3 a 11 (a 12 a13 a n ) 2( a 1 a 2 a 3a 11 ) (a 1 a 2 a 3 11(21 11) n(21 n) n 2 21n 220 a n ) 2 2 2 2n(21n),(1 n 11) 所以 , 综上所述 :| a | | a | | a2;| a |n |1 2 3n221n 22012)2,( n28.( 2013 年高考湖北卷(理))已知等比数列a n 满足 :a2a310 , a1a2 a3125 .第 10 页共 19 页(I) 求数列 a n 的通项公式 ;(II) 是否存在正整数 m , 使得 1 1 1 1 ?若存在 , 求 m 的最小值 ; 若不存在 , 说 a 1 a 2a m 明理由 .【答案】 解 :(I) 由已知条件得 :a 2 5 , 又 a 2 q 1 10 , q 1或 3 , 所以数列a n 的通项或 a n 5 3n 2(II) 若 q 1, 1 11 1或 0 , 不存在这样的正整数m ;a 1 a 2 a m 5m 9 , 不存在这样的正整数 m .若 q 3, 1 1 1 9 1 1a 1 a 2 a m 10 31029.( 2013 年普通高等学校招生统一考试山东数学(理)试题(含答案) )设等差数列a 的前 n n 项和为 S n , 且S 44S 2 , a 2 n 2a n 1 .( Ⅰ) 求数列 a n 的通项公式 ;( Ⅱ) 设数列b n 前 n 项和为 T n , 且 T n a n 1 ( 为常数 ).令 c n b 2n (n N * ) . 求数 2n列 c n 的前 n 项和 R n .【答案】 解:( Ⅰ) 设等差数列an的首项为 a1 , 公差为 d ,由 S 44S 2 , a 2n 2a n 1得4a 1 6d 8a 1 4d a 1 (2n 1) 2a 1 2(n 1)d 1 ,解得 , a11,d 2因此an2n 1 ( n N * ) T nn2n 1( Ⅱ) 由题意知 :b n T nT n nn 1所以 n 1 2n22 时 ,2n 1第 11 页 共 19页2n 2 1 n 1故, c n b2n 22n 1 ( n 1)( 4)( n N *)R n 0 ( 1) 0 1 ( 1)1 2 ( 1) 2 3 ( 1) 3 (n 1) ( 1) n 1所以 4 4 4 4 4 ,1R n 0 ( 1)1 1 (1 ) 2 2 (1 )3(n 2) ( 1) n 1 (n 1) ( 1)n则 4 4 4 44 43R n ( 1 )1 ( 1 )2 ( 1 )3 (1 )n1 (n 1) (1 ) n 两式相减得 44 4 4 4 41 (1 )n 1)(1 )n4 4 (n 1 1 4 4 R n 1 3n 1 ) (4 4 n 1整理得9的前 n 项和Rn1 3n 1所以数列数列c n 9 (4 4n 1 ) 30.( 2013 年普通高等学校招生全国统一招生考试江苏卷(数学) (已校对纯 WORD 版含附加题) )本小题满分16 分 . 设 { a } 是首项为 a , 公差为 d 的等差数列 (d 0) , S 是其前 n 项和 . 记 n nb n nS n , n N* , 其中 c 为实数 .n 2 c (1) 若 c 0 , 且 b 1,b 2,b 4 成等比数列 , 证明 : S nk n 2S k ( k,n N * ); (2) 若 { b n } 是等差数列 , 证明 : c 0 . 【答案】 证明 : ∵ { a n } 是首项为 a , 公差为 d 的等差数列 ( d0) , S n 是其前 n 项和∴ S n na n(n 1) d2(1) ∵c 0 ∴b nS nan 1dn 2∵ b1, b2,b4成等比数列∴b2 2 b1b4∴ (a 1 d ) 2 a( a3 d )2 2∴1 ad 1 d 2 0 ∴1 d( a1 d ) 0 ∵ d 0 ∴ a 1 d∴ d 2a 2 4 22 2∴ S n na n(n 1) d na n(n 1) 2a n 2a2 2第 12 页共 19 页∴左边 = S nk (nk) 2 a n 2 k 2 a 右边 = n 2S kn 2 k 2a ∴左边 =右边∴原式成立(2) ∵ { b n } 是等差数列∴设公差为 d 1 , ∴ b n b 1 (n 1) d 1 带入b nnS n 得:n 2 cb 1 (n 1)d 1 nS n 1 d ) n 3 (b 1 d 1 a 1 2 cd 1 n c(d 1 b 1 ) 对n 2c ∴ (d 1 d ) n2 2n N 恒成立d 1 1 d 02 ∴ b 1 d 1 a 1 d 0 2 cd 1 0 c(d 1 b 1 ) 0由①式得 :d 1 1 d ∵ d 0 ∴ d 1 02 由③式得 :c 0法二 : 证 :(1)若 c0 , 则 a n a ( n 1)d , S n n[( n 1)d 2a], b n (n 1)d 2a .2 2 当 b 1, b 2,b 4 成等比数列 ,b 22b 1b 4 ,d 2 3d即:a a a , 得 : d 2 2ad , 又 d 0 , 故 d 2a .2 2 由此 : S nn 2 a , S nk ( nk) 2 a n 2k 2 a , n 2 S k n 2 k 2a . 故: S nkn 2S k ( k, n N * ).nS n n 2 (n 1)d 2a (2) b n 2, n 2 c n 2 c n 2 (n 1)d 2a c (n 1) d 2a c (n 1)d 2a2 2 2n2 c(n 1) d2a c(n 1)d 2an 22 . ( ※)2 c若 { b n} 是等差数列 , 则 b n An Bn 型.观察 ( ※) 式后一项 , 分子幂低于分母幂 ,第 13 页共 19 页c(n 1) d2a1)d 2a ( n 1)d 2a故有 :2(n≠0, n 2 0 , 即 c 0 , 而2c2 故 c 0. 经检验 ,当 c0 时 {b n } 是等差数列 . 31.( 2013 年普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对) ) 等差数列 a n 的前 n 项和为 S n , 已知 S 3 =a 2 2 , 且 S 1 , S 2 , S 4 成等比数列 , 求 a n 的通项式 .【答案】32.( 2013 年普通高等学校招生统一考试天津数学(理)试题(含答案))已知首项为 3的等比 2 数列{ a n } 不是递减数列 , 其前 3 3 5 5 4 4 成等差数 n 项和为 S n ( n N *) , 且 S + a , S + a , S + a列.( Ⅰ) 求数列 { a n } 的通项公式 ; ( Ⅱ ) 设 T n S n1 ( n N* ) , 求数列 { Tn } 的最大项的值与最小项的值 . S n 【答案】第 14 页共 19 页33 .(2013 年高考江西卷(理))正项数列 {a n} 的前项和{a n} 满足: sn2 (n2n 1)s n( n2n) 0(1) 求数列 {a n} 的通项公式 an;(2) 令b nn 12, 数列{b} 的前 n 项和为 T n . 证明 : 对于任意的 n* 5 2nN , 都有T n (n 2)a 64【答案】 (1) 解 :由 S n2(n2n 1)S n(n2n) 0 , 得 S n(n2n) (S n1) 0 .由于an 是正项数列 ,所以S 0, S n2n.n n于是 a1S12,n 2时 , anS n S n1 n2n (n 1)2(n 1) 2n .综上 , 数列a n 的通项a n2n .(2) 证明 : 由于an 2n, b nn 1.(n2) 2 a n2则 b nn 1 1 1 1.4n2 (n2)216 n2( n 2)2第 15 页共 19 页T n111 1 1 1 1⋯11 1 13222423252(n 1)2(n 1)2n2( n 2)2 16111 1 1 1 1 51622(n2(n 2)2 (1 2 )64.1) 16 234.( 2013 年普通高等学校招生统一考试广东省数学(理)卷(纯 WORD版))设数列a n的前n项和为 S n . 已知a12S na n1 2n2n* 1, 1 n , N .n 3 3( Ⅰ) 求 a2的值 ;( Ⅱ) 求数列a n的通项公式 ;( Ⅲ) 证明 : 对一切正整数n , 有1 1 17 .a1a2a n 4【答案】.(1)解:2S na n1 1 n2n2 , n N .n 3 3当n 1 时 , 2a12S1a21 1 2 a2 23 3又a11, a2 4(2)解 : 2S n a n 1 1 n2 n 2 , n N .n3 32S n na n 1 1 n3n22 n na n 1n n 1 n 2①33 3当 n 2时 , 2S n 1n 1 a nn 1 n n 1②3由①—②, 得2S n2S n 1na n 1n 1 a n n n 1 2a n2S n2S n 12a n na n 1n 1 a n n n 1a n1 a n1 数列a n是以首项为a11 , 公差为 1 的等差数列 .n 1 n n1 a n 1 1 n 1 n, a n n2 n 2n 当 n 1时 , 上式显然成立 . a n n2 , n N *(3) 证明 : 由(2) 知 , a n n2 , n N *第 16 页共 19 页①当 n 1时 , 1 1 7 , 原不等式成立 .a 1 4 ②当 n 2 时 , 111 1 7原不等式亦成立 .a 1 a 2 , 4 4 ③当 n 3 时,n 2n 1 n 1 , 1 n 1 1 1n 2 n1 1 1 1 1 11 1111a 1 a 2a n 12 22n 2 1 3 2 4 n 2 n n 1 n 11 1 1 1 1 1 1 1 111 1 1 111 1 32 2 4 23 5 2 n 2 n 2 n 1 n 12 1 1 1 1 1 1 111111 1 32 43 5n 2 n n 1 n 12 1 1 1 1 17 1117 11 2 n n 14 2 n n 14 2 当 n 3 时 ,, 原不等式亦成立 .综上 , 对一切正整数n , 有 11 1 7 . a 1 a2 a n 4 35.( 2013 年高考北京卷(理) )已知 { a } 是由非负整数组成的无穷数列 , 该数列前 n 项的最大n值记为 An, 第 n 项之后各项 a n 1, a n 2 , 的最小值记为 Bn,dn=An- Bn . (I) 若 { an} 为 2,1,4,3,2,1,4,3,, 4 的数列 ( 即对任意* a n ), 写出是一个周期为 n ∈N , a n 4d1, d2 , d3, d4 的值 ;(II) 设 d 为非负整数 , 证明 : dn=- d( n=1,2,3) 的充分必要条件为 { an} 为公差为 d的等差数列 ;(III) 证明 : 若 a =2, d =1( n=1,2,3,), 则 { a } 的项只能是 1 或者 2, 且有无穷多项为 1.1n n【答案】 (I) d1d21,d3 d4 3.(II)( 充分性 )因为a n 是公差为d 的等差数列 ,且 d 0, 所以 a1a2a n.因此 A n a n , B n a n1 ,d n a n a n1 d (n 1,2,3, ) .( 必要性 ) 因为d n d0 (n 1,2,3, ) , 所以 A n B n d n B n .第 17 页共 19 页又因为a n A n, a n 1B n ,所以 a n a n 1 .于是A n a n ,B n a n 1 .因此 a n 1a n B n A n d n d , 即 an是公差为 d 的等差数列 .(III) 因为a12,d11, 所以A1 a1 2,B1A1 d1 1. 故对任意n 1,a n B1 1.假设 a ( n 2) 中存在大于 2的项 .n设 m 为满足 a n 2 的最小正整数 ,则 m 2, 并且对任意 1 k m, a k 2 ,.又因为a1 2 ,所以 A m 12 , 且A m a m 2 .于是B m A m d m 2 1 1 , Bm1 min a m , B m2 .故 dm 1A m 1B m1 2 2 0 , 与 dm 11 矛盾 .所以对于任意n 1, 有 a 2 , 即非负整数列an的各项只能为 1 或 2.n因此对任意n 1, a 2 a , 所以A 2 .故B n A n d n 2 1 1.n 1 n因此对于任意正整数n , 存在 m 满足mn , 且 a m1, 即数列a n有无穷多项为 1.36.( 2013 年高考陕西卷(理))设 { a n } 是公比为 q 的等比数列 .( Ⅰ) 导 { a n } 的前 n 项和公式 ; ( Ⅱ ) 设q≠ 1,证明数列{ a n1} 不是等比数列 . 【答案】解:( Ⅰ) 分两种情况讨论 .①当q 1时,数列 { a n } 是首项为 a1的常数数列,所以 S n a1a1a1na1 .②当q 1时,S n a1a2a n 1 a n qS n qa1qa2qa n 1qa n .上面两式错位相减: (1- q)S n a1(a2qa1 ) (a3 qa2 ) (a n qa n 1 ) qa n a1qa n .nSna1 qan . a1 (1 q ) .1 - q 1- qna1 , (q 1)③综上,S na1 (1q n )(q 1) 1,q( Ⅱ ) 使用反证法 .第 18 页共 19 页设 { a n } 是公比 q≠1的等比数列 ,假设数列 { a n1} 是等比数列 . 则①当n N *,使得a n1 =0 成立 , 则{ a n1}不是等比数列 .②当n N *,使得a n1 0 成立 , 则an 1 1 a1q n 1恒为常数a n 1 a1 q n 1 1a1q n1 a1 qn11当 a1 0时, q1. 这与题目条件≠1矛盾 .q③综上两种情况 , 假设数列 { a n 1} 是等比数列均不成立 , 所以当q≠1时 ,数列{ an1} 不是等比数列 .第 19 页共 19 页。
北京市各地市2013年高考数学 最新联考试题分类汇编(4)数列
北京市各地市2013年高考数学 最新联考试题分类汇编(4)数列 一、选择题:(7)(北京市东城区2013年4月高三综合练习一文)对于函数)(x f y =,部分x 与y 的对应关系x 1 2 3 4 5 6 7 8 9 y 7 4 5 8 1 3 5 2 6数列n 满足1,且对任意,点1+n n 都在函数)x 的图象上,则201320124321x x x x x x ++++++Λ的值为(A )9394 (B )9380 (C )9396 (D )9400 【答案】A2. (北京市房山区2013年4月高三第一次模拟理)已知{}n a 为等差数列,n S 为其前项和.若19418,7a a a +==,则10S = ( D ) A. 55 B. 81 C. 90 D. 1004.(北京市西城区2013年4月高三一模文)设等比数列{}n a 的公比为q ,前n 项和为n S ,且10a >.若232S a >,则q 的取值范围是(A )1(1,0)(0,)2-U (B )1(,0)(0,1)2-U (C )1(,1)(,)2-∞-+∞U(D )1(,)(1,)2-∞-+∞U【答案】B3. (北京市丰台区2013年高三第二学期统一练习一文)设n S 为等比数列{}n a 的前n 项和,3420a a +=,则31S a ( ) (A) 2 (B) 3 (C) 4 (D) 5 【答案】B(5)(北京市昌平区2013年1月高三期末考试理)设n S 是公差不为0的等差数列{}n a 的前n 项和,且124,,S S S 成等比数列,则21a a 等于 A.1 B. 2 C. 3 D. 4【答案】C【解析】因为124,,S S S 成等比数列,所以2142S S S =,即2111(46)(2)a a d a d +=+,即2112,2d a d d a ==,所以211111123a a d a a a a a ++===,选C. 二、填空题:(9)(北京市朝阳区2013年4月高三第一次综合练习理)在等比数列{}n a 中,32420a a a -=,则3a = ,{}n b 为等差数列,且33b a =,则数列{}n b 的前5项和等于 .【答案】2,10(11)(北京市朝阳区2013年4月高三第一次综合练习文)在等比数列{}n a 中,32420a a a -=,则3a = ,若{}n b 为等差数列,且33b a =,则数列{}n b 的前5项和等于 .【答案】2,1014.(北京市西城区2013年4月高三一模文)已知数列{}n a 的各项均为正整数,其前n 项和为n S .若1, ,231, ,nn n n n a a a a a +⎧⎪=⎨⎪+⎩是偶数是奇数且329S =, 则1a =______;3n S =______. 【答案】 5,722n +.10. (北京市海淀区2013年4月高三第二学期期中练习理)等差数列{}n a 中,34259,18a a a a +==, 则16_____.a a = 【答案】14三、解答题:20. (北京市房山区2013年4月高三第一次模拟理)(本小题满分13分)对于实数x ,将满足“10<≤y 且y x -为整数”的实数y 称为实数x 的小数部分,用记号x 表示.例如811.20.2 1.20.877=-==,,.对于实数a ,无穷数列{}n a 满足如下条件: 1a a =,11000n n nn a a a a +⎧≠⎪=⎨⎪=⎩,,其中123n =L ,,,.(Ⅰ)若2=a ,求数列{}n a 的通项公式;(Ⅱ)当41>a 时,对任意的n ∈*N ,都有a a n =,求符合要求的实数a 构成的集合A ; (Ⅲ)若a 是有理数,设qpa =(p 是整数,q 是正整数,p ,q 互质),对于大于q 的任意正整数n ,是否都有0=n a 成立,证明你的结论.20(本小题满分13分) (Ⅰ)1221a == ,2111212121a a ===+=- ……….2分若21k a =-,则112121k k a a +⎡⎤⎡⎤===⎢⎥⎣⎦⎣⎦所以21n a =- ……………………………………3分 (Ⅱ)1a a a ==Q ,14a >所以114a << ,从而114a<< ①当112a <<,即112a<<时,211111a a a a a ===-=所以210a a +-= 解得:15a -+=(151,12a --⎛⎫= ⎪⎝⎭,舍去) ……………….4分但小于q 的正整数共有1-q 个,矛盾. 故q a a a a ,,,,321⋅⋅⋅中至少有一个为0,即存在)1(q m m ≤≤,使得0=m a . 从而数列{}n a 中m a 以及它之后的项均为0,所以对于大于q 的自然数n ,都有0=n a ……………………………………………13分20.(北京市丰台区2013年高三第二学期统一练习一文)(本题14分)设满足以下两个条件的有穷数列12,,,n a a a ⋅⋅⋅为n (n=2,3,4,…,)阶“期待数列”:① 1230n a a a a ++++=L ; ②1231n a a a a ++++=L .(Ⅰ)分别写出一个单调递增的3阶和4阶“期待数列”;(Ⅱ)若某个2013阶“期待数列”是等差数列,求该数列的通项公式; (Ⅲ)记n 阶“期待数列”的前k 项和为(1,2,3,,)k S k n =L ,试证:21≤k S .∴(20)(北京市昌平区2013年1月高三期末考试理)(本小题满分14分)已知每项均是正整数的数列123100,,,,a a a a L ,其中等于i 的项有i k 个(1,2,3)i =L ,设j j k k k b +++=Λ21(1,2,3)j =L ,12()100m g m b b b m =+++-L (1,2,3).m =L(Ⅰ)设数列1240,30,k k ==34510020,10,...0k k k k =====,求(1),(2),(3),(4)g g g g ; (Ⅱ)若123100,,,,a a a a L 中最大的项为50, 比较(),(1)g m g m +的大小; (Ⅲ)若12100200a a a +++=L ,求函数)(m g 的最小值. (20)(本小题满分14分)解: (I) 因为数列1240,30,k k ==320,k =410k =, 所以123440,70,90,100b b b b ====,所以(1)60,(2)90,(3)100,(4)100g g g g =-=-=-=- …………………4分 (II) 一方面,1(1)()100m g m g m b ++-=-,根据j b 的含义知1100m b +≤,故0)()1(≤-+m g m g ,即 )1()(+≥m g m g , ① 当且仅当1100m b +=时取等号.。
2013年高考数学(全国卷)理科及答案
2013年普通高等学校招生全国统一考试(新课标Ⅱ卷)数学(理科)注意事项:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前考生将自己的姓名\准考证号填写在本试卷和答题卡相应位置。
2. 回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号标黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3. 答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。
4. 考试结束,将试题卷和答题卡一并交回。
第Ⅰ卷(选择题共50分)一、选择题:本大题共10小题。
每小题5分,共50分。
在每个小题给出的四个选项中,只有一项是符合题目要求的。
(1)已知集合M={x|(x+1)2 < 4,x∈R},N={-1,0,1,2,3},则M∩N=()(A){0,1,2}(B){-1,0,1,2}(C){-1,0,2,3} (D){0,1,2,3}(2)设复数z满足(1-i)z=2 i,则z= ()(A)-1+i (B)-1-i (C)1+i (D)1-i(3)等比数列{a n}的前n项和为S n,已知S3 = a2 +10a1 ,a5 = 9,则a1= ()(A)(B)-(C)(D)-(4)已知m,n为异面直线,m⊥平面α,n⊥平面β。
直线l满足l ⊥m,l ⊥n,l β,则()(A)α∥β且l ∥α(B)α⊥β且l⊥β(C)α与β相交,且交线垂直于l (D)α与β相交,且交线平行于l(5)已知(1+ɑx)(1+x)5的展开式中x2的系数为5,则ɑ=(A)-4 (B)-3 (C)-2 (D)-1(6)执行右面的程序框图,如果输入的N=10,那么输出的s=(A)1+ + +…+(B )1++ +…+(C )1+ + +…+(D )1++ +…+(7)一个四面体的顶点在空间直角坐标系O-xyz 中的坐标分别是(1,0,1),(1,1,0),(1,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx 平面为搞影面,则得到正视图可以为(A) (B) (C) (D)(8)设ɑ=log 36,b=log 510,c=log 714,则(A )c >b >a (B )b >c >a(C )a >c >b (D)a >b >c(9)已知a >0,x ,y 满足约束条件 ,若z=2x+y 的最小值为1,则a=(A)(B) (C)1 (D)2(10)已知函数f(x)=x2+αx2+bx+,下列结论中错误的是(A )∑x α∈R f(x α)=0(B )函数y=f(x)的图像是中心对称图形(C )若x α是f(x)的极小值点,则f(x)在区间(-∞,x α)单调递减(D )若xn 是f (x )的极值点,则f 1(x α)=0(11)设抛物线y2=3px(p ≥0)的焦点为F ,点M 在C 上,|MF|=5若以MF 为直径的园过点(0,3),则C 的方程为(A )y2=4x 或y2=8x (B )y2=2x 或y2=8x(C )y2=4x 或y2=16x (D )y2=2x 或y2=16x(12)已知点A (-1,0);B (1,0);C (0,1),直线y=ax+b(a>0)将△ABC 分割为面积相等的两部分,则b 的取值范围是x ≥1, x+y ≤3, y ≥a(x-3). {(A)(0,1)(B)(1-,1/2)( C)(1-,1/3)(D)[ 1/3, 1/2)第Ⅱ卷本卷包括必考题和选考题,每个试题考生都必修作答。
2013年高考真题——数列
2013年高考真题——数列0.(2013·湖南高考文科).对于E={a 1,a 2,….a 100}的子集X={k i i i a a a ,,21},定义X 的“特征数列”为x 1,x 2…,x 100,其中121===k i i i x x x .其余项均为0,例如子集{a 2,a 3}的 “特征数列”为0,1,1,0,0,…,0(1)子集{a 1,a 3,a 5}的“特征数列”的前3项和等于________________;(2)若E 的子集P 的“特征数列”P 1,P 2,…,P 100 满足11=p ,P i +P i+1=1, 1≤i ≤99;E 的子集Q 的“特征数列” q 1,q 2,q 100 满足q 1=1,q 1+q j+1+q j+2=1,1≤j ≤98,则P∩Q 的元素个数为___________.1. (2013·新课标Ⅰ高考理科)设等差数列}{n a 的前n 项和为n S ,若21-=-m S ,0=m S ,31=+m S ,则=m ( ) A.3 B.4C.5D. 62.(2013·安徽高考文科)设S n 为等差数列{a n }的前n 项和,837=4,2S a a =-,则a 9=( )A.-6B.-4C.-2D.23. (2013·辽宁高考文科)下面是关于公差0d >的等差数列{}n a 的四个命题:1:p 数列{}n a 是递增数列;2:p 数列{}n na 是递增数列;3:p 数列n a n ⎧⎫⎨⎬⎩⎭是递增数列;4:p 数列{}3n a nd +是递增数列;其中的真命题为( )12342314.,.,.,.,A p p B p p C p p D p p4. (2013·重庆高考文科)若2、a 、b 、c 、9成等差数列,则c a -= . 5.(2013·上海高考文科)在等差数列{}n a 中,若a 1+ a 2+ a 3+ a 4=30,则a 2+ a 3= . 6. (2013·广东高考理科)在等差数列{}n a 中,已知3810a a +=,则573a a +=___ 7.(2013·新课标全国Ⅱ高考理科)等差数列{a n }的前n 项和为S n ,已知S 10=0,S 15=25,则n S n 的最小值为 .8.(2013·安徽高考理科))如图,互不相同的点A 1,A 2,…,A n ,…和B 1,B 2,…,B n ,…分别在角O 的两条边上,所有n n A B 相互平行,且所有梯形A n B n B n+1A n+1的面积均相等。
2013年高考理科数学试题汇总解析--4数列
2013年高考理科数学试题汇总解析4、数列1.新课标1、7、设等差数列{}n a 的前n 项和为n s ,若,3,0,211==-=+-m m m s s s 则m= (A) 3 (B)4 (C)5 (D)6解:,3,2111=-==-=++-m m m m m m s s a s s a 则公差1=d ,021=⨯+=m a a s mm m m a a a a -=⇒=+⇒110,)1(2)1(21111+⨯+-=+⨯+=+++m a a m a a s m m m m 3)1(21=+⨯=m ,5=∴m 选C 2.新课标1、12、设n n n C B A ∆的三边长分别为n n n c b a ,,,n n n C B A ∆的面积为n s , ,3,2,1=n .若111112,a c b c b =+>,2,11n n n n n a c b a a +==++,21nn n a b c +=+,则 (A){}n s 为递减数列 (B){}n s 为递增数列 (C) {}12-n s 为递增数列, {}n s 2为递减数列 (D) {}12-n s 为递减数列, {}n s 2为递增数列解:取特殊值,以111C B A Δ的边111,,c a b 顺序设边长分别是:2.5,2,1.5;则第二个三角形 三边是:1.75,2,2.25;则第三个三角形三边是:2.15,2,1.875;……周长为定值4,形状越来越接近正三角形,也就是面积越来越大.选B.另解:设a a =1,则a c b 211=+,a a n =.由已知可得n nn n n a b c c b ++=+++211 当1=n 时,a a b c c b 2211122=++=+,当2=n 时,a a bc c b 2222233=++=+当3=n 时,,,2233344 a a b c c b =++=+即 a c b n n 2=+则n n n C B A ∆顶点n A 在以)(1n B B 也就是和)(1n C C 也就是为焦点,a 2为长轴的椭圆M 上,有因为n n n n c b c b -=-++2111,即11121c b c b n n n -⎪⎭⎫ ⎝⎛=--,n b 和n c 两边的差值越来越小,顶点n A 越来越靠近椭圆M 的上(或下)顶点,n n n C B A ∆边n n C B 上高越来越大,底边n n C B 长 为定值a ,所以面积越来越大.选B. 3.新课标1、14、若数列{}n a 的前n 项和3132+=n n a s ,则{}n a 的通项公式是n a . 解:1113132a a s =+=,所以11=a ,13132222+=+=a a s ,所以22-=a1>n 时,113232---=-=n n n n n a a s s a , 12--=∴n n a a 1)2(--=∴n n a4.新课标2、(3)等比数列{a n }的前n 项和为S n ,已知12310a a s += ,a 5 = 9,则a 1=(A )31 (B )-31 (C ) 91 (D )91- 解:12321310a a a a a s +=++= 99213=⇒=⇒q a a 又919811141=⇒==a a q a ,选C. 5.新课标2、(16)等差数列{a n }的前n 项和为S n ,已知S 10=0,S 15 =25,则nS n 的最小值为________. 解:由S 10=0,S 15 =25,则09201101=+⇒=+d a a a ;5213251518=+⇒=d a a32,31=-=∴d a ,n n n n n d n n na s n 31031)1(313)1(2121-=-+-=-+= 2331031)(n n ns n f n -==,320,00320)(2==⇒=-='n n n n n f )(n f 在6≤n 时为递减,在7≥n 时为递增,所以 486310631)6(23-=-=f ,497310731)7(23-=-=f ,n ns 的最小值是-49. 6.安徽14、如图,互不-相同的点 n A A A A ,,,321和12,,,n B B B 分别在角O 的两条边上,所有n nA B 相互平行,且所有梯形11n n n n A B B A ++的面积均相等。
2013年全国高考理科数学分类汇编(45页)
2013年全国高考理科数学分类汇编一、集合与简易逻辑辽宁2013(2)已知集合{}{}4|0log 1,|2A x x B x x AB =<<=≤=,则A .()01,B .(]02,C .()1,2D .(]12, 辽宁2013(4)下面是关于公差0d >的等差数列()n a 的四个命题:{}1:n p a 数列是递增数列;{}2:n p na 数列是递增数列; 3:n a p n ⎧⎫⎨⎬⎩⎭数列是递增数列;{}4:3n p a nd +数列是递增数列; 其中的真命题为(A )12,p p (B )34,p p (C )23,p p (D )14,p p 江西2013.1.已知集合M={1,2,zi},i ,为虚数单位,N={3,4},则复数z=A.-2iB.2iC.-4iD.4i 全国1.1、已知集合A={x |x 2-2x >0},B={x |-5<x <5},则 ( ) A 、A∩B=∅ B 、A ∪B=R C 、B ⊆A D 、A ⊆B全国2.1.已知集合{}{}3,2,1,0,1,,4)1(|2-=∈<-=N R x x x M ,则=⋂N M ( )A {}2,1,0B {}2,1,0,1-C {}3,2,0,1-D {}3,2,1,0北京2013.1.已知集合A={-1,0,1},B={x |-1≤x <1},则A∩B= ( ) A.{0} B.{-1,0} C.{0,1} D.{-1,0,1}四川1.设集合{|20}A x x =+=,集合2{|40}B x x =-=,则AB =( )(A ){2}- (B ){2} (C ){2,2}- (D )∅ 重庆(1)已知集合{1,2,3,4}U =,集合={1,2}A ,={2,3}B ,则()U AB =ð(A ){1,3,4} (B ){3,4} (C ){3} (D ){4} 天津卷(1) 已知集合A = {x ∈R | |x |≤2}, A = {x ∈R | x ≤1}, 则A B ⋂= (A) (,2]-∞ (B) [1,2] (C) [-2,2] (D) [-2,1]2013安微(1)设集合{}{}{}1,2,3,4,5,|,,,A B M x x a b a A b B ====+∈∈则M 中元素的个数为(A )3 (B )4 (C )5 (D )6山东(2)设集合A={0,1,2},则集合B={x-y|x ∈A, y ∈A }中元素的个数是( )A. 1B. 3C. 5D.9重庆(2)命题“对任意x R ∈,都有20x ≥”的否定为(A )对任意x R ∈,使得20x < (B )不存在x R ∈,使得20x <(C )存在0x R ∈,都有200x ≥ (D )存在0x R ∈,都有200x <2013广东1.设集合M={x ∣x 2+2x=0,x ∈R},N={x ∣x 2-2x=0,x ∈R},则M ∪N= A. {0} B. {0,2} C. {-2,0} D {-2,0,2} 北京2013.3.“φ=π”是“曲线y=sin(2x +φ)过坐标原点的” A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件四川4.设x Z ∈,集合A 是奇数集,集合B 是偶数集.若命题:,2p x A x B ∀∈∈,则( ) (A ):,2p x A x B ⌝∃∈∉ (B ):,2p x A x B ⌝∀∉∉ (C ):,2p x A x B ⌝∃∉∈ (D ):,2p x A x B ⌝∃∈∈2013广东8.设整数n ≥4,集合X={1,2,3……,n }。
2013年全国高考数学试题分类解析——数列部分
实用文档 2013年全国高考数学试题分类解析——数列部分一、选择题1、(全国大纲理4、文6)设n S 为等差数列{}n a 的前n 项和,若11a =,公差2d =,224k k S S +-=,则k =(A )8 (B )7 (C )6 (D )52、(安徽文科第7题)若数列}{n a 的通项公式是()()n n a n =-1⋅3-2,则a a a 1210++=(A ) 15 (B) 12 (C ) -12 (D) -153、(四川文科9)数列{}n a 的前n 项和为n S ,若11=a ,n n S a 31=+(1≥n ),则=6a(A )443⨯ (B )1434+⨯ (C )44 (D )144+.4、(江西文科5).设{}n a 为等差数列,公差2-=d ,n S 为其前n 项和.若1011S S =,则1a =() A.18 B.20 C.22 D.245、(江西理科5)已知数列}{n a 的前n 项和n S 满足:m n m n S S S +=+,且11=a ,那么=10a ( )A. 1B. 9C. 10D. 55实用文档6、(上海理18)设{}n a 是各项为正数的无穷数列,i A 是边长为1,i i a a +的矩形的面积(1,2,i =),则{}n A 为等比数列的充要条件是 ( )(A ){}n a 是等比数列.(B )1321,,,,n a a a -或242,,,,n a a a 是等比数列. (C )1321,,,,n a a a -和242,,,,n a a a 均是等比数列. (D )1321,,,,n a a a -和242,,,,n a a a 均是等比数列,且公比相同.7、(陕西文10)植树节某班20名同学在一段直线公路一侧植树,每人植一棵,相邻两棵树相距10米,开始时需将树苗集中放置在某一树坑旁边,现将树坑从1到20依次编号,为使各位同学从各自树坑前来领取树苗所走的路程总和最小,树苗可以放置的两个最佳....坑位的编号为( ) (A )⑴和⒇ (B )⑼和⑽ (C) ⑼和 ⑾ (D) ⑽和⑾8、(辽宁文5)若等比数列{}n a 满足n n n a a 161=⋅+,则公比为(A )2 (B )4 (C )8 (D )169、(四川理科8)数列{}n a 的首项为3,{}n b 为等差数列且)(*1N n a a b n n n ∈-=+ .若则23-=b ,1210=b ,则8a(A )0 (B )3 (C )8 (D )11实用文档二、填空题10、(重庆文1)在等差数列{}n a 中, 22a =,3104,a a =则=A .12B .14C .16D .1811、(湖南理科12)设n S 是等差数列*{}()n a n N ∈的前n 项和,且141,7a a ==,则5______S = 。
2013高考数学试题汇编-数列
数列一、选择题1.辽宁4、下面关于公差d>0的等差数列的四个命题:{}n a P1:数列是递增数列; P2:数列是递增数列{}n a {}n na P3:数列是递增数列; P4:数列是递增数列。
n a n ⎧⎫⎨⎬⎩⎭{}+3n a nd 其中的真命题为( )A .P1,P2 B. P3,P4 C. P2,P3 D. P1,P42.全国(3)等比数列{a n }的的前n 项和为S n ,已知S 3 = a 2 +10a 1 ,a 5 = 9,则a 1 =( )(A )(B )- (C )(D )- 131319193.福建9.已知等比数列{}n a 的公比为q ,记m n m n m n m n a a a b +-+-+-+⋅⋅⋅++=)1(2)1(1)1(,m n m n m n m n a a a b +-+-+-*⋅⋅⋅**=)1(2)1(1)1(,()*,N n m ∈,则以下结论一定正确的是( )A. 数列{}n b 为等差数列,公差为m q B. 数列{}n b 为等比数列,公比为m q 2C. 数列{}n c 为等比数列,公比为2mq D. 数列{}n c 为等比数列,公比为mmq4.江西3.等比数列x ,3x+3,6x+6,…的的第四项等于()A.-24B.0C.12D.24二、填空题5.全国(16)等差数列{a n }的前n 项和为S n ,已知S 10 = 0,S 15 = 25,则nS n 的最小值为.6.北京10.若等比数列{a n }满足a 2+a 4=20,a 3+a 5=40,则公比q =;前n 项和S n =.7.重庆(12)已知是等差数列,,公差,为其前项和,若、、{}n a 11a =0d ≠n S n 1a 2a 称等比数列,则.5a 8S =8.陕西14. 观察下列等式:211=22123-=-2221263+-=2222124310-+-=-…照此规律, 第n 个等式可为.9.湖北14.古希腊毕达哥拉斯学派的数学家研究过各种多边形数.如三角形数,1,3,6,10,...第个三角形数为.记第个边形数为,以下列出n 2(1)11222n n n n +=+n k (,)(3)N n k k ≥了部分边形数中第个数的表达式:k n 三角形数 ,211(,3)22N n n n =+四边形数 ,2(,4)N n n =五边形数 ,231(,5)22N n n n =-六边形数 ,2(,6)2N n n n =-…可以推测的表达式,由此计算= .(,)N n k (10,24)N 10.安徽(14)如图,互不相同的点和分别在角O 的两条12,,,n A A X 12,,,n B B B 边上,所有相互平行,且所有梯形的面积均相等。
2013年高考真题解析分类汇编(理科数学)4:数列
2013高考试题解析分类汇编(理数)4:数列一、选择题1 .(2013年普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对))已知数列{}n a 满足12430,3n n a a a ++==-,则{}n a 的前10项和等于 (A)()10613--- (B)()101139-- (C)()10313-- (D)()1031+3-C所以3a n+1+a n =0 所以所以数列{a n }是以﹣为公比的等比数列 因为所以a 1=4由等比数列的求和公式可得,s 10==3(1﹣3﹣10)故选C2 .(2013年高考新课标1(理))设n n n A B C ∆的三边长分别为,,n n n a b c ,n n n A B C ∆的面积为n S ,1,2,3,n = ,若11111,2b c b c a >+=,111,,22n n n nn n n n c a b a a a b c +++++===,则( ) A.{S n }为递减数列 B.{S n }为递增数列C.{S 2n -1}为递增数列,{S 2n }为递减数列D.{S 2n -1}为递减数列,{S 2n }为递增数列B因为a n+1=a n ,,,所以a n =a 1,所以b n+1+c n+1=a n +=a 1+,所以b n+1+c n+1﹣2a 1=,又b 1+c 1=2a 1,所以b n +c n =2a 1, 于是,在△A n B n C n 中,边长B n C n =a 1为定值,另两边A n C n 、A n B n 的长度之和b n +c n =2a 1为定值, 因为b n+1﹣c n+1==,所以b n ﹣c n =,当n →+∞时,有b n ﹣c n →0,即b n →c n ,于是△A n B n C n 的边B n C n 的高h n 随着n 的增大而增大, 所以其面积=为递增数列,故选B .3 .(2013年普通高等学校招生统一考试安徽数学(理)试题(纯WORD 版))函数=()y f x 的图像如图所示,在区间[],a b 上可找到(2)n n ≥个不同的数12,...,,n x x x 使得1212()()()==,n nf x f x f x x x x 则n 的取值范围是(A){}3,4 (B){}2,3,4 (C) {}3,4,5 (D){}2,3 B由题知,过原点的直线y = x 与曲线=()y f x 相交的个数即n 的取值.用尺规作图,交点可取2,3,4. 所以选B4 .(2013年普通高等学校招生统一考试福建数学(理)试题(纯WORD 版))已知等比数列{}n a 的公比为q,记(1)1(1)2(1)...,n m n m n m n m b a a a -+-+-+=+++*(1)1(1)2(1)...(,),n m n m n m n m c a a a m n N -+-+-+=∙∙∙∈则以下结论一定正确的是( )A.数列{}n b 为等差数列,公差为mq B.数列{}n b 为等比数列,公比为2mq C.数列{}n c 为等比数列,公比为2m q D.数列{}n c 为等比数列,公比为mm qC等比数列{}n a 的公比为q,同理可得2222222,m m m mm m m a a a a a a ++++=∙=∙...m c a a a =∙∙∙,212...,m m m m c a a a +++=∙∙∙321222...,m m m m c a a a +++=∙∙∙2213c c c ∴=∙∴数列{}n c 为等比数列,2221212211212............mm m m m m m m m ma a a a a a q c q q c a a a a a a +++∙∙∙∙∙∙∙====∙∙∙∙∙∙ 故选C 5 .(2013年普通高等学校招生统一考试新课标Ⅱ卷数学(理)(纯WORD 版含答案))等比数列{}n a 的前n 项和为n S ,已知12310a a S +=,95=a ,则=1a(A)31 (B)31- (C)91 (D)91-C设等比数列{a n }的公比为q ,因为S 3=a 2+10a 1,a 5=9,所以,解得.所以.故选C .6 .(2013年高考新课标1(理))设等差数列{}n a 的前n 项和为11,2,0,3n m m m S S S S -+=-==,则m = ( ) A.3 B.4 C.5 D.6Ca m =S m ﹣S m ﹣1=2,a m+1=S m+1﹣S m =3,所以公差d=a m+1﹣a m =1,a m =﹣2+(m ﹣1)•1=2,解得m=5,故选C .(理)试题(WORD 版))下面是关于公差0d >{}2:n p na 数列是递增数列; {}4:3n p a nd +数列是递增数列; (A)12,p p (B)34,p p (C)23,p p (D)14,p p D设1(1)n a a n d dn m =+-=+,所以1P 正确;如果312n a n =-则2312n na n n =-并非递增所以2P 错;如果若1n a n =+,则满足已知,但11n a n n=+,是递减数列,所以3P 错;34n a nd dn m +=+,所以是递增数列,4P 正确,选D.8 .(2013年高考江西卷(理))等比数列x,3x+3,6x+6,..的第四项等于A.-24B.0C.12D.24A本题考查等比数列的运算。
2013年高考真题理科数学解析分类汇编4-数列
2013年高考真题理科数学解析分类汇编4 数列一选择题1,[新课标I],7、设等差数列{a n }的前n 项和为S n ,1m S -=-2,m S =0,1m S +=3,则m = ( ) A 、3 B 、4C 、5D 、6【解析】有题意知m S =1()2m m a a +=0,∴1a =-m a =-(m S -1m S -)=-2, 1m a += 1m S +-m S =3,∴公差d =1m a +-m a =1,∴3=1m a +=-2m +,∴m =5,故选C.2.[新课标I]12、设△A n B n C n 的三边长分别为a n ,b n ,c n ,△A n B n C n 的面积为S n ,n=1,2,3,…若b 1>c 1,b 1+c 1=2a 1,a n +1=a n ,b n +1=c n +a n 2,c n +1=b n +a n2,则()A 、{S n }为递减数列B 、{S n }为递增数列C 、{S 2n -1}为递增数列,{S 2n }为递减数列D 、{S 2n -1}为递减数列,{S 2n }为递增数列 答案B【解析】=c n +a n 2 + b n +a n2==2,⟹ =2=2 ⋯⋯,= − ⟹ =⋯⋯+2 =4⋯⋯,−2 =⋯⋯=− ,是正数递增数列所以===−1(因为边不是最大边,所以是锐角)是正数递减数列 ⟹是正数递增数列=是递增数列所以选B3.新课标II 3、等比数列{}n a 的前n 项和为n S ,已知,,则1a =( ) (A )31 (B ) 31- (C )91 (D )91- 【答案】C解析:⟹=+⟹9⟹ q=±3 又即=9⇒=914.陕西 14. 观察下列等式:211=22123-=- 2221263+-=2222124310-+-=- …照此规律, 第n 个等式可为 )1(2)1-n 1--32-1121-n 222+=+++n n n ()( .【答案】)1(2)1-n 1--32-1121-n 222+=+++n n n ()(【解析】分n 为奇数、偶数两种情况。
2013年全国高考理科数学试题分类汇编4:数列
2013年全国高考理科数学试题分类汇编4:数列一、选择题1 .(2013年高考上海卷(理))在数列{}n a 中,21n na =-,若一个7行12列的矩阵的第i 行第j 列的元素,i j i j i j a a a a a =⋅++,(1,2,,7;1,2,,12i j == )则该矩阵元素能取到的不同数值的个数为( )(A)18 (B)28(C)48(D)63【答案】A.2 .(2013年普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对))已知数列{}n a 满足12430,3n n a a a ++==-,则{}n a 的前10项和等于 (A)()10613--- (B)()101139-- (C)()10313-- (D)()1031+3-【答案】C3 .(2013年高考新课标1(理))设n n n A B C ∆的三边长分别为,,n n n a b c ,n n n A B C ∆的面积为n S ,1,2,3,n = ,若11111,2b c b c a >+=,111,,22n n n nn n n n c a b a a a b c +++++===,则( ) A.{S n }为递减数列 B.{S n }为递增数列C.{S 2n -1}为递增数列,{S 2n }为递减数列D.{S 2n -1}为递减数列,{S 2n }为递增数列【答案】B4 .(2013年普通高等学校招生统一考试安徽数学(理)试题(纯WORD 版))函数=()y f x 的图像如图所示,在区间[],a b 上可找到(2)n n ≥个不同的数12,...,,n x x x 使得1212()()()==,n nf x f x f x x x x 则n 的取值范围是(A){}3,4 (B){}2,3,4 (C) {}3,4,5 (D){}2,3【答案】B5 .(2013年普通高等学校招生统一考试福建数学(理)试题(纯WORD 版))已知等比数列{}n a 的公比为q,记(1)1(1)2(1)...,n m n m n m n m b a a a -+-+-+=+++*(1)1(1)2(1)...(,),n m n m n m n m c a a a m n N -+-+-+=∙∙∙∈则以下结论一定正确的是( )[来源:学_科_网Z_X_X_K]A.数列{}n b 为等差数列,公差为mq B.数列{}n b 为等比数列,公比为2mq C.数列{}n c 为等比数列,公比为2m q D.数列{}n c 为等比数列,公比为mm q【答案】C6 .(2013年普通高等学校招生统一考试新课标Ⅱ卷数学(理)(纯WORD 版含答案))等比数列{}n a 的前n 项和为n S ,已知12310a a S +=,95=a ,则=1a(A)31 (B)31- (C)91(D)91-【答案】C7 .(2013年高考新课标1(理))设等差数列{}n a 的前n 项和为11,2,0,3n m m m S S S S -+=-==,则m =( )A.3B.4C.5D.6【答案】C8 .(2013年普通高等学校招生统一考试辽宁数学(理)试题(WORD 版))下面是关于公差0d >的等差数列()n a 的四个命题:{}1:n p a 数列是递增数列;{}2:n p na 数列是递增数列; 3:n a p n ⎧⎫⎨⎬⎩⎭数列是递增数列;{}4:3n p a nd +数列是递增数列; 其中的真命题为(A)12,p p (B)34,p p (C)23,p p (D)14,p p【答案】D9 .(2013年高考江西卷(理))等比数列x,3x+3,6x+6,..的第四项等于A.-24B.0C.12D.24 【答案】A二、填空题10.(2013年高考四川卷(理))在等差数列{}n a 中,218a a -=,且4a 为2a 和3a 的等比中项,求数列{}n a 的首项、公差及前n 项和.【答案】解:设该数列公差为d ,前n 项和为n s .由已知,可得()()()21111228,38a d a d a d a d +=+=++.所以()114,30a d d d a +=-=,解得14,0a d ==,或11,3a d ==,即数列{}n a 的首相为4,公差为0,或首相为1,公差为3.所以数列的前n 项和4n s n =或232n n ns -=11.(2013年普通高等学校招生统一考试新课标Ⅱ卷数学(理)(纯WORD 版含答案))等差数列{}n a 的前n 项和为n S ,已知10150,25S S ==,则n nS 的最小值为________.【答案】49-12.(2013年高考湖北卷(理))古希腊毕达哥拉斯学派的数学家研究过各种多边形数.如三角形数1,3,6,10,,第n 个三角形数为()2111222n n n n +=+.记第n 个k 边形数为(),N n k ()3k ≥,以下列出了部分k 边形数中第n 个数的表达式: 三角形数 ()211,322N n n n =+ 正方形数 ()2,4N n n = 五边形数 ()231,522N n n n =- 六边形数 ()2,62N n n n =-可以推测(),N n k 的表达式,由此计算()10,24N =___________. 选考题【答案】100013.(2013年普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD 版含附加题))在正项等比数列}{n a 中,215=a ,376=+a a ,则满足n n a a a a a a 2121>+++的最大正整数n 的值为_____________.【答案】1214.(2013年高考湖南卷(理))设n S 为数列{}n a 的前n 项和,1(1),,2n n n n S a n N *=--∈则(1)3a =_____; (2)12100S S S ++⋅⋅⋅+=___________.【答案】116-;10011(1)32- 15.(2013年普通高等学校招生统一考试福建数学(理)试题(纯WORD 版))当,1x R x ∈<时,有如下表达式:211.......1n x x x x+++++=-两边同时积分得:1111122222200011.......1ndx xdx x dx x dx dx x+++++=-⎰⎰⎰⎰⎰从而得到如下等式:23111111111()()...()...ln 2.2223212n n +⨯+⨯+⨯++⨯+=+ 请根据以下材料所蕴含的数学思想方法,计算:122311111111()()...()_____2223212nn n n n nn C C C C +⨯+⨯+⨯++⨯=+ 【答案】113[()1]12n n +-+16.(2013年普通高等学校招生统一考试重庆数学(理)试题(含答案))已知{}n a 是等差数列,11a =,公差0d ≠,n S 为其前n 项和,若125,,a a a 成等比数列,则8_____S =【答案】6417.(2013年上海市春季高考数学试卷(含答案))若等差数列的前6项和为23,前9项和为57,则数列的前n项和n =S __________.【答案】25766n n - 18.(2013年普通高等学校招生统一考试广东省数学(理)卷(纯WORD 版))在等差数列{}n a 中,已知3810a a +=,则573a a +=_____.[来源:学科网ZXXK]【答案】2019.(2013年高考陕西卷(理))观察下列等式:211=22123-=- 2221263+-=2222124310-+-=-照此规律, 第n 个等式可为___)1(2)1-n 1--32-1121-n 222+=+++n n n ()( ____. 【答案】)1(2)1-n 1--32-1121-n 222+=+++n n n ()( 20.(2013年高考新课标1(理))若数列{n a }的前n 项和为S n =2133n a +,则数列{n a }的通项公式是n a =______.【答案】n a =1(2)n --.21.(2013年普通高等学校招生统一考试安徽数学(理)试题(纯WORD 版))如图,互不-相同的点12,,,n A A X和12,,,n B B B 分别在角O 的两条边上,所有n n A B 相互平行,且所有梯形11n n n n A B B A ++的面积均相等.设.n n OA a =若121,2,a a ==则数列{}n a 的通项公式是_________.【答案】*,23N n n a n∈-= [来源:Z§xx§]22.(2013年高考北京卷(理))若等比数列{a n }满足a 2+a 4=20,a 3+a 5=40,则公比q =_______;前n 项和S n =___________.【答案】2,122n +- [来源:学_科_网Z_X_X_K]23.(2013年普通高等学校招生统一考试辽宁数学(理)试题(WORD 版))已知等比数列{}n a 是递增数列,nS 是{}n a 的前n 项和,若13a a ,是方程2540x x -+=的两个根,则6S =____________.【答案】63 三、解答题24.(2013年普通高等学校招生统一考试安徽数学(理)试题(纯WORD 版))设函数22222()1(,)23nn n x x x f x x x R n N n=-+++++∈∈ ,证明:(Ⅰ)对每个nn N ∈,存在唯一的2[,1]3n x ∈,满足()0n n f x =;(Ⅱ)对任意np N ∈,由(Ⅰ)中n x 构成的数列{}n x 满足10n n p x x n+<-<.[来源:学§科§网]【答案】解: (Ⅰ) 224232224321)(0nx x x x x x f n x y x nn n ++++++-=∴=> 是单调递增的时,当是x 的单调递增函数,也是n 的单调递增函数. 011)1(,01)0(=+-≥<-=n n f f 且.010)(],1,0(321>>>≥=∈⇒n n n n x x x x x f x ,且满足存在唯一x x x x x x x x x x x x x f x n n n -⋅++-<--⋅++-=++++++-≤∈-1141114122221)(,).1,0(2122242322 时当]1,32[0)23)(2(1141)(02∈⇒≤--⇒-⋅++-≤=⇒n n n n n n n n x x x x x x x f综上,对每个nn N ∈,存在唯一的2[,1]3n x ∈,满足()0n n f x =;(证毕)(Ⅱ) 由题知04321)(,012242322=++++++-=>>≥+nxx x x x x f x x nn n n n n n n pn n0)()1(4321)(2212242322=+++++++++++-=+++++++++++p n x n x nx x x x x x f pn pn n pn np n p n p n p n p n p n p n 上式相减:22122423222242322)()1(432432p n x n x n x x x x x n x x x x x pn p n n p n n p n p n p n p n p n nnn n n n ++++++++++=++++++++++++++ )()(2212244233222)()1(-4-3-2--p n x n x n x x x x x x x x x x pn pn n pn nnn p n np n np n np n p n n +++++++++=+++++++++ nx x n p n n p n n 1-111<⇒<+-=+. 法二:25.(2013年高考上海卷(理))(3 分+6分+9分)给定常数0c >,定义函数()2|4|||f x x c x c =++-+,数列123,,,a a a 满足*1(),n n a f a n N +=∈.(1)若12a c =--,求2a 及3a ;(2)求证:对任意*1,n n n N a a c +∈-≥,;(3)是否存在1a ,使得12,,,n a a a 成等差数列?若存在,求出所有这样的1a ,若不存在,说明理由.【答案】:(1)因为0c >,1(2)a c =-+,故2111()2|4|||2a f a a c a c ==++-+=,3122()2|4|||10a f a a c a c c ==++-+=+(2)要证明原命题,只需证明()f x x c ≥+对任意x R ∈都成立,()2|4|||f x x c x c x c x c ≥+⇔++-+≥+即只需证明2|4|||+x c x c x c ++≥++若0x c +≤,显然有2|4|||+=0x c x c x c ++≥++成立;若0x c +>,则2|4|||+4x c x c x c x c x c ++≥++⇔++>+显然成立 综上,()f x x c ≥+恒成立,即对任意的*n N ∈,1n n a a c +-≥(3)由(2)知,若{}n a 为等差数列,则公差0d c ≥>,故n 无限增大时,总有0n a > 此时,1()2(4)()8n n n n n a f a a c a c a c +==++-+=++ 即8d c =+故21111()2|4|||8a f a a c a c a c ==++-+=++, 即1112|4|||8a c a c a c ++=++++,当10a c +≥时,等式成立,且2n ≥时,0n a >,此时{}n a 为等差数列,满足题意;若10a c +<,则11|4|48a c a c ++=⇒=--,此时,230,8,,(2)(8)n a a c a n c ==+=-+ 也满足题意; 综上,满足题意的1a 的取值范围是[,){8}c c -+∞⋃--.26.(2013年普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD 版含附加题))本小题满分10分.设数列{}122,3,3,34444n a :,-,-,-,-,-,-,,-1-1-1-1k k k k k个(),,(),即当1122k k k k n -+<≤()()()k N +∈时,11k n a k -=(-),记12n n S a a a =++ ()n N +∈,对于l N +∈,定义集合{}l P 1n n n S a n N n l +=∈≤≤是的整数倍,,且(1)求集合11P 中元素的个数; (2)求集合2000P 中元素的个数.【答案】本题主要考察集合.数列的概念与运算.计数原理等基础知识,考察探究能力及运用数学归纳法分析解决问题能力及推理论证能力. (1)解:由数列{}n a 的定义得:11=a ,22-=a ,23-=a ,34=a ,35=a ,36=a ,47-=a ,48-=a ,49-=a ,410-=a ,511=a ∴11=S ,12-=S ,33-=S ,04=S ,35=S ,66=S ,27=S ,28-=S ,69-=S ,1010-=S ,511-=S∴111a S ∙=,440a S ∙=,551a S ∙=,662a S ∙=,11111a S ∙-= ∴集合11P 中元素的个数为5(2)证明:用数学归纳法先证)12()12(+-=+i i S i i 事实上,① 当1=i 时,3)12(13)12(-=+∙-==+S S i i 故原式成立② 假设当m i =时,等式成立,即)12()12(+∙-=+m m S m m 故原式成立 则:1+=m i ,时,2222)12(}32)(1(}1)1(2)[1()22()12()12()22()12(+-+++-=+-++==++++++m m m m m m S S S m m m m m m )32)(1()352(2++-=++-=m m m m综合①②得:)12()12(+-=+i i S i i 于是)1)(12()12()12()12(22}12(}12)[1(++=+++-=++=+++i i i i i i S S i i i i由上可知:}12(+i i S 是)12(+i 的倍数而)12,,2,1(12}12)(1(+=+=+++i j i a j i i ,所以)12()12()12(++=+++i j S S i i j i i 是)12,,2,1(}12)(1(+=+++i j a j i i 的倍数又)12)(1(}12)[1(++=++i i S i i 不是22+i 的倍数, 而)22,,2,1)(22(}12)(1(+=+-=+++i j i a j i i所以)22()1)(12()22()12)(1()12)(1(+-++=+-=+++++i j i i i j S S i i j i i 不是)22,,2,1(}12)(1(+=+++i j a j i i 的倍数故当)12(+=i i l 时,集合l P 中元素的个数为2i 1-i 231=+++)( 于是当)(1i 2j 1j )12(+≤≤++=i i l 时,集合l P 中元素的个数为j i 2+ 又471312312000++⨯⨯=)( 故集合2000P 中元素的个数为100847312=+ [来源:]27.(2013年普通高等学校招生统一考试浙江数学(理)试题(纯WORD 版))在公差为d 的等差数列}{n a 中,已知101=a ,且3215,22,a a a +成等比数列.(1)求n a d ,; (2)若0<d ,求.||||||||321n a a a a ++++【答案】解:(Ⅰ)由已知得到:22221311(22)54(1)50(2)(11)25(5)a a a a d a d d d +=⇒++=+⇒+=+224112122125253404611n n d d d d d d d a n a n==-⎧⎧⇒++=+⇒--=⇒⎨⎨=+=-⎩⎩或; (Ⅱ)由(1)知,当0d<时,11n a n =-,①当111n ≤≤时,123123(1011)(21)0||||||||22n n n n n n n a a a a a a a a a +--≥∴++++=++++==②当12n ≤时,1231231112132123111230||||||||()11(2111)(21)212202()()2222n n n n a a a a a a a a a a a a n n n n a a a a a a a a ≤∴++++=++++-+++---+=++++-++++=⨯-=所以,综上所述:1232(21),(111)2||||||||21220,(12)2n n n n a a a a n n n -⎧≤≤⎪⎪++++=⎨-+⎪≥⎪⎩ ; 28.(2013年高考湖北卷(理))已知等比数列{}n a 满足:2310a a -=,123125a a a =.[来源:学科网ZXXK](I)求数列{}n a 的通项公式; (II)是否存在正整数m ,使得121111ma a a +++≥ ?若存在,求m 的最小值;若不存在,说明理由. 【答案】解:(I)由已知条件得:25a =,又2110a q -=,13q ∴=-或,所以数列{}n a 的通项或253n n a -=⨯(II)若1q =-,12111105m a a a +++=- 或,不存在这样的正整数m ; 若3q =,12111919110310mm a a a ⎡⎤⎛⎫+++=-<⎢⎥ ⎪⎝⎭⎢⎥⎣⎦ ,不存在这样的正整数m .29.(2013年普通高等学校招生统一考试山东数学(理)试题(含答案))设等差数列{}n a 的前n 项和为n S ,且424S S =,221n n a a =+. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设数列{}n b 前n 项和为n T ,且 12n n na T λ++=(λ为常数).令2n n cb =*()n N ∈.求数列{}nc 的前n 项和n R .[来源:Z*xx*]【答案】解:(Ⅰ)设等差数列{}n a 的首项为1a ,公差为d ,由424S S =,221n n a a =+得11114684(21)22(1)1a d a d a n a n d +=+⎧⎨+-=+-+⎩,解得,11a =,2d =因此21n a n =-*()n N ∈ (Ⅱ)由题意知:12n n n T λ-=-所以2n ≥时,112122n n n n n n n b T T ----=-=-+故,1221221(1)()24n n n n n c b n ---===-*()n N ∈ 所以01231111110()1()2()3()(1)()44444n n R n -=⨯+⨯+⨯+⨯+⋅⋅⋅+-⨯, 则12311111110()1()2()(2)()(1)()444444n nn R n n -=⨯+⨯+⨯+⋅⋅⋅+-⨯+-⨯ 两式相减得1231311111()()()()(1)()444444n nn R n -=+++⋅⋅⋅+--⨯ 11()144(1)()1414nn n -=---整理得1131(4)94n n n R -+=-所以数列数列{}n c 的前n 项和1131(4)94n n n R -+=-30.(2013年普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD 版含附加题))本小题满分16分.设}{n a 是首项为a ,公差为d 的等差数列)0(≠d ,n S 是其前n 项和.记cn nS b n n +=2,*N n ∈,其中c 为实数.(1)若0=c ,且421b b b ,,成等比数列,证明:k nk S n S 2=(*,N n k ∈);[来源:学#科#网](2)若}{n b 是等差数列,证明:0=c .【答案】证明:∵}{n a 是首项为a ,公差为d 的等差数列)0(≠d ,n S 是其前n 项和∴d n n na S n 2)1(-+=(1)∵0=c ∴d n a n S b n n 21-+==∵421b b b ,,成等比数列 ∴4122b b b = ∴)23()21(2d a a d a +=+ ∴041212=-d ad ∴0)21(21=-d a d ∵0≠d ∴d a 21= ∴a d 2= ∴a n a n n na d n n na S n 222)1(2)1(=-+=-+= ∴左边=a k n a nk S nk 222)(== 右边=a k n S n k 222= ∴左边=右边∴原式成立(2)∵}{n b 是等差数列∴设公差为1d ,∴11)1(d n b b n -+=带入cn nS b nn +=2得: 11)1(d n b -+cn nS n +=2∴)()21()21(11121131b d c n cd n d a d b n d d -=++--+-对+∈N n 恒成立 ∴⎪⎪⎪⎩⎪⎪⎪⎨⎧=-==+--=-0)(0021021111111b d c cd d a d b d d由①式得:d d 211=∵ 0≠d ∴ 01≠d 由③式得:0=c法二:证:(1)若0=c ,则d n a a n )1(-+=,2]2)1[(a d n n S n +-=,22)1(ad n b n +-=.当421b b b ,,成等比数列,4122b b b =,即:⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+2322d a a d a ,得:ad d 22=,又0≠d ,故a d 2=.由此:a n S n 2=,a k n a nk S nk 222)(==,a k n S n k 222=. 故:k nk S n S 2=(*,N n k ∈).(2)c n a d n n c n nS b n n ++-=+=22222)1(, cn a d n ca d n c a d n n ++--+-++-=2222)1(22)1(22)1(cn ad n ca d n ++--+-=222)1(22)1(. (※) 若}{n b 是等差数列,则Bn An b n +=型. 观察(※)式后一项,分子幂低于分母幂,故有:022)1(2=++-cn ad n c,即022)1(=+-a d n c ,而22)1(a d n +-≠0, 故0=c .经检验,当0=c 时}{n b 是等差数列.31.(2013年普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对))等差数列{}n a 的前n 项和为n S ,已知232=S a ,且124,,S S S 成等比数列,求{}n a 的通项式.【答案】32.(2013年普通高等学校招生统一考试天津数学(理)试题(含答案))已知首项为32的等比数列{}n a 不是递减数列, 其前n 项和为(*)n S n ∈N , 且S 3 + a 3, S 5 + a 5, S 4 + a 4成等差数列. (Ⅰ) 求数列{}n a 的通项公式; (Ⅱ) 设*()1n n nT S n S ∈=-N , 求数列{}n T 的最大项的值与最小项的值. 【答案】33.(2013年高考江西卷(理))正项数列{a n }的前项和{a n }满足:222(1)()0nn s n n s n n -+--+=(1)求数列{a n }的通项公式a n ; (2)令221(2)n n b n a+=+,数列{b n }的前n 项和为n T .证明:对于任意的*n N ∈,都有564n T < 【答案】(1)解:由222(1)()0nn S n n S n n -+--+=,得2()(1)0n n S n n S ⎡⎤-++=⎣⎦.由于{}n a 是正项数列,所以20,n n S S n n >=+.于是112,2a S n ==≥时,221(1)(1)2n n n a S S n n n n n -=-=+----=. 综上,数列{}n a 的通项2n a n =. (2)证明:由于2212,(2)n n nn a n b n a +==+. 则222211114(2)16(2)n n b n n n n ⎡⎤+==-⎢⎥++⎣⎦. 222222222111111111111632435(1)(1)(2)n T n n n n ⎡⎤=-+-+-++-+-⎢⎥-++⎣⎦…222211111151(1)162(1)(2)16264n n ⎡⎤=+--<+=⎢⎥++⎣⎦.34.(2013年普通高等学校招生统一考试广东省数学(理)卷(纯WORD 版))设数列{}n a 的前n 项和为n S .已知11a =,2121233n n S a n n n +=---,*n ∈N . (Ⅰ) 求2a 的值;(Ⅱ) 求数列{}n a 的通项公式; (Ⅲ) 证明:对一切正整数n ,有1211174n a a a +++< . 【答案】.(1) 解:2121233n n S a n n n +=---,n N *∈. ∴ 当1n =时,112212221233a S a a ==---=-又11a =,24a ∴= (2)解:2121233n n S a n n n +=---,n N *∈. ∴ ()()321112122333n n n n n n S na n n n na ++++=---=-① ∴当2n ≥时,()()()111213n n n n n S n a =-+=--②由① — ②,得 ()()112211n n n n S S na n a n n -+-=---+1222n n n a S S -=-()()1211n n n a na n a n n +∴=---+111n n a a n n +∴-=+ ∴数列n a n ⎧⎫⎨⎬⎩⎭是以首项为111a =,公差为1的等差数列. ()()2111,2nn a n n a n n n∴=+⨯-=∴=≥ 当1n =时,上式显然成立. 2*,n a n n N ∴=∈ (3)证明:由(2)知,2*,n a n n N =∈ ①当1n =时,11714a =<,∴原不等式成立.②当2n =时,121117144a a +=+<,∴原不等式亦成立. ③当3n ≥时, ()()()()221111,11n n n n n n >-⋅+∴<-⋅+ ()()()222121*********1121324211n a a a n n n n n ∴+++=+++<+++++⨯⨯-⋅-⋅+ 111111111111111121322423522211n n n n ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=+-+-+-++-+- ⎪ ⎪ ⎪ ⎪ ⎪--+⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭1111111111112132435211n n n n ⎛⎫=+-+-+-++-+- ⎪--+⎝⎭1111171117121214214n n n n ⎛⎫⎛⎫=++--=+--< ⎪ ⎪++⎝⎭⎝⎭∴当3n ≥时,,∴原不等式亦成立.综上,对一切正整数n ,有1211174n a a a +++< . 35.(2013年高考北京卷(理))已知{a n }是由非负整数组成的无穷数列,该数列前n 项的最大值记为A n ,第n项之后各项1n a +,2n a +,的最小值记为B n ,d n =A n -B n .(I)若{a n }为2,1,4,3,2,1,4,3,,是一个周期为4的数列(即对任意n ∈N *,4n n a a +=),写出d 1,d 2,d 3,d 4的值;(II)设d 为非负整数,证明:d n =-d (n =1,2,3)的充分必要条件为{a n }为公差为d 的等差数列;[来源:](III)证明:若a 1=2,d n =1(n =1,2,3,),则{a n }的项只能是1或者2,且有无穷多项为1.【答案】(I)12341, 3.d d d d ====(II)(充分性)因为{}n a 是公差为d 的等差数列,且0d ≥,所以12.n a a a ≤≤≤≤ 因此n n A a =,1n n B a +=,1(1,2,3,)n n n d a a d n +=-=-= . (必要性)因为0(1,2,3,)n d d n =-≤= ,所以n n n n A B d B =+≤. 又因为n n a A ≤,1n n a B +≥,所以1n n a a +≤. 于是n n A a =,1n n B a +=. 因此1n n n n n a a B A d d +-=-=-=,即{}n a 是公差为d 的等差数列.(III)因为112,1a d ==,所以112A a ==,1111B A d =-=.故对任意11,1n n a B ≥≥=.假设{}(2)n a n ≥中存在大于2的项.设m 为满足2n a >的最小正整数,则2m ≥,并且对任意1,2k k m a ≤<≤,. 又因为12a =,所以12m A -=,且2m m A a =>.于是211m m m B A d =->-=,{}1min ,2m m m B a B -=≥. 故111220m m m d A B ---=-≤-=,与11m d -=矛盾.所以对于任意1n ≥,有2n a ≤,即非负整数列{}n a 的各项只能为1或2. 因此对任意1n ≥,12n a a ≤=,所以2n A =. 故211n n n B A d =-=-=. 因此对于任意正整数n ,存在m 满足m n >,且1m a =,即数列{}n a 有无穷多项为1.36.(2013年高考陕西卷(理))设{}n a 是公比为q 的等比数列. (Ⅰ) 导{}n a 的前n 项和公式;(Ⅱ) 设q ≠1, 证明数列{1}n a +不是等比数列.【答案】解:(Ⅰ) 分两种情况讨论.①.}{111111na a a a S a a q n n =+++== 的常数数列,所以是首项为时,数列当 ②n n n n n n qa qa qa qa qS a a a a S q ++++=⇒++++=≠--1211211 时,当.上面两式错位相减:.)()()()-11123121n n n n n qa a qa qa a qa a qa a a S q -=--+-+-+=- ( q q a q qa a S n n n -1)1(.-111-=-=⇒.③综上,⎪⎩⎪⎨⎧≠--==)1(,1)1()1(,11q q q a q na S n n(Ⅱ) 使用反证法.设{}n a 是公比q ≠1的等比数列, 假设数列{1}n a +是等比数列.则 ①当1*+∈∃n a N n ,使得=0成立,则{1}n a +不是等比数列.②当01*≠+∈∀n a N n ,使得成立,则恒为常数=++=++-+11111111n n n n q a q a a a 1,0111111=≠⇒+=+⇒-q a q a q a n n 时当.这与题目条件q ≠1矛盾.③综上两种情况,假设数列{1}n a +是等比数列均不成立,所以当q ≠1时, 数列{1}n a +不是等比数列.。
2013数列真题(理) (2)
2013年全国高考理科数学试题分类汇编:数列一、选择题1 .(2013年高考上海卷(理))在数列{}n a 中,21nn a =-,若一个7行12列的矩阵的第i 行第j 列的元素,i j i j i j a a a a a =⋅++,(1,2,,7;1,2,,12i j ==L L )则该矩阵元素能取到的不同数值的个数为( ) (A)18 (B)28(C)48(D)63【答案】A.2 .(2013年普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对))已知数列{}n a 满足12430,3n n a a a ++==-,则{}n a 的前10项和等于 (A)()10613--- (B)()101139-- (C)()10313-- (D)()1031+3-【答案】C3 .(2013年高考新课标1(理))设n n n A B C ∆的三边长分别为,,n n n a b c ,n n n A B C ∆的面积为n S ,1,2,3,n =L ,若11111,2b c b c a >+=,111,,22n n nnn n n n c a b a a a b c +++++===,则( ) A.{S n }为递减数列 B.{S n }为递增数列C.{S 2n -1}为递增数列,{S 2n }为递减数列D.{S 2n -1}为递减数列,{S 2n }为递增数列【答案】B4 .(2013年普通高等学校招生统一考试安徽数学(理)试题(纯WORD 版))函数=()y f x 的图像如图所示,在区间[],a b 上可找到(2)n n ≥个不同的数12,...,,n x x x 使得1212()()()==,n nf x f x f x x x x 则n 的取值范围是(A){}3,4 (B){}2,3,4 (C) {}3,4,5 (D){}2,3【答案】B5 .(2013年普通高等学校招生统一考试福建数学(理)试题(纯WORD 版))已知等比数列{}n a 的公比为q,记(1)1(1)2(1)...,n m n m n m n m b a a a -+-+-+=+++*(1)1(1)2(1)...(,),n m n m n m n m c a a a m n N -+-+-+=•••∈则以下结论一定正确的是( )A.数列{}n b 为等差数列,公差为m qB.数列{}n b 为等比数列,公比为2m qC.数列{}n c 为等比数列,公比为2m q D.数列{}n c 为等比数列,公比为mm q【答案】C6 .(2013年普通高等学校招生统一考试新课标Ⅱ卷数学(理)(纯WORD 版含答案))等比数列{}n a 的前n项和为n S ,已知12310a a S +=,95=a ,则=1a(A)31 (B)31- (C)91(D)91-【答案】C7 .(2013年高考新课标1(理))设等差数列{}n a 的前n 项和为11,2,0,3n m m m S S S S -+=-==,则m =( )A.3B.4C.5D.6【答案】C8 .(2013年普通高等学校招生统一考试辽宁数学(理)试题(WORD 版))下面是关于公差0d >的等差数列()n a 的四个命题:{}1:n p a 数列是递增数列;{}2:n p na 数列是递增数列; 3:n a p n ⎧⎫⎨⎬⎩⎭数列是递增数列; {}4:3n p a nd +数列是递增数列;其中的真命题为(A)12,p p (B)34,p p (C)23,p p (D)14,p p【答案】D9 .(2013年高考江西卷(理))等比数列x,3x+3,6x+6,..的第四项等于A.-24B.0C.12D.24 【答案】A二、填空题10.(2013年高考四川卷(理))在等差数列{}n a 中,218a a -=,且4a 为2a 和3a 的等比中项,求数列{}n a 的首项、公差及前n 项和.【答案】解:设该数列公差为d ,前n 项和为n s .由已知,可得()()()21111228,38a d a d a d a d +=+=++.所以()114,30a d d d a +=-=,解得14,0a d ==,或11,3a d ==,即数列{}n a 的首相为4,公差为0,或首相为1,公差为3.所以数列的前n 项和4n s n =或232n n n s -=11.(2013年普通高等学校招生统一考试新课标Ⅱ卷数学(理)(纯WORD 版含答案))等差数列{}n a 的前n项和为n S ,已知10150,25S S ==,则n nS 的最小值为________.【答案】49-12.(2013年高考湖北卷(理))古希腊毕达哥拉斯学派的数学家研究过各种多边形数.如三角形数1,3,6,10,,第n 个三角形数为()2111222n n n n +=+.记第n 个k 边形数为(),N n k ()3k ≥,以下列出了部分k 边形数中第n 个数的表达式: 三角形数 ()211,322N n n n =+ 正方形数 ()2,4N n n = 五边形数 ()231,522N n n n =- 六边形数 ()2,62N n n n =-可以推测(),N n k 的表达式,由此计算()10,24N =___________. 选考题【答案】100013.(2013年普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD 版含附加题))在正项等比数列}{n a 中,215=a ,376=+a a ,则满足n n a a a a a a ΛΛ2121>+++的最大正整数n 的值为_____________.【答案】1214.(2013年高考湖南卷(理))设n S 为数列{}n a 的前n 项和,1(1),,2n n n n S a n N *=--∈则 (1)3a =_____; (2)12100S S S ++⋅⋅⋅+=___________.【答案】116-;10011(1)32- 15.(2013年普通高等学校招生统一考试福建数学(理)试题(纯WORD 版))当,1x R x ∈<时,有如下表达式:211.......1n x x x x+++++=- 两边同时积分得:11111222222011.......1ndx xdx x dx x dx dx x+++++=-⎰⎰⎰⎰⎰从而得到如下等式:23111111111()()...()...ln 2.2223212n n +⨯+⨯+⨯++⨯+=+ 请根据以下材料所蕴含的数学思想方法,计算:122311111111()()...()_____2223212nn n n n n n C C C C +⨯+⨯+⨯++⨯=+ 【答案】113[()1]12n n +-+16.(2013年普通高等学校招生统一考试重庆数学(理)试题(含答案))已知{}n a 是等差数列,11a =,公差0d ≠,n S 为其前n 项和,若125,,a a a 成等比数列,则8_____S =【答案】6417.(2013年上海市春季高考数学试卷(含答案))若等差数列的前6项和为23,前9项和为57,则数列的前n项和n =S __________.【答案】25766n n - 18.(2013年普通高等学校招生统一考试广东省数学(理)卷(纯WORD 版))在等差数列{}n a 中,已知3810a a +=,则573a a +=_____.【答案】2019.(2013年高考陕西卷(理))观察下列等式:211=22123-=- 2221263+-=2222124310-+-=-照此规律, 第n 个等式可为___)1(2)1-n 1--32-1121-n 222+=+++n n n ()(Λ____. 【答案】)1(2)1-n 1--32-1121-n 222+=+++n n n ()(Λ 20.(2013年高考新课标1(理))若数列{n a }的前n 项和为S n =2133n a +,则数列{n a }的通项公式是n a =______.【答案】n a =1(2)n --.21.(2013年普通高等学校招生统一考试安徽数学(理)试题(纯WORD 版))如图,互不-相同的点12,,,n A A X K K 和12,,,n B B B K K 分别在角O 的两条边上,所有n n A B 相互平行,且所有梯形11n n n n A B B A ++的面积均相等.设.n n OA a =若121,2,a a ==则数列{}n a 的通项公式是_________.【答案】*,23N n n a n∈-=22.(2013年高考北京卷(理))若等比数列{a n }满足a 2+a 4=20,a 3+a 5=40,则公比q =_______;前n 项和S n =___________.【答案】2,122n +-23.(2013年普通高等学校招生统一考试辽宁数学(理)试题(WORD 版))已知等比数列{}n a 是递增数列,nS 是{}n a 的前n 项和,若13a a ,是方程2540x x -+=的两个根,则6S =____________.【答案】63 三、解答题24.(2013年普通高等学校招生统一考试安徽数学(理)试题(纯WORD 版))设函数22222()1(,)23nn n x x x f x x x R n N n=-+++++∈∈K ,证明:(Ⅰ)对每个n n N ∈,存在唯一的2[,1]3n x ∈,满足()0n n f x =; (Ⅱ)对任意np N ∈,由(Ⅰ)中n x 构成的数列{}n x 满足10n n p x x n+<-<. 【答案】解: (Ⅰ) 224232224321)(0nx x x x x x f n x y x nn n ++++++-=∴=>ΛΘ是单调递增的时,当是x 的单调递增函数,也是n 的单调递增函数. 011)1(,01)0(=+-≥<-=n n f f 且.010)(],1,0(321>>>≥=∈⇒n n n n x x x x x f x Λ,且满足存在唯一x x x x x x x x x x x x x f x n n n -⋅++-<--⋅++-=++++++-≤∈-1141114122221)(,).1,0(2122242322Λ时当]1,32[0)23)(2(1141)(02∈⇒≤--⇒-⋅++-≤=⇒n n n n n n n n x x x x x x x f综上,对每个n n N ∈,存在唯一的2[,1]3n x ∈,满足()0n n f x =;(证毕) (Ⅱ) 由题知04321)(,012242322=++++++-=>>≥+nxx x x x x f x x nn n n n n n n pn n Λ0)()1(4321)(2212242322=+++++++++++-=+++++++++++p n x n x nx x x x x x f pn pn n pn np n p n p n p n p n p n p n ΛΛ上式相减:22122423222242322)()1(432432p n x n x n x x x x x n x x x x x pn p n n p n n p n p n p n p n p n nnn n n n ++++++++++=++++++++++++++ΛΛΛ)()(2212244233222)()1(-4-3-2--p n x n x nx x x x x x x x x x pn pn n pn nnn p n np n np n np n p n n +++++++++=+++++++++ΛΛ nx x n p n n p n n 1-111<⇒<+-=+. 法二:25.(2013年高考上海卷(理))(3 分+6分+9分)给定常数0c >,定义函数()2|4|||f x x c x c =++-+,数列123,,,a a a L 满足*1(),n n a f a n N +=∈.(1)若12a c =--,求2a 及3a ;(2)求证:对任意*1,n n n N a a c +∈-≥,;(3)是否存在1a ,使得12,,,n a a a L L 成等差数列?若存在,求出所有这样的1a ,若不存在,说明理由.【答案】:(1)因为0c >,1(2)a c =-+,故2111()2|4|||2a f a a c a c ==++-+=,3122()2|4|||10a f a a c a c c ==++-+=+(2)要证明原命题,只需证明()f x x c ≥+对任意x R ∈都成立,()2|4|||f x x c x c x c x c ≥+⇔++-+≥+即只需证明2|4|||+x c x c x c ++≥++若0x c +≤,显然有2|4|||+=0x c x c x c ++≥++成立;若0x c +>,则2|4|||+4x c x c x c x c x c ++≥++⇔++>+显然成立 综上,()f x x c ≥+恒成立,即对任意的*n N ∈,1n n a a c +-≥(3)由(2)知,若{}n a 为等差数列,则公差0d c ≥>,故n 无限增大时,总有0n a > 此时,1()2(4)()8n n n n n a f a a c a c a c +==++-+=++ 即8d c =+故21111()2|4|||8a f a a c a c a c ==++-+=++, 即1112|4|||8a c a c a c ++=++++,当10a c +≥时,等式成立,且2n ≥时,0n a >,此时{}n a 为等差数列,满足题意; 若10a c +<,则11|4|48a c a c ++=⇒=--,此时,230,8,,(2)(8)n a a c a n c ==+=-+L 也满足题意; 综上,满足题意的1a 的取值范围是[,){8}c c -+∞⋃--.26.(2013年江苏卷(数学))本小题满分10分.设数列{}122,3,3,34444n a L :,-,-,-,-,-,-,,-1-1-1-1k k k k k 644474448L 个(),,(),即当1122k k k k n -+<≤()()()k N +∈时,11k n a k -=(-),记12n n S a a a =++L ()n N +∈,对于l N +∈,定义集合{}l P 1n n n S a n N n l +=∈≤≤是的整数倍,,且 (1)求集合11P 中元素的个数; (2)求集合2000P 中元素的个数.【答案】本题主要考察集合.数列的概念与运算.计数原理等基础知识,考察探究能力及运用数学归纳法分析解决问题能力及推理论证能力. (1)解:由数列{}n a 的定义得:11=a ,22-=a ,23-=a ,34=a ,35=a ,36=a ,47-=a ,48-=a ,49-=a ,410-=a ,511=a∴11=S ,12-=S ,33-=S ,04=S ,35=S ,66=S ,27=S ,28-=S ,69-=S ,1010-=S ,511-=S∴111a S •=,440a S •=,551a S •=,662a S •=,11111a S •-= ∴集合11P 中元素的个数为5(2)证明:用数学归纳法先证)12()12(+-=+i i S i i 事实上,① 当1=i 时,3)12(13)12(-=+•-==+S S i i 故原式成立② 假设当m i =时,等式成立,即)12()12(+•-=+m m S m m 故原式成立 则:1+=m i ,时,2222)12(}32)(1(}1)1(2)[1()22()12()12()22()12(+-+++-=+-++==++++++m m m m m m S S S m m m m m m)32)(1()352(2++-=++-=m m m m综合①②得:)12()12(+-=+i i S i i 于是)1)(12()12()12()12(22}12(}12)[1(++=+++-=++=+++i i i i i i S S i i i i由上可知:}12(+i i S 是)12(+i 的倍数而)12,,2,1(12}12)(1(+=+=+++i j i a j i i Λ,所以)12()12()12(++=+++i j S S i i j i i 是)12,,2,1(}12)(1(+=+++i j a j i i Λ的倍数又)12)(1(}12)[1(++=++i i S i i 不是22+i 的倍数, 而)22,,2,1)(22(}12)(1(+=+-=+++i j i a j i i Λ所以)22()1)(12()22()12)(1()12)(1(+-++=+-=+++++i j i i i j S S i i j i i 不是)22,,2,1(}12)(1(+=+++i j a j i i Λ的倍数故当)12(+=i i l 时,集合l P 中元素的个数为2i 1-i 231=+++)(Λ 于是当)(1i 2j 1j )12(+≤≤++=i i l 时,集合l P 中元素的个数为j i 2+ 又471312312000++⨯⨯=)(故集合2000P 中元素的个数为100847312=+27.(2013年浙江数学(理))在公差为d 的等差数列}{n a 中,已知101=a ,且3215,22,a a a +成等比数列.(1)求n a d ,; (2)若0<d ,求.||||||||321n a a a a ++++Λ【答案】解:(Ⅰ)由已知得到:22221311(22)54(1)50(2)(11)25(5)a a a a d a d d d +=⇒++=+⇒+=+224112122125253404611n n d d d d d d d a n a n==-⎧⎧⇒++=+⇒--=⇒⎨⎨=+=-⎩⎩或; (Ⅱ)由(1)知,当0d<时,11n a n =-,①当111n ≤≤时,123123(1011)(21)0||||||||22n n n n n n n a a a a a a a a a +--≥∴++++=++++==g g g g g g②当12n ≤时,1231231112132123111230||||||||()11(2111)(21)212202()()2222n n n n a a a a a a a a a a a a n n n n a a a a a a a a ≤∴++++=++++-+++---+=++++-++++=⨯-=g g g g g g g g g g g g g g g所以,综上所述:1232(21),(111)2||||||||21220,(12)2n n n n a a a a n n n -⎧≤≤⎪⎪++++=⎨-+⎪≥⎪⎩g g g ; 28.(2013年高考湖北卷(理))已知等比数列{}n a 满足:2310a a -=,123125a a a =.(I)求数列{}n a 的通项公式; (II)是否存在正整数m ,使得121111ma a a +++≥L ?若存在,求m 的最小值;若不存在,说明理由. 【答案】解:(I)由已知条件得:25a =,又2110a q -=,13q ∴=-或,所以数列{}n a 的通项或253n n a -=⨯(II)若1q =-,12111105m a a a +++=-L 或,不存在这样的正整数m ; 若3q =,12111919110310mm a a a ⎡⎤⎛⎫+++=-<⎢⎥ ⎪⎝⎭⎢⎥⎣⎦L ,不存在这样的正整数m .29.(2013年山东数学(理))设等差数列{}n a 的前n 项和为n S ,且424S S =,221n n a a =+.(Ⅰ)求数列{}n a 的通项公式; (Ⅱ)设数列{}n b 前n 项和为n T ,且 12n n n a T λ++=(λ为常数).令2n n c b =*()n N ∈.求数列{}n c 的前n 项和n R .【答案】解:(Ⅰ)设等差数列{}n a 的首项为1a ,公差为d ,由424S S =,221n n a a =+得11114684(21)22(1)1a d a d a n a n d +=+⎧⎨+-=+-+⎩,解得,11a =,2d = 因此 21n a n =-*()n N ∈(Ⅱ)由题意知:12n n nT λ-=-所以2n ≥时,112122n n n n n nn b T T ----=-=-+ 故,1221221(1)()24n n n n n c b n ---===-*()n N ∈ 所以01231111110()1()2()3()(1)()44444n n R n -=⨯+⨯+⨯+⨯+⋅⋅⋅+-⨯, 则12311111110()1()2()(2)()(1)()444444n nn R n n -=⨯+⨯+⨯+⋅⋅⋅+-⨯+-⨯ 两式相减得1231311111()()()()(1)()444444n nn R n -=+++⋅⋅⋅+--⨯ 11()144(1)()1414n n n -=--- 整理得1131(4)94n n n R -+=-所以数列数列{}n c 的前n 项和1131(4)94n n n R -+=-30.(2013年江苏卷(数学))本小题满分16分.设}{n a 是首项为a ,公差为d 的等差数列)0(≠d ,n S 是其前n 项和.记cn nS b n n +=2,*N n ∈,其中c 为实数. (1)若0=c ,且421b b b ,,成等比数列,证明:k nk S n S 2=(*,N n k ∈);(2)若}{n b 是等差数列,证明:0=c .【答案】证明:∵}{n a 是首项为a ,公差为d 的等差数列)0(≠d ,n S 是其前n 项和 ∴d n n na S n 2)1(-+= (1)∵0=c ∴d n a n S b n n 21-+== ∵421b b b ,,成等比数列 ∴4122b b b = ∴)23()21(2d a a d a +=+∴041212=-d ad ∴0)21(21=-d a d ∵0≠d ∴d a 21= ∴a d 2= ∴a n a n n na d n n na S n 222)1(2)1(=-+=-+= ∴左边=a k n a nk S nk 222)(== 右边=a k n S n k 222=∴左边=右边∴原式成立(2)∵}{n b 是等差数列∴设公差为1d ,∴11)1(d n b b n -+=带入cn nS b n n +=2得: 11)1(d n b -+cn nS n +=2 ∴)()21()21(11121131b d c n cd n d a d b n d d -=++--+-对+∈N n 恒成立 ∴⎪⎪⎪⎩⎪⎪⎪⎨⎧=-==+--=-0)(0021021111111b d c cd d a d b d d 由①式得:d d 211= ∵ 0≠d ∴ 01≠d 由③式得:0=c 法二:证:(1)若0=c ,则d n a a n )1(-+=,2]2)1[(a d n n S n +-=,22)1(a d n b n +-=.当421b b b ,,成等比数列,4122b b b =, 即:⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+2322d a a d a ,得:ad d 22=,又0≠d ,故a d 2=. 由此:a n S n 2=,a k n a nk S nk 222)(==,a k n S n k 222=. 故:k nk S n S 2=(*,N n k ∈). (2)cn ad n n c n nS b n n ++-=+=22222)1(, cn a d n c a d n c a d n n ++--+-++-=2222)1(22)1(22)1( c n a d n c a d n ++--+-=222)1(22)1(. (※) 若}{n b 是等差数列,则Bn An b n +=型.观察(※)式后一项,分子幂低于分母幂,故有:022)1(2=++-cn ad n c,即022)1(=+-a d n c ,而22)1(a d n +-≠0, 故0=c . 经检验,当0=c 时}{n b 是等差数列.32.(2013年普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对))等差数列{}n a 的前n 项和为n S ,已知232=S a ,且124,,S S S 成等比数列,求{}n a 的通项式.【答案】33.(2013年天津数学(理))已知首项为32的等比数列{}n a 不是递减数列, 其前n 项和为(*)n S n ∈N , 且S 3 + a 3, S 5 + a 5, S 4 + a 4成等差数列.(Ⅰ) 求数列{}n a 的通项公式;(Ⅱ) 设*()1n n nT S n S ∈=-N , 求数列{}n T 的最大项的值与最小项的值. 【答案】34.(2013年高考江西卷(理))正项数列{a n }的前项和{a n }满足:222(1)()0n n s n n s n n -+--+=(1)求数列{a n }的通项公式a n ;(2)令221(2)n n b n a +=+,数列{b n }的前n 项和为n T .证明:对于任意的*n N ∈,都有564n T <【答案】(1)解:由222(1)()0n n S n n S n n -+--+=,得2()(1)0n n S n n S ⎡⎤-++=⎣⎦.由于{}n a 是正项数列,所以20,n n S S n n >=+.于是112,2a S n ==≥时,221(1)(1)2n n n a S S n n n n n -=-=+----=.综上,数列{}n a 的通项2n a n =.(2)证明:由于2212,(2)n n nn a n b n a +==+. 则222211114(2)16(2)n n b n n n n ⎡⎤+==-⎢⎥++⎣⎦.222222222111111111111632435(1)(1)(2)n T n n n n ⎡⎤=-+-+-++-+-⎢⎥-++⎣⎦…222211111151(1)162(1)(2)16264n n ⎡⎤=+--<+=⎢⎥++⎣⎦.35.(2013年广东省数学(理))设数列{}n a 的前n 项和为n S .已知11a =,2121233n n Sa n n n +=---,*n ∈N .(Ⅰ) 求2a 的值;(Ⅱ) 求数列{}n a 的通项公式;(Ⅲ) 证明:对一切正整数n ,有1211174n a a a +++<L . 【答案】.(1) 解:Q 2121233n n S a n n n +=---,n N *∈. ∴ 当1n =时,112212221233a S a a ==---=- 又11a =,24a ∴=(2)解:Q 2121233n n S a n n n +=---,n N *∈. ∴ ()()321112122333n n n n n n S na n n n na ++++=---=- ① ∴当2n ≥时,()()()111213n n n n n S n a =-+=-- ② 由① — ②,得 ()()112211n n n n S S na n a n n -+-=---+1222n n n a S S -=-Q()()1211n n n a na n a n n +∴=---+111n n a a n n +∴-=+ ∴数列n a n ⎧⎫⎨⎬⎩⎭是以首项为111a =,公差为1的等差数列. ()()2111,2n n a n n a n n n∴=+⨯-=∴=≥ 当1n =时,上式显然成立. 2*,n a n n N ∴=∈(3)证明:由(2)知,2*,n a n n N =∈①当1n =时,11714a =<,∴原不等式成立. ②当2n =时, 121117144a a +=+<,∴原不等式亦成立. ③当3n ≥时, ()()()()221111,11n n n n n n >-⋅+∴<-⋅+Q()()()2221211111111111121324211n a a a n n n n n ∴+++=+++<+++++⨯⨯-⋅-⋅+L L L 111111111111111121322423522211n n n n ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=+-+-+-++-+- ⎪ ⎪ ⎪ ⎪ ⎪--+⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭L 1111111111112132435211n n n n ⎛⎫=+-+-+-++-+- ⎪--+⎝⎭L 1111171117121214214n n n n ⎛⎫⎛⎫=++--=+--< ⎪ ⎪++⎝⎭⎝⎭ ∴当3n ≥时,,∴原不等式亦成立.综上,对一切正整数n ,有1211174n a a a +++<L . 36.(2013年高考北京卷(理))已知{a n }是由非负整数组成的无穷数列,该数列前n 项的最大值记为A n ,第n 项之后各项1n a +,2n a +,的最小值记为B n ,d n =A n -B n .(I)若{a n }为2,1,4,3,2,1,4,3,,是一个周期为4的数列(即对任意n ∈N *,4n n a a +=),写出d 1,d 2,d 3,d 4的值; (II)设d 为非负整数,证明:d n =-d (n =1,2,3)的充分必要条件为{a n }为公差为d 的等差数列;(III)证明:若a 1=2,d n =1(n =1,2,3,),则{a n }的项只能是1或者2,且有无穷多项为1.【答案】(I)12341, 3.d d d d ====(II)(充分性)因为{}n a 是公差为d 的等差数列,且0d ≥,所以12.n a a a ≤≤≤≤L L因此n n A a =,1n n B a +=,1(1,2,3,)n n n d a a d n +=-=-=L .(必要性)因为0(1,2,3,)n d d n =-≤=L ,所以n n n n A B d B =+≤.又因为n n a A ≤,1n n a B +≥,所以1n n a a +≤. 于是n n A a =,1n n B a +=.因此1n n n n n a a B A d d +-=-=-=,即{}n a 是公差为d 的等差数列. (III)因为112,1a d ==,所以112A a ==,1111B A d =-=.故对任意11,1n n a B ≥≥=.假设{}(2)n a n ≥中存在大于2的项.设m 为满足2n a >的最小正整数,则2m ≥,并且对任意1,2k k m a ≤<≤,.又因为12a =,所以12m A -=,且2m m A a =>.于是211m m m B A d =->-=,{}1min ,2m m m B a B -=≥.故111220m m m d A B ---=-≤-=,与11m d -=矛盾.所以对于任意1n ≥,有2n a ≤,即非负整数列{}n a 的各项只能为1或2.因此对任意1n ≥,12n a a ≤=,所以2n A =. 故211n n n B A d =-=-=.因此对于任意正整数n ,存在m 满足m n >,且1m a =,即数列{}n a 有无穷多项为1.37.(2013年高考陕西卷(理))设{}n a 是公比为q 的等比数列.(Ⅰ) 推导{}n a 的前n 项和公式;(Ⅱ) 设q ≠1, 证明数列{1}n a +不是等比数列.【答案】解:(Ⅰ) 分两种情况讨论. ①.}{111111na a a a S a a q n n =+++==Λ的常数数列,所以是首项为时,数列当②n n n n n n qa qa qa qa qS a a a a S q ++++=⇒++++=≠--1211211ΛΛ时,当.上面两式错位相减:.)()()()-11123121n n n n n qa a qa qa a qa a qa a a S q -=--+-+-+=-Λ( qq a q qa a S n n n -1)1(.-111-=-=⇒. ③综上,⎪⎩⎪⎨⎧≠--==)1(,1)1()1(,11q q q a q na S n n(Ⅱ) 使用反证法. 设{}n a 是公比q ≠1的等比数列, 假设数列{1}n a +是等比数列.则①当1*+∈∃n a N n ,使得=0成立,则{1}n a +不是等比数列.②当01*≠+∈∀n a N n ,使得成立,则恒为常数=++=++-+11111111n n n n q a q a a a 1,0111111=≠⇒+=+⇒-q a q a q a n n 时当.这与题目条件q ≠1矛盾.③综上两种情况,假设数列{1}n a +是等比数列均不成立,所以当q ≠1时, 数列{1}n a +不是等比数列.。
2013年全国各地高考试题分类汇编(数列)
11ma ++≥2.(本小题满分16分)(2013江苏卷)设}{n a 是首项为a ,公差为d 的等差数列)0(≠d ,n S 是其前n 项和.记cn nS b nn +=2, *N n ∈,其中c 为实数.(1)若0=c ,且421b b b ,,成等比数列,证明:k nk S n S 2=(*,N n k ∈); (2)若}{n b 是等差数列,证明:0=c . 证:(1)若0=c ,则d n a a n )1(-+=,2]2)1[(a d n n S n +-=,22)1(ad n b n +-=.当421b b b ,,成等比数列,4122b b b =,即:⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+2322d a a d a ,得:ad d 22=,又0≠d ,故a d 2=.由此:a n S n 2=,a k n a nk S nk 222)(==,a k n S n k 222=. 故:k nk S n S 2=(*,N n k ∈).(2)cn a d n n c n nS b n n ++-=+=22222)1(, c n a d n ca d n c a d n n ++--+-++-=2222)1(22)1(22)1( cn a d n ca d n ++--+-=222)1(22)1(. (※) 若}{n b 是等差数列,则Bn An b n +=型. 观察(※)式后一项,分子幂低于分母幂,故有:022)1(2=++-cn ad n c,即022)1(=+-a d n c ,而(1)202n d a -+≠, 故0=c .经检验,当0=c 时}{n b 是等差数列.3.(本题满分14分)(2013浙江.理)在公差为d 的等差数列{a n }中,已知a 1=10,且a 1,2a 2+2,5a 3成等比数列.(Ⅰ)求d ,a n ;(Ⅱ) 若d<0,求|a 1|+|a 2|+|a 3|+…+|a n | .解.本题主要考查等差数列、等比数列的概念,等差数列通项公式、求和公式等基础知识,同时考查运算求解能力。
2013年全国高考理科数学试题分类汇编4:数列 2
(2004年全国卷)已知数列{}n a 中,n S 是其前n 项和,并且1142(1,2,),1n n S a n a +=+== ,(Ⅰ)设数列),2,1(21 =-=+n a a b n n n ,求证:数列{}n b 是等比数列; (Ⅱ)设数列),2,1(,2==n a c n nn ,求证:数列{}n c 是等差数列; (Ⅲ)求数列{}n a 的通项公式及前n 项和. 解:b n =3·21n -.当n ≥2时,S n =4a 1n -+2=21n -(3n-4)+22004·全国)已知数列{}n a 满足11a =,123123(1)n n a a a a n a -=++++- (2)n ≥,求{}n a 的通项公式.解:∴1(1),!(2).2n n a n n =⎧⎪=⎨≥⎪⎩(2006.福建.文.22)已知数列{}n a 满足*12211,3,32().n n n a a a a a n N ++===-∈(I )证明:数列{}1n n a a +-是等比数列; (II )求数列{}n a 的通项公式;(2006,福建)已知数列{}n a 满足111,21()n n a a a n *+==+∈N .(1)求数列{}n a 的通项公式;(2)若数列{}n b 满足12111444(1)()nnb b b b n a n ---*=+∈N ,证明:{}n b 是等差数列;(2006全国I.22)设数列{}n a 的前n 项的和14122333n n n S a +=-⨯+,1,2,3,n =求首项1a 与通项n a ;(2010安徽理数) 设数列12,,,,n a a a 中的每一项都不为0。
证明:{}n a 为等差数列的充分必要条件是:对任何n ∈N ,都有1223111111n n n na a a a a a a a +++++= 。
(全国大纲理20) 设数列{}n a 满足10a =且1111.11n na a +-=-- (Ⅰ)求{}n a 的通项公式;(Ⅱ)设1, 1.nn n k n k b b S ===<∑记S 证明:浙江理19.已知数列{}n a 满足:21=a 且()n a a n a n n n ++=+121(*∈N n )求证:数列⎭⎬⎫⎩⎨⎧-1n a n 为等比数列,并求数列{}n a 的通项公式;例题:设数列{}n a 满足333313221na a a a n n =++++- (*∈N n ) ①求数列{}n a 的通项公式n a ;②设nn a nb =,求数列{}n b 的前n 项和n S(2013年安徽数学(理)试题(纯WORD 版))如图,互不-相同的点12,,,n A A X 和12,,,n B B B 分别在角O 的两条边上,所有n n A B 相互平行,且所有梯形11n n n n A B B A ++的面积均相等.设.n n OA a =若121,2,a a ==则数列{}n a 的通项公式是_________.【答案】*,23N n n a n∈-=(2013年辽宁数学(理))已知等比数列{}n a 是递增数列,n S 是{}n a 的前n 项和,若13a a ,是方程2540x x -+=的两个根,则6S =___________【答案】63(2013年浙江数学(理)试题)在公差为d 的等差数列}{n a 中,已知101=a ,且3215,22,a a a +成等比数列.(1)求n a d ,; (2)若0<d ,求.||||||||321n a a a a ++++(2013年广东省数学(理)卷)设数列{}n a 的前n 项和为n S .已知11a =,2121233n n S a n n n +=---,*n ∈N . (Ⅰ) 求2a 的值; (Ⅱ) 求数列{}n a 的通项公式;【答案】.(1) 24a ∴= (2)2*,n a n n N ∴=∈2013年山东数学(理))设等差数列{}n a 的前n 项和为n S ,且424S S =,221n n a a =+.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设数列{}n b 前n 项和为n T ,且 12n n na T λ++=(λ为常数).令2n n c b =*()n N ∈.求数列{}n c 的前n 项和n R . 答案】解:(Ⅰ)21n a n =-*()n N ∈ (Ⅱ)1221221(1)()24n n n n n c b n ---===-*()n N ∈(2013年高考江西卷(理))正项数列{a n }的前项和{a n }满足:222(1)()0n n s n n s n n -+--+=(1)求数列{a n }的通项公式a n ; (2)令221(2)n n b n a+=+,数列{b n }的前n 项和为n T .证明:对于任意的*n N ∈,都有564n T < 【答案】(1)解:2na n =.。
2013高考数学真题分类汇编—数列模块
2013高考数学—数列分类汇编1.(2013江苏卷14)在正项等比数列}{n a 中,215=a ,376=+a a ,则满足n n a a a a a a 2121>+++的最大正整数n 的值为 .2。
(2013江苏卷19)设}{n a 是首项为a ,公差为d 的等差数列)0(≠d ,n S 是其前n 项和.记cn nS b n n +=2,*N n ∈,其中c 为实数. (1)若0=c ,且421b b b ,,成等比数列,证明:k nk S n S 2=(*,N n k ∈);(2)若}{n b 是等差数列,证明:0=c .3。
(2013山东卷理20)设等差数列}{n a 的前n 项和为n S ,244S S =,122+=n n a a (1)求数列}{n a 的通项公式; (2)设数列}{n b 的前n 项和为n T ,且λ=++nn n a T 21(λ为常数),令n n b c 2=(*∈N n ),求数列}{n c 的前n 项和n R 。
4。
(2013陕西卷理17)设}{n a 是公比为q 的等比数列. (1) 推导}{n a 的前n 项和公式;(2) 设1≠q ,证明数列}1{+n a 不是等比数列5。
(2013新课标1卷理7)设等差数列}{n a 的前n 项和n S ,21-=-m S ,0=m S ,31=+m S ,在=m.A 3 .B 4 .C 5 .D 66。
(2013新课标1卷理14)数列}{n a 的前n 项和为3132+=n n a S ,则数列}{n a 的通项公式为7.(2013江西卷理17)正项数列}{n a 的前n 项和n S 满足0)()1(222=+--+-n n S n n S n n(1)求数列}{n a 的通项公式n a ; (2)令22)2(1n n a n n b ++=,数列}{n b 的前n 项和为n T ,证明:对于任意*∈N n ,都有645<n T8。
2013年理科全国各省市高考真题——数列(解答题带答案)
2013年全国各省市理科数学—数列1、2013大纲理T17.(本小题满分10分)等差数列{}n a 的前n 项和为n S ,已知232=S a ,且124,,S S S 成等比数列,求{}n a 的通项式。
求数列{c n }的前n 项和R n .3、2013四川理T16.(本小题满分12分)在等差数列{}n a 中,138a a +=,且4a 为2a 和9a 的等比中项,求数列{}n a 的首项、公差及前n 项和。
4、2013天津理T19. (本小题满分14分)已知首项为32的等比数列{}n a 不是递减数列, 其前n 项和为(*)n S n ∈N , 且S 3 + a 3, S 5 + a 5, S 4 + a 4成等差数列.(Ⅰ) 求数列{}n a 的通项公式; (Ⅱ) 设*()1n n nT S n S ∈=-N , 求数列{}n T 的最大项的值与最小项的值.5、2013浙江理T18.在公差为d 的等差数列}{n a 中,已知101=a ,且3215,22,a a a +成等比数列。
(1)求n a d ,;(2)若0<d ,求.||||||||321n a a a a ++++6、2013广东理T19.(本小题满分14分) 设数列{}n a 的前n 项和为n S .已知11a =,2121233n n S a n n n +=---,*n ∈N . (Ⅰ) 求2a 的值;(Ⅱ) 求数列{}n a 的通项公式;(Ⅲ) 证明:对一切正整数n ,有1211174n a a a +++< .7、2013安徽理T20.(本小题满分13分)设函数22222()1(,)23n nn x x x f x x x R n N n=-+++++∈∈ ,证明:(Ⅰ)对每个nn N ∈,存在唯一的2[,1]3n x ∈,满足()0n n f x =; (Ⅱ)对任意np N ∈,由(Ⅰ)中n x 构成的数列{}n x 满足10n n p x x n+<-<。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2013年全国高考理科数学试题分类汇编:数列一、选择题1 .(2013年高考上海卷(理))在数列{}n a 中,21n na =-,若一个7行12列的矩阵的第i 行第j 列的元素,i j i j i j a a a a a =⋅++,(1,2,,7;1,2,,12i j ==)则该矩阵元素能取到的不同数值的个数为( )(A)18 (B)28(C)48(D)63【答案】A.2 .(2013年普通高等学校招生统一考试大纲版数学(理))已知数列{}n a 满足12430,3n n a a a ++==-,则{}n a 的前10项和等于(A)()10613--- (B)()101139-- (C)()10313-- (D)()1031+3- 【答案】C3 .(2013年高考新课标1(理))设n n n A B C ∆的三边长分别为,,n n n a b c ,n n n A B C ∆的面积为n S ,1,2,3,n =,若11111,2b c b c a >+=,111,,22n n n nn n n n c a b a a a b c +++++===,则( ) A.{S n }为递减数列 B.{S n }为递增数列C.{S 2n -1}为递增数列,{S 2n }为递减数列D.{S 2n -1}为递减数列,{S 2n }为递增数列【答案】B4 .(2013年普通高等学校招生统一考试安徽数学(理))函数=()y f x 的图像如图所示,在区间[],a b 上可找到(2)n n ≥个不同的数12,...,,n x x x 使得1212()()()==,n nf x f x f x x x x 则n 的取值范围是(A){}3,4 (B){}2,3,4 (C) {}3,4,5 (D){}2,3【答案】B5 .(2013年普通高等学校招生统一考试福建数学(理))已知等比数列的公比为q,记*(1)1(1)2(1)...(,),n m n m n m n m c a a a m n N -+-+-+=∙∙∙∈则以下结论一定正确的是( )A.数列{}n b 为等差数列,公差为mq B.数列{}n b 为等比数列,公比为2mqC.数列{}n c 为等比数列,公比为2m qD.数列{}n c 为等比数列,公比为mm q【答案】C6 .(2013年普通高等学校招生统一考试新课标Ⅱ卷数学(理)(纯WORD 版含答案))等比数列的前项和为,已知,,则 (A)(B)(C)(D)【答案】C7 .(2013年高考新课标1(理))设等差数列{}n a 的前n 项和为11,2,0,3n m m m S S S S -+=-==,则m =( )A.3 B.4 C.5 D.6【答案】C8 .(2013年普通高等学校招生统一考试辽宁数学(理)试题(WORD 版))下面是关于公差0d >的等差数列()n a 的四个命题:{}1:n p a 数列是递增数列;{}2:n p na 数列是递增数列; 3:n a p n ⎧⎫⎨⎬⎩⎭数列是递增数列;{}4:3n p a nd +数列是递增数列; 其中的真命题为(A)12,p p (B)34,p p (C)23,p p (D)14,p p【答案】D9 .(2013年高考江西卷(理))等比数列x,3x+3,6x+6,..的第四项等于A.-24B.0C.12D.24 【答案】A二、填空题10.(2013年高考四川卷(理))在等差数列{}n a 中,218a a -=,且4a 为2a 和3a 的等比中项,求数列{}n a 的首项、公差及前n 项和.【答案】解:设该数列公差为d ,前n 项和为n s .由已知,可得()()()21111228,38a d a d a d a d +=+=++. 所以()114,30a d d d a +=-=,解得14,0a d ==,或11,3a d ==,即数列{}n a 的首相为4,公差为0,或首相为1,公差为3.所以数列的前n 项和4n s n =或232n n n s -=11.(2013年普通高等学校招生统一考试新课标Ⅱ卷数学(理))等差数列的前项和为,已知,则的最小值为________.【答案】49-12.(2013年高考湖北卷(理))古希腊毕达哥拉斯学派的数学家研究过各种多边形数.如三角形数1,3,6,10,,第n 个三角形数为()2111222n n n n +=+.记第n 个k 边形数为(),N n k ()3k ≥,以下列出了部分k 边形数中第n 个数的表达式: 三角形数 ()211,322N n n n =+正方形数 ()2,4N n n =五边形数 ()231,522N n n n =- 六边形数 ()2,62N n n n =-可以推测(),N n k 的表达式,由此计算()10,24N =___________.【答案】100013.(2013年普通高等学校招生全国统一招生考试江苏卷)在正项等比数列}{n a 中,215=a ,376=+a a ,则满足n n a a a a a a 2121>+++的最大正整数n 的值为_____________.【答案】1214.(2013年高考湖南卷(理))设n S 为数列{}n a 的前n 项和,1(1),,2n n n n S a n N *=--∈则 (1)3a =_____; (2)12100S S S ++⋅⋅⋅+=___________.【答案】116-;10011(1)32- 15.(2013年普通高等学校招生统一考试福建数学(理))当时,有如下表达式:211.......1n x x x x+++++=- 两边同时积分得:从而得到如下等式:请根据以下材料所蕴含的数学思想方法,计算:【答案】16.(2013年普通高等学校招生统一考试重庆数学(理))已知是等差数列,,公差,为其前项和,若成等比数列,则【答案】17.(2013年上海市春季高考数学试卷)若等差数列的前6项和为23,前9项和为57,则数列的前n 项和n =S __________.【答案】25766n n - 18.(2013年普通高等学校招生统一考试广东省数学(理))在等差数列{}n a 中,已知3810a a +=,则573a a +=_____.【答案】2019.(2013年高考陕西卷(理))观察下列等式:211=22123-=- 2221263+-=2222124310-+-=-{}n a 11a =0d ≠n S n 125,,a a a 8_____S =64照此规律, 第n 个等式可为___)1(2)1-n 1--32-1121-n 222+=+++n n n ()( ____. 【答案】)1(2)1-n 1--32-1121-n 222+=+++n n n ()( 20.(2013年高考新课标1(理))若数列{}的前n 项和为S n =,则数列{}的通项公式是=______.【答案】=.21.(2013年普通高等学校招生统一考试安徽数学(理))如图,互不-相同的点12,,,n A A X 和12,,,n B B B 分别在角O 的两条边上,所有n n A B 相互平行,且所有梯形11n n n n A B B A ++的面积均相等.设.n n OA a =若121,2,a a ==则数列{}n a 的通项公式是_________.【答案】*,23N n n a n∈-=22.(2013年高考北京卷(理))若等比数列{a n }满足a 2+a 4=20,a 3+a 5=40,则公比q =_______;前n 项和S n =___________.【答案】2,122n +-23.(2013年普通高等学校招生统一考试辽宁数学(理))已知等比数列{}n a 是递增数列,n S 是{}n a 的前n 项和,若13a a ,是方程2540x x -+=的两个根,则6S =____________.【答案】63三、解答题24.(2013年普通高等学校招生统一考试安徽数学(理))设函数22222()1(,)23nn n x x x f x x x R n N n=-+++++∈∈,证明: (Ⅰ)对每个nn N ∈,存在唯一的2[,1]3n x ∈,满足()0n n f x =;(Ⅱ)对任意np N ∈,由(Ⅰ)中n x 构成的数列{}n x 满足10n n p x x n+<-<. 【答案】解: (Ⅰ) 224232224321)(0nx x x x x x f n x y x nn n ++++++-=∴=> 是单调递增的时,当是x 的单调递增函数,也是n 的单调递增函数. 011)1(,01)0(=+-≥<-=n n f f 且.010)(],1,0(321>>>≥=∈⇒n n n n x x x x x f x ,且满足存在唯一x x x x x x x x x x x x x f x n n n -⋅++-<--⋅++-=++++++-≤∈-1141114122221)(,).1,0(2122242322 时当]1,32[0)23)(2(1141)(02∈⇒≤--⇒-⋅++-≤=⇒n n n n n n n n x x x x x x x f综上,对每个n n N ∈,存在唯一的2[,1]3n x ∈,满足()0n n f x =;(证毕) (Ⅱ) 由题知04321)(,012242322=++++++-=>>≥+nxx x x x x f x x nn n n n n n n pn n0)()1(4321)(2212242322=+++++++++++-=+++++++++++p n x n x nx x x x x x f pn pn n pn np n p n p n p n p n p n p n 上式相减:22122423222242322)()1(432432p n x n x n x x x x x n x x x x x pn p n n p n np n p n p n p n p n nnn n n n ++++++++++=++++++++++++++ )()(2212244233222)()1(-4-3-2--p n x n x n x x x x x x x x x x pn pn n pn nnn p n np n np n np n p n n +++++++++=+++++++++ nx x n p n n p n n 1-111<⇒<+-=+. 法二:25.(2013年高考上海卷(理))(3 分+6分+9分)给定常数0c >,定义函数()2|4|||f x x c x c =++-+,数列123,,,a a a 满足*1(),n n a f a n N +=∈.(1)若12a c =--,求2a 及3a ;(2)求证:对任意*1,n n n N a a c +∈-≥,; (3)是否存在1a ,使得12,,,n a a a 成等差数列?若存在,求出所有这样的1a ,若不存在,说明理由.【答案】:(1)因为0c >,1(2)a c =-+,故2111()2|4|||2a f a a c a c ==++-+=,3122()2|4|||10a f a a c a c c ==++-+=+(2)要证明原命题,只需证明()f x x c ≥+对任意x R ∈都成立,()2|4|||f x x c x c x c x c ≥+⇔++-+≥+ 即只需证明2|4|||+x c x c x c ++≥++若0x c +≤,显然有2|4|||+=0x c x c x c ++≥++成立;若0x c +>,则2|4|||+4x c x c x c x c x c ++≥++⇔++>+显然成立 综上,()f x x c ≥+恒成立,即对任意的*n N ∈,1n n a a c +-≥(3)由(2)知,若{}n a 为等差数列,则公差0d c ≥>,故n 无限增大时,总有0n a > 此时,1()2(4)()8n n n n n a f a a c a c a c +==++-+=++ 即8d c =+故21111()2|4|||8a f a a c a c a c ==++-+=++, 即1112|4|||8a c a c a c ++=++++,当10a c +≥时,等式成立,且2n ≥时,0n a >,此时{}n a 为等差数列,满足题意; 若10a c +<,则11|4|48a c a c ++=⇒=--, 此时,230,8,,(2)(8)n a a c a n c ==+=-+也满足题意;综上,满足题意的1a 的取值范围是[,){8}c c -+∞⋃--.26.(2013年普通高等学校招生全国统一招生考试江苏卷(数学)本小题满分10分.设数列{}122,3,3,34444n a :,-,-,-,-,-,-,,-1-1-1-1k k k k k 个(),,(), 即当1122k k k k n -+<≤()()()k N +∈时,11k n a k -=(-),记12n n S a a a =++()n N +∈,对于l N +∈,定义集合{}l P 1n n n S a n N n l +=∈≤≤是的整数倍,,且(1)求集合11P 中元素的个数; (2)求集合2000P 中元素的个数.【答案】本题主要考察集合.数列的概念与运算.计数原理等基础知识,考察探究能力及运用数学归纳法分析解决问题能力及推理论证能力.(1)解:由数列{}n a 的定义得:11=a ,22-=a ,23-=a ,34=a ,35=a ,36=a ,47-=a ,48-=a ,49-=a ,410-=a ,511=a∴11=S ,12-=S ,33-=S ,04=S ,35=S ,66=S ,27=S ,28-=S ,69-=S ,1010-=S ,511-=S∴111a S ∙=,440a S ∙=,551a S ∙=,662a S ∙=,11111a S ∙-= ∴集合11P 中元素的个数为5(2)证明:用数学归纳法先证)12()12(+-=+i i S i i 事实上,① 当1=i 时,3)12(13)12(-=+∙-==+S S i i 故原式成立② 假设当m i =时,等式成立,即)12()12(+∙-=+m m S m m 故原式成立 则:1+=m i ,时,2222)12(}32)(1(}1)1(2)[1()22()12()12()22()12(+-+++-=+-++==++++++m m m m m m S S S m m m m m m )32)(1()352(2++-=++-=m m m m综合①②得:)12()12(+-=+i i S i i 于是)1)(12()12()12()12(22}12(}12)[1(++=+++-=++=+++i i i i i i S S i i i i由上可知:}12(+i i S 是)12(+i 的倍数而)12,,2,1(12}12)(1(+=+=+++i j i a j i i ,所以)12()12()12(++=+++i j S S i i j i i 是)12,,2,1(}12)(1(+=+++i j a j i i 的倍数又)12)(1(}12)[1(++=++i i S i i 不是22+i 的倍数, 而)22,,2,1)(22(}12)(1(+=+-=+++i j i a j i i所以)22()1)(12()22()12)(1()12)(1(+-++=+-=+++++i j i i i j S S i i j i i 不是)22,,2,1(}12)(1(+=+++i j a j i i 的倍数故当)12(+=i i l 时,集合l P 中元素的个数为2i 1-i 231=+++)( 于是当)(1i 2j 1j )12(+≤≤++=i i l 时,集合l P 中元素的个数为j i 2+ 又471312312000++⨯⨯=)( 故集合2000P 中元素的个数为100847312=+27.(2013年普通高等学校招生统一考试浙江数学(理))在公差为d 的等差数列}{n a 中,已知101=a ,且3215,22,a a a +成等比数列.(1)求n a d ,; (2)若0<d ,求.||||||||321n a a a a ++++【答案】解:(Ⅰ)由已知得到:22221311(22)54(1)50(2)(11)25(5)a a a a d a d d d +=⇒++=+⇒+=+224112122125253404611n nd d d d d d d a n a n ==-⎧⎧⇒++=+⇒--=⇒⎨⎨=+=-⎩⎩或; (Ⅱ)由(1)知,当0d<时,11n a n =-,①当111n ≤≤时,123123(1011)(21)0||||||||22n n n n n n n a a a a a a a a a +--≥∴++++=++++==②当12n ≤时,1231231112132123111230||||||||()11(2111)(21)212202()()2222n n n n a a a a a a a a a a a a n n n n a a a a a a a a ≤∴++++=++++-+++---+=++++-++++=⨯-=所以,综上所述:1232(21),(111)2||||||||21220,(12)2n n n n a a a a n n n -⎧≤≤⎪⎪++++=⎨-+⎪≥⎪⎩;28.(2013年高考湖北卷(理))已知等比数列{}n a 满足:2310a a -=,123125a a a =.(I)求数列{}n a 的通项公式;(II)是否存在正整数m ,使得121111ma a a +++≥?若存在,求m 的最小值;若不存在,说明理由. 【答案】解:(I)由已知条件得:25a =,又2110a q -=,13q ∴=-或,所以数列{}n a 的通项或253n n a -=⨯(II)若1q =-,12111105m a a a +++=-或,不存在这样的正整数m ; 若3q =,12111919110310mm a a a ⎡⎤⎛⎫+++=-<⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,不存在这样的正整数m . 29.(2013年普通高等学校招生统一考试山东数学(理))设等差数列的前n 项和为,且,.(Ⅰ)求数列的通项公式;(Ⅱ)设数列前n 项和为,且 (为常数).令.求数列的前n 项和.【答案】解:(Ⅰ)设等差数列的首项为,公差为,由,得, 解得,, 因此(Ⅱ)由题意知:所以时,故,所以, 则 两式相减得整理得 所以数列数列的前n 项和{}n a n S 424S S =221n n a a =+{}n a {}n b n T 12n n na T λ++=λ2n n c b =*()n N ∈{}n c n R {}n a 1a d 424S S =221n n a a =+11114684(21)22(1)1a d a d a n a n d +=+⎧⎨+-=+-+⎩11a =2d =21n a n =-*()n N ∈12n n nT λ-=-2n ≥112122n n n n n n n b T T ----=-=-+1221221(1)()24n n n n n c b n ---===-*()n N ∈01231111110()1()2()3()(1)()44444n n R n -=⨯+⨯+⨯+⨯+⋅⋅⋅+-⨯12311111110()1()2()(2)()(1)()444444n nn R n n -=⨯+⨯+⨯+⋅⋅⋅+-⨯+-⨯1231311111()()()()(1)()444444n n n R n -=+++⋅⋅⋅+--⨯11()144(1)()1414nnn -=---1131(4)94n n n R -+=-{}n c 1131(4)94n n n R -+=-30.(2013年普通高等学校招生全国统一招生考试江苏卷)本小题满分16分.设}{n a 是首项为a ,公差为d 的等差数列)0(≠d ,n S 是其前n 项和.记cn nS b nn +=2,*N n ∈,其中c 为实数. (1)若0=c ,且421b b b ,,成等比数列,证明:k nk S n S 2=(*,N n k ∈); (2)若}{n b 是等差数列,证明:0=c .【答案】证明:∵}{n a 是首项为a ,公差为d 的等差数列)0(≠d ,n S 是其前n 项和∴d n n na S n 2)1(-+= (1)∵0=c ∴d n a n S b n n 21-+== ∵421b b b ,,成等比数列 ∴4122b b b = ∴)23()21(2d a a d a +=+ ∴041212=-d ad ∴0)21(21=-d a d ∵0≠d ∴d a 21= ∴a d 2= ∴a n a n n na d n n na S n 222)1(2)1(=-+=-+= ∴左边=a k n a nk S nk 222)(== 右边=a k n S n k 222= ∴左边=右边∴原式成立(2)∵}{n b 是等差数列∴设公差为1d ,∴11)1(d n b b n -+=带入cn nS b nn +=2得: 11)1(d n b -+cn nS n +=2∴)()21()21(11121131b d c n cd n d a d b n d d -=++--+-对+∈N n 恒成立 ∴⎪⎪⎪⎩⎪⎪⎪⎨⎧=-==+--=-0)(0021021111111b d c cd d a d b d d 由①式得:d d 211= ∵ 0≠d ∴ 01≠d 由③式得:0=c法二:证:(1)若0=c ,则d n a a n )1(-+=,2]2)1[(a d n n S n +-=,22)1(ad n b n +-=.当421b b b ,,成等比数列,4122b b b =,即:⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+2322d a a d a ,得:ad d 22=,又0≠d ,故a d 2=.由此:a n S n 2=,a k n a nk S nk 222)(==,a k n S n k 222=. 故:k nk S n S 2=(*,N n k ∈).(2)cn ad n n cn nS b nn ++-=+=22222)1(,c n ad n c a d n c ad nn ++--+-++-=2222)1(22)1(22)1( c n a d n ca d n ++--+-=222)1(22)1(. (※) 若}{n b 是等差数列,则Bn An b n +=型. 观察(※)式后一项,分子幂低于分母幂,故有:022)1(2=++-cn ad n c,即022)1(=+-a d n c ,而22)1(a d n +-≠0, 故0=c . 经检验,当0=c 时}{n b 是等差数列.31.(2013年普通高等学校招生统一考试大纲版数学(理))等差数列{}n a 的前n 项和为n S ,已知232=S a ,且124,,S S S 成等比数列,求{}n a 的通项式.【答案】32.(2013年普通高等学校招生统一考试天津数学(理))已知首项为32的等比数列{}n a 不是递减数列, 其前n 项和为(*)n S n ∈N , 且S 3 + a 3, S 5 + a 5, S 4 + a 4成等差数列. (Ⅰ) 求数列{}n a 的通项公式; (Ⅱ) 设*()1n n nT S n S ∈=-N , 求数列{}n T 的最大项的值与最小项的值. 【答案】33.(2013年高考江西卷(理))正项数列{a n }的前项和{a n }满足:222(1)()0nn s n n s n n -+--+=(1)求数列{a n }的通项公式a n ; (2)令221(2)n n b n a+=+,数列{b n }的前n 项和为n T .证明:对于任意的*n N ∈,都有564n T < 【答案】(1)解:由222(1)()0nn S n n S n n -+--+=,得2()(1)0n n S n n S ⎡⎤-++=⎣⎦.由于{}n a 是正项数列,所以20,n n S S n n >=+.于是112,2a S n ==≥时,221(1)(1)2n n n a S S n n n n n -=-=+----=.综上,数列{}n a 的通项2n a n =. (2)证明:由于2212,(2)n n n n a n b n a +==+. 则222211114(2)16(2)n n b n n n n ⎡⎤+==-⎢⎥++⎣⎦. 222222222111111111111632435(1)(1)(2)n T n n n n ⎡⎤=-+-+-++-+-⎢⎥-++⎣⎦ (2222)11111151(1)162(1)(2)16264n n ⎡⎤=+--<+=⎢⎥++⎣⎦.34.(2013年普通高等学校招生统一考试广东省数学(理)设数列{}n a 的前n 项和为n S .已知11a =,2121233n n S a n n n +=---,*n ∈N .(Ⅰ) 求2a 的值;(Ⅱ) 求数列{}n a 的通项公式;(Ⅲ) 证明:对一切正整数n ,有1211174n a a a +++<. 【答案】.(1) 解:2121233n n S a n n n +=---,n N *∈. ∴ 当1n =时,112212221233a S a a ==---=- 又11a =,24a ∴=(2)解: 2121233n n S a n n n +=---,n N *∈.∴ ()()321112122333n n n n n n S na n n n na ++++=---=-① ∴当2n ≥时,()()()111213n nn n n S n a =-+=-- ②由① — ②,得 ()()112211n n n n S S na n a n n -+-=---+1222n n n a S S -=-()()1211n n n a na n a n n +∴=---+111n n a a n n +∴-=+ ∴数列n a n ⎧⎫⎨⎬⎩⎭是以首项为111a =,公差为1的等差数列. ()()2111,2nn a n n a n n n∴=+⨯-=∴=≥ 当1n =时,上式显然成立. 2*,n a n n N ∴=∈ (3)证明:由(2)知,2*,n a n n N =∈ ①当1n =时,11714a =<,∴原不等式成立. ②当2n =时,121117144a a +=+<,∴原不等式亦成立. ③当3n ≥时,()()()()221111,11n n n n n n >-⋅+∴<-⋅+ ()()()2221211111111111121324211n a a a n n n n n ∴+++=+++<+++++⨯⨯-⋅-⋅+111111111111111121322423522211n n n n ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=+-+-+-++-+- ⎪ ⎪ ⎪ ⎪ ⎪--+⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭1111111111112132435211n n n n ⎛⎫=+-+-+-++-+- ⎪--+⎝⎭1111171117121214214n n n n ⎛⎫⎛⎫=++--=+--< ⎪ ⎪++⎝⎭⎝⎭ ∴当3n ≥时,,∴原不等式亦成立.综上,对一切正整数n ,有1211174n a a a +++<. 35.(2013年高考北京卷(理))已知{a n }是由非负整数组成的无穷数列,该数列前n 项的最大值记为A n ,第n项之后各项1n a +,2n a +,的最小值记为B n ,d n =A n -B n .(I)若{a n }为2,1,4,3,2,1,4,3,,是一个周期为4的数列(即对任意n ∈N *,4n n a a +=),写出d 1,d 2,d 3,d 4的值; (II)设d 为非负整数,证明:d n =-d (n =1,2,3)的充分必要条件为{a n }为公差为d 的等差数列; (III)证明:若a 1=2,d n =1(n =1,2,3,),则{a n }的项只能是1或者2,且有无穷多项为1.【答案】(I)12341, 3.d d d d ====(II)(充分性)因为{}n a 是公差为d 的等差数列,且0d ≥,所以12.n a a a ≤≤≤≤因此n n A a =,1n n B a +=,1(1,2,3,)n n n d a a d n +=-=-=.(必要性)因为0(1,2,3,)n d d n =-≤=,所以n n n n A B d B =+≤.又因为n n a A ≤,1n n a B +≥,所以1n n a a +≤. 于是n n A a =,1n n B a +=. 因此1n n n n n a a B A d d +-=-=-=,即{}n a 是公差为d 的等差数列.(III)因为112,1a d ==,所以112A a ==,1111B A d =-=.故对任意11,1n n a B ≥≥=. 假设{}(2)n a n ≥中存在大于2的项.设m 为满足2n a >的最小正整数,则2m ≥,并且对任意1,2k k m a ≤<≤,. 又因为12a =,所以12m A -=,且2m m A a =>.于是211m m m B A d =->-=,{}1min ,2m m m B a B -=≥. 故111220m m m d A B ---=-≤-=,与11m d -=矛盾.所以对于任意1n ≥,有2n a ≤,即非负整数列{}n a 的各项只能为1或2. 因此对任意1n ≥,12n a a ≤=,所以2n A =. 故211n n n B A d =-=-=. 因此对于任意正整数n ,存在m 满足m n >,且1m a =,即数列{}n a 有无穷多项为1.36.(2013年高考陕西卷(理))设{}n a 是公比为q 的等比数列. (Ⅰ) 导{}n a 的前n 项和公式; (Ⅱ) 设q ≠1, 证明数列{1}n a +不是等比数列. 【答案】解:(Ⅰ) 分两种情况讨论.①.}{111111na a a a S a a q n n =+++== 的常数数列,所以是首项为时,数列当②n n n n n n qa qa qa qa qS a a a a S q ++++=⇒++++=≠--1211211 时,当.上面两式错位相减: .)()()()-11123121n n n n n qa a qa qa a qa a qa a a S q -=--+-+-+=- (q q a q qa a S n n n -1)1(.-111-=-=⇒. ③综上,⎪⎩⎪⎨⎧≠--==)1(,1)1()1(,11q q q a q na S n n(Ⅱ) 使用反证法.设{}n a 是公比q ≠1的等比数列, 假设数列{1}n a +是等比数列.则 ①当1*+∈∃n a N n ,使得=0成立,则{1}n a +不是等比数列.②当01*≠+∈∀n a N n ,使得成立,则恒为常数=++=++-+11111111n nn n q a q a a a 1,0111111=≠⇒+=+⇒-q a q a q a n n 时当.这与题目条件q ≠1矛盾.③综上两种情况,假设数列{1}n a +是等比数列均不成立,所以当q ≠1时, 数列{1}n a +不是等比数列.。