二次根式的乘除中考练习
二次根式的乘除法习题精选
二次根式的乘除法习题精选一.选择题(共18小题)1.如果ab>0,a+b<0,那么下面各式:①=,②×=1,③÷=﹣b,其中正确的是()A.①②B.②③C.①③D.①②③2.下列各式计算正确的是()A.+=B.4﹣3=1C.2×3=6D.÷=33.等式=成立的x的取值范围在数轴上可表示为()A.B.C.D.4.“分母有理化”是我们常用的一种化简的方法,如:==7+4,除此之外,我们也可以用平方之后再开方的方式来化简一些有特点的无理数,如:对于﹣,设x=﹣,易知>,故x>0,由x2=(﹣)2=3++3﹣﹣2=2,解得x=,即﹣=.根据以上方法,化简+﹣后的结果为()A.5+3B.5+C.5﹣D.5﹣35.能使等式成立的x的取值范围是()A.x≠2B.x≥0C.x>2D.x≥26.等式=(b﹣a)成立的条件是()A.a≥b,x≥0B.a≥b,x≤0C.a≤b,x≥0D.a≤b,x≤0 7.计算×的结果是()A.6B.6C.6D.68.已知1<p<2,化简+()2=()A.1B.3C.3﹣2p D.1﹣2p9.下列运算中,正确的是()A.x3+x4=x7B.2x2•3x4=6x8C.(﹣3x2y)2=﹣9x4y2D.10.若,则()A.x≥6B.x≥0C.0≤x≤6D.x为一切实数11.设=a,=b,用含a,b的式子表示,则下列表示正确的是()A.0.3ab B.3ab C.0.1ab2D.0.1a2b 12.把a根号外的因式移入根号内的结果是()A.B.C.D.13.计算的结果是()A.1B.C.D.14.=成立的条件是()A.x≥﹣1B.x≤3C.﹣1≤x≤3D.﹣1<x≤3 15.实数a,b在数轴上的位置如图所示,化简的结果是()A.﹣a+b B.﹣a﹣b C.a+b D.a﹣b 16.下列变形正确的是()A.B.C.D.17.下列运算正确的是()A.B.C.D.18.下列化简正确的是()A.B.C.D.二.填空题(共20小题)19.计算:=.20.计算:(+1)(﹣1)=.21.计算÷的结果是.22.计算:=.23.计算:=.24.计算:×的结果为.25.=.26.计算:=.27.化简:=.28.如图:化简=.29.已知长方形的面积为12,其中一边长为,则该长方形的另一边长为.30.计算:÷=.31.计算的结果是.32.计算:5÷×所得的结果是.33.若=,则x的取值范围为.34.计算的结果为.35.计算(x≥0,y≥0)的结果是.36.计算的结果是.37.计算()2=.38.化简:=.三.解答题(共10小题)39.计算:2÷•.40.(1)用“=”、“>”、“<”填空:4+3 2,1+2,5+5 2.(2)由(1)中各式猜想m+n与2(m≥0,n≥0)的大小,并说明理由.(3)请利用上述结论解决下面问题:某园林设计师要对园林的一个区域进行设计改造,将该区域用篱笆围成矩形的花圃.如图所示,花圃恰好可以借用一段墙体,为了围成面积为200m2的花圃,所用的篱笆至少需要m.41.计算:3•÷(﹣).42.43.设长方形的面积为S,相邻两边长分别是a,b,已知S=4,a=,求b.44.化简:•÷.45.已知:,.求下列各式的值.(1)xy;(2)x2﹣xy+y2.46.数a,b在数轴上的位置如图所示,化简:.47.若实数p在数轴上的位置如图所示,化简下列式子:+()248.阅读下列材料:在学习完实数的相关运算之后,小明同学提出了一个有趣的问题:两个数的积的算术平方根与这两个数的算术平方的积存在有什么样的关系?小明用自己的方法进行了验证:小明:==10,而=5,=2∴=5×2=10即=×回答以下问题:(1)结合材料猜想,当a≥0,b≥0时,请直接写出和之间有什么关系?(2)运用以上结论,计算:①;②(3)解决实际问题:已知一个长方形的长为,宽为,则长方形的面积为多少?二次根式的乘除法习题精选参考答案与试题解析一.选择题(共18小题)1.如果ab>0,a+b<0,那么下面各式:①=,②×=1,③÷=﹣b,其中正确的是()A.①②B.②③C.①③D.①②③【分析】由ab>0,a+b<0先求出a<0,b<0,再进行根号内的运算.【解答】解:∵ab>0,a+b<0,∴a<0,b<0①=,被开方数应≥0,a,b不能做被开方数,(故①错误),②•=1,•===1,(故②正确),③÷=﹣b,÷=÷=×=﹣b,(故③正确).故选:B.2.下列各式计算正确的是()A.+=B.4﹣3=1C.2×3=6D.÷=3【分析】分别根据二次根式有关的运算法则,化简分析得出即可.【解答】解:A.,无法合并,故此选项错误,B.4﹣3=,故此选项错误,C.2×3=6×3=18,故此选项错误,D.=,此选项正确,故选:D.3.等式=成立的x的取值范围在数轴上可表示为()A.B.C.D.【分析】根据二次根式有意义的条件即可求出x的范围.【解答】解:由题意可知:解得:x≥3故选:B.4.“分母有理化”是我们常用的一种化简的方法,如:==7+4,除此之外,我们也可以用平方之后再开方的方式来化简一些有特点的无理数,如:对于﹣,设x=﹣,易知>,故x>0,由x2=(﹣)2=3++3﹣﹣2=2,解得x=,即﹣=.根据以上方法,化简+﹣后的结果为()A.5+3B.5+C.5﹣D.5﹣3【分析】根据二次根式的运算法则即可求出答案.【解答】解:设x=﹣,且>,∴x<0,∴x2=6﹣3﹣2+6+3,∴x2=12﹣2×3=6,∴x=,∵=5﹣2,∴原式=5﹣2﹣=5﹣3,故选:D.5.能使等式成立的x的取值范围是()A.x≠2B.x≥0C.x>2D.x≥2【分析】本题需注意的是,被开方数为非负数,且分式的分母不能为0,列不等式组求出x的取值范围.【解答】解:由题意可得,,解之得x>2.故选:C.6.等式=(b﹣a)成立的条件是()A.a≥b,x≥0B.a≥b,x≤0C.a≤b,x≥0D.a≤b,x≤0【分析】若二次根式有意义,则被开方数为非负数,算术平方根的结果也是非负数,可据此求出a、b、x的取值范围.【解答】解:根据算术平方根的意义可知,b﹣a≥0且x≥0,即a≤b,x≥0.故选:C.7.计算×的结果是()A.6B.6C.6D.6【分析】根据二次根式的乘法法则计算即可.【解答】解:×===6,故选:D.8.已知1<p<2,化简+()2=()A.1B.3C.3﹣2p D.1﹣2p【分析】根据二次根式的性质进行化简即可.【解答】解:∵1<p<2,∴1﹣p<0,2﹣p>0,∴原式=|1﹣p|+2﹣p=p﹣1+2﹣p=1.故选:A.9.下列运算中,正确的是()A.x3+x4=x7B.2x2•3x4=6x8C.(﹣3x2y)2=﹣9x4y2D.【分析】直接利用合并同类项法则以及积的乘方运算法则、单项式乘单项式、二次根式的乘法运算法则分别计算得出答案.【解答】解:A、x3+x4无法合并,故此选项错误;B、2x2•3x4=6x6,故此选项错误;C、(﹣3x2y)2=9x4y2,故此选项错误;D、×=,故此选项正确.故选:D.10.若,则()A.x≥6B.x≥0C.0≤x≤6D.x为一切实数【分析】本题需注意的是二次根式的被开方数为非负数,由此可求出x的取值范围.【解答】解:若成立,则,解之得x≥6;故选:A.11.设=a,=b,用含a,b的式子表示,则下列表示正确的是()A.0.3ab B.3ab C.0.1ab2D.0.1a2b【分析】先把化为、的形式,再把a、b代入计算即可.【解答】解:∵=0.3,=a,=b,∴=0.3ab.故选:A.12.把a根号外的因式移入根号内的结果是()A.B.C.D.【分析】本题需注意的是a的符号,根据被开方数不为负数可得出a<0,因此需先将a 的负号提出,然后再将a移入根号内进行计算.【解答】解:∵a<0,∴a=﹣=﹣;故选:B.13.计算的结果是()A.1B.C.D.【分析】直接利用二次根式的乘除法运算法则化简,进而得出答案.【解答】解:===.故选:C.14.=成立的条件是()A.x≥﹣1B.x≤3C.﹣1≤x≤3D.﹣1<x≤3【分析】根据二次根式的性质分别得出关于x的不等式进而求出答案.【解答】解:∵=成立,∴,解得:﹣1<x≤3.故选:D.15.实数a,b在数轴上的位置如图所示,化简的结果是()A.﹣a+b B.﹣a﹣b C.a+b D.a﹣b【分析】先化简各式,然后再进行计算即可.【解答】解:由题意得:b<0<a,∴=a+(﹣b)=a﹣b,故选:D.16.下列变形正确的是()A.B.C.D.【分析】A:等式右边没有意义;B:被开方数是带分数时先化为假分数,然后再开方;C:正确;D:被开方数先化为平方差的形式,然后再开方.【解答】解:A:原式==4×5=20,∴不符合题意;B:原式==,∴不符合题意;C:原式=,∴符合题意;D:原式==7,∴不符合题意;故选:C.17.下列运算正确的是()A.B.C.D.【分析】直接利用二次根式的性质以及二次根式的乘除运算法则计算得出答案.【解答】解:A.=2,故此选项不合题意;B.=,故此选项不合题意;C.3×2=6,故此选项不合题意;D.4÷=2,故此选项符合题意.故选:D.18.下列化简正确的是()A.B.C.D.【分析】根据二次根式除法法结合二次根式性质化简即可.【解答】解:A.=,故正确;B.=2,故不正确;C.=,故不正确;D.=4,故不正确.故选:A.二.填空题(共20小题)19.计算:=3.【分析】根据二次根式的乘法法则计算.【解答】解:原式===3.故答案为:3.20.计算:(+1)(﹣1)=1.【分析】两个二项式相乘,并且这两个二项式中有一项完全相同,另一项互为相反数.就可以用平方差公式计算.结果是乘式中两项的平方差(相同项的平方减去相反项的平方).【解答】解:(+1)(﹣1)=.故答案为:1.21.计算÷的结果是3.【分析】根据二次根式的性质把化简,再根据二次根式的性质计算即可.【解答】解:.故答案为:322.计算:=3.【分析】原式利用平方根的定义化简即可得到结果.【解答】解:原式=3.故答案为:323.计算:=3.【分析】本题直接运用二次根式的除法法则进行计算即可.【解答】解:原式===3.故答案为:3.24.计算:×的结果为3.【分析】按照二次根式的乘法法则计算即可.【解答】解:原式==3.故答案为:3.25.=3.【分析】直接进行平方的运算即可.【解答】解:原式=3.故答案为:326.计算:=30.【分析】利用二次根式的乘法法则运算后,将结果化成最简二次根式即可.【解答】解:原式=10=10×=30,故答案为:30.27.化简:=3.【分析】直接利用二次根式的性质计算得出答案.【解答】解:原式===3.故答案为:3.28.如图:化简=0.【分析】根据数轴上点的位置确定出a﹣b,c﹣a,以及b﹣c的正负,原式利用二次根式性质及绝对值的代数意义化简,去括号合并即可得到结果.【解答】解:根据数轴上点的位置得:a<b<0<c,∴a﹣b<0,c﹣a>0,b﹣c<0,则原式=b﹣a﹣|c﹣a|+|b﹣c|=b﹣a﹣c+a﹣b+c=0.故答案为:0.29.已知长方形的面积为12,其中一边长为,则该长方形的另一边长为3.【分析】直接利用二次根式的除法运算法则计算得出答案.【解答】解:∵长方形的面积为12,其中一边长为,∴该长方形的另一边长为:12÷2=3.故答案为:3.30.计算:÷=4.【分析】根据二次根式的除法法则求解.【解答】解:原式===4.故答案为:4.31.计算的结果是2.【分析】根据二次根式的运算法则即可求出答案.【解答】解:原式==2,故答案为:232.计算:5÷×所得的结果是1.【分析】由于二次根式的乘除运算是同级运算,从左到右依次计算即可.【解答】解:原式=×=1.33.若=,则x的取值范围为﹣≤x<1.【分析】根据商的算术平方根的性质即可得到结果.【解答】解:∵=,∴,解得:﹣≤x<1,故答案为:﹣≤x<1.34.计算的结果为.【分析】直接利用二次根式的乘法运算法则计算得出答案.【解答】解:===.故答案为:.35.计算(x≥0,y≥0)的结果是4x.【分析】直接利用二次根式的性质化简得出答案.【解答】解:(x≥0,y≥0)==4x.故答案为:4x.36.计算的结果是3.【分析】根据二次根式的乘除法法则计算,得到答案.【解答】解:原式==3,故答案为:3.37.计算()2=2.【分析】直接计算即可.【解答】解:原式=2.故答案是2.38.化简:=.【分析】根据二次根式的除法运算法则进行计算即可.【解答】解:==,故答案为:.三.解答题(共10小题)39.计算:2÷•.【分析】直接利用二次根式的乘除运算法则化简求出答案.【解答】解:原式=2×6=12=8.40.(1)用“=”、“>”、“<”填空:4+3 >2,1+>2,5+5 =2.(2)由(1)中各式猜想m+n与2(m≥0,n≥0)的大小,并说明理由.(3)请利用上述结论解决下面问题:某园林设计师要对园林的一个区域进行设计改造,将该区域用篱笆围成矩形的花圃.如图所示,花圃恰好可以借用一段墙体,为了围成面积为200m2的花圃,所用的篱笆至少需要40m.【分析】(1)分别进行计算,比较大小即可;(2)根据第(1)问填大于号或等于号,所以猜想m+n≥2;比较大小,可以作差,m+n﹣2,联想到完全平方公式,问题得证;(3)设花圃的长为a米,宽为b米,需要篱笆的长度为(a+2b)米,利用第(2)问的公式即可求得最小值.【解答】解:(1)∵4+3=7,2=4,∴72=49,(4)2=48,∵49>48,∴4+3>2;∵1+=>1,2=<1,∴1+>2;∵5+5=10,2=10,∴5+5=2.故答案为:>,>,=.(2)m+n≥2(m≥0,n≥0).理由如下:当m≥0,n≥0时,∵(﹣)2≥0,∴()2﹣2•+()2≥0,∴m﹣2+n≥0,∴m+n≥2.(3)设花圃的长为a米,宽为b米,则a>0,b>0,S=ab=200,根据(2)的结论可得:a+2b≥2=2=2=2×20=40,∴篱笆至少需要40米.故答案为:40.41.计算:3•÷(﹣).【分析】根据二次根式的乘除法法则计算即可.【解答】解:原式=(﹣3××)•=﹣2•=﹣2y.42.【分析】根据二次根式的性质、二次根式的乘除运算即可求出答案、【解答】解:原式=4×(﹣5)﹣43÷=﹣20﹣=.43.设长方形的面积为S,相邻两边长分别是a,b,已知S=4,a=,求b.【分析】利用长方形的边=面积÷邻边列式计算即可.【解答】解:b=S÷a=4÷=.44.化简:•÷.【分析】根据二次根式的乘除法及二次根式的性质与化简计算方法进行计算即可得出答案.【解答】解:∵﹣>0,﹣>0,>0,∴x<0,y<0,原式=(÷=﹣×6=﹣8|x2|•|y|.=﹣8x2•(﹣y)=8x2y.45.已知:,.求下列各式的值.(1)xy;(2)x2﹣xy+y2.【分析】(1)根据二次根式的乘法法则进行计算即可;(2)根据二次根式的加法法则求出x+y的值,先根据完全平方公式进行变形,再代入,最后根据二次根式的运算法则进行计算即可.【解答】解:(1)∵x=+,y=﹣,∴xy=(+)×(﹣)=()2﹣()2=7﹣5=2;(2)∵x=+,y=﹣,∴x+y=(+)+(﹣)=2,∵xy=2,∴x2﹣xy+y2=(x+y)2﹣3xy=(2)2﹣3×2=28﹣6=22.46.数a,b在数轴上的位置如图所示,化简:.【分析】首先根据实数a、b在数轴上的位置确定a、b的正负,然后利用二次根式的性质化简,最后合并同类项即可求解.【解答】解:依题意得:a<0<b,|a|<|b|,∴﹣()2=﹣a﹣b+b﹣a﹣b+a=﹣a﹣b.故答案为:﹣a﹣b.47.若实数p在数轴上的位置如图所示,化简下列式子:+()2【分析】直接利用数轴得出p的取值范围,再利用二次根式的性质化简得出答案.【解答】解:由数轴可得:2<p<3,则原式=+4﹣p=3﹣p+4﹣p=7﹣2p.48.阅读下列材料:在学习完实数的相关运算之后,小明同学提出了一个有趣的问题:两个数的积的算术平方根与这两个数的算术平方的积存在有什么样的关系?小明用自己的方法进行了验证:小明:==10,而=5,=2∴=5×2=10即=×回答以下问题:(1)结合材料猜想,当a≥0,b≥0时,请直接写出和之间有什么关系?(2)运用以上结论,计算:①;②(3)解决实际问题:已知一个长方形的长为,宽为,则长方形的面积为多少?【分析】(1)根据阅读材料中的例题,即可解答;(2)①利用(1)的结论,进行计算即可解答,②利用(1)的结论,进行计算即可解答;(3)根据长方形的面积公式,并利用(1)的结论,进行计算即可解答.【解答】解:(1)当a≥0,b≥0时,=;(2)①=×=4×5=20,②=×=8×13=104;(3)由题意得:长方形的面积=×===16,∴长方形的面积为16.。
二次根式的乘除练习题
二次根式的乘除练习题二次根式是数学中的一个重要概念,它在代数中经常出现。
通过乘除练习题,我们可以更好地理解和掌握二次根式的运算规律和性质。
首先,让我们从简单的乘法练习题开始。
考虑以下两个二次根式的乘法:√2 × √3。
根据乘法的性质,我们可以将这个乘法写成√(2 × 3) = √6。
因此,√2 × √3等于√6。
接下来,我们来看一个稍复杂一些的乘法练习题:(2√5) × (3√7)。
这个乘法可以通过先将系数相乘,再将根号内的数相乘来进行。
所以,(2√5) × (3√7) =6√(5 × 7) = 6√35。
在乘法练习题中,有时候会出现分数形式的二次根式。
例如,考虑以下乘法练习题:(1/2√3) × (2/3√2)。
为了方便计算,我们可以先将分数进行化简。
将1/2和2/3分别化简为3/6和4/6,得到(3/6√3) × (4/6√2)。
然后,我们可以将系数相乘,将根号内的数相乘,得到(3/6√3) × (4/6√2) = (12/36)√(3 × 2) = (1/3)√6。
接下来,我们来看一些除法练习题。
在除法中,我们需要将被除数和除数都化简为最简形式,然后再进行运算。
例如,考虑以下除法练习题:√12 ÷ √3。
首先,我们可以将√12化简为√(4 × 3),再将√3化简为√3。
所以,√12 ÷ √3 = √(4 × 3) ÷ √3 = √4 = 2。
对于含有分数的除法练习题,我们同样需要先将分数进行化简,然后再进行运算。
例如,考虑以下除法练习题:(2/√5) ÷ (3/√2)。
为了方便计算,我们可以先将分数进行化简。
将2/√5和3/√2分别化简为(2√5)/(√5 × √5)和(3√2)/(√2 × √2),得到(2√5)/(√5 × √5) ÷ (3√2)/(√2 × √2)。
初中数学二次根式精选试题(含答案和解析)
初中数学二次根式精选试题一.选择题1. (2018·湖南怀化·4分)使有意义的x的取值范围是()A.x≤3B.x<3 C.x≥3D.x>3【分析】先根据二次根式有意义的条件列出关于x的不等式.求出x 的取值范围即可.【解答】解:∵式子有意义.∴x﹣3≥0.解得x≥3.故选:C.【点评】本题考查的是二次根式有意义的条件.熟知二次根式具有非负性是解答此题的关键.2.(2018•江苏宿迁•3分)若实数m、n满足.且m、n恰好是等腰△ABC的两条边的边长.则△ABC的周长是()A. 12B. 10C. 8D. 6【答案】B【分析】根据绝对值和二次根式的非负性得m、n的值.再分情况讨论:①若腰为2.底为4.由三角形两边之和大于第三边.舍去;②若腰为4.底为2.再由三角形周长公式计算即可.【详解】由题意得:m-2=0.n-4=0.∴m=2.n=4.又∵m、n恰好是等腰△ABC的两条边的边长.①若腰为2.底为4.此时不能构成三角形.舍去.②若腰为4.底为2.则周长为:4+4+2=10.故选B.【点睛】本题考查了非负数的性质以及等腰三角形的性质.根据非负数的性质求出m、n的值是解题的关键.3.(2018•江苏无锡•3分)下列等式正确的是()A.()2=3 B.=﹣3 C.=3 D.(﹣)2=﹣3【分析】根据二次根式的性质把各个二次根式化简.判断即可.【解答】解:()2=3.A正确;=3.B错误;==3.C错误;(﹣)2=3.D错误;故选:A.【点评】本题考查的是二次根式的化简.掌握二次根式的性质:=|a|是解题的关键.4.(2018•江苏苏州•3分)若在实数范围内有意义.则x的取值范围在数轴上表示正确的是()A.B.C.D.【分析】根据二次根式有意义的条件列出不等式.解不等式.把解集在数轴上表示即可.【解答】解:由题意得x+2≥0.解得x≥﹣2.故选:D.【点评】本题考查的是二次根式有意义的条件.掌握二次根式中的被开方数是非负数是解题的关键.5.(2018•山东聊城市•3分)下列计算正确的是()A.3﹣2=B.•(÷)=C.(﹣)÷=2D.﹣3=【分析】根据二次根式的加减乘除运算法则逐一计算可得.【解答】解:A.3与﹣2不是同类二次根式.不能合并.此选项错误;B.•(÷)=•==.此选项正确;C.(﹣)÷=(5﹣)÷=5﹣.此选项错误;D.﹣3=﹣2=﹣.此选项错误;故选:B.【点评】本题主要考查二次根式的混合运算.解题的关键是掌握二次根式混合运算顺序和运算法则.6.(2018•上海•4分)下列计算﹣的结果是()A.4 B.3 C.2D.【分析】先化简.再合并同类项即可求解.【解答】解:﹣=3﹣=2.故选:C.【点评】考查了二次根式的加减法.关键是熟练掌握二次根式的加减法法则:二次根式相加减.先把各个二次根式化成最简二次根式.再把被开方数相同的二次根式进行合并.合并方法为系数相加减.根式不变.7. (2018•达州•3分)二次根式中的x的取值范围是()A.x<﹣2 B.x≤﹣2 C.x>﹣2 D.x≥﹣2【分析】根据被开方数是非负数.可得答案.【解答】解:由题意.得2x+4≥0.解得x≥﹣2.故选:D.【点评】本题考查了二次根式有意义的条件.利用被开方数是非负数得出不等式是解题关键.8. (2018•杭州•3分)下列计算正确的是()A.B.C.D.【答案】A【考点】二次根式的性质与化简【解析】【解答】解:AB.∵.因此A符合题意;B不符合题意;CD.∵.因此C.D不符合题意;故答案为:A【分析】根据二次根式的性质.对各选项逐一判断即可。
初二数学二次根式试题答案及解析
初二数学二次根式试题答案及解析1.计算(1)(2)【答案】(1);(2)2.【解析】(1)根据二次根式的乘除法则运算;(2)根据二次根式有意义的条件得到-(a+2)2≥0,得到a=-2,然后把a=-2代入原式进行计算.试题解析:(1)原式===(2)∵-(a+2)2≥0,∴a=-2,原式==3-5+4=2.【考点】二次根式的混合运算.2.计算:【答案】.【解析】先进行二次根式的乘法运算得到原式=3﹣3+2+2+1,然后合并即可.试题解析:原式=3﹣3+2+2+1=.【考点】二次根式的混合运算.3.化简的结果是()A.-3B.3C.±3D.【答案】B.【解析】.故选B.【考点】二次根式化简.4.下列变形中,正确的是………()A.(2)2=2×3=6B.C.D.【答案】D.【解析】A、(2)2=4×3=12,故本选项错误;B、,故本选项错误;C、,故本选项错误;D、,正确.故选D.【考点】二次根式的化简与计算.5.当1≤x≤5时,【答案】4.【解析】根据x的取值范围,可判断出x-1和x-5的符号,然后再根据二次根式的性质和绝对值的性质进行化简.试题解析:∵1≤x≤5,∴x-1≥0,x-5≤0.故原式=(x-1)-(x-5)=x-1-x+5=4.考点: 二次根式的性质与化简.6.有一个数值转换器,原理如下:当输入的x=64时,输出的y等于()A.2B.8C.D.【答案】D.【解析】由图表得,64的算术平方根是8,8的算术平方根是.故选D.【考点】算术平方根.7.下列计算正确的是()A.B.C.D.【答案】A.【解析】根据根式运算法则.不是同类项不能合并同类项【考点】根式运算.8.=________________.【答案】6【解析】由题, .,由题, .【考点】二次根式的化简.9.函数中自变量x的取值范围是.【答案】x≥4【解析】二次根式有意义的条件:二次根号下的数为非负数,二次根式才有意义.由题意得,.【考点】二次根式有意义的条件点评:本题属于基础应用题,只需学生熟练掌握二次根式有意义的条件,即可完成.10.的平方根是()A.4B.±4C.±2D.2【答案】C【解析】一个正数有两个平方根,且它们互为相反数,其中正的平方根叫它的算术平方根.,平方根是±2,故选C.【考点】平方根点评:本题属于基础应用题,只需学生熟练掌握平方根的定义,即可完成.11.函数y=中,自变量x的取值范围是。
专题04二次根式-备战2023年中考数学必刷真题考点分类专练(全国通用)【解析版】
备战2023年中考数学必刷真题考点分类专练(全国通用)专题04二次根式一.选择题(共15小题)1.(2022•苏州)下列运算正确的是()A.√(−7)2=−7B.6÷23=9C.2a+2b=2ab D.2a•3b=5ab【分析】直接利用二次根式的性质以及有理数的除法运算法则、合并同类项、单项式乘单项式,分别计算判断即可.【解析】A.√(−7)2=7,故此选项不合题意;B.6÷23=9,故此选项,符合题意;C.2a+2b,无法合并,故此选项不合题意;D.2a•3b=6ab,故此选项不合题意;故选:B.【点评】此题主要考查了二次根式的性质以及有理数的除法运算、合并同类项、单项式乘单项式,正确掌握相关运算法则是解题关键.2.(2022•云南)下列运算正确的是()A.√2+√3=√5B.30=0C.(﹣2a)3=﹣8a3D.a6÷a3=a2【分析】根据二次根式的加减法判断A选项;根据零指数幂判断B选项;根据积的乘方判断C选项;根据同底数幂的除法判断D选项.【解析】A选项,√2和√3不是同类二次根式,不能合并,故该选项不符合题意;B选项,原式=1,故该选项不符合题意;C选项,原式=﹣8a3,故该选项符合题意;D选项,原式=a3,故该选项不符合题意;故选:C.【点评】本题考查了二次根式的加减法,零指数幂,幂的乘方与积的乘方,同底数幂的除法,掌握a0=1(a ≠0)是解题的关键.3.(2022•台州)无理数√6的大小在()A.1和2之间B.2和3之间C.3和4之间D.4和5之间【分析】根据无理数的估算分析解题.【解析】∵4<6<9,∴2<√6<3.故选:B .【点评】本题考查无理数的估算,理解算术平方根的概念是解题关键.4.(2022•眉山)实数﹣2,0,√3,2中,为负数的是( )A .﹣2B .0C .√3D .2【分析】根据负数的定义,找出这四个数中的负数即可.【解析】∵﹣2<0∴负数是:﹣2,故选A .【点评】本题主要考查实的分类,区分正负,解题的关键是熟知实数的性质:负数小于零.5.(2022•株洲)在0、13、﹣1、√2这四个数中,最小的数是( ) A .0 B .13 C .﹣1 D .√2【分析】根据负数小于0,正数大于0比较实数的大小即可得出答案.【解析】∵﹣1<0<13<√2,∴最小的数是﹣1,故选:C .【点评】本题考查了实数大小比较,掌握负数小于0,正数大于0是解题的关键.6.(2022•江西)下列各数中,负数是( )A .﹣1B .0C .2D .√2 【分析】根据负数的定义即可得出答案.【解析】﹣1是负数,2,√2是正数,0既不是正数也不是负数,故选:A .【点评】本题考查了实数,掌握在正数前面添加“﹣”得到负数是解题的关键.7.(2022•金华)在﹣2,12,√3,2中,是无理数的是( ) A .﹣2 B .12 C .√3 D .2【分析】利用有理数,无理数的概念对每个选项进行判断即可得出结论.【解析】﹣2,12,2是有理数,√3是无理数, 故选:C .【点评】本题主要考查了有理数,无理数的意义,掌握上述概念并熟练应用是解题的关键.8.(2022•舟山)估计√6的值在( )A .4和5之间B .3和4之间C .2和3之间D .1和2之间【分析】根据无理数的估算分析解题.【解析】∵4<6<9,∴√4<√6<√9,∴2<√6<3,故选:C .【点评】本题考查无理数的估算,理解算术平方根的概念是解题关键.9.(2022•安徽)下列为负数的是( )A .|﹣2|B .√3C .0D .﹣5【分析】根据实数的定义判断即可.【解析】A .|﹣2|=2,是正数,故本选项不合题意;B .√3是正数,故本选项不合题意;C .0既不是正数,也不是负数,故本选项不合题意;D .﹣5是负数,故本选项符合题意.故选:D .【点评】本题考查了有理数,绝对值以及算术平方根,掌握负数的定义是解答本题的关键.10.(2022•凉山州)化简:√(−2)2=( )A .±2B .﹣2C .4D .2【分析】根据算术平方根的意义,即可解答.【解析】√(−2)2=√4=2,故选:D .【点评】本题考查了算术平方根,熟练掌握算术平方根的意义是解题的关键.11.(2022•泸州)−√4=()A.﹣2B.−12C.12D.2【分析】根据算术平方根的定义判断即可.【解析】−√4=−√22=−2.故选:A.【点评】本题考查了算术平方根,掌握算术平方根的定义是解答本题的关键.12.(2022•泸州)与2+√15最接近的整数是()A.4B.5C.6D.7【分析】估算无理数√15的大小,再确定√15更接近的整数,进而得出答案.【解析】∵3<√15<4,而15﹣9>16﹣15,∴√15更接近4,∴2+√15更接近6,故选:C.【点评】本题考查估算无理数的大小,理解算术平方根的定义以及数的大小关系是正确解答的前提.13.(2022•重庆)估计√3×(2√3+√5)的值应在()A.10和11之间B.9和10之间C.8和9之间D.7和8之间【分析】先计算出原式得6+√15,再根据无理数的估算可得答案.【解析】原式=√3×2√3+√3×√5=6+√15,∵9<15<16,∴3<√15<4,∴9<6+√15<10.故选:B.【点评】本题考查了估算无理数的大小:利用完全平方数和算术平方根对无理数的大小进行估算.也考查了算术平方根.14.(2022•重庆)估计√54−4的值在()A.6到7之间B.5到6之间C.4到5之间D.3到4之间【分析】用夹逼法估算无理数的大小即可得出答案.【解析】∵49<54<64,∴7<√54<8,∴3<√54−4<4,故选:D.【点评】本题考查了估算无理数的大小,无理数的估算常用夹逼法,用有理数夹逼无理数是解题的关键.15.(2022•天津)估计√29的值在()A.3和4之间B.4和5之间C.5和6之间D.6和7之间【分析】估算确定出所求数的范围即可.【解析】∵25<29<36,∴5<√29<6,即5和6之间,故选:C.【点评】此题考查了估算无理数的大小,以及算术平方根,熟练掌握估算的方法是解本题的关键.二.填空题(共20小题)16.(2022•武汉)计算√(−2)2的结果是2.【分析】利用二次根式的性质计算即可.【解析】法一、√(−2)2=|﹣2|=2;法二、√(−2)2=√4=2.故答案为:2.【点评】本题考查了二次根式的性质,掌握“√a2=|a|”是解决本题的关键.17.(2022•常德)要使代数式有意义,则x的取值范围为x>4.√x−4【分析】根据二次根式的被开方数是非负数、分母不为0列出不等式,解不等式得到答案.【解析】由题意得:x﹣4>0,解得:x>4,故答案为:x>4.【点评】本题考查的是二次根式有意义的条件,掌握二次根式的被开方数是非负数、分母不为0是解题的关键.18.(2022•天津)计算(√19+1)(√19−1)的结果等于18.【分析】根据平方差公式即可求出答案.【解析】原式=(√19)2﹣12=19﹣1=18,故答案为:18.【点评】本题考查平方差公式与二次根式的混合运算,解题的关键是熟练运用平方差公式,本题属于基础题型.19.(2022•新疆)若√x−3在实数范围内有意义,则实数x的取值范围为x≥3.【分析】根据二次根式的被开方数是非负数即可得出答案.【解析】∵x﹣3≥0,∴x≥3.故答案为:x≥3.【点评】本题考查了二次根式有意义的条件,掌握二次根式的被开方数是非负数是解题的关键.20.(2022•杭州)计算:√4=2;(﹣2)2=4.【分析】根据二次根式的性质、有理数的乘方法则计算即可.【解析】√4=2,(﹣2)2=4,故答案为:2,4.【点评】本题考查的是二次根式的化简、有理数的乘方,掌握二次根式的性质是解题的关键.21.(2022•泰安)计算:√8•√6−3√43=2√3.【分析】化简二次根式,然后先算乘法,再算减法.【解析】原式=√8×6−3×2√3 3=4√3−2√3=2√3,故答案为:2√3.【点评】本题考查二次根式的混合运算,理解二次根式的性质,准确化简二次根式是解题关键.22.(2022•云南)若√x+1有意义,则实数x的取值范围为x≥﹣1.【分析】根据二次根式的被开方数是非负数即可得出答案.【解析】∵x+1≥0,∴x≥﹣1.故答案为:x≥﹣1.【点评】本题考查了二次根式有意义的条件,掌握二次根式的被开方数是非负数是解题的关键.23.(2022•遂宁)实数a、b在数轴上的位置如图所示,化简|a+1|−√(b−1)2+√(a−b)2=2.【分析】根据数轴可得:﹣1<a<0,1<b<2,然后即可得到a+1>0,b﹣1>0,a﹣b<0,从而可以将所求式子化简.【解析】由数轴可得,﹣1<a<0,1<b<2,∴a+1>0,b﹣1>0,a﹣b<0,∴|a+1|−√(b−1)2+√(a−b)2=a+1﹣(b﹣1)+(b﹣a)=a+1﹣b+1+b﹣a=2,故答案为:2.【点评】本题考查二次根式的性质与化简、实数与数轴,解答本题的关键是明确题意,利用数形结合的思想解答.24.(2022•滨州)若二次根式√x−5在实数范围内有意义,则x的取值范围为x≥5.【分析】根据二次根式有意义的条件得出x﹣5≥0,求出即可.【解析】要使二次根式√x−5在实数范围内有意义,必须x﹣5≥0,解得:x≥5,故答案为:x≥5.【点评】本题考查了二次根式有意义的条件和解一元一次不等式,能得出关于x的不等式是解此题的关键.25.(2022•扬州)若√x−1在实数范围内有意义,则x的取值范围是x≥1.【分析】直接利用二次根式有意义的条件进而得出答案.【解析】若√x−1在实数范围内有意义,则x﹣1≥0,解得:x≥1.故答案为:x≥1.【点评】此题主要考查了二次根式有意义的条件,正确把握二次根式的定义是解题关键.26.(2022•邵阳)若√x−2有意义,则x 的取值范围是 x >2 .【分析】先根据二次根式及分式有意义的条件列出x 的不等式组,求出x 的取值范围即可. 【解析】∵√x−2有意义,∴{x −2≥0x −2≠0,解得x >0. 故答案为:x >2.【点评】本题考查的是二次根式有意义的条件,熟知二次根式中的被开方数是非负数是解答此题的关键.27.(2022•山西)计算:√18×√12的结果为 3 .【分析】按照二次根式的乘法法则计算即可.【解析】原式=√9=3.故答案为:3.【点评】本题主要考查了二次根式的乘法运算.二次根式的运算法则:乘法法则√a ⋅√b =√ab .28.(2022•衡阳)计算:√2×√8= 4 .【分析】原式利用二次根式的乘法法则计算,将结果化为最简二次根式即可.【解析】原式=√2×8=√16=4.故答案为:4【点评】此题考查了二次根式的乘除法,熟练掌握运算法则是解本题的关键.29.(2022•随州)已知m 为正整数,若√189m 是整数,则根据√189m =√3×3×3×7m =3√3×7m 可知m 有最小值3×7=21.设n 为正整数,若√300n是大于1的整数,则n 的最小值为 3 ,最大值为 75 . 【分析】先将√300n 化简为10√3n ,可得n 最小为3,由√300n 是大于1的整数可得√300n 越小,300n 越小,则n 越大,当√300n =2时,即可求解. 【解析】∵√300n =√3×100n =10√3n ,且为整数, ∴n 最小为3, ∵√300n 是大于1的整数, ∴√300n 越小,300n 越小,则n 越大,当√300n =2时, 300n =4,∴n =75,故答案为:3;75.【点评】本题考查二次根式的乘除法,二次根式的性质与化简,解题的关键是读懂题意,根据关键词“大于”,“整数”进行求解.30.(2022•宿迁)满足√11≥k 的最大整数k 是 3 .【分析】根据无理数的估算分析解题.【解析】∵3<√11<4,且k ≤√11,∴最大整数k 是3.故答案为:3.【点评】本题考查无理数的估算,理解算术平方根的概念是解题关键.31.(2022•湘潭)四个数﹣1,0,12,√3中,为无理数的是 √3 . 【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可解答.【解析】四个数﹣1,0,12,√3中,为无理数的是√3. 故答案为:√3.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽得到的数;以及像0.1010010001…等有这样规律的数.32.(2022•陕西)计算:3−√25= ﹣2 .【分析】首先利用算术平方根的定义化简,然后加减即可求解.【解析】原式=3﹣5=﹣2.故答案为:﹣2.【点评】本题主要考查了实数的运算,主要利用算术平方根的定义.33.(2022•重庆)|﹣2|+(3−√5)0= 3 .【分析】根据绝对值的性质和零指数幂的性质计算可得答案.【解析】原式=2+1=3.故答案为:3.【点评】本题考查实数的运算,熟练掌握实数的运算性质是解题关键.34.(2022•南充)若√8−x为整数,x为正整数,则x的值是4或7或8.【分析】利用二次根式的性质求得x的取值范围,利用算术平方根的意义解答即可.【解析】∵8﹣x≥0,x为正整数,∴1≤x≤8且x为正整数,∵√8−x为整数,∴√8−x=0或1或2,当√8−x=0时,x=8,当√8−x=1时,x=7,当√8−x=2时,x=4,综上,x的值是4或7或8,故答案为:4或7或8.【点评】本题主要考查了算术平方根的意义,二次根式的性质,利用二次根式的性质求得x的取值范围是解题的关键.35.(2022•连云港)写出一个在1到3之间的无理数:√2(符合条件即可).【分析】由于12=1,32=9,所以只需写出被开方数在1和9之间的,且不是完全平方数的数即可求解.【解析】1到3之间的无理数如√2,√3,√5.答案不唯一.【点评】本题主要考查常见无理数的定义和性质,解题关键是估算无理数的整数部分和小数部分.三.解答题(共9小题)36.(2022•武威)计算:√2×√3−√24.【分析】根据二次根式的乘法法则和二次根式的化简计算,再合并同类二次根式即可.【解析】原式=√6−2√6=−√6.【点评】本题考查了二次根式的混合运算,掌握√a•√b=√ab(a≥0,b≥0)是解题的关键.37.(2022•广元)计算:2sin60°﹣|√3−2|+(π−√10)0−√12+(−12)﹣2.【分析】根据特殊角的三角函数值,绝对值,零指数幂,二次根式的化简,负整数指数幂计算即可.【解析】原式=2×√32+√3−2+1﹣2√3+1(−12)2=√3+√3−2+1﹣2√3+4=3.【点评】本题考查了实数的运算,零指数幂,负整数指数幂,特殊角的三角函数值,掌握a ﹣p =1a p (a ≠0)是解题的关键.38.(2022•宿迁)计算:(12)﹣1+√12−4sin60°. 【分析】先计算(12)﹣1、√12,再代入sin60°算乘法,最后加减. 【解析】原式=2+2√3−4×√32=2+2√3−2√3=2.【点评】本题考查了实数的运算,掌握负整数指数幂的意义、二次根式的化简及特殊角的函数值是解决本题的关键.39.(2022•娄底)计算:(2022﹣π)0+(12)﹣1+|1−√3|﹣2sin60°. 【分析】先计算零次幂、负整数指数幂,再化简绝对值、代入特殊角的三角函数值算乘法,最后算加减.【解析】原式=1+2+√3−1﹣2×√32=1+2+√3−1−√3=2.【点评】本题考查了实数的运算,掌握零指数幂、负整数指数幂、绝对值的意义及特殊角的函数值是解决本题的关键.40.(2022•台州)计算:√9+|﹣5|﹣22.【分析】先化简各式,然后再进行计算即可解答.【解析】√9+|﹣5|﹣22=3+5﹣4=8﹣4=4.【点评】本题考查了实数的运算,准确熟练地化简各式是解题的关键.41.(2022•新疆)计算:(﹣2)2+|−√3|−√25+(3−√3)0.【分析】直接利用零指数幂的性质以及绝对值的性质、二次根式的性质分别化简,进而得出答案.【解析】原式=4+√3−5+1=√3.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.42.(2022•株洲)计算:(﹣1)2022+√9−2sin30°.【分析】根据有理数的乘方,算术平方根,特殊角的三角函数值计算即可.【解析】原式=1+3﹣2×1 2=1+3﹣1=3.【点评】本题考查了实数的运算,特殊角的三角函数值,掌握(﹣1)的偶次幂等于1,(﹣1)的奇次幂等于﹣1是解题的关键.43.(2022•怀化)计算:(3.14﹣π)0+|√2−1|+(12)﹣1−√8.【分析】根据零指数幂,绝对值,负整数指数幂,二次根式的化简计算即可.【解析】原式=1+√2−1+2﹣2√2=2−√2.【点评】本题考查了实数的运算,零指数幂,绝对值,负整数指数幂,考查学生的运算能力,掌握a0=1(a≠0),a﹣p=1a p(a≠0)是解题的关键.44.(2022•遂宁)计算:tan30°+|1−√33|+(π−√33)0﹣(13)﹣1+√16.【分析】根据特殊角的三角函数值、去绝对值的方法、零指数幂、负整数指数幂和算术平方根可以解答本题.【解析】tan30°+|1−√33|+(π−√33)0﹣(13)﹣1+√16=√33+1−√33+1﹣3+4=3.【点评】本题考查实数的运算、特殊角的三角函数值、去绝对值的方法、零指数幂、负整数指数幂和算术平方根,熟练掌握运算法则是解答本题的关键.。
二次根式的乘除法专题练习
二次根式的乘除法专题练习二次根式的乘除法专题练一.选择题(共7小题)1.化简 $\sqrt{12}$,得到的结果是()。
A。
$2\sqrt{3}$ B。
$3\sqrt{2}$ C。
$4\sqrt{3}$ D。
$6\sqrt{2}$2.计算 $\sqrt{75}\div\sqrt{3}$,得到的结果是()。
A。
$5\sqrt{3}$ B。
$3\sqrt{5}$ C。
$5\sqrt{6}$ D。
$3\sqrt{25}$3.矩形的面积为18,一边长为6,则周长为()。
A。
12 B。
18 C。
24 D。
364.化简 $\frac{\sqrt{27}}{\sqrt{3}}$,得到的结果为()。
A。
$\sqrt{3}$ B。
$3$ C。
$9\sqrt{3}$ D。
$27$5.计算并化简 $\sqrt{48}\div\sqrt{12}$,得到的结果为()。
A。
$2$ B。
$2\sqrt{2}$ C。
$3$ D。
$3\sqrt{2}$6.$(\sqrt{2}+\sqrt{3})^2$的值为()。
A。
$5+2\sqrt{6}$ B。
$5+2\sqrt{3}$ C。
$5+6\sqrt{2}$ D。
$5+2\sqrt{2}$7.计算$\sqrt{2}-\sqrt{8}+\sqrt{18}$,得到的结果是()。
A。
$-\sqrt{2}$ B。
$-\sqrt{2}+\sqrt{6}$ C。
$-\sqrt{2}+2\sqrt{3}$ D。
$-\sqrt{2}+3\sqrt{2}$二.填空题(共7小题)8.计算:$\sqrt{75}$ =$\underline{\hspace{2cm}}\sqrt{\underline{\hspace{2cm}}}$9.计算:$\sqrt{27}\times\sqrt{12}$ =$\underline{\hspace{2cm}}\sqrt{\underline{\hspace{2cm}}}$10.化简:$\sqrt{48}$ =$\underline{\hspace{2cm}}\sqrt{\underline{\hspace{2cm}}}$11.计算 $\frac{\sqrt{3}}{2}\times\frac{2}{\sqrt{3}}$ = $\underline{\hspace{2cm}}$,$\frac{\sqrt{3}}{2}\div\frac{3}{\sqrt{2}}$ =$\underline{\hspace{2cm}}$12.运用平方差公式计算:$(\sqrt{5}+\sqrt{3})(\sqrt{5}-\sqrt{3})$ = $\underline{\hspace{2cm}}$13.计算:$\sqrt{2}+\sqrt{8}-\sqrt{18}$ =$\underline{\hspace{2cm}}$14.计算:$\frac{\sqrt{2}\times\sqrt{3}}{\sqrt{6}}$ = $\underline{\hspace{2cm}}$三.解答题(共6小题)16.化简:$\frac{1}{\sqrt{3}}+\frac{\sqrt{3}}{3}$ =$\underline{\hspace{2cm}}$17.计算:(1)$(\sqrt{2}+\sqrt{3})^2$ =$\underline{\hspace{2cm}}$;(2)$\sqrt{3+\sqrt{2}}$ =$\underline{\hspace{2cm}}$18.已知:$\sqrt{x}+\sqrt{y}=3$,$\sqrt{x}-\sqrt{y}=1$,求$x$和$y$的值。
初三数学二次根式试题
初三数学二次根式试题1.函数中自变量x的取值范围是()A.B.C.D.【答案】B.【解析】根据二次根式的意义,被开方数是非负数.所以3﹣x≥0,解得x≤3.故选B.【考点】函数自变量的取值范围.2.若式子在实数范围内有意义,则x的取值范围是()A.x<2B.x≤2C.x>2D.x≥2【答案】D【解析】根据题意得:x﹣2≥0,解得:x≥2.故选D.【考点】二次根式有意义的条件3. 8的平方根是()A.4B.C.D.【答案】D.【解析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的一个平方根:∵()2=8,∴8的平方根是.故选D.【考点】平方根.4.下列等式成立的是 ( )A.B.C.D.【答案】C.【解析】A、a2•a5=a7,故选项错误;B、当a=b=1时,,故选项错误;C、正确;D、当a<0时,,故选项错误.故选C.【考点】1.二次根式的性质与化简2.同底数幂的乘法3.幂的乘方与积的乘方.5.如果+=0,则+=.【答案】.【解析】根据几个非负数的和等于0的性质得到a-1=0,2-b=0,求出a、b的值,然后代入化简即可得到答案.试题解析:∵≥0,≥0,且+=0∴a-1=0,2-b=0解得:a=1,b=2∴+考点: 1.非负数的性质:算术平方根;2.二次根式的化简.6.下列二次根式中,最简二次根式是()A.B.C.D.【答案】C.【解析】根据最简二次根式的定义判断各个选项即可得出正确答案.A.,不是最简二次根式;B.,不是最简二次根式;C.,是最简二次根式;D.,不是最简二次根式;故选C.考点: 最简二次根式.7.下列运算正确的是()A.B.C.D.【答案】B.【解析】A.与不是同类二次根式,不能合并,故本选项错误;B.,故本选项正确;C.3与不是同类二次根式,不能合并,故本选项错误;D. ,,故本选项错误.故选B.考点: 二次根式的运算与化简.8.计算:【答案】.【解析】先算乘除、去绝对值符号,再算加减.试题解析:原式==【考点】二次根式运算.9.当__________时,二次根式在实数范围内有意义.【答案】x≥1.【解析】根据二次根式的被开方数为非负数可列出不等式,解出即可得出x的范围.试题解析:∵在实数范围内有意义,∴x-1≥0,解得:x≥1.即当x≥1时,二次根式在实数范围内有意义.故答案为:x≥1.考点: 二次根式有意义的条件.10.先阅读,后解答:像上述解题过程中,与相乘,积不含有二次根式,我们可将这两个式子称为互为有理化因式,上述解题过程也称为分母有理化,(1)的有理化因式是;的有理化因式是.(2)将下列式子进行分母有理化:(1)=;(2)=.(3)已知a=,b=,比较a与b的大小关系.【答案】(1);(2) ; 3﹣;(3)a=b.【解析】(1)的有理化因式是它本身,的有理化因式符合平方差公式的特点的式子.据此作答;(2)①分子、分母同乘以最简公分母即可;②分子、分母同乘以最简公分母3﹣,再化简即可;(3)把a的值通过分母有理化化简,再比较.试题解析:(1)的有理化因式是;的有理化因式是﹣2.(2)(1)==;(2)==3﹣;(3)∵a=,b=2﹣,∴a=b.【考点】分母有理化.11.计算【答案】.【解析】根据运算顺序化各根式为最简二次根式后合并即可.试题解析:原式.【考点】二次根式运算.12.下列计算正确的是()A.B.C.D.【答案】D.【解析】A.和不是同类二次根式,不能合并,故本选项错误;B.负数没有算术平方根,故本选项错误;C.5和不是同类二次根式,不能合并,故本选项错误;D.,故本选项正确.故选D.【考点】二次根式的加减法.13.下列运算正确的是()A.B.C.D.【答案】D.【解析】A.和不是同类二次根式,不能合并,此选项错误;B.3和不是同类二次根式,不能合并,此选项错误;C.,此选项错误;D.,此选项正确.故选D.【考点】二次根式的混合运算.14.若,则_____【答案】12.【解析】根据题意得,,,解得,,∴.故答案为:12.【考点】1.非负数的性质:2.算术平方根.15.下列计算错误的是()A.B.C.D.【答案】A【解析】A选项和不是同类二次根式,无法继续合并,其它选项是正确的.二次根式的加减,首先要把各项化为最简二次根式,是同类二次根式的才能合并,不是同类二次根式的不合并;二次根式的乘除法公式,,需要说明的是公式从左到右是计算,从右到左是二次根式的化简,并且二次根式的计算要对结果有要求,能开方的要开方,根式中不含分母,分母中不含根式.【考点】二次根式的加减乘除运算.16.可以与合并的二次根式是()A.B.C.D.【答案】D【解析】根据可以合并的的二次根式是同类二次根式依次分析各选项即可作出判断.解:∵,,,,∴可以与合并的二次根式是故选D.【考点】同类二次根式点评:解题的关键是熟练掌握同类二次根式的定义:化为最简二次根式后被开方数相同的二次根式叫做同类二次根式.17.计算:=.【答案】【解析】=【考点】二次根式点评:本题考查二次根式,掌握二次根式的化简和运算法则是本题的关键,属基础题18.(1)|-3|-(π-3)0+2sin30°;(2)已知:求代数式的值.【答案】(1)3 (2)-8【解析】(1)原式=3-1+=3-1+1=3(2)=∵∴=-8【考点】数的运算、完全平方公式点评:本题考查数的运算、完全平方公式,会求一些数的绝对值,特殊三角函数,掌握完全平方公式是解决本题的关键,属基础题19.用计算器计算(结果精确到0.01).【答案】8.56【解析】根据立方根的定义、计算器的使用方法结合四舍五入法计算即可.8.56.【考点】用计算器计算,立方根点评:用计算器计算是数学学习中的基本能力,是中考常见题,要熟练掌握.20.计算:【答案】【解析】根据0指数次幂、负整数指数次幂、绝对值的规律化简,再合并同类二次根式即可.原式【考点】实数的运算点评:实数的运算是中考必考题,一般难度不大,要特别慎重,尽量不在计算上失分.21.化简:;【答案】4【解析】二次根式的乘法公式:方法1:=方法2:【考点】二次根式的运算法则点评:此题值考察二次根式的乘法公式,此外,还有除法公式;二次根式的加减实际是合并同类二次根式,难度都不大。
九年级数学《二次根式的乘除》练习题
数学系列练习卷(一)(二次根式的乘除)一.选择题:(每题4分,共24分)1.下列各式中一定是二次根式的是( )A .6-;B .a 33;C .12+x ;D .a 。
2.若二次根式x -2有意义,则x 的取值范围是( )A .2<x ;B .x ≤2;C .2>x ;D .x ≥2。
3.下列计算正确的是( ) A .b a b a +=+; B .aa a a 11⋅=⋅; C .b a b a +=+2)(; D .a a 52452=。
4.下列二次根式中,最简二次根式的是( ) A .31; B .9; C .6; D .18。
5.等式22-=-x x x x成立的条件是( )A .2>x ;B .2≠x ;C .x ≥0;D .x ≥2。
6.若实数b a <时,则化简2)(b a -所得的结果为( )A .b a +;B .b a -;C .b a --;D .b a +-。
二.填空题:(每小题3分,共36分)7.当x ___________时,5-x 是二次根式。
8.化简:=32________。
9.计算:=⋅ab a 28____________。
10.计算:=÷531513__________。
11.比较大小:32_________23。
12.若x x -+-44有意义,则=x ________。
13.等式4222-=-⋅+x x x 成立的条件是_______________。
14.边长为3的正方形的面积为_________。
15.如果a a =2)(成立,那么a 的取值范围是_____________。
16.若式子xx --73有意义,则x 的取值范围是____________。
17.实数a 在数轴上的位置如图所示,化简=2a ______________。
18.已知063=-+-y x ,以x 、y 为两边长的等腰三角形的周长是____________。
中考数学专题03 二次根式-三年(2019-2021)中考真题数学分项汇编(全国通用)(解析版)
专题03.二次根式一、单选题1.(2021·取1.442 )A .-100B .-144.2C .144.2D .-0.01442【答案】B【分析】类比二次根式的计算,提取公因数,代入求值即可.【详解】33 1.442= 33333(13-=--=-144.2=- 故选B .【点睛】本题考查了根式的加减运算,类比二次根式的计算,提取系数,正确的计算是解题的关键.2.(2021· ).A .321-+B .321+-C .321++D .321--【答案】A【分析】根据有理数运算和二次根式的性质计算,即可得到答案.2==∵3212-+=,且选项B 、C 、D 的运算结果分别为:4、6、0故选:A .【点睛】本题考查了二次根式、有理数运算的知识;解题的关键是熟练掌握二次根式、含乘方的有理数混合运算的性质,即可得到答案.3.(2021·湖北恩施土家族苗族自治州·,,这三个实数中任选两数相乘,所有积中小于2的有( )个.A .0B .1C .2D .3 【答案】C【分析】根据题意分别求出这三个实数中任意两数的积,进而问题可求解.【详解】解:由题意得:(2,==-=∴所有积中小于2的有2-两个;故选C .【点睛】本题主要考查二次根式的乘法运算,熟练掌握二次根式的乘法运算是解题的关键.4.(2021·湖南常德市·中考真题)计算:11122⎛⎫+-⋅= ⎪⎝⎭( )A .0B .1C .2D 【答案】B 【分析】先将括号内的式子进行通分计算,最后再进行乘法运算即可得到答案.【详解】解:11122⎛⎫-⋅ ⎪ ⎪⎝⎭=1122⋅=415-=1.故选:B . 【点睛】此题主要考查了二次根式的混合运算,熟练掌握运算法则以及乘法公式是解答此题的关键. 5.(2021·湖南衡阳市·中考真题)下列计算正确的是( )A 4=±B .()021-=C =D 3=【答案】B【分析】利用算术平方根,零指数幂,同类二次根式,立方根逐项判断即可选择.4=,故A 选项错误,不符合题意;0(2)1-=,故B 选项正确,符合题意;C 选项错误,不符合题意;D 选项错误,不符合题意;故选B .【点睛】本题考查算术平方根,零指数幂,同类二次根式,立方根.掌握各知识点和运算法则是解答本题的关键.6.(2021·浙江杭州市·中考真题)下列计算正确的是( )A 2=B 2=-C 2=±D 2=± 【答案】A 【分析】由二次根式的性质,分别进行判断,即可得到答案.2==,故A 正确,C 2,故B 、D 错误;故选:A . 【点睛】本题考查了二次根式的性质,解题的关键是掌握性质进行判断.7.(2021·上海中考真题)下列实数中,有理数是( )A B C D 【答案】C【分析】先化简二次根式,再根据有理数的定义选择即可【详解】A 2;B 3C 12为有理数;D 故选:C 【点睛】本题考查二次根式的化简、无理数的定义、有理数的定义、熟练掌握有理数的定义是关键8.(2021·江苏苏州市·中考真题)计算2的结果是( )A B .3 C .D .9【答案】B【分析】直接根据二次根式的性质求解即可.【详解】解:2=3,故选B .【点睛】此题主要考查了二次根式的性质,熟练掌握2(0)a a =≥是解答此题的关键.9.(2021·甘肃武威市·中考真题)下列运算正确的是( )A 3=B .4=C =D 4=【答案】C【分析】直接根据二次根式的运算法则计算即可得到答案.=A 错;=B 错;=C 2=,故D 错.故选:C .【点睛】此题考查的是二次根式的运算和化简,掌握其运算法则是解决此题关键.10.(2021· )A.7 B .C .D .【答案】B【分析】根据二次根式的运算法则,先算乘法再算减法即可得到答案;===B .【点睛】本题主要考查了二次根式的混合运算,掌握二次根式的运算法则是解题的关键.11.(2021·浙江嘉兴市·中考真题)能说明命题“若x 为无理数,则x 2也是无理数”是假命题的反例是()A .1x =B .1x =C .x =D .x =【答案】C【分析】根据反例满足条件,但不能得到结论,所以利用此特征可对各选项进行判断.【详解】解:A 、)221=3x =-B 、)221x =C 、(22=18x =,是有理数,符合题意;D 、22=5x =-,是无理数,不符合题意;故选:C .【点睛】本题考查了无理数的概念以及二次根式的运算,熟练掌握运算法则和定义是解题的关键. 12.(2021·重庆中考真题)下列计算中,正确的是( )A .21=B .2=C =D 3=【答案】C【分析】根据二次根式运算法则逐项进行计算即可.【详解】解:A. =,原选项错误,不符合题意;B. 2不是同类二次根式,不能合并,原选项错误,不符合题意;C. =D. =C .【点睛】本题考查了二次根式的运算,解题关键是熟练运用二次根式运算法则,进行准确计算.13.(2020·是同类二次根式的是( )AB C D 【答案】C【分析】先把每个二次根式进行化简,化成最简二次根式,后比较被开方数即可.【详解】的被开方数不相同,故不是同类二次根式;3==被开方数相同,故是同类二次根式;=被开方数不同,故不是同类二次根式.故选:C .【点睛】本题考查了二次根式的化简,同类二次根式,熟练掌握根式化简的基本方法,灵活运用同类二次根式的定义判断解题是求解的关键.14.(2020·内蒙古赤峰市·中考真题)估计( ( ) A .4和5之间B .5和6之间C .6和7之间D .7和8之间 【答案】A 【分析】根据二次根式的混合运算法则进行计算,再估算无理数的大小.【详解】(,∵4<6<9,∵<3,∴<5,故选:A.【点睛】此题考查了二次根式的混合运算,无理数的估算,正确掌握二次根式的运算法则、会进行无理数的大小估算是解题的关键.15.(2020·辽宁朝阳市· )A .0B C .D .12【答案】B 【分析】根据二次根式的性质化简第一项,根据二次根式的乘法化简第二项,然后合并即可.【详解】解:原式= =B . 【点睛】本题考查了二次根式的混合运算,熟练掌握二次根式的运算法则是解答本题的关键.16.(2020·辽宁丹东市·中考真题)在函数y =x 的取值范围是( ) A .3x ≤B .3x <C .3x ≥D .3x > 【答案】A【分析】根据二次根式有意义,列不等式9-3x≥0,求出x 的取值范围即可.【详解】解:根据二次根式有意义,所以,9-3x≥0,解得,x≤3.故选:A .【点睛】本题主要考查函数自变量的取值范围的知识点,二次根式中的被开方数必须是非负数,否则二次根式无意义.17.(2020·湖北宜昌市·其运算结果能成为有理数的是( ).A .BC .3D .0【答案】D 【分析】分别计算出各选项的结果再进行判断即可.【详解】A .B =C .3D .00=,是有理数,正确.故选:D .【点睛】此题主要考查了二次根式的运算,辨别运算结果,区分运算结果是否是有理数是解题的关键.18.(2020·山东菏泽市·中考真题)函数5y x =-的自变量x 的取值范围是( ) A .5x ≠B .2x >且5x ≠C .2x ≥D .2x ≥且5x ≠【答案】D【分析】由分式与二次根式有意义的条件得函数自变量的取值范围. 【详解】解:由题意得:20,50x x -≥⎧⎨-≠⎩解得:2x ≥且 5.x ≠ 故选D . 【点睛】本题考查的是函数自变量的取值范围,掌握分式与二次根式有意义的条件是解题的关键. 19.(2020·黑龙江绥化市·中考真题)下列等式成立的是( )A 4=±B 2=C .-=D .8=- 【答案】D【分析】根据算术平方根、立方根、二次根式的化简等概念分别判断.【详解】解:A. 4=,本选项不成立;B. 2=-,本选项不成立;C. a a a-=-= D. 8=-,本选项成立.故选:D. 【点睛】本题考查了二次根式的化简与性质,正确理解二次根式有意义的条件、算术平方根的计算等知识点是解答问题的关键.20.(2020·山东济宁市·中考真题)下列各式是最简二次根式的是( )A B C D 【答案】A 【分析】根据最简二次根式的定义即可求出答案.【详解】解:A B =C a =,不是最简二次根式,故选项错误;D = A. 【点睛】本题考查最简二次根式,解题的关键是正确理解最简二次根式的定义,本题属于基础题型. 21.(2020·江苏泰州市·中考真题)下列等式成立的是( )A .3+=B =C= D 3= 【答案】D【分析】根据二次根式的运算法则即可逐一判断.【详解】解:A 、3和不能合并,故A 错误;B =B 错误;C===,故C 错误;D 3=,正确;故选:D . 【点睛】本题考查了二次根式的运算,解题的关键是掌握基本的运算法则.22.(2019·湖北恩施土家族苗族自治州·中考真题)函数11=-+y x 中,自变量x 的取值范围是( ) A .23x ≤ B .23x ≥ C .23x <且1x ≠- D .23x ≤且1x ≠- 【答案】D【分析】根据分式及二次根式有意义的条件解答即可.【详解】∵11=+y x x+1≠0,2-3x≥0,解得:23x ≤且1x ≠-,故选D. 【点睛】本题考查分式及二次根式有意义的条件,要使分式有意义,分母不为0;要使二次根式有意义,被开方数大于等于0.23.(2019·湖北宜昌市·中考真题)古希腊几何学家海伦和我国宋代数学家秦九韶都曾提出利用三角形的三边求面积的公式,称为海伦﹣秦九韶公式:如果一个三角形的三边长分别是a ,b ,c ,记2a b c p ++=,那么三角形的面积为S =ABC ∆中,A ∠,B ,C ∠所对的边分别记为a ,b ,c ,若5a =,6b =,7c =,则ABC ∆的面积为( )A .B .C .18D .192【答案】A 【分析】利用阅读材料,先计算出p 的值,然后根据海伦公式计算ABC ∆的面积;【详解】7a =,5b =,6c =.∴56792p ++==,∴ABC ∆的面积S ==A .【点睛】考查了二次根式的应用,解题的关键是代入后正确的运算,难度不大.24.(2019·湖北中考真题)“分母有理化”是我们常用的一种化简的方法,如:7==+除此之外,我们也可以用平方之后再开方的方式来化简一些有特点的无理数,如:设x =,>,故0x >,由22332x ==+=,解得x =,即=)A .5+B .5C .5D .5-【答案】D进行化简,然后再进行合并即可.【详解】设x =<0x <,∴266x =-+,∴212236x =-⨯=,∴x =5=-,∴原式5=--5=-D . 【点睛】本题考查了二次根式的混合运算,涉及了分母有理化等方法,弄清题意,理解和掌握题中介绍的方法是解题的关键.25.(2019·山东聊城市·中考真题)下列各式不成立的是( )A= B =C 5== D = 【答案】C【分析】根据二次根式的性质、二次根式的加法法则、除法法则计算,判断即可.33-==,A 选项成立,不符合题意;==B 选项成立,不符合题意;==,C 选项不成立,符合题意;==D 选项成立,不符合题意; 故选C . 【点睛】本题考查的是二次根式的混合运算,掌握二次根式的性质、二次根式的混合运算法则是解题的关键.26.(2019·江苏常州市·中考真题)下列各数中与2+ )A .2+B .2CD .2 【答案】D【分析】利用平方差公式可知与2+2;【详解】(22431=-=;故选D .【点睛】本题考查分母有理化;熟练掌握利用平方差公式求无理数的无理化因子是解题的关键.27.(2021· )A .4B .4±C .D .±【答案】C()0,0,a b a b=≥≥直接化简即可得到答案.==故选:.C【点睛】本题考查的是二次根式的化简,掌握积的算术平方根的含义是解题的关键.28.(2020·重庆中考真题)下列计算中,正确的是()A=B.2+=C=D.2【答案】C【分析】根据同类二次根式的概念与二次根式的乘法逐一判断可得答案.【详解】解:AB.2C==D.2不是同类二次根式,不能合并,此选项错误;故选:C.【点睛】本题主要考查二次根式的混合运算,解题的关键是掌握二次根式的乘法法则与同类二次根式的概念.29.(2020·山东聊城市·).A.1B.53C.5D.9【答案】A【分析】利用二次根式的乘除法则计算即可得到结果.=÷=1=,故选:A.【点睛】本题主要考查了二次根式的乘除法,熟练掌握运算法则是解题的关键.30.(2020·内蒙古鄂尔多斯市·中考真题)中,x的取值范围在数轴上表示正确的是()A.B.C.D.【答案】D【分析】根据二次根式的性质,被开方数大于或等于0,可以求出x 的范围. 【详解】解:根据题意得3+x ≥0,解得:x ≥﹣3, 故x 的取值范围在数轴上表示正确的是.故选D .【点睛】本题考查了二次根式的性质,二次根式中的被开方数必须是非负数,否则二次根式无意义. 二、填空题目31.(2021·天津中考真题)计算1)的结果等于_____. 【答案】9【分析】根据二次根式的混合运算法则结合平方差公式计算即可.【详解】21)19=-=.故答案为9.【点睛】本题考查二次根式的混合运算.掌握二次根式的混合运算法则是解答本题你的关键.32.(2021·湖北武汉市·_______________________.【答案】5【分析】根据二次根式的性质进行求解即可.5=5,故答案为5.【点睛】本题考查了二次根式的性质,熟练掌握二次根式的性质是解题的关键.33.(2021·浙江丽水市·有意义,则x 可取的一个数是__________. 【答案】如4等(答案不唯一,3x ≥)【分析】根据二次根式的开方数是非负数求解即可.有意义,∴x ﹣3≥0,∴x ≥3,∴x 可取x ≥3的任意一个数,故答案为:如4等(答案不唯一,3x ≥.【点睛】本题考查二次根式、解一元一次不等式,理解二次根式的开方数是非负数是解答的关键.34.(2021·四川广安市·中考真题)在函数y =x 的取值范围是___.【答案】1x 2≥【详解】求函数自变量的取值范围,就是求函数解析式有意义的条件,根据二次根式被开方数必须是非负12x 10x 2-≥⇒≥.35.(2021·湖北黄冈市·这个数叫做黄金分割数,著名数学家华罗庚优选法中的0.618法就应用了黄金分割数.设a =12b +=,则1ab =,记11111S a b =+++,2221111S a b =+++,…,1010101111S a b=+++.则1210S S S +++=____.【答案】10【分析】先根据1ab =求出1111n n nS a b=+++(n 为正整数)的值,从而可得1210,,,S S S 的值,再求和即可得.【详解】解:1ab =,111111()1nn n n n n n a S a b a a b ∴=+=+++++(n 为正整数), 11()n n n n a a a ab =+++,111nnna a a =+++,1=, 12101S S S ===∴=,则121010S S S +++=,故答案为:10.【点睛】本题考查了二次根式的运算、分式的运算,正确发现一般规律是解题关键.36.(2021·湖南岳阳市·中考真题)已知1x x +=,则代数式1x x+=______. 【答案】0【分析】把1x x+=直接代入所求的代数式中,即可求得结果的值.【详解】10x x+==故答案为:0. 【点睛】本题考查了求代数式的值,涉及二次根式的减法运算,整体代入法是解决本题的关键.37.(2021·四川眉山市·中考真题)观察下列等式:1311212x ===+⨯;2711623x ===+⨯;313111234x ===+⨯;…… 根据以上规律,计算12320202021x x x x ++++-=______.【答案】12021-【解答】解:13111212x =+==+⨯;2711623x ==+⨯;313111234x ===+⨯; ⋯12320201111111111112021111120212020120211223342020202122334202020212021x x x x ∴+++⋯+-=++++++⋯++-=+-+-+-+⋯+--=-⨯⨯⨯⨯, 故答案为:12021-. 【点睛】本题考查了二次根式的化简和找规律,解题关键是根据算式找的规律,根据数字的特征进行简便运算.38.(2021·x 的取值范围是________. 【答案】0x >【分析】根据分式及二次根式有意义的条件可直接进行求解. 【详解】解:由题意得:0x ≠且20x≥,∴0x >;故答案为0x >. 【点睛】本题主要考查二次根式及分式有意义的条件,熟练掌握二次根式及分式有意义的条件是解题的关键.39.(2020·山东青岛市·中考真题)计算:-⨯=______. 【答案】4【分析】根据二次根式的混合法则运算计算即可.【详解】解:原式3⎫⎛=⎪ ⎪⎝⎭3=⨯4=,故答案为:4. 【点睛】本题考查二次根式的混合运算,熟练掌握运算顺序和运算法则是解题关键.40.(2020·山西中考真题)计算:2-=_____________.【答案】5【分析】先利用完全平方公式、二次根式的性质进行化简,然后合并同类项,即可得到答案.【详解】解:223=+-5=;故答案为:5.【点睛】本题考查了二次根式的性质,完全平方公式,解题的关键是熟练掌握运算法则进行化简.41.(2020·江苏南通市·中考真题)若m <<m +1,且m 为整数,则m =_____. 【答案】5【分析】利用二次根式的估值方法进行计算即可.【详解】解:=<<5<6,又∵m <m +1,∴m =5,故答案为:5.【点睛】本题考查了二次根式的估值求参数值的问题,熟练掌握二次根式的估值计算是解题的关键.42.(2020·湖南益阳市·中考真题)m 的结果为正整数,则无理数m 的值可以是__________.(写出一个符合条件的即可)【分析】根据2为12,即可得到一个无理数m 的值.【详解】解:∵212=,∴12m 时m (答案不唯一).【点睛】本题考查了二次根式,注意2a =是解题的关键.43.(2020·内蒙古中考真题)计算:2+=______.【分析】先将乘方展开,然后用平方差公式计算即可.【详解】解:2-==22⎡⎤-⎢⎥⎣⎦-.【点睛】本题考查了二次根式的混合运算以及平方差公式的应用,掌握二次根式混合运算的运算法则和平方差公式是解答本题的关键.44.(2020·湖南邵阳市·中考真题)在如图方格中,若要使横、竖、斜对角的3个实数相乘都得到同样的结果,则2个空格的实数之积为________.【答案】【分析】先将表格中最上一行的3个数相乘得到,然后中间一行的三个数相乘以及最后一行的三个数相等都是【详解】解:由题意可知,第一行三个数的乘积为:2=设第二行中间数为x ,则16⨯⨯=x x =设第三行第一个数为y ,则3⨯=y y =∴2个空格的实数之积为xy ==.【点睛】本题考查了二次根数的乘法运算法则,熟练掌握二次根式的加减乘除运算法则是解决此类题的关键.45.(2020·==,则ab =_________. 【答案】6【分析】根据二次根式的运算法则即可求解.【详解】∵-==∴a=3,b=2∴ab =6故答案为:6.【点睛】此题主要考查二次根式的运算,解题的关键是熟知其运算法则.46.(2020·甘肃金昌市·中考真题)已知5y x =+,当分别取1,2,3,……,2020时,所对应y 值的总和是__________.【答案】2032【分析】先化简二次根式求出y 的表达式,再将x 的取值依次代入,然后求和即可得.【详解】545y x x x =+=--+当4x <时,4592y x x x =--+=- 当4x ≥时,451y x x =--+= 则所求的总和为(921)(922)(923)111-⨯+-⨯+-⨯++++75312017=+++⨯2032=故答案为:2032.【点睛】本题考查了二次根式的化简求值、绝对值运算等知识点,掌握二次根式的化简方法是解题关键.47.(2020·江苏南京市·的结果是__________.【答案】1 3【分析】先化成最简二次根式,再根据二次根式的加减法法则计算出分母,最后约分即可.==13=,故答案为:13.【点睛】本题考查了二次根式的混合运算,掌握二次根式的加减法法则是解题的关键.48.(2020·黑龙江绥化市·中考真题)在函数15yx=+-中,自变量x的取值范围是_________.【答案】3x≥且5x≠【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.【详解】根据题意得:301050xxx-≥⎧⎪+>⎨⎪-≠⎩,解得:3x≥且5x≠.故答案为:3x≥且5x≠.【点睛】本题考查了函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.49.(2020·青海中考真题)对于任意不相等的两个实数a,b(a > b )定义一种新运算a※,如3※,那么12※4=______【分析】按照规定的运算顺序与计算方法化为二次根式的混合运算计算即可.【详解】解:12※4==【点睛】此题考查二次根式的化简求值,理解规定的运算顺序与计算方法是解决问题的关键.50.(2019·四川绵阳市·中考真题)单项式1ax y--与2是同类项,则b a=______.【答案】1【分析】先根据同类项的定义列出方程,再结合二次根式的性质求出a ,b 的值,然后代入代数式计算即可.【详解】解:由题意知1a --=,即1a -, ∴10,10a b ,1a =,1b =,则()111b a ==,故答案为1.【点睛】此题考查了同类项的定义和二次根式的性质,属于基础题,解答本题的关键是掌握同类项的定义,难度一般.51.(2019·辽宁营口市·中考真题)和则这个长方形的面积为________.【答案】【分析】长方形的面积计算公式为长乘以宽,和按照二次根式乘法的运算法则计算,并化简成最简单二次根式即可.和==【点睛】本题考查了二次根式在长方形面积计算中的应用,明确二次根式乘法运算法则及如何化为最简二次根式是解题的关键.52.(2019·四川内江市·中考真题)若1001a a -=,则21001a -=_____. 【答案】1002.【分析】根据绝对值的性质和二次根式的性质,即可解答【详解】∵10020a -≥,∴1002a ≥.由1001a a -=,得1001a a -++=,1001=,∴210021001a -=.∴210011002a -=.故答案是:1002. 【点睛】此题考查绝对值的非负性,二次根式的性质,解题关键在于掌握运算法则 53.(2019·山东枣庄市·中考真题)观察下列各式:11111122⎛⎫=+=+- ⎪⨯⎝⎭,111112323⎛⎫=+=+- ⎪⨯⎝⎭,111113434⎛⎫=+=+- ⎪⨯⎝⎭,请利用你发现的规律,计算:____. 【答案】201820182019. 【分析】根据题意找出规律,根据二次根式的性质计算即可.12018++11111111122320182019⎛⎫⎛⎫⎛⎫=+-++-+++- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭1111111201812233420182019=+-+-+-++-201820182019=,故答案为201820182019. 【点睛】本题考查的是二次根式的化简、数字的变化规律,掌握二次根式的性质是解题 的关键.54.(2019·山东菏泽市·中考真题)已知x =,那么2x -的值是_____.【答案】4【分析】将所给等式变形为x -=【详解】∵x =,∴x =(22x =,∴226x -+=,∴24x -=,故答案为:4【点睛】本题考查了二次根式的运算,解题的关键是熟练运用二次根式的运算以及完全平方公式.注意正确的变形可以使得运算简便.55.(2019·湖南益阳市·中考真题)观察下列等式:①3﹣=﹣1)2,②5﹣=)2,③7﹣=﹣2,…请你根据以上规律,写出第6个等式____________.【答案】213-=【分析】第n 个等式左边的第1个数为2n+1,根号下的数为n(n+1),利用完全平方公式得到第n 个等式右边的式子为)2(n≥1的整数).【详解】∵①3﹣﹣1)2,②5﹣=)2,③7﹣=2,…,∴第n 个等式为:(2n+1)-)2,∴第6个等式为:213-=,故答案为213-=.【点睛】本题考查了规律题,涉及了二次根式的混合运算,通过所给等式发现等式左边与右边的变化规律是解题的关键.56.(2019·山东滨州市·中考真题)计算:21|2|2-⎛⎫--= ⎪⎝⎭_________.【答案】2+【分析】根据根式的计算法则计算即可.【详解】解:原式422=-=+2+.【点睛】本题主要考查根式的计算,注意绝对值的计算,这是同学们往往容易计算错误的,应当引起重视.57.(2019·山东青岛市·0-=___________.【答案】1【分析】根据二次根式混合运算的法则计算即可.0211=-=.故答案为. 【点睛】本题考查了二次根式的混合运算,熟记法则是解题的关键.58.(2020·辽宁营口市·中考真题)()()=_____. 【答案】12【分析】直接利用平方差公式计算得出答案.【详解】解:原式=()2)2=18﹣6=12.故答案为:12. 【点睛】本题考查了二次根式的混合运算,正确运用乘法公式是解题关键. 三、解答题59.(2021·湖南长沙市·中考真题)计算:(02sin 451-++°【答案】5.【分析】先化简绝对值、特殊角的正弦值、零指数幂、二次根式的乘法,再计算实数的混合运算即可得.【详解】解:原式212=⨯+14=+5=. 【点睛】本题考查了化简绝对值、特殊角的正弦值、零指数幂、二次根式的乘法等知识点,熟练掌握各运算法则是解题关键.60.(2021·山东临沂市·中考真题)计算221122⎫⎫+-⎪⎪⎭⎭.【答案】【分析】化简绝对值,同时利用平方差公式计算,最后合并.【详解】解:221122⎫⎫+-⎪⎪⎭⎭11112222⎡⎤⎡⎤⎫⎫⎫⎫+-⎪⎪⎪⎪⎢⎥⎢⎥⎭⎭⎭⎭⎣⎦⎣⎦【点睛】本题考查了二次根式的混合运算,解题的关键是合理运用平方差公式进行计算.61.(2021·四川遂宁市·中考真题)计算:()101tan 60232-⎛⎫-+︒-+- ⎪⎝⎭π【答案】-3【分析】分别利用负整指数幂,特殊角的三角函数值,绝对值,零指数幂,二次根式的性质化简,再进行计算即可.【详解】解:()101tan 60232-⎛⎫-+︒-+- ⎪⎝⎭π(=2-=221--=3-【点睛】本题考查了负整指数幂,特殊角的三角函数值,绝对值,零指数幂,二次根式的化简等知识点,熟悉相关性质是解题的关键.62.(2020·广西玉林市·()23.141π--+【答案】10.【分析】先计算零指数幂、绝对值运算、算术平方根,再计算二次根式的乘法、去括号、有理数的乘方,然后计算二次根式的加减法即可得.【详解】原式211)3=-+19=++10=.【点睛】本题考查了零指数幂、绝对值运算、算术平方根、二次根式的加减法与乘法等知识点,熟记各运算法则是解题关键.63.(2020·上海中考真题)计算:1327(12)﹣2+|3. 【答案】0.【分析】利用分数的指数幂的意义,分母有理化,负指数幂的意义,绝对值的性质计算后合并即可.【详解】原式=133(3)+ 2﹣4+32﹣4+3.【点睛】本题考查了分数指数幂的运算,负指数幂的运算,绝对值的意义以及分母有理化运算,熟练掌握实数的运算法则是解题的关键.64.(2019·2318- 【答案】-3.【分析】首先进行二次根式的化简、去绝对值符号以及二次根式的乘法,然后再合并同类二次根式即可.2318-124-+=-3. 【点睛】此题主要考查了二次根式的混合运算,熟练掌握运算法则是解答此题的关键.65.(2019·辽宁大连市·中考真题)计算:22)+【答案】7【分析】直接利用完全平方公式以及结合二次根式的性质化简进而得出答案.【详解】解:原式346=+-34=+-7=. 【点睛】此题主要考查了二次根式的混合运算,正确化简二次根式是解题关键.祝你考试成功!祝你考试成功!。
中考数学专题复习题:二次根式的乘除法
中考数学专题复习题:二次根式的乘除法一、单项选择题(共6小题)1.下列各式①√8;②√0.3;③√12;④√3;⑤√a2+1;其中一定是最简二次根式的有()A.4 个B.3 个C.2个D.1个2.已知x是整数,√3⋅√6x是整数,则x的最小值()A.2B.3C.4D.183.计算(5√2−2√5)×√15的结果是()A.√10−√2B.√2−2C.√10−2D.√2−√104.计算(1+√2)2024(1−√2)2023的结果是()A.√2−1B.−1C.1D.−1−√25.通过“由特殊到一般”的方法探究下面二次根式的运算规律:特例1:√1+13=√3+13=√4×13=2√13;特例2:√2+14=√8+14=√9×14=3√14;特例3:√3+15=√15+15=√16×15=4√15……应用发现的规律求√2024+12026×√4052的值()A.2024B.2025√2C.2023D.2023√2 6.下列各式中,化简正确的是()A.√(−16)×(−25)=√−16×√−25=20B.√12×27=√4×√81=18C.√16+94=√16+√94=4+32=112D.√4925=√4×√925=2×35=65二、填空题(共4小题)7.计算√3÷√2×2√5÷√110的结果为________.8.计算(√7+√2)(√7−√2)的结果是________.9.长方形的面积为18cm2,一边长为2√3cm,则另一边长为________cm.10.设6−√10的整数部分为a ,小数部分为b ,那么(2a +√10)b =________.三、解答题(共5小题)11.计算:(1)√8×√18; (2)√1.2×102×√3×105;(3)√2×√5×√10;(4)14√12×3√3. 12.计算下列各题.(1)√(−5)2×(−3)2;(2)√(−4)×259×(−169);(3)√−a ⋅√−ab 3;(4)2b √ab 3⋅(−32√a 3b ⋅3√a b ) (a >0,b >0).13.计算:(1)√48÷√3−√13×√18+√24;(2)(√5+1)(√5−1)+(−2)0−√273.14.请观察式子:9√127=√9227=√3,−2√12=−√222=−√2,仿照上面的方法解决下列问题:(1)化简:①5√25;②−7√37;③a√−1a (a <0).(2)把(1−a )√1a−1中根号外的因式移到根号内,化简的结果是________.15.填空(可用计算器计算):√4×9=__________,√4×√9=__________;√4×5=__________,√4×√5=__________;√916=__________,√9√16=__________; √32=__________,√3√2=__________.比较左右两边的等式,你发现了什么?你能用字母表示发现的规律吗?。
2022中考真题分类5——二次根式(参考答案)
2022中考真题分类——二次根式(参考答案)1.(2010·四川眉山()A.3B.−3C.±3D.92.(2022·辽宁大连)下列计算正确的是()A2= =B3=−C.=D.21)33.(2022·四川雅安)有意义的x的取值范围在数轴上表示为()A.B.C .D . 【答案】B 【分析】根据二次根式有意义的条件可得20x −≥,求出不等式的解集,然后进行判断即可. 【详解】解:由题意知,20x −≥,解得2x ≥,∴解集在数轴上表示如图,故选B .【点睛】本题考查了二次根式有意义的条件以及在数轴上表示解集.解题的关键在于熟练掌握二次根式有意义的条件.4.(2022·湖北黄石)函数11y x =+−的自变量x 的取值范围是( ) A .3x ≠−且1x ≠B .3x >−且1x ≠C .3x >−D .3x ≥−且1x ≠【答案】B【分析】直接利用二次根式有意义的条件、分式有意义的条件分析得出答案. 【详解】解:依题意,3010x x +>⎧⎨−≠⎩ ∴3x >−且1x ≠故选B【点睛】此题主要考查了函数自变量的取值范围,正确掌握二次根式与分式有意义的条件是解题关键.5.(2022·辽宁丹东)在函数y x 的取值范围是( ) A .x ≥3B .x ≥−3C .x ≥3且x ≠0D .x ≥−3且x ≠0 【答案】D【分析】根据二次根式的被开方数是非负数、分母不为0列出不等式组,解不等式组即可得到答案.【详解】解:由题意得:x +3≥0且x ≠0,解得:x ≥−3且x ≠0,故选:D .【点睛】本题考查的是函数自变量的取值范围的确定,掌握二次根式的被开方数是非负数、分母不为0是解题的关键.6.(2022·广东广州)x 应满足的条件为( ) A .1x ≠−B .1x >−C .1x <−D .x ≤−1 【答案】B【分析】根据分式分母不为0及二次根式中被开方数大于等于0即可求解.【详解】解:由题意可知:10x +>,∴1x >−,故选:B .【点睛】本题考查了分式及二次根式有意义的条件,属于基础题.7.(2022·湖北恩施)函数y =的自变量x 的取值范围是( ) A .3x ≠B .3x ≥C .1x ≥−且3x ≠D .1x ≥−8.(2022·黑龙江绥化)2x −在实数范围内有意义,则x 的取值范围是( ) A .1x >−B .1x −C .1x −且0x ≠D .1x −且0x ≠ 【答案】C【分析】根据二次根式被开方数不能为负数,负整数指数幂的底数不等于0,计算求值即可;【详解】解:由题意得:x +1≥0且x ≠0,∴x ≥−1且x ≠0,故选: C .【点睛】本题考查了二次根式的定义,负整数指数幂的定义,掌握其定义是解题关键.9.(2022·内蒙古)实数a 1|1|a +−的化简结果是( )A .1B .2C .2aD .1−2a10.(2022·四川遂宁)实数a ,b 在数轴上的位置如图所示,化简1a +=______.11.(2022·四川广安)若(a−3)2,则以a、b为边长的等腰三角形的周长为________.+=__________.12.(2022·广西贺州)若实数m,n满足50∣∣,则3m n−−=m n13.(2022·贵州黔东南)若()2250x y+−=,则x y−的值是________.14.(2022·内蒙古·)已知x,y是实数,且满足y18的值是______.15.(2022·四川眉山)2,…,2,,4;…若2的位置记为(1,2)的位置记为(2,3),则________.32故答案为:(4,2)【点睛】本题考查了类比点的坐标解决实际问题的能力和阅读理解能力.被开方数全部统一是关键.。
中考数学备考专题复习: 二次根式(含解析)
中考备考专题复习:二次根式一、单选题1、(2016•曲靖)下列运算正确的是()A、3 ﹣=3B、a6÷a3=a2C、a2+a3=a5D、(3a3)2=9a62、把分母有理化后得()A、4bB、2C、D、3、若,则xy的值为()A、3B、8C、12D、44、下列各式中,不是二次根式的是()A、B、C、D、5、已知:m,n是两个连续自然数(m<n),且q=mn.设p=+,则p( ).A、总是奇数B、总是偶数C、有时是奇数,有时是偶数D、有时是有理数,有时是无理数6、(2015•钦州)对于任意的正数m、n定义运算※为:m※n=,计算(3※2)×(8※12)的结果为()A、2﹣4B、2C、2D、207、若等腰三角形的两边长分别为和,则这个三角形的周长为()A、B、或C、D、8、(2016•自贡)下列根式中,不是最简二次根式的是()A、B、C、D、9、(2016•眉山)下列等式一定成立的是()A、a2×a5=a10B、C、(﹣a3)4=a12D、10、(2016•潍坊)实数a,b在数轴上对应点的位置如图所示,化简|a|+ 的结果是()A、﹣2a+bB、2a﹣bC、﹣bD、b11、(2016•龙岩)与- 是同类二次根式的是()A、B、C、D、12、(2016•梅州)二次根式有意义,则x的取值范围是()A、x>2B、x<2C、x≥2D、x≤213、(2016•贵港)式子在实数范围内有意义,则x的取值范围是()A、x<1B、x≤1C、x>1D、x≥114、(2016•雅安)若式子+(k﹣1)0有意义,则一次函数y=(1﹣k)x+k﹣1的图象可能是()A、B、C、D、15、(2016•呼伦贝尔)若1<x<2,则的值为()A、2x﹣4B、﹣2C、4﹣2xD、2二、填空题16、若,则a-b+c=________ .17、若两个最简二次根式与可以合并,则a=________ .18、(2016•自贡)若代数式有意义,则x的取值范围是________.19、(2016•天津)计算(+ )(﹣)的结果等于________.20、(2016•曲靖)如果整数x>﹣3,那么使函数y= 有意义的x的值是________(只填一个)三、计算题21、(2016•攀枝花)计算;+20160﹣| ﹣2|+1.22、(2016•荆州)计算:.四、解答题23、已知 + =0,求的值.24、实数a、b在数轴上的位置如图所示,化简:25、我们知道,若两个有理数的积是1,则称这两个有理数互为倒数.同样的当两个实数与的积是1时,我们仍然称这两个实数互为倒数.①判断与是否互为倒数,并说明理由;②若实数是的倒数,求x和y之间的关系.五、综合题26、(2016•黄石)观察下列等式:第1个等式:a1= = ﹣1,第2个等式:a2= = ﹣,第3个等式:a3= =2﹣,第4个等式:a4= = ﹣2,按上述规律,回答以下问题:(1)请写出第n个等式:a n=________;(2)a1+a2+a3+…+a n=________.27、(2016•桂林)已知任意三角形的三边长,如何求三角形面积?古希腊的几何学家海伦解决了这个问题,在他的著作《度量论》一书中给出了计算公式﹣﹣海伦公式S= (其中a,b,c是三角形的三边长,p= ,S为三角形的面积),并给出了证明例如:在△ABC中,a=3,b=4,c=5,那么它的面积可以这样计算:∵a=3,b=4,c=5∴p= =6∴S= = =6事实上,对于已知三角形的三边长求三角形面积的问题,还可用我国南宋时期数学家秦九韶提出的秦九韶公式等方法解决.如图,在△ABC中,BC=5,AC=6,AB=9(1)用海伦公式求△ABC的面积;(2)求△ABC的内切圆半径r.答案解析部分一、单选题1、【答案】D【考点】幂的乘方与积的乘方,同底数幂的除法,二次根式的加减法【解析】【解答】解:A、由于3 ﹣=(3﹣1)=2 ≠3,故本选项错误;B、由于a6÷a3=a6﹣3=a3≠a2,故本选项错误;C、由于a2与a3不是同类项,不能进行合并同类项计算,故本选项错误;D、由于(3a3)2=9a6,符合积的乘方与幂的乘方的运算法则,故本选项正确.故选D.【分析】根据二次根式的加减法、同底数幂的除法、合并同类项法则、积的乘方与幂的乘方的运算法则解答.本题考查了二次根式的加减法、同底数幂的除法、合并同类项法则、积的乘方与幂的乘方的运算法则,熟记法则是解题的关键.2、【答案】D【考点】分母有理化【解析】【解答】==.故选D.【分析】根据二次根式的除法法则计算,再分母有理化.3、【答案】C【考点】二次根式的化简求值【解析】【解答】根据题意得:,解得:,则xy=12.故选C.【分析】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.根据非负数的性质列出方程求出x、y的值,代入所求代数式计算即可.4、【答案】B【考点】二次根式的定义【解析】【解答】形如叫二次根式。
2019中考数学专题练习-二次根式的乘除(含解析)
2019中考数学专题练习-二次根式的乘除(含解析)一、单选题1.计算并化简的结果为()A. B. C. 4 D. 162.下列计算:①()2=a;② =a;③ = ;④ = ,其中正确的有()个.A. 1B. 2C. 3D. 43.能使等式=成立的条件是()A. x≥0B. ﹣3<x≤0C. x>3D. x>3或x<04.计算的结果是().A. B. C. D.5.化简:•=()A. xyB. yC. xD. x6.如果ab>0,a+b<0,那么下面各式:①•=1;②=;③÷=﹣b,其中正确的是()A. ①②B. ①③C. ②③D. ①②③7.化简a的结果是()A. B. C. - D.8.下列式子中,不属于二次根式的是()A. B. C. D.9.把化简后得()A. 4bB. 2C.D.10.等式= 成立的条件是()A. a≥0B. a>﹣2C. a≠﹣2D. ≥011.若等式= 成立,则x的取值范围是()A. x≥2B. x≥1C. ﹣1≤x≤2D. x≤﹣1或x≥212.计算2 × ÷ 的结果是()A. B. C. D. 213.计算的结果是()A. B. C. D.14.计算的结果是()A. 12B. 2C. 2D. 415.已知a=,b=,用a、b的代数式表示,这个代数式是()A. 2aB. aC. abD. b二、填空题16.计算:÷ =________.17.计算:÷=________18.计算:(3 +2 )(3 ﹣2 )=________.19.等式成立的条件是________ .20.计算的结果是________.21.=________,(﹣)2=________,=________.22.计算:=________.三、计算题23.× ÷ .24.计算:(1)× ;(2)× .25.-5 ÷ .26.计算(1)×(2)×(3)×(4)×27.÷ .28.如果= • 成立,求x的取值范围.29.计算:﹣1.30.你能找出规律吗?(1)计算:× =________,=________,× =________,=________.(2)请按找到的规律计算:① × ;② × .(3)已知:a= ,b= ,则=________(用含a,b的代数式表示).四、解答题31.32.33.小东在学习了=后,认为=也成立,因此他认为一个化简过程:是正确的.你认为他的化简对吗?说说理由.答案解析部分一、单选题1.计算并化简的结果为()A. B. C. 4 D. 16【答案】C【考点】二次根式的乘除法【解析】【解答】解:× = =4.故选C.【分析】根据二次根式的乘法×= ,化简即可得解.2.下列计算:①()2=a;② =a;③ = ;④ = ,其中正确的有()个.A. 1B. 2C. 3D. 4【答案】A【考点】二次根式的乘除法【解析】【解答】解:①()2=a,正确;② =|a|,故此选项错误;③ = (a≥0,b≥0),故此选项错误;④ = (a≥0,b≥0),故此选项错误,故正确的有1个.故选:A.【分析】直接利用二次根式的性质进而判断得出答案.3.能使等式=成立的条件是()A. x≥0B. ﹣3<x≤0C. x>3D. x>3或x<0 【答案】C【考点】二次根式的乘除法【解析】【解答】解:∵=成立,∴x≥0,x﹣3>0,解得:x>3.【分析】利用二次根式的性质得出x≥0,x﹣3>0,进而求出即可.4.计算的结果是().A. B. C. D.【答案】B【考点】二次根式的乘除法【解析】【解答】故选B.【分析】根据二次根式的乘法计算即可.5.化简:•=()A. xyB. yC. xD. x【答案】A【考点】二次根式的乘除法【解析】【解答】解:原式==xy.故选A.【分析】根据二次根式的乘法法则求解.6.如果ab>0,a+b<0,那么下面各式:①•=1;②=;③÷=﹣b,其中正确的是()A. ①②B. ①③C. ②③D. ①②③【答案】B【考点】二次根式的乘除法【解析】【解答】解:∵ab>0,a+b<0,∴a<0,b<0,∴①•=1,正确;②=错误;③÷=﹣b,正确,故选:B.【分析】根据题意得出a,b的值,进而利用二次根式的性质化简求出即可.7.化简a的结果是()A. B. C. - D.【考点】二次根式的乘除法【解析】【解答】解:由a可知,a<0,原式=故选C.【分析】先判断出a的符号,再把二次根式进行化简即可.8.下列式子中,不属于二次根式的是()A. B. C. D. 【答案】C【考点】二次根式的乘除法【解析】【解答】解:∵负数没有算术平方根,∴无意义,故不是二次根式.故选:C.【分析】依据二次根式的定义回答即可.9.把化简后得()A. 4bB. 2C.D. 【答案】D【考点】二次根式的乘除法【解析】【解答】解:.故选;D.【分析】直接利用二次根式的除法运算法则化简求出即可.10.等式= 成立的条件是()A. a≥0B. a>﹣2C. a≠﹣2D. ≥0【答案】A【考点】二次根式的乘除法【解析】【解答】解:∵等式= 成立,∴,解得:a≥0.故选:A.【分析】直接利用二次根式的性质,得出关于a的不等式求出答案.11.若等式= 成立,则x的取值范围是()A. x≥2B. x≥1C. ﹣1≤x≤2D. x≤﹣1或x≥2【答案】A【考点】二次根式的乘除法【解析】【解答】解:∵等式= 成立,∴解得:x≥2,故选:A.【分析】根据二次根式的乘法:(a≥0,b≥0),即可解答.12.计算2 × ÷ 的结果是()A. B. C. D. 2 【答案】C【考点】二次根式的乘除法【解析】【解答】解:原式= =3=故选C.【分析】根据二次根式的运算法则即可求出答案.13.计算的结果是()A. B. C. D. 【答案】A【考点】二次根式的乘除法【解析】【解答】解:,故选A.14.计算的结果是()A. 12B. 2C. 2D. 4 【答案】B【考点】二次根式的乘除法【解析】【解答】解:==2,故选B.【分析】根据二次根式的乘法法则把被开方数相乘,再根据二次根式的性质化成最简即可.15.已知a=,b=,用a、b的代数式表示,这个代数式是()A. 2aB. aC. abD. b【答案】D【考点】二次根式的乘除法【解析】【解答】解;a•a•b=故选:D.【分析】根据二次根式的乘法,可得答案.二、填空题16.计算:÷ =________.【答案】4【考点】二次根式的乘除法【解析】【解答】解:原式= = =4.故答案为:4.【分析】根据二次根式的除法法则求解.17.计算:÷=________【答案】【考点】二次根式的乘除法【解析】【解答】解:计算:÷==.【分析】根据二次根式的除法法则计算.18.计算:(3 +2 )(3 ﹣2 )=________.【答案】6【考点】二次根式的乘除法【解析】【解答】解:原式=(3 )2-(2 )2=18-12=6.故答案为6【分析】观察式子的特点。
二次根式计算专题——30题
二次根式计算专题1.计算:⑴ ()()24632463+- ⑵ 20(3)(3)2732π++-+- 【答案】(1)22; (2) 643- 【解析】试题分析:(1)根据平方差公式,把括号展开进行计算即可求出答案. (2)分别根据平方、非零数的零次幂、二次根式、绝对值的意义进行计算即可得出答案. 试题解析:(1) ()()24632463+- 22(36)(42)=-=54-32=22.(2)20(3)(3)2732π++-+-313323=+-+-643=-考点: 实数的混合运算.2.计算(1)﹣× (2)(6﹣2x )÷3. 【答案】(1)1;(2)13【解析】试题分析:先把二次根式化简后,再进行加减乘除运算,即可得出答案.试题解析:2051123525532335=-⨯32=-1=;(2)1(62)34x x x÷62)3x x x x =÷ (3)3x x x =÷3x x =13=.考点: 二次根式的混合运算.3.计算:⎛÷⎝【答案】143.【解析】试题分析:先将二次根式化成最简二次根式,再算括号里面的,最后算除法.试题解析:⎛÷⎝÷=143=.考点:二次根式运算.4.计算:322663-+-⨯【答案】22.【解析】试题分析:先算乘除、去绝对值符号,再算加减.试题解析:原式=23323-+-=22考点:二次根式运算.5.计算:)23(3182+-⨯【答案】-【解析】试题分析:先将二次根式化成最简二次根式,再化简.6=-考点:二次根式化简.6.计算:2421332--.【答案】22.【解析】试题分析:根据二次根式的运算法则计算即可.22-==.考点:二次根式的计算.7.计算:)13)(13(2612-++÷-.2.【解析】试题分析:先算乘除,再算加减,有括号的先算括号里面的,特别的能利用公式的应用公式简化计算过程.1)=31-2. 考点:二次根式的化简.8⎝ 【答案】0.【解析】试题分析: 根据二次根式运算法则计算即可.0==⎝. 考点:二次根式计算.9.计算:()0+1π.【答案】1-【解析】试题分析:任何非零数的零次方都为1,负数的绝对值等于它的相反数,再对二次根式进行化简即可.试题解析:()0+1π11=-=-考点:二次根式的化简.10.计算:435.03138+-+ 【答案】323223+. 【解析】试题分析:先化成最简二次根式,再进行运算.试题解析:原式=2322322+-+=323223+. 考点:二次根式的化简.11.计算:(1)(2)()020********π----【答案】(1)1+(2)3-.【解析】试题分析:(1)根据二次根式的运算法则计算即可;(2)针对有理数的乘方,零指数幂,二次根式化简,.绝对值4个考点分别进行计算,然后根据实数的运算法则求得计算结果.试题解析:(1)(1==(2)()020141201431133π---=--+=-. 考点:1.实数的运算;2.有理数的乘方;3.零指数幂;4.二次根式化简;5.绝对值.12.计算: 212)31()23)(23(0+---+ 【答案】2.【解析】试题分析:本题主要考查了二次根式的混合运算.熟练化简二次根式后,在加减的过程中,有同类二次根式的要合并;相乘的时候,被开方数简单的直接让被开方数相乘,再化简;较大的也可先化简,再相乘,灵活对待.本题中先根据平方差公式计算乘法以及零指数幂的意义,去掉括号后,计算加减法.试题解析:解:原式=2123+-- =2考点:二次根式的混合运算.130(2013)|+-+-.【答案】1.【解析】0(2013)|-+-1=+1=.考点:二次根式化简.14.计算12)824323(÷+-【答案】2-.【解析】试题分析:先化简二次根式,再合并同类二次根式,最后算除法即可求出答案.试题解析:???=- 考点: 二次根式的混合运算.15-2-. 【解析】试题分析:把二次根式化简,再合并同类二次根式即可求出答案.==- 考点: 二次根式的运算.16.化简:(1)83250+ (2)2163)1526(-⨯-【答案】(1)92;(2)- 【解析】试题分析:(1)先去分母,再把各二次根式化为最简二次根式,进行计算;(2)直接利用分配律去括号,再根据二次根式乘法法则计算即可.试题解析:(1)原式92=;(2)原式==-考点:二次根式的混合运算;17.计算(1)2(2)2【答案】(1)3+(2)3.【解析】试题分析:(1)根据运算顺序计算即可;(2)将括号内化为最简二次根式后合并再平方运算即可.试题解析:(1)233=-=.(2)(2223===.考点:二次根式化简.181)(1-+ 【答案】17.【解析】,运用平方差公式计算1)(1+,再进行计算求解.181-- =17考点:实数的运算.19.计算:231|21|27)3(0++-+--【答案】-.【解析】试题分析: 本题涉及零指数幂、二次根式的化简、分母有理化、绝对值化简4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.试题解析:原式=11-+=-考点:1.实数的运算;2.零指数幂;3.分母有理化.20.计算:① 01 2⎛⎫+- ⎪⎝⎭ ② ⎛ ⎝ ③⎛- ⎝1;②143;③a 3-. 【解析】试题分析:①针对算术平方根,绝对值,零指数3个考点分别进行计算,然后根据实数的运算法则求得计算结果;②根据二次根式运算法则计算即可;③根据二次根式运算法则计算即可.1112⎛⎫+-= ⎪⎝⎭.②143⎛⎛=÷ ⎝⎝.1a 2a 63⎛-=-⋅=- ⎝. 考点:1.二次根式计算;2.绝对值;3.0指数幂.21.计算:(1)2012101(1)5()1)2----++(2)【答案】(1)0;(2)【解析】试题分析:(1)原式=152310-++-=;(2)原式==.考点:1.实数的运算;2.二次根式的加减法.22.计算与化简(1(0π (2)2(3(4+-【答案】(1)1;(2)5.【解析】试题分析:(1)将前两项化为最简二次根式,第三项根据0指数幂定义计算,再合并同类二次根式即可;(2)应用完全平方公式和平方差公式展开后合并同类二次根式即可.试题解析:(1(011π==.(2)((()2344951675+--=+--=.考点:1.二次根式化简;2.0指数幂;3.完全平方公式和平方差公式.23.(1)18282-+(2)3127112-+ (3)0)31(33122-++(4))2332)(2332(-+【答案】(1)-(2) (3)6;(4)6- 【解析】试题分析:本题主要考查根式的根式的混合运算和0次幂运算.根据运算法则先算乘除法,是分式应该先将分式转化为整式,再按运算法则计算。
(完整word版)二次根式乘除练习题
二次根式练习题(1)____班 姓名__________ 分数__________一、选择题(每小题3分,共30分)1.若m -3为二次根式,则m 的取值为 ( )A .m≤3 B.m <3 C .m≥3 D.m >32.下列式子中二次根式的个数有 ( ) ⑴31;⑵3-;⑶12+-x ;⑷38;⑸231)(-;⑹)(11>-x x ;⑺322++x x . A .2个 B .3个 C .4个 D .5个3.当22-+a a 有意义时,a 的取值范围是 ( )A .a≥2 B.a >2 C .a≠2 D.a≠-24.下列计算正确的是 ( ) ①69494=-⋅-=--))((;②69494=⋅=--))((; ③145454522=-⋅+=-;④145452222=-=-;A .1个B .2个C .3个D .4个5.化简二次根式352⨯-)(得 ( )A .35-B .35C .35±D .306.对于二次根式92+x ,以下说法不正确的是 ( )A .它是一个正数B .是一个无理数C .是最简二次根式D .它的最小值是37.把ab a123分母有理化后得 ( )A .b 4B .b 2C .b 21 D . b b2 8.y b x a +的有理化因式是 ( )A .y x +B .y x -C .y b x a -D .y b x a +9.下列二次根式中,最简二次根式是 ( )A .23aB .31 C .153 D .14310.计算:ab ab b a 1⋅÷等于 ( ) A .ab ab 21B .ab ab 1C .ab b1 D .ab b 二、填空题(每小题3分,共分)11.当x___________时,x 31-是二次根式.12.当x___________时,x 43-在实数范围内有意义.13.比较大小:23-______32-.14.=⋅b a a b 182____________;=-222425__________. 15.计算:=⋅b a 10253___________.16.计算:2216a c b =_________________. 17.当a=3时,则=+215a ___________.18.若x x x x --=--3232成立,则x 满足_____________________.三、解答题(46分)19.(8分)把下列各式写成平方差的形式,再分解因式: ⑴52-x ; ⑵742-a ;⑶15162-y ; ⑷2223y x -.20.(12分)计算: ⑴))((36163--⋅-; ⑵63312⋅⋅;⑶)(102132531-⋅⋅; ⑷z y x 10010101⋅⋅-.21.(12分)计算: ⑴20245-; ⑵14425081010⨯⨯..; ⑶521312321⨯÷; ⑷)(ba b b a 1223÷⋅.22.(8分)把下列各式化成最简二次根式: ⑴27121352722-; ⑵ba c abc 4322-.23.(6分)已知:2420-=x ,求221xx +的值.参考答案:一、选择题1.A ;2.C;3.B ;4.A ;5.B ;6.B;7.D ;8.C ;9.D ;10.A .二、填空题11.≤31;12.≤43;13.<;14.31,7;15.ab 230;16.a c b 4;17.23;18.2≤x <3. 三、解答题19.⑴))((55-+x x ;⑵))((7272-+a a ;⑶))((154154-+y y ; ⑷))((y x y x 2323-+;20.⑴324-;⑵2;⑶34-;⑷xyz 10;21.⑴43-;⑵203;⑶1;⑷43;22.⑴33;⑵ bc a c 242-;23.18。
二次根式的乘除练习题
二次根式的乘除练习题一、选择题1.下列式子中,不是二次根式的是() A. B. C. D.2.已知一个正方形的面积是5,那么它的边长是()B. .以上皆不对3.使式子有意义的未知数x有()个. A.0 B.1 C.2 D.无数4.下列各式中、、、、、,二次根式的个数是().A.4 B.3 C.2 D.15.数a没有算术平方根,则a的取值范围是().A.a>0 B.a≥0 C.a<0 D.a=06.的值是(). A.0 B. C.4 D.以上都不对7.a≥0时,、、-,比较它们的结果,下面四个选项中正确的是().A.=≥- B.>>-C.<<- D.->=8.若直角三角形两条直角边的边长分别为cm和cm,•那么此直角三角形斜边长是()A.3cm B.3cm C.9cm D.27cm9.化简a的结果是(). A. B. C.- D.-10.等式成立的条件是()A.x≥1 B.x≥-1 C.-1≤x≤1 D.x≥1或x≤-111.下列各等式成立的是().A.4×2=8 B.5×4=20C.4×3=7 D.5×4=2012.计算的结果是()A. B. C. D.13.阅读下列运算过程:,数学上将这种把分母的根号去掉的过程称作“分母有理化”,那么,化简的结果是(). A.2 B.6 C. D.14.如果(y>0)是二次根式,那么,化为最简二次根式是().A.(y>0) B.(y>0) C.(y>0) D.以上都不对15.把(a-1)中根号外的(a-1)移入根号内得().A. B. C.- D.-16.在下列各式中,化简正确的是()A.=3 B.=±C.=a2 D. =x17.化简的结果是() A.- B.- C.- D.-二、填空题1.若+有意义,则=_______. 2.(-)2=________.3.已知有意义,那么是一个_______数. 4.-=________.5.若是一个正整数,则正整数m的最小值是________.6.先化简再求值:当a=9时,求a+的值,甲乙两人的解答如下:甲的解答为:原式=a+=a+(1-a)=1;乙的解答为:原式=a+=a+(a-1)=2a-1=17.两种解答中,_______的解答是错误的,错误的原因是__________.7.分母有理化:(1) =_________;(2) =________;(3) =______.8.已知x=3,y=4,z=5,那么的最后结果是_______.9.化简=_________.(x≥0)10.a化简二次根式号后的结果是_________.三、计算1.()2(x≥0) 2.()2 3.()24.()2 5.()2()27.()2 8.(-3)2四、综合提高题1、在实数范围内分解下列因式:(1)x2-3 (2)x4-4 (3) 2x2-32、当x是多少时,+在实数范围内有意义?3、已知y=++5,求的值.4、若+=0,求a2004+b2004的值.5、当x是多少时,+x2在实数范围内有意义?6、已知a、b为实数,且+2=b+4,求a、b的值.7.已知+=0,求x y的值.8. 若-3≤x≤2时,试化简│x-2│++。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次根式的乘除(2)
一、选择题 1、(2009年黄石市)下列根式中,不是..最简二次根式的是( )
A
B
C D 2、下列二次根式中,是最简二次根式的是(
)
A .2.0
B .2
2
b a -
C .x
1 D .a 4
3、下列计算正确的是(
)
A .
3
23
2--=
-- B .a a 33
13= C .a a =3
3
D .
a a 333
=
4、(2009年长沙)下列各式中,运算正确的是( )
A .6
3
2
a a a ÷= B .325
()a a = C .= D =5、(2009年湖北十堰市)下列运算正确的是( ). A .523=
+
B .623=
⨯
C .13)
13(2
-=- D .353
52
2-=-
6、把(a -1)
1
1-a
根号外的因式移入根号内,其结果是( ) A .1-a B.-1-a C.a -1 D.-a -1 二、填空题
1、(2009年上海市)
= .
2、=⋅b
a a
b 182 ___________;=-2
2
24
25
__________.
3、若
x
x x
x --=
--3232成立,则x 满足_______________.
4、把a
a 1-
中根号外面的因式移到根号内的结果是 。
5、把
y
x
x
823
化为最简二次根式得______________。
6、(2009年新疆)若x y ==xy 的值是 。
三、解答题
1、计算:(1)2
13
675÷
⨯ (2)
)1(
3b
a
b b
a ÷
⋅
(3)5
21
312321
⨯
÷
())
40,0a b
2、化简(每小题5分,共10分) (1). 3
2 (2).
()016910
26
2
2
2
>-x x
3、已知x+y=-4,xy=2.求;x
y y
x +
的值。
4、(09年邵阳市)在进行二次根式化简时,我们有时会碰上如
3
5,
3
2,
1
32+一样的
式子,其实我们还可以将其进一步化简:3
5=
33
53
335=
⨯
⨯(一)
3
2=
3
63
332=
⨯⨯(二)
1
32+=
))(
()
-(1313132-+⨯=
131
31322
2---=)()
((三)以上这种化简的方法叫做分母有理化。
1
32+还可以用以下方法化简:
1
32+=
131
313131313131
32
2-+-++-+-=))((=)(=(四)
(1)请用不同的方法化简
3
52+。
①参照(三)式得
3
52+= ; ②参照(四)式得352+
=
_________________________________________。
(2)化简:1
2121
...5
713
511
31-+
++
++
+
+
+
+n n 。