二次根式的乘除测试题1

合集下载

二次根式乘除法练习题

二次根式乘除法练习题

12.6二次根式的乘除法知识回忆::1、〔1〕94⨯= = ;94⨯= = ; 〔2〕169⨯= = ;169⨯= = ;〔3〕ba ⋅〔a ≥0,b ≥0〕.2、〔1〕=949=_________;〔2〕=814=_________;〔3〕=ba 〔a ≥0,b >0〕.目标解读::1.明白得并把握二次根式乘法和除法法那么,并会进展简单的二次根式的乘除法运算.2.明白得最简二次根式的意义及条件,把所给的二次根式化为最简二次根式.3.明白得分母有理化的意义,并会进展分母有理化.根底训练:一、选择题1. 以下二次根式中是最简二次根式的是〔 〕2. 化简时,甲的解法是:==,乙的解法是:== 〕A.甲的解法正确,乙的解法不正确B.甲的解法不正确,乙的解法正确 C.甲、乙的解法都正确D.甲、乙的解法都不正确3.a b ==的值为〔 〕 A.5B.6C.3D.44.=〕 A.1x <且0x ≠ B.0x >且1x ≠ C.01x <≤D.01x <<5.=x y,知足的条件为〔〕A.xy⎧⎨<⎩≥B.xy⎧⎨>⎩≤C.xy⎧⎨<⎩≤D.xy⎧⎨>⎩≥6.;结果为〔〕A.B.C.D.7. 给出以下四道算式:〔1〕4=-〔2〕114=〔3〕=〔4〕)a b=>其中正确的算式是〔〕A.〔1〕〔3〕B.〔2〕〔4〕C.〔1〕〔4〕D.〔2〕〔3〕8.〕A.-B.C.±D.309. 以下各组二次根式中,同类二次根式是〔〕,B.D.,10. 以下各式中不成立的是〔〕2x=32==54199=-=-D.4=11. 以下各式中化简正确的选项是〔〕ab==2132x y x⎫=⎪⎭b=12. 给出四个算式:〔1〕=2〕55x y =3〕36x y y x= 〔4〕=-其中正确的算式有〔 〕A.3个 B.2个 C.1个D.0个13. 以下计算正确的选项是〔 〕A.=B.5xy y =115335÷= 149=- 14. 以下根式中化简正确的选项是〔 〕6aa a = = =a b =+ 15.6a ab 等于〔 〕A.B.212a bC.aD.2二、填空题16. 直接填写计算结果:〔1=_________; 〔2〕=___________;〔3=_________; 〔4=__________.17. 计算:=_______;_________.18. 当00x y >>,=_________.19. 化简:=__________.20. 把根号外的因式移到根号内:(a -=__________.21. 与那么a =______,b =______.22. 直接填写化简结果:〔1〕152105⨯-=________;〔2〕22221251015+⨯-=________.23.00)x y ≥,≥= ;00)a b ≥,≥= .24.=_________;=________. 25._______.三、计算:26. 〔1〕⎛⎝; 〔2〕;〔3〕.246246-⨯+.27.〔1〕18322423⨯; 〔2〕⎪⎪⎭⎫⎝⎛-⨯y x 219491231. 28.〔1⎛ ⎝; 〔229. 〔1; 〔2; 〔3〔4〕.30. 22--×.能力拓展:31. 假设最简二次根式a a b ,的值.32. 5a b +=,6ab =的值.。

二次根式的乘除法习题精选

二次根式的乘除法习题精选

二次根式的乘除法习题精选一.选择题(共18小题)1.如果ab>0,a+b<0,那么下面各式:①=,②×=1,③÷=﹣b,其中正确的是()A.①②B.②③C.①③D.①②③2.下列各式计算正确的是()A.+=B.4﹣3=1C.2×3=6D.÷=33.等式=成立的x的取值范围在数轴上可表示为()A.B.C.D.4.“分母有理化”是我们常用的一种化简的方法,如:==7+4,除此之外,我们也可以用平方之后再开方的方式来化简一些有特点的无理数,如:对于﹣,设x=﹣,易知>,故x>0,由x2=(﹣)2=3++3﹣﹣2=2,解得x=,即﹣=.根据以上方法,化简+﹣后的结果为()A.5+3B.5+C.5﹣D.5﹣35.能使等式成立的x的取值范围是()A.x≠2B.x≥0C.x>2D.x≥26.等式=(b﹣a)成立的条件是()A.a≥b,x≥0B.a≥b,x≤0C.a≤b,x≥0D.a≤b,x≤0 7.计算×的结果是()A.6B.6C.6D.68.已知1<p<2,化简+()2=()A.1B.3C.3﹣2p D.1﹣2p9.下列运算中,正确的是()A.x3+x4=x7B.2x2•3x4=6x8C.(﹣3x2y)2=﹣9x4y2D.10.若,则()A.x≥6B.x≥0C.0≤x≤6D.x为一切实数11.设=a,=b,用含a,b的式子表示,则下列表示正确的是()A.0.3ab B.3ab C.0.1ab2D.0.1a2b 12.把a根号外的因式移入根号内的结果是()A.B.C.D.13.计算的结果是()A.1B.C.D.14.=成立的条件是()A.x≥﹣1B.x≤3C.﹣1≤x≤3D.﹣1<x≤3 15.实数a,b在数轴上的位置如图所示,化简的结果是()A.﹣a+b B.﹣a﹣b C.a+b D.a﹣b 16.下列变形正确的是()A.B.C.D.17.下列运算正确的是()A.B.C.D.18.下列化简正确的是()A.B.C.D.二.填空题(共20小题)19.计算:=.20.计算:(+1)(﹣1)=.21.计算÷的结果是.22.计算:=.23.计算:=.24.计算:×的结果为.25.=.26.计算:=.27.化简:=.28.如图:化简=.29.已知长方形的面积为12,其中一边长为,则该长方形的另一边长为.30.计算:÷=.31.计算的结果是.32.计算:5÷×所得的结果是.33.若=,则x的取值范围为.34.计算的结果为.35.计算(x≥0,y≥0)的结果是.36.计算的结果是.37.计算()2=.38.化简:=.三.解答题(共10小题)39.计算:2÷•.40.(1)用“=”、“>”、“<”填空:4+3 2,1+2,5+5 2.(2)由(1)中各式猜想m+n与2(m≥0,n≥0)的大小,并说明理由.(3)请利用上述结论解决下面问题:某园林设计师要对园林的一个区域进行设计改造,将该区域用篱笆围成矩形的花圃.如图所示,花圃恰好可以借用一段墙体,为了围成面积为200m2的花圃,所用的篱笆至少需要m.41.计算:3•÷(﹣).42.43.设长方形的面积为S,相邻两边长分别是a,b,已知S=4,a=,求b.44.化简:•÷.45.已知:,.求下列各式的值.(1)xy;(2)x2﹣xy+y2.46.数a,b在数轴上的位置如图所示,化简:.47.若实数p在数轴上的位置如图所示,化简下列式子:+()248.阅读下列材料:在学习完实数的相关运算之后,小明同学提出了一个有趣的问题:两个数的积的算术平方根与这两个数的算术平方的积存在有什么样的关系?小明用自己的方法进行了验证:小明:==10,而=5,=2∴=5×2=10即=×回答以下问题:(1)结合材料猜想,当a≥0,b≥0时,请直接写出和之间有什么关系?(2)运用以上结论,计算:①;②(3)解决实际问题:已知一个长方形的长为,宽为,则长方形的面积为多少?二次根式的乘除法习题精选参考答案与试题解析一.选择题(共18小题)1.如果ab>0,a+b<0,那么下面各式:①=,②×=1,③÷=﹣b,其中正确的是()A.①②B.②③C.①③D.①②③【分析】由ab>0,a+b<0先求出a<0,b<0,再进行根号内的运算.【解答】解:∵ab>0,a+b<0,∴a<0,b<0①=,被开方数应≥0,a,b不能做被开方数,(故①错误),②•=1,•===1,(故②正确),③÷=﹣b,÷=÷=×=﹣b,(故③正确).故选:B.2.下列各式计算正确的是()A.+=B.4﹣3=1C.2×3=6D.÷=3【分析】分别根据二次根式有关的运算法则,化简分析得出即可.【解答】解:A.,无法合并,故此选项错误,B.4﹣3=,故此选项错误,C.2×3=6×3=18,故此选项错误,D.=,此选项正确,故选:D.3.等式=成立的x的取值范围在数轴上可表示为()A.B.C.D.【分析】根据二次根式有意义的条件即可求出x的范围.【解答】解:由题意可知:解得:x≥3故选:B.4.“分母有理化”是我们常用的一种化简的方法,如:==7+4,除此之外,我们也可以用平方之后再开方的方式来化简一些有特点的无理数,如:对于﹣,设x=﹣,易知>,故x>0,由x2=(﹣)2=3++3﹣﹣2=2,解得x=,即﹣=.根据以上方法,化简+﹣后的结果为()A.5+3B.5+C.5﹣D.5﹣3【分析】根据二次根式的运算法则即可求出答案.【解答】解:设x=﹣,且>,∴x<0,∴x2=6﹣3﹣2+6+3,∴x2=12﹣2×3=6,∴x=,∵=5﹣2,∴原式=5﹣2﹣=5﹣3,故选:D.5.能使等式成立的x的取值范围是()A.x≠2B.x≥0C.x>2D.x≥2【分析】本题需注意的是,被开方数为非负数,且分式的分母不能为0,列不等式组求出x的取值范围.【解答】解:由题意可得,,解之得x>2.故选:C.6.等式=(b﹣a)成立的条件是()A.a≥b,x≥0B.a≥b,x≤0C.a≤b,x≥0D.a≤b,x≤0【分析】若二次根式有意义,则被开方数为非负数,算术平方根的结果也是非负数,可据此求出a、b、x的取值范围.【解答】解:根据算术平方根的意义可知,b﹣a≥0且x≥0,即a≤b,x≥0.故选:C.7.计算×的结果是()A.6B.6C.6D.6【分析】根据二次根式的乘法法则计算即可.【解答】解:×===6,故选:D.8.已知1<p<2,化简+()2=()A.1B.3C.3﹣2p D.1﹣2p【分析】根据二次根式的性质进行化简即可.【解答】解:∵1<p<2,∴1﹣p<0,2﹣p>0,∴原式=|1﹣p|+2﹣p=p﹣1+2﹣p=1.故选:A.9.下列运算中,正确的是()A.x3+x4=x7B.2x2•3x4=6x8C.(﹣3x2y)2=﹣9x4y2D.【分析】直接利用合并同类项法则以及积的乘方运算法则、单项式乘单项式、二次根式的乘法运算法则分别计算得出答案.【解答】解:A、x3+x4无法合并,故此选项错误;B、2x2•3x4=6x6,故此选项错误;C、(﹣3x2y)2=9x4y2,故此选项错误;D、×=,故此选项正确.故选:D.10.若,则()A.x≥6B.x≥0C.0≤x≤6D.x为一切实数【分析】本题需注意的是二次根式的被开方数为非负数,由此可求出x的取值范围.【解答】解:若成立,则,解之得x≥6;故选:A.11.设=a,=b,用含a,b的式子表示,则下列表示正确的是()A.0.3ab B.3ab C.0.1ab2D.0.1a2b【分析】先把化为、的形式,再把a、b代入计算即可.【解答】解:∵=0.3,=a,=b,∴=0.3ab.故选:A.12.把a根号外的因式移入根号内的结果是()A.B.C.D.【分析】本题需注意的是a的符号,根据被开方数不为负数可得出a<0,因此需先将a 的负号提出,然后再将a移入根号内进行计算.【解答】解:∵a<0,∴a=﹣=﹣;故选:B.13.计算的结果是()A.1B.C.D.【分析】直接利用二次根式的乘除法运算法则化简,进而得出答案.【解答】解:===.故选:C.14.=成立的条件是()A.x≥﹣1B.x≤3C.﹣1≤x≤3D.﹣1<x≤3【分析】根据二次根式的性质分别得出关于x的不等式进而求出答案.【解答】解:∵=成立,∴,解得:﹣1<x≤3.故选:D.15.实数a,b在数轴上的位置如图所示,化简的结果是()A.﹣a+b B.﹣a﹣b C.a+b D.a﹣b【分析】先化简各式,然后再进行计算即可.【解答】解:由题意得:b<0<a,∴=a+(﹣b)=a﹣b,故选:D.16.下列变形正确的是()A.B.C.D.【分析】A:等式右边没有意义;B:被开方数是带分数时先化为假分数,然后再开方;C:正确;D:被开方数先化为平方差的形式,然后再开方.【解答】解:A:原式==4×5=20,∴不符合题意;B:原式==,∴不符合题意;C:原式=,∴符合题意;D:原式==7,∴不符合题意;故选:C.17.下列运算正确的是()A.B.C.D.【分析】直接利用二次根式的性质以及二次根式的乘除运算法则计算得出答案.【解答】解:A.=2,故此选项不合题意;B.=,故此选项不合题意;C.3×2=6,故此选项不合题意;D.4÷=2,故此选项符合题意.故选:D.18.下列化简正确的是()A.B.C.D.【分析】根据二次根式除法法结合二次根式性质化简即可.【解答】解:A.=,故正确;B.=2,故不正确;C.=,故不正确;D.=4,故不正确.故选:A.二.填空题(共20小题)19.计算:=3.【分析】根据二次根式的乘法法则计算.【解答】解:原式===3.故答案为:3.20.计算:(+1)(﹣1)=1.【分析】两个二项式相乘,并且这两个二项式中有一项完全相同,另一项互为相反数.就可以用平方差公式计算.结果是乘式中两项的平方差(相同项的平方减去相反项的平方).【解答】解:(+1)(﹣1)=.故答案为:1.21.计算÷的结果是3.【分析】根据二次根式的性质把化简,再根据二次根式的性质计算即可.【解答】解:.故答案为:322.计算:=3.【分析】原式利用平方根的定义化简即可得到结果.【解答】解:原式=3.故答案为:323.计算:=3.【分析】本题直接运用二次根式的除法法则进行计算即可.【解答】解:原式===3.故答案为:3.24.计算:×的结果为3.【分析】按照二次根式的乘法法则计算即可.【解答】解:原式==3.故答案为:3.25.=3.【分析】直接进行平方的运算即可.【解答】解:原式=3.故答案为:326.计算:=30.【分析】利用二次根式的乘法法则运算后,将结果化成最简二次根式即可.【解答】解:原式=10=10×=30,故答案为:30.27.化简:=3.【分析】直接利用二次根式的性质计算得出答案.【解答】解:原式===3.故答案为:3.28.如图:化简=0.【分析】根据数轴上点的位置确定出a﹣b,c﹣a,以及b﹣c的正负,原式利用二次根式性质及绝对值的代数意义化简,去括号合并即可得到结果.【解答】解:根据数轴上点的位置得:a<b<0<c,∴a﹣b<0,c﹣a>0,b﹣c<0,则原式=b﹣a﹣|c﹣a|+|b﹣c|=b﹣a﹣c+a﹣b+c=0.故答案为:0.29.已知长方形的面积为12,其中一边长为,则该长方形的另一边长为3.【分析】直接利用二次根式的除法运算法则计算得出答案.【解答】解:∵长方形的面积为12,其中一边长为,∴该长方形的另一边长为:12÷2=3.故答案为:3.30.计算:÷=4.【分析】根据二次根式的除法法则求解.【解答】解:原式===4.故答案为:4.31.计算的结果是2.【分析】根据二次根式的运算法则即可求出答案.【解答】解:原式==2,故答案为:232.计算:5÷×所得的结果是1.【分析】由于二次根式的乘除运算是同级运算,从左到右依次计算即可.【解答】解:原式=×=1.33.若=,则x的取值范围为﹣≤x<1.【分析】根据商的算术平方根的性质即可得到结果.【解答】解:∵=,∴,解得:﹣≤x<1,故答案为:﹣≤x<1.34.计算的结果为.【分析】直接利用二次根式的乘法运算法则计算得出答案.【解答】解:===.故答案为:.35.计算(x≥0,y≥0)的结果是4x.【分析】直接利用二次根式的性质化简得出答案.【解答】解:(x≥0,y≥0)==4x.故答案为:4x.36.计算的结果是3.【分析】根据二次根式的乘除法法则计算,得到答案.【解答】解:原式==3,故答案为:3.37.计算()2=2.【分析】直接计算即可.【解答】解:原式=2.故答案是2.38.化简:=.【分析】根据二次根式的除法运算法则进行计算即可.【解答】解:==,故答案为:.三.解答题(共10小题)39.计算:2÷•.【分析】直接利用二次根式的乘除运算法则化简求出答案.【解答】解:原式=2×6=12=8.40.(1)用“=”、“>”、“<”填空:4+3 >2,1+>2,5+5 =2.(2)由(1)中各式猜想m+n与2(m≥0,n≥0)的大小,并说明理由.(3)请利用上述结论解决下面问题:某园林设计师要对园林的一个区域进行设计改造,将该区域用篱笆围成矩形的花圃.如图所示,花圃恰好可以借用一段墙体,为了围成面积为200m2的花圃,所用的篱笆至少需要40m.【分析】(1)分别进行计算,比较大小即可;(2)根据第(1)问填大于号或等于号,所以猜想m+n≥2;比较大小,可以作差,m+n﹣2,联想到完全平方公式,问题得证;(3)设花圃的长为a米,宽为b米,需要篱笆的长度为(a+2b)米,利用第(2)问的公式即可求得最小值.【解答】解:(1)∵4+3=7,2=4,∴72=49,(4)2=48,∵49>48,∴4+3>2;∵1+=>1,2=<1,∴1+>2;∵5+5=10,2=10,∴5+5=2.故答案为:>,>,=.(2)m+n≥2(m≥0,n≥0).理由如下:当m≥0,n≥0时,∵(﹣)2≥0,∴()2﹣2•+()2≥0,∴m﹣2+n≥0,∴m+n≥2.(3)设花圃的长为a米,宽为b米,则a>0,b>0,S=ab=200,根据(2)的结论可得:a+2b≥2=2=2=2×20=40,∴篱笆至少需要40米.故答案为:40.41.计算:3•÷(﹣).【分析】根据二次根式的乘除法法则计算即可.【解答】解:原式=(﹣3××)•=﹣2•=﹣2y.42.【分析】根据二次根式的性质、二次根式的乘除运算即可求出答案、【解答】解:原式=4×(﹣5)﹣43÷=﹣20﹣=.43.设长方形的面积为S,相邻两边长分别是a,b,已知S=4,a=,求b.【分析】利用长方形的边=面积÷邻边列式计算即可.【解答】解:b=S÷a=4÷=.44.化简:•÷.【分析】根据二次根式的乘除法及二次根式的性质与化简计算方法进行计算即可得出答案.【解答】解:∵﹣>0,﹣>0,>0,∴x<0,y<0,原式=(÷=﹣×6=﹣8|x2|•|y|.=﹣8x2•(﹣y)=8x2y.45.已知:,.求下列各式的值.(1)xy;(2)x2﹣xy+y2.【分析】(1)根据二次根式的乘法法则进行计算即可;(2)根据二次根式的加法法则求出x+y的值,先根据完全平方公式进行变形,再代入,最后根据二次根式的运算法则进行计算即可.【解答】解:(1)∵x=+,y=﹣,∴xy=(+)×(﹣)=()2﹣()2=7﹣5=2;(2)∵x=+,y=﹣,∴x+y=(+)+(﹣)=2,∵xy=2,∴x2﹣xy+y2=(x+y)2﹣3xy=(2)2﹣3×2=28﹣6=22.46.数a,b在数轴上的位置如图所示,化简:.【分析】首先根据实数a、b在数轴上的位置确定a、b的正负,然后利用二次根式的性质化简,最后合并同类项即可求解.【解答】解:依题意得:a<0<b,|a|<|b|,∴﹣()2=﹣a﹣b+b﹣a﹣b+a=﹣a﹣b.故答案为:﹣a﹣b.47.若实数p在数轴上的位置如图所示,化简下列式子:+()2【分析】直接利用数轴得出p的取值范围,再利用二次根式的性质化简得出答案.【解答】解:由数轴可得:2<p<3,则原式=+4﹣p=3﹣p+4﹣p=7﹣2p.48.阅读下列材料:在学习完实数的相关运算之后,小明同学提出了一个有趣的问题:两个数的积的算术平方根与这两个数的算术平方的积存在有什么样的关系?小明用自己的方法进行了验证:小明:==10,而=5,=2∴=5×2=10即=×回答以下问题:(1)结合材料猜想,当a≥0,b≥0时,请直接写出和之间有什么关系?(2)运用以上结论,计算:①;②(3)解决实际问题:已知一个长方形的长为,宽为,则长方形的面积为多少?【分析】(1)根据阅读材料中的例题,即可解答;(2)①利用(1)的结论,进行计算即可解答,②利用(1)的结论,进行计算即可解答;(3)根据长方形的面积公式,并利用(1)的结论,进行计算即可解答.【解答】解:(1)当a≥0,b≥0时,=;(2)①=×=4×5=20,②=×=8×13=104;(3)由题意得:长方形的面积=×===16,∴长方形的面积为16.。

二次根式测试题及答案

二次根式测试题及答案

二次根式测试题及答案19026(共28页)-本页仅作为预览文档封面,使用时请删除本页-第二十一章 二次根式填空题:1.要使根式3-x 有意义, 则字母x 的取值范围是______. 2.当x ______时,式子121-x 有意义. 3.要使根式234+-x x有意义,则字母x 的取值范围是______. 4.若14+a 有意义,则a 能取得的最小整数值是______. 5.若x x -+有意义,则=+1x ______. 6.使等式032=-⋅+x x 成立的x 的值为______.7.一只蚂蚁沿图1中所示的折线由A 点爬到了C 点,则蚂蚁一共爬行了______cm .(图中小方格边长代表1cm)选择题图1 图2 7.如图2,点E 、F 、G 、H 、I 、J 、K 、N 分别是正方形各边的三等分点,要使中间阴影部分的面积是5,那么大正方形的边长应是( ) (A)525(B)53 (C)25 (D)54 8.使式子23+x 有意义的实数x 的取值范围是( ) (A)x ≥0 (B)32->x(C)23-≥x (D)32-≥x 9.使式子2||1+-x x 有意义的实数x 的取值范围是( )(A)x ≥1(B)x >1且x ≠-2 (C)x ≠-2(D)x ≥1且x ≠-210.x 为实数,下列式子一定有意义的是( )(A)21x (B)x x +2 (C)112-x (D)12+x11.有一个长、宽、高分别为5cm 、4cm 、3cm 的木箱,在它里面放入一根细木条(木条的粗细、形变忽略不计),要求木条不能露出木箱,请你算一算,能放入的细木条的最大长度是( )(A)cm 41(B)cm 34(C)cm 25(D)cm 35解答题13.要使下列式子有意义,字母x 的取值必须满足什么条件?(1)1||21--x x (2)x +--21 (3)232+x (4)x x 2)1(- (5)222++x x14.如图3,在6×6的网格(小正方形的边长为1)中有一个△ABC ,请你求出这个△ABC 的周长.图315.一个圆的半径为1 cm ,和它等面积的正方形的边长是多少?16.有一块面积为(2a +b )2的圆形木板,挖去一个圆后剩下的木板的面积是(2a -b )2,问所挖去的圆的半径多少?17.(1)已知05|3|=-++y x ,求yx的值;(2)已知01442=+++++y x y y ,求y x的值.18.2006年黄城市全年完成国内生产总值264亿元,比2005年增长23%,问:(1)2005年黄城市全年完成国内生产总值是多少亿元(精确到1亿元)(2)预计黄城市2008年国内生产总值可达到亿元,那么2006年到2008年平均年增长率是多少(下列数据供计算时选用22.14884.1,21.14641.1==).问题探究:已知实数x 、y 满足324422+--+-=x x x y ,求9x +8y 的值.二次根式(2)掌握二次根式的三个性质:a ≥0(a ≥0);(a )2=a (a ≥0);||2a a =. 填空题:1.当a ≥0时,=2a ______;当a <0时,2a =______. 2.当a ≤0时,=23a ______;=-2)23(______. 3.已知2<x <5,化简=-+-22)5()2(x x ______.4.实数a 在数轴上的位置如图所示,化简:=-+-2)2(|1|a a ______.5.已知△ABC 的三边分别为a 、b 、c 则=+----||)(2c a b c b a ______. 6.若22)()(y x y x -=-,则x 、y 应满足的条件是______. 7.若0)2(|4|2=-+++x y x ,则3x +2y =______.8.直线y =mx +n 如图4所示,化简:|m -n |-2m =______.9.请你观察、思考下列计算过程: 图4 因为112=121,所以11121=,同样,因为1112=12321,所以=12321111,……由此猜想=76543211234567898______. 选择题:10.36的平方根是( )(A)6(B)±6(C)6(D)±611.化简2)2(-的结果是( ) (A)-2 (B)±2(C)2(D)412.下列式子中,不成立的是( )(A)6)6(2= (B)6)6(2=-- (C)6)6(2=-(D)6)6(2-=--13.代数式)0(2=/a a a 的值是( )(A)1 (B)-1(C)±1(D)1(a >0时)或-1(a <0时)14.已知x <2,化简442+-x x 的结果是( )(A)x -2(B)x +2(C)-x +2(D)2-x15.如果2)2(2-=-x x ,那么x 的取值范围是( )(A)x ≤2(B)x <2(C)x ≥2(D)x >216.若a a -=2,则数a 在数轴上对应的点的位置应是( )(A)原点 (B)原点及原点右侧 (C)原点及原点左侧(D)任意点17.若数轴上表示数x 的点在原点的左边,则化简|3|2x x +的结果是( )(A)4x(B)-4x(C)2x(D)-2x18.不用计算器,估计13的大致范围是( )(A)1<13<2 (B)2<13<3 (C)3<13<4 (D)4<13<519.某同学在现代信息技术课学了编程后,写出了一个关于实数运算的程序:输入一个数值后,屏幕输出的结果总比该数的平方小1,若某同学输入7后,把屏幕输出的结果再次输入,则最后屏幕输出的结果是( ) (A)6 (B)8 (C)35 (D)37 解答题: 20.计算:(1);)12(|3|)2(02---+- (2)⋅-+-|21|2)3(0221.化简:(1));1()2()1(22>++-x x x (2).||2)(2x y y x ---22.已知实数x ,y 满足04|5|=++-y x ,求代数式(x +y )2007的值.23.已知x x y y x =-+-+7135,求2)3(|1|-+-y x 的值.24.在实数范围内分解因式:(1)x 4-9; (2)3x 3-6x ; (3)8a -4a 3; (4)3x 2-5.25.阅读下面的文字后,回答问题:小明和小芳解答题目:先化简下式,再求值:221a a a +-+,其中a =9时,得出了不同的答案.小明的解答是:原式=1)1()1(2=-+=-+a a a a ;小芳的解答是:原式=1719212)1()1(2=-⨯=-=--=-+a a a a a . (1)______的解答是错误的;(2)说明错误的原因.26.细心观察图5,认真分析各式,然后解决问题.图5;21,21)1(12==+S ;22,31)2(22==+S;23,41)3(32==+S…… ……(1)请用含有n (n 是正整数)的等式表示上述变化规律; (2)推算出OA 10的长; (3)求出21024232221S S S S S +++++ 的值. 27.一物体从高处自由落下,落到地面所用的时间t (单位:秒)与开始落下时的高度h (单位:米)有下面的关系式:⋅≈5ht (1)已知h =100米,求落下所用的时间t ;(结果精确到(2)一人手持一物体从五楼让它自由落到地面,约需多少时间(每层楼高约米,手拿物体高为米)(结果精确到(3)如果一物体落地的时间为秒,求物体开始下落时的高度.问题探究:同学们一定听过蚂蚁和大象进行举重比赛的故事吧!蚂蚁能举起比它的体重重许多倍的火柴棒,而大象举起的却是比自己体重轻许多倍的一截圆木,结果蚂蚁获得了举重冠军!我们这里谈论的话题是:蚂蚁和大象一样重吗?我们知道,即使是最大的蚂蚁与最小的大象,它们的重量明显不是一个数量级的.但是下面的推导却让你大吃一惊:蚂蚁和大象一样重!设蚂蚁重量为x 克,大象的重量为y 克,它们的重量和为2a 克,则x +y =2a .两边同乘以(x -y ),得(x +y )(x -y )=2a (x -y ),即x 2-y 2=2ax -2ay .可变形为x 2-2ax =y 2-2ay .两边都加上a 2,得(x -a )2=(y -a )2. 两边开平方,得x -a =y -a . 所以x =y .这里竟然得出了蚂蚁和大象一样重,岂不荒唐!那么毛病究竟出在哪里呢亲爱的同学,你能找出来吗二次根式的乘除(1) 理解二次根式的乘法法则,即)0,0(≥≥=⋅b a ab b a 的合理性 填空题:1.计算:ab a ⋅=______. 2.已知xy <0,则=y x 2______.3.实数a ,b 在数轴上的位置如图所示,则化简22b a 的结果是______.4.若,6)4()4)(6(2x x x x --=--则x 的取值范围是______. 5.在如图的数轴上,用点A 大致表示40:6.观察分析下列数据,寻找规律:0,3,6,3,23,15,23,……那么第10个数据应是______. 选择题:7.化简20的结果是( ) (A)25(B)52(C)102(D)548.化简5x -的结果是( )(A)x x 2-(B)x x --2(C)x x -2(D)x x 29.若a ≤0,则3)1(a -化简后为( ) (A)1)1(--a a (B)a a --1)1( (C)a a --1)1((D)1)1(--a a解答题: 10.计算:(1);63⨯ (2));7(21-⨯ (3));102(53-⨯(4));804()245(-⨯-(5));25.22(321-⨯(6);656)3122(43⨯-⨯(7));152245(522-⨯(8);24)654(⨯- (9));3223)(3223(-+(10));23)(32(x y y x -+ (11);)10253(2+ (12);10253ab a ⋅(13));42(2212mn m m +-⋅ (14))12()321(123143z xy x x ⋅-⋅⋅.11.化简:(1));0(224≥-a b a a (2)⋅≥≥+-)0(23223a b ab b a b a12.计算:(1)|;911|)1π(8302+-+--+- (2).425.060sin 12)21(20082008o 2⨯---13.如图1,在△ABC 中,∠C =90°,∠A =30°,∠B 的平分线BD 的长为4cm ,求这个三角形的三边长及面积.图1二次根式的乘除(2)理解二次根式除法运算法则,即b aba =(a ≥0,b >0)的合理性 填空题: 1.在4,21,8,6中,是最简二次根式的是______. 2.某精密仪器的一个零件上有一个矩形的孔,其面积是42cm 2,它的长为5cm ,则这个孔的宽为______cm .3.2-3的倒数是______,65+的倒数是______.4.使式子3333+-=+-x xx x 成立的条件是______. 选择题:5.下列各式的计算中,最简二次根式是( ) (A)27(B)14(C)a1 (D)23a6.下列根式xy y x xy 53,,21,12,2+中最简二次根式的个数是( ) (A)1个 (B)2个(C)3个(D)4个7.化简273-的结果是( ) (A)27- (B)27+ (C))27(3- (D))27(3+8.在化简253-时,甲的解法是:,25)25)(25()25(3253+=+-+=-乙的解法是:,2525)25)(25(253+=--+=-以下判断正确的是( )(A)甲的解法正确,乙的解法不正确 (B)甲的解法不正确,乙的解法正确 (C)甲、乙的解法都正确 (D)甲、乙的解法都不正确9.△ABC 的三边长分别为2、10、2,△A ′B ′C ′的两边长分别为1和5,若△ABC ~△A 'B 'C ',则△A 'B 'C '的第三边的长应等于( )(A)22 (B)2 (C)2 (D)2210.如图1,为了测量某建筑物AB 的高度,在平地上C 处测得建筑物顶端A的仰角为30°,沿CB 方向前进12m 到达D 处,在D 处测得建筑物顶端A 的仰角为45°,则建筑物AB 的高度等于( )图1(A)m )13(6+ (B)m )13(6- (C)m )13(12+(D)m )13(12-11.计算)(baa b a b b a ÷的正确结果是( ) (A)ba(B)ab(C)22ba(D)112.若ab ≠0,则等式ab a b a 135-⋅=--成立的条件是( ) (A)a >0,b >0(B)a <0,b >0 (C)a >0,b <0 (D)a <0,b <0解答题: 13.计算:(1);51 (2);208 (3);2814 (4);5)12(÷-(5));74(142-÷ (6));452()403(-÷-(7));6121(211-÷ (8);1543513÷- (9);45332b a b a ÷(10));6(322344c b a c b a -÷(11);152)1021(23÷⨯(12);521431252313⨯÷(13);653034y xy xy ⋅÷(14);3)23(235ab b a ab b ÷-⋅ (15));1843(3211233xyxy x -÷⋅(16)⋅-÷+)2332()2332(14.已知一个圆的半径是cm,90一个矩形的长是135cm ,若该圆的面积与矩形的面积相等,求矩形的宽是多少?15.已知b a ==20,2,用含a ,b 的代数式表示:(1);5.12(2).016.016.已知:如图2,在△ABC 中,∠A =60°,∠B =45°,AB =8.求△ABC 的面积.图217.阅读下列解题过程,根据要求回答问题:化简:)0(2323<<+--a b a ba ab b a b a解:原式a b a b ab a 2)(--= ①aba b a b a --=)(② ab aa )1(⋅=③ ab =④(1)上面解答过程是否正确若不正确,请指出是哪几步出现了错误 (2)请你写出你认为正确的解答过程.18.座钟的摆针摆动一个来回所需的时间称为一个周期,其计算公式是glT π2=,其中T 表示周期(单位:秒),l 表示摆长(单位:米),g =米/秒2,假若一台座钟的摆长为米,它每摆动一个来回发出一次滴答声,那么在1分钟内这台座钟大约发出了多少次滴答声( 取问题探究:借助计算器计算下列各题:(1);211- (2);221111- (3);222111111- (4).222211111111- 仔细观察上面几道题及其计算结果,你能发现什么规律你能解释这一规律吗与同学交流一下想法.并用所发现的规律直接写出下面的结果:个个10012002222111⋅⋅⋅-⋅⋅⋅=______.二次根式的加减(1)学习要求:了解同类二次根式的概念,会辨别两个二次根式是否为同类二次根式.会进行简单的二次根式的加、减法运算,体会化归的思想方法.做一做: 填空题: 选择题:7.计算312-的结果是( ) (A)3(B)3(C)32(D)338.下列二次根式中,属于最简二次根式的是( ) (A)a 4(B)4a (C)4a(D)4a9.下列二次根式中,与2是同类二次根式的是( ) (A)27(B)12(C)10(D)810.在下列各组根式中,是同类二次根式的是( )(A)3和18(B)3和31 (C)b a 2和2ab (D)1+a 和1-a11.下列各式的计算中,成立的是( )(A)5252=+ (B)15354=- (C)y x y x +=+22 (D)52045=-12.若121,121+=-=b a 则)(ab b a ab -的值为( ) (A)2 (B)-2(C)2(D)22解答题:13.计算:(1);2523+ (2);188+ (3);50483122+-(4);312712-+ (5);202452321+-(6);12531110845--+ (7);)33()33(22++-(8);5.0753128132-+--(9))455112()3127(+--+; (10)231)13(3-++;(11)a a a aaa a 1084333273123-+-;问题探究教师节到了,为了表示对老师的敬意,小明做了两张大小不同的正方形壁画送给老师,其中一个面积为800cm 2,另一个面积为450cm 2.他想如果再用金彩带把壁画的边镶上会更漂亮,他现在有米金彩带,请你帮忙算一算,他的金彩带够用吗如果不够用,还需买多长的金彩带(2=,保留整数)二次根式的加减(2)学习要求会进行简单的二次根式的加、减、乘、除四则运算的混合运算. 做一做:填空题: 选择题:9.在二次根式16,8,4,2中同类二次根式的个数为( ) (A)4 (B)3 (C)2(D)110.下列计算中正确的是( )(A)2323182=⨯= (B)134916916=-=-=- (C)24312312=== (D)a a 242=11.下列各组式子中,不是同类二次根式的是( )(A)81与18 (B)63与2825(C)48与8.4 (D)125.0与128 12.化简)22(28+-得( )(A)-2(B)22-(C)2(D)224-13.下列计算中,正确的是( )(A)562432=+ (B)3327=÷ (C)632333=⨯(D)3)3(2-=-14.下列计算中,正确的是( )(A)14931227=-=- (B)1)52)(52(=+-(C)23226=- (D)228=-15.化简aa a a a a 149164212-+的值必定是( ) (A)正数(B)负数(C)非正数(D)非负数16.若a ,b 为实数且211441+-+-=a a b ,则22-+-++ba ab b a a b 的值为( )(A)22 (B)2(C)22- (D)32解答题:17.计算:(1))232)(232(-+; (2)2)32(+; (3)2145051183-+;(4);7232318283--+ (5)23)121543(÷-; (6)20072006)65()56()1245()31251(-⋅+++--;(7)33322)1(2m n m n m n m m n ÷-.18.如图2,大正方形的边长为515+,小正方形的边长为515-,求图中的阴影部分的面积.图219.阅读下面的解答过程,然后答题:已知a 为实数,化简aa a 13---. 解:原式.)1(1a a a aa a a --=-⋅--= (1)上述解答是否有错误?答:____________;(2)若有错误,错在______步,错误的原因是____________; (3)写出正确的解答过程.20.阅读理解题:如果按一定次序排列的三个数a ,A ,b 满足A -a =b -A ,即,2b a A +=则称A 为a ,b 的等差中项.如果按一定次序排列的三个数a ,G ,b 满足,Gba G =即G 2=ab (a ,b 同号),则称G 为a ,b 的等比中项.根据前面给出的概念,求25-和25+的等差中项和等比中项.问题探究:因为223)12(2-=-,所以,12223-=- 因为223)12(2+=+,所以,12223+=+ 因为347)32(2-=-,所以,32347-=- 请你根据以上规律,结合你的经验化简下列各式: (1)625-; (2)⋅+249复 习学习要求:了解二次根式的概念及其加、减、乘、除运算法则,会用它们进行有关实数的简单四则运算和化简.做一做: 填空题: 选择题: 10.使根式x x 1+有意义的字母x 的取值范围是( )(A)x >-1 (B)x <-1 (C)x ≥-1且x ≠0 (D)x ≥-111.已知a <0<b ,化简2)(b a -的结果是( )(A)a -b (B)b -a(C)a +b(D)-a -b12.在32,9,,,45222xa y x xy +-中,最简二次根式的个数是( ) (A)1(B)2(C)3(D)413.下列二次根式中,与35-是同类二次根式的是( )(A)18(B)3.0(C)30(D)30014.计算28-的结果是( )(A)6(B)2(C)2(D)15.估算37(误差小于的大小是( ) (A)6 (B)~(C)(D)16.下列运算正确的是( )(A)171251251252222=+=+=+ (B)1234949=-=-=-(C)20)4()5(1625)16()25(=-⨯-=-⨯-=-⨯- (D)1535)3()5(22=⨯=-⨯- 17.下列运算中,错误..的是( ) (A)632=⨯ (B)2221=(C)252322=+(D)32)32(2-=-18.若把aa 1-的根号外的a 适当变形后移入根号内,结果是( ) (A)a --(B)a -(C)a -(D)a19.小明的作业本上有以下四题:①24416a a =; ②a a a 25105=⋅; ③;1.12a aa a a== ④.23a a a =-做错的题是( ) (A)① (B)②(C)③ (D)④20.若)()()(22m n m n n a a m >-=-+-成立,则a 的取值范围是( )(A)m ≤a ≤n(B)a ≥n 且a ≤m (C)a ≤m(D)a ≥n21.用计算器计算,1515,1414,1313,12122222--------…,根据你发现的规律,判断P =112--n n ,与1)1(1)1(2-+-+=n n Q ,(n 为大于1的整数)的值的大小关系为( )(A)P <Q (B)P =Q(C)P >Q(D)不能确定解答题: 22.计算:(1);483122+ (2);7002871-+ (3);8121332+-(4))56()56(+⨯-; (5)2)2332(-; (6)25)520(-÷+;(7)m m m m m m m 3361082273223-+-; (8).123132+++23.(1)当a <0时,化简aa a a -+-2212;(2)已知x 满足的条件为⎩⎨⎧<->+0301x x ,化简;129622++++-x x x x(3)实数a ,b 在数轴上表示如图,化简:.)()2()2(222b a b a ++--+24.(1)当a =5+1,b =5-1时,求a 2b +ab 2的值;(2)当41=x ,y =时,求31441y yx y x x ---的值.(3)已知154-的整数部分为a ,小数部分为b ,求a 2+b 2的值.25.若12+x 与y -2互为相反数,求x y 的值.26.已知x ,y 为实数,且499+---=x x y ,求y x +的值.第二十一章 二次根式测试题填空题:(每题2分,共24分)1.函数1-=x xy 的自变量x 的取值范围是______. 2.当x ______时,x x -+-31有意义. 3.若a <0,则b a 2化简为______.4.若3<x <4,则=-++-|4|962x x x ______. 5.1112-=-⋅+x x x 成立的条件是______. 6.若实数x 、y 、z 满足0412||22=+-+++-z z z y y x ,则x +y +z =______.7.长方形的面积为30,若宽为5,则长为______. 8.当x =______时,319++x 的值最小,最小值是______.9.若代数式22)3()1(a a -+-的值是常数2,则a 的取值范围是______. 10.观察下列各式:,,514513,413412,312311 =+=+=+请将猜想到的规律用含自然数n (n ≥1)的代数式表示出来是______.11.观察下列分母有理化的计算:,4545134341,23231,12121-=+-=+-=+-=+……,从计算结果中找出规律,并利用这一规律计算:=+++++++++)12007)(200620071341231121(. ______. 12.已知正数a 和b ,有下列结论:(1)若a =1,b =1,则1≤ab ; (2)若25,21==b a ,则23≤ab ;(3)若a =2,b =3,则25≤ab ; (4)若a =1,b =5,则3≤ab .根据以上几个命题所提供的信息,请猜想:若a =6,b =7,则ab ≤______.选择题:(每题2分,共24分) 13.已知xy >0,化简二次根式2x yx -的正确结果为( ) (A)y(B)y -(C)y -(D)y --14.若a <0,则||2a a -的值是( ) (A)0 (B)-2a (C)2a (D)2a 或-2a15.下列二次根式中,最简二次根式为( )(A)x 9(B)32-x(C)xyx - (D)b a 2316.已知x 、y 为实数,且0)2(312=-+-y x ,则x -y 的值为( )(A)3(B)-3(C)1(D)-117.若最简二次根式b 5与b 23+是同类二次根式,则-b 的值是( )(A)0(B)1(C)-1(D)3118.下列各式:211,121,27,其中与3是同类二次根式的个数为( ) (A)0个(B)1个(C)2个(D)3个19.当1<x <3时,化简22)3()1(++-x x 的结果正确的是( )(A)4(B)2x +2(C)-2x -2(D)-420.不改变根式的大小,把aa --11)1(根号外的因式移入根号内,正确的是( )(A)a -1(B)1-a (C)1--a (D)a --121.已知m ≠n ,按下列(A)(B)(C)(D)的推理步骤,最后推出的结论是m =n .其中出错的推理步骤是( ) (A)∵(m -n )2=(n -m )2 (B)∴22)()(m n n m -=-(C)∴m -n =n -m (D)∴m =n22.如果a ≠0且a 、b 互为相反数,则在下列各组数中不是互为相反数的一组是( )(A)3a 与3b(B)2a 与2b (C)3a 与3b(D)a +1与b -123.小华和小明计算XXX)(442a a a +-+时,得出两种不同的答案.小华正确审题,得到的答案是“2a -2”,小明忽略了算式后面括号中的条件,得到的结果是“2”,请你判断,括号中的条件是( ) (A)a <2 (B)a ≥2 (C)a ≤2 (D)a ≠2 24.已知点A (3,1),B (0,0),C (3,0),AE 平分∠BAC ,交BC 于点E ,则直线AE 对应的函数表达式是( )(A)332-=x y (B)y =x -2 (C)13-=x y (D)23-=x y解答题:(第25题每小题4分,第26-29题每题4分,第30、31题每题6分)25.计算:(1);21448)21(2+++ (2);836212739x x x ⨯+-(3));32)(32()32)(347(2-++-+(4);211)223(23822+--+⨯- (5);166193232x x x x x x +- (6)).0)](4327121(3[222≥--b ab ab ab a 26.若,03|9|22=--++mm n m 求3m +6n 的立方根.27.已知7979--=--x xx x 且x 为偶数,求132)1(22--++x x x x 的值.28.试求)364()36(3xy yxy xy y x y x+-+的值,其中23=x ,27=y .29.已知正方形纸片的面积是32cm 2,如果将这个正方形做成一个圆柱,请问这个圆柱底面的半径是多少( 精确到,取30.已知:223,223-=+=b a ,求:ab 3+a 3b 的值.31.观察下列各式及其验证过程:⋅+=+=833833;322322验证: ;3221222122)12(232)12(2322232322222233+=-+=-+-=+-=+-==⋅+=-+=-+-=+-=+-==8331333133)13(383)13(3833383833222233 (1)按照上述两个等式及其验证过程的基本思路,猜想一个类似的结果并验证;(2)针对上述各式反映的规律,写出用n (n 为正整数,且n ≥2)表示的等式并给出证明.参考答案第二十一章 二次根式二次根式(1) 1.3≥x 2.21>x 3.34≤x 且x ≠-2 4.0 5.1 6.37.55+8.D 9.A 10.D 11.C 12.C 13.(1)⋅≤21x 且x ≠-1 (2)x <-2 (3)x 为任意实数 (4)x 为非零实数 (5)x 为任意实数 14.135+ 15.cm π 16.ab 22 17.53)1(- (2)-2 18.(1)215 (2)21% 问题探究:6注意x =2时要舍去二次根式(2)1.a ,-a 2.32,3--a 3.3 4.1 5.0 6.x ≥y 7.-6 8.n 9.1 10.D 11.C 12.B 13.D 14.D 15.C 16.C 17.D 18.C 19.C 20.(1)6(2)2521.(1)2x +1 (2)y -x 22.1 23.224.(1))3)(3)(3(2-++x x x(2))2)(2(3+-x x x (3))2)(2(4a a a +- (4))53)(53(+-x x 25.(1)小明 (2)因为a =9,所以1-a <0,所以1)1(2-=-a a 26.(1)2,11)(2n S n n n =+=+ (2),21012110=⨯⨯OA 所以1010=OA(3)222221024232221)210()23()22()21(S S S S S ++++=++++ 434241++=455410=++ 27.(1)秒 (2)秒 (3)米 问题探究:略 二次根式的乘除(1)1.b a 2.y x - 3.-ab 4.x ≤4 5.略 6.33 7.B 8.C 9.B 10.(1)23 (2)37- (3)230- (4)30160 (5)15- (6)237-(7)1222-(8)24 (9)6 (10)9y 2-4x (11)26085+ (12)b a 230 (13)n m m 2+- (14)xz y x 2212-11.(1)22b a a - (2)ab a b )(- 12.(1)22 (2)0 13.2cm 36,cm 34,cm 6,cm 32====∆ABC S AB AC BC 问题探究:分三种情况计算:图1 图2 图3(1)当AE =AF =10cm 时(如图1),S △AEF =50(cm 2) (2)当AE =EF =10cm 时(如图2),BF =8(cm),)cm (40212==⋅∆BF AE S AEF (3)当AE =EF =10cm 时(如图3),⋅==∆)cm (515),cm (512AEF S DF二次根式的乘除(2)1.6 2.10543.56,32-+ 4.-3<x ≤3 5.B 6.B 7.B 8.C 9.C 10.A 11.A 12.B13.(1)55 (2)510 (3)22 (4)5510- (5)22- (6)2(7)-6 (8)332-(9)a a b 52 (10)cab23- (11)23 (12)210 (13)6y 3 (14)ab b a 2- (15)x x y22-(16)625-- 14.cm 152 15.(1)a 5或a 25(2)ba 52或ab 25 16.31648-17.(1)不正确,第②③步出现了错误(2)原式ab ab a a a b a b b a a a b a b a b a =-⋅-=--=--=)1()()(2 18.42问题探究:(1)3 (2)33 (3)333 (4)3333个1001333 二次根式的加减(1)1.23 2.略 3.2 4.23,21 5.123+ 6.10255+7.B 8.D 9.D 10.B 11.D 12.A 13.(1)28 (2)25 (3)2538+- (4)3314(5)52315- (6)523316- (7)24 (8)33132413+ (9)5514334- (10)1 (11)a a32- 问题探究:不够用,还需买78cm二次根式的加减(2)1.3 2.0 3.1560- 4.3 5.xy x y )(- 6.x x 22- 7.212- 8.12 9.C 10.A 11.C 12.A 13.B 14.D 15.A 16.B 17.(1)10 (2)347+ (3)28 (4)26- (5)4523- (6)6338559---(7)2m m n - 18.320 19.(1)有 (2)错在第一步,忽视了a <0(因为01>-a,所以a <0) (3)原式+--=--⋅---=a a a aa a a 1a a a --=-)1( 20.25-和25+的等差中项为5,等比中项为3± 问题探究:212)2(23)1(+-复 习1.x >5 2.x -2 3.1 4.±1 5.0 6.0 7.5 8.2-6a 9.6 10.C 11.B 12.C 13.D 14.C 15.B 16.D 17.D 18.A 19.D20.A 21.C 22.(1)316 (2)7755-(3)2411 (4)1 (5)61230- (6)1 (7)0 (8)323 23.(1)a 1- (2) 4 (3)0 24.(1)58 (2)- (3)5418- 25.4126.5第二十一章 二次根式测试题 1.x ≥0且x ≠1 2.1≤x ≤3 3.b a - 4.1 5.x ≥1 6.0 7.6 8.3,91-9.1≤a ≤3 10.21)1(21++=++n n n n (n 为自然数且n ≥1) 11.2006 12.416913.D 14.B 15.B 16.D 17.C 18.C 19.B20.D 21.C 22.B 23.B 24.D 25.(1)34242++ (2)x 319(3)2 (4)-11 (5)x x x -27 (6)a ab 32526.3 27.11328.229-29. 30.85 31.(1)=+-==+=154441541544154415443315441444144)14(4154)14(42222+=-+=-+-=+- (2)=-12n nn11)1(1111222232322-+=-+-=-+-=-=--+n nn n n n n n n n n n n n n n n n n (n 为正整数,且n ≥2)。

2022-2023学年华东师大版九年级数学上册《21-2二次根式的乘除》达标测试题(附答案)

2022-2023学年华东师大版九年级数学上册《21-2二次根式的乘除》达标测试题(附答案)

2022-2023学年华东师大版九年级数学上册《21.2二次根式的乘除》达标测试题(附答案)一.选择题(共8小题,满分40分)1.下列式子是最简二次根式的是()A.B.C.D.2.式子在实数范围内有意义,则x的取值范围是()A.x≤1B.x<1C.x>1D.x≥13.下列计算正确的是()A.=×B.C.2=D.﹣=4.化简(﹣)2的结果是()A.﹣5B.5C.±5D.255.下列各式化简后的结果为的是()A.B.C.D.6.当m<0时,化简二次根式,结果正确的是()A.B.C.D.7.若a=2021×2022﹣20212,b=1013×1008﹣1012×1007,c=,则a,b,c的大小关系是()A.c<b<a B.a<c<b C.b<a<c D.b<c<a8.先阅读下面例题的解答过程,然后作答.例题:化简.解:先观察,由于8=5+3,即8=()2+()2,且15=5×3,即=2××,则有==+.试用上述例题的方法化简:=()A.+B.2+C.1+D.+2二.填空题(共6小题,满分30分)9.已知b>0,化简=.10.已知点P(m+2,8﹣m)在第四象限,化简|m+2|﹣的结果为.11.已知a,b在数轴上位置如图,化简﹣=.12.=.13.计算:=.14.已知y=﹣x+3,当x分别取1,2,3,…,2020时,所对应的y值的总和是.三.解答题(共6小题,满分50分)15.计算:÷(3)×(﹣5).16.÷×.17.已知数a,b,c在数轴上的位置如图所示:化简:.18.设a,b,c为△ABC的三边,化简:++﹣.19.先阅读下列材料,再解决问题:阅读材料:数学上有一种根号内又带根号的数,它们能通过完全平方公式及一次根式的性质化去一层根号.例如:====|1+|=1+.解决问题:化简下列各式:(1);(2).20.观察下列各式,,…按照上述三个等式及其变化过程,①猜想5=,=15;②试猜想第n个等式为;③证明②式成立.参考答案一.选择题(共8小题,满分40分)1.解:A.=0.3,故A不符合题意;B.=2,故B不符合题意;C.=2,故C不符合题意;D.是最简二次根式,故D符合题意;故选:D.2.解:∵式子在实数范围内有意义,∴≥0,∴1﹣x>0,∴x的取值范围是x<1.故选:B.3.解:A.=×,故此选项不合题意;B.=2,故此选项不合题意;C.()2=,故此选项符合题意;D.﹣=﹣2,故此选项不合题意.故选:C.4.解:(﹣)2=5.故选:B.5.解:A、=3,故此选项符合题意;B、=2,故此选项不符合题意;C、不能化简,故此选项不符合题意;D、=6,故此选项不符合题意;故选:A.6.解:由题意得:m<0,n<0,∴==•()=,故选:D.7.解:a=2021×2022﹣20212=2021×(2022﹣2021)=2021×1=2021;b=1013×1008﹣1012×1007=(1012+1)(1007+1)﹣1012×1007=1012×1007+1012+1007+1﹣1012×1007=1012+1007+1=2020;c====;∴2020<<2021,∴b<c<a,故选:D.3.解:===+2;故选:D.二.填空题(共6小题,满分30分)9.解:∵b>0,﹣a3b2>0,∴a<0,∴原式=|ab|,=﹣ab,故答案为:﹣ab.10.解:由题意可知:,∴原式=m+2﹣|8﹣m|=m+2+8﹣m=10,故答案为:10.11.解:从数轴上可以得出:a<0,b>0,|a|>|b|,∴a﹣b<0,∴=|a﹣b|﹣|a|=﹣(a﹣b)﹣(﹣a)=﹣a+b+a=b.故答案为:b.12.解:原式====2.故答案为:213.解:由题意得:2﹣x≥0,解得:x≤2,∴x﹣7<0,则原式=2﹣x+7﹣x=9﹣2x,故答案为:9﹣2x.14.解:∵y=﹣x+3=﹣x+3=|x﹣2|﹣x+3,∴当x<2时,y=2﹣x﹣x+3=5﹣2x,即当x=1时,y=5﹣2=3;当x≥2时,y=x﹣2﹣x+3=1,即当x分别取2,3,…,2020时,y的值均为1,综上所述,当x分别取1,2,3,…,2020时,所对应的y值的总和是3+2019×1=2022,故答案为:2022.三.解答题(共6小题,满分50分)15.解:原式=××(﹣5)=﹣=﹣×=﹣.16.解:原式===.17.解:由题意得:c<b<0<a,∴a﹣b>0,c﹣a<0,∴=﹣b﹣(a﹣b)+a﹣c﹣(﹣c)=﹣b﹣a+b+a﹣c+c=0.18.解:根据a,b,c为△ABC的三边,得到a+b+c>0,a﹣b﹣c<0,b﹣a﹣c<0,c﹣b ﹣a<0,则原式=|a+b+c|+|a﹣b﹣c|+|b﹣a﹣c|﹣|c﹣b﹣a|=a+b+c+b+c﹣a+a+c﹣b+c﹣a﹣b=4c.19.解:(1)===2+;(2)===﹣2.20.解:①猜想5=,=15;②根据规律,可以表示为:=(n+1),③验证如下:左边===(n+1)=右边,等式成立;。

初中数学人教新版八年级期末必刷常考题之二次根式的乘除(含答案)

初中数学人教新版八年级期末必刷常考题之二次根式的乘除(含答案)

初中数学人教新版八年级期末必刷常考题之二次根式的乘除一.选择题(共6小题)1.(2022秋•南关区期末)二次根式在实数范围内有意义,则x的取值范围是()A.x≤﹣3B.x>﹣3C.x≥﹣3D.x≥32.(2022秋•南安市期末)当a>0时,=()A.±a B.a C.﹣a D.03.(2022秋•香坊区期末)下列二次根式中属于最简二次根式的是()A.B.C.D.4.(2022秋•海口期末)若二次根式在实数范围内有意义,则x的取值范围是()A.x≤3B.x≥3C.x<3D.x≠35.(2022秋•开福区校级期末)下列式子一定是二次根式的是()A.B.C.D.6.(2022秋•临淄区期末)下列计算正确的是()A.B.C.D.二.填空题(共6小题)7.(2023春•拱墅区期末)若二次根式在实数范围内有意义,则x的取值范围是.8.(2022秋•宁德期末)已知a是正整数,是整数,则a的最小值是2.那么若b是正整数,是大于1的整数,则b的最大值与最小值的差是.9.(2022秋•射洪市期末)若代数式有意义,则实数x的取值范围是.10.(2022秋•汉寿县期末)化简二次根式的结果为.11.(2022秋•思明区校级期末)计算下列各题:化简:①50=;②3﹣2=;③(﹣2a)2=;④=;⑤=;⑥=;⑦=;⑧(x﹣1)(x+2)=.12.(2022秋•南关区期末)将化为最简二次根式的结果是.三.解答题(共3小题)13.(2022秋•东平县期末)计算与求值:(1)(x﹣1)2=25;(2)(x+3)3=﹣27;(3)已知x、y都是实数,且,求y x的值.14.(2022秋•鲤城区校级期末)定义:若两个二次根式a,b满足ab=c,且c是有理数,则称a与b是关于c的共轭(è)二次根式.问题解决:(1)若a与2是关于6的共轭二次根式,则a=;(2)若4+与8﹣m是关于26的共轭二次根式,求m的值.15.(2022秋•丰城市校级期末)若x,y是实数,且y=++3,求3的值.2022-2023学年下学期初中数学人教新版八年级期末必刷常考题之二次根式的乘除参考答案与试题解析一.选择题(共6小题)1.(2022秋•南关区期末)二次根式在实数范围内有意义,则x的取值范围是()A.x≤﹣3B.x>﹣3C.x≥﹣3D.x≥3【考点】二次根式有意义的条件.【专题】二次根式;运算能力.【答案】C【分析】直接利用二次根式的定义得出x+3≥0,进而得出答案.【解答】解:∵二次根式在实数范围内有意义,∴x+3≥0,解得:x≥﹣3.故选:C.【点评】此题主要考查了二次根式有意义的条件,正确掌握二次根式的定义是解题关键.2.(2022秋•南安市期末)当a>0时,=()A.±a B.a C.﹣a D.0【考点】二次根式的性质与化简.【专题】二次根式;运算能力.【答案】B【分析】根据即可求解.【解答】解:当a>0时,.故选:B.【点评】本题考查二次根式的性质,掌握是解题的关键3.(2022秋•香坊区期末)下列二次根式中属于最简二次根式的是()A.B.C.D.【考点】最简二次根式.【答案】C【分析】检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【解答】解:A.=2,被开方数含有开方开得尽的因式,故不符合题意;B.=4,被开方数是完全平方数,故不符合题意;C.是最简二次根式,故符合题意;D.=,被开方数是小数,故不符合题意.故选:C.【点评】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.4.(2022秋•海口期末)若二次根式在实数范围内有意义,则x的取值范围是()A.x≤3B.x≥3C.x<3D.x≠3【考点】二次根式有意义的条件.【专题】二次根式;运算能力.【答案】B【分析】根据二次根式有意义的条件可得2x﹣6≥0,再解不等式即可.【解答】解:由题意得:2x﹣6≥0,解得:x≥3,故选:B.【点评】此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.5.(2022秋•开福区校级期末)下列式子一定是二次根式的是()A.B.C.D.【考点】二次根式的定义.【专题】二次根式;运算能力.【答案】C【分析】直接利用二次根式的定义,一般地,形如的代数式叫做二次根式进行判断即可.【解答】解:∵x2≥0,∴x2+2≥2,∴一定是二次根式,而、和中的被开方数均不能保证大于等于0,故不一定是二次根式,故选:C.【点评】此题主要考查了二次根式的定义,正确把握定义是解题关键.6.(2022秋•临淄区期末)下列计算正确的是()A.B.C.D.【考点】二次根式的性质与化简;立方根.【专题】二次根式;运算能力.【答案】C【分析】根据算术平方根的非负性、二次根式的性质、立方根逐项判断即可.【解答】解:A、,原式计算错误,不符合题意;B、,原式计算错误,不符合题意;C、,原式计算正确,符合题意;D、,原式计算错误,不符合题意.故选:C.【点评】本题主要考查了二次根式的性质、算术平方根的非负性、立方根等知识,掌握二次根式的性质、算术平方根的非负性是解本题的关键.二.填空题(共6小题)7.(2023春•拱墅区期末)若二次根式在实数范围内有意义,则x的取值范围是x <5.【考点】二次根式有意义的条件.【专题】二次根式;运算能力.【答案】x<5.【分析】根据二次根式的被开方数是非负数、分母不为0列出不等式,解不等式得到答案.【解答】解:由题意得:5﹣x>0,解得:x<5,故答案为:x<5.【点评】本题考查的是二次根式有意义的条件,熟记二次根式的被开方数是非负数、分母不为0是解题的关键.8.(2022秋•宁德期末)已知a是正整数,是整数,则a的最小值是2.那么若b是正整数,是大于1的整数,则b的最大值与最小值的差是45.【考点】二次根式的定义.【专题】二次根式;运算能力.【答案】45.【分析】由,结合b是正整数,是大于1的整数,可得b是15的倍数,从而可得答案.【解答】解:∵,又∵b是正整数且是大于1的整数,∴当b=15时,的整数值最大为4,此时b的值最小,当b=60时,的整数值最小为2,此时b的值最大,∴b的最大值与最小值的差是60﹣15=45.故答案为:45.【点评】本题考查的是算术平方根的含义与估算,理解题意是解本题的关键.9.(2022秋•射洪市期末)若代数式有意义,则实数x的取值范围是x≥﹣3且x ≠0.【考点】二次根式有意义的条件;分式有意义的条件.【专题】分式;二次根式;运算能力.【答案】x≥﹣3且x≠0.【分析】根据二次根式的被开方数是非负数、分母不为0列出不等式,解不等式即可.【解答】解:由题意得:x+3≥0且x≠0,解得:x≥﹣3且x≠0,故答案为:x≥﹣3且x≠0.【点评】本题考查的是二次根式有意义的条件、分式有意义的条件,掌握二次根式的被开方数是非负数、分母不为0是解题的关键.10.(2022秋•汉寿县期末)化简二次根式的结果为.【考点】二次根式的性质与化简.【专题】二次根式;运算能力.【答案】.【分析】根据二次根式的分母有理化计算即可.【解答】解:.故答案为:.【点评】本题考查了二次根式的化简,熟记分母有理化方法是解题关键.11.(2022秋•思明区校级期末)计算下列各题:化简:①50=1;②3﹣2=;③(﹣2a)2=4a2;④=﹣1;⑤=;⑥=2;⑦=;⑧(x﹣1)(x+2)=x2+x﹣2.【考点】二次根式的性质与化简;幂的乘方与积的乘方;多项式乘多项式;分式的混合运算;零指数幂;负整数指数幂.【专题】实数;整式;分式;二次根式;运算能力.【答案】①1.②.③4a2.④﹣1.⑤.⑥2.⑦.⑧x2+x﹣2.【分析】①根据零指数幂的意义即可求出答案.②根据负整数指数幂的意义即可求出答案.③根据积的乘方运算即可求出答案.④根据分式的加减运算法则即可求出答案.⑤根据积的乘方运算即可求出答案.⑥根据二次根式的性质即可求出答案.⑦根据二次根式的性质即可求出答案.⑧根据多项式乘多项式法则即可求出答案.【解答】解:①原式=1.②原式=.③原式=4a2.④原式==﹣1.⑤原式=.⑥原式=2.⑦原式=.⑧原式=x2+2x﹣x﹣2=x2+x﹣2.故答案为:①1.②.③4a2.④﹣1.⑤.⑥2.⑦.⑧x2+x﹣2.【点评】本题考查零指数幂的意义、负整数指数幂的意义、积的乘方运算、二次根式的性质、多项式乘多项式法则,本题属于基础题型.12.(2022秋•南关区期末)将化为最简二次根式的结果是.【考点】最简二次根式.【专题】二次根式;运算能力.【答案】.【分析】被开方数的分子分母乘以2,然后再开方即可.【解答】解:==,故答案为:.【点评】此题主要考查了最简二次根式,关键是掌握最简二次根式的概念:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式.把满足上述两个条件的二次根式,叫做最简二次根式.三.解答题(共3小题)13.(2022秋•东平县期末)计算与求值:(1)(x﹣1)2=25;(2)(x+3)3=﹣27;(3)已知x、y都是实数,且,求y x的值.【考点】二次根式有意义的条件;平方根;立方根;实数的运算.【专题】实数;运算能力.【答案】(1)x=﹣4或x=6;(2)x=﹣6;(3)9.【分析】(1)根据平方根的概念计算;(2)根据立方根的概念计算;(3)根据二次根式有意义的条件求出x,进而求出y,根据有理数的乘方法则计算即可.【解答】解:(1)∵(x﹣1)2=25,∴x﹣1=±5,∴x=﹣4或x=6;(2)∵(x+3)3=﹣27,∴x+3=﹣3,∴x=﹣6;(3)由题意得:x﹣2≥0,x﹣2≤0,∴x=2,∴y=3,∴y x=32=9.【点评】本题考查的是二次根式有意义的条件、平方根、立方根的概念,掌握二次根式的被开方数是非负数是解题的关键.14.(2022秋•鲤城区校级期末)定义:若两个二次根式a,b满足ab=c,且c是有理数,则称a与b是关于c的共轭(è)二次根式.问题解决:(1)若a与2是关于6的共轭二次根式,则a=;(2)若4+与8﹣m是关于26的共轭二次根式,求m的值.【考点】二次根式的定义.【专题】二次根式;运算能力.【答案】(1);(2)2.【分析】(1)根据共轭二次根式的定义列等式可得a的值;(2)根据共轭二次根式的定义列等式可得m的值.【解答】解:(1)∵a与2是关于6的共轭二次根式,∴2a=6,∴a==,故答案为:;(2)∵4+与8﹣m是关于26的共轭二次根式,∴(4+)(8﹣m)=26,∴8﹣m===8﹣2,∴m=2.【点评】本题考查了新定义共轭二次根式的理解和应用,并会用二次根据的性质进行计算.15.(2022秋•丰城市校级期末)若x,y是实数,且y=++3,求3的值.【考点】二次根式有意义的条件.【答案】见试题解答内容【分析】根据二次根式有意义的条件列出不等式,解不等式求出x、y的值,根据二次根式的性质计算即可.【解答】解:由题意得,4x﹣1≥0,1﹣4x≥0,解得,x=,则y=3,则3=3×=.【点评】本题考查的是二次根式有意义的条件,掌握二次根式中的被开方数是非负数是解题的关键.考点卡片1.平方根(1)定义:如果一个数的平方等于a,这个数就叫做a的平方根,也叫做a的二次方根.一个正数有两个平方根,这两个平方根互为相反数,零的平方根是零,负数没有平方根.(2)求一个数a的平方根的运算,叫做开平方.一个正数a的正的平方根表示为“”,负的平方根表示为“﹣”.正数a的正的平方根,叫做a的算术平方根,记作.零的算术平方根仍旧是零.平方根和立方根的性质1.平方根的性质:正数a有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.2.立方根的性质:一个数的立方根只有一个,正数的立方根是正数,负数的立方根是负数,0的立方根是0.2.立方根(1)定义:如果一个数的立方等于a,那么这个数叫做a的立方根或三次方根.这就是说,如果x3=a,那么x叫做a的立方根.记作:.(2)正数的立方根是正数,0的立方根是0,负数的立方根是负数.即任意数都有立方根.(3)求一个数a的立方根的运算叫开立方,其中a叫做被开方数.注意:符号中的根指数“3”不能省略;对于立方根,被开方数没有限制,正数、零、负数都有唯一一个立方根.【规律方法】平方根和立方根的性质1.平方根的性质:正数a有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.2.立方根的性质:一个数的立方根只有一个,正数的立方根是正数,负数的立方根是负数,0的立方根是0.3.实数的运算(1)实数的运算和在有理数范围内一样,值得一提的是,实数既可以进行加、减、乘、除、乘方运算,又可以进行开方运算,其中正实数可以开平方.(2)在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.【规律方法】实数运算的“三个关键”1.运算法则:乘方和开方运算、幂的运算、指数(特别是负整数指数,0指数)运算、根式运算、特殊三角函数值的计算以及绝对值的化简等.2.运算顺序:先乘方,再乘除,后加减,有括号的先算括号里面的,在同一级运算中要从左到右依次运算,无论何种运算,都要注意先定符号后运算.3.运算律的使用:使用运算律可以简化运算,提高运算速度和准确度.4.幂的乘方与积的乘方(1)幂的乘方法则:底数不变,指数相乘.(a m)n=a mn(m,n是正整数)注意:①幂的乘方的底数指的是幂的底数;②性质中“指数相乘”指的是幂的指数与乘方的指数相乘,这里注意与同底数幂的乘法中“指数相加”的区别.(2)积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘.(ab)n=a n b n(n是正整数)注意:①因式是三个或三个以上积的乘方,法则仍适用;②运用时数字因数的乘方应根据乘方的意义,计算出最后的结果.5.多项式乘多项式(1)多项式与多项式相乘的法则:多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加.(2)运用法则时应注意以下两点:①相乘时,按一定的顺序进行,必须做到不重不漏;②多项式与多项式相乘,仍得多项式,在合并同类项之前,积的项数应等于原多项式的项数之积.6.分式有意义的条件(1)分式有意义的条件是分母不等于零.(2)分式无意义的条件是分母等于零.(3)分式的值为正数的条件是分子、分母同号.(4)分式的值为负数的条件是分子、分母异号.7.分式的混合运算(1)分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序;先乘方,再乘除,然后加减,有括号的先算括号里面的.(2)最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.(3)分式的混合运算,一般按常规运算顺序,但有时应先根据题目的特点,运用乘法的运算律进行灵活运算.【规律方法】分式的混合运算顺序及注意问题1.注意运算顺序:分式的混合运算,先乘方,再乘除,然后加减,有括号的先算括号里面的.2.注意化简结果:运算的结果要化成最简分式或整式.分子、分母中有公因式的要进行约分化为最简分式或整式.3.注意运算律的应用:分式的混合运算,一般按常规运算顺序,但有时应先根据题目的特点,运用乘法的运算律运算,会简化运算过程.8.零指数幂零指数幂:a0=1(a≠0)由a m÷a m=1,a m÷a m=a m﹣m=a0可推出a0=1(a≠0)注意:00≠1.9.负整数指数幂负整数指数幂:a﹣p=(a≠0,p为正整数)注意:①a≠0;②计算负整数指数幂时,一定要根据负整数指数幂的意义计算,避免出现(﹣3)﹣2=(﹣3)×(﹣2)的错误.③当底数是分数时,只要把分子、分母颠倒,负指数就可变为正指数.④在混合运算中,始终要注意运算的顺序.10.二次根式的定义二次根式的定义:一般地,我们把形如(a≥0)的式子叫做二次根式.①“”称为二次根号②a(a≥0)是一个非负数;学习要求:理解被开方数是非负数,给出一个式子能准确的判断其是否为二次根式,并能根据二次根式的定义确定被开方数中的字母取值范围.11.二次根式有意义的条件判断二次根式有意义的条件:(1)二次根式的概念.形如(a≥0)的式子叫做二次根式.(2)二次根式中被开方数的取值范围.二次根式中的被开方数是非负数.(3)二次根式具有非负性.(a≥0)是一个非负数.学习要求:能根据二次根式中的被开方数是非负数来确定二次根式被开方数中字母的取值范围,并能利用二次根式的非负性解决相关问题.【规律方法】二次根式有无意义的条件1.如果一个式子中含有多个二次根式,那么它们有意义的条件是:各个二次根式中的被开方数都必须是非负数.2.如果所给式子中含有分母,则除了保证被开方数为非负数外,还必须保证分母不为零.12.二次根式的性质与化简(1)二次根式的基本性质:①≥0;a≥0(双重非负性).②()2=a(a≥0)(任何一个非负数都可以写成一个数的平方的形式).③=|a|=(算术平方根的意义)(2)二次根式的化简:①利用二次根式的基本性质进行化简;②利用积的算术平方根的性质和商的算术平方根的性质进行化简.=•(a≥0,b≥0)=(a≥0,b>0)(3)化简二次根式的步骤:①把被开方数分解因式;②利用积的算术平方根的性质,把被开方数中能开得尽方的因数(或因式)都开出来;③化简后的二次根式中的被开方数中每一个因数(或因式)的指数都小于根指数2.【规律方法】二次根式的化简求值的常见题型及方法1.常见题型:与分式的化简求值相结合.2.解题方法:(1)化简分式:按照分式的运算法则,将所给的分式进行化简.(2)代入求值:将含有二次根式的值代入,求出结果.(3)检验结果:所得结果为最简二次根式或整式.13.最简二次根式最简二次根式的概念:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式.我们把满足上述两个条件的二次根式,叫做最简二次根式.最简二次根式的条件:(1)被开方数的因数是整数或字母,因式是整式;(2)被开方数中不含有可化为平方数或平方式的因数或因式.如:不含有可化为平方数或平方式的因数或因式的有2、3、a(a≥0)、x+y等;含有可化为平方数或平方式的因数或因式的有4、9、a2、(x+y)2、x2+2xy+y2等.。

冀教版八年级上册15.2二次根式的乘除运算练习题

冀教版八年级上册15.2二次根式的乘除运算练习题

初中数学冀教版八年级上册第十五章15.2二次根式的乘除运算练习题一、选择题1. (√3)2化简结果正确的是( )A. −3B. 3C. ±3D. 92. 计算√8÷√2的结果为( )A. √6B. √2C. 2D. √3 3. 估计(3√2+√30)×√12的值应在( ) A. 7和8之间 B. 4和5之间 C. 5和6之间 D. 6和7之间4. 化简√0.1×√0.04的结果为( )A. 0.2B. 0.02C. √1050D. 以上都错5. 下列运算结果正确的是( )A. √(−9)2=−9B. √6÷√2=3C. (−√2)2=2D. √25=−56. 下列各式计算结果正确的是( )A. √−9−16=√−9√−16=−3−4=34 B. 4÷4√2=√2 C. 3×√13=√3 D. √52−32=5−3=2 7. 下列等式成立的是( )A. −5√(−25)2=−2 B. (−7√27)2=2 C. √24÷√6=4 D. 4√5×2√5=8√58. 矩形的面积为18,一边长为2√3,则另一边长为( )A. 5√3B. 10√3C. 3√3D. 249.当x≤2时,下列等式一定成立的是()A. √(x−2)2=x−2B. √(x−3)2=x−3C. √(x−2)(x−3)=√2−x⋅√3−xD. √3−x2−x =√3−x√2−x10.下列等式一定成立的是()A. (−√a)2=aB. √a2+b2=a+bC. √ab=√a√bD. √ba =√b√a二、填空题11.计算√2×2√2=______.12.化简:√18×√12=______.13.计算3√2÷√6的结果是______.14.等式√7−xx+2=√7−x√x+2成立的条件是______.三、计算题15.计算:(1)计算:√6×√33−(12)−2+|1−√2|(2)解方程:3xx+2−2x−2=3(3)化简:1x ÷(x2+1x2−x−2x−1)+1x+1.四、解答题16.【计算下列各式】(1)√4×√9=______,√4×9=______.√16×√25=______,√16×25=______.【归纳发现】(2)观察以上计算结果,尝试用含有字母a、b(其中,a≥0,b≥0)的式子表示发现的规律;【实践应用】(3)运用发现的规律进行计算:①√3×√5.②√13×√27.17.当x在什么范围内取值时,√2x+11−x =√2x+1√1−x?18.(1)用“>”“=”或“<”填空:;√1×2______1+22;√3×5______3+52;√6×8______6+82.√9×9______9+92(2)观察上式,请用含a,b(a>0,b>0)的式子,把你发现的结论写出来,并证明结论的正确性.答案和解析1.【答案】B【解析】解:原式=3,故选:B .原式利用二次根式的化简公式化简,计算即可得到结果.此题考查了算术平方根的计算,熟练掌握运算法则是解本题的关键.2.【答案】C【解析】解:√8÷√2=√4=2.故选:C .直接利用二次根式的除法运算法则计算得出答案.此题主要考查了二次根式的除法运算,正确掌握运算法则是解题关键.3.【答案】D【解析】【分析】本题考查了二次根式的乘法和无理数的估算,熟练掌握二次根式的计算法则是关键.先根据二次根式的乘法进行计算,再进行估算即可.【解答】解:(3√2+√30)×√12, =3√2×√12+√30×√12=3+√30×12, =3+√15,∵3<√15<4,∴6<3+√15<7,故选D .4.【答案】C【解析】解:√0.1×√0.04=0.2×√1010=15×√1010=√1050.故选:C.直接利用二次根式的性质计算得出答案.此题主要考查了二次根式的乘法,正确化简二次根式是解题关键.5.【答案】C【解析】解:A、√(−9)2=√81=9,本选项计算错误;B、√6÷√2=√3,本选项计算错误;C、(−√2)2=2,本选项计算正确;D、√25=5,本选项计算错误;故选:C.根据算术平方根的概念、二次根式的除法法则、二次根式的性质计算,判断即可.本题考查的是二次根式的化简、计算,掌握二次根式的性质、二次根式的除法法则、算术平方根的概念是解题的关键.6.【答案】C【解析】【分析】本题主要考查了二次根式的除法,二次根式的乘法运算,要注意被开方数大于等于0的性质.根据二次根式的性质对各选项分析判断后利用排除法求解.【解答】解:A、√−9−16=√916=34,故本选项错误;B、4÷4√2=√22,故本选项错误;C、3×√13=3×√33=√3,故本选项正确;D、√52−32=√16=4,故本选项错误.故选:C.7.【答案】A【解析】解:A 、−5√(−25)2=−5×25=−2,正确; B 、(−7√27)2=49×27=14,故此选项错误; C 、√24÷√6=2,故此选项错误;D 、4√5×2√5=40,故此选项错误;故选:A .直接利用二次根式的乘除运算法则计算得出答案.此题主要考查了二次根式的乘除运算,正确化简二次根式是解题关键.8.【答案】C【解析】解:∵矩形的面积为18,一边长为2√3,∴另一边长为2√3=3√3,故选:C . 根据矩形的面积得出另一边为2√3,再根据二次根式的运算法则进行化简即可.本题考查了矩形的面积和二次根式的除法,能根据二次根式的运算法则进行化简是解此题的关键. 9.【答案】C【解析】【分析】此题主要考查了二次根式的乘除和二次根式的化简,正确掌握二次根式的性质是解题关键.直接利用二次根式的性质分别化简判断得出答案.【解答】解:∵x ≤2,∴A .√(x −2)2=2−x ,故此选项错误; B .√(x −3)2=3−x ,故此选项错误;C .∴x −2<0,x −3<0,∴√(x −2)(x −3)=√2−x ⋅√3−x ,故此选项正确; D .√3−x 2−x,2−x ≠0,则x ≠2,故此选项错误;故选C.10.【答案】A【解析】【分析】本题主要考查了二次根式的运算,二次根式的乘法法则是√a·√b=√ab(a≥0,b≥0),二次根式的除法法则:√ab =√ab(a≥0,b>0),解答此题根据二次根式的运算法则进行判断即可.【解答】解:A.(−√a)2=a,故此选项正确;B.√a2+b2,无法化简,故此选项错误;C.√ab=√a·√b(a≥0,b≥0),故此选项错误;D.√ba =√b√a>0,b≥0),故此选项错误;故选A.11.【答案】4【解析】解:√2×2√2=2×2=4.故答案为:4.直接利用二次根式的乘法运算法则计算得出答案.此题主要考查了二次根式的乘法运算,正确掌握运算法则是解题关键.12.【答案】3【解析】解:原式=√18×12=√9=3.故答案为:3.直接利用二次根式的性质计算得出答案.此题主要考查了二次根式的乘法,正确化简二次根式是解题关键.13.【答案】√3【解析】解:3√2÷√6=√2√6=√2⋅√6√6⋅√6=6√36=√3,故答案为:√3. 根据二次根式的除法法则解答即可.本题考查的是二次根式的乘除法,掌握二次根式的除法法则是解题的关键. 14.【答案】−2<x ≤7【解析】解:由题意得:{7−x ≥0x +2>0, 解得:−2<x ≤7,故答案为:−2<x ≤7.根据二次根式的除法可得不等式组:{7−x ≥0x +2>0,再解即可. 此题主要考查了二次根式的除法,关键是掌握√a b =√a√b≥0,b >0). 15.【答案】解:(1)原式=3√23−4+√2−1 =√2+√2−4−1=2√2−5;(2)去分母得:3x (x −2)−2(x +2)=3(x 2−4),去括号,得3x 2−6x −2x −4=3x 2−12,整理,得−8x =−8,解得x =1,经检验,x =1是原方程的解,故原方程的解为x =1;(3)原式=1x ÷[x 2+1x (x−1)−2x−1]+1x+1=1x ÷[x 2+1−2x x (x −1)]+1x +1=1x ·x (x −1)(x −1)2+1x +1 =1x −1+1x +1=x +1(x −1)(x +1)+x −1(x −1)(x +1)=2xx 2−1.【解析】本题考查了实数的运算,解分式方程,分式的混合运算,掌握实数的运算的法则,解分式方程的步骤和方法,记得要验根,分式混合运算的法则是解题的关键,(1)先根据二次根式的乘法,负指数幂,绝对值的化简,再合并即可;(2)根据去分母,去括号,整理求出整式方程的解,注意要检验是否为增根;(3)先化简括号内的分式,再根据除以这个分式等于乘以这个分式的倒数,把除法化为乘法计算,最后再算分式的加法即可.16.【答案】6 6 20 20【解析】解:(1)√4×√9=2×3=6,√4×9=6.√16×√25=4×5=20,√16×25=√400=20.故答案为:6,6;20,20;(2)观察以上计算结果,尝试用含有字母a 、b(其中,a ≥0,b ≥0)的式子表示发现的规律√a ×√b =√ab(a ≥0,b ≥0);(3)运用发现的规律进行计算:①√3×√5=√15.②√13×√27=√9=3. (1)直接利用二次根式的性质分别计算得出答案;(2)直接利用(1)中运算规律得出答案;(3)①②直接利用二次根式的性质计算得出答案.此题主要考查了二次根式的乘法运算,正确化简二次根式是解题关键.17.【答案】解:根据题意得{2x +1≥01−x >0,解得−12≤x <1, 所以x 的范围为−12≤x <1.【解析】根据二次根式的除法法则得到{2x +1≥01−x >0,然后解不等式组即可. 本题考查了二次根式的乘除法:熟练掌握二次根式的性质和乘除法则.18.【答案】< < < =【解析】解:(1)√1×2<1+22; √3×5<3+52;√6×8<6+82;√9×9=9+92.故答案为:<,<,<,=;(2)由(1)得:√ab≤a+b2(a>0,b>0),∵(√ab)2=ab,(a+b2)2=a2+2ab+b24,∴(a2+2ab+b2)−4ab=a2−2ab+b2=(a−b)2≥0,∴(√ab)2≤(a+b2)2,∴√ab≤a+b2(a>0,b>0).(1)直接利用二次根式的性质结合估算无理数的大小的方法分析得出答案;(2)直接利用(1)中数字变化规律进而结合完全平方公式计算得出答案.此题主要考查了二次根式的乘除以及实数比较大小,正确运用乘法公式是解题关键.第3页,共11页。

九年级数学《二次根式的乘除》练习题

九年级数学《二次根式的乘除》练习题

数学系列练习卷(一)(二次根式的乘除)一.选择题:(每题4分,共24分)1.下列各式中一定是二次根式的是( )A .6-;B .a 33;C .12+x ;D .a 。

2.若二次根式x -2有意义,则x 的取值范围是( )A .2<x ;B .x ≤2;C .2>x ;D .x ≥2。

3.下列计算正确的是( ) A .b a b a +=+; B .aa a a 11⋅=⋅; C .b a b a +=+2)(; D .a a 52452=。

4.下列二次根式中,最简二次根式的是( ) A .31; B .9; C .6; D .18。

5.等式22-=-x x x x成立的条件是( )A .2>x ;B .2≠x ;C .x ≥0;D .x ≥2。

6.若实数b a <时,则化简2)(b a -所得的结果为( )A .b a +;B .b a -;C .b a --;D .b a +-。

二.填空题:(每小题3分,共36分)7.当x ___________时,5-x 是二次根式。

8.化简:=32________。

9.计算:=⋅ab a 28____________。

10.计算:=÷531513__________。

11.比较大小:32_________23。

12.若x x -+-44有意义,则=x ________。

13.等式4222-=-⋅+x x x 成立的条件是_______________。

14.边长为3的正方形的面积为_________。

15.如果a a =2)(成立,那么a 的取值范围是_____________。

16.若式子xx --73有意义,则x 的取值范围是____________。

17.实数a 在数轴上的位置如图所示,化简=2a ______________。

18.已知063=-+-y x ,以x 、y 为两边长的等腰三角形的周长是____________。

二次根式的乘除专项练习60题(有答案过程)ok

二次根式的乘除专项练习60题(有答案过程)ok
二次根式的乘除法专项练习 60 题(有答案)
1. ( 2. 3. (2 +4 )× +3) (3﹣ ) .
4. 5. .
6. 7. 8. .
9. (1)
; (2)
10.
11. (1)x(2x﹣1)﹣x (2﹣x) ; 2 3 2 3 (2) (2ab ﹣b ) ÷2b ; (3) (4) (5) (6) ; ; ; .
(2)

58.计算:2
×

59.

60.

二次根式的乘除法---
4
参考答案:
1. ( +3) (3﹣ )=3 ﹣( ) =9﹣6=3. 2 2 2. 原式=(3 ) ﹣(4 ) =54﹣32=22. 3.原式= 4.原式=( 5.原式= 6. 原式=(2 7.原式= ) ﹣3 =20﹣9=11. =2﹣9+2 = .
2
=﹣ =﹣
=﹣ ×10=﹣

÷ × × × ×4×
43.原式=﹣(9÷3× ) 44. 45. 46.原式=(2 47.原式=3 48.原式=27 49.原式=4 50.原式= 51.原式= ÷ ×3 = ) +2×2 ÷12= ÷ ×3 . × × =27
2
×3
×
×
=45
﹣2=24﹣2=22. = × ×3 = ×2a= . =9 . )] =[( ) ﹣( ) ] =(5﹣3) =4 +3)=(8﹣2 ) (8+2 )=64﹣60=4.
=2 . ×4
÷6
=
÷
2 2
= ÷3
×4 =
×
= ×4× × .
=1
)=a b

二次根式加减乘除计算200道(含答案)

二次根式加减乘除计算200道(含答案)

二次根式计算200道一.解答题1.计算或化简:(1);(2);(3);(4);(5)3(﹣π)0﹣+(﹣1)2013;(6)(﹣3)0﹣++;(7);(8).2.计算:(1);(2);(3);(4).3.计算题:(1);(2).4.计算.(1)(+)();(2)()×+2.5.计算(1)()÷(2)(3)2﹣()()6.计算:(1)+﹣×;(2)(﹣3)÷.7.计算:(1);(2);(3);(4).8.计算:(1);(2).9.计算:(1)2﹣6+3;(2)÷﹣+()﹣1.10.计算:•(﹣)÷(a>0).11.计算题(1)|﹣2|+()﹣1×(π﹣)0﹣++(﹣12);(2)(++)(﹣)+2.12.计算:()﹣2﹣()2.13.计算:(1)+﹣﹣;(2)﹣22+()﹣2+(π﹣)0+;(3)6÷(﹣3)×(﹣);(4)﹣+.14.计算:(1)2﹣+;(2)(+)(﹣)﹣(﹣1)2.15.计算(1)+2﹣(﹣);(2)÷×;(3)﹣()(﹣).16.计算题(1)(1﹣+)(1﹣﹣);(2)3+2﹣;(3)(π﹣3)0+()﹣1﹣|1﹣|﹣+;(4)3﹣﹣2.17.计算:(1)﹣12020+3(π﹣3.14)0﹣()﹣2+|﹣3|;(2)×﹣2÷+(1﹣)2﹣;(3)﹣+;(4)(4)÷(2)(2﹣).18.计算.(1)﹣+.(2)×﹣+(﹣1)0.(3)÷﹣4+.(4)(﹣2)2+()﹣1﹣()2.19.计算:(1).(2).(3)(1+)(1﹣)+(1+)2.(4)+|﹣2|+(π﹣3.14)0﹣.20.计算(1)﹣3+;(2)3×÷2;(3)(﹣1)(﹣1)+(﹣2)2;(4)(﹣)﹣1+|2﹣|+×(﹣).21.计算:+×(﹣)++(3﹣π)022.计算:(1);(2);(3);(4);(5);(6).23.计算题:(1)•(﹣)﹣2﹣(2﹣)0+|﹣|+;(2)﹣﹣+(﹣2)0+;(3)(+1)(﹣1)+(﹣2)2+(2﹣)÷.24.计算:(1);+++(2);+++(3);(4).25.计算:3÷(﹣2)•.(a>0)26.计算:(1)++•;(2)(2++)×﹣12;(3)﹣(1﹣)2.27.计算:(1)+﹣8;(2)()﹣1﹣﹣﹣(﹣2)2.28.计算(1)4+﹣;++(2)﹣4+÷;(3)(﹣1)2﹣(2﹣)(2+).29.计算:(1)+||+;(2)×.30.计算:(1)5+﹣(+2);(2)÷﹣2×﹣(﹣)2;(3)(2﹣)2019(2+)2020﹣2|﹣1|﹣()﹣1.31.计算:(1);(2)﹣;(3).32.计算:(1)﹣+(﹣1)2;(2)(+2)×﹣.33.计算题:(1)+3﹣;(2)﹣4;(3)(﹣3)2+(+3)(﹣3);(4)(2+)×﹣12.34.计算:(1)﹣+×;(2)|1﹣|﹣2+7+×.35.计算及化简:(1)()2﹣()2(2)﹣(3)﹣(4)﹣()÷.36.计算或化简:(1)×﹣6﹣3÷2;(2)(3+2)(3﹣2)﹣(﹣)2;(3)(+)2﹣(﹣)2;(4).37.已知a=,b=.(1)求a2﹣b2的值;(2)求a2﹣ab+b2.38.已知:a=+2,b=﹣2,求代数式(a﹣3)(b﹣3)﹣(a2+b2)的值.39.已知a=﹣,b=+,求值:(1)+;(2)a2b+ab2.40.化简计算:(1)已知:,求代数式的值.(2)已知,试求下列各式的值①x2+y2+xy②.二次根式计算200道参考答案与试题解析一.解答题(共40小题)1.【解】(1)原式=×4=8;(2)原式=2+1﹣2=3﹣2;(3)原式=+﹣=;(4)原式=(4﹣)×=3×=9;(5)原式=3﹣(2﹣)﹣1=;(6)原式=1﹣3+﹣1+﹣=﹣2;(7)原式=4﹣+2=4+;(8)原式=2b×(﹣)×=﹣a2b.2.【解】(1)原式=3﹣2+=;(2)原式=﹣+2=4﹣+2=4+;(3)原式=1﹣12﹣(3﹣2+1)=﹣11﹣4+2=﹣15+2;(4)原式=×4﹣1+4++1=2﹣1+4++1=7.3.【解】(1)原式=3﹣+2=;(2)原式=﹣=1﹣.4.【解】(1)原式=2﹣3=﹣1.(2)原式=3﹣6﹣3+6=6﹣6.5.【解】(1)原式=(5+4﹣3)÷2=6÷2=3;(2)原式=19﹣6﹣3+4=20﹣6.6.【解】(1)原式=2+3﹣4=;(2)原式=(﹣3)×=﹣3=﹣6.7.【解】(1)原式=﹣+3﹣2=2;(2)原式=3﹣2﹣×1+1=1;(3)原式=﹣﹣2=4﹣3+2=1+2;(4)原式=9+6+2﹣(4﹣3)=11+6﹣1=10+6.8.:【解】(1)原式=+=+2=3;(2)原式=4﹣4+3+4﹣3=8﹣4.9.:【解】(1)原式=4﹣2+12=14;(2)原式=﹣(+1)+=4﹣﹣1+=3.10.:•(﹣)÷(a>0).【解】原式====.11.【解】(1)原式=2+2×1﹣2﹣1=2+2﹣2﹣1=1;(2)原式=2﹣3+4=4﹣1.12.【解】原式=4+2﹣3+﹣3=1.13.【解】(1)+﹣﹣=+2﹣﹣2=;(2)﹣22+()﹣2+(π﹣)0+=﹣4+9+1+(﹣5)=5+1﹣5=1;(3)6÷(﹣3)×(﹣)=[6÷(﹣3)×()]=3;(4)﹣+==4﹣2.14.:【解】(1)原式=6﹣5+2=3.(2)原式=5﹣6﹣(5﹣2+1)=﹣1﹣(6﹣2)=﹣1﹣6+2=﹣7+2.15.【解】(1)原式=2+2﹣3+=3﹣.(2)原式===.(3)原式=+﹣(3﹣2)=2+3﹣3+2=4.16.【解】(1)原式=[(1﹣)+][(1﹣)﹣]=﹣2.(2)原式=6+8﹣5=9.(3)原式=1+2﹣(﹣1)﹣+2=3﹣+1﹣+2=4.(4)原式=6﹣﹣=.17.【解】(1)原式=﹣1+3×1﹣9+3=﹣1+3﹣9+3=﹣4;(2)原式=﹣2+1﹣2+3﹣4=2﹣4+1﹣2+3﹣4=﹣4;(3)原式=﹣+20﹣3=20﹣;(4)原式=4+3+8﹣3=12.18.【解】(1)原式=﹣2+3=2;(2)原式=﹣+1=2﹣+1=+1;(3)原式=﹣2+2=2﹣2+2=2;(4)原式=5﹣4+4+5﹣5=9﹣4.19.【解】(1)原式==6;(2)原式=﹣+2=4﹣+2=4+;(3)原式=1﹣5+1+2+5=2+2;(4)原式=2+2﹣+1﹣(+1)=2+2﹣+1﹣﹣1=2.20.【解】(1)原式=2﹣+=;(2)原式=3×××=;(3)原式=2+1﹣2+3﹣4+4=10﹣2﹣4;(4)原式=﹣2+﹣2﹣=﹣2+﹣2﹣4=﹣8.21.:+×(﹣)++(3﹣π)0【解】原式=﹣+|1﹣|+1=2﹣3+﹣1+1=0.22.:【解】(1)原式=1+2+2﹣=3+;(2)原式=﹣+2﹣﹣2=﹣2+2﹣﹣2=﹣3;(3)原式=+2﹣6=﹣3;(4)原式=2+﹣=;(5)原式=3+2+1﹣(﹣3+﹣2)=4+3+2;(6)原式=2﹣1+3=2+2.23.【解】(1)原式=×4﹣1+4++1=2﹣1+4++1=7;(2)原式=3﹣﹣1﹣+1+﹣1=﹣1;(3)原式=2﹣1+3﹣4+4+2﹣=10﹣5.24.【解】(1)=﹣3=2﹣3=﹣;(2)=﹣4=5﹣4=1;(3)=()2﹣()2=8﹣=7;(4)=3﹣.25.【解】原式=﹣(3×)×()=﹣×=﹣.26.【解】(1)+•=+3×3=+9=;(2)(2+)×﹣12=2×+×﹣12×=6+6﹣6=6;(3)﹣(1﹣)2=﹣(4﹣2)=5﹣4+2=1+2.27.【解】(1)+﹣8=3﹣;(2)()﹣1﹣﹣﹣(﹣2)2=﹣3+.28.【解】(1)原式=4+3﹣2=5;(2)原式=3﹣2+=3﹣2+2=3;(3)原式=2﹣2+1﹣2(4﹣5)=3﹣2+2=3.29.【解】(1)+||+=0.2﹣2+0.5+2﹣+=0.7;(2)×=4﹣+2=4+.30.【解】(1)原式=5×+×2﹣5﹣2=+﹣5﹣2=﹣5;(2)原式=4﹣2﹣(2+3﹣2)=4﹣2﹣5+2=﹣1;(3)原式=[(2﹣)(2+)]2019(2+)﹣2(1﹣)﹣=2+﹣2+﹣=.31.【解】(1)原式=2+﹣1+2﹣1=3;(2)原式=﹣(2﹣)÷=5﹣÷=5﹣;(3)原式=6﹣12+12﹣(20﹣2)=18﹣12﹣18=﹣12.32.【解】(1)原式=2﹣+3﹣2+1=4﹣;(2)原式=5+2﹣(+)=5+10﹣﹣=6+5.33.【解】(1)原式=4+﹣=;(2)原式=﹣4=10﹣4=6;(3)原式=5﹣6+9+11﹣9=16﹣6;(4)原式=2+﹣6=6+6﹣6=6.34.【解】(1)﹣+×;=+1﹣+2=1+2;(2)|1﹣|﹣2+7+×=﹣1﹣4++2=﹣2+1.35.【解】(1)原式=a++2﹣(a+﹣2)=a++2﹣a﹣+2=4;(2)原式=﹣=2;(3)原式=﹣=;(4)原式=﹣(﹣[﹣]•==1.36.【解】(1)原式=﹣2﹣=4﹣2﹣=;(2)原式=18﹣12﹣(3﹣2+2)=6﹣5+2=1+2;(3)原式=a+2+﹣(a﹣2+)=4;(4)原式=﹣=+﹣(﹣)=2.37.已知a=,b=.(1)求a2﹣b2的值;(2)求a2﹣ab+b2.【解】(1)∵a==+,b==,∴a+b=2,a﹣b=2,∴a2﹣b2=(a+b)(a﹣b)=2×=4;(2))∵a==+,b==,∴a﹣b=2,ab=1,∴a2﹣ab+b2=(a﹣b)2+ab=(2)2+1=8+1=9.38.已知:a=+2,b=﹣2,求代数式(a﹣3)(b﹣3)﹣(a2+b2)的值.【解】∵a=+2,b=﹣2,∴a+b=+2+﹣2=2,ab=(+2)(﹣2)=3﹣4=﹣1,则(a﹣3)(b﹣3)﹣(a2+b2)=ab﹣3a﹣3b+9﹣[(a+b)2﹣2ab]=ab﹣3(a+b)+9﹣[(a+b)2﹣2ab]=﹣1﹣6+9﹣(12+2)=﹣1﹣6+9﹣14=﹣6﹣6.39.已知a=﹣,b=+,求值:(1)+;(2)a2b+ab2.【解】∵a=﹣,b=+,∴a+b=(﹣)+(+)=2,ab=(﹣)(+)=2,(1)+=====12;(2)a2b+ab2=ab(a+b)=2×2=4.40.化简:(1)已知:,求代数式的值.(2)已知,试求下列各式的值①x2+y2+xy②.【解】(1)∵要使有意义,必须1﹣8x≥0,8x﹣1≥0,∴x=∴把x=代入得:y=0+0+=,∴=﹣====1.(2)∵,∴x=(+),y=(﹣),∴x+y=,xy=,∴①x2+y2+xy=(x+y)2﹣xy=()2﹣=4;②===8。

二次根式的乘除运算(人教版)(含答案)

二次根式的乘除运算(人教版)(含答案)
故选A.
试题难度:三颗星知识点:二次根式乘除运算
7.计算 的结果为( )
A.1 B.
C. D.
答案:C
解题思路:
故选C.
试题难度:三颗星知识点:二次根式乘除运算
8.计算 的结果为( )
A. B.
C. D.
答案:B
解题思路:
故选B.
试题难度:三颗星知识点:二次根式乘除运算
9.计算 的结果为( )
A. B.
答案:C
解题思路:
故选C.
试题难度:三颗星知识点:二次根式乘除运算
3.下面计算正确的是( )
A. B.
C. D.
答案:C
解题思路:
A选项中 不是同类二次根式,不能合并;
B选项: ;
C选项: ;
D选项:
故选C.
试题难度:三颗星知识点:二次根式加减运算
4.计算 的结果是( )
A. B.
C. D.
答案:D
12.计算: =( )
A. B.
C. D.
答案:D
解题思路:
故选D.
试题难度:三颗星知识点:二次根式乘除运算
13.估计 的运算结果应在( )
A.6到7之间B.7到8之间
C.8到9之间D.9到10之间
答案:C
解题思路:
原式= ,由 可得 .
故选C.
试题难度:三颗星知识点:估值法比较大小
二次根式的乘除运算(人教版)
一、单选题(共13道,每道7分)
1.下列各式中与 相乘,结果是有理数的是( )
A. B.
C. D.
答案:B
解题思路:
A选项: ,
B选项: ,
C选项: ,
D选项:

浙教版八年级下测试题1.3 第1课时 二次根式的乘除法

浙教版八年级下测试题1.3 第1课时 二次根式的乘除法

第1课时 二次根式的乘除法1.下列计算正确的是( D )A.25=±5B.2×3= 5C.18÷2=9D.24×32=6【解析】 A 不正确,结果应该为5;B 不正确,结果应该为6;C 不正确,结果应该为3. 2.下列计算不正确的是( B )A.24×6=24×6=4×6×6 =22×62=2×6=12B.2×103×0.2=2010C.23×278=23×278=94=32 D.2340=13240=13120=135102=130 5【解析】 B 不正确,2×103×0.2=400=20.选B. 3.[2013·常德]2×8+3-27的结果为( B )A .-1B .1C .4-33D .74.[2012·杭州]已知m =⎝ ⎛⎭⎪⎫-33×(-221),则有( A )A .5<m <6B .4<m <5C .-5<m <-4D .-6<m <-5 【解析】 m =⎝ ⎛⎭⎪⎫-33×(-221)=233×21=23×37=27=28,∵25<28<36,∴5<28<6,即5<m<6.5.计算912÷5412×36的值为(B)A.312 B.36C.33 D.3 34【解析】原式=912×1254×36=912×1254×36=36.选B.6.下列计算正确的是(A)A.8×102×2×103=8×2×104×10=40010B.243=243=8=2C.1255=25=25D.2.7×1040.3×102=2.7×1040.3×102=300【解析】B不正确,结果应为2 2;C不正确,结果应为5;D不正确,结果应为30.选A.7.计算:(1)[2013·吉林]2×6=.(2)2a·8a(a≥0)=__4a__;(3)8×12=__2__.8.已知6≈2.449,求下列各式的值(精确到0.01).(1)8×27;(2)50 12 .解:(1)原式=8×27=22×2×32×3=66≈6×2.449=14.694≈14.69. (2)原式=5012=256=56 6≈56×2.449≈2.04.9.计算: (1)18× 3. (2)18×50. (3)-5827×114×354. (4)23ab 3·⎝ ⎛⎭⎪⎫-34ab (b ≥0). 解:(1)18×3=3 2×3=3 6. (2)18×50=3 2×5 2=30. (3)-5827×114×354=-5×29×6×52×3×36=-30 5.(4)23 ab 3·⎝ ⎛⎭⎪⎫-34 ab =2b 3 ab ×⎝ ⎛⎭⎪⎫-34 ab=-ab 22. 10.(1)322.(2)5010.(3)415÷710.解:(1)4;(2)5;(3) 6.11.下列各式计算正确的是( D )A .32×26=512 B.1613=16×13 =43 3C.-9-25=925=35 D .(a -1)11-a=-(1-a )2·11-a=-1-a (a <1)【解析】 A 不正确,应为123;B 不正确,应为733;C 不正确,无意义.12.若50·a 的计算结果是一个整数,那么a 的最小正整数值是 ( C ) A .50 B .5 C .2D .10【解析】 ∵50·a =50·a =52·2a , ∴a 的最小正整数值是2.选C.13.如图1-3-1,每个小正方形的边长为1,连结大正方形的3个顶点,可得△ABC ,则AC 边上的高为( B )图1-3-1A.322B.355C.553D.455【解析】 ∵S △ABC =4-12×2×1-12×2×1-12×1×1=4-1-1-12=32,AC =22+12=5,∴AC 边上的高=2S △ABCAC =2×325=355. 14.观察分析下列数据,寻找规律:0,3,6,3,23,…,那么第10个数据应是.【解析】 规律为0=0×3,3=1×3,6=2×3,3=3×3,23=4×3,…,故第10个数为9×3=3 3.15.设三角形的底边长是a ,底边上的高是h ,面积是S . (1)如果a =2,h =14,求S ; (2)如果a =230,S =15,求h . 解:(1)S =12ah =12×2×14=7.(2)h =2S a =2×15230=302.16.如图1-3-2,在Rt △ABC 中,∠ACB =90°,S △ABC =18 cm 2,BC = 3 cm ,CD ⊥AB 于点D ,求AC ,CD 的长.图1-3-2解:∵S △ABC =12AC ·BC , ∴AC =2×S △ABC BC =2×183=26(cm),∴AB =AC 2+BC 2=(26)2+(3)2 =24+3=33(cm),∴CD =2S △ABC AB =2×1833=236(cm).17.阅读与解答:古希腊的几何学家海伦,在他的著作《度量》一书中,给出了下面一个公式:如果一个三角形的三边长分别为a ,b ,c ,设p =a +b +c2,则三角形的面积为S =p (p -a )(p -b )(p -c ).请你解答:在△ABC 中,BC =4,AC =5,AB =6,求△ABC 的面积. 【解析】 先根据△ABC 三边长求出p 的值,然后再代入三角形面积公式中计算.解:由题意,得a =4,b =5,c =6, ∴p =a +b +c 2=152,∴S=152×⎝⎛⎭⎪⎫152-4×⎝⎛⎭⎪⎫152-5×⎝⎛⎭⎪⎫152-6=152×72×52×32=15 74,故△ABC的面积是15 74.。

二次根式乘除计算练习题

二次根式乘除计算练习题

二次根式乘除估计训练之阳早格格创做一.采用题(共7小题)1.下列二次根式中属于最简二次根式的是()A.B.C.D.2.如果ab>0,a+b<0,那么底下各式:①=,②•=1,③÷=﹣b,其中精确的是()A.①②B.②③C.①③D.①②③3.下列等式纷歧定创造的是()A.=(b≠0)B.a3•a﹣5=(a≠0)C.a2﹣4b2=(a+2b)(a﹣2b)D.(﹣2a3)2=4a6 4.使式子创造的条件是()A.a≥5 B.a>5 C.0≤a≤5 D.0≤a<55.若,且x+y=5,则x的与值范畴是()A.x>B.≤x<5 C.<x<7 D.<x≤7 6.下列估计精确的是()A.×=B.x8÷x2=x4C.(2a)3=6a3D.3a5•2a3=6a67.化简的截止是()A.B.C.D.二.挖空题(共1小题)8.若战皆是最简二次根式,则m=,n=.三.解问题(共32小题)9..10.(1)÷3×5;(2)﹙﹣﹚÷().11..12.2×÷5.13.估计:.14.(1)(2)(3).15.(1)化简:•(﹣4)÷(2)已知x=﹣1,供x2+3x﹣1的值.16.估计:2×.17.估计:(2+4)×18..19.估计:2÷•.20.估计:4÷(﹣)×.21.(1)估计:•(÷);(2)已知真数x、y谦脚:+(y﹣)2=0,供的值.22..23.估计:()2﹣(2016)0+()﹣1.24.已知x、y为正数,且(+)=3(+5),供的值.25.估计:.26.自习课上,弛玉瞅睹共桌刘敏正在训练本上写的题目是“供二次根式中真数a的与值范畴”,她报告刘敏道:您把题目抄错了,不是“”,而是“”,刘敏道:哎呀,真抄错了,佳正在不做用截止,反正a战a﹣3皆正在根号内.试问:刘敏道得对付吗?便是道,依照解题战依照解题的截止一般吗?27.估计:.28.估计:.29.(x>0,y>0)30.化简:3a•(﹣)(a≥0,b≥0)31.估计:(1)(2).32.估计:2×÷10.33.估计:×()÷.34.估计:.35.估计:()﹣||36.化简与估计:(1)÷;(2)3a•(﹣)(b≥0).37.估计:(1)9×3﹣2+20160﹣×(2)(a+2)(a﹣2)﹣(a﹣1)2.38.化简:4x2.39.估计:(a≥0,b≥0).40.估计:×(﹣2)÷.二次根式乘除估计训练参照问案与试题剖析一.采用题(共7小题)1.(2015•锦州)下列二次根式中属于最简二次根式的是()A.B.C.D.【分解】A、B选项的被启圆数中含有已启尽圆的果数或者果式;C选项的被启圆数中含有分母;果此那三个选项皆不是最简二次根式.【解问】解:A、不是最简二次根式,故本选项过失;B、不是最简二次根式,故本选项过失;C、不是最简二次根式,故本选项过失;D、是最简二次根式,故本选项精确;故选D.【面评】本题考查了对付最简二次根式定义的应用,正在推断最简二次根式的历程中要注意:(1)正在二次根式的被启圆数中,只消含有分数或者小数,便不是最简二次根式;(2)正在二次根式的被启圆数中的每一个果式(或者果数),如果幂的指数等于或者大于2,也不是最简二次根式.2.(2014•济宁)如果ab>0,a+b<0,那么底下各式:①=,②•=1,③÷=﹣b,其中精确的是()A.①②B.②③C.①③D.①②③【分解】由ab>0,a+b<0先供出a<0,b<0,再举止根号内的运算.【解问】解:∵ab>0,a+b<0,∴a<0,b<0①=,被启圆数应≥0,a,b不克不迭干被启圆数,(故①过失),②•=1,•===1,(故②精确),③÷=﹣b,÷=÷=×=﹣b,(故③精确).故选:B.【面评】本题是考查二次根式的乘除法,解问本题的闭键是精确a<0,b<0.3.(2015•烟台)下列等式纷歧定创造的是()A.=(b≠0)B.a3•a﹣5=(a≠0)C.a2﹣4b2=(a+2b)(a﹣2b)D.(﹣2a3)2=4a6【分解】分别利用二次根式的本量以及背整数指数幂的本量战仄圆好公式以及积的乘圆运算规则化简供出即可.【解问】解:A、=(a≥0,b>0),故此选项过失,切合题意;B、a3•a﹣5=(a≠0),精确,分歧题意;C、a2﹣4b2=(a+2b)(a﹣2b),精确,分歧题意;D、(﹣2a3)2=4a6,精确,分歧题意.故选:A.【面评】此题主要考查了二次根式的本量以及背整数指数幂的本量战仄圆好公式以及积的乘圆运算规则等知识,精确掌握运算规则是解题闭键.4.(2010•黄山校级一模)使式子创造的条件是()A.a≥5 B.a>5 C.0≤a≤5 D.0≤a<5【分解】根据分式蓄意思分母不为0及二次根式的被启圆数为非背数可得出问案.【解问】解:由题意得:,解得:a>5.故选B.【面评】本题考查二次根式及分式蓄意思的条件,易度不大,注意掌握分式蓄意思分母不为0及二次根式的被启圆数为非背数.5.(2016•萧山区模拟)若,且x+y=5,则x的与值范畴是()A.x>B.≤x<5 C.<x<7 D.<x≤7【分解】直交利用二次根式蓄意思的条件,得出y的与值范畴,从而得出问案.【解问】解:∵,∴y+2≥0,2x﹣1>0,解得:y≥﹣2,x>,∵x+y=5,∴<x≤7.故选:D.【面评】此题主要考查了二次根式蓄意思的条件,得出y的与值范畴是解题闭键.6.(2016•少沙)下列估计精确的是()A.×=B.x8÷x2=x4C.(2a)3=6a3D.3a5•2a3=6a6【分解】直交利用二次根式乘法运算规则以及分离共底数幂的乘除运算规则分别化简供出问案.【解问】解:A、×=,精确;B、x8÷x2=x6,故此选项过失;C、(2a)3=8a3,故此选项过失;D、3a5•2a3=6a8,故此选项过失;故选:A.【面评】此题主要考查了二次根式乘法运算以及分离共底数幂的乘除运算、积的乘圆运算等知识,精确掌握相闭本量是解题闭键.7.(2014•新泰市模拟)化简的截止是()A.B.C.D.【分解】先推断出a的标记,再把二次根式举止化简即可.【解问】解:由可知,a<0,本式=﹣=﹣.故选C.【面评】将根号中的a移到根号内,要注意自己的标记,把标记留正在根号中,共时注意根号内被启圆数的标记.二.挖空题(共1小题)8.(2013秋•阳谷县期终)若战皆是最简二次根式,则m=1,n=2.【分解】由于二二次根式皆是最简二次根式,果此被启圆数的幂指数均为1,由此可得出闭于m、n的圆程组,可供出m、n的值.【解问】解:由题意,知:,解得:;果此m的值为1,n的值为2.故问案为:1,2.【面评】本题考查的最简二次根式的定义.当已知一个二次根式是最简二次根式时,那么被启圆数(或者果式)的幂指数必为1.三.解问题(共32小题)9.(2015秋•宁乡县期终).【分解】最先把乘除法混同运算转移成乘法运算,而后举止乘法运算即可.【解问】解:本式=3×(﹣)×2=﹣3××2×=﹣=﹣×10=﹣.【面评】本题考查了分式的乘除混同运算,精确变换成乘法运算是闭键.10.(2013秋•云梦县校级期终)(1)÷3×5;(2)﹙﹣﹚÷().【分解】(1)利用二次根式的乘除运算规则将除法形成乘法,根号内的战根号里里相乘除,根号中的与根号中部相乘除,从而化简得出即可;(2)利用二次根式的乘除运算规则将除法形成乘法,根号内的战根号里里相乘除,根号中的与根号中部相乘除,从而化简得出即可.【解问】解:(1)÷3×5=×5=;(2)﹙﹣﹚÷()=﹣××3=﹣=﹣9x2y.【面评】此题主要考查了二次根式的乘除运算,精确掌握运算规则是解题闭键.11.(2014秋•苏州期终).【分解】果为二个果式的第一项真足相共,第二、三项互为好异数,切合仄圆好公式的特性,按仄圆好公式估计即可.【解问】解:本式==2﹣9+2=.【面评】本题主要考查了二次根式的乘法运算以及仄圆好公式的应用.使用仄圆好公式(a+b)(a﹣b)=a2﹣b2估计时,闭键要找相共项战好异项,其截止是相共项的仄圆减来好异项的仄圆.12.(2016秋•黑推特前旗期终)2×÷5.【分解】本题需先根据二次根式的乘除法的规则分别举止估计,即可供出问案.【解问】解:2×÷5=4×==.【面评】本题主要考查了二次根式的乘除法,正在解题时要根据二次根式的乘除法的规则举止估计是本题的闭键.13.(2015秋•湖北校级期中)估计:.【分解】最先化简二次根式,从而利用二次根式的乘除运算规则供出即可.【解问】解:本式=3×5×=15.【面评】此题主要考查了二次根式的乘除运算,精确化简二次根式是解题闭键.14.(2014秋•赵县期终)(1)(2)(3).【分解】(1)先将各二次根式化为最简,再使用乘法调配律举止运算,而后再举止二次根式的加减.(2)使用仄圆好公式举止估计即可.(3)直交举止启圆运算即可得出问案.【解问】解:(1)本式=6×(3﹣5﹣2)=18﹣60﹣12,=6﹣60,=12﹣60;(2)本式=﹣,=18﹣75,=﹣57;(3)==.【面评】本题考查二次根式的乘除运算,易度不大,注意正在运算时公式的使用,更要小心.15.(2011秋•东台市校级期中)(1)化简:•(﹣4)÷(2)已知x=﹣1,供x2+3x﹣1的值.【分解】(1)根据二次根式的定义战已知供出x、y皆是背数,先化成最简根式,再根据二次根式的乘除法规则举止估计即可.(2)把代数式化成(x+1)2+x﹣2,代进后根据二次根式的混同运算规则举止估计即可.【解问】(1)解:本式=﹣•()÷,=(••),=﹣8x2y.(2)解:x=﹣1,∴x2+3x﹣1,=x2+2x+1+x﹣2,=(x+1)2+x﹣2,=+﹣1﹣2,=2+﹣3,=﹣1+.【面评】本题考查了二次根式的本量战定义,代数式供值,二次根式的乘除法规则等知识面的应用,解此题的闭键是把根式化成最简根式,注意:从题中得出x、y皆是背数,=﹣x,=﹣y,题型较佳,然而是一讲比较简单堕落的题目.16.(2014秋•直阜市期终)估计:2×.【分解】根据二次根式的乘除法规则,系数相乘除,被启圆数相乘除,根指数稳定,如:2×÷3,÷,估计后供出即可.【解问】解:本式=(2××),=.【面评】本题考查了二次根式的乘除法的应用,闭键是能流利天使用规则举止估计,题目比较典型,易度适中,此题是一讲简单堕落的题目.17.(2014秋•沅陵县校级期终)估计:(2+4)×【分解】用战分别来乘括号里的每一项,而后再举止加法运算,即可得出截止.【解问】解:本式==.【面评】解问本题闭键是要掌握二次根式的混同运算的运算规则.18.(2016秋•凶林期终).【分解】使用(a≥0,b>0)直交举止估计.也不妨先分子干减法运算,再分子、分母干除法运算.【解问】解:本式===3﹣2=1.【面评】对付于二次根式的乘除法,应分离给出的算式的特性机动举止估计.19.(2015秋•闸北区期中)估计:2÷•.【分解】直交利用二次根式的乘除运算规则化简供出问案.【解问】解:本式=2×6=12=8.【面评】此题主要考查了二次根式的乘除运算,精确掌握运算规则是解题闭键.20.(2014秋•门头沟区期终)估计:4÷(﹣)×.【分解】根据二次根式的乘法规则战除法规则供解.【解问】解:本式=﹣2÷×=﹣×=﹣.【面评】本题考查了二次根式的乘除法,解问本题的闭键是掌握二次根式的乘法规则战除法规则.21.(2014秋•孝义市期终)(1)估计:•(÷);(2)已知真数x、y谦脚:+(y﹣)2=0,供的值.【分解】(1)利用二次根式的乘除法规则供解;(2)利用算术仄圆根战一个数的仄圆等于0供出x,y,再供的值.【解问】解:(1)•(÷)=•===;(2)由+(y﹣)2=0,可知,=0且(y﹣)2=0,即,解得.所以==.【面评】本题主要考查了二次根式的乘除法,非背数的本量及算术仄圆根,解题的闭键是利用算术仄圆根战一个数的仄圆等于0供解.22.(2013秋•岳麓区校级期终).【分解】先化简,再根据二次根式的乘法举止估计即可.【解问】解:本式=÷×3=××3=9.【面评】本题考查了二次根式的乘除法,化简二次根式是解此题的闭键.23.(2016•祸修模拟)估计:()2﹣(2016)0+()﹣1.【分解】直交利用二次根式的本量以及整指数幂的本量战背整数指数幂的本量化简供出问案.【解问】解:本式=5﹣1+3=7.【面评】此题主要考查了二次根式的乘法运算以及整指数幂的本量战背整数指数幂的本量,精确有闭掌握运算规则是解题闭键.24.(2016秋•宿乡区校级期终)已知x、y为正数,且(+)=3(+5),供的值.【分解】央供代数式的值,要最先将分子分母的字母统一成一种,果此要整治已知条件,设法将其中一种字母用另一种表示,而后代进代数式中,约分即可.【解问】解:由已知条件得x﹣2﹣15y=0,∴(+3)(﹣5)=0,∵+3>0,∴﹣5=0,∴,x=25y,∴==2.【面评】不妨对付所给条件适合的变形是解题的闭键,对付条件的变形不程序可循,要根据题目需要,使用所教知识适合变形.25.(2016•厦门校级模拟)估计:.【分解】根据有理数的乘圆、来括号规则、二次根式的乘法规则分别估计,再合并即可.【解问】解:本式=﹣1﹣2+5+4=6.【面评】本题考查了二次根式的乘法规则,有理数的乘圆,来括号规则的应用,能供出各个部分的值是解此题的闭键.26.(2015秋•赵县期中)自习课上,弛玉瞅睹共桌刘敏正在训练本上写的题目是“供二次根式中真数a的与值范畴”,她报告刘敏道:您把题目抄错了,不是“”,而是“”,刘敏道:哎呀,真抄错了,佳正在不做用截止,反正a战a﹣3皆正在根号内.试问:刘敏道得对付吗?便是道,依照解题战依照解题的截止一般吗?【分解】本题需注意的是,被启圆数为非背数,按估计,则a战a﹣3可为共号的二个数,即共为正,或者共为背;而按估计,惟有共为正的情况.【解问】解:刘敏道得分歧过失,截止纷歧样.按估计,则a≥0,a﹣3>0或者a≤0,a﹣3<0解之得,a>3或者a≤0;而按估计,则惟有a≥0,a﹣3>0解之得,a>3.【面评】二次根式的被启圆数利害背数,分母不为0,是本题决定与值范畴的主要依据.27.(2014秋•专湖县校级月考)估计:.【分解】先将戴分数化为分数,而后而后根据×=举止二次根式的乘法运算即可.【解问】解:本式=××==×4=3.【面评】本题考查了二次根式的乘除法运算,易度不大,将戴分数化简为分数是很闭键的一步.28.(2016秋•夏津县校级月考)估计:.【分解】直交利用二次根式乘除运算规则直交供出即可.【解问】解:=3×(﹣)×2=﹣×5=﹣.【面评】此题主要考查了二次根式的乘除运算,流利应用运算规则是解题闭键.29.(2014秋•淮阳区校级月考)(x>0,y>0)【分解】根据二次根式的乘除法把根号中的相乘除,根号里的相乘除再化简即可.【解问】解:本式=﹣=﹣,∵x>0,y>0,∴本式=﹣=﹣3xy.【面评】本题主要考查了二次根式的乘除法,流利掌握运算规则是解题的闭键.30.(2013秋•玄武区期终)化简:3a•(﹣)(a ≥0,b≥0)【分解】根据二次根式的乘法运算规则直交得出即可.【解问】解:本式=﹣2a,=﹣12ab.【面评】此题主要考查了二次根式的乘法运算,精确化简二次根式是解题闭键.31.(2016秋•咸歉县校级月考)估计:(1)(2).【分解】(1)根据二次根式的乘法,可得问案;(2)根据二次根式的乘除法,可得问案.【解问】解:(1)本式=﹣12=﹣12×9=﹣108;(2)本式=÷×==1.【面评】本题考查了二次根式的乘除法,•=,÷=.32.(2016秋•端州区期终)估计:2×÷10.【分解】先化简二次根式,再用乘法战除法运算即可.【解问】解:2×÷10=2×2××=【面评】此题是二次根式的乘除法,主要考查了二次根式的化简,分母有理化,解本题的闭键是分母有理化的使用.33.(2012秋•上海期中)估计:×()÷.【分解】根据二次根式乘除法及分母有理化的知识解问即可.【解问】解:本式=b2×(﹣a)÷3=2b×(﹣a)×=﹣a2b.【面评】此题考查了二次根式的乘除法,认识二次根式乘除法的规则是解题的闭键.34.(2014秋•弛家港市校级期中)估计:.【分解】最先利用二次根式除法以及乘法规则转移成一个二次根式,而后对付二次根式举止化简即可.【解问】解:本式===×2a=.【面评】本题考查了二次根式的乘除运算,精确明白规则,精确化简二次根式是闭键.35.(2016秋•罗定市期中)估计:()﹣||【分解】直交利用二次根式乘法运算规则化简从而利用千万于值的本量化简,再合并供出问案.【解问】解:本式=3﹣﹣(2﹣)=3﹣﹣2+,=1.【面评】此题主要考查了二次根式的乘法以及千万于值的本量,精确掌握运算规则是解题闭键.36.(2014秋•吴中区期终)化简与估计:(1)÷;(2)3a•(﹣)(b≥0).【分解】(1)利用二次根式除法运算规则供出即可;(2)利用二次根式乘法运算规则供出即可.【解问】解:(1)÷=×=;(2)3a•(﹣)(b≥0)=3a×(﹣)=﹣2a=﹣12ab.【面评】此题主要考查了二次根式的乘除运算,流利掌握二次根式乘除运算规则是解题闭键.37.(2016•海北模拟)估计:(1)9×3﹣2+20160﹣×(2)(a+2)(a﹣2)﹣(a﹣1)2.【分解】(1)先根据背整数指数幂的意思、整指数幂的意思化简乘圆,再算乘法,而后估计加减;(2)利用仄圆好公式与真足仄圆公式估计乘法与乘圆,再来括号合并共类项即可.【解问】解:(1)9×3﹣2+20160﹣×=9×+1﹣4=1+1﹣4=﹣2;(2)(a+2)(a﹣2)﹣(a﹣1)2=(a2﹣4)﹣(a2﹣2a+1)=a2﹣4﹣a2+2a﹣1=2a﹣5.【面评】本题考查了整式的混同运算,真数的混同运算,背整数指数幂、整指数幂的意思,二次根式的乘除法,掌握运算程序与运算规则是解题的闭键.38.(2016秋•潮北区月考)化简:4x2.【分解】直交利用二次根式乘除运算规则化简供出问案.【解问】解:4x2=4x2÷12×3=x2=xy.【面评】此题主要考查了二次根式的乘除运算规则,精确化简二次根式是解题闭键.39.(2013秋•北京期终)估计:(a≥0,b≥0).【分解】根据二次根式的乘法规则供解.【解问】解:本式=2=2=6a.【面评】本题考查了二次根式的乘法,解问本题的闭键是掌握二次根式的乘法规则=.40.(2014秋•闵止区校级期中)估计:×(﹣2)÷.【分解】直交利用二次根式的乘除运算规则化简供出即可.【解问】解:×(﹣2)÷=×(﹣2)×=﹣=﹣=﹣.【面评】此题主要考查了二次根式的乘除运算,精确掌握运算规则是解题闭键.。

八年级数学二次根式的乘除法1

八年级数学二次根式的乘除法1
解:原式 2 1 3 2 2015 2014 2015 1 2014


2015 1


2015 1

1 1 1 (2) 3 3 5 3 3 5 7 5 5 7 1 ...... 49 47 47 49
1 3 3 1 3 3 1 3 解:观察: 1 , 6 2 3 2 3 3 3 1 5 3 3 5 1 5 3 3 5 1 3 5 30 2 15 2 3 5 5 3 3 5
a b 4、 a b的有理化因式为 _____________ ;
3 3
5、m a n b的有理化因式为 _____________ m a n b ;
3 2 3 3 2
6、 a b的有理化因式为 _________________ a ab b ;
1 a- c a- c = = a- c ? a c a- c a- c
(1). 12 ( 2). 4a
4 3
( 3). a b
(1). 8 ; (2). 18; (3). a
3
小结
(1)乘法法则:
a b ab; (a 0, b 0)
(2)乘法法则的逆用:
ab a b; (a 0, b 0)
讨论
计算: 有什么发现?
4 2 4 2 (1) ( 2) 9 3 9 3 16 4 16 4 (3) ( 3) 25 5 25 5
25 y 5 y 5 y 25 y ( 2) 2 2 2 2 9x 3x 9x 3 x
2
例题讲解
解(1) 解法一:
2 2 3 27 (1) (2) (3) 计算: 3 8 3x

二次根式的乘除练习题

二次根式的乘除练习题

二次根式的乘除练习题-CAL-FENGHAI.-(YICAI)-Company One1二次根式的乘除(一)1.使等式ab =b a •成立的条件是( )>0,b>0 <0,b<0 ≥0,b≥0 ≥02.计算32•的结果是( ) A.5 B.6 C.32 D.233.下列各式成立的是( ) A.585254=⨯ B.5202435=⨯ C.572334=⨯ D.6202435=⨯4.化简二次根式6)2(-2⨯的结果是( ) A.62 B.62-5.化简545⨯的结果是( ) A.52 C.2 D.52 6.下列各式计算正确的是( ) A.525±= B.127-33= C.9218=⨯ D.62324=⨯7.在下列各数中,与3的积为有理数的是( ) A.2 B.13+ C.3- D.68.计算:218⨯= . 9.化简:=⨯1832 ;=⨯)27(-)15(- .10.计算下列各式:(1)82⨯; (2)123⨯; (3)2162⨯;(4)12149⨯; (5)y 4; (6)3216c ab ;(7)10253⨯; (8)15106⨯⨯; (9)54332⨯⨯.11.若等式33)3)(3(-⨯+=-+x x x x 成立,则x 的取值范围是 . 12计算22)2-3()23(⨯+的结果是( ) C.2-3 D.23+13.将aa 1根号外的部分移到根号内,正确的是( ) A.a B.a - C.a - D.a --14.设矩形的长和宽分别为a 、b ,根据下列条件求面积S. (1)8,12==b a ; (2)4821,243==b a .15.比较下列各组中两个数的大小.(1)2472和 (2)2332--和.16.计算:(1)3122y x xy • (2)nm m n m 223233•17.先化简,再求值:12)113(2--÷--+x x x x x , 其中23=x .18.已知101=+aa ,求a a 1-的值. 二次根式的乘除(二)1.下列根式中:1,2,12,21,22+-x x ,最简二次根式的个数为( ) 个 个 个 个2.下列式子中,属于最简二次根式的是( ) A.9 B.7 C.20 D.31 3.下列根式中,属于最简二次根式的是( ) A.a 4 B.4a C.4a D.4a 4.下列运算中错误的是( ) A.2222=⨯ B.632=⨯ C.228=÷ D.3)3(-2=5.下列计算错误的是( ) A.6319632== B.x x x x x==21 C.a ab a ab a b 339332== D.x x x x x 6396322== 6.327的相反数是 ;5的倒数是 .7.计算:=⨯÷3333 ;=÷x x 1 . 8.计算:(1);818÷ (2);8121÷ (3);32241÷(4);648 (5);2723- (6);322xy y x(7);x y xy ÷(8);1003 (9);2775(10);65027÷⨯ (11);531322311⨯÷ (12).43215021122⨯÷ 9.使等式725725--=--x x x x 成立的条件是( )A.27<x ≤5 B .27≤ x ≤5 C .x > 27 D .x ≤5 10.若,2381=⨯a ,则a 的值为( ). A .12 B .32 C .163 D .43 11.化简 (1);23x y xy ÷ (2);227818÷÷ (3).23ba ab a b ⨯÷12.先化简,再求值:)131(12--+÷--x x x x ,其中23-=x .13.某建筑施工图纸上有一直角三角形的面积为21410cm ,一条直角边长为274cm ,求另一条直角边的长.14.已知2,3=-=+ab b a ,求代数式b a a b +的值.。

二次根式的乘除经典练习题

二次根式的乘除经典练习题

二次根式的乘除经典练习题1:把下列各式中根号外的因数(式)移到根号内(1)5(2)–3(3)–2a(4) –a(5) x (x ﹤0 ,y ﹤0)2: 比较大小(1)3 与 2 (2)2与 3(3)﹣3与 ﹣2(4)﹣与﹣(5)与(6)﹣与 ﹣3:若 a 、b 分别是 6﹣的整数部分和小数部分,求2a ﹣b 的 值4:(规律探究题)观察下列各式532a21a1-xy 253377253ππ31413131213= =- 1 ;= =-= =;……请用上面的规律直接写出 的结果;请用含n 的(n 为正整数)的代数式表示上述规律,并证明;利用上述规律计算:( +++ …… +)× (1 +)5:(阅读理解题)先阅读下面的一段文字,然后解答问题。

我们知道,a的有理化因式是, 的有理211+)21)(21(21-+-2321+)32)(32(32-+-32431+)43)(43(43-+-34-100991+211+321+431+201120101+2011xx 1+x化因式是,x 的有理化因式 是 。

观察下面的式子: (1) (2+ )(2﹣)﹦(2)2-()2﹦12 — 2 = 10(2) (5+ 3)(5 ﹣3) = (5)2- (3)2=150 – 18 = 132(3) (a+b)(a- b)= (a)2- (b)2 = a 2x –b 2y.从上面的计算我们发现,将一个二次根式 (a+b )乘 (a- b),其积是有理式,因此我们可以得出:(1)3﹣ 2的有理化因式是____;3+ 4 的有理化因式是____。

(2)把下列各式的分母有理化1+x b a +b a +323232626262xyxyx yx y x y23ax by1:2:3:132+32232-24532453-+。

二次根式乘除计算练习题

二次根式乘除计算练习题

二次根式乘除计算练习之杨若古兰创作一.选择题(共7小题)1.以下二次根式中属于最简二次根式的是()A.B.C.D.2.如果ab>0,a+b<0,那么上面各式:①=,②•=1,③÷=﹣b,其中准确的是()A.①②B.②③C.①③D.①②③3.以下等式纷歧定成立的是()A.=(b≠0)B.a3•a﹣5=(a≠0)C.a2﹣4b2=(a+2b)(a﹣2b)D.(﹣2a3)2=4a6 4.使式子成立的条件是()A.a≥5 B.a>5 C.0≤a≤5 D.0≤a<55.若,且x+y=5,则x的取值范围是()A.x>B.≤x<5 C.<x<7 D.<x≤7 6.以下计算准确的是()A.×= B.x8÷x2=x4C.(2a)3=6a3 D.3a5•2a3=6a67.化简的结果是()A.B.C.D.二.填空题(共1小题)8.若和都是最简二次根式,则m=,n=.三.解答题(共32小题)9..10.(1)÷3×5;(2)﹙﹣﹚÷().11..12.2×÷5.13.计算:.14.(1)(2)(3).15.(1)化简:•(﹣4)÷(2)已知x=﹣1,求x2+3x﹣1的值.16.计算:2×.17.计算:(2+4)×18..19.计算:2÷•.20.计算:4÷(﹣)×.21.(1)计算:•(÷);(2)已知实数x、y满足:+(y﹣)2=0,求的值.22..23.计算:()2﹣(2016)0+()﹣1.24.已知x、y为负数,且(+)=3(+5),求的值.25.计算:.26.自习课上,张玉看见同桌刘敏在练习本上写的题目是“求二次根式中实数a的取值范围”,她告诉刘敏说:你把题目抄错了,不是“”,而是“”,刘敏说:哎呀,真抄错了,好在不影响结果,反正a和a﹣3都在根号内.试问:刘敏说得对吗?就是说,按照解题和按照解题的结果一样吗?27.计算:.28.计算:.29.(x>0,y>0)30.化简:3a•(﹣)(a≥0,b≥0)31.计算:(1)(2).32.计算:2×÷10.33.计算:×()÷.34.计算:.35.计算:()﹣||36.化简与计算:(1)÷;(2)3a•(﹣)(b≥0).37.计算:(1)9×3﹣2+20160﹣×(2)(a+2)(a﹣2)﹣(a﹣1)2.38.化简:4x2.39.计算:(a≥0,b≥0).40.计算:×(﹣2)÷.二次根式乘除计算练习参考答案与试题解析一.选择题(共7小题)1.(2015•锦州)以下二次根式中属于最简二次根式的是()A.B.C.D.【分析】A、B选项的被开方数中含有未开尽方的因数或因式;C选项的被开方数中含有分母;是以这三个选项都不是最简二次根式.【解答】解:A、不是最简二次根式,故本选项错误;B、不是最简二次根式,故本选项错误;C、不是最简二次根式,故本选项错误;D、是最简二次根式,故本选项准确;故选D.【点评】本题考查了对最简二次根式定义的利用,在判断最简二次根式的过程中要留意:(1)在二次根式的被开方数中,只需含有分数或小数,就不是最简二次根式;(2)在二次根式的被开方数中的每一个因式(或因数),如果幂的指数等于或大于2,也不是最简二次根式.2.(2014•济宁)如果ab>0,a+b<0,那么上面各式:①=,②•=1,③÷=﹣b,其中准确的是()A.①②B.②③C.①③D.①②③【分析】由ab>0,a+b<0先求出a<0,b<0,再进行根号内的运算.【解答】解:∵ab>0,a+b<0,∴a<0,b<0①=,被开方数应≥0,a,b不克不及做被开方数,(故①错误),②•=1,•===1,(故②准确),③÷=﹣b,÷=÷=×=﹣b,(故③准确).故选:B.【点评】本题是考查二次根式的乘除法,解答本题的关键是明确a<0,b<0.3.(2015•烟台)以下等式纷歧定成立的是()A.=(b≠0)B.a3•a﹣5=(a≠0)C.a2﹣4b2=(a+2b)(a﹣2b)D.(﹣2a3)2=4a6【分析】分别利用二次根式的性质和负整数指数幂的性质和平方差公式和积的乘方运算法则化简求出即可.【解答】解:A、=(a≥0,b>0),故此选项错误,符合题意;B、a3•a﹣5=(a≠0),准确,分歧题意;C、a2﹣4b2=(a+2b)(a﹣2b),准确,分歧题意;D、(﹣2a3)2=4a6,准确,分歧题意.故选:A.【点评】此题次要考查了二次根式的性质和负整数指数幂的性质和平方差公式和积的乘方运算法则等常识,准确把握运算法则是解题关键.4.(2010•黄山校级一模)使式子成立的条件是()A.a≥5 B.a>5 C.0≤a≤5 D.0≤a<5【分析】根据分式成心义分母不为0及二次根式的被开方数为非负数可得出答案.【解答】解:由题意得:,解得:a>5.故选B.【点评】本题考查二次根式及分式成心义的条件,难度不大,留意把握分式成心义分母不为0及二次根式的被开方数为非负数.5.(2016•萧山区模拟)若,且x+y=5,则x的取值范围是()A.x>B.≤x<5 C.<x<7 D.<x≤7【分析】直接利用二次根式成心义的条件,得出y的取值范围,进而得出答案.【解答】解:∵,∴y+2≥0,2x﹣1>0,解得:y≥﹣2,x>,∵x+y=5,∴<x≤7.故选:D.【点评】此题次要考查了二次根式成心义的条件,得出y的取值范围是解题关键.6.(2016•长沙)以下计算准确的是()A.×= B.x8÷x2=x4C.(2a)3=6a3 D.3a5•2a3=6a6【分析】直接利用二次根式乘法运算法则和结合同底数幂的乘除运算法则分别化简求出答案.【解答】解:A、×=,准确;B、x8÷x2=x6,故此选项错误;C、(2a)3=8a3,故此选项错误;D、3a5•2a3=6a8,故此选项错误;故选:A.【点评】此题次要考查了二次根式乘法运算和结合同底数幂的乘除运算、积的乘方运算等常识,准确把握相干性质是解题关键.7.(2014•新泰市模拟)化简的结果是()A.B.C.D.【分析】先判断出a的符号,再把二次根式进行化简即可.【解答】解:由可知,a<0,原式=﹣=﹣.故选C.【点评】将根号外的a移到根号内,要留意本身的符号,把符号留在根号外,同时留意根号内被开方数的符号.二.填空题(共1小题)8.(2013春•阳谷县期末)若和都是最简二次根式,则m= 1 ,n= 2 .【分析】因为两二次根式都是最简二次根式,是以被开方数的幂指数均为1,由此可得出关于m、n的方程组,可求出m、n的值.【解答】解:由题意,知:,解得:;是以m的值为1,n的值为2.故答案为:1,2.【点评】本题考查的最简二次根式的定义.当已知一个二次根式是最简二次根式时,那么被开方数(或因式)的幂指数必为1.三.解答题(共32小题)9.(2015春•宁城县期末).【分析】首先把乘除法混合运算转化成乘法运算,然后进行乘法运算即可.【解答】解:原式=3×(﹣)×2=﹣3××2×=﹣=﹣×10=﹣.【点评】本题考查了分式的乘除混合运算,准确转换成乘法运算是关键.10.(2013秋•云梦县校级期末)(1)÷3×5;(2)﹙﹣﹚÷().【分析】(1)利用二次根式的乘除运算法则将除法变成乘法,根号内的和根号内部相乘除,根号外的与根号内部相乘除,进而化简得出即可;(2)利用二次根式的乘除运算法则将除法变成乘法,根号内的和根号内部相乘除,根号外的与根号内部相乘除,进而化简得出即可.【解答】解:(1)÷3×5=×5=;(2)﹙﹣﹚÷()=﹣××3=﹣=﹣9x2y.【点评】此题次要考查了二次根式的乘除运算,准确把握运算法则是解题关键.11.(2014春•苏州期末).【分析】因为两个因式的第一项完整不异,第二、三项互为相反数,符合平方差公式的特点,按平方差公式计算即可.【解答】解:原式==2﹣9+2=.【点评】本题次要考查了二次根式的乘法运算和平方差公式的利用.应用平方差公式(a+b)(a﹣b)=a2﹣b2计算时,关键要找不异项和相反项,其结果是不异项的平方减去相反项的平方.12.(2016春•乌拉特前旗期末)2×÷5.【分析】本题需先根据二次根式的乘除法的法则分别进行计算,即可求出答案.【解答】解:2×÷5=4×==.【点评】本题次要考查了二次根式的乘除法,在解题时要根据二次根式的乘除法的法则进行计算是本题的关键.13.(2015春•湖北校级期中)计算:.【分析】首先化简二次根式,进而利用二次根式的乘除运算法则求出即可.【解答】解:原式=3×5×=15.【点评】此题次要考查了二次根式的乘除运算,准确化简二次根式是解题关键.14.(2014春•赵县期末)(1)(2)(3).【分析】(1)先将各二次根式化为最简,再应用乘法分配律进行运算,然后再进行二次根式的加减.(2)应用平方差公式进行计算即可.(3)直接进行开方运算即可得出答案.【解答】解:(1)原式=6×(3﹣5﹣2)=18﹣60﹣12,=6﹣60,=12﹣60;(2)原式=﹣,=18﹣75,=﹣57;(3)==.【点评】本题考查二次根式的乘除运算,难度不大,留意在运算时公式的应用,更要仔细.15.(2011秋•东台市校级期中)(1)化简:•(﹣4)÷(2)已知x=﹣1,求x2+3x﹣1的值.【分析】(1)根据二次根式的定义和已知求出x、y都是负数,先化成最简根式,再根据二次根式的乘除法法则进行计算即可.(2)把代数式化成(x+1)2+x﹣2,代入后根据二次根式的混合运算法则进行计算即可.【解答】(1)解:原式=﹣•()÷,=(••),=﹣8x2y.(2)解:x=﹣1,∴x2+3x﹣1,=x2+2x+1+x﹣2,=(x+1)2+x﹣2,=+﹣1﹣2,=2+﹣3,=﹣1+.【点评】本题考查了二次根式的性质和定义,代数式求值,二次根式的乘除法法则等常识点的利用,解此题的关键是把根式化成最简根式,留意:从题中得出x、y都是负数,=﹣x,=﹣y,题型较好,但是一道比较容易出错的题目.16.(2014春•曲阜市期末)计算:2×.【分析】根据二次根式的乘除法法则,系数相乘除,被开方数相乘除,根指数不变,如:2×÷3,÷,计算后求出即可.【解答】解:原式=(2××),=.【点评】本题考查了二次根式的乘除法的利用,关键是能熟练地应用法则进行计算,题目比较典型,难度适中,此题是一道容易出错的题目.17.(2014春•沅陵县校级期末)计算:(2+4)×【分析】用和分别去乘括号里的每一项,然后再进行加法运算,即可得出结果.【解答】解:原式==.【点评】解答本题关键是要把握二次根式的混合运算的运算法则.18.(2016春•吉林期末).【分析】应用(a≥0,b>0)直接进行计算.也能够先分子做减法运算,再分子、分母做除法运算.【解答】解:原式===3﹣2=1.【点评】对于二次根式的乘除法,应结合给出的算式的特点灵活进行计算.19.(2015秋•闸北区期中)计算:2÷•.【分析】直接利用二次根式的乘除运算法则化简求出答案.【解答】解:原式=2×6=12=8.【点评】此题次要考查了二次根式的乘除运算,准确把握运算法则是解题关键.20.(2014秋•门头沟区期末)计算:4÷(﹣)×.【分析】根据二次根式的乘法法则和除法法则求解.【解答】解:原式=﹣2÷×=﹣×=﹣.【点评】本题考查了二次根式的乘除法,解答本题的关键是把握二次根式的乘法法则和除法法则.21.(2014春•孝义市期末)(1)计算:•(÷);(2)已知实数x、y满足:+(y﹣)2=0,求的值.【分析】(1)利用二次根式的乘除法法则求解;(2)利用算术平方根和一个数的平方等于0求出x,y,再求的值.【解答】解:(1)•(÷)=•===;(2)由+(y﹣)2=0,可知,=0且(y﹣)2=0,即,解得.所以==.【点评】本题次要考查了二次根式的乘除法,非负数的性质及算术平方根,解题的关键是利用算术平方根和一个数的平方等于0求解.22.(2013秋•岳麓区校级期末).【分析】先化简,再根据二次根式的乘法进行计算即可.【解答】解:原式=÷×3=××3=9.【点评】本题考查了二次根式的乘除法,化简二次根式是解此题的关键.23.(2016•福建模拟)计算:()2﹣(2016)0+()﹣1.【分析】直接利用二次根式的性质和零指数幂的性质和负整数指数幂的性质化简求出答案.【解答】解:原式=5﹣1+3=7.【点评】此题次要考查了二次根式的乘法运算和零指数幂的性质和负整数指数幂的性质,准确有关把握运算法则是解题关键.24.(2016春•宿城区校级期末)已知x、y为负数,且(+)=3(+5),求的值.【分析】请求代数式的值,要首先将分子分母的字母统一成一种,是以要清算已知条件,设法将其中一种字母用另一种暗示,然后代入代数式中,约分即可.【解答】解:由已知条件得x﹣2﹣15y=0,∴(+3)(﹣5)=0,∵+3>0,∴﹣5=0,∴,x=25y,∴==2.【点评】能够对所给条件适当的变形是解题的关键,对条件的变形没有规律可循,要根据题目须要,应用所学常识适当变形.25.(2016•厦门校级模拟)计算:.【分析】根据有理数的乘方、去括号法则、二次根式的乘法法则分别计算,再合并即可.【解答】解:原式=﹣1﹣2+5+4=6.【点评】本题考查了二次根式的乘法法则,有理数的乘方,去括号法则的利用,能求出各个部分的值是解此题的关键.26.(2015春•赵县期中)自习课上,张玉看见同桌刘敏在练习本上写的题目是“求二次根式中实数a的取值范围”,她告诉刘敏说:你把题目抄错了,不是“”,而是“”,刘敏说:哎呀,真抄错了,好在不影响结果,反正a和a﹣3都在根号内.试问:刘敏说得对吗?就是说,按照解题和按照解题的结果一样吗?【分析】本题需留意的是,被开方数为非负数,按计算,则a和a﹣3可为同号的两个数,即同为正,或同为负;而按计算,只要同为正的情况.【解答】解:刘敏说得分歧错误,结果纷歧样.按计算,则a≥0,a﹣3>0或a≤0,a﹣3<0解之得,a>3或a≤0;而按计算,则只要a≥0,a﹣3>0解之得,a>3.【点评】二次根式的被开方数是非负数,分母不为0,是本题确定取值范围的次要根据.27.(2014春•博湖县校级月考)计算:.【分析】先将带分数化为分数,然后然后根据×=进行二次根式的乘法运算即可.【解答】解:原式=××==×4=3.【点评】本题考查了二次根式的乘除法运算,难度不大,将带分数化简为分数是很关键的一步.28.(2016春•夏津县校级月考)计算:.【分析】直接利用二次根式乘除运算法则直接求出即可.【解答】解:=3×(﹣)×2=﹣×5=﹣.【点评】此题次要考查了二次根式的乘除运算,熟练利用运算法则是解题关键.29.(2014春•淮阴区校级月考)(x>0,y>0)【分析】根据二次根式的乘除法把根号外的相乘除,根号里的相乘除再化简即可.【解答】解:原式=﹣=﹣,∵x>0,y>0,∴原式=﹣=﹣3xy.【点评】本题次要考查了二次根式的乘除法,熟练把握运算法则是解题的关键.30.(2013秋•玄武区期末)化简:3a•(﹣)(a ≥0,b≥0)【分析】根据二次根式的乘法运算法则直接得出即可.【解答】解:原式=﹣2a,=﹣12ab.【点评】此题次要考查了二次根式的乘法运算,准确化简二次根式是解题关键.31.(2016春•咸丰县校级月考)计算:(1)(2).【分析】(1)根据二次根式的乘法,可得答案;(2)根据二次根式的乘除法,可得答案.【解答】解:(1)原式=﹣12=﹣12×9=﹣108;(2)原式=÷×==1.【点评】本题考查了二次根式的乘除法,•=,÷=.32.(2016春•端州区期末)计算:2×÷10.【分析】先化简二次根式,再用乘法和除法运算即可.【解答】解:2×÷10=2×2××=【点评】此题是二次根式的乘除法,次要考查了二次根式的化简,分母有理化,解本题的关键是分母有理化的应用.33.(2012秋•上海期中)计算:×()÷.【分析】根据二次根式乘除法及分母有理化的常识解答即可.【解答】解:原式=b2×(﹣a)÷3=2b×(﹣a)×=﹣a2b.【点评】此题考查了二次根式的乘除法,熟悉二次根式乘除法的法则是解题的关键.34.(2014春•张家港市校级期中)计算:.【分析】首先利用二次根式除法和乘法法则转化成一个二次根式,然后对二次根式进行化简即可.【解答】解:原式===×2a=.【点评】本题考查了二次根式的乘除运算,准确理解法则,准确化简二次根式是关键.35.(2016春•罗定市期中)计算:()﹣||【分析】直接利用二次根式乘法运算法则化简进而利用绝对值的性质化简,再合并求出答案.【解答】解:原式=3﹣﹣(2﹣)=3﹣﹣2+,=1.【点评】此题次要考查了二次根式的乘法和绝对值的性质,准确把握运算法则是解题关键.36.(2014春•吴中区期末)化简与计算:(1)÷;(2)3a•(﹣)(b≥0).【分析】(1)利用二次根式除法运算法则求出即可;(2)利用二次根式乘法运算法则求出即可.【解答】解:(1)÷=×=;(2)3a•(﹣)(b≥0)=3a×(﹣)=﹣2a=﹣12ab.【点评】此题次要考查了二次根式的乘除运算,熟练把握二次根式乘除运算法则是解题关键.37.(2016•海南模拟)计算:(1)9×3﹣2+20160﹣×(2)(a+2)(a﹣2)﹣(a﹣1)2.【分析】(1)先根据负整数指数幂的意义、零指数幂的意义化简乘方,再算乘法,然后计算加减;(2)利用平方差公式与完整平方公式计算乘法与乘方,再去括号合并同类项即可.【解答】解:(1)9×3﹣2+20160﹣×=9×+1﹣4=1+1﹣4=﹣2;(2)(a+2)(a﹣2)﹣(a﹣1)2=(a2﹣4)﹣(a2﹣2a+1)=a2﹣4﹣a2+2a﹣1=2a﹣5.【点评】本题考查了整式的混合运算,实数的混合运算,负整数指数幂、零指数幂的意义,二次根式的乘除法,把握运算顺序与运算法则是解题的关键.38.(2016春•潮南区月考)化简:4x2.【分析】直接利用二次根式乘除运算法则化简求出答案.【解答】解:4x2=4x2÷12×3=x2=xy.【点评】此题次要考查了二次根式的乘除运算法则,准确化简二次根式是解题关键.39.(2013秋•南京期末)计算:(a≥0,b≥0).【分析】根据二次根式的乘法法则求解.【解答】解:原式=2=2=6a.【点评】本题考查了二次根式的乘法,解答本题的关键是把握二次根式的乘法法则=.40.(2014秋•闵行区校级期中)计算:×(﹣2)÷.【分析】直接利用二次根式的乘除运算法则化简求出即可.【解答】解:×(﹣2)÷=×(﹣2)×=﹣=﹣=﹣.【点评】此题次要考查了二次根式的乘除运算,准确把握运算法则是解题关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

21.2二次根式的乘除
第1题.下列二次根式中是最简二次根式的是(
B
. £
答案:C.
A.甲的解法正确,乙的解法不正确 C. 甲、乙的解法都正确 答案:C.
B. 甲的解法不正确,乙的解法正确 D.甲、乙的解法都不正确
第4题.直接填写计算结果:
答案:48;32 .
f3 5
第6题.当x 0, y 0时,化简

答案:

y 3
.
x
第2题.化简 时,甲的解法是:
(亦72)(亦
45 42
75
75 (75牆膚4)药逅,乙
近, 以下判断正确的是

XT ,b
丽,则Er 的值为()
A. 5 答案:A.
B. 6
C. 3
D. 4
D. J
(1)
J 80
15
35J 90 7410
J 48x 7
y 6
J 3x 2y 3
答案: (1)
4 ; (2) 15; (3) I ; (4) 4x 2
y7xy . 第5题.计算J 24 8 12
;J 40
2
242 =
3
化简:a j 1
答案:
把根号外的因式移到根号内:(a 1
) 答案:
成立的条件是
V x
A. x C. 0
答案:c. B. x 0 且x D. 0 x 1
第10题.式子馬字成立时,x,
737 y满足的条件为(
A.
c.
第11题.计算答案:B.
B.
D.
;结果为( B. W2
第12题.给出下列四道算式: (1)<45b 4
J4ab
c. 5近 D. 6j2 J52 32
11
4
答案:B.
答案:
5
76.
6
第15题.计算:
第16题.下列各组二次根式中,同类二次根式是( A.
1
应,3近
3
D. 亦,香
答案:C.
第17题.若最简二次根式V 7a b 与b
彳6a b 是同类二次根式,则a
T a~ (a b)
其中正确的算式是( A. (1) ( 3) 答案:B. ) B. (2) (4)
C.
D. ( 2) (3)
第13题.化简二次根式 J ( 5)2 3 得(
B.
C.
D. 30
第14题.已知a
b 5, ab (1)5445
42(42 78) ;( 3) J 6 “妣 4/2 .
答案:(1)
15J 30 ; (2) 2 ; (3) 2 .
B. 3^15, 715
a
的值.
6,求
b
b ______ . 答案:2, 1 .
若最简二次根式a g a 2b 与J a b 3是同类二次根式,求a, b 的值. 答案:a
答案:50^6, 65^/5 .
第 20 题.化简:J64x
2
y 3 (x > 0, y > 0)=
J a 2b 4 a 4b 2 (a > 0, b > 0)=
答案:8xyjy ; ab b .
』56
第21题.分母有理化: 仝
56
2/14
答案:1; 2j 2齐.
第22题.若X 2

1都是二次根式;则 71 X 2 J x 2 1 = 答案:0 .
第23题.下列各式中不成立的是(
第18题. 第19题. 直接填写化简结果: (1)
57WJ 15
;(2)屮52 10
2
g /52 122
4xy
A. J( 4)( X2) 2
B. J402 242764 16 32
c'
答案:c.
D.(76 72)(76 42 4
第24题.下列各式中化简正确的是(
A. J ab2 ab
B.
c. J 94 g x2y 32^/y D. J5ab4 b4 b2j5a 1
第25题.给出四个算式:
12^2
(3)2耳吨其
中正确的算式有(
A. 3个答案:C.
) B. 2个
第26题.下列计算正确的是(
A.
答案:A.
第27题.下列根式中化简正确的是
A. J36ag/a 6a
B.
6 7^6
C.
B.
D.
D. 0个
5xy
1J( 6)2xy 7j6xy
49
a/Ta
c. 75a 2b 3
ab 75 D. J a b a b
答案:A.
第28题.72ag/6ab 等于
答案:D.
第29题.计算:
答案:(1) 12J3
答案:(1)
第31题.计算:
(1)
J 412 402
荷4^
答案: 100jx 5y
(1) 9
; (2)
5
A. aJ12ab
B.
2
12a b
c. a%/12b D. 2a73b
第30题. 计算:
(1)
2匡2便 M 2 3^8
⑵n 6 -
「)
3
1 3
/4 2
第33题.下列根式中,与J6X不是同类二次根式的是()
B-£
D.
答案:D.
第34题.下列各组二次根式中,是同类二次根式的是(
A. 7049与3^07
B^/5x2y 与J5 xy2
C. j X y
与# D. —7 X3 y5与—T Xy2
X y
答案:C.
第35题.在二次根式J45 , J i8, 775,辰,J8中,与是同类根式的个数为(

A. 1
答案:C.
B. 2
C. 3
D. 4
第36题.若最简二次根式 a 与引b是同类二次根式,则a
答案:2,3.
第37题.若最简二次根式殛与昕5是同类二次根式,则a
答案:3,2 .
^72.
第38题.若最简二次根式与x J 8厂2是同类二次根式,求 x 的值.
第39题.座钟的摆动一个来回所需的时间称为一个周期,其中计算公式为
中T 表示周期(单位:S ), I 表示摆长(单位:m ), g 为重力加速度且g 9.8 m/s 2
.假如
则该座钟的周期为
估算得皿 3.16 .
1
故T -X 3.16X3.14 1.42s .
7
故1min 该座钟发出约42次滴答声.
答案:解:原式
9^2 12 72 1
11.
一台座钟的摆长为 0.5m , 多少次滴答声? 它每摆动一个来回发出一次滴答声,那么在 1min 内,该座钟发出
答案:解:依题意知,
0.5m , g 9.8 m/s 2.
x5 2
又一个周期发出一次滴答声则计算 60 T
42.254 42.
第40题.计算:
22 x T s 3^2(3
272)
1)。

相关文档
最新文档