2019年高考数学模拟试卷及详细答案解40
2019年数学高考一模试卷附答案
2019年数学高考一模试卷附答案一、选择题1.已知回归直线方程中斜率的估计值为1.23,样本点的中心()4,5,则回归直线方程为( )A . 1.2308ˆ.0yx =+ B .0.0813ˆ.2yx =+ C . 1.234ˆyx =+ D . 1.235ˆyx =+ 2.定义运算()()a ab a b b a b ≤⎧⊕=⎨>⎩,则函数()12xf x =⊕的图象是( ).A .B .C .D .3.某学校开展研究性学习活动,某同学获得一组实验数据如下表: x 1.99 3 4 5.16.12 y1.54.04 7.51218.01对于表中数据,现给出以下拟合曲线,其中拟合程度最好的是( ) A .22y x =-B .1()2xy =C .2y log x =D .()2112y x =- 4.设集合(){}2log 10M x x =-<,集合{}2N x x =≥-,则M N ⋃=( ) A .{}22x x -≤<B .{}2x x ≥-C .{}2x x <D .{}12x x ≤<5.一个正方体内接于一个球,过球心作一个截面,如图所示,则截面的可能图形是( )A .①③④B .②④C .②③④D .①②③6.如图,12,F F 是双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点,过2F 的直线与双曲线C 交于,A B 两点.若11::3:4:5AB BF AF =,则双曲线的渐近线方程为( )A .23y x =±B .22y x =±C .3y x =±D .2y x =±7.设双曲线2222:1x y C a b-=(00a b >>,)的左、右焦点分别为12F F ,,过1F 的直线分别交双曲线左右两支于点M N ,,连结22MF NF ,,若220MF NF ⋅=,22MF NF =,则双曲线C 的离心率为( ). A .2B .3C .5D .68.函数f (x )=2sin(ωx +φ)(ω>0,-2π<φ<2π)的部分图象如图所示,则ω、φ的值分别是( )A .2,-3πB .2,-6π C .4,-6πD .4,3π 9.在ABC 中,若 13,3,120AB BC C ==∠=,则AC =( )A .1B .2C .3D .410.不等式2x 2-5x -3≥0成立的一个必要不充分条件是( ) A .1x <-或4x >B .0x 或2x -C .0x <或2x >D .12x -或3x 11.已知锐角三角形的边长分别为2,3,x ,则x 的取值范围是( ) A 513x << B 135x < C .25x <<D 55x <<12.设双曲线22221x y a b-=(0a >,0b >)的渐近线与抛物线21y x =+相切,则该双曲线的离心率等于( ) A .3B .2C .6D .5二、填空题13.在区间[﹣2,4]上随机地取一个数x ,若x 满足|x|≤m 的概率为,则m= _________ . 14.设25a b m ==,且112a b+=,则m =______. 15.若x ,y 满足约束条件x y 102x y 10x 0--≤⎧⎪-+≥⎨⎪≥⎩,则xz y 2=-+的最小值为______.16.若函数3211()232f x x x ax =-++ 在2,3⎡⎫+∞⎪⎢⎣⎭上存在单调增区间,则实数a 的取值范围是_______.17.371()x x+的展开式中5x 的系数是 .(用数字填写答案)18.已知点()0,1A ,抛物线()2:0C y ax a =>的焦点为F ,连接FA ,与抛物线C 相交于点M ,延长FA ,与抛物线C 的准线相交于点N ,若:1:3FM MN =,则实数a 的值为__________.19.已知圆C 经过(5,1),(1,3)A B 两点,圆心在x 轴上,则C 的方程为__________. 20.设等比数列{}n a 满足a 1+a 3=10,a 2+a 4=5,则a 1a 2…a n 的最大值为 .三、解答题21.选修4-5:不等式选讲 设函数()|2||1|f x x x =-++.(1)求()f x 的最小值及取得最小值时x 的取值范围; (2)若集合{|()10}x f x ax +->=R ,求实数a 的取值范围.22.已知矩形ABCD 的两条对角线相交于点20M (,),AB 边所在直线的方程为360x y --=,点11T -(,)在AD 边所在直线上. (1)求AD 边所在直线的方程; (2)求矩形ABCD 外接圆的方程.23.四棱锥P ABCD -中,底面ABCD 是边长为2的菱形,3BAD π∠=,PAD ∆是等边三角形,F 为AD 的中点,PD BF ⊥.(1)求证:AD PB ⊥; (2)若E 在线段BC 上,且14EC BC =,能否在棱PC 上找到一点G ,使平面DEG ⊥平面ABCD ?若存在,求四面体D CEG -的体积. 24.选修4-5:不等式选讲:设函数()13f x x x a =++-. (1)当1a =时,解不等式()23f x x ≤+;(2)若关于x 的不等式()42f x x a <+-有解,求实数a 的取值范围.25.2016年某市政府出台了“2020年创建全国文明城市简称创文”的具体规划,今日,作为“创文”项目之一的“市区公交站点的重新布局及建设”基本完成,市有关部门准备对项目进行调查,并根据调查结果决定是否验收,调查人员分别在市区的各公交站点随机抽取若干市民对该项目进行评分,并将结果绘制成如图所示的频率分布直方图,相关规则为:调查对象为本市市民,被调查者各自独立评分;采用百分制评分,内认定为满意,80分及以上认定为非常满意;市民对公交站点布局的满意率不低于即可进行验收;用样本的频率代替概率.求被调查者满意或非常满意该项目的频率;若从该市的全体市民中随机抽取3人,试估计恰有2人非常满意该项目的概率; 已知在评分低于60分的被调查者中,老年人占,现从评分低于60分的被调查者中按年龄分层抽取9人以便了解不满意的原因,并从中选取2人担任群众督察员,记为群众督查员中老年人的人数,求随机变量的分布列及其数学期望.【参考答案】***试卷处理标记,请不要删除一、选择题1.A 解析:A 【解析】 【分析】由题意得在线性回归方程ˆy bx a =+中 1.23b =,然后根据回归方程过样本点的中心得到a 的值,进而可得所求方程.【详解】设线性回归方程ˆy bx a =+中,由题意得 1.23b =, ∴ 1.23ˆy x a =+.又回归直线过样本点的中心()4,5, ∴5 1.234a =⨯+, ∴0.08a =,∴回归直线方程为 1.2308ˆ.0yx =+. 故选A . 【点睛】本题考查线性回归方程的求法,其中回归直线经过样本点的中心时解题的关键,利用这一性质可求回归方程中的参数,也可求样本数据中的未知参数,属于基础题.2.A解析:A 【解析】 【分析】 【详解】由已知新运算a b ⊕的意义就是取得,a b 中的最小值, 因此函数()1,0122,0xxx f x x >⎧=⊕=⎨≤⎩, 只有选项A 中的图象符合要求,故选A.3.D解析:D 【解析】 【分析】根据,x y 的数值变化规律推测二者之间的关系,最贴切的是二次关系. 【详解】根据实验数据可以得出,x 近似增加一个单位时,y 的增量近似为2.5,3.5,4.5,6,比较接近()2112y x =-,故选D.【点睛】本题主要考查利用实验数据确定拟合曲线,求解关键是观察变化规律,侧重考查数据分析的核心素养.4.B解析:B 【解析】 【分析】求解出集合M ,根据并集的定义求得结果. 【详解】(){}{}{}2log 1001112M x x x x x x =-<=<-<=<< {}2M N x x ∴⋃=≥-本题正确选项:B 【点睛】本题考查集合运算中的并集运算,属于基础题.5.A解析:A 【解析】 【分析】分别当截面平行于正方体的一个面时,当截面过正方体的两条相交的体对角线时,当截面既不过体对角线也不平行于任一侧面时,进行判定,即可求解. 【详解】由题意,当截面平行于正方体的一个面时得③;当截面过正方体的两条相交的体对角线时得④;当截面既不过正方体体对角线也不平行于任一侧面时可能得①;无论如何都不能得②.故选A. 【点睛】本题主要考查了正方体与球的组合体的截面问题,其中解答中熟记空间几何体的结构特征是解答此类问题的关键,着重考查了空间想象能力,以及推理能力,属于基础题.6.A解析:A 【解析】 【分析】设1123,4,5,AB BF AF AF x ====,利用双曲线的定义求出3x =和a 的值,再利用勾股定理求c ,由by x a=±得到双曲线的渐近线方程. 【详解】设1123,4,5,AB BF AF AF x ====,由双曲线的定义得:345x x +-=-,解得:3x =,所以12||F F ==c ⇒=因为2521a x a =-=⇒=,所以b =所以双曲线的渐近线方程为by x a=±=±. 【点睛】本题考查双曲线的定义、渐近线方程,解题时要注意如果题干出现焦半径,一般会用到双曲线的定义,考查运算求解能力.7.B解析:B 【解析】 【分析】本道题设2MF x =,利用双曲线性质,计算x ,结合余弦定理,计算离心率,即可. 【详解】结合题意可知,设22,,,MF x NF x MN ===则则结合双曲线的性质可得,21122,2MF MF a MF MN NF a -=+-=代入,解得x =,所以122,NF a NF =+=,01245F NF ∠= 对三角形12F NF 运用余弦定理,得到()()()()()22202222cos45a c a ++-=+⋅,解得ce a== 故选B. 【点睛】本道题考查了双曲线的性质,考查了余弦定理,关键利用余弦定理,解三角形,进而计算x ,即可,难度偏难.8.A解析:A 【解析】 【分析】由函数f (x )=2sin (ωx+φ)的部分图象,求得T 、ω和φ的值. 【详解】由函数f (x )=2sin (ωx+φ)的部分图象知,3T 5π412=-(π3-)3π4=, ∴T 2πω==π,解得ω=2; 又由函数f (x )的图象经过(5π12,2),∴2=2sin (25π12⨯+φ), ∴5π6+φ=2kππ2+,k∈Z, 即φ=2kππ3-, 又由π2-<φπ2<,则φπ3=-; 综上所述,ω=2、φπ3=-. 故选A . 【点睛】本题考查了正弦型函数的图象与性质的应用问题,是基础题.9.A解析:A 【解析】余弦定理2222?cos AB BC AC BC AC C =+-将各值代入 得2340AC AC +-=解得1AC =或4AC =-(舍去)选A.10.C解析:C 【解析】 【分析】根据题意,解不等式2x 2-5x-3≥0可得x≤-12或x≥3,题目可以转化为找x≤-12或x≥3的必要不充分条件条件,依次分析选项即可得答案. 【详解】根据题意,解不等式2x 2-5x-3≥0可得x≤-12或x≥3,则2x 2-5x-3≥0⇔x≤12-或3x ,所以可以转化为找x≤-12或x≥3的必要不充分条件; 依次选项可得:x 1<-或x 4>是12x ≤-或x≥3成立的充分不必要条件; x 0≥或x 2≤-是12x ≤-或x≥3成立的既不充分也不必要条件x 0<或x 2>是12x ≤-或x≥3成立的必要不充分条件;x≤-12或x≥3是12x ≤-或x≥3成立的充要条件;【点睛】本题考查了充分必要条件,涉及一元二次不等式的解答,关键是正确解不等式2x 2-5x-3≥0.11.A解析:A 【解析】试题分析:因为三角形是锐角三角形,所以三角形的三个内角都是锐角,则设边3对的锐角为角α,根据余弦定理得22223cos 04x xα+-=>,解得x >x 边对的锐角为β,根据余弦定理得22223cos 012x β+-=>,解得0x <<x 的取值范x << A. 考点:余弦定理.12.D解析:D 【解析】由题意可知双曲线的渐近线一条方程为b y x a =,与抛物线方程组成方程组2,1b y xa y x ⎧=⎪⎨⎪=+⎩消y 得,2210,()40b b x x a a -+=∆=-=,即2()4b a =,所以e == D. 【点睛】双曲线22221x y a b-=(0a >,0b >)的渐近线方程为b y x a =±.直线与抛物线交点问题,直线与抛物线方程组方程组,当直线与抛物线对称轴平行时,直线与抛物线相交,只有一个交点.当直线与抛物线对称轴不平行时,当>0∆时,直线与抛物线相交,有两个交点. 当0∆=时,直线与抛物线相切,只有一个交点. 当∆<0时,直线与抛物线相离,没有交点.二、填空题13.3【解析】【分析】【详解】如图区间长度是6区间﹣24上随机地取一个数x 若x 满足|x|≤m 的概率为若m 对于3概率大于若m 小于3概率小于所以m=3故答案为3解析:3 【解析】【详解】如图区间长度是6,区间[﹣2,4]上随机地取一个数x ,若x 满足|x|≤m 的概率为,若m 对于3概率大于,若m 小于3,概率小于,所以m=3. 故答案为3.14.【解析】【分析】变换得到代入化简得到得到答案【详解】则故故答案为:【点睛】本题考查了指数对数变换换底公式意在考查学生的计算能力 10【解析】 【分析】变换得到2log a m =,5log b m =,代入化简得到11log 102m a b+==,得到答案. 【详解】25a b m ==,则2log a m =,5log b m =,故11log 2log 5log 102,10m m m m a b+=+==∴= 10 【点睛】本题考查了指数对数变换,换底公式,意在考查学生的计算能力.15.-1【解析】【分析】画出约束条件表示的平面区域由图形求出最优解再计算目标函数的最小值【详解】画出约束条件表示的平面区域如图所示由图形知当目标函数过点A 时取得最小值由解得代入计算所以的最小值为故答案为解析:-1 【解析】 【分析】画出约束条件表示的平面区域,由图形求出最优解,再计算目标函数1z x y 2=-+的最小值. 【详解】画出约束条件102100x y x y x --≤⎧⎪-+≥⎨⎪≥⎩表示的平面区域如图所示,由图形知,当目标函数1z x y 2=-+过点A 时取得最小值,由{x 0x y 10=--=,解得()A 0,1-,代入计算()z 011=+-=-,所以1z x y 2=-+的最小值为1-. 故答案为1-.【点睛】本题考查了线性规划的应用问题,也考查了数形结合的解题方法,是基础题.16.【解析】【分析】【详解】试题分析:当时的最大值为令解得所以a 的取值范围是考点:利用导数判断函数的单调性 解析:1(,)9-+∞ 【解析】【分析】【详解】 试题分析:2211()2224f x x x a x a ⎛⎫=-++=--++ ⎪⎝⎭'.当23x ⎡⎫∈+∞⎪⎢⎣⎭,时,()f x '的最大值为22239f a ⎛⎫=+ ⎪⎝⎭',令2209a +>,解得19a >-,所以a 的取值范围是1,9⎛⎫-+∞ ⎪⎝⎭. 考点:利用导数判断函数的单调性.17.【解析】由题意二项式展开的通项令得则的系数是考点:1二项式定理的展开式应用解析:35【解析】 由题意,二项式371()x x +展开的通项372141771()()r r r r r r T C x C x x--+==,令2145r -=,得4r =,则5x 的系数是4735C =. 考点:1.二项式定理的展开式应用.18.【解析】依题意可得焦点的坐标为设在抛物线的准线上的射影为连接由抛物线的定义可知又解得点睛:本题主要考查的知识点是抛物线的定义以及几何性质的应用考查了学生数形结合思想和转化与化归思想设出点在抛物线的准【解析】依题意可得焦点F 的坐标为04a ⎛⎫ ⎪⎝⎭,, 设M 在抛物线的准线上的射影为K ,连接MK 由抛物线的定义可知MF MK =13FM MN =∶∶KN KM ∴=∶又01404FN K a a--==-,FN KN K KM ==-4a-∴=-a =点睛:本题主要考查的知识点是抛物线的定义以及几何性质的应用,考查了学生数形结合思想和转化与化归思想,设出点M 在抛物线的准线上的射影为K ,由抛物线的定义可知MF MK =,再根据题设得到KN KM =∶,然后利用斜率得到关于a 的方程,进而求解实数a 的值19.【解析】【分析】由圆的几何性质得圆心在的垂直平分线上结合题意知求出的垂直平分线方程令可得圆心坐标从而可得圆的半径进而可得圆的方程【详解】由圆的几何性质得圆心在的垂直平分线上结合题意知的垂直平分线为令 解析:22(2)10x y -+=.【解析】【分析】由圆的几何性质得,圆心在AB 的垂直平分线上,结合题意知,求出AB 的垂直平分线方程,令0y =,可得圆心坐标,从而可得圆的半径,进而可得圆的方程.【详解】由圆的几何性质得,圆心在AB 的垂直平分线上,结合题意知,AB 的垂直平分线为24y x =-,令0y =,得2x =,故圆心坐标为(2,0),所以圆的半径=22(2)10x y -+=.【点睛】本题主要考查圆的性质和圆的方程的求解,意在考查对基础知识的掌握与应用,属于基础题.20.【解析】试题分析:设等比数列的公比为由得解得所以于是当或时取得最大值考点:等比数列及其应用解析:64【解析】试题分析:设等比数列的公比为q ,由132410{5a a a a +=+=得,2121(1)10{(1)5a q a q q +=+=,解得18{12a q ==.所以2(1)1712(1)22212118()22n n n n n n n n a a a a q --++++-==⨯=,于是当3n =或4时,12na a a 取得最大值6264=.考点:等比数列及其应用三、解答题21.(1)min ()3f x =,此时x ∈[]1,2-(2)()1,2-【解析】【分析】(1)利用绝对值不等式公式进行求解;(2)集合(){}10x f x ax R +-=表示x R ∀∈,()1f x ax >-+,令()1g x ax =-+, 根据几何意义可得()y f x =的图像恒在()y g x =图像上方,数形结合解决问题.【详解】解(1)因为()()21213x x x x -++≥--+=,当且仅当()()210x x -+≤,即12x -≤≤时,上式“=”成立,故函数()21f x x x =++-的最小值为3,且()f x 取最小值时x 的取值范围是[]1,2-.(2)因为(){}10x f x ax R +-=,所以x R ∀∈,()1f x ax >-+. 函数()21f x x x =-++化为()21,13,1221,2x x f x x x x -+<-⎧⎪=-≤≤⎨⎪->⎩.令()1g x ax =-+,其图像为过点()0,1P ,斜率为a -的一条直线.如图,()2,3A ,()1,3B -.则直线PA 的斜率131120k -==-, 直线PB 的斜率231210k -==---. 因为()()f x g x >,所以21a -<-<,即12a -<<,所以a 的范围为()1,2-.【点睛】本题考查了绝对值不等式问题与不等式恒成立问题,不等式恒成立问题往往可以借助函数的图像来研究,数形结合可以将抽象的问题变得更为直观,解题时应灵活运用.22.(1)3x +y +2=0;(2)(x -2)2+y 2=8.【解析】【分析】(1) 直线AB 斜率确定,由垂直关系可求得直线AD 斜率,又T 在AD 上,利用点斜式求直线AD 方程;(2)由AD 和AB 的直线方程求得A 点坐标,以M 为圆心,以AM 为半径的圆的方程即为所求.【详解】(1)∵AB 所在直线的方程为x -3y -6=0,且AD 与AB 垂直,∴直线AD 的斜率为-3. 又∵点T (-1,1)在直线AD 上,∴AD 边所在直线的方程为y -1=-3(x +1), 即3x +y +2=0.(2)由360320x y x y --=⎧⎨++=⎩,得02x y =⎧⎨=-⎩, ∴点A 的坐标为(0,-2),∵矩形ABCD 两条对角线的交点为M (2,0),∴M 为矩形ABCD 外接圆的圆心,又|AM |()()22200222-++= ∴矩形ABCD 外接圆的方程为(x -2)2+y 2=8.【点睛】本题考查两直线的交点,直线的点斜式方程和圆的方程,考查计算能力,属于基础题.23.(1)证明见解析;(2)112. 【解析】【分析】(1)连接PF ,BD 由三线合一可得AD ⊥BF ,AD ⊥PF ,故而AD ⊥平面PBF ,于是AD ⊥PB ;(2)先证明PF ⊥平面ABCD ,再作PF 的平行线,根据相似找到G ,再利用等积转化求体积.【详解】连接PF ,BD,∵PAD ∆是等边三角形,F 为AD 的中点,∴PF ⊥AD ,∵底面ABCD 是菱形,3BAD π∠=,∴△ABD 是等边三角形,∵F 为AD 的中点,∴BF ⊥AD ,又PF ,BF ⊂平面PBF ,PF ∩BF =F ,∴AD ⊥平面PBF ,∵PB ⊂平面PBF ,∴AD ⊥PB .(2)由(1)得BF ⊥AD ,又∵PD ⊥BF ,AD ,PD ⊂平面PAD ,∴BF ⊥平面PAD ,又BF ⊂平面ABCD ,∴平面PAD ⊥平面ABCD ,由(1)得PF ⊥AD ,平面PAD ∩平面ABCD =AD ,∴PF ⊥平面ABCD ,连接FC 交DE 于H,则△HEC 与△HDF 相似,又1142EC BC FD ==,∴CH=13CF , ∴在△PFC 中,过H 作GH //PF 交PC 于G ,则GH⊥平面ABCD ,又GH ⊂面GED ,则面GED⊥平面ABCD ,此时CG=13CP, ∴四面体D CEG -的体积111311223382312D CEG G CED CED V V S GH PF --==⋅=⨯⨯⨯⨯⨯=. 所以存在G 满足CG=13CP, 使平面DEG ⊥平面ABCD ,且112D CEG V -=. 【点睛】 本题考查了线面垂直的判定与性质定理,面面垂直的判定及性质的应用,考查了棱锥的体积计算,属于中档题.24.(1)15[,]42(2)(5,3)-【解析】【分析】(1)通过讨论x 的范围,求出不等式的解集即可;(2)问题等价于关于x 的不等式14x x a ++-<有解,()min 14x x a++-<,求出a的范围即可.【详解】解:(1)()1323f x x x a x =++-≤+可转化为 14223x x x ≥⎧⎨-≤+⎩或114223x x x -<<⎧⎨-≤+⎩或12423x x x ≤-⎧⎨-≤+⎩, 解得512x ≤≤或114x ≤<或无解. 所以不等式的解集为15,42⎡⎤⎢⎥⎣⎦. (2)依题意,问题等价于关于x 的不等式14x x a ++-<有解,即()min 14x x a ++-<,又111x x a x x a a ++-≥+-+=+,当()()10x x a +-≤时取等号.所以14a +<,解得53a -<<,所以实数a 的取值范围是()5,3-.【点睛】含绝对值不等式的解法有两个基本方法,一是运用零点分区间讨论,二是利用绝对值的几何意义求解.法一是运用分类讨论思想,法二是运用数形结合思想,将绝对值不等式与函数以及不等式恒成立交汇、渗透,解题时强化函数、数形结合与转化化归思想方法的灵活应用。
2019年数学高考模拟试卷(及答案)
2019年数学高考模拟试卷(及答案)一、选择题1.已知长方体的长、宽、高分别是3,4,5,且它的8个顶点都在同一球面上,则这个球的表面积是( ) A .25π B .50πC .125πD .都不对2.123{3x x >>是12126{9x x x x +>>成立的( )A .充分不必要条件B .必要不充分条件C .充要条件D .即不充分也不必要条件3.设a b ,为两条直线,αβ,为两个平面,下列四个命题中,正确的命题是( )A .若a b ,与α所成的角相等,则a b ∥B .若a αβ∥,b ∥,αβ∥,则a b ∥C .若a b a b αβ⊂⊂P ,,,则αβ∥D .若a b αβ⊥⊥,,αβ⊥,则a b ⊥r r4.2532()x x -展开式中的常数项为( ) A .80 B .-80C .40D .-405.如果42ππα<<,那么下列不等式成立的是( )A .sin cos tan ααα<<B .tan sin cos ααα<<C .cos sin tan ααα<<D .cos tan sin ααα<<6.已知函数()()sin f x A x =+ωϕ()0,0A ω>>的图象与直线()0y a a A =<<的三个相邻交点的横坐标分别是2,4,8,则()f x 的单调递减区间是( )A .[]6,63k k ππ+,k Z ∈B .[]63,6k k ππ-,k Z ∈C .[]6,63k k +,k Z ∈D .[]63,6k k -,k Z ∈7.一动圆的圆心在抛物线28y x =上,且动圆恒与直线20x +=相切,则此动圆必过定点( ) A .(4,0)B .(2,0)C .(0,2)D .(0,0)8.已知()3sin 30,601505αα︒+=︒<<︒,则cos α为( ) AB.10-C.310- D9.如图所示,程序据图(算法流程图)的输出结果为( )A .34B .16 C .1112D .252410.若θ是ABC ∆的一个内角,且1sin θcos θ8=-,则sin cos θθ-的值为( ) A .3 B 3C .5-D 5 11.渐近线方程为0x y ±=的双曲线的离心率是( ) A .22B .1C 2D .212.样本12310,?,?,? a a a a ⋅⋅⋅的平均数为a ,样本12310,?,?,? b b b b ⋅⋅⋅的平均数为b ,那么样本1122331010,? ,,? ,?,,?,? a b a b a b a b ⋅⋅⋅的平均数为( )A .()a b +B .2()a b +C .1()2a b + D .1()10a b + 二、填空题13.曲线21y x x=+在点(1,2)处的切线方程为______________. 14.若三点1(2,3),(3,2),(,)2A B C m --共线,则m 的值为 . 15.函数()22,026,0x x f x x lnx x ⎧-≤=⎨-+>⎩的零点个数是________.16.若不等式|3|4x b -<的解集中的整数有且仅有1,2,3,则b 的取值范围是17.若过点()2,0M 3()2:0C y ax a =>的准线l 相交于点B ,与C 的一个交点为A ,若BM MA =u u u u v u u u v,则a =____.18.已知复数z=(1+i )(1+2i ),其中i 是虚数单位,则z 的模是__________19.在平面上,若两个正三角形的边长的比为1:2,则它们的面积比为1:4,类似地,在空间内,若两个正四面体的棱长的比为1:2,则它们的体积比为 ▲ 20.记n S 为数列{}n a 的前n 项和,若21n n S a =+,则6S =_____________.三、解答题21.设椭圆22221(0)x y a b a b+=>>的左焦点为F ,右顶点为A ,离心率为12.已知A 是抛物线22(0)y px p =>的焦点,F 到抛物线的准线l 的距离为12. (I )求椭圆的方程和抛物线的方程;(II )设l 上两点P ,Q 关于x 轴对称,直线AP 与椭圆相交于点B (B 异于点A ),直线BQ 与x 轴相交于点D .若APD △的面积为62,求直线AP 的方程. 22.如图,四面体ABCD 中,O 、E 分别是BD 、BC 的中点,2AB AD ==,2CA CB CD BD ====. (1)求证:AO ⊥平面BCD ;(2)求异面直线AB 与CD 所成角的余弦值; (3)求点E 到平面ACD 的距离.23.某小组共10人,利用假期参加义工活动,已知参加义工活动次数为1,2,3的人数分别为3,3,4,现从这10人中随机选出2人作为该组代表参加座谈会.()1设A 为事件“选出的2人参加义工活动次数之和为4”,求事件A 发生的概率; ()2设X 为选出的2人参加义工活动次数之差的绝对值,求随机变量X 的分布列和数学期望.24.已知函数()2f x m x =--,m R ∈,且()20f x +≥的解集为[]1,1- (1)求m 的值; (2)若,,a b c ∈R ,且11123m a b c++=,求证239a b c ++≥25.如图,在三棱柱111ABC A B C -中,H 是正方形11AA B B 的中心,122AA =,1C H ⊥平面11AA B B ,且1 5.C H =(Ⅰ)求异面直线AC 与11A B 所成角的余弦值; (Ⅱ)求二面角111A AC B --的正弦值;(Ⅲ)设N 为棱11B C 的中点,点M 在平面11AA B B 内,且MN ⊥平面111A B C ,求线段BM 的长.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】根据长方体的对角线长等于其外接球的直径,求得2252R =,再由球的表面积公式,即可求解. 【详解】设球的半径为R ,根据长方体的对角线长等于其外接球的直径,可得2223524R =++2252R =,所以球的表面积为22544502S R πππ==⨯=球. 故选:B 【点睛】本题主要考查了长方体的外接球的性质,以及球的表面积的计算,其中解答中熟练应用长方体的对角线长等于其外接球的直径,求得球的半径是解答的关键,着重考查了运算与求解能力,属于基础题.2.A解析:A 【解析】试题分析:因为123{3x x >>12126{9x x x x +>⇒>,所以充分性成立;1213{1x x ==满足12126{9x x x x +>>,但不满足123{3x x >>,必要性不成立,所以选A.考点:充要关系3.D解析:D 【解析】 【分析】 【详解】试题分析:A 项中两直线a b ,还可能相交或异面,错误; B 项中两直线a b ,还可能相交或异面,错误; C 项两平面αβ,还可能是相交平面,错误; 故选D.4.C解析:C 【解析】 【分析】先求出展开式的通项,然后求出常数项的值 【详解】2532()x x -展开式的通项公式为:53251()2()r rr r T C x x-+-=,化简得10515(2)r r r r T C x -+=-,令1050r -=,即2r =,故展开式中的常数项为25230(42)T C ==-.故选:C. 【点睛】本题主要考查二项式定理、二项展开式的应用,熟练运用公式来解题是关键.5.C解析:C 【解析】 【分析】分别作出角α的正弦线、余弦线和正切线,结合图象,即可求解. 【详解】如图所示,在单位圆中分别作出α的正弦线MP 、余弦线OM 、正切线AT , 很容易地观察出OM MP AT <<,即cos sin tan ααα<<. 故选C.【点睛】本题主要考查了三角函数线的应用,其中解答中熟记三角函数的正弦线、余弦线和正切线,合理作出图象是解答的关键,着重考查了数形结合思想,以及推理与运算能力,属于基础题.6.D解析:D 【解析】 【详解】由题设可知该函数的最小正周期826T =-=,结合函数的图象可知单调递减区间是2448[6,6]()22k k k Z ++++∈,即[36,66]()k k k Z ++∈,等价于[]63,6k k -,应选答案D .点睛:解答本题的关键是充分利用题设中的有效信息“函数()()sin f x A x ωϕ=+(0,0)A ω>>的图象与直线(0)y a a A =<<的三个相邻交点的横坐标分别是2,4,8”.结合图像很容易观察出最小正周期是826T =-=,进而数形结合写出函数的单调递减区间,从而使得问题获解.7.B解析:B 【解析】 【分析】设圆和x 轴相交于M 点,根据圆的定义得到CA =CM =R ,因为x=-2,是抛物线的准线,结合抛物线的定义得到M 点为焦点. 【详解】圆心C 在抛物线上,设与直线20x +=相切的切点为A ,与x 轴交点为M ,由抛物线的定义可知,CA =CM =R ,直线20x +=为抛物线的准线,故根据抛物线的定义得到该圆必过抛物线的焦点()2,0.故选B 【点睛】这个题目考查了抛物线的定义的应用以及圆的定义的应用,一般和抛物线有关的小题,很多时可以应用结论来处理的;平时练习时应多注意抛物线的结论的总结和应用.尤其和焦半径联系的题目,一般都和定义有关,实现点点距和点线距的转化.8.D解析:D 【解析】分析:先求出()cos 30α︒+的值,再把cos α变形为0cos[(30)30]α+-,再利用差角的余弦公式展开化简即得cos α的值. 详解:∵60150α︒<<︒, ∴90°<30α︒+<180°, ∴()cos 30α︒+=-45, ∵c os α=00cos[(30)30]α+-,∴c os α=-45×33134352-⨯=, 故选D.点睛:三角恒等变形要注意“三看(看角看名看式)”和“三变(变角变名变式)”,本题主要利用了看角变角,0(30)30αα=+-,把未知的角向已知的角转化,从而完成解题目标.9.C解析:C 【解析】由算法流程图知s =0+12+14+16=1112.选C. 10.D解析:D【解析】试题分析:θ是ABC ∆的一个内角,,又,所以有,故本题的正确选项为D.考点:三角函数诱导公式的运用.11.C解析:C 【解析】 【分析】本题根据双曲线的渐近线方程可求得a b =,进一步可得离心率.容易题,注重了双曲线基础知识、基本计算能力的考查. 【详解】根据渐近线方程为x ±y =0的双曲线,可得a b =,所以c 2a = 则该双曲线的离心率为 e 2ca==, 故选C . 【点睛】理解概念,准确计算,是解答此类问题的基本要求.部分考生易出现理解性错误.12.C解析:C 【解析】 【分析】 【详解】由题意可知1210121010,10a a a a b b b b +++=+++=L L ,所以所求平均数为()121012101210121012020202a a ab b b a a a b b b a b +++++++++++++=+=+L L L L考点:样本平均数二、填空题13.【解析】设则所以所以曲线在点处的切线方程为即点睛:求曲线的切线方程是导数的重要应用之一用导数求切线方程的关键在于求出斜率其求法为:设是曲线上的一点则以为切点的切线方程是若曲线在点处的切线平行于轴(即 解析:1y x =+【解析】设()y f x =,则21()2f x x x'=-,所以(1)211f '=-=,所以曲线21y x x=+在点(1,2)处的切线方程为21(1)y x -=⨯-,即1y x =+. 点睛:求曲线的切线方程是导数的重要应用之一,用导数求切线方程的关键在于求出斜率,其求法为:设00(,)P x y 是曲线()y f x =上的一点,则以P 为切点的切线方程是000()()y y f x x x '-=-.若曲线()y f x =在点00(,())P x f x 处的切线平行于y 轴(即导数不存在)时,由切线定义知,切线方程为0x x =.14.【解析】试题分析:依题意有即解得考点:三点共线 解析:12【解析】试题分析:依题意有AB AC k k =,即531522m --=+,解得12m =. 考点:三点共线.15.2【解析】【详解】当x≤0时由f (x )=x2﹣2=0解得x=有1个零点;当x >0函数f (x )=2x ﹣6+lnx 单调递增则f (1)<0f (3)>0此时函数f (x )只有一个零点所以共有2个零点故答案为:解析:2 【解析】 【详解】当x≤0时,由f (x )=x 2﹣2=0,解得x=1个零点; 当x >0,函数f (x )=2x ﹣6+lnx ,单调递增,则f (1)<0,f (3)>0,此时函数f (x )只有一个零点, 所以共有2个零点. 故答案为:2. 【点睛】判断函数零点个数的方法直接法(直接求零点):令f (x )=0,如果能求出解,则有几个不同的解就有几个零点, 定理法(零点存在性定理):利用定理不仅要求函数的图象在区间[a ,b ]上是连续不断的曲线,且f (a )·f (b )<0,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点,图象法(利用图象交点的个数):画出函数f (x )的图象,函数f (x )的图象与x 轴交点的个数就是函数f (x )的零点个数;将函数f (x )拆成两个函数h (x )和g (x )的差,根据f (x )=0⇔h (x )=g (x ),则函数f (x )的零点个数就是函数y =h (x )和y =g (x )的图象的交点个数,性质法(利用函数性质):若能确定函数的单调性,则其零点个数不难得到;若所考查的函数是周期函数,则只需解决在一个周期内的零点的个数16.【解析】【分析】【详解】由得由整数有且仅有123知解得 解析:(5,7)【解析】 【分析】 【详解】 由|3|4x b -<得4433b b x -+<< 由整数有且仅有1,2,3知40134343b b -⎧≤<⎪⎪⎨+⎪<≤⎪⎩,解得57b <<17.【解析】【分析】由直线方程为与准线得出点坐标再由可得点为线段的中点由此求出点A 的坐标代入抛物线方程得出的值【详解】解:抛物线的准线方程为过点且斜率为的直线方程为联立方程组解得交点坐标为设A 点坐标为因 解析:8【解析】 【分析】由直线方程为2)y x =-与准线:al x 4=-得出点B 坐标,再由BM MA u u u u v u u u v =可得,点M 为线段AB 的中点,由此求出点A 的坐标,代入抛物线方程得出a 的值.【详解】解:抛物线()2:0C y ax a =>的准线方程为:a l x 4=-过点()2,0M2)y x =-,联立方程组2)4y x a x ⎧=-⎪⎨=-⎪⎩,解得,交点B坐标为)(,)a a 844+-, 设A 点坐标为00(,)x y , 因为BM MA u u u u v u u u v=,所以点M 为线段AB 的中点,所以00()442402a x y ⎧+-⎪=⎪⎪⎨⎪+⎪=⎪⎩,解得)()a a 8A 444++,将(a A 44+代入抛物线方程,即()2a a 44=+, 因为0a >,解得8a =.【点睛】本题考查了抛物线的性质、向量相等等知识,解决几何问题时,往往可以转化为代数问题来进行研究,考查了数形结合的思想.18.【解析】【分析】利用复数的运算法则模的计算公式即可得出【详解】解:复数z =(1+i )(1+2i )=1﹣2+3i =﹣1+3i ∴|z|故答案为【点睛】对于复数的四则运算要切实掌握其运算技巧和常规思路如其【解析】【分析】利用复数的运算法则、模的计算公式即可得出.【详解】解:复数z =(1+i )(1+2i )=1﹣2+3i =﹣1+3i ,∴|z|==.【点睛】对于复数的四则运算,要切实掌握其运算技巧和常规思路,如()()a bi c di ++=()()(,,,)ac bd ad bc i a b c d R -++∈.其次要熟悉复数相关概念,如复数(,)a bi a b R +∈的实部为a 、虚部为b(,)a b 、共轭复数为a bi -.19.1:8【解析】考查类比的方法所以体积比为1∶8解析:1:8【解析】 考查类比的方法,11111222221111314283S h V S h V S h S h ⋅⨯====,所以体积比为1∶8. 20.【解析】【分析】首先根据题中所给的类比着写出两式相减整理得到从而确定出数列为等比数列再令结合的关系求得之后应用等比数列的求和公式求得的值【详解】根据可得两式相减得即当时解得所以数列是以-1为首项以2 解析:63-【解析】【分析】首先根据题中所给的21n n S a =+,类比着写出1121n n S a ++=+,两式相减,整理得到12n n a a +=,从而确定出数列{}n a 为等比数列,再令1n =,结合11,a S 的关系,求得11a =-,之后应用等比数列的求和公式求得6S 的值.【详解】根据21n n S a =+,可得1121n n S a ++=+,两式相减得1122n n n a a a ++=-,即12n n a a +=,当1n =时,11121S a a ==+,解得11a =-,所以数列{}n a 是以-1为首项,以2为公比的等比数列, 所以66(12)6312S --==--,故答案是63-. 点睛:该题考查的是有关数列的求和问题,在求解的过程中,需要先利用题中的条件,类比着往后写一个式子,之后两式相减,得到相邻两项之间的关系,从而确定出该数列是等比数列,之后令1n =,求得数列的首项,最后应用等比数列的求和公式求解即可,只要明确对既有项又有和的式子的变形方向即可得结果.三、解答题21.(Ⅰ)22413y x +=, 24y x =.(Ⅱ)330x +-=,或330x -=. 【解析】 试题分析:由于A 为抛物线焦点,F 到抛物线的准线l 的距离为12,则12a c -=,又椭圆的离心率为12,求出,,c a b ,得出椭圆的标准方程和抛物线方程;则(1,0)A ,设直线AP 方程为设1(0)x my m =+≠,解出P Q 、两点的坐标,把直线AP 方程和椭圆方程联立解出B 点坐标,写出BQ 所在直线方程,求出点D 的坐标,最后根据APD △的面积为2m ,得出直线AP 的方程. 试题解析:(Ⅰ)解:设F 的坐标为(),0c -.依题意,12c a =,2p a =,12a c -=,解得1a =,12c =,2p =,于是22234b ac =-=. 所以,椭圆的方程为22413y x +=,抛物线的方程为24y x =. (Ⅱ)解:设直线AP 的方程为()10x my m =+≠,与直线l 的方程1x =-联立,可得点21,P m ⎛⎫-- ⎪⎝⎭,故21,Q m ⎛⎫- ⎪⎝⎭.将1x my =+与22413y x +=联立,消去x ,整理得()223460m y my ++=,解得0y =,或2634m y m -=+.由点B 异于点A ,可得点222346,3434m m B m m ⎛⎫-+- ⎪++⎝⎭.由21,Q m ⎛⎫- ⎪⎝⎭,可学*科.网得直线BQ 的方程为()222623*********m m x y m m m m ⎛⎫--+⎛⎫⎛⎫-+-+-= ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭,令0y =,解得222332m x m -=+,故2223,032m D m ⎛⎫- ⎪+⎝⎭.所以222223613232m m AD m m -=-=++.又因为APD V ,故22162232m m m ⨯⨯=+,整理得2320m -+=,解得m =m =.所以,直线AP 的方程为330x -=,或330x -=.【考点】直线与椭圆综合问题【名师点睛】圆锥曲线问题在历年高考都是较有难度的压轴题,不论第一步利用椭圆的离心率及椭圆与抛物线的位置关系的特点,列方程组,求出椭圆和抛物线方程,还是第二步联立方程组求出点的坐标,写直线方程,利用面积求直线方程,都是一种思想,就是利用大熟地方法解决几何问题,坐标化,方程化,代数化是解题的关键.22.(1)见解析(2)4(3)7 【解析】【分析】(1)连接OC ,由BO =DO ,AB =AD ,知AO ⊥BD ,由BO =DO ,BC =CD ,知CO ⊥BD .在△AOC 中,由题设知AO 1CO ==,AC =2,故AO 2+CO 2=AC 2,由此能够证明AO ⊥平面BCD ;(2)取AC 的中点M ,连接OM 、ME 、OE ,由E 为BC 的中点,知ME ∥AB ,OE ∥DC ,故直线OE 与EM 所成的锐角就是异面直线AB 与CD 所成的角.在△OME中,11EM AB OE DC 122====,由此能求出异面直线AB 与CD 所成角大小的余弦;(3)设点E 到平面ACD 的距离为h .在△ACD 中,CA CD 2AD ===,ACD 1S 22==V ,由AO =1,知2CDE 1S 22==V ,由此能求出点E 到平面ACD 的距离.【详解】(1)证明:连接OC ,∵BO =DO ,AB =AD ,∴AO ⊥BD ,∵BO =DO ,BC =CD ,∴CO ⊥BD .在△AOC中,由题设知1AO CO==,AC=2,∴AO2+CO2=AC2,∴∠AOC=90°,即AO⊥OC.∵AO⊥BD,BD∩OC=O,∴AO⊥平面BCD.(2)解:取AC的中点M,连接OM、ME、OE,由E为BC的中点,知ME∥AB,OE∥DC,∴直线OE与EM所成的锐角就是异面直线AB与CD所成的角.在△OME中,111222EM AB OE DC====,∵OM是直角△AOC斜边AC上的中线,∴112OM AC==,∴1112cos OEM+-∠==∴异面直线AB与CD(3)解:设点E到平面ACD的距离为h.E ACD A CDEV V--=Q,1133ACD CDEh S AO S∴=V V...,在△ACD中,2CA CD AD===,,∴12ACDS==V,∵AO=1,2122CDES==V,∴17CDEACDAO ShS⋅===VV,∴点E到平面ACD的距离为7.【点睛】本题考查点、线、面间的距离的计算,考查空间想象力和等价转化能力,解题时要认真审题,仔细解答,注意化立体几何问题为平面几何问题.23.(1)13; (2)()1E X =. 【解析】【分析】(1)可根据题意分别计算出“从10人中选出2人”以及“2人参加义工活动的次数之和为4”的所有可能情况数目,然后通过概率计算公式即可得出结果;(2)由题意知随机变量X 的所有可能取值,然后计算出每一个可能取值所对应的概率值,写出分布列,求出数学期望值.【详解】(1)由已知有1123432101()3C C C P A C ⋅+==, 所以事件A 的发生的概率为13; (2)随机变量X 的所有可能的取值为0,1,2; 2223342104(0)15C C C P X C ++===;111133342107(1)15C C C C P X C ⋅+⋅===; 11342104(2)15C C P X C ⋅===; 所以随机变量X 的分布列为: X0 1 2 P 415 715 415数学期望为()0121151515E X =???. 【点睛】 本题考查了离散型随机变量的分布列与数学期望的计算问题,能否正确计算出每一个随机变量所对应的的概率是解决本题的关键,考查推理能力,是中档题.24.(1)1;(2)见解析【解析】【分析】(1)由条件可得()2f x m x +=-,故有0m x -≥的解集为[11]-,,即x m ≤的解集为[11]-,,进而可得结果;(2)根据()111232323a b c a b c a b c ⎛⎫++=++++ ⎪⎝⎭利用基本不等式即可得结果.【详解】 (1)函数()2f x m x =--,m R ∈,故()2f x m x +=-,由题意可得0m x -≥的解集为[11]-,,即x m ≤的解集为[11]-,,故1m =. (2)由a ,b ,R c ∈,且111 123m a b c ++==, ∴()111232323a b c a b c a b c ⎛⎫++=++++ ⎪⎝⎭ 23321112233b c a c a b a a b b c c =++++++++ 233233692233b c a c a b a a b b c c=++++++≥+=, 当且仅当2332 12233b c a c a b a a b b c c======时,等号成立. 所以239a b c ++≥.【点睛】 本题主要考查带有绝对值的函数的值域,基本不等式在最值问题中的应用,属于中档题.25.(Ⅰ)3;(Ⅱ;(Ⅲ【解析】【分析】(Ⅰ)以B 为坐标原点,BA 所在直线为x 轴,1BB 所在直线为y 轴,建立坐标系,设异面直线AC 与11A B 所成角为α,算出11,AC A B u u u r u u u u r ,再利用cos α=11|cos ,|AC A B 〈〉u u u r u u u u r 计算即可; (Ⅱ)分别求出平面11AA C 的法向量m u r 与平面111B AC 的法向量n r ,再利用向量的夹角公式算得cos ,m n 〈〉u r r 即可;(Ⅲ)设(,,0)M a b ,由MN ⊥平面111A B C ,得111100MN A B MN A C ⎧⋅=⎪⎨⋅=⎪⎩u u u u v u u u u v u u u u v u u u u v ,进一步得到M 的坐标,再由模长公式计算BM 的长.【详解】如图所示,建立空间直角坐标系,其中点B 为坐标原点,BA 所在直线为x 轴,1BB 所在直线为y 轴,由题意,111(0,0,0),B A C A B C , (Ⅰ)11((AC A B ==-u u u r u u u u r ,所以111111cos ,||||AC A B AC A B AC A B ⋅〈〉===u u r u u u r u u u u r u u u r u u u u r , 设异面直线AC 与11A B 所成角为α,则cos α=11|cos ,|3AC A B 〈〉=u u u r u u u u r , 所以异面直线AC 与11A B. (Ⅱ)易知111(AA AC ==u u u r u u u u r ,设平面11AA C 的法向量(,,)m x y z =,则11100m AC m AA ⎧⋅=⎪⎨⋅=⎪⎩u u u u v v u u u v v,即00⎧+=⎪⎨=⎪⎩,令x =z =,所以m =u r ,同理,设平面111B AC 的法向量(,,)n x y z =r , 则111100n A C n A B ⎧⋅=⎪⎨⋅=⎪⎩u u u u v v u u u u v v,即00⎧-+=⎪⎨-=⎪⎩,令y =z =n =r ,所以2cos ,7||||m n m n m n ⋅〈〉===⋅u r r u r r , 设二面角111A AC B --的大小为θ,则sin θ== 所以二面角111A AC B --的正弦值为7. (Ⅲ)由N 为棱11B C的中点,得,22N ⎛ ⎝⎭, 设(,,0)M a b,则,,222MN a b ⎛⎫=-- ⎪⎝⎭u u u u r ,由MN ⊥平面111A B C ,得111100MN A B MN A C ⎧⋅=⎪⎨⋅=⎪⎩u u u u v u u u u v u u u u v u u u u v ,即 2(22)02325(2)(2)50a a b ⎧⎛⎫-⋅-=⎪ ⎪ ⎪⎪⎝⎭⎨⎛⎫⎛⎫⎪-⋅-+-⋅-+⋅= ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎩, 解得22a b ⎧=⎪⎪⎨⎪=⎪⎩,故22,,0M ⎛⎫ ⎪⎝⎭,因此22,,0BM ⎛⎫= ⎪⎝⎭u u u u r , 所以线段BM 的长为10||BM =u u u u r .【点睛】本题主要考查直线与平面平行、直线与平面垂直、直线与平面所成的角等基础知识,考查学生的空间想象能力、运算能力和推理论证能力.。
2019年高考数学四模试题 理(含解析)新人教 版新版
2019高考数学四模试卷(理科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,则集合A的子集的个数为()A.7 B.8 C.15 D.162.已知复数Z=(i是虚数单位),则复数Z的共轭复数是()A.1+i B.1﹣i C. D.3.对于实数x,y,若p:x+y≠4,q:x≠3或y≠1,则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件4.若,则|a0|﹣|a1|+|a2|﹣|a3|+|a4|﹣|a5|=()A.0 B.1 C.32 D.﹣15.据统计2016年“十一”黄金周哈尔滨太阳岛每天的游客人数服从正态分布N,则在此期间的某一天,太阳岛的人数不超过2300的概率为()附;若X~N(μ,σ2).A.0.4987 B.0.8413 C.0.9772 D.0.99876.已知函数f(x)的部分图象如图所示,向图中的矩形区域随机投出200粒豆子,记下落入阴影区域的豆子数,通过100次这样的试验,算得落入阴影区域的豆子的平均数为66,由此可估计的值约为()A.B.C.D.7.已知正四棱锥P﹣ABCD中,PA=AB=2,E,F分别是PB,PC的中点,则异面直线AE与BF所成角的余弦值为()A .B .C .D .8.执行如图所示的程序框图,若输入x=0,输出K 的值为10,则判断框内可填入的条件是( )A .x >50?B .x >90?C .x >100?D .x >200?9.中国古代数学著作《算法统宗》中有这样一个问题;“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见末日行里数,请公子仔细算相还.”其意思为:“有一个人走了378里路,第一天健步走行,从第二天起脚痛每天走的路程且前一天的一半,走了6天后到达目的地,请问题第六天走了”( ) A .96里 B .48里 C .12里 D .6里10.某几何体的三视图如图所示,则该几何体体积是( )A .B .C .D .11.已知函数在[0,2)上的最大值为a ,在(2,4]上的最小值为b ,则a+b=( )A .﹣2B .﹣1C .1D .212.P 是双曲线C :x 2﹣y 2=2左支上一点,直线l 是双曲线C 的一条渐近线,P 在l 上的射影为Q ,F 2是双曲线C 的右焦点,则|PF 2|+|PQ|的最小值为( )A.B.C. D.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.若圆M过三点A(1,3),B(4,2),C(1,﹣7),则圆M直径的长为.14.已知平面向量的夹角为,且,若平面向量满足=2,则= .15.下列命题中,正确的命题有.①回归直线恒过样本点的中心,且至少过一个样本点;②将一组数据的每个数据都加一个相同的常数后,方差不变;③用相关指数R2来刻画回归效果,R2越接近0,说明模型的拟合效果越好;④用系统抽样法从160名学生中抽取容量为20的样本,将160名学生从1~160编号,按编号顺序平均分成20组(1~8号,9~16号,…,153~160号),若第16组抽出的号码为126,则第一组中用抽签法确定的号码为6号.16.已知数列{a n}满足,则数列{a n•b n}满足对任意的n∈N+,都有b1a n+b2a n﹣1+…+b n a1=,则数列{a n•b n}的前n项和T n= .三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.如图,一条巡逻船由南向北行驶,在A处测得山顶P在北偏东15°(∠BAC=15°)方向上,匀速向北航行20分钟到达B处,测得山顶P位于北偏东60°方向上,此时测得山顶P的仰角60°,若山高为千米,(1)船的航行速度是每小时多少千米?(2)若该船继续航行10分钟到达D处,问此时山顶位于D处的南偏东什么方向?18.甲乙两家快递公司其“快递小哥”的日工资方案如下:甲公司规定底薪70元,每单抽成1元;乙公司规定底薪100元,每日前45单无抽成,超过45单的部分每单抽成6元(1)设甲乙快递公司的“快递小哥”一日工资y(单位:元)与送货单数n的函数关系式为f(n),g(n),求f (n),g(n);(2)假设同一公司的“快递小哥”一日送货单数相同,现从两家公司各随机抽取一名“快递小哥”,并记录其100天的送货单数,得到如下条形图:若将频率视为概率,回答下列问题:①记乙快递公司的“快递小哥”日工资为X(单位:元),求X的分布列和数学期望;②小赵拟到两家公司中的一家应聘“快递小哥”的工作,如果仅从日收入的角度考虑,请你利用所学的统计学知识为他作出选择,并说明理由.19.如图,三棱柱ABC﹣A1B1C1中,A1B⊥平面ABC,且AB⊥AC.(1)求证:AC⊥BB1;(2)若AB=AC=A1B=2,M为B1C1的中点,求二面角M﹣AB﹣A1平面角的余弦值.20.在平面直角坐标系xOy中,F是抛物线C:y2=2px(p>0)的焦点,M是抛物线C上的任意一点,当M位于第一象限内时,△OFM外接圆的圆心到抛物线C准线的距离为.(1)求抛物线C的方程;(2)过K(﹣1,0)的直线l交抛物线C于A,B两点,且,点G为x轴上一点,且|GA|=|GB|,求点G的横坐标x0的取值范围.21.已知f(x)=2x﹣ax2+bcosx在点处的切线方程为.(1)求a,b的值及f(x)在[0,π]上的单调区间;(2)若x1,x2∈[0,π],且x1≠x2,f(x1)=f(x2),求证.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]22.已知曲线C1的极坐标方程为ρ=1,以极点为平面直角坐标系的原点,极轴为x的正半轴,建立平面直角坐标系xOy.(1)若曲线为参数)与曲线C1相交于两点A,B,求|AB|;(2)若M是曲线C1上的动点,且点M的直角坐标为(x,y),求(x+1)(y+1)的最大值.[选修4-5:不等式选讲]23.设f(x)=|ax﹣1|,若f(x)≤2的解集为[﹣1,3].(1)求实数a的值;(2)若x+y+z=a(x,y,z∈(0,+∞)),求的最小值.2017年辽宁省实验中学高考数学四模试卷(理科)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,则集合A的子集的个数为()A.7 B.8 C.15 D.16【考点】16:子集与真子集.【分析】由≤0,可得(x+1)(x﹣2)≤0,且x≠2,解得x,根据x∈Z,可得x,A.即可得出.【解答】解:由≤0,可得(x+1)(x﹣2)≤0,且x≠2,解得﹣1≤x<2,又x∈Z,可得x=﹣1,0,1,∴A={﹣1,0,1}.∴集合A的子集的个数为23=8.故选:B.2.已知复数Z=(i是虚数单位),则复数Z的共轭复数是()A.1+i B.1﹣i C. D.【考点】A5:复数代数形式的乘除运算.【分析】直接由复数代数形式的乘除运算化简复数Z得答案.【解答】解:Z==,则复数Z的共轭复数是:.故选:D.3.对于实数x,y,若p:x+y≠4,q:x≠3或y≠1,则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件【考点】2L:必要条件、充分条件与充要条件的判断.【分析】由已知可得p⇒q,反之不成立,例如取x=5,y=﹣1.【解答】解:p:x+y≠4,q:x≠3或y≠1,则p⇒q,反之不成立,例如取x=5,y=﹣1.∴p是q的充分不必要条件.故选:A.4.若,则|a0|﹣|a1|+|a2|﹣|a3|+|a4|﹣|a5|=()A.0 B.1 C.32 D.﹣1【考点】DB:二项式系数的性质.【分析】T r+1==(﹣1)r x r,当r为奇数时,<0.当r为偶数时,>0.可得|a0|﹣|a1|+|a2|﹣|a3|+|a4|﹣|a5|=a0+a1+a2+a3+a4+a5,对,令x=1,即可得出.【解答】解:T r+1==(﹣1)r x r,当r为奇数时,<0.当r为偶数时,>0.∴|a0|﹣|a1|+|a2|﹣|a3|+|a4|﹣|a5|=a0+a1+a2+a3+a4+a5.对,令x=1,可得:a0+a1+a2+a3+a4+a5=(1﹣1)2=0.故选:A.5.据统计2016年“十一”黄金周哈尔滨太阳岛每天的游客人数服从正态分布N,则在此期间的某一天,太阳岛的人数不超过2300的概率为()附;若X~N(μ,σ2).A.0.4987 B.0.8413 C.0.9772 D.0.9987【考点】CP:正态分布曲线的特点及曲线所表示的意义.【分析】根据正态分布的对称性得出P(X>2300),从而可得P(X≤2300).【解答】解:P=0.9974,∴P(X>2300)=(1﹣0.9974)=0.0013,∴P(X≤2300)=1﹣0.0013=0.9987.故选D.6.已知函数f(x)的部分图象如图所示,向图中的矩形区域随机投出200粒豆子,记下落入阴影区域的豆子数,通过100次这样的试验,算得落入阴影区域的豆子的平均数为66,由此可估计的值约为()A.B.C.D.【考点】CE:模拟方法估计概率.【分析】根据几何概型的概率计算公式得出阴影部分的面积,再根据定积分的几何意义得出答案.【解答】解:矩形部分的面积为S矩形=2×3=6,由题意可知: ==,∴S阴影==.∴=S阴影=.故选B.7.已知正四棱锥P﹣ABCD中,PA=AB=2,E,F分别是PB,PC的中点,则异面直线AE与BF所成角的余弦值为()A.B.C.D.【考点】HU:解三角形的实际应用.【分析】由题意,建立空间直角坐标系,利用数量积公式求向量夹角,得到所求.【解答】解:建立空间直角坐标系如图,设PA=4,则A(0,0,0),B(4,0,0),C(4,4,0),P(2,2,2).所以E(3,1,),F(3,3,),所以=(3,1,),=(﹣1,3,),所以异面直线AE与BF所成角的余弦值为: =;故选:C.8.执行如图所示的程序框图,若输入x=0,输出K的值为10,则判断框内可填入的条件是()A.x>50?B.x>90?C.x>100? D.x>200?【考点】EF:程序框图.【分析】由已知中的程序语句,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【解答】解:模拟程序的运行,可得x=0,K=0执行循环体,x=3,K=2不满足条件,执行循环体,x=9,K=4不满足条件,执行循环体,x=21,K=6不满足条件,执行循环体,x=45,K=8,不满足条件,执行循环体,x=93,K=10由题意,此时应该满足条件,退出循环,输出K的值为10.可得判断框内可填入的条件是:x>90?故选:B.9.中国古代数学著作《算法统宗》中有这样一个问题;“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见末日行里数,请公子仔细算相还.”其意思为:“有一个人走了378里路,第一天健步走行,从第二天起脚痛每天走的路程且前一天的一半,走了6天后到达目的地,请问题第六天走了”()A.96里B.48里C.12里D.6里【考点】89:等比数列的前n项和.【分析】记每天走的路程里数为{a n},可知{a n}是公比q=的等比数列,由此利用等比数列的性质能求出结果.【解答】解:记每天走的路程里数为{a n},可知{a n}是公比q=的等比数列,由S6=378,得S6==378,解得:a1=192,∴=6.故选:D.10.某几何体的三视图如图所示,则该几何体体积是()A.B.C.D.【考点】L!:由三视图求面积、体积.【分析】由三视图得到几何体为半个圆锥与四棱锥的组合体,根据图中数据计算体积.【解答】解:由三视图得到几何体为半个圆锥与四棱锥的组合体,其中圆锥的底面半径为1,高为,四棱锥的底面是边长为2的正方形,高为,所以几何体的体积为: =;故选C.11.已知函数在[0,2)上的最大值为a,在(2,4]上的最小值为b,则a+b=()A.﹣2 B.﹣1 C.1 D.2【考点】6E:利用导数求闭区间上函数的最值.【分析】由函数g(x)=在(﹣∞,2),(2,+∞)单调递减,函数h(x)=cos在[0,4]单调递减,可得函数在[0,2),(2,4]上单调性,即可求得a,b即可.【解答】解:函数g(x)=,函数g(x)是函数y=向右平移2个单位,向上平移1个单位,故函数g(x)在(﹣∞,2),(2,+∞)单调递减;对于函数h(x)=cos,由2k(k∈Z),得8k≤x≤8k+4,故函数h(x)在[0,4]单调递减.∴函数在[0,2)上单调递减,故其最大值为f(0)=a,∴a=1,函数在(2,4]上单调递减,其最小值为f(4)=b,∴b=1.所以a+b=2,故选D.12.P是双曲线C:x2﹣y2=2左支上一点,直线l是双曲线C的一条渐近线,P在l上的射影为Q,F2是双曲线C的右焦点,则|PF2|+|PQ|的最小值为()A.B.C. D.【考点】KC:双曲线的简单性质.【分析】求出双曲线的ab,c,以及一条渐近线方程,运用双曲线的定义,可得|PF2|+|PQ|=|PF1|+2+|PQ|,依题意,当且仅当Q、P、F1三点共线,且P在F1,Q之间时,|PF1|+|PQ|最小,且最小值为F1到l的距离,从而可求得|PF2|+|PQ|的最小值.【解答】解:双曲线C:x2﹣y2=2的a=b=,c=2,一条渐近线l方程为x﹣y=0,设双曲线的左焦点为F1,连接PF1,由双曲线定义可得|PF2|﹣|PF1|=2a=2,∴|PF2|=|PF1|+2,∴|PF2|+|PQ|=|PF1|+2+|PQ|,当且仅当Q、P、F1三点共线,且P在F1,Q之间时,|PF1|+|PQ|最小,且最小值为F1到l的距离,可得F1(﹣2,0)到l的距离d==,∴|PQ|+|PF2|的最小值为2+=3.故选:C.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.若圆M过三点A(1,3),B(4,2),C(1,﹣7),则圆M直径的长为10 .【考点】J2:圆的一般方程.【分析】设圆的方程为x2+y2+dx+ey+f=0(d2+e2﹣4f>0),代入三点的坐标,解方程可得d,e,f,再化为标准式,可得圆的半径,进而得到直径.【解答】解:设圆的方程为x2+y2+dx+ey+f=0(d2+e2﹣4f>0)圆M过三点A(1,3),B(4,2),C(1,﹣7),可得,解方程可得d=﹣2,e=4,f=﹣20,即圆的方程为x2+y2﹣2x+4y﹣20=0,即为(x﹣1)2+(y+2)2=25,即有圆的半径为5,直径为10.故答案为:10.14.已知平面向量的夹角为,且,若平面向量满足=2,则= .【考点】9R:平面向量数量积的运算.【分析】设出向量,夹角为α,则与夹角为(),由平面向量满足=2,以及三角函数的平方关系得到cosα,再由数量积公式求得.【解答】解:设向量,夹角为α,则与夹角为(),由平面向量满足=2,得到,整理得到sin,代入sin2α+cos2α=1得到cosα=,所以||===;故答案为:15.下列命题中,正确的命题有②④.①回归直线恒过样本点的中心,且至少过一个样本点;②将一组数据的每个数据都加一个相同的常数后,方差不变;③用相关指数R2来刻画回归效果,R2越接近0,说明模型的拟合效果越好;④用系统抽样法从160名学生中抽取容量为20的样本,将160名学生从1~160编号,按编号顺序平均分成20组(1~8号,9~16号,…,153~160号),若第16组抽出的号码为126,则第一组中用抽签法确定的号码为6号.【考点】BK:线性回归方程.【分析】根据回归直线恒过样本点的中心,不一定过样本点判断①错误;根据方差是表示数据波动大小的量,判断②正确;用相关指数R2刻画回归效果时,R2越接近1说明模型的拟合效果越好判断③错误;根据系统抽样原理求出第1组中抽取的号码值,判断④正确.【解答】解:对于①,回归直线恒过样本点的中心,不一定过任一样本点,∴①错误;对于②,因为方差是表示数据波动大小的量,将一组数据的每个数都加一个相同的常数后,方差不变,∴②正确;对于③,用相关指数R2来刻画回归效果,R2越接近1,说明模型的拟合效果越好,∴③错误;对于④,根据系统抽样原理,样本间隔为=8,第16组抽出的号码为15×8+a0=126,解得a0=6,即第1组中抽取的号码为6号,④正确.综上,正确的命题序号是②④.故答案为:②④.16.已知数列{a n}满足,则数列{a n•b n}满足对任意的n∈N+,都有b1a n+b2a n﹣1+…+b n a1=,则数列{a n•b n}的前n项和T n= .【考点】8E:数列的求和.【分析】对任意的n∈N+,都有b1a n+b2a n﹣1+…+b n a1=,求得n=1的情况,当n≥2时,将n换为n﹣1,相减求得b n=n,可得a n•b n=n•2n,再由数列的求和方法:错位相减法,结合等比数列的求和公式,计算即可得到所求和.【解答】解:∵数列{a n}满足,由b1a n+b2a n﹣1+…+b n a1=2n﹣n﹣1,①令n=1,则b1a1=2﹣﹣1,解得b1=.∵b1a n+b2a n﹣1+…+b n a1=2n﹣n﹣1,当n≥2时,b1a n﹣1+b2a n﹣2+…+b n﹣2a2+b n﹣1a1=2n﹣1﹣(n﹣1)﹣1,将上式两边同乘公比2得,b1a n+b2a n﹣1+…b n﹣1a2=2n﹣n﹣1.②①﹣②可得:b n a1=n,(n≥2),由a1=2,可得b n=n,对n=1也成立,则a n•b n=n•2n,T n=(1•2+2•22+3•23+…+n•2n),可得2T n=(1•22+2•23+3•24+…+n•2n+1),两式相减可得﹣T n=(2+22+23+24+…+2n﹣n•2n+1)=(﹣n•2n+1),化简可得T n=.故答案为:.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.如图,一条巡逻船由南向北行驶,在A处测得山顶P在北偏东15°(∠BAC=15°)方向上,匀速向北航行20分钟到达B处,测得山顶P位于北偏东60°方向上,此时测得山顶P的仰角60°,若山高为千米,(1)船的航行速度是每小时多少千米?(2)若该船继续航行10分钟到达D处,问此时山顶位于D处的南偏东什么方向?【考点】HU:解三角形的实际应用.【分析】(1)解△BCP,利用BCP中,,在△ABC中,由正弦定理求得;(2)利用正弦定理和余弦定理,分别解△BCD,求得∠CDB.【解答】解:(1)在△BCP中,在△ABC中,由正弦定理得:,所以,船的航行速度是每小时千米.(2)在△BCD中,由余弦定理得:,在△BCD中,由正弦定理得:,所以,山顶位于D处南偏东1350.18.甲乙两家快递公司其“快递小哥”的日工资方案如下:甲公司规定底薪70元,每单抽成1元;乙公司规定底薪100元,每日前45单无抽成,超过45单的部分每单抽成6元(1)设甲乙快递公司的“快递小哥”一日工资y(单位:元)与送货单数n的函数关系式为f(n),g(n),求f (n),g(n);(2)假设同一公司的“快递小哥”一日送货单数相同,现从两家公司各随机抽取一名“快递小哥”,并记录其100天的送货单数,得到如下条形图:若将频率视为概率,回答下列问题:①记乙快递公司的“快递小哥”日工资为X(单位:元),求X的分布列和数学期望;②小赵拟到两家公司中的一家应聘“快递小哥”的工作,如果仅从日收入的角度考虑,请你利用所学的统计学知识为他作出选择,并说明理由.【考点】CG:离散型随机变量及其分布列;CH:离散型随机变量的期望与方差.【分析】(1)甲公司规定底薪70元,每单抽成1元;乙公司规定底薪100元,每日前45单无抽成,超过45单的部分每单抽成6元,由此能求出甲乙快递公司的“快递小哥”一日工资y(单位:元)与送货单数n的函数关系式f(n),g(n).(2)①记乙快递公司的“快递小哥”日工资为X(单位:元),由条形图得X的可能取值为100,106,118,130,分别求出相应的概率,由此能求出X的分布列.②乙快递公司的“快递小哥”日平均送单数为45,从而乙快递公司的“快递小哥”日平均工资为115元,甲快递公司的“快递小哥”日平均工资为112元.由此推荐小赵去乙快递公式应聘.【解答】解:(1)甲快递公式的“快递小哥”一日工资y(单位:元)与送单数n的函数关系式为:y=70+n,n∈N+,∴f(n)=y=70+n,n∈N+.乙快递公式的“快递小哥”一日工资y(单位:元)与送单数n的函数关系式为:.∴g(n)=.(2)①记乙快递公司的“快递小哥”日工资为X(单位:元),由条形图得X的可能取值为100,106,118,130,,,所以X的分布列为:②乙快递公司的“快递小哥”日平均送单数为:42×0.2+44×0.4+46×0.2+48×0.1+50×0.1=45,所以乙快递公司的“快递小哥”日平均工资为70+45×1=115(元),由①知,甲快递公司的“快递小哥”日平均工资为112元.故推荐小赵去乙快递公式应聘.19.如图,三棱柱ABC﹣A1B1C1中,A1B⊥平面ABC,且AB⊥AC.(1)求证:AC⊥BB1;(2)若AB=AC=A1B=2,M为B1C1的中点,求二面角M﹣AB﹣A1平面角的余弦值.【考点】MT:二面角的平面角及求法;LO:空间中直线与直线之间的位置关系.【分析】(1)推导出A1B⊥AC,AB⊥AC,从而AC⊥平面A1ABB1,由此能证明AC⊥BB1.(2)过点A作AY∥A1B,以射线AB,AC,AY为x,y,z正半轴建立空间直角坐标系,利用向量法能求出二面角M ﹣AB﹣A1平面角的余弦值.【解答】证明:(1)∵三棱柱ABC﹣A1B1C1中,A1B⊥平面ABC,∴A1B⊥AC,∵AB⊥AC,A1B∩AB=B,∴AC⊥平面A1ABB1,∵BB1⊂平面A1ABB1,∴AC⊥BB1.解:(2)过点A作AY∥A1B,∵A1B⊥平面ABC,∴AY⊥平面ABC,又AB⊥AC,以射线AB,AC,AY为x,y,z正半轴建立空间直角坐标系,由AB=AC=A1B=2,得A(0,0,0),B(2,0,0),C(0,2,0),A1(2,0,2),由,得B1(4,0,2),C1(2,2,2),M为B1C1的中点,M(3,1,2),,设平在ABM的法向量=(x,y,z),则,取y=2,得平面ABM的法向量,,平面ABA1的法向量,∴,设二面角M﹣AB﹣A1的平面角为θ,由图知θ锐角,∴二面角M﹣AB﹣A1平面角的余弦值为.20.在平面直角坐标系xOy中,F是抛物线C:y2=2px(p>0)的焦点,M是抛物线C上的任意一点,当M位于第一象限内时,△OFM外接圆的圆心到抛物线C准线的距离为.(1)求抛物线C的方程;(2)过K(﹣1,0)的直线l交抛物线C于A,B两点,且,点G为x轴上一点,且|GA|=|GB|,求点G的横坐标x0的取值范围.【考点】K8:抛物线的简单性质.【分析】(1)求得抛物线的焦点和准线方程,点Q在FO的垂直平分线上,运用点到直线的距离,解方程可得p,进而得到所求抛物线的方程;(2)设A,B的坐标,运用向量的坐标运算,设直线l:x=my﹣1,并代入到y2=4x中,运用韦达定理,可得m和λ,运用对勾函数的单调性,可得4m2的范围,求出AB的垂直平分线方程,令y=0,结合不等式的性质,即可得到所求范围.【解答】解:(1)F是抛物线C:y2=2px(p>0)的焦点(,0),根据题意,点Q在FO的垂直平分线上,所以点Q到准线x=﹣的距离为,所以C:y2=4x.(2)设,①设直线l:x=my﹣1代入到y2=4x中得y2﹣4my+4=0,所以y1+y2=4m,y1y2=4,②由①②可得4m2==λ++2,由2≤λ≤3可得y=λ++2递增,即有4m2∈[,],又AB中点(2m2﹣1,2m),所以直线AB的垂直平分线的方程为y﹣2m=﹣m(x﹣2m2+1),令y=0,可得.21.已知f(x)=2x﹣ax2+bcosx在点处的切线方程为.(1)求a,b的值及f(x)在[0,π]上的单调区间;(2)若x1,x2∈[0,π],且x1≠x2,f(x1)=f(x2),求证.【考点】6B:利用导数研究函数的单调性;6H:利用导数研究曲线上某点切线方程.【分析】(1)求导数,利用函数f(x)=2x+ax2+bcosx在点处的切线方程为y=π,求a,b的值,利用导数的正负讨论f(x)在[0,π]上的增减性;(2)由(Ⅰ)的单调性,设,推导F(x)的单调性,由x2>π﹣x1,所以x1+x2>π,结合单调性,即可得证.【解答】解:(1)f(x)=2x﹣ax2+bcosx在点处的切线方程为y=π,f(x)的导数为f′(x)=2﹣2ax﹣bsinx,可得⇔⇔,所以,①当时,1﹣x ≥0,1﹣sinx ≥0,可得f′(x )>0,所以f (x )在为增函数;②当时,,所以f (x )在为减函数;(2)由(1)得f (x )在为增函数,在上为减函数,所以,由f'(x )在恒为负,,设,则,所以F'(x )>0,所以F (x )在递增,,当时,f (x )<f (π﹣x ),所以f (x 1)<f (π﹣x 1),又f (x 2)=f (x 1),所以,又f (x )在上为减函数,所以x 2>π﹣x 1,所以x 1+x 2>π,所以,所以.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程] 22.已知曲线C 1的极坐标方程为ρ=1,以极点为平面直角坐标系的原点,极轴为x 的正半轴,建立平面直角坐标系xOy .(1)若曲线为参数)与曲线C 1相交于两点A ,B ,求|AB|;(2)若M 是曲线C 1上的动点,且点M 的直角坐标为(x ,y ),求(x+1)(y+1)的最大值. 【考点】Q4:简单曲线的极坐标方程.【分析】(1)C1:ρ=1化为直角坐标方程为,为参数)可化为为参数),代入,化简得,设A,B对应的参数为t1,t2,利用根与系数的关系、弦长公式即可得出.(2)M(x,y)在曲线C1上,设为参数),可得(x+1)(y+1)=(cosθ+1)(sinθ+1)=sinθcosθ+sinθ+cosθ+1,令,则,代入化简即可得出.【解答】解:(1)C1:ρ=1化为直角坐标方程为,为参数)可化为为参数),代入,得,化简得,设A,B对应的参数为t1,t2,则,∴.(2)M(x,y)在曲线C1上,设为参数)则(x+1)(y+1)=(cosθ+1)(sinθ+1)=sinθcosθ+sinθ+cosθ+1,令,则,那么,∴.[选修4-5:不等式选讲]23.设f(x)=|ax﹣1|,若f(x)≤2的解集为[﹣1,3].(1)求实数a的值;(2)若x+y+z=a(x,y,z∈(0,+∞)),求的最小值.【考点】R4:绝对值三角不等式;R5:绝对值不等式的解法.【分析】(1)通过讨论a的范围,求出x的范围,结合不等式的解集,求出对应a的值即可;(2)求出x+y=1﹣z,根据z的范围,求出u的最小值即可.【解答】解:(1)|ax﹣1|≤2⇒﹣2≤ax﹣1≤2⇔﹣1≤ax≤3,当a>0时,,当a<0时,,此时无解,当a=0时,也无解.(2)由x+y+z=1⇒x+y=1﹣z,z∈(0,1),则,所以,此时.。
2019年数学高考模拟试题(含答案)
2019年数学高考模拟试题(含答案)一、选择题1.()22x xe ef x x x --=+-的部分图象大致是( )A .B .C .D .2.命题“对任意x ∈R ,都有x 2≥0”的否定为( ) A .对任意x ∈R ,都有x 2<0 B .不存在x ∈R ,都有x 2<0 C .存在x 0∈R ,使得x 02≥0 D .存在x 0∈R ,使得x 02<03.若圆与圆222:680C x y x y m +--+=外切,则m =( )A .21B .19C .9D .-114.如果42ππα<<,那么下列不等式成立的是( )A .sin cos tan ααα<<B .tan sin cos ααα<<C .cos sin tan ααα<<D .cos tan sin ααα<<5.函数()1ln 1y x x=-+的图象大致为( ) A . B .C .D .6.已知集合1}{0|A x x -≥=,{0,1,2}B =,则A B =A .{0}B .{1}C .{1,2}D .{0,1,2}7.已知sin cos 0θθ<,且cos cos θθ=,则角θ是( ) A .第一象限角B .第二象限角C .第三象限角D .第四象限角8.设集合{1,2,3,4,5,6}U =,{1,2,4}A =,{2,3,4}B =,则()C U A B ⋃等于( ) A .{5,6}B .{3,5,6}C .{1,3,5,6}D .{1,2,3,4}9.甲、乙、丙、丁四名同学组成一个4100米接力队,老师要安排他们四人的出场顺序,以下是他们四人的要求:甲:我不跑第一棒和第二棒;乙:我不跑第一棒和第四棒;丙:我也不跑第一棒和第四棒;丁:如果乙不跑第二棒,我就不跑第一棒.老师听了他们四人的对话,安排了一种合理的出场顺序,满足了他们的所有要求,据此我们可以断定在老师安排的出场顺序中跑第三棒的人是( ) A .甲B .乙C .丙D .丁10.已知向量()1,1m λ=+,()2,2n λ=+,若()()m n m n +⊥-,则λ=( ) A .4-B .3-C .2-D .1-11.如图所示,网格纸上小正方形的边长为1,粗线画出的是由一个棱柱挖去一个棱锥后的几何体的三视图,则该几何体的体积为A .72B .64C .48D .3212.将函数()sin 2y x ϕ=+的图象沿轴向左平移8π个单位后,得到一个偶函数的图象,则ϕ的一个可能取值为( ) A .B .C .0D .4π-二、填空题13.在区间[﹣2,4]上随机地取一个数x ,若x 满足|x |≤m 的概率为,则m= _________ .14.在ABC 中,60A =︒,1b =3sin sin sin a b cA B C________.15.在区间[1,1]-上随机取一个数x ,cos 2xπ的值介于1[0,]2的概率为 .16.一个算法的伪代码如图所示,执行此算法,最后输出的S 的值为________.17.ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知2b =,3c =,2C B =,则ABC 的面积为______.18.已知直线:与圆交于两点,过分别作的垂线与轴交于两点.则_________.19.已知α,β均为锐角,4cos 5α=,1tan()3αβ-=-,则cos β=_____. 20.已知双曲线1C :22221(0,0)x y a b a b-=>>的左、右焦点分别为1F 、2F ,第一象限内的点00(,)M x y 在双曲线1C 的渐近线上,且12MF MF ⊥,若以2F 为焦点的抛物线2C :22(0)y px p =>经过点M ,则双曲线1C 的离心率为_______.三、解答题21.已知平面直角坐标系xoy .以O 为极点,x 轴的非负半轴为极轴建立极坐标系,P 点的极坐标为23,6π⎛⎫ ⎪⎝⎭,曲线C 的极坐标方程为223sin 1ρρθ+=(1)写出点P 的直角坐标及曲线C 的普通方程;(2)若Q 为C 上的动点,求PQ 中点M 到直线32:2x tl y t =+⎧⎨=-+⎩(t 为参数)距离的最小值.22.在△ABC 中,a =7,b =8,cos B = –17.(Ⅰ)求∠A ;(Ⅱ)求AC 边上的高.23.如图,在四棱锥P ABCD -中,已知PC ⊥底面ABCD ,AB AD ⊥,//AB CD ,2AB =,1AD CD ==,E 是PB 上一点.(1)求证:平面EAC ⊥平面PBC ;(2)若E 是PB 的中点,且二面角P AC E --的余弦值是3,求直线PA 与平面EAC 所成角的正弦值.24.在直角坐标系xoy 中以O 为极点,x 轴正半轴为极轴建立坐标系.圆1C ,直线2C 的极坐标方程分别为4sin ,cos 4πρθρθ⎛⎫=-= ⎪⎝⎭. (I )12C C 求与交点的极坐标; (II )112.P C Q C C PQ 设为的圆心,为与交点连线的中点已知直线的参数方程为()33{,,.12x t a t R a b b y t =+∈=+为参数求的值 25.已知函数()|1|f x x =+(1)求不等式()|21|1f x x <+-的解集M (2)设,a b M ∈,证明:(ab)()()f f a f b >--.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】 【分析】根据函数的奇偶性,排除D ;根据函数解析式可知定义域为{}1x x ≠±,所以y 轴右侧虚线部分为x=1,利用特殊值x=0.01和x=1.001代入即可排除错误选项. 【详解】由函数解析式()22x x e e f x x x --=+-,易知()22x xe ef x x x ---=+-=() f x - 所以函数()22x xe ef x x x --=+-为奇函数,排除D 选项根据解析式分母不为0可知,定义域为{}1x x ≠±,所以y 轴右侧虚线部分为x=1, 当x=0.01时,代入()f x 可得()0f x <,排除C 选项当x=1.001时,代入()f x 可得()0f x >,排除B 选项 所以选A 【点睛】本题考查了根据函数解析式判断函数的图象,依据主要是奇偶性、单调性、特殊值等,注意图中坐标的位置及特殊直线,属于中档题.2.D解析:D 【解析】因为全称命题的否定是特称命题,所以命题“对任意x ∈R ,都有x 2≥0”的否定为.存在x 0∈R ,使得x 02<0. 故选D .3.C解析:C 【解析】试题分析:因为()()22226803425x y x y m x y m +--+=⇒-+-=-,所以250m ->25m ⇒<且圆2C 的圆心为()3,4,半径为25m -,根据圆与圆外切的判定(圆心距离等于半径和)可得()()223040125m -+-=+-9m ⇒=,故选C.考点:圆与圆之间的外切关系与判断4.C解析:C 【解析】 【分析】分别作出角α的正弦线、余弦线和正切线,结合图象,即可求解. 【详解】如图所示,在单位圆中分别作出α的正弦线MP 、余弦线OM 、正切线AT , 很容易地观察出OM MP AT <<,即cos sin tan ααα<<. 故选C.【点睛】本题主要考查了三角函数线的应用,其中解答中熟记三角函数的正弦线、余弦线和正切线,合理作出图象是解答的关键,着重考查了数形结合思想,以及推理与运算能力,属于基础题.5.A解析:A 【解析】 【分析】确定函数在定义域内的单调性,计算1x =时的函数值可排除三个选项. 【详解】0x >时,函数为减函数,排除B ,10x -<<时,函数也是减函数,排除D ,又1x =时,1ln 20y =->,排除C ,只有A 可满足.故选:A. 【点睛】本题考查由函数解析式选择函数图象,可通过解析式研究函数的性质,如奇偶性、单调性、对称性等等排除,可通过特殊的函数值,函数值的正负,函数值的变化趋势排除,最后剩下的一个即为正确选项.6.C解析:C 【解析】 【分析】由题意先解出集合A,进而得到结果. 【详解】解:由集合A 得x 1≥, 所以{}A B 1,2⋂= 故答案选C. 【点睛】本题主要考查交集的运算,属于基础题.7.D解析:D 【解析】 【分析】由cos cos θθ=以及绝对值的定义可得cos 0θ≥,再结合已知得sin 0,cos 0θθ<>,根据三角函数的符号法则可得. 【详解】由cos cos θθ=,可知cos 0θ≥,结合sin cos 0θθ<,得sin 0,cos 0θθ<>, 所以角θ是第四象限角, 故选:D 【点睛】本题考查了三角函数的符号法则,属于基础题.8.A解析:A 【解析】 【分析】先求并集,得到{1,2,3,4}A B ⋃=,再由补集的概念,即可求出结果. 【详解】因为{1,2,4}A =,{2,3,4}B =,所以{1,2,3,4}A B ⋃=, 又{1,2,3,4,5,6}U =,所以()C {5,6}U A B ⋃=. 故选A. 【点睛】本题主要考查集合的并集与补集的运算,熟记概念即可,属于基础题型.9.C解析:C 【解析】 【分析】跑第三棒的只能是乙、丙中的一个,当丙跑第三棒时,乙只能跑第二棒,这时丁跑第一棒,甲跑第四棒,符合题意;当乙跑第三棒时,丙只能跑第二棒,这里四和丁都不跑第一棒,不合题意. 【详解】由题意得乙、丙均不跑第一棒和第四棒, ∴跑第三棒的只能是乙、丙中的一个,当丙跑第三棒时,乙只能跑第二棒,这时丁跑第一棒,甲跑第四棒,符合题意; 当乙跑第三棒时,丙只能跑第二棒,这里四和丁都不跑第一棒,不合题意. 故跑第三棒的是丙. 故选:C . 【点睛】本题考查推理论证,考查简单的合情推理等基础知识,考查运算求解能力、分析判断能力,是基础题.10.B解析:B 【解析】 【分析】 【详解】∵()()m n m n +⊥-,∴()()0m n m n +⋅-=. ∴,即22(1)1[(2)4]0λλ++-++=,∴3λ=-,,故选B. 【考点定位】向量的坐标运算11.B解析:B 【解析】 【分析】由三视图可知该几何体是一个底面边长为4的正方形,高为5的正四棱柱,挖去一个底面边长为4,高为3的正四棱锥,利用体积公式,即可求解。
2019年高考数学模拟试卷及详细答案解析40
2019年高考数学模拟试卷及详细答案解析2019.6姓名:__________班级:__________考号:__________△注意事项:1.填写答题卡请使用2B 铅笔填涂2.提前5分钟收答题卡一 、选择题(本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一个选项是符合题目要求的) 1.中心在原点,焦点坐标为()25,0±的椭圆被直线023=--y x 截得的弦的中点的横坐标为21,则椭圆方程为 A. 175225222=+y x B. 125275222=+y x C. 1752522=+y x D. 1257522=+y x2.若ABC O ∆∙=∙=∙是的A. 外心B. 垂心C. 重心D. 内心3.在一个几何体的三视图中,正视图与俯视图如右图所示,则相应的侧视图可以为4.直线xcos140°+ysin140°=0的倾斜角是( )(A)40° (B)50° (C)130° (D)140° 5.Sin585的值为 ( )A .22-B.22C.23-D.236.设集合,集合.若中恰含有一个整数,则实数的取值范围是( )A .B .C .D .7.(本小题满分5分)解不等式组8.函数201()()2f x x =-+的定义域为( )A .1(2,)2-B .(-2,+∞)C .11(2,)(,)22-⋃+∞D .1(,)2+∞9.2111lim 1333n x →∞⎛⎫++++=⎪⎝⎭( )A. 53B. 32 C. 2 D. 不存在10.函数mx x x f -+-=1|2|)(的图象总在x 轴的上方,则实数m 的取值范围是A .)21,1[-B .)21,1(-C .]21,1(-D .]21,1[-.11.(2013年普通高等学校招生统一考试重庆数学(理)试题(含答案))某几何体的三视图如题图所示,则该几何体的体积为( ) A .B .C .D .12.设随机变量服从正态分布,即,则随着的增大, 的值( )()2035148x x x -<⎧⎪⎨+-⎪⎩≥,()556035803200240X ),(~2σμN X σ)(σμσμ+<<-X PA. 单调递增B. 单调递减C. 保持不变D. 增减不定二 、填空题(本大题共5小题,每小题4分,共20分)13.设()1,2a =,()2,3b =,()4,7c =--,若a b λ+与c 共线,则λ=14.如图9,给正五边形的顶点依次编号为1,2,3,4,5.若从某一顶点开始,沿正五边形的边顺时针行走,顶点编号的数字是几,就走几个边长,则称这种走法为一次“移位”.如:小宇在编号为3的顶点时,那么他应走3个边长,即从3→4→5→1为第一次“移位”,这时他到达编号为1的顶点;然后从1→2为第二次“移位”.若小宇从编号为2的顶点开始,第10次“移位”后,则他所处顶点的编号是____________.15.(本题满分10分)直线y=x-4与抛物线y 2=4x 交于A 、B 两点,F 为抛物线的焦点,求△ABF 的面积。
2019年高考数学一模试卷含解析
2019年高考数学一模试卷含解析一、填空题(本大题共14小题,每小题5分,计70分.不需写出解答过程,请把答案写在答题纸的指定位置上)1.已知集合A={﹣1,0,1},B=(﹣∞,0),则A∩B= .2.设复数z满足(1+i)z=2,其中i为虚数单位,则z的虚部为.3.已知样本数据x1,x2,x3,x4,x5的方差s2=3,则样本数据2x1,2x2,2x3,2x4,2x5的方差为.4.如图是一个算法流程图,则输出的x的值是.5.在数字1、2、3、4中随机选两个数字,则选中的数字中至少有一个是偶数的概率为.6.已知实数x,y满足,则的最小值是.7.设双曲线的一条渐近线的倾斜角为30°,则该双曲线的离心率为.8.设{an }是等差数列,若a4+a5+a6=21,则S9= .9.将函数的图象向右平移φ()个单位后,所得函数为偶函数,则φ=.10.将矩形ABCD绕边AB旋转一周得到一个圆柱,AB=3,BC=2,圆柱上底面圆心为O,△EFG为下底面圆的一个内接直角三角形,则三棱锥O﹣EFG体积的最大值是.11.在△ABC中,已知,,则的最大值为.12.如图,在平面直角坐标系中,分别在x轴与直线上从左向右依次取点Ak、Bk ,k=1,2,…,其中A1是坐标原点,使△AkBkAk+1都是等边三角形,则△A10B10A11的边长是.13.在平面直角坐标系xOy中,已知点P为函数y=2lnx的图象与圆M:(x﹣3)2+y2=r2的公共点,且它们在点P处有公切线,若二次函数y=f(x)的图象经过点O,P,M,则y=f(x)的最大值为.14.在△ABC中,A、B、C所对的边分别为a、b、c,若a2+b2+2c2=8,则△ABC 面积的最大值为.二、解答题(本大题共6小题,计90分.解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题纸的指定区域内)15.如图,在直三棱柱ABC﹣A1B1C1中,BC⊥AC,D,E分别是AB,AC的中点.(1)求证:B1C1∥平面A1DE;(2)求证:平面A1DE⊥平面ACC1A1.16.在△ABC中,a,b,c分别为内角A,B,C的对边,且bsin2C=csinB.(1)求角C;(2)若,求sinA的值.17.在平面直角坐标系xOy中,已知圆O:x2+y2=b2经过椭圆(0<b<2)的焦点.(1)求椭圆E的标准方程;(2)设直线l:y=kx+m交椭圆E于P,Q两点,T为弦PQ的中点,M(﹣1,0),N(1,0),记直线TM,TN的斜率分别为k1,k2,当2m2﹣2k2=1时,求k1•k2的值.18.如图所示,某街道居委会拟在EF地段的居民楼正南方向的空白地段AE上建一个活动中心,其中AE=30米.活动中心东西走向,与居民楼平行.从东向西看活动中心的截面图的下部分是长方形ABCD,上部分是以DC为直径的半圆.为了保证居民楼住户的采光要求,活动中心在与半圆相切的太阳光线照射下落在居民楼上的影长GE不超过2.5米,其中该太阳光线与水平线的夹角θ满足.(1)若设计AB=18米,AD=6米,问能否保证上述采光要求?(2)在保证上述采光要求的前提下,如何设计AB与AD的长度,可使得活动中心的截面面积最大?(注:计算中π取3)19.设函数f(x)=lnx,g(x)=ax+﹣3(a∈R).(1)当a=2时,解关于x的方程g(e x)=0(其中e为自然对数的底数);(2)求函数φ(x)=f(x)+g(x)的单调增区间;(3)当a=1时,记h(x)=f(x)•g(x),是否存在整数λ,使得关于x的不等式2λ≥h(x)有解?若存在,请求出λ的最小值;若不存在,请说明理由.(参考数据:ln2≈0.6931,ln3≈1.0986).20.若存在常数k(k∈N*,k≥2)、q、d,使得无穷数列{a n}满足则称数列{a n}为“段比差数列”,其中常数k、q、d分别叫做段长、段比、段差.设数列{b n}为“段比差数列”.(1)若{b n}的首项、段长、段比、段差分别为1、3、q、3.①当q=0时,求b xx;②当q=1时,设{b n}的前3n项和为S3n,若不等式对n∈N*恒成立,求实数λ的取值范围;(2)设{b n}为等比数列,且首项为b,试写出所有满足条件的{b n},并说明理由.数学附加题部分(本部分满分0分,考试时间30分钟)[选做题](在21、22、23、24四小题中只能选做2题,每小题0分,计20分)[选修4-1:几何证明选讲]21.如图,AB是半圆O的直径,点P为半圆O外一点,PA,PB分别交半圆O 于点D,C.若AD=2,PD=4,PC=3,求BD的长.[选修4-2:矩阵与变换]22.设矩阵M=的一个特征值λ对应的特征向量为,求m与λ的值.[选修4-4:坐标系与参数方程]23.在平面直角坐标系xOy中,已知直线为参数).现以坐标原点O为极点,以x轴非负半轴为极轴建立极坐标系,设圆C的极坐标方程为ρ=2cosθ,直线l与圆C交于A,B两点,求弦AB的长.[选修4-5:不等式选讲]24.若实数x,y,z满足x+2y+z=1,求x2+y2+z2的最小值.[必做题](第25、26题,每小题0分,计20分.请把答案写在答题纸的指定区域内)25.某年级星期一至星期五每天下午排3节课,每天下午随机选择1节作为综合实践课(上午不排该课程),张老师与王老师分别任教甲、乙两个班的综合实践课程.(1)求这两个班“在星期一不同时上综合实践课”的概率;(2)设这两个班“在一周中同时上综合实践课的节数”为X,求X的概率分布表与数学期望E(X).26.设n∈N*,n≥3,k∈N*.(1)求值:k﹣1;①kC n k﹣nC n﹣1②k2C n k﹣n(n﹣1)C n﹣2k﹣2﹣nC n﹣1k﹣1(k≥2);(2)化简:12C n0+22C n1+32C n2+…+(k+1)2C n k+…+(n+1)2C n n.参考答案与试题解析一、填空题(本大题共14小题,每小题5分,计70分.不需写出解答过程,请把答案写在答题纸的指定位置上)1.已知集合A={﹣1,0,1},B=(﹣∞,0),则A∩B={﹣1} .【考点】交集及其运算.【分析】由A与B,求出两集合的交集即可.【解答】解:∵A={﹣1,0,1},B=(﹣∞,0),∴A∩B={﹣1},故答案为:{﹣1}2.设复数z满足(1+i)z=2,其中i为虚数单位,则z的虚部为﹣1.【考点】复数代数形式的乘除运算.【分析】把给出的等式两边同时乘以,然后运用复数的除法进行运算,分子分母同时乘以1﹣i.整理后可得复数z的虚部.【解答】解:由(1+i)z=2,得:.所以,z的虚部为﹣1.故答案为﹣1.3.已知样本数据x1,x2,x3,x4,x5的方差s2=3,则样本数据2x1,2x2,2x3,2x4,2x5的方差为12.【考点】极差、方差与标准差.【分析】利用方差性质求解.【解答】解:∵样本数据x1,x2,x3,x4,x5的方差s2=3,∴样本数据2x1,2x2,2x3,2x4,2x5的方差为:22s2=4×3=12.故答案为:12.4.如图是一个算法流程图,则输出的x的值是9.【考点】程序框图.【分析】模拟执行程序,即可得出结论.【解答】解:由题意,x=1,y=9,x<y,第1次循环,x=5,y=7,x<y,第2次循环,x=9,y=5,x>y,退出循环,输出9.故答案为9.5.在数字1、2、3、4中随机选两个数字,则选中的数字中至少有一个是偶数的概率为.【考点】列举法计算基本事件数及事件发生的概率.【分析】基本事件总数n=,选中的数字中至少有一个是偶数的对立事件是选中的两个数字都是奇数,由此能求出选中的数字中至少有一个是偶数的概率.【解答】解:在数字1、2、3、4中随机选两个数字,基本事件总数n=,选中的数字中至少有一个是偶数的对立事件是选中的两个数字都是奇数,∴选中的数字中至少有一个是偶数的概率为p=1﹣=.故答案为:.6.已知实数x,y满足,则的最小值是.【考点】简单线性规划.【分析】先作出不等式组所表示的平面区域,由于可以看做平面区域内的点与原点的连线的斜率,结合图形可求斜率最大值【解答】解:作出不等式组所表示的平面区域如图所示:由于可以看做平面区域内的点与原点的连线的斜率,结合图形可知,当直线过OA时斜率最小.由于可得A(4,3),此时k=.故答案为:.7.设双曲线的一条渐近线的倾斜角为30°,则该双曲线的离心率为.【考点】双曲线的简单性质.【分析】求出双曲线的渐近线方程,可得a=,则c==2,再由离心率公式,即可得到双曲线的离心率.【解答】解:双曲线的渐近线方程为y=±x,则tan30°=即为a=,则c==2,即有e=.故答案为.8.设{a n}是等差数列,若a4+a5+a6=21,则S9=63.【考点】等差数列的前n项和.【分析】由等差数列的通项公式求出a5=7,再由等差数列的前n项和公式得,由此能求出结果.【解答】解:∵{a n}是等差数列,a4+a5+a6=21,∴a4+a5+a6=3a5=21,解得a5=7,∴=63.故答案为:63.9.将函数的图象向右平移φ()个单位后,所得函数为偶函数,则φ=.【考点】函数y=Asin(ωx+φ)的图象变换.【分析】若所得函数为偶函数,则﹣2φ=+kπ,k∈Z,进而可得答案.【解答】解:把函数f(x)=3sin(2x+)的图象向右平移φ个单位,可得函数y=3sin[2(x﹣φ)+]=3sin(2x+﹣2φ)的图象,若所得函数为偶函数,则﹣2φ=+kπ,k∈Z,解得:φ=﹣+kπ,k∈Z,当k=1时,φ的最小正值为.故答案为:.10.将矩形ABCD绕边AB旋转一周得到一个圆柱,AB=3,BC=2,圆柱上底面圆心为O,△EFG为下底面圆的一个内接直角三角形,则三棱锥O﹣EFG体积的最大值是4.【考点】棱柱、棱锥、棱台的体积.【分析】三棱锥O﹣EFG的高为圆柱的高,即高为ABC,当三棱锥O﹣EFG体积取最大值时,△EFG的面积最大,当EF为直径,且G在EF的垂直平分线上时,)max=,由此能求出三棱锥O﹣EFG体积的最大值.(S△EFG【解答】解:∵将矩形ABCD绕边AB旋转一周得到一个圆柱,AB=3,BC=2,圆柱上底面圆心为O,△EFG为下底面圆的一个内接直角三角形,∴三棱锥O﹣EFG的高为圆柱的高,即高为ABC,∴当三棱锥O﹣EFG体积取最大值时,△EFG的面积最大,当EF为直径,且G在EF的垂直平分线上时,)max=,(S△EFG∴三棱锥O﹣EFG体积的最大值V max==.故答案为:4.11.在△ABC中,已知,,则的最大值为.【考点】平面向量数量积的运算.【分析】可先画出图形,对的两边平方,进行数量积的运算即可得到,根据不等式a2+b2≥2ab即可得到,这样便可求出的最大值.【解答】解:如图,;∴;∴;即;∴=;∴的最大值为.故答案为:.12.如图,在平面直角坐标系中,分别在x轴与直线上从左向右依次取点A k、B k,k=1,2,…,其中A1是坐标原点,使△A k B k A k都是等边三角形,则△A10B10A11+1的边长是512.【考点】数列的求和.【分析】设直线与x轴交点坐标为P,由直线的倾斜角为300,又△A1B1A2是等边三角形,求出△A2B2A3、…找出规律,就可以求出△A10B10A11的边长.【解答】解:∵直线的倾斜角为300,且直线与x轴交点坐标为P(﹣,0),又∵△A1B1A2是等边三角形,∴∠B1A1A2=600,B1A1=,PA2=2,∴△A2B2A3的边长为PA2=2,同理B2A2=PA3=4,…以此类推B10A10=PA10=512,∴△A10B10A11的边长是512,故答案为:512.13.在平面直角坐标系xOy中,已知点P为函数y=2lnx的图象与圆M:(x﹣3)2+y2=r2的公共点,且它们在点P处有公切线,若二次函数y=f(x)的图象经过点O,P,M,则y=f(x)的最大值为.【考点】利用导数研究曲线上某点切线方程.【分析】设P(x0,y0),求得y=2lnx的导数,可得切线的斜率和切线方程;求得圆上一点的切线方程,由直线重合的条件,可得二次函数y=x(3﹣x),满足经过点P,O,M,即可得到所求最大值.【解答】解:设P(x0,y0),函数y=2lnx的导数为y′=,函数y=2lnx在点P处的切线方程为y﹣y0=(x﹣x0),即为x﹣y+y0﹣2=0;圆M:(x﹣3)2+y2=r2的上点P处的切线方程为(x0﹣3)(x﹣3)+yy0=r2,即有(x0﹣3)x+yy0+9﹣3x0﹣r2=0;由切线重合,可得==,即x0(3﹣x0)=2y0,则P为二次函数y=x(3﹣x)图象上的点,且该二次函数图象过O,M,则当x=时,二次函数取得最大值,故答案为:.14.在△ABC中,A、B、C所对的边分别为a、b、c,若a2+b2+2c2=8,则△ABC 面积的最大值为.【考点】余弦定理.【分析】由三角形面积公式,同角三角函数基本关系式,余弦定理可求S2=a2b2﹣,进而利用基本不等式可求S2≤﹣=﹣+c,从而利用二次函数的性质可求最值.【解答】解:由三角形面积公式可得:S=absinC,可得:S2=a2b2(1﹣cos2C)=a2b2[1﹣()2],∵a2+b2+2c2=8,∴a2+b2=8﹣2c2,∴S2=a2b2[1﹣()2]=a2b2[1﹣()2]=a2b2﹣≤﹣=﹣+c,当且仅当a=b时等号成立,∴当c=时,﹣ +c取得最大值,S的最大值为.故答案为:.二、解答题(本大题共6小题,计90分.解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题纸的指定区域内)15.如图,在直三棱柱ABC﹣A1B1C1中,BC⊥AC,D,E分别是AB,AC的中点.(1)求证:B1C1∥平面A1DE;(2)求证:平面A1DE⊥平面ACC1A1.【考点】平面与平面垂直的判定;直线与平面平行的判定.【分析】(1)证明B1C1∥DE,即可证明B1C1∥平面A1DE;(2)证明DE⊥平面ACC1A1,即可证明平面A1DE⊥平面ACC1A1.【解答】证明:(1)因为D,E分别是AB,AC的中点,所以DE∥BC,…又因为在三棱柱ABC﹣A1B1C1中,B1C1∥BC,所以B1C1∥DE…又B1C1⊄平面A1DE,DE⊂平面A1DE,所以B1C1∥平面A1DE…(2)在直三棱柱ABC﹣A1B1C1中,CC1⊥底面ABC,又DE⊂底面ABC,所以CC1⊥DE…又BC⊥AC,DE∥BC,所以DE⊥AC,…又CC1,AC⊂平面ACC1A1,且CC1∩AC=C,所以DE⊥平面ACC1A1…又DE⊂平面A1DE,所以平面A1DE⊥平面ACC1A1…16.在△ABC中,a,b,c分别为内角A,B,C的对边,且bsin2C=csinB.(1)求角C;(2)若,求sinA的值.【考点】余弦定理;正弦定理.【分析】(1)根据正弦定理化简已知等式得2sinBsinCcosC=sinCsinB,结合sinB >0,sinC>0,可求,结合范围C∈(0,π),可求C的值.(2)由角的范围利用同角三角函数基本关系式可求cos(B﹣)的值,由于A=﹣(B﹣),利用两角差的正弦函数公式即可计算求值得解.【解答】解:(1)由bsin2C=csinB,根据正弦定理,得2sinBsinCcosC=sinCsinB,…因为sinB>0,sinC>0,所以,…又C∈(0,π),所以.…(2)因为,所以,所以,又,所以.…又,即,所以=sin[﹣(B﹣)]…=.…17.在平面直角坐标系xOy中,已知圆O:x2+y2=b2经过椭圆(0<b<2)的焦点.(1)求椭圆E的标准方程;(2)设直线l:y=kx+m交椭圆E于P,Q两点,T为弦PQ的中点,M(﹣1,0),N(1,0),记直线TM,TN的斜率分别为k1,k2,当2m2﹣2k2=1时,求k1•k2的值.【考点】椭圆的简单性质.【分析】(1)椭圆E的焦点在x轴上,圆O:x2+y2=b2经过椭圆E的焦点,所以椭圆的半焦距c=b,所以2b2=4,即b2=2,即可求出椭圆E的方程;(2)求出T的坐标,利用斜率公式,结合条件,即可求k1•k2的值.【解答】解:(1)因0<b<2,所以椭圆E的焦点在x轴上,又圆O:x2+y2=b2经过椭圆E的焦点,所以椭圆的半焦距c=b,…所以2b2=4,即b2=2,所以椭圆E的方程为.…(2)设P(x1,y1),Q(x2,y2),T(x0,y0),联立,消去y,得(1+2k2)x2+4kmx+2m2﹣4=0,所以,又2m2﹣2k2=1,所以x1+x2=,所以,,…则.…18.如图所示,某街道居委会拟在EF地段的居民楼正南方向的空白地段AE上建一个活动中心,其中AE=30米.活动中心东西走向,与居民楼平行.从东向西看活动中心的截面图的下部分是长方形ABCD,上部分是以DC为直径的半圆.为了保证居民楼住户的采光要求,活动中心在与半圆相切的太阳光线照射下落在居民楼上的影长GE不超过2.5米,其中该太阳光线与水平线的夹角θ满足.(1)若设计AB=18米,AD=6米,问能否保证上述采光要求?(2)在保证上述采光要求的前提下,如何设计AB与AD的长度,可使得活动中心的截面面积最大?(注:计算中π取3)【考点】直线和圆的方程的应用.【分析】(1)以点A为坐标原点,AB所在直线为x轴,建立平面直角坐标系.设太阳光线所在直线方程为,利用直线与圆相切,求出直线方程,令x=30,得EG=1.5米<2.5米,即可得出结论;(2)方法一:设太阳光线所在直线方程为,利用直线与圆相切,求出直线方程,令x=30,得h≤25﹣2r,即可求出截面面积最大;方法二:欲使活动中心内部空间尽可能大,则影长EG恰为2.5米,即可求出截面面积最大【解答】解:如图所示,以点A为坐标原点,AB所在直线为x轴,建立平面直角坐标系.(1)因为AB=18,AD=6,所以半圆的圆心为H(9,6),半径r=9.设太阳光线所在直线方程为,即3x+4y﹣4b=0,…则由,解得b=24或(舍).故太阳光线所在直线方程为,…令x=30,得EG=1.5米<2.5米.所以此时能保证上述采光要求…(2)设AD=h米,AB=2r米,则半圆的圆心为H(r,h),半径为r.方法一:设太阳光线所在直线方程为,即3x+4y﹣4b=0,由,解得b=h+2r或b=h﹣2r(舍)…故太阳光线所在直线方程为,令x=30,得,由,得h≤25﹣2r…所以=.当且仅当r=10时取等号.所以当AB=20米且AD=5米时,可使得活动中心的截面面积最大…方法二:欲使活动中心内部空间尽可能大,则影长EG恰为2.5米,则此时点G 为(30,2.5),设过点G的上述太阳光线为l1,则l1所在直线方程为y﹣=﹣(x﹣30),即3x+4y﹣100=0…由直线l1与半圆H相切,得.而点H(r,h)在直线l1的下方,则3r+4h﹣100<0,即,从而h=25﹣2r…又=.当且仅当r=10时取等号.所以当AB=20米且AD=5米时,可使得活动中心的截面面积最大…19.设函数f(x)=lnx,g(x)=ax+﹣3(a∈R).(1)当a=2时,解关于x的方程g(e x)=0(其中e为自然对数的底数);(2)求函数φ(x)=f(x)+g(x)的单调增区间;(3)当a=1时,记h(x)=f(x)•g(x),是否存在整数λ,使得关于x的不等式2λ≥h(x)有解?若存在,请求出λ的最小值;若不存在,请说明理由.(参考数据:ln2≈0.6931,ln3≈1.0986).【考点】利用导数研究函数的单调性.【分析】(1)当a=2时,求出g(x)=0的解,即可解关于x的方程g(e x)=0(其中e为自然对数的底数);(2)φ(x)=f(x)+g(x)=lnx+ax+﹣3,φ′(x)=,分类讨论,利用导数的正负,求函数φ(x)=f(x)+g(x)的单调增区间;(3)判断h(x)不存在最小值,即可得出结论.【解答】解:(1)当a=2时,g(x)=0,可得x=1,g(e x)=0,可得e x=或e x=1,∴x=﹣ln2或0;(2)φ(x)=f(x)+g(x)=lnx+ax+﹣3,φ′(x)=①a=0,φ′(x)=>0,函数的单调递增区间是(0,+∞);②a=1,φ′(x)=•x>0,函数的单调递增区间是(0,+∞);③0<a <1,x=<0,函数的单调递增区间是(0,+∞);④a >1,x=>0,函数的单调递增区间是(,+∞);⑤a <0,x=>0,函数的单调递增区间是(0,);(3)a=1,h (x )=(x ﹣3)lnx ,h′(x )=lnx ﹣+1,h″(x )=+>0恒成立,∴h′(x )在(0,+∞)上单调递增, ∴存在x 0,h′(x 0)=0,即lnx 0=﹣1+,h (x )在(0,x 0)上单调递减,(x 0,+∞)上单调递增,∴h (x )min =h (x 0)=﹣(x 0+)+6,∵h′(1)<0,h′(2)>0,∴x 0∈(1,2),∴h (x )不存在最小值,∴不存在整数λ,使得关于x 的不等式2λ≥h (x )有解.20.若存在常数k (k ∈N *,k ≥2)、q 、d ,使得无穷数列{a n }满足则称数列{a n }为“段比差数列”,其中常数k 、q 、d 分别叫做段长、段比、段差.设数列{b n }为“段比差数列”.(1)若{b n }的首项、段长、段比、段差分别为1、3、q 、3. ①当q=0时,求b xx ;②当q=1时,设{b n }的前3n 项和为S 3n ,若不等式对n ∈N *恒成立,求实数λ的取值范围;(2)设{b n }为等比数列,且首项为b ,试写出所有满足条件的{b n },并说明理由.【考点】数列的应用;等比数列的性质.【分析】(1)①方法一:由{b n }的首项、段长、段比、段差可得b xx =0×b xx =0,再由b xx =b xx +3,b xx =b xx +3即可;方法二:根据{b n }的首项、段长、段比、段差,⇒b 1=1,b 2=4,b 3=7,b 4=0×b 3=0,b 5=b 4+3=3,b 6=b 5+3=6,b 7=0×b 6=0,…⇒b n }是周期为3的周期数列即可; ②方法一:由{b n }的首项、段长、段比、段差,⇒b 3n +2﹣b 3n ﹣1=(b 3n +1+d )﹣b 3n ﹣1=(qb 3n +d )﹣b 3n ﹣1=[q (b 3n ﹣1+d )+d ]﹣b 3n ﹣1=2d=6,⇒{b 3n ﹣1}是等差数列,又∵b3n+b3n﹣1+b3n=(b3n﹣1﹣d)+b3n﹣1+(b3n﹣1+d)=3b3n﹣1,即可求S3n ﹣2方法二:由{b n}的首项、段长、段比、段差⇒b3n+1=b3n,∴b3n+3﹣b3n=b3n+3﹣=2d=6,∴{b3n}是首项为b3=7、公差为6的等差数列即可,b3n+1(2)方法一:设{b n}的段长、段比、段差分别为k、q、d,⇒等比数列的通项公式有,﹣b km+1=d,即bq km+1﹣bq km=bq km(q﹣1)=d恒成立,①若q=1,当m∈N*时,b km+2则d=0,b n=b;②若q≠1,则,则q km为常数,则q=﹣1,k为偶数,d=﹣2b,;方法二:设{b n}的段长、段比、段差分别为k、q、d,①若k=2,则b1=b,b2=b+d,b3=(b+d)q,b4=(b+d)q+d,由,得b+d=bq;由,得(b+d)q2=(b+d)q+d,求得得d 即可②若k≥3,则b1=b,b2=b+d,b3=b+2d,由,求得得d 即可.【解答】(1)①方法一:∵{b n}的首项、段长、段比、段差分别为1、3、0、3,∴b xx=0×b xx=0,∴b xx=b xx+3=3,∴b xx=b xx+3=6.…方法二:∵{b n}的首项、段长、段比、段差分别为1、3、0、3,∴b1=1,b2=4,b3=7,b4=0×b3=0,b5=b4+3=3,b6=b5+3=6,b7=0×b6=0,…∴当n≥4时,{b n}是周期为3的周期数列.∴b xx=b6=6.…②方法一:∵{b n}的首项、段长、段比、段差分别为1、3、1、3,∴b3n﹣b3n﹣1=(b3n+1+d)﹣b3n﹣1=(qb3n+d)﹣b3n﹣1=[q(b3n﹣1+d)+d]﹣b3n﹣1=2d=6,+2}是以b2=4为首项、6为公差的等差数列,∴{b3n﹣1又∵b3n+b3n﹣1+b3n=(b3n﹣1﹣d)+b3n﹣1+(b3n﹣1+d)=3b3n﹣1,∴S3n=(b1+b2+b3)﹣2+(b4+b5+b6)+…+(b3n﹣2+b3n﹣1+b3n)=,…∵,∴,设,则λ≥(c n)max,又,当n=1时,3n2﹣2n﹣2<0,c1<c2;当n≥2时,3n2﹣2n﹣2>0,c n+1<c n,∴c1<c2>c3>…,∴(c n)max=c2=14,…∴λ≥14,得λ∈[14,+∞).…方法二:∵{b n }的首项、段长、段比、段差分别为1、3、1、3,∴b 3n +1=b 3n ,∴b 3n +3﹣b 3n =b 3n +3﹣b 3n +1=2d=6,∴{b 3n }是首项为b 3=7、公差为6的等差数列, ∴,易知{b n }中删掉{b 3n }的项后按原来的顺序构成一个首项为1公差为3的等差数列,∴,∴,…以下同方法一.(2)方法一:设{b n }的段长、段比、段差分别为k 、q 、d , 则等比数列{b n }的公比为,由等比数列的通项公式有,当m ∈N *时,b km +2﹣b km +1=d ,即bq km +1﹣bq km =bq km (q ﹣1)=d 恒成立,… ①若q=1,则d=0,b n =b ;②若q ≠1,则,则q km 为常数,则q=﹣1,k 为偶数,d=﹣2b ,; 经检验,满足条件的{b n }的通项公式为b n =b 或.… 方法二:设{b n }的段长、段比、段差分别为k 、q 、d , ①若k=2,则b 1=b ,b 2=b +d ,b 3=(b +d )q ,b 4=(b +d )q +d , 由,得b +d=bq ;由,得(b +d )q 2=(b +d )q +d , 联立两式,得或,则b n =b 或,经检验均合题意.… ②若k ≥3,则b 1=b ,b 2=b +d ,b 3=b +2d ,由,得(b +d )2=b (b +2d ),得d=0,则b n =b ,经检验适合题意. 综上①②,满足条件的{b n }的通项公式为b n =b 或.…数学附加题部分(本部分满分0分,考试时间30分钟)[选做题](在21、22、23、24四小题中只能选做2题,每小题0分,计20分)[选修4-1:几何证明选讲]21.如图,AB 是半圆O 的直径,点P 为半圆O 外一点,PA ,PB 分别交半圆O 于点D ,C .若AD=2,PD=4,PC=3,求BD 的长.【考点】与圆有关的比例线段.【分析】由切割线定理得:PD•PA=PC•PB,求出BC,利用勾股定理,求BD的长.【解答】解:由切割线定理得:PD•PA=PC•PB则4×(2+4)=3×(3+BC),解得BC=5,…又因为AB是半圆O的直径,故,…则在三角形PDB中有.…[选修4-2:矩阵与变换]22.设矩阵M=的一个特征值λ对应的特征向量为,求m与λ的值.【考点】特征向量的定义.【分析】推导出,由此能求出结果.【解答】解:∵矩阵M=的一个特征值λ对应的特征向量为,∴,…解得m=0,λ=﹣4.…[选修4-4:坐标系与参数方程]23.在平面直角坐标系xOy中,已知直线为参数).现以坐标原点O为极点,以x轴非负半轴为极轴建立极坐标系,设圆C的极坐标方程为ρ=2cosθ,直线l与圆C交于A,B两点,求弦AB的长.【考点】简单曲线的极坐标方程.【分析】直线为参数)化为普通方程,圆C的极坐标方程ρ=2cosθ化为直角坐标方程,求出圆C的圆心到直线l的距离,即可求弦AB的长.【解答】解:直线为参数)化为普通方程为4x﹣3y=0,…圆C的极坐标方程ρ=2cosθ化为直角坐标方程为(x﹣1)2+y2=1,…则圆C的圆心到直线l的距离为,…所以.…[选修4-5:不等式选讲]24.若实数x,y,z满足x+2y+z=1,求x2+y2+z2的最小值.【考点】基本不等式.【分析】利用条件x+2y+z=1,构造柯西不等式(x+y+z)2≤(x2+y2+z2)(12+22+12)进行解题即可.【解答】解:由柯西不等式,得(x+2y+z)2≤(12+22+12)•(x2+y2+z2),即,…又因为x+2y+z=1,所以,当且仅当,即时取等号.综上,.…[必做题](第25、26题,每小题0分,计20分.请把答案写在答题纸的指定区域内)25.某年级星期一至星期五每天下午排3节课,每天下午随机选择1节作为综合实践课(上午不排该课程),张老师与王老师分别任教甲、乙两个班的综合实践课程.(1)求这两个班“在星期一不同时上综合实践课”的概率;(2)设这两个班“在一周中同时上综合实践课的节数”为X,求X的概率分布表与数学期望E(X).【考点】离散型随机变量的期望与方差.【分析】(1)利用对立事件的概率关系求解;(2)两个班“在一星期的任一天同时上综合实践课”的概率为,一周中5天是5次独立重复试验,服从二项分布.【解答】解:(1)这两个班“在星期一不同时上综合实践课”的概率为.…(2)由题意得,.…所以X的概率分布表为:X012345P…所以,X的数学期望为.…26.设n∈N*,n≥3,k∈N*.(1)求值:k﹣1;①kC n k﹣nC n﹣1②k2C n k﹣n(n﹣1)C n﹣2k﹣2﹣nC n﹣1k﹣1(k≥2);(2)化简:12C n0+22C n1+32C n2+…+(k+1)2C n k+…+(n+1)2C n n.【考点】组合及组合数公式.【分析】(1)利用组合数的计算公式即可得出.(2)方法一:由(1)可知当k≥2时=.代入化简即可得出.方法二:当n≥3时,由二项式定理,有,两边同乘以x,得,两边对x求导,得,两边再同乘以x,得,两边再对x求导,得(1+x)n+n(1+x)n﹣1x+n(n﹣1)(1+x)n﹣2x2+2n(1+x)n ﹣1x=.令x=1,即可得出.【解答】解:(1)①=.…②==.…(2)方法一:由(1)可知当k≥2时=.故==(1+4n)+n(n﹣1)2n﹣2+3n(2n﹣1﹣1)+(2n﹣1﹣n)=2n﹣2(n2+5n+4).…方法二:当n≥3时,由二项式定理,有,两边同乘以x,得,两边对x求导,得,…两边再同乘以x,得,两边再对x求导,得(1+x)n+n(1+x)n﹣1x+n(n﹣1)(1+x)n﹣2x2+2n(1+x)n ﹣1x=.…令x=1,得2n+n2n﹣1+n(n﹣1)2n﹣2+2n2n﹣1=,即=2n﹣2(n2+5n+4).…xx2月1日24926 615E 慞# 35558 8AE6 諦36366 8E0E 踎26989 696D 業h40385 9DC1 鷁o39492 9A44 驄34218 85AA 薪32794 801A 耚31093 7975 祵。
2019年北京市高考数学一模试卷(理科)(解析版)
2019年北京市高考数学一模试卷(理科)(解析版)2019年北京市高考数学一模试卷(理科)一、选择题共8个小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知复数z=i(1+i),则|z|等于()A。
2B。
√2C。
1D。
2√22.在方程r=2cosθ+3sinθ(θ为参数)所表示的曲线上的点是()A。
(2.-7)B。
(3.1)C。
(1.5)D。
(2.1)3.设公差不为零的等差数列{an}的前n项和为Sn,若a4=2(a2+a3),则Sn=()A。
5anB。
6anC。
7anD。
14an4.将函数y=sin2x的图象向左平移π/4个单位后得到函数y=g(x)的图象。
则函数g(x)的一个增区间是()A。
(π/4.3π/4)B。
(3π/4.5π/4)C。
(5π/4.7π/4)D。
(7π/4.9π/4)5.使“a>b”成立的一个充分不必要条件是()A。
a>b+1B。
a>b-1C。
a^2>b^2D。
a^3>b^36.下列函数:①y=-|x|;②y=(x-1)^3;③y=log2(x-1);④y=-6.在x中,在(1.+∞)上是增函数且不存在零点的函数的序号是()A。
①④B。
②③C。
②④D。
①③④7.某三棱锥的正视图和侧视图如图所示,则该三棱锥的俯视图的面积为()A。
6B。
8C。
10D。
128.远古时期,人们通过在绳子上打结来记录数量,即“结绳计数”,如图所示的是一位母亲记录的孩子自出生后的天数,在从右向左依次排列的不同绳子上打结,满七进一,根据图示可知,孩子已经出生的天数是()A。
336B。
510C。
1326D。
3603二、填空题共6小题,每小题5分,共30分。
9.在(1-x)^5的展开式中,x^2的系数为______(用数字作答)。
答案:1010.已知向量a=(1.b)。
b=(-2.-1),且向量a+b的模长为√10.则实数x=______。
2019年江苏省高考数学模拟试卷(1)(含附加,详细答案)
2019年江苏省高考数学模拟试卷(1)(含附加,详细答案)文章中没有明显的格式错误和有问题的段落,因此直接改写每段话。
2019年高考模拟试卷(1)第Ⅰ卷(必做题,共160分)一、填空题:本大题共14小题,每小题5分,共70分。
1.已知集合A为{x-1<x<1},集合B为{-1≤x≤2},则AB 的并集为[ -1.2 )。
2.复数z=2i/(1-i)的实部是2/5.3.甲、乙两人下棋,结果是一人获胜或下成和棋。
已知甲不输的概率为0.8,乙不输的概率为0.7,则两人下成和棋的概率为0.06.4.某地区连续5天的最低气温(单位:°C)依次为8,-4,-1,0,2,则该组数据的方差为23.2.5.根据XXX所示的伪代码,当输出y的值为2时,则输入的x的值为e。
6.在平面直角坐标系xOy中,圆x^2+y^2-4x+4y+4=0被直线x-y-5=0所截得的弦长为4.7.如图,三个相同的正方形相接,则XXX∠XXX的值为1.8.如图,四棱锥P-ABCD的底面ABCD是矩形,PA⊥底面ABCD,E为PD上一点,且PE=2ED。
设三棱锥P-ACE的体积为V1,三棱锥P-ABC的体积为V2,则.9.已知F是抛物线C:y=8x的焦点,M是C上一点,FM的延长线交y轴于点N。
若M是FN的中点,则FN的长度为16.10.若函数f(x)为定义在R上的奇函数,当x>0时,f(x)=xlnx,则不等式f(x)<-e的解集为(1/e。
e)。
11.钢材市场上通常将相同的圆钢捆扎为正六边形垛(如图)。
现将99根相同的圆钢捆扎为1个尽可能大的正六边形垛,则剩余的圆钢根数为3.12.如图,在△ABC中,点M为边BC的中点,且AM=2,点N为线段AM的中点,若AB×AC=28,则NB×NC的值为21.13.已知正数x,y满足x+y+1/x+1/y=10,则x+y的最小值是4.14.设等比数列{an}满足:a1=2,an=cos(πn/2)+3sin(πn/2),其中n∈N,且nπ/2∈(0.π/2)。
2019年山东省高考数学模拟试卷及参考答案
2019年山东省高考数学模拟试卷()副标题题号一二三总分得分一、选择题(本大题共12小题,共60.0分)1.命题“∀x>1,x2-x>0”的否定是()A. ,B. ,C. ,D. ,2.椭圆点=1的离心率为()A. B. C. D.3.若函数f(x)=x2-,则f′(1)=()A. 1B. 2C. 3D. 44.已知双曲线C:=1(a>0,b>0)的两条渐近线互相垂直,焦距为8,则C的方程为()A. B. C. D.5.已知向量,平面α的一个法向量,若AB⊥α,则()A. ,B. ,C.D.6.已知函数的图象在点(1,f(1))处的切线与直线x-ey+2=0平行,则a=()A. 1B.C. eD.7.在三棱柱ABC-A 1B1C1中,若=,=,=,则=()A. B. C. D.8.已知函数f(x)=x+cos(+x),x∈[,],则f(x)的极大值点为()A. B. C. D.9.已知函数f(x)=m ln(x+1)+x2-mx在(1,+∞)上不单调,则m的取值范围是()A. B. C. D.10.已知S n为等差数列{a n}的前n项和,a1=1,公差为d,则“-1<d<0”是“S22+S52<26”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件11.已知双曲线=1(a>0,b>0)的离心率为2,F1,F2分别是双曲线的左右焦点,点M(-a,0),N(0,b),点P为线段MN上的动点,当•取得最小值和最大值时,△PF1F2的面积分别为S1,S2,则=()A. 4B. 8C.D.12.已知函数f(x)=x2+2a ln x+3,若∀x1,x2∈[4,+∞)(x1≠x2),∃a∈[2,3],<2m,则m的取值范围是()A. B. C. D.二、填空题(本大题共4小题,共20.0分)13.函数的最小值为______.14.直线l的一个方向向量为,直线n的一个方向向量为,则l与n的夹角为______.15.过焦点为F的抛物线y2=12x上一点M向其准线作垂线,垂足为N,若|NF|=10,则MF|=______.16.已知四棱柱ABCD-A1B1C1D1的底面是边长为2的正方形,侧棱与底面垂直.若点C到平面AB1D1的距离为,直线B1D与平面AB1D1所成角的余弦值为______.三、解答题(本大题共6小题,共70.0分)17.如图,在正四棱柱ABCD-A1B1C1D1中,E为棱BB1的中点,AB=2,AA1=4.(1)若=x+y+z,求x+y+z;(2)以D为坐标原点,建立如图所示的空间直角坐标系D-xyz,写出A1,C,D1,E 的坐标,并求异面直线DE与CD1所成角的余弦值.18.已知动圆C过定点F(2,0),且与直线x=-2相切,圆心C的轨迹为E,(1)求E的轨迹方程;(2)若直线l交E与P,Q两点,且线段PQ的中心点坐标(1,1),求|PQ|.19.如图,在直三棱柱ABC-A1B1C1中,AC⊥AB,AC=AB=4,AA1=8,点E,F分别为CA1,AB的中点.(1)求异面直线EF与A1B所成角的正弦值;(2)求二面角A-B1F-E的余弦值.20.设函数f(x)=e2x-a(x+1).(1)讨论f(x)的单调性;(2)若f(x)>0对x∈R恒成立,求a的取值范围.21.已知椭圆C:的离心率为,且经过点.(1)求椭圆C的方程;(2)直线l:y=kx+m(k>0,m2≠4)与椭圆C相交于A,B两点,若|AB|=4,试用m表示k.22.已知函数f(x)=x lnx+ax3-ax2,a∈R.(1)当a=0时,求f(x)的单调区间;(2)若函数g(x)=存在两个极值点x1,x2,求g(x1)+g(x2)的取值范围.答案和解析1.【答案】B【解析】解:因为全称命题的否定是特称命题,所以命题“∀x>1,x2-x>0”的否定是:∃x0>1,x2-x≤0.故选:B.利用全称命题的否定是特称命题写出结果即可.本题考查命题的否定,特称命题与全称命题的否定关系,是基本知识的考查.2.【答案】A【解析】解:椭圆点=1,可得a=,b=,c=,可得e===.故选:A.求出椭圆的长半轴以及半焦距的大小,然后求解离心率即可.本题考查椭圆的简单性质的应用,考查转化思想以及计算能力.3.【答案】C【解析】解:∵f(x)=x2-,∴f′(x)=2x+,则f′(1)=2+1=3.故选:C.求出原函数的导函数,取x=1得答案.本题考查导数的计算,关键是熟记初等函数的求导公式,是基础题.4.【答案】D【解析】解:双曲线C:=1(a>0,b>0)的两条渐近线互相垂直,则a=b,由2c=8,可得c=4由a2+b2=c2=16,可得a2=b2=8,故选:D.根据双曲线C:=1(a>0,b>0)的两条渐近线互相垂直,则a=b,再根据c=4,即可求出a2=b2=8.本题考查双曲线的方程和性质,考查双曲线的渐近线方程的运用,属于基础题.5.【答案】A【解析】解:因为⊥α,所以,由,解得x=6,y=2.故选:A.根据空间向量的共线定理列方程组求出x、y的值.本题考查了空间向量的坐标表示与共线定理的应用问题,是基础题.6.【答案】D【解析】解:函数,可得,函数的图象在点(1,f(1))处的切线与直线x-ey+2=0平行,,所以a=-1.故选:D.求出函数的导数,求出切线的斜率,列出方程求解a即可.本题考查函数的导数的应用,切线方程的求法,考查计算能力.7.【答案】B【解析】解:=-=-=--.故选:B.利用=-=-即可得出.本题考查了向量三角形法则,考查了推理能力与计算能力,属于基础题.8.【答案】B【解析】解:f(x)=x+cos(+x)=x-sinx,则f′(x)=-cosx,令f′(x)>0,解得:-<x<-或<x<,令f′(x)<0,解得:-<x<,故f(x)在[-,-)递增,在(-,)递减,在(,]递增,故f(x)的极大值点是-,故选:B.求出函数的导数,求出函数的单调区间,从而求出函数的极大值点即可.本题考查了函数的单调性,极值点问题,考查导数的应用,是一道常规题.9.【答案】A【解析】解:函数的定义域为(0,+∞),函数的导数f′(x)=+2x-m=,若f(x)在(1,+∞)上不单调,即当x>1时f′(x)=0有解,即2x2+(2-m)x=0,则x>1时,有解,由2x2+(2-m)x=0得2x+(2-m)=0,即x=,则>1即可,得m>4,即实数m的取值范围是(4,+∞),故选:A.求函数的导数,结合函数在(1,+∞)上不单调,得当x>1时f′(x)=0有解,结合一元二次方程进行求解即可.本题主要考查函数导数的应用,结合函数单调性与导数之间的关系转化为f′(x)=0,有解是解决本题的关键.10.【答案】B【解析】解:∵S22+S52<26,∴(2+d)2+25(1+2d)2<26,∴(101d+3)(d+1)<0,∴-1<d<-,∵-1<d<0推不出-1<d<-,-1<d<-⇒-1<d<0,∴“-1<d<0”是“S22+S52<26”的必要不充分条件.故选:B.解出关于d的不等式,结合充分必要条件的定义,从而求出答案.本题考查了充分必要条件,考查解不等式问题,考查了等差数列的前n项公式,是一道基础题.11.【答案】A【解析】解:•取==PO2-c2.∵双曲线=1(a>0,b>0)的离心率为2,∴1+=4,即b=a.当PO⊥MN时,PO最小,当P与N重合时PO最大.当PO⊥MN时,由,可得,则=,故选:A.由•==PO2-c2.可得当PO⊥MN时,PO最小,当P与N重合时PO最大.求得面积S1,S2,即可.本题考查双曲线的定义、方程和性质,考查三角形的面积公式的运用,注意运用定义法解题,以及离心率公式,考查运算能力,属于中档题.12.【答案】D【解析】解:设x1>x2,由<2m,得f(x1)+2mx1>f(x2)+2mx2,记g(x)=f(x)+2mx,则g(x)在[0,+∞)上单调递增,故g'(x)≥0在[4,+∞)上恒成立,即在[4,+∞)上恒成立,整理得在[4,+∞)上恒成立,∵a∈[2,3],∴函数在[4,+∞)上单调递增,故有,∵∃a∈[2,3],∴,即.故选:D.设x1>x2,把<2m转化为f(x1)+2mx1>f(x2)+2mx2,记g(x)=f(x)+2mx,则g(x)在[0,+∞)上单调递增,故g'(x)≥0在[4,+∞)上恒成立,转化为在[4,+∞)上恒成立,求出函数在[4,+∞)上的最大值即可求得m的范围.本题考查利用导数研究函数的单调性,考查数学转化思想方法,训练了利用函数单调性求函数的最值,是中档题.13.【答案】【解析】解:因为,易知f(x)在(0,1)上单调递减,在(1,+∞)上单调递增,所以.故答案为:.求出函数的导数,利用函数的单调性转化求解函数的最小值.本题考查函数的导数的应用,函数的最值的求法,考查计算能力.14.【答案】【解析】解:∵直线l的一个方向向量为,直线n的一个方向向量为,,∴l与n的夹角为.故答案为:.利用空间向量夹角公式直接求解.本题考查两直线的夹角的余弦值的求法,考查空间向量夹角公式等基础知识,考查运算求解能力,是基础题.15.【答案】【解析】解:设M(x0,y),F(3,0).∵|NF|=10,∴=102,=12x,解得x=,则MF|=+3=.故答案为:.设M(x0,y),F(3,0).由|NF|=10,可得=102,又=12x,联立解出即可得出.本题考查了抛物线的定义标准方程及其性质、勾股定理,考查了推理能力与计算能力,属于中档题.16.【答案】【解析】解:设AA1=t,以D为原点,DA,DC,DD1所在直线分别为x,y,z轴,建立空间直角坐标系,则A(2,0,0),B1(2,2,t),D1(0,0,t),D(0,0,0),C(0,2,0),=(0,2,t),=(-2,0,t),=(2,2,t),=(-2,2,0),设平面AB1D1的法向量=(x,y,z),则,取x=1,得=(1,-1,),∵点C到平面AB1D1的距离为,∴d===,由t>0,解得t=2,∴平面AB1D1的法向量=(1,-1,),=(2,2,2),设直线B1D与平面AB1D1所成角为θ,则sinθ===,∴cosθ==.∴直线B1D与平面AB1D1所成角的余弦值为.故答案为:.设AA1=t,以D为原点,DA,DC,DD1所在直线分别为x,y,z轴,建立空间直角坐标系,利用向量法求出t=2,从而求出平面AB1D1的法向量,利用向量法能求出直线B1D与平面AB1D1所成角的余弦值.本题考查线面线面角的正弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.17.【答案】解:(1)建立如图所示的空间直角坐标系得:D1(0,0,4),D(0,0,0),E(2,2,2),A(2,0,0),C(0,2,0),则=(2,2,2),=(2,0,0),=(0,2,0),=(0,0,4),又=x+y+z,所以,即,故x+y+z=(2)由图可得:A1(2,0,4),C(0,2,0),D1(0,0,4),E(2,2,2),所以=(2,2,2),=(0,-2,4),设,的夹角为θ,则cosθ==,则异面直线DE与CD1所成角的余弦值为,故答案为:.【解析】(1)由空间直角坐标系、空间点的坐标得:=x+y+z,所以,即,故x+y+z=(2)利用向量的数量积求异面直线所成的角得:设,的夹角为θ,则cosθ==,则异面直线DE与CD所成角的余弦值为,1得解.本题考查了空间直角坐标系、空间点的坐标及利用向量的数量积求异面直线所成的角,属中档题.18.【答案】解:(1)由题设知,点C到点F的距离等于它到直线x=-2的距离,所以点C的轨迹是以F为焦点x=-2为基准线的抛物线,所以所求E的轨迹方程为y2=8x.(2)由题意已知,直线l的斜率显然存在,设直线l的斜率为k,P(x1,y1),Q(x2,y2),则有,两式作差得y 12-y22=8(x1-x2)即得,因为线段PQ的中点的坐标为(1,1),所以k=4,则直线l的方程为y-1=4(x-1),即y=4x-3,与y2=8x联立得16x2-32x+9=0,得,.【解析】(1)利用动圆C过定点F(2,0),且与直线l:x=-2相切,所以点C的1轨迹是以F为焦点x=-2为基准线的抛物线,即可求动点C的轨迹方程;(2)先利用点差法求出直线的斜率,再利用韦达定理,结合弦长公式,即可求|PQ|.本题考查轨迹方程,考查直线与抛物线的位置关系,考查学生的计算能力,属于中档题19.【答案】解:(1)∵在直三棱柱ABC-A1B1C1中,AC⊥AB,AC=AB=4,AA1=8,点E,F分别为CA1,AB的中点.∴以A1为原点,A1C1,A1B1,A1A所成直线分别为x,y,z轴,建立空间直角坐标系,则E(2,0,4),F(0,2,8),A1(0,0,0),B(0,4,8),=(-2,2,4),=(0,4,8),设异面直线EF与A1B所成角为θ,则cosθ==,sinθ==,∴异面直线EF与A1B所成角的正弦值为.(2)A(0,0,8),B 1(0,4,0),=(0,-2,8),=(0,-4,8),=(2,-4,4),设平面AB 1F的法向量=(1,0,0),设平面B 1EF的法向量=(x,y,z),则,取z=1,得=(4,-2,1),设二面角A-B1F-E的平面角为θ,则cosθ===.∴二面角A-B1F-E的余弦值为.【解析】(1)以A1为原点,A1C1,A1B1,A1A所成直线分别为x,y,z轴,建立空间直角坐标系,利用向量法能求出异面直线EF与A1B所成角的正弦值.(2)求出平面AB1F的法向量和平面B1EF的法向量,利用向量法能求出二面角A-B1F-E的余弦值.本题考查异面直线所成角的正弦值的求法,考查二面角的余弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查数形结合思想,是中档题.20.【答案】解:(1)由函数的解析式可得:f′(x)=2e2x-a,当a≤0时,f′(x)>0,f(x)在R上单调递增,当a>0时,由f’(x)=0可得,则单调递减,单调递增.(2)由题意可得:e2x-a(x+1)>0,e2x>a(x+1)恒成立,很明显a<0不合题意,当a≥0时,原问题等价于指数函数y=(e2)x的图象恒在y =a (x+1)的上方,直线y=a(x+1)恒过定点(-1,0),考查函数y=(e2)x过( -1,0)的切线方程:易知切点坐标为,切线斜率为,故切线方程为:,切线过(-1,0),故,解得:,综上可得,实数a的取值范围是.【解析】(1)首先求得导函数,然后分类讨论确定函数的单调性即可;(2)将原问题转化为函数过一点的切线问题,利用导函数研究切线的性质即可确定实数a的取值范围.本题主要考查导函数研究函数的切线方程,导函数研究函数的单调性,分类讨论的数学思想等知识,属于中等题.21.【答案】解:(1)由题意有,解得故椭圆C的方程为.(2)设A(x1,y1),B(x2,y2),由,得(2k2+1)x2+4kmx+2m2-8=0,所以,.因为|AB|=4|,所以,所以,整理得k2(4-m2)=m2-2,显然m2≠4,所以.又k>0,故.【解析】(1)由题意可得,解得a,b即可.(2)利用直线与椭圆方程,利用弦长公式,韦达定理,求得,整理得,即可求解.本题考查椭圆标准方程的求法,考查椭圆的简单性质,训练了直线与椭圆位置关系的应用,属中档题.22.【答案】解:(1)当a=0时,f(x)=x lnx,f′(x)=ln x+1,令f′(x)<0,解得:0<x<,令f′(x)>0,解得:x>,故函数f(x)在(0,)递减,在(,+∞)递增;(2)g(x)==ln x+ax2-ax(x>0),g′(x)=,由题意知:x1,x2是方程g′(x)=0的两个不相等的正实根,即x1,x2是方程ax2-ax+1=0的两个不相等的正实根,故,解得:a>4,∵t(a)=g(x1)+g(x2)=a-ax 1+ln x1+a-ax2+ln x2=a[-2x 1x2]-a(x1+x2)+ln(x1x2)=-a-ln a-1是关于a的减函数,故t(a)<t(4)=-3-ln4,故g(x1)+g(x2)的范围是(-∞,-3-ln4).【解析】(1)代入a的值,求出函数的导数,解关于导函数的不等式,求出函数的单调区间即可;(2)求出a的范围,得到t(a)=g(x1)+g(x2)的解析式,结合函数的单调性求出其范围即可.本题考查了函数的单调性,最值问题,考查导数的应用以及转化思想,是一道综合题.。
2019年高考数学(理)模拟题及答案带解析.docx
本文从网络收集而来,上传到平台为了帮到更多的人,如果您需要使用本文档,请点击下载,另外祝您生活愉快,工作顺利,万事如意!2019年高考数学(理)模拟题及答案带解析【满分150分,考试时间为120分钟】一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合 4 = {-2,-1,0,2,3},B = {y | y =对-1, x w 4},则 4 B 中兀素的个数是A. 2B. 3C. 4D. 52.,是虚数单位,复数z = a + i(^a e R)满足z2 + z = l-3i,贝!]忖=A.血或厉 B 2 或5 C. A/5 D. 53.设向量°与〃的夹角为0,且a = (-2,1), a + 2"(2,3),则cos& =A. —E B 2 C. D.5 5 5 2^5__5-A. 7B. -7C.75.《九章算术》中,将底面是直角二角形的直二棱柱称之为"堑堵",已知某"堑堵"的三视图如图所示,则该"堑堵" 的表面积为A. 4B. 6 + 4 血C. 4 + 4^2D. 26.已知数列{a n},{b n}满足b n=a n+a n+l,则"数列匕}为等差数列"是"数列{$}为等差数列"的A.充分不必要条件B.必要不充分条件C.充分必要条件D.即不充分也不必要条件7.执行如图所示的程序框图,则输出的"A. 1 D.-8.在(x-2)10展开式中,二项式系数的最大值为a,含F项的系数为方,则2 = aA. —B. —C.D.21 80 80 21x — 2y— 5 W 09.设实数满足约束条件x+y-4<0 ,贝% = /+尸的最小值为3.x+y-10>0A. VioB. 10C. 8D. 510.现有一半球形原料,若通过切削将该原料加工成一正方体工件,则所得工件体积与原料体积之比的最大值为A A/6 g V6 c 3V2 D 3V23龙6718^. 2 211.已知O为坐标原点,F是双曲线-与= l(a>0』>0)的左焦a b点,4,B分别为「的左、右顶点,P为厂上一点,且PF丄兀轴,过点4的直线/与线段PF交于点M ,与y轴交于点E,直线BM与y轴交于点N,若|OE\ = 2\ON\ ,则「的离心率为A. 3B. 2C. -D.212.已知函数/(x) = ln(e' +e-') + x2 ,则使得/(2x) >/(x + 3)成立的■x的取值范围是A. (-1,3)B. (^0,-3)(3,+co)C. (-3,3)D. (YO,—1)(3,4W)二、填空题:本题共4小题,每小题5分,共20分。
2019年高考数学模拟试卷附答案
2019年高考数学模拟试卷附答案一、选择题1.若满足sin cos cos A B Ca b c==,则ABC ∆为( ) A .等边三角形 B .有一个内角为30的直角三角形 C .等腰直角三角形D .有一个内角为30的等腰三角形2.已知F 1,F 2分别是椭圆C :22221x y a b+= (a >b >0)的左、右焦点,若椭圆C 上存在点P ,使得线段PF 1的中垂线恰好经过焦点F 2,则椭圆C 离心率的取值范围是( ) A .2,13⎡⎫⎪⎢⎣⎭B .12,32⎡⎤⎢⎥⎣⎦C .1,13⎡⎫⎪⎢⎣⎭D .10,3⎛⎤ ⎥⎝⎦3.《九章算术》是我国古代的数学名著,书中有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各得几何.”其意思为“已知甲、乙、丙、丁、戊五人分5钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位).这个问题中,甲所得为( )A .54钱B .43钱C .32钱 D .53钱 4.若()34i x yi i +=+,,x y R ∈,则复数x yi +的模是 ( )A .2B .3C .4D .55.当1a >时, 在同一坐标系中,函数xy a -=与log a y x =-的图像是( )A .B .C .D .6.函数y ()y ()f x f x ==,的导函数的图像如图所示,则函数y ()f x =的图像可能是A .B .C .D .7.某校现有高一学生210人,高二学生270人,高三学生300人,用分层抽样的方法从这三个年级的学生中随机抽取n 名学生进行问卷调查,如果已知从高一学生中抽取的人数为7,那么从高三学生中抽取的人数为( ) A .7B .8C .9D .108.如图是一个正方体的平面展开图,则在正方体中直线AB 与CD 的位置关系为( )A .相交B .平行C .异面而且垂直D .异面但不垂直9.由a 2,2﹣a ,4组成一个集合A ,A 中含有3个元素,则实数a 的取值可以是( ) A .1B .﹣2C .6D .210.设,a b ∈R ,数列{}n a 中,211,n n a a a a b +==+,N n *∈ ,则( )A .当101,102b a => B .当101,104b a => C .当102,10b a =-> D .当104,10b a =->11.如图,中心均为原点O 的双曲线与椭圆有公共焦点,M ,N 是双曲线的两顶点.若M ,O ,N 将椭圆长轴四等分,则双曲线与椭圆的离心率的比值是A .3B .2C.3 D .212.一个几何体的三视图如图所示,其中正视图是一个正三角形,俯视图是一个等腰直角三角形,则该几何体的外接球的表面积为( )A .43π B .83π C .163πD .203π二、填空题13.设函数()212log ,0log (),0x x f x x x >⎧⎪=⎨-<⎪⎩ ,若()()f a f a >-,则实数a 的取值范围是__________.14.函数()22,026,0x x f x x lnx x ⎧-≤=⎨-+>⎩的零点个数是________.15.事件,,A B C 为独立事件,若()()()111,,688P A B P B C P A B C ⋅=⋅=⋅⋅=,则()P B =_____.16.如图,正方体1111ABCD A B C D -的棱长为1,线段11B D 上有两个动点,E F ,且2EF =,现有如下四个结论: AC BE ①⊥;//EF ②平面ABCD ;③三棱锥A BEF -的体积为定值;④异面直线,AE BF 所成的角为定值,其中正确结论的序号是______.17.已知复数z=(1+i )(1+2i ),其中i 是虚数单位,则z 的模是__________ 18.一个算法的伪代码如图所示,执行此算法,最后输出的S 的值为________.19.已知函数()(ln )f x x x ax =-有两个极值点,则实数a 的取值范围是__________.20.已知实数,x y 满足不等式组201030y x y x y -≤⎧⎪--≤⎨⎪+-≥⎩,则yx的取值范围为__________.三、解答题21.在平面直角坐标系中,直线l 的参数方程为cos sin x t y t αα=⎧⎨=⎩(t 为参数,0≤α<π).以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为244cos 2sin ρρθρθ-=-.(Ⅰ)写出曲线C 的直角坐标方程;(Ⅱ)若直线l 与曲线C 交于A ,B 两点,且AB 的长度为25,求直线l 的普通方程. 22.如图,在四面体ABCD 中,△ABC 是等边三角形,平面ABC ⊥平面ABD ,点M 为棱AB 的中点,AB =2,AD =23,∠BAD =90°. (Ⅰ)求证:AD ⊥BC ;(Ⅱ)求异面直线BC 与MD 所成角的余弦值; (Ⅲ)求直线CD 与平面ABD 所成角的正弦值.23.“微信运动”是手机APP 推出的多款健康运动软件中的一款,大学生M 的微信好友中有400位好友参与了“微信运动”.他随机抽取了40位参与“微信运动”的微信好友(女20人,男20人)在某天的走路步数,经统计,其中女性好友走路的步数情况可分为五个类别:A 、02000步,(说明:“02000”表示大于或等于0,小于2000,以下同理),B 、20005000步,C 、50008000步,D 、800010000步,E 、1000012000步,且A 、B 、C 三种类别的人数比例为1:4:3,将统计结果绘制如图所示的柱形图;男性好友走路的步数数据绘制如图所示的频率分布直方图.(Ⅰ)若以大学生M 抽取的微信好友在该天行走步数的频率分布,作为参与“微信运动”的所有微信好友每天走路步数的概率分布,试估计大学生M 的参与“微信运动”的400位微信好友中,每天走路步数在20008000的人数;(Ⅱ)若在大学生M 该天抽取的步数在800010000的微信好友中,按男女比例分层抽取6人进行身体状况调查,然后再从这6位微信好友中随机抽取2人进行采访,求其中至少有一位女性微信好友被采访的概率.24.如图:在ABC ∆中,10a=,4c =,5cos C =-.(1)求角A ;(2)设D 为AB 的中点,求中线CD 的长.25.在直角坐标系xoy 中以O 为极点,x 轴正半轴为极轴建立坐标系.圆1C ,直线2C 的极坐标方程分别为4sin ,cos 2 2.4πρθρθ⎛⎫=-= ⎪⎝⎭. (I )12C C 求与交点的极坐标; (II )112.P C Q C C PQ 设为的圆心,为与交点连线的中点已知直线的参数方程为()33{,,.12x t a t R a b by t =+∈=+为参数求的值 26.如图所示,在四面体PABC 中,PC⊥AB,点D ,E ,F ,G 分别是棱AP ,AC ,BC ,PB 的中点,求证: (1)DE∥平面BCP ; (2)四边形DEFG 为矩形.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】由正弦定理结合条件可得tan tan 1B C ==,从而得三角形的三个内角,进而得三角形的形状. 【详解】由正弦定理可知sin sin sin A B Ca b c ==,又sin cos cos A B C a b c==, 所以cos sin ,cos sin B B C C ==,有tan tan 1B C ==.所以45B C ==.所以180454590A =--=. 所以ABC ∆为等腰直角三角形. 故选C. 【点睛】本题主要考查了正弦定理解三角形,属于基础题.2.C解析:C 【解析】 如图所示,∵线段PF 1的中垂线经过F 2,∴PF 2=12F F =2c ,即椭圆上存在一点P ,使得PF 2=2c. ∴a-c≤2c≤a+c.∴e=1[,1)3c a ∈.选C.【点睛】求离心率范围时,常转化为x,y 的范围,焦半径的范围,从而求出离心率的范围。
2019年高考数学模拟试卷含答案
2019年高考数学模拟试卷含答案一、选择题1.如图,点是抛物线的焦点,点,分别在抛物线和圆的实线部分上运动,且总是平行于轴,则周长的取值范围是( )A .B .C .D .2.在复平面内,O 为原点,向量OA 对应的复数为12i -+,若点A 关于直线y x =-的对称点为点B ,则向量OB 对应的复数为( ) A .2i -+ B .2i -- C .12i +D .12i -+3.命题“对任意x ∈R ,都有x 2≥0”的否定为( )A .对任意x ∈R ,都有x 2<0B .不存在x ∈R ,都有x 2<0C .存在x 0∈R ,使得x 02≥0D .存在x 0∈R ,使得x 02<04.一个容量为80的样本中数据的最大值是140,最小值是51,组距是10,则应将样本数据分为( ) A .10组B .9组C .8组D .7组5.在二项式42nx x 的展开式,前三项的系数成等差数列,把展开式中所有的项重新排成一列,有理项都互不相邻的概率为( ) A .16B .14C .512D .136.已知236a b ==,则a ,b 不可能满足的关系是() A .a b ab += B .4a b +> C .()()22112a b -+-<D .228a b +>7.下表提供了某厂节能降耗技术改造后在生产A 产品过程中记录的产量x (吨)与相应的生产能耗y (吨)的几组对应数据,根据表中提供的数据,求出y 关于x 的线性回归方程为0.70.35y x =+,则下列结论错误的是( )x3 4 5 6 y 2.5t44.5A .产品的生产能耗与产量呈正相关B .回归直线一定过4.5,3.5() C .A 产品每多生产1吨,则相应的生产能耗约增加0.7吨 D .t 的值是3.158.由a 2,2﹣a ,4组成一个集合A ,A 中含有3个元素,则实数a 的取值可以是( )A .1B .﹣2C .6D .29.在ABC ∆中,A 为锐角,1lg lg()lgsin lg 2b A c+==-,则ABC ∆为( ) A .等腰三角形 B .等边三角形 C .直角三角形D .等腰直角三角形10.设a b ,为两条直线,αβ,为两个平面,下列四个命题中,正确的命题是( )A .若a b ,与α所成的角相等,则a b ∥B .若a αβ∥,b ∥,αβ∥,则a b ∥C .若a b a b αβ⊂⊂,,,则αβ∥D .若a b αβ⊥⊥,,αβ⊥,则a b ⊥11.已知a R ∈,则“0a =”是“2()f x x ax =+是偶函数”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件12.一个几何体的三视图如图所示,其中正视图是一个正三角形,俯视图是一个等腰直角三角形,则该几何体的外接球的表面积为( )A .43π B .83π C .163πD .203π二、填空题13.事件,,A B C 为独立事件,若()()()111,,688P A B P B C P A B C ⋅=⋅=⋅⋅=,则()P B =_____.14.在ABC 中,60A =︒,1b =3sin sin sin a b cA B C ________.15.已知圆锥的侧面展开图是一个半径为2cm ,圆心角为23π的扇形,则此圆锥的高为________cm .16.已知(13)n x + 的展开式中含有2x 项的系数是54,则n=_____________.17.设a R ∈,直线20ax y -+=和圆22cos ,12sin x y θθ=+⎧⎨=+⎩(θ为参数)相切,则a 的值为____.18.371()x x+的展开式中5x 的系数是 .(用数字填写答案)19.等边三角形ABC 与正方形ABDE 有一公共边AB ,二面角C AB D --的余弦值为33,M N ,分别是AC BC ,的中点,则EM AN ,所成角的余弦值等于 . 20.从6男2女共8名学生中选出队长1人,副队长1人,普通队员2人,组成4人服务队,要求服务队中至少有1名女生,共有__________种不同的选法.(用数字作答)三、解答题21.已知数列{}n a 满足1112,22n n n a a a ++==+. (1)设2nn na b =,求数列{}n b 的通项公式; (2)求数列{}n a 的前n 项和n S ; (3)记()()211422nnn n n nn c a a +-++=,求数列{}n c 的前n 项和n T .22.如图,四棱锥P ABCD -的底面ABCD 是平行四边形,连接BD ,其中DA DP =,BA BP =.(1)求证:PA BD ⊥;(2)若DA DP ⊥,060ABP ∠=,2BA BP BD ===,求二面角D PC B --的正弦值.23.已知等差数列{}n a 满足:12a =,且1a ,2a ,5a 成等比数列. (1)求数列{}n a 的通项公式;(2)记n S 为数列{}n a 的前n 项和,是否存在正整数n ,使得60800n S n >+ ?若存在,求n 的最小值;若不存在,说明理由.24.(辽宁省葫芦岛市2018年二模)直角坐标系xOy 中,直线l 的参数方程为21x tcos y tsin αα=+⎧⎨=+⎩ (t 为参数),在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点为极点,以x 轴正半轴为极轴)中,圆C 的方程为6cos ρθ=.(1)求圆C 的直角坐标方程;(2)设圆C 与直线l 交于点,A B ,若点P 的坐标为()2,1,求PA PB +的最小值. 25.设等差数列{}n a 的前n 项和为n S ,34a =,43a S =,数列{}n b 满足:对每12,,,n n n n n n n S b S b S b *++∈+++N 成等比数列.(1)求数列{},{}n n a b 的通项公式;(2)记,n C n *=∈N证明:12+.n C C C n *++<∈N26.(选修4-4:坐标系与参数方程)在平面直角坐标系xOy,已知曲线:sin x a C y a⎧=⎪⎨=⎪⎩(a 为参数),在以O 原点为极点,x 轴的非负半轴为极轴建立的极坐标系中,直线l的极坐标方程为cos()124πρθ+=-. (1)求曲线C 的普通方程和直线l 的直角坐标方程;(2)过点()1,0M -且与直线l 平行的直线1l 交C 于A ,B 两点,求点M 到A ,B 的距离之积.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】圆(y ﹣1)2+x 2=4的圆心为(0,1),半径r =2,与抛物线的焦点重合,可得|FB |=2,|AF |=y A +1,|AB |=y B ﹣y A ,即可得出三角形ABF 的周长=2+y A +1+y B ﹣y A =y B +3,利用1<y B <3,即可得出. 【详解】抛物线x 2=4y 的焦点为(0,1),准线方程为y =﹣1, 圆(y ﹣1)2+x 2=4的圆心为(0,1), 与抛物线的焦点重合,且半径r =2, ∴|FB |=2,|AF |=y A +1,|AB |=y B ﹣y A , ∴三角形ABF 的周长=2+y A +1+y B ﹣y A =y B +3,∵1<y B <3,∴三角形ABF 的周长的取值范围是(4,6).故选:B . 【点睛】本题考查了抛物线的定义与圆的标准方程及其性质、三角形的周长,考查了推理能力与计算能力,属于中档题.2.A解析:A 【解析】 【分析】首先根据向量OA 对应的复数为12i -+,得到点A 的坐标,结合点A 与点B 关于直线y x =-对称得到点B 的坐标,从而求得向量OB 对应的复数,得到结果.【详解】复数12i -+对应的点为(1,2)A -, 点A 关于直线y x =-的对称点为(2,1)B -, 所以向量OB 对应的复数为2i -+. 故选A . 【点睛】该题是一道复数与向量的综合题,解答本题的关键是掌握复数在平面坐标系中的坐标表示.3.D解析:D 【解析】因为全称命题的否定是特称命题,所以命题“对任意x ∈R ,都有x 2≥0”的否定为.存在x 0∈R ,使得x 02<0. 故选D .4.B解析:B 【解析】由题意知,(14051)108.9-÷=,所以分为9组较为恰当,故选B.5.C解析:C 【解析】【分析】先根据前三项的系数成等差数列求n ,再根据古典概型概率公式求结果 【详解】因为n前三项的系数为1212111(1)1,,112448n n n n n n C C C C n -⋅⋅∴=+⋅∴-= 163418118,0,1,2,82rr r r n n T C x r -+>∴=∴=⋅=,当0,4,8r =时,为有理项,从而概率为636799512A A A =,选C. 【点睛】本题考查二项式定理以及古典概型概率,考查综合分析求解能力,属中档题.6.C解析:C 【解析】 【分析】根据236a b ==即可得出21l 3og a =+,31l 2og b =+,根据23log log 132⋅=,33log log 222+>,即可判断出结果.【详解】 ∵236a b ==;∴226log 1og 3l a ==+,336log 1og 2l b ==+;∴2332log 2log 4a b +=++>,2332log og 42l ab =++>,故,A B 正确;()()()()2322223211log log 2log 323log 22a b =>⋅-+-+=,故C 错误;∵()()()22232223log log 2log 2323log 2a b =+++++232l 23og log 82>+=⋅,故D 正确故C . 【点睛】本题主要考查指数式和对数式的互化,对数的运算,以及基本不等式:a b +≥和不等式222a b ab +≥的应用,属于中档题7.D解析:D 【解析】 由题意,x =34564+++=4.5, ∵ˆy=0.7x+0.35, ∴y =0.7×4.5+0.35=3.5,∴t=4×3.5﹣2.5﹣4﹣4.5=3, 故选D .8.C解析:C 【解析】试题分析:通过选项a 的值回代验证,判断集合中有3个元素即可. 解:当a=1时,由a 2=1,2﹣a=1,4组成一个集合A ,A 中含有2个元素, 当a=﹣2时,由a 2=4,2﹣a=4,4组成一个集合A ,A 中含有1个元素, 当a=6时,由a 2=36,2﹣a=﹣4,4组成一个集合A ,A 中含有3个元素, 当a=2时,由a 2=4,2﹣a=0,4组成一个集合A ,A 中含有2个元素, 故选C .点评:本题考查元素与集合的关系,基本知识的考查.9.D解析:D 【解析】 【分析】 【详解】试题分析:由1lg lg()lgsin b A c+==-lglg 22b bc c =⇒=且sin A =A 为锐角,所以45A =,由2b c =,根据正弦定理,得sin )cos sin B C B B B ==-=+,解得cos 090B B =⇒=,所以三角形为等腰直角三角形,故选D. 考点:三角形形状的判定.10.D解析:D 【解析】 【分析】 【详解】试题分析:A 项中两直线a b ,还可能相交或异面,错误; B 项中两直线a b ,还可能相交或异面,错误; C 项两平面αβ,还可能是相交平面,错误; 故选D.11.C解析:C 【解析】因为()2f x x ax =+是偶函数,所以22()()20f x x ax f x x ax ax -=-==+∴=所以0a =.所以“0a =”是“()2f x x ax =+是偶函数”的充要条件.故选C.12.C解析:C 【解析】 【分析】根据三视图知几何体是三棱锥,且一侧面与底面垂直,结合图中数据求出三棱锥外接球的半径,从而求出球的表面积公式. 【详解】由三视图知,该几何体是如图所示的三棱锥,且三棱锥的侧面SAC ⊥底面ABC ,高为3SO =;其中1OA OB OC ===,SO ⊥平面ABC ,其外接球的球心在SO 上,设球心为M ,OM x =,根据SM=MB 得到:在三角形MOB 中,21SM 3x x +=,213x x +=, 解得33x =, ∴外接球的半径为3233R ==;∴三棱锥外接球的表面积为223164(3S ππ=⨯=.故选:C . 【点睛】本题考查了三视图复原几何体形状的判断问题,也考查了三棱锥外接球的表面积计算问题,是中档题.一般外接球需要求球心和半径,首先应确定球心的位置,借助于外接球的性质,球心到各顶点距离相等,这样可先确定几何体中部分点组成的多边形的外接圆的圆心,过圆心且垂直于多边形所在平面的直线上任一点到多边形的顶点的距离相等,然后同样的方法找到另一个多边形的各顶点距离相等的直线(这两个多边形需有公共点),这样两条直线的交点,就是其外接球的球心,再根据半径,顶点到底面中心的距离,球心到底面中心的距离,构成勾股定理求解,有时也可利用补体法得到半径,例:三条侧棱两两垂直的三棱锥,可以补成长方体,它们是同一个外接球.二、填空题13.【解析】【分析】【详解】分析:根据独立事件的关系列出方程解出详解:设因为所以所以所以点睛:本题主要考查相互独立事件的概率的乘法公式及对立事件的概率关系属于中档题 解析:12【解析】 【分析】 【详解】分析:根据独立事件的关系列出方程,解出()P B . 详解:设()()()P A a,P B b,P C c ===, 因为()()()111,,688P A B P B C P A B C ⋅=⋅=⋅⋅=, 所以()()16118118ab b c ab c ⎧=⎪⎪⎪-=⎨⎪⎪-=⎪⎩所以111a ,b ,324c === 所以()1P B 2=点睛:本题主要考查相互独立事件的概率的乘法公式及对立事件的概率关系,属于中档题.14.【解析】【分析】由已知利用三角形面积公式可求c 进而利用余弦定理可求a 的值根据正弦定理即可计算求解【详解】面积为解得由余弦定理可得:所以故答案为:【点睛】本题主要考查了三角形面积公式余弦定理正弦定理在【解析】 【分析】由已知利用三角形面积公式可求c ,进而利用余弦定理可求a 的值,根据正弦定理即可计算求解. 【详解】60A =︒,1b =11sin 122bc A c ==⨯⨯,解得4c =, 由余弦定理可得:2212cos 116214132a b c bc A =+-=+-⨯⨯⨯=, 所以13239sin sin sin sin 3a b ca A B CA故答案为:2393【点睛】本题主要考查了三角形面积公式,余弦定理,正弦定理在解三角形中的应用,考查了计算能力和转化思想,属于基础题.15.【解析】【分析】设此圆的底面半径为高为母线为根据底面圆周长等于展开扇形的弧长建立关系式解出再根据勾股定理得即得此圆锥高的值【详解】设此圆的底面半径为高为母线为因为圆锥的侧面展开图是一个半径为圆心角为 解析:423【解析】 【分析】设此圆的底面半径为r ,高为h ,母线为l ,根据底面圆周长等于展开扇形的弧长,建立关系式解出r ,再根据勾股定理得22h l r =- ,即得此圆锥高的值. 【详解】设此圆的底面半径为r ,高为h ,母线为l ,因为圆锥的侧面展开图是一个半径为2cm ,圆心角为23π的扇形, 所以2l =,得24233r l πππ=⨯= ,解之得23r =, 因此,此圆锥的高2222242cm 332h l r ⎛⎫=-=-= ⎪⎝⎭,故答案为42. 【点睛】本题给出圆锥的侧面展开图扇形的半径和圆心角,求圆锥高的大小,着重考查了圆锥的定义与性质和旋转体侧面展开等知识,属于基础题.16.【解析】【分析】利用通项公式即可得出【详解】解:(1+3x )n 的展开式中通项公式:Tr+1(3x )r =3rxr∵含有x2的系数是54∴r=2∴54可得6∴6n∈N*解得n =4故答案为4【点睛】本题考 解析:4【解析】 【分析】利用通项公式即可得出. 【详解】解:(1+3x )n 的展开式中通项公式:T r +1r n=(3x )r =3rr nx r .∵含有x 2的系数是54,∴r =2. ∴223n=54,可得2n=6,∴()12n n -=6,n ∈N *.解得n =4. 故答案为4. 【点睛】本题考查了二项式定理的通项公式,考查了推理能力与计算能力,属于基础题.17.【解析】【分析】根据圆的参数方程确定圆的半径和圆心坐标再根据直线与圆相切的条件得出满足的方程解之解得【详解】圆化为普通方程为圆心坐标为圆的半径为由直线与圆相切则有解得【点睛】直线与圆的位置关系可以使解析:34【解析】 【分析】根据圆的参数方程确定圆的半径和圆心坐标,再根据直线与圆相切的条件得出a 满足的方程,解之解得。
大庆市2019届高三第一次模拟考试数学(理科)含答案解析
【分析】利用两角和的正弦公式化简f(x),然后由f(x0)=0求得[0, ]内的x0的值.
【解答】解:∵曲线f(x)=sin(wx)+ cos(wx)=2sin(wx+ )的两条相邻的对称轴之间的距离为 ,
∴ =π,
∴w=2
∴f(x)=2sin(2x+ ).
∵f(x)的图象关于点(x0,0)成中心对称,
【解答】解:函数f(x)=x3﹣x2﹣x+a的导数为f′(x)=3x2﹣2x﹣1,
当x>1或x<﹣ 时,f′(x)>0,f(x)递增;
当﹣ <x<1时,f′(x)<0,f(x)递减.
即有f(1)为极小值,f(﹣ )为极大值.
∵f(x)在(﹣∞,﹣ )上单调递增,
∴当x→﹣∞时,f(x)→﹣∞;
又f(x)在(1,+∞)单调递增,当x→+∞时,f(x)→+∞,
构造函数g(x)=x3+2x﹣ ,则问题转化为g(x)在x∈[﹣1,1]上的零点个数,
求导数可得g′(x)=3x2+2>0,故函数g(x)在x∈[﹣1,1]上单调递增,
由g(﹣1)g(1)<0,故函数g(x)在x∈[﹣1,1]上有唯一一个零点.
故选:A.
【点评】本题考查定积分的运算,涉及转化和数形结合的思想,属中档题.
因为直线l⊥平面α且α⊥β可得直线l平行与平面β或在平面β内,又由直线m⊂平面β,所以l与m,可以平行,相交,异面;故②为假命题;
因为直线l⊥平面α且l∥m可得直线m⊥平面α,又由直线m⊂平面β可得α⊥β;即③为真命题;
由直线l⊥平面α以及l⊥m可得直线m平行与平面α或在平面α内,又由直线m⊂平面β得α与β可以平行也可以相交,即④为假命题.
2019年高考数学模拟试卷及详细答案解析
2019年高考数学模拟试卷及详细答案解析2019.6 姓名:__________班级:__________考号:__________ 题号一二三总分得分△注意事项:1.填写答题卡请使用2B 铅笔填涂2.提前5分钟收答题卡一、选择题(本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.已知随机变量ξ的分布列如下表所示,若η=5ξ+1,则E (η)等于( ) ξ0 1 2 P 错误错误错误A.4 B .5 C.35D.2
3
2.利用斜二测画法画一个水平放置的平面四边形的直观图,得到的直观图是一个边长为1的正方形(如图所示),则原图形的形状是()
3.阅读右边的程序框图,运行相应的程序,输出的S 的值为()A.15 B.105 x y'直观图O'x y A 22O x y B 2O x
y C 2O
x y D 22O ●-------------------------密--------------封--------------线--------------内--------------请--------------不--------------要--------------答--------------题-------------------------●。
(完整版)2019年高考数学模拟试题含答案
当 n 2 时, an1 1, an 1, an1 1成等比数列 所以 (an 1)2 (an1 1) (an1 1) 。。。。。。..。。。。。..。。。。。。....。..。....。。..。。9 所以 (an 1)2 [(an 1) d ][(an 1) d ] 所以 d 2 0 ,所以 d 0 ,这与 d 0 矛盾 所以,数列{an 1} 不是等比数列。。。。。..。。。。。。。。.。.....。.12
(Ⅰ)写出女生组频率分布直方图中 a 的值; (Ⅱ)在抽取的 40 名学生中从月上网次数不少于 20 的学生中随机抽取 2 人,并用 X 表示随 机抽取的 2 人中男生的人数,求 X 的分布列和数学期望.
高三数学(理)科试题(第 5 页 共 6 页)
(完整版)2019 年高考数学模拟试题含答案(word 版可编辑修改)
A. 1 10
B. 1 5
C. 3 10
D. 4 5
8.设 Sn 是数列{an}的前 n 项和,且 a1 1, an1 Sn Sn1 ,则 a5 =
A. 1 30
B. 1 30
C. 1 20
D. 1 20
9。 函数 f x ln 1 x 的大致图像为
1 x
10. 底 面 为 矩 形 的 四 棱 锥 P ABCD 的 体 积 为 8,若 PA 平 面 ABCD ,且 PA 3 , 则 四 棱 锥
18.(本小题满分 12 分) 某中学为了解全校学生的上网情况,在全校随机抽取了 40 名学生(其中男、女生各占一半)
进行问卷调查,并进行了统计,按男、女分为两组,再将每组学生的月上网次数分为 5 组:[0,5), [5,10),[10,15),[15,20),[20,25],得到如图所示的频率分布直方图.
2019年最新高考数学模拟试题及答案共五套
高考模拟考数学试题参考公式:球的表面积公式: 24R S π=,其中R 表示球的半径;球的体积公式:,343R Vπ=其中R 表示球的半径; 柱体的体积公式:Sh V =,其中S 表示柱体的底面积,h 表示柱体的高;锥体的积公式:Sh V31=,其中S 表示椎体的底面积,h 表示椎体的高; 台体的体积公式:)(312211S S S S h V ++=,其中1S 、2S 分别表示台体的上、下底面积,h 表示台体的高如果事件A 、B 互斥,那么)()()(B P A P B A P +=+第I 卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1、设集合{|2}M x x =<,集合{|01}N x x =<<,则下列关系中正确的是 ( ) (A )M N R =U (B ){}01M N x x =<<I (C )N M ∈ (D )M N φ=I 2、已知复数122,3z i z i =+=-,其中i 是虚数单位,则复数12z z 的实部与虚部之和为( ) (A )0 (B )12(C )1 (D )2 3、设p :1-<x ,q ⌝:022>--x x ,则下列命题为真的是( ) (A )若q 则p ⌝(B )若q ⌝则p(C )若p 则q (D )若p ⌝则q4、若k∈R,,则“k >4”是“方程14422=+--k y k x 表示双曲线”的 ( ) A. 充分不必要条件 B. 必要不充分条件 C. 充分必要条件 D. 既不充分也不必要条件 5、数列{}n a 满足122,1,a a ==并且1111(2)n n n n n n n n a a a a n a a a a -+-+--=≥⋅⋅,则数列{}n a 的第100项为( ) (A )10012 (B )5012 (C )1100 (D )1506、已知某个几何体的三视图如下,根据图中标出的尺寸(单位:cm ),可得这个几何体 的体积是 ( )(A )383cm (B )343cm(C )323cm (D )313cm7、已知双曲线)0,0(12222>>=-b a by a x 的离心率为6,则双曲线的渐近线方程为( )(A )2y x =± (B )x y 2±= (C )x y 22±= (D )12y x =± 8、定义式子运算为12142334a a a a a a a a =-,将函数sin 3()cos 1xf x x =的图像向左平移(0)n n >个单位,所得图像对应的函数为偶函数,则n 的最小值为 ( )(A )6π (B )3π(C ) 56π (D )23π9、已知点P 为ABC ∆所在平面上的一点,且13AP AB t AC =+u u u r u u u r u u u r,其中t 为实数,若点P 落在ABC ∆的内部,则t 的取值范围是( ) (A )104t << (B )103t << (C )102t << (D )203t <<10、已知()f x 是偶函数,且()f x 在[)+∞,0上是增函数,如果(1)(2)f ax f x +≤-在1[,1]2x ∈上恒成立,则实数a 的取值范围是 ( ) (A )[2,1]- (B )[5,0]-(C )[5,1]- (D )[2,0]-第二卷(非选择题 共100分)二、填空题:本大题共7小题,每小题4分,共28分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年高考数学模拟试卷及详细答案解析
2019.6
姓名:__________班级:__________考号:__________
题号
一二三总分
得分
△注意事项:
1.填写答题卡请使用2B 铅笔填涂
2.提前5分钟收答题卡
一、选择题(本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一个选项是符合题目要求的)
1.(08年西安交大附中五模文)
若,则a 的取值范围是A .B .C .D .
2.函数y=sinx (π6≤x ≤2π3
) 的值域是( ) A. [ 12,1] B.[-1,1] C. [12, 3 2] D. [ 3 2,1][来源:]
3.如图,一飞镖游戏板,其中每个小正方形的大小相等,则随意投掷一个飞镖,击中黑色区域
的概率是()
A .3
8 B .12 C .14 D .
1
34.已知向量若则与的夹角为( )
A .30°或150°
B .60°或120°
C .120°
D .150°
5.如图1,△ABC 为正三角形,'////AA BB CC ,'CC
平面ABC 且332AA BB CC AB 则多面体ABC A B C 的正视图(也称主视图)(),5,4,2,2,1c b a ,25
c b a a c。