人教数学八年级下册二次根式复习
最新人教版初中八年级下册数学【二次根式复习】教学课件
初中数学 解决问题
7.计算:( 8 2) 1 . 2
8.已知:x 2 3 ,y 2 3 ,求代数式 x2 xy y2的值.
9.已知 a 5 1,求代数式 a2 2a 7 的值.
初中数学 解决问题
7.计算:( 8 2) 1 . 2
解:原式= (2 2 2) 1 2 1 1.
初中数学 解决问题
1.若 3 m 为二次根式,则 m的取值范围是 m≤3 .
2.在根式 ① ( y 1)2 ②
x③ 5
27mn ④
是
④
.(填序号)
a2 b 中,最简二次根
式
3.已知 y x 2 2 x 3 ,求 xy 的值.
8
解:∵ x 2 0,
2 x 0.
总结: 二次根式要求被开方数
初中数学 复习运算
乘法: a b = ab (a≥0,b≥0);
反之: ab= a b(a≥0,b≥0 ).
乘除运算
除法: a a (a≥0,b>0 ); bb
运算
aa 反之: (a≥0,b>0 ).
bb
加减运算
步骤:“一化简、二判断、三合并”; 依据:二次根式的性质、分配律和整式加减法则.
(2)∵ x 5 0, 1 x 0.
∴ -5≤x<1.
总结:转化为解不等式组.
初中数学 综合应用
例2 两个最简二次根式 a b 与 c b 相加得 6 5 ,求 a+b+c的值.
初中数学 综合应用
例2 两个最简二次根式 a b 与 c b 相加得 6 5 ,求 a+b+c的值. 解:∵ a b c b 6 5, ∴ b=5, ∴ a 5 c 5 (a c) 5 6 5. ∴ a+c=6, ∴ a+b+c=11.
数学 八年级下册 人教版 二次根式 单元复习(+答案)
第十六章单元复习二次根式一、选择题1.(青海海东模拟)下列的式子一定是二次根式的是( ) A.-x-2B.x C.x2+2D.x2-22.(新疆和田质检)要使x+12有意义,则x的取值范围为( )A.x>0 B.x≥-1 C.x<0 D.x>-13.(内蒙古包头模拟)下列二次根式中,为最简二次根式的是( )A.45B.a2+b2C.12D. 3.64.(重庆中考)计算14×7-2的结果是( )A.7 B.62C.72D.275.(恩施中考)从2,-3,-2这三个实数中任选两数相乘,所有积中小于2的有________个.( )A.0 B.1 C.2 D.36.(河北中考)与32-22-12结果相同的是( )A.3-2+1 B.3+2-1 C.3+2+1 D.3-2-17.(甘肃定西模拟)实数a在数轴上的位置如图所示,则(a-5)2+(a-13)2化简后为( )A.8 B.-8 C.2a-18 D.无法确定8.设a=7+2,则( )A.2<a<3 B.3<a<4C.4<a<5 D.5<a<69.(宁夏石嘴山模拟)若x为实数,在“(3+1)□x”的“□”中添上一种运算符号(在“+,-,×,÷”中选择)后,其运算的结果为有理数,则x不可能是( )A.3+1 B.3-1 C.23D.1-310.(兰州模拟)甲、乙两人计算a+1-2a+a2的值,当a=5的时候得到不同的答案,甲的解答是a+1-2a+a2=a+(1-a)2=a+1-a=1;乙的解答是a+1-2a+a2=a+(a-1)2=a+a-1=2a-1=9.下列判断正确的是( )A.甲、乙都对B.甲、乙都错C.甲对,乙错D.甲错,乙对二、填空题11.(衡阳中考)若二次根式x-3有意义,则x的取值范围是____.12.(内蒙古乌兰察布模拟)2-5 的倒数是__ __.13.若两个连续整数x ,y 满足x <5 +1<y ,则x +y 的值是 __ __.14.(荆州中考)已知:a =(12 )-1+(-3 )0,b =(3 +2 )(3 -2 ),则a +b =____.15.(青海玉树模拟)计算:(12 -43 )×3 =__ __.16.当x =__ __时,2x -5 有最小值.17.(安徽中考)埃及胡夫金字塔是古代世界建筑奇迹之一,其底面是正方形,侧面是全等的等腰三角形.底面正方形的边长与侧面等腰三角形底边上的高的比值是5 -1,它介于整数n 和n +1之间,则n 的值是__ __. 18.(新疆阿勒泰模拟)若|1 001-a |+a -1 002 =a ,则a -1 0012=__ __ __.三、解答题19.(1)(上海中考)计算:912 +|1-2 |-2-1×8 .(2) (仙桃中考)计算:(3-2 )0×4-(23 -6)+3-8 +12 .20.(宁夏中考)先化简,再求值:(a +1a +2 +1a -2 )÷2a 2-4,其中a =2 .21. (甘肃嘉峪关模拟)已知长方形的长为a ,宽为b ,且a =32 12 ,b =1248 .(1)求长方形的周长;(2)当S 长方形=S 正方形时,求正方形的周长.22.已知a ,b ,c 满足|a -8 |+b -5 +(c -3 2 )2=0.(1)求a ,b ,c 的值.(2)试问以a ,b ,c 为边能否构成三角形?如果能构成,请求出三角形的周长,如果不能,请说明理由.23.(乌鲁木齐模拟)观察、思考、解答:( 2 -1)2=( 2 )2-2×1×2 +12=2-2 2 +1=3-2 2 , 反之3-2 2 =2-2 2 +1=( 2 -1)2. ∴3-2 2 =( 2 -1)2,∴3-2 2 = 2 -1.(1) 仿上例,化简:6-2 5 .(2)若a +2b =m +n ,则m ,n 与a ,b 的关系是什么?并说明理由.(3)已知x =4-12 ,求⎝ ⎛⎭⎪⎫1x -2+1x +2 ·x 2-42(x -1)的值(结果保留根号).第十六章单元复习二次根式一、选择题1.(青海海东模拟)下列的式子一定是二次根式的是(C) A.-x-2B.x C.x2+2D.x2-22.(新疆和田质检)要使x+12有意义,则x的取值范围为(B)A.x>0 B.x≥-1 C.x<0 D.x>-13.(内蒙古包头模拟)下列二次根式中,为最简二次根式的是(B)A.45B.a2+b2C.12D. 3.64.(重庆中考)计算14×7-2的结果是(B)A.7 B.62C.72D.275.(恩施中考)从2,-3,-2这三个实数中任选两数相乘,所有积中小于2的有________个.(C)A.0 B.1 C.2 D.36.(河北中考)与32-22-12结果相同的是(A)A.3-2+1 B.3+2-1 C.3+2+1 D.3-2-17.(甘肃定西模拟)实数a在数轴上的位置如图所示,则(a-5)2+(a-13)2化简后为(A)A.8 B.-8 C.2a-18 D.无法确定8.设a=7+2,则(C)A.2<a<3 B.3<a<4C.4<a<5 D.5<a<69.(宁夏石嘴山模拟)若x为实数,在“(3+1)□x”的“□”中添上一种运算符号(在“+,-,×,÷”中选择)后,其运算的结果为有理数,则x不可能是(C)A.3+1 B.3-1 C.23D.1-310.(兰州模拟)甲、乙两人计算a+1-2a+a2的值,当a=5的时候得到不同的答案,甲的解答是a+1-2a+a2=a+(1-a)2=a+1-a=1;乙的解答是a+1-2a+a2=a+(a-1)2=a+a-1=2a-1=9.下列判断正确的是(D)A.甲、乙都对B.甲、乙都错C.甲对,乙错D.甲错,乙对二、填空题11.(衡阳中考)若二次根式x -3 有意义,则x 的取值范围是__x ≥3__.12.(内蒙古乌兰察布模拟)2-5 的倒数是.13.若两个连续整数x ,y 满足x <5 +1<y ,则x +y 的值是 __7__.14.(荆州中考)已知:a =(12 )-1+(-3 )0,b =(3 +2 )(3 -2 ),则a +b =__2__.15.(青海玉树模拟)计算:(12 -43 )×3 =__4__.16.当x =__52 __时,2x -5 有最小值.17.(安徽中考)埃及胡夫金字塔是古代世界建筑奇迹之一,其底面是正方形,侧面是全等的等腰三角形.底面正方形的边长与侧面等腰三角形底边上的高的比值是5 -1,它介于整数n 和n +1之间,则n 的值是__1__. 18.(新疆阿勒泰模拟)若|1 001-a |+a -1 002 =a ,则a -1 0012=__1__002__.三、解答题19.(1)(上海中考)计算:912 +|1-2 |-2-1×8 .(2)(仙桃中考)计算:(3-2 )0×4-(23 -6)+3-8 +12 .【解析】(1)原式=912 +2 -1-12 ×22 =912 +2 -1-2 =812 .(2)原式=1×4-23 +6-2+23 =4-23 +6-2+23 =8. 20.(宁夏中考)先化简,再求值:(a +1a +2 +1a -2 )÷2a 2-4 ,其中a =2 .【解析】原式=(a +1)(a -2)+a +2a 2-4 ·a 2-42 =a 2-a -2+a +22 =a 22 , 当a =2 时,原式=(2)22=1.21. (甘肃嘉峪关模拟)已知长方形的长为a ,宽为b ,且a =32 12 ,b =12 48 .(1)求长方形的周长;(2)当S 长方形=S 正方形时,求正方形的周长.【解析】(1)∵a =32 12 =3 3 ,b =12 48 =23 ,∴长方形的周长是:2(a +b )=2(3 3 +2 3 )=10 3 . (2)设正方形的边长为x ,则有x 2=ab , ∴x =ab =33×2 3 =18 =3 2 ,∴正方形的周长是4x =12 2 . 22.已知a ,b ,c 满足|a -8 |+b -5 +(c -3 2 )2=0.(1)求a ,b ,c 的值.(2)试问以a ,b ,c 为边能否构成三角形?如果能构成,请求出三角形的周长,如果不能,请说明理由.【解析】(1)根据题意得,a -8 =0,b -5=0,c -3 2 =0, 解得a =2 2 ,b =5,c =3 2 .(2)∵2 2 +3 2 >5,即a +c >b ,∴能构成三角形, ∴C △ABC =2 2 +3 2 +5=5 2 +5. 23.(乌鲁木齐模拟)观察、思考、解答:( 2 -1)2=( 2 )2-2×1×2 +12=2-2 2 +1=3-2 2 , 反之3-2 2 =2-2 2 +1=( 2 -1)2. ∴3-2 2 =( 2 -1)2,∴3-2 2 = 2 -1.(1)仿上例,化简:6-2 5 .(2)若a +2b =m +n ,则m ,n 与a ,b 的关系是什么?并说明理由.(3)已知x =4-12 ,求⎝ ⎛⎭⎪⎫1x -2+1x +2 ·x 2-42(x -1) 的值(结果保留根号).【解析】(1)6-2 5 =5-25+1 =(5-1)2 = 5 -1.(2)a =m +n ,b =mn ,理由:∵a +2 b =m +n , ∴a +2 b =m +2mn +n ,∴a =m +n ,b =mn ;(3)∵x =4-12 =3-23+1 =(3-1)2 = 3 -1,∴⎝ ⎛⎭⎪⎫1x -2+1x +2 ·x 2-42(x -1) =x +2+x -2(x -2)(x +2) ·(x -2)(x +2)2(x -1) =2x (x -2)(x +2) ·(x -2)(x +2)2(x -1) =x x -1. 当x = 3 -1时,原式=3-13-1-1 =3-13-2 =(3-1)(3+2)(3-2)(3+2)=-1- 3 .。
(完整版)八年级下册数学--二次根式知识点整理
二次根式1、算术平方根的定义:一般地,如果一个正数x的平方等于a,那么这个正数x叫做a的算术平方根。
2、解不等式(组):尤其注意当不等式两边乘(除以)同一个负数,不等号方向改变。
如:-2x>4,不等式两边同除以-2得x<-2。
不等式组的解集是两个不等式解集的公共部分。
如{3、分式有意义的条件:分母≠04、绝对值:|a|=a (a≥0);|a|= - a (a<0)一、二次根式的概念一般地,我们把形如 a (a≥0)的式子叫做二次根式,“”称为二次根号。
★正确理解二次根式的概念,要把握以下五点:(1)二次根式的概念是从形式上界定的,必须含有二次根号“”,“”的根指数为2,即“2”,我们一般省略根指数2,写作“”。
如25 可以写作 5 。
(2)二次根式中的被开方数既可以是一个数,也可以是一个含有字母的式子。
(3)式子 a 表示非负数a的算术平方根,因此a≥0, a ≥0。
其中a≥0是 a 有意义的前提条件。
(4)在具体问题中,如果已知二次根式 a ,就意味着给出了a≥0这一隐含条件。
(5)形如b a (a≥0)的式子也是二次根式,b与 a 是相乘的关系。
要注意当b是分数时不能写成带分数,例如832 可写成8 23,但不能写成 2232 。
练习:一、判断下列各式,哪些是二次根式?(1) 6 ;(2)-18 ;(3)x2+1 ;(4)3-8 ;(5)x2+2x+1 ;(6)3|x|;(7)1+2x (x<-12)X≥-2X<5的解集为-2≤x<5。
二、当x 取什么实数时,下列各式有意义?(1)2-5x ;(2)4x 2+4x+1二、二次根式的性质:二次根式的性质符号语言文字语言应用与拓展注意a (a ≥0)的性质a ≥0 (a ≥0)一个非负数的算术平方根是非负数。
(1)二次根式的非负性(a ≥0,a ≥0)应用较多,如:a+1 +b-3 =0,则a+1=0,b-3=0,即a= -1,b=3;又如x-a +a-x ,则x 的取值范围是x-a ≥0,a-x ≥0,解得x=a 。
专题01 : 16。1二次根式 - 人教版数学八年级下册
专题01 :2022年人教新版八年级(下册)16.1 二次根式-期末复习专题训练一、选择题(共10小题)1.在下列代数式中,不是二次根式的是()A.B.C.D.2.若二次根式有意义,则x的取值范围是()A.x>B.x≥C.x≤D.x≤53.若二次根式有意义,则x的取值范围为()A.x<1B.x>1C.x≤1D.x≥14.式子在实数范围内有意义,则x的取值范围是()A.x≠1B.x≥1C.x≤1D.x≥﹣15.若式子有意义,那么x的取值范围是()A.x≥0B.x≠1C.x≥0或x≠1D.x≥0且x≠1 6.二次根式有意义,则x的取值范围是()A.x≤﹣7B.x≥﹣7C.x<﹣7D.x>﹣77.若,则x的取值范围是()A.﹣3≤x≤3B.x>3C.x≤3D.﹣3<x<38.若x=﹣3可以使一个二次根式有意义,这个二次根式可以是()A.B.C.D.9.二次根式有意义时,x的取值范围是()A.B.x<C.x>D.x≥10.若代数式有意义,那么x的取值范围是()A.x>2B.x≥1C.x≥1且x≠2D.x≠2二、填空题(共5小题)11.若a、b为实数,且b=+4,则a+b=.12.如果y=,那么x+=.13.若+在实数范围内有意义,则实数x的取值范围是.14.中a的取值范围是.15.已知是正整数,则满足条件的n的最小值是.三、解答题(共5小题)16.若y=2++,求的值.17.已知实数x、y为实数,是否存在实数m满足关系式=如果存在,求出m的值;如果不存在,说明理由.18.已知y=++2020,求x2+y﹣3的值.19.(1)已知2a﹣1的平方根是±3,3a+b﹣1的平方根是±4,求a+2b的平方根;(2)若x,y都是实数,且y=+8,求x+3y的立方根.20.(1)已知x﹣4的平方根为±2,x+2y+7的立方根是3,求x+y的平方根.(2)已知b=﹣1,求(a﹣b)3.专题01 :2022年人教新版八年级(下册)16.1 二次根式-期末复习专题训练参考答案与试题解析一、选择题(共10小题)1.在下列代数式中,不是二次根式的是()A.B.C.D.【解答】解:A、,是二次根式,故此选项不合题意;B、,是二次根式,故此选项不合题意;C、,是二次根式,故此选项不合题意;D、,不是二次根式,故此选项符合题意;故选:D.2.若二次根式有意义,则x的取值范围是()A.x>B.x≥C.x≤D.x≤5【解答】解:由题意得,5x﹣1≥0,解得,x≥,故选:B.3.若二次根式有意义,则x的取值范围为()A.x<1B.x>1C.x≤1D.x≥1【解答】解:根据题意,得:1﹣x≥0,解得:x≤1.故选:C.4.式子在实数范围内有意义,则x的取值范围是()A.x≠1B.x≥1C.x≤1D.x≥﹣1【解答】解:由在实数范围内有意义,得1﹣x≥0.解得x≤1,故选:C.5.若式子有意义,那么x的取值范围是()A.x≥0B.x≠1C.x≥0或x≠1D.x≥0且x≠1【解答】解:若式子有意义,则x≥0,且x﹣1≠0,解得:x≥0且x≠1.故选:D.6.二次根式有意义,则x的取值范围是()A.x≤﹣7B.x≥﹣7C.x<﹣7D.x>﹣7【解答】解:由题意,得x+7≥0,解得x≥﹣7,故选:B.7.若,则x的取值范围是()A.﹣3≤x≤3B.x>3C.x≤3D.﹣3<x<3【解答】解:∵=,又∵,∴,解得﹣3≤x≤3.故选:A.8.若x=﹣3可以使一个二次根式有意义,这个二次根式可以是()A.B.C.D.【解答】解:(A)1+x≥0,x≥﹣1,故x=﹣3不能使该二次根式有意义;(B)2x+5≥0,x≥﹣,故x=﹣3不能使该二次根式有意义;(C)3x﹣4≥0,x≥,故x=﹣3不能使该二次根式有意义;(D)4﹣x≥0,x≤4,故x=﹣3能使该二次根式有意义;故选:D.9.二次根式有意义时,x的取值范围是()A.B.x<C.x>D.x≥【解答】解:根据二次根式的意义,被开方数3﹣2x≥0,解得x≤.故选:A.10.若代数式有意义,那么x的取值范围是()A.x>2B.x≥1C.x≥1且x≠2D.x≠2【解答】解:由题意得,x﹣1≥0且x﹣2≠0,解得x≥1且x≠1.所以x≥﹣2且x≠2,故选:C.二、填空题(共5小题)11.若a、b为实数,且b=+4,则a+b=5或3.【解答】解:由被开方数是非负数,得,解得a=1,或a=﹣1,b=4,当a=1时,a+b=1+4=5,当a=﹣1时,a+b=﹣1+4=3,故答案为:5或3.12.如果y=,那么x+=5.【解答】解:由题意得:,解得:x=3,则y=,x+=3+2=5,故答案为:5.13.若+在实数范围内有意义,则实数x的取值范围是x≥1且x≠3.【解答】解:由题意得:x﹣1≥0,且x﹣3≠0,解得:x≥1且x≠3,故答案为:x≥1且x≠3.14.中a的取值范围是a≥﹣1且a≠1.【解答】解:由题意,得a+1≥0且a﹣1≠0.解得a≥﹣1且a≠1.故答案是:a≥﹣1且a≠1.15.已知是正整数,则满足条件的n的最小值是2.【解答】解:是正整数,则2n是一个完全平方数,又2n=2×2=4,则2n是一个完全平方数,所以n的最小值是2.故答案为:2.三、解答题(共5小题)16.若y=2++,求的值.【解答】解:∵,∴x=2,∴y=,∴=+.17.已知实数x、y为实数,是否存在实数m满足关系式=如果存在,求出m的值;如果不存在,说明理由.【解答】解:由题意得:,解得:x+y=100,∴+=0,∴,解得:m=102,∴存在,m的值为102.18.已知y=++2020,求x2+y﹣3的值.【解答】解:由题意得,x2﹣4≥0,4﹣x2≥0,则x2﹣4=0,解得,x2=4,∴y=2020,则x2+y﹣3=4+2020﹣3=2021.19.(1)已知2a﹣1的平方根是±3,3a+b﹣1的平方根是±4,求a+2b的平方根;(2)若x,y都是实数,且y=+8,求x+3y的立方根.【解答】解:(1)由题意可知:2a﹣1=9,3a+b﹣1=16,∴a=5,b=2,∴a+2b=5+4=9,∴9的平方根是±3,即a+2b的平方根为±3.(2)由题意可知:,∴x=3,∴y=8,∴x+3y=3+24=27,∴27的立方根是3,即x+3y的立方根是320.(1)已知x﹣4的平方根为±2,x+2y+7的立方根是3,求x+y的平方根.(2)已知b=﹣1,求(a﹣b)3.【解答】解:(1)∵x﹣4的平方根为±2,∴x﹣4=4,∴x=8,∵x+2y+7的立方根是3,∴x+2y+7=27,∴y=6,∴x+y=14的平方根为±;(2)由题意得:,解得:a2=4,∴a=±2,∵a﹣2≠0,∴a≠2,∴a=﹣2,则b=﹣1,∴(a﹣b)3=(﹣2+1)3=﹣1.。
新人教版八年级下册数学知识点总结归纳期末总复习
D
C
O
A
B
3. ⑤对角线互相平分的四边形是平行四边形;
么结论一定成立的命题。 所谓错误的命题就是:如果题设成立,不能证明结 论总是成立的命题。
4、公理 人们在长期实践中总结出来的得到人们公认的真命题,叫做公 理。
5、定经过证明被确认正确的命题叫做 定理 。 我们把题设、结论正好相 反的两个命题叫做互逆命题。如果把其中一个叫做原命题,那么另一个叫做 它的逆命题。(例:勾股定理与勾股定理逆定理)
法。
(定理中 a , b , c 及 a2 b2 c2 只是一种表现形式,不可认为是唯一的,如若
三角形三边长
a,
b
,
c
满足
2
a
2
c
2
b
,那么以
a,b
,c
为三边的三角形是直角
三角形,但是 b 为斜边)
3、勾股数
①能够构成直角三角形的三边长的三个正整数称为勾股数,即
2
a
2
b
2
c
中,
a , b , c 为正整数时,称 a , b , c 为一组勾股数
等。
8、命题、定理、证明
1 、命题的概念 判断一件事情的语句,叫做命题。 理解:命题的定义
包括两层含义: (1)命题必须是个完整的句子; (2)这个句子必须对某
件事情做出判断。
2、命题的定义包括两层含义: (1)命题必须是个完整的句子; (2)
这个句子必须对某件事情做出判断。
3、命题的分类 (按正确、 错误与否分)
( 3)、直角三角形斜边上的中线等于斜边的一半
∠ACB=90°
CD=1 AB=BD=AD 2
D
为 AB的中点
二次根式章节分类总复习 八年级数学下学期重难点及章节分类精品讲义
第02讲 《二次根式》章节分类总复习考点一 二次根式有意义的条件 知识点睛:1. 二次根式的定义:非负数a 的算术平方根a 叫做二次根式 ☆:二次根式的判断不需要化简,直接根据定义判断即可, 易错类型:因为24=,误认为4不是二次根式2. 二次根式有意义的条件a 中a 叫做被开方数,其中二次根式有意义的条件就是a ≥0;☆1:当二次根式和分式结合时,要注意分式的分母≠0 ☆2:a 的双重非负性⎩⎨⎧≥≥0.0.本身②被开方数①a a ;故有:a 前无“-”,a 本身值不可能是负的 类题训练1.下列式子,哪些是二次根式,哪些不是二次根式:,,,(x >0),,,﹣,,(x ≥0,y ≥0).【分析】一般地,我们把形如 (a ≥0)的式子叫做二次根式.结合所给式子即可作出判断. 【解答】解:符合二次根式的定义;是三次根式;是分式,不是二次根式; (x >0)符合二次根式的定义; 是二次根式; 是四次根式; ﹣符合二次根式的定义; 是分式,不是二次根式;(x ≥0,y ≥0)符合二次根式的定义.2.(2021春•下城区期末)已知二次根式,当x =1时,此二次根式的值为( ) A .2 B .±2 C .4D .±4【分析】将x的值代入二次根式,然后利用二次根式的性质化简求解.【解答】解:当x=1时,原式=,故选:A.3.(2021春•阳谷县期末)已知是整数,则正整数n的最小值是【分析】因为是整数,且=2,则6n是完全平方数,满足条件的最小正整数n为6.【解答】解:∵=2,且是整数,∴2是整数,即6n是完全平方数;∴n的最小正整数值为6.故答案为:6.4.(2021秋•普陀区期中)若是二次根式,那么x的取值范围是.【分析】二次根式要求被开方数是非负数,即10﹣5x≥0,从而解得x的取值范围.【解答】解:∵是二次根式,∴10﹣5x≥0,∴x≤2.故答案为:x≤2.5.(2021春•余杭区期中)当x=时,的值最小.【分析】根据二次根式的性质即可求出答案.【解答】解:当x=3时,此时2x﹣6=0,的最小值为0,故答案为:36.已知二次根式.(1)求x的取值范围;(2)求当x=﹣2时,二次根式的值;(3)若二次根式的值为零,求x的值.【分析】(1)根据二次根式的定义得出3﹣x≥0,解之可得答案;(2)将x=﹣2代入计算可得;(3)当被开方数为0时,二次根式的值即为0,据此列出关于x的方程求解可得.【解答】解:(1)根据题意,得:3﹣x≥0,解得x≤6;(2)当x=﹣2时,===2;(3)∵二次根式的值为零,∴3﹣x=0,解得x=6.7.已知x、y为实数,且满足,求5x+|2y﹣1|﹣的值.【分析】先根据二次根式的性质列出不等式组,求出x的取值,再把x的值代入所求代数式即可解答.【解答】解:则;==2.考点二二次根式相关概念知识点睛:1.最简二次根式:满足以下2个条件的二次根式成为最简二次根式①被开方数的因数是整数,因式是整式;②不含开的尽方的因数或因式☆:判断最简二次根式,被开方数的字母部分次数最高为1次,且不含分母二次根式的运算,最后结果都要求必须化为最简二次根式2.同类二次根式:所含被开方数相同的最简二次根式叫做同类二次根式类题训练1.(2021秋•桐柏县期中)下列二次根式中的最简二次根式是()A.B.C.D.【分析】根据最简二次根式的定义即可求出答案.【解答】解:A、原式=3,故A不符合题意.B、原式=3,故B不符合题意.C、是最简二次根式,故C符合题意.D、原式=2,故D不符合题意.故选:C.2.把下列根式化成最简二次根式.(1)5(2)6(3)(a>0)(4)(n<0)【分析】(1)直接利用二次根式的性质化简得出答案;(2)直接利用二次根式的性质化简得出答案;(3)直接利用二次根式的性质化简得出答案;(4)直接利用二次根式的性质化简得出答案.【解答】解:(1)5=5×2=10;(2)6=6×=6×=;(3)(a>0)=5a;(4)(n<0)=×=﹣.3.(2021春•岳麓区校级期末)下列式子能与合并的是()A.B.C.D.【分析】根据二次根式的性质把各个二次根式化简,根据同类二次根式的概念判断即可.【解答】解:A、==4,能与合并,符合题意;B 、=2,不能与合并,不符合题意;C 、=,不能与合并,不符合题意;D 、=,不能与合并,不符合题意;故选:A . 4.如果最简二次根式与2是同类二次根式,则a = .【分析】根据同类二次根式的定义列出方程,解方程得到答案. 【解答】解:∵最简二次根式与2是同类二次根式,∴3a ﹣8=17﹣2a , 解得,a =5, 故答案为:5.考点三 二次根式的运算知识点睛:二次根式乘法公式:())(③②)(①0b ,0··)0()0(022≥≥=⎩⎨⎧≤-≥==≥=a b a b a a a a a a a a a a 二次根式除法公式:()()()()ba b a c b a b a b a c ba ca aa ab b ab b a b a b a ba ba --=-+-=+=≥==≥=)0(1)0,0()0,0(>>变形公式:>④类题训练1.(2021秋•拱墅区期中)下列计算正确的是( ) A .B .C .D .【分析】根据平方根的性质、立方根的性质以及绝对值的性质即可求出答案. 【解答】解:A 、原式=0.3,故A 不符合题意.公式①、②、③常用于以下两种题型:(1)化简求值(2)无理数比较大小常见比较大小的三种方式:(1)利用近似值比较大小(2)把系数移到根号内比较(3)分别平方,然后比较大小以上方法注意两数的正负号公式④及其变形常用于分母有理化的化简,即分式的分子分母同乘分母的无理化因式,使分母变为整数。
八年级数学下册期末复习1二次根式新人教版
A.0
B.1
C.2
D.4
2.(温岭市期末)下列代数式中,属于最简二次根式的是
( C)
A. 3.2
B.
4 3
C. 5
D. 40
3.下列各式计算正确的是( D )
A. 2 + 3 = 5
B.4 3 -3 3 =1
C.2 3 ×3 3 =6 3
D. 27 ÷ 3 =3
4.估算
50+2 2
3 的值(
D
)
A.在 4 和 5 之间
=______n_2_+__n____________;
③应用:计算 8821+1100 .
解:③应用: 8821+1100 = 1+19 -110 =1910 .
1+811+1100 =
1+912+1102 =
B.在 5 和 6 之间
C.在 6 和 7 之间
D.在 7 和 8 之间
5.化简二次根式 a A. a-1 C. a+1
-a+a21 的结果是( B ) B.- -a-1 D.- a-1
6.若 k,m,n 都是整数,且 135 =k 15 , 450 =15 m ,
180 =6 n ,则下列关于 k,m,n 的大小关系,正确的
是( D )
A.k<m=n
B.m=n>k
C.m<n<k
D.m<k<n
7.已知 a,b 分别是 6- 13 的整数部分和小数部分,那
么 2a-b 的值是( C )
A.3- 13
B.4- 13
C. 13
D.2+ 13
8.已知 m=1+ 2 ,n=1- 2 ,则代数式 m2+n2-3mn
的值为( C )
解:原式=9+12 5 +20-(3-2) =29+12 5 -1 =28+12 5 .
八年级数学下册第十六章二次根式总结(重点)超详细(带答案)
八年级数学下册第十六章二次根式总结(重点)超详细单选题1、若a =√2﹣1,则a +1a 的整数部分是( )A .0B .1C .2D .3答案:C分析:把a 的值代入,利用二次根式的混合运算法则计算得出最简结果,再估算即可求解.解:∵a =√2−1,∴a +1a =√2−1+√2−1=√2−1+√2+1=2√2,∵4<8<9, ∴2<2√2<3,∴a +1a 的整数部分是2,故选:C小提示:本题主要考查了二次根式的混合运算,无理数的估算能力,掌握二次根式的混合运算法则是解决问题的关键.2、下列计算正确的是( )A .32=6B .(﹣25)3=﹣85C .(﹣2a 2)2=2a 4D .√3+2√3=3√3答案:D分析:由有理数的乘方运算可判断A ,B ,由积的乘方运算与幂的乘方运算可判断C ,由二次根式的加法运算可判断D ,从而可得答案.解:32=9,故A 不符合题意;(−25)3=−8125, 故B 不符合题意;(−2a 2)2=4a 4, 故C 不符合题意;√3+2√3=3√3, 故D 符合题意;故选D小提示:本题考查的是有理数的乘方运算,积的乘方与幂的乘方运算,二次根式的加法运算,掌握以上基础运算是解本题的关键.3、下列各式中,无意义的是( )A .√(−3)2B .√(−3)33C .√−32D .√−(−3)答案:C分析:根据二次根式的被开方数是非负数判断即可.解:A .原式=√9=3,故该选项不符合题意;B .原式=−3,故该选项不符合题意;C .原式=√−9,−9是负数,二次根式无意义,故该选项符合题意;D .原式=√3,故该选项不符合题意;故选:C .小提示:本题考查了二次根式有意义的条件,立方根,掌握二次根式的被开方数是非负数是解题的关键.4、当x >2时,√(2−x )2= ( )A .2−xB .x −2C .2+xD .±(x −2)答案:B分析:根据√a 2=|a |的进行计算即可.∵x >2,∴√(2−x )2=|2−x |=x −2,故B 正确.故选:B .小提示:本题考查了二次根式的性质与化简,熟练掌握√a 2=|a |是解题的关键.5、对于无理数√3,添加关联的数或者运算符号组成新的式子,其运算结果能成为有理数的是( ).A .2√3−3√2B .√3+√3C .(√3)3D .0×√3答案:D分析:分别计算出各选项的结果再进行判断即可.A .2√3−3√2不能再计算了,是无理数,不符合题意;B .√3+√3=2√3,是无理数,不符合题意;C .(√3)3=3√3,是无理数,不符合题意;D .0×√3=0,是有理数,正确.故选:D .小提示:此题主要考查了二次根式的运算,辨别运算结果,区分运算结果是否是有理数是解题的关键.6、若式子√m+2(m−1)2有意义,则实数m 的取值范围是( )A .m >﹣2B .m >﹣2且m ≠1C.m ≥﹣2D .m ≥﹣2且m ≠1答案:D分析:根据二次根式有意义的条件即可求出答案.由题意可知:{m +2≥0m −1≠0, ∴m≥﹣2且m≠1,故选D .小提示:本题考查二次根式有意义的条件,解题的关键是熟练运用二次根式的条件.7、下列计算:(1)(√2)2=2;(2)√(−2)2=2;(3)(−2√3)2=12;(4)(√2+√3)(√2−√3)=−1,其中结果正确的个数为( )A .1B .2C .3D .4答案:D分析:根据二次根式的运算法则即可进行判断.(1)(√2)2=2,正确;(2)√(−2)2=2正确;(3)(−2√3)2=12正确;(4)(√2+√3)(√2−√3)=−1,正确,故选D.小提示:此题主要考查二次根式的运算,解题的关键是熟知二次根式的性质:(√a)2=a;√a2=|a|.8、下列二次根式中,最简二次根式是()D.√a2A.−√2B.√12C.√15答案:A分析:根据最简二次根式的两个条件逐项判定即可.解:A、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故A符合题意;B、被开方数含能开得尽方的因数或因式,故B不符合题意;C、被开方数含分母,故C不符合题意;D、被开方数含能开得尽方的因数或因式,故D不符合题意.故选:A.小提示:本题主要考查了最简二次根式,最简二次根式的判定条件为:被开方数不含分母;被开方数不含能开得尽方的因数或因式.9、化简2√5−√5×(2−√5)的结果是()A.5B.−5C.√5D.−√5答案:A分析:先进行二次根式乘法,再合并同类二次根式即可.解: 2√5−√5×(2−√5),=2√5−2√5+5,=5.故选择A.小提示:本题考查二次根式乘除加减混合运算,掌握二次根式混合运算法则是解题关键.10、√(−3)2化简后的结果是()A.√3B.3C.±√3D.±3答案:B试题分析:“√a”表示的是a的算术平方根,“±√a”表示的是a的平方根.√(−3)2=√9=3,故选B.填空题11、实数2﹣√3的倒数是_____.答案:2+√3分析:先根据倒数的定义写出2﹣√3的倒数,再分母有理化即可.解:2−√3的倒数是2−√3=√3(2−√3)(2+√3)=2+√34−3=2+√3,所以答案是:2+√3.小提示:本题考查实数的倒数,分母有理化.掌握利用平方差公式分母有理化的方法是解题关键.12、我们知道√5是一个无理数,设它的整数部分为a,小数部分为b,则(√5+a)·b的值是_________.答案:1分析:先根据2<√5<3,确定a=2,b=√5-2,代入所求代数式,运用平方差公式计算即可.∵2<√5<3,∴a=2,b=√5-2,∴(√5+a)·b=(√5+2)(√5-2)=5-4=1,所以答案是:1.小提示:本题考查了无理数的估算,无理数整数部分的表示法,平方差公式,正确进行无理数的估算,灵活运用平方差公式是解题的关键.13、若a>√2a+1,化简|a+√2|−√(a+√2+1)2=_____.答案:1分析:先根据a>√2a+1,判断出a<−1−√2,据此可得a+√2<−1,a+√2+1<0,再依据绝对值性质和二次根式的性质化简可得.解:∵a>√2a+1,∴(1−√2)a>1,则a<1−√2,即a<−1−√2,∴a+√2<−1,a+√2+1<0,原式=−a−√2+a+√2+1=1,所以答案是:1 .小提示:本题主要考查二次根式的应用,解题的关键是掌握二次根式的性质、绝对值的性质和解一元一次不等式的步骤.14、计算√(−2)2的结果是_________.答案:2分析:根据二次根式的性质进行化简即可.解:√(−2)2=2.所以答案是:2.小提示:此题主要考查了二次根式的化简,注意:√a2=|a|={a(a>0)0(a=0)−a(a<0).15、计算√5×√15−√12的结果是_______.答案:3√3分析:根据二次根式的运算法则计算即可得出答案.原式=√5×15−2√3=5√3−2√3=3√3,故答案为3√3.小提示:本题考查的是二次根式,比较简单,需要熟练掌握二次根式的运算法则.解答题16、计算:(1)√32−√18−√18;(2)(7+4√3)(7−4√3)−(√3−1)2.答案:(1)34√2 (2)√3−3分析:(1)先把二次根式化为最简二次根式,然后合并同类项;(2)利用平方差和完全平方公式计算.(1)原式=4√2−3√2−√24=3√24 (2)原式=49−48−(3−2√3+1)=2√3−3小提示:本题考察了二次根式的混合运算和乘法公式.先把二次根式化为最近二次根式,然后再合并同类项,平方差公式(a −b)(a +b)=a 2−b 2,完全平方公式(a ±b)2=a 2±2ab +b 2,正确化简二次根式和使用乘法公式是解题的关键.17、计算:(1)√100+√−273−2×√14(2)−√(−3)2+√6+|√6−3|答案:(1)6(2)0分析:(1)先计算算术平方根与立方根,再合并即可;(2)先求解算术平方根与绝对值,再合并即可.(1)解:√100+√−273−2×√14=10−3−2×12=10−3−1=6;(2)−√(−3)2+√6+|√6−3|=−3+√6+3−√6=0小提示:本题考查的是化简绝对值,算术平方根与立方根的含义,二次根式的加减运算,掌握以上运算是解本题的关键.18、在下列各式中,哪些是最简二次根式?哪些不是?对不是最简二次根式的进行化简.(1)√45,(2)√13,(3)√52,(4)√0.5,(5)√145.答案:(1)不是,3√5;(2)不是,√33;(3)是;(4)不是,√22;(5)不是,3√55. 分析:判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.(1)√45=3√5,含有开得尽方的因数,因此不是最简二次根式.(2)√13=√33,被开方数中含有分母,因此它不是最简二次根式; (3)√52,被开方数不含分母,被开方数不含能开得尽方的因数或因式,因此它是最简二次根式;(4)√0.5=√12=√22,在二次根式的被开方数中,含有小数,不是最简二次根式; (5)√145=√95=3√55,被开方数中含有分母,因此它不是最简二次根式. 小提示:本题考查最简二次根式的定义.解决此题的关键,是掌握最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.。
人教版八年级数学下册第16章二次根式重难点详解
2.逆用二次根式乘除法法则进行化简
例 3 计算或化简(1) (9) (8) ; (2) 9x2 y3 x y3 ( x 0; y 0
)
解:(1) (9) (8) = 98 9 8 3 2 2 6 2.
( 2) 9x2 y2 x y3 = 9 x2 y2 (x y)3 3xy(x y) x y ( x 0; y 0
b2
bb
= 9a2b2 ab 9a2b ab 。 b
点拨: 运用二次根式乘除法法则进行乘除混合运算时,一要注意运算顺序, 二要注意整体观察被开方数之间的关系,合理搭配,达到简化运算的效 果。 5. 二次根式加减法法则的运用
例 6 计算 12 0.5 1 18 3
解:原式= 2
3
45 9 5; 40 410 中被开方数分别含有能开得尽方的因数 9 和 4,故
45; 40 都不是最简二次根式; 2 2 8 中被开方数含分母 3,故 2 2 不是
33
3
最简二次根式。故选 B。 4.运用二次根式乘除法法则计算或化简
例 4 化简: 12 ( 27 6) 24
点拨:观察发现已知条件 x, y中的 5 与2
5 2 是一对相反数,而所求式子是这
两个数的平方和与这两个数的乘积的差,故可由已知转变条件,运用完全平方式
简化求值.
栏目名:错题集
解二次根式常见错误分类解析
一、审题不清导致错误 例 1 16 的平方根是______ .
错解: 16 的平方根是 4.
诊断:错把 16 的平方根当成 16 的平方根。
二次根式重难点详解
一、 五大重点一一攻克
1. 二次根式的概念:重点注意被开方数是非负数。
人教版初中八年级数学下册第十六章《二次根式》经典复习题(含答案解析)
一、选择题1.下列是最简二次根式的是( )A B CD2.下列说法:①带根号的数是无理数;③实数与数轴上的点是一一对应的关系;④两个无理数的和一定是无理数;⑤已知a =2b =2a 、b 是互为倒数.其中错误的个数有( )A .1个B .2个C .3个D .4个3.下列计算正确的是( )A =±B .=C =D 2=4.x 的取值范围为( )A .x 2≥B .x 2≠C .x 2>D .x 2<5.的结果估计在( ) A .10到11之间 B .9到10之间C .8到9之间D .7到8之间 6.当x在实数范围内有意义( ) A .1x > B .1≥x C .1x < D .1x ≤7.x 的取值范围是( )A .x <1B .x >1C .x≥1D .x≤18.( )A .B .C .D .无法确定 9.下列式子中无意义的是( )A .B .C .D . 10.下列算式中,正确的是( )A .3=B =C =D 4=11.下列计算正确的是( )A . 3B .1122+=C.3=D312.)A.1个B.2个C.3个D.4个13.下列各式中,一定是二次根式的个数为()10),232a a a⎫+<⎪⎭A.3个B.4个C.5个D.6个14.n为().A.2 B.3 C.4 D.515.)0a<得()A B.C D.二、填空题16.3+=__________.17.化简题中,有四个同学的解法如下:========他们的解法,正确的是___________.(填序号)18.________________.19.已知b>0=_____.20.23()a-=______(a≠0),2-=______,1-=______.21.如图,在长方形内有两个相邻的正方形A,B,正方形A的面积为2,正方形B的面积为6,则图中阴影部分的面积是__________.22.已知5ab =,则b a a b=__. 23.比较大小:310524.已知223y x x =--,则()x x y +的值为_________. 25.已知8817y x x =--,则x y +的平方根为_________.26.(1031352931643-⎛⎫++= ⎪⎝⎭__________. 三、解答题27.计算:(183(26)27+(211513(1)(0.5)2674÷; (3)52311x y x y +=⎧⎨+=⎩; (4)4(2)153123x y y x +=-⎧⎪+⎨=-⎪⎩. 28.(1232;(2)计算:122729.计算(1)3222(2333 30.计算:(11850(2)73)(73)。
最新人教版八年级数学下册 二次根式知识点归纳及题型总结
最新人教版八年级数学下册二次根式知识点归纳及题型总结二次根式知识点归纳和题型归类一、知识框图二、知识要点梳理知识点一、二次根式的主要性质:1.二次根式的定义:形如$\sqrt{a}$($a\geq 0$)的式子叫做二次根式。
2.二次根式的双重非负性:$\sqrt{a}\geq 0$,即一个非负数的算术平方根是一个非负数。
3.二次根式的同底同指数相加减:$\sqrt{a}+\sqrt{b}=\sqrt{a+b}$,$\sqrt{a}-\sqrt{b}=\sqrt{a-b}$。
4.积的算术平方根的性质:$\sqrt{ab}=\sqrt{a}\cdot\sqrt{b}$。
5.商的算术平方根的性质:$\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}$($b\neq 0$)。
6.若$a\geq 0$,则$\sqrt{a^2}=|a|$。
知识点二、二次根式的运算1.二次根式的乘除运算1) 运算结果应满足以下两个要求:①应为最简二次根式或有理式;②分母中不含根号。
2) 注意每一步运算的算理。
3) 乘法公式的推广:$(\sqrt{a}\pm\sqrt{b})^2=a+b\pm2\sqrt{ab}$。
2.二次根式的加减运算:先化简,再运算。
3.二次根式的混合运算1) 明确运算的顺序,即先乘方、开方,再乘除,最后算加减,有括号先算括号里。
2) 整式、分式中的运算律、运算法则及乘法公式在二次根式的混合运算中也同样适用。
例题:1.下列各式中一定是二次根式的是()。
A。
$-3$;B。
$x$;C。
$x^2+1$;D。
$x-1$2.$x$取何值时,下列各式在实数范围内有意义。
1)$\sqrt{-15+x}$;(2)$\frac{1}{\sqrt{x+4}}$3)$\sqrt{x+4}+\sqrt{2x+1}$;(4)$\sqrt{x+1}-\sqrt{x}$5)$3-\sqrt{x+1}$;(6)$\frac{2x}{\sqrt{x+1}}$7)若$x(x-1)=\frac{1}{4}$,则$x$的取值范围是()。
初中数学 人教版八年级下学期期末知识点梳理(二次根式至一元二次方程)
八年级下期末复习知识点归纳二次根式知识点梳理: 1、二次根式的定义.一般地,式子 a (a ≥0)叫做二次根式,a 叫做被开方数。
两个非负数:(1)a ≥0 ;(2) a ≥02、二次根式的性质:(1).()0≥a a 是一个非负数 ; (2)()=2a a (a ≥0)(3)()()()⎪⎩⎪⎨⎧〈=〉==0_______0_______0_______2a a a a a3、二次根式的乘除:积的算术平方根的性质:)0,0(≥≥⋅=b a b a ab ,二次根式乘法法则:__________=⋅b a (a ≥0,b ≥0)商的算术平方根的性质:ba b a =).0,0(>≥b a 二次根式除法法则:)0,0(>≥=b a bab a1.被开方数不含分母; 4、最简二次根式 2.分母中不含根号;3. 被开方数中不含能开得尽方的因数或因式. 分母有理化:是指把分母中的根号化去,达到化去分母中的根号的目的.5、同类二次根式:几个二次根式化成最简二次根式后,它们的被开方数相同,•这些二次根式就称为同类二次根式。
二次根式加减时,可以先将二次根式化成最简二次根式,•再将被开方数相同的二次根式进行合并.勾股定理知识点梳理:1、勾股定理:如果直角三角形的两直角边分别是a 、b ,斜边为c ,那么a 2+b 2=c 2.即直角三角形中两直角边的平方和等于斜边的平方。
(1)在直角三角形中,若已知任意两边,就可以运用勾股定理求出第三边.无直角时,可作垂线构造直角三角形. 变式:a cb cb ab ac 222222;;-=-=+=(2)勾股定理的作用:(1)计算;(2)证明带有平方的问题;(3)实际应用.(3)利用勾股定理可以画出长度是无理数的线段,也就可以在数轴上画出表示无理数的点. 2、勾股定理逆定理:如果一个三角形的一条边的平方等于另外两条边的平方和,那么这个三角形是直角三角形. 即如果三角形三边a, b, c 长满足c b a 222=+那么这个三角形是直角三角形.(1)满足a 2 +b 2=c 2的三个正整数,称为勾股数.勾股数扩大相同倍数后,仍为勾股数.常用的勾股数有3、4、5、; 6、8、10; 5、12、13 等.(2)应用勾股定理的逆定理时,先计算较小两边的平方和再把它和最大边的平方比较. (3) 判定一个直角三角形,除了可根据定义去证明它有一个直角外,还可以采用勾股定理的逆定理,即去证明三角形两条较短边的平方和等于较长边的平方,这是代数方法在几何中的应用.3、定理:经过人们的证明是正确的命题叫做定理。
人教版八年级数学下册-第十六章复习2
《二次根式》复习一、选择题1. 下列式子一定是二次根式的是( )A .2--xB .xC .22+xD .22-x 2.若b b -=-3)3(2,则( )A .b>3B .b<3C .b ≥3D .b ≤3 3.若13-m 有意义,则m 能取的最小整数值是( ) A .m=0 B .m=1 C .m=2 D .m=3 4.下列二次根式中属于最简二次根式的是( ) A .14 B .48 C .ba D .44+a5.如果)6(6-=-•x x x x ,那么( )A .x ≥0B .x ≥6C .0≤x ≤6D .x 为一切实数 6.小明的作业本上有以下四题: ①24416a a =;②a a a 25105=⨯;③a aa a a =•=112; ④a a a =-23。
做错的题是( ) A .① B .② C .③ D .④7.若最简二次根式a a 241-+与的被开方数相同,则a 的值为( ) A .43-=a B .34=a C .a=1 D .a= —1 8.化简)22(28+-得( )A .—2B .22-C .2D . 224-二、填空题9.①=-2)3.0( ;②=-2)52( 。
10.若m<0,则332||m m m ++= 。
11.1112-=-•+x x x 成立的条件是 。
12.比较大小:13.=•y xy 82 ,=•2712 。
14.若35-=x ,则562++x x 的值为 。
三、解答题15.求使下列各式有意义的字母的取值范围: (1)43-x (2)a 831- (3)42+m (4)x 1-16.化简:(1))169()144(-⨯- (2)22531-(3)5102421⨯- (4)n m 21817.计算:(1)21437⎪⎪⎭⎫ ⎝⎛- (2)225241⎪⎪⎭⎫⎝⎛-- (3))459(43332-⨯ (4)⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-126312817(5)2484554+-+ (6)2332326--四、综合题 18.若代数式||112x x -+有意义,则x 的取值范围是什么?19.若x ,y 是实数,且2111+-+-<x x y ,求1|1|--y y 的值。
人教版八年级下册数学:第16章 二次根式(复习课)
A A
12、若 (2x)2 (1x)2 3 ,则x的取值范围是__1__x___2
五、合作交流
乘除法技巧(1)带分数化假分数; (2)根号内外分开乘; (3)两部分结果相乘; (4)最后约分、化简;
❖ 计算:
加法: 合并同类二次根式
减法:
类似整式 加减法的 合并同类
项
乘法: a. b ab(a 0,b 0)
除法: a
b
a b
(a
0,b
0)
方法指导:判断是否是二次根式,只看形式,不看结果;
四、挑战自我 (1)、根号的次数是二次; (2)、根号下的数(或式子)是非负的;
c 1、下面哪个式子是二次根式( )
(1)、10 介于整数__3 和整数_4_之间, 10 的整 数部分x=_3_
(2)、 10 的小数部分怎么表示? 10 的小数部分 y=_1_0 _3
(3)、( 10 +x)y=_( _10_ 3_)( _10__3_) ___10_-_9_=_1__
追问:问题中的 10 是个什么式子?上面的问题
同类二次根式:几 方个 数二 相次 同根 ,式 这化 样成 的最 二简 次二根次式根叫式同后类,二被次开根 式;
判断几个二次根式 是不是二次根式, 一定要先化简再判
断
(1)非负性: a 0(a 0)
2、三个性质 3、四种运算
(2) (
a
2
)
a(a
0)
(3)
a2 a
a(a 0) a(a 0)
,
25
1 __3_
,__5_
.
初二数学下册:二次根式常考10大题型
初二数学下册:二次根式常考10大题型考点二次根式1.二次根式的有关概念(1)二次根式:该式子称作二次根式。
注意被开方数a只能是非负数。
并且根式也是非负数。
(2)最简二次根式:被开方数不含分母,不含能开得尽方的因数或因式,这样的二次根式,叫做最简二次根式。
(3)同类二次根式:化成最简二次根式后,被开方数相同的几个二次根式,叫做同类二次根式。
2.二次根式的性质3.二次根式的运算(1)二次根式的加减:先把二次根式化为最简二次根式,再合并同类二次根式。
(2)二次根式的乘除:和(3)二次根式的运算仍满足运算律,也可以用多项式的乘法公式来简化运算。
二次根式的运算结果一定要化成最简二次根式。
常考的10个类型题点评:关于二次根式的根号内外的“移进”和“移出”,关键是要抓住二次根式的被开方数是非负数这个特点,先确定字母的隐含的取值范围,再结合进行“移进”和“移出”的变形化简;这类题在考试中常出现在考题的填空和选择题中,是正确率比较低的热点考题高频考点,这个知识点容易与其它知识点联姻构成有一定含金量的综合题,而双重非负数性在其中扮演的往往是关键角色,上面的几道例题就是要抓住算术平方根及其被开方数都是非负数的破题;比如很多同学对于例3这类题不知从何入手,但只要抓住本题是二次根式构建的,从被开方数是非负数这点入手,就可以隐藏在其中的a 的值挖出来,从而使问题得以解故④正确;根据垂直平分线的判定并结合图象可知EF是线段BC的垂直平分线,⑤正确故选①④⑤点评:几何的相关计算中往往要通过二次根式的计算或化简来解决不在少数,是中考和各类考试的热点考题;这类题型把二次根式的计算或化简和勾股定理即其它几何知识很好结合在一起考察,是数形结合等思想方法较好体现。
这类题型还很容易与函数及其图象结合在一起。
end。
(完整版)新人教版八年级数学下册二次根式的知识点汇总
二次根式的知识点汇总知识点一: 二次根式的观点形如 ( )的式子叫做二次根式。
注:在二次根式中,被开放数能够是数,也能够是单项式、多项式、分式等代数式,但一定注意:由于负数没有平方 根,因此是 为二次根式的前提条件,如 , , 等是二次根式,而 , 等都不是二次根式。
例 1.以下式子,哪些是二次根式,哪些不是二次根式:2、33、1 、 x ( x>0 )、 0、42、-2 、 1 、xx yx y ( x ≥ 0, y?≥ 0).剖析:二次根式应知足两个条件:第一,有二次根号“”;第二,被开方数是正数或 0.知识点二:取值范围1、 二次根式存心义的条件:由二次根式的意义可知,当 a ≧ 0 时, 存心义,是二次根式,因此要使二次根式存心义,只需使被开方数大于或等于零即可。
2、 二次根式无心义的条件:因负数没有算术平方根,因此当 a ﹤0 时, 没存心义。
例 2.当 x 是多少时, 3x 1 在实数范围内存心义? 例 3.当 x 是多少时,2x 3 +1在实数范围内存心义?x1知识点三:二次根式()的非负性()表示 a 的算术平方根,也就是说, ( )是一个非负数,即0( )。
注:由于二次根式 ( )表示 a 的算术平方根,而正数的算术平方根是正数,0 的算术平方根是 0,因此非负数()的算术平方根是非负数,即 0(),这个性质也就是非负数的算术平方根的性质,和绝对值、偶次方近似。
这个性质在解答题目时应用许多,如若,则 a=0,b=0 ;若 ,则 a=0,b=0 ;若,则 a=0,b=0 。
例 4(1) 已知 y=2 x + x2 +5,求xy的值. (2) 若 a 1 + b 1 =0,求 a 2004+b 2004 的值1知识点四:二次根式()的性质()文字语言表达为:一个非负数的算术平方根的平方等于这个非负数。
注:二次根式的性质公式()是逆用平方根的定义得出的结论。
上边的公式也能够反过来应用:若,则,如:,.例 1 计算1.(3) 2 2.(3 5)2 3.(5) 2 4.(7) 2 2 6 2例 2 在实数范围内分解以下因式:(1) x2-3 ( 2) x4-4 (3) 2x 2-3知识点五:二次根式的性质文字语言表达为:一个数的平方的算术平方根等于这个数的绝对值。
人教版八年级下册数学《二次根式的混合运算》二次根式说课教学复习课件
)
随堂练习
3.已知= − , 则代数式(+ ) + + + 的值是(C
.
A.
4.已知=
-
, =
.+
+
. −
,则 + +=_______.
)
随堂练习
5.计算:
(1) (1+ )(2- );
解: (1+ )(2- )
问卷调查,统计如下表所示:
颜色
学生人数
黄色 绿色 白色 紫色 红色
100
180
220
80
750
学校决定采用红色,可用来解释这一现象的统计知识是( C )
A. 平均数
C. 众数
B. 中位数
D. 方差
课堂检测
基 础 巩 固 题
2.学习了《数据的分析》后,某同学对学习小组内甲、乙、丙、
丁四名同学的数学月考成绩进行了统计,发现他们的平均成绩
这些平均数受这个人的影响,而中位数是210件,众数
是210件,因此我们认为以210件为规定量比较科学.
巩固练习
1.甲、乙两位同学在几次数学测验中,各自的平均分都
是88分,甲的方差为0.61,乙的方差为0.72,则( A
A、甲的成绩比乙的成绩稳定
B、乙的成绩比甲的成绩稳定
C、甲、乙两人的成绩一样好
D、甲、乙两人的成绩无法比较
=( )²+2× ×1+1²
=5-2
=3+2 +1
=3.
=4+2 .
典例精析
例3
计算下列各式:
(1)
;
−
解:
−
+
=
( −)( +)
+
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学试卷
课题: 二次根式复习
课型:新授课 上课时间:3月11日
二次根式定义: 。
二次根式有意义的条件: 。
1.下列各式中,正确的是( )
A .16=±4
B .25=-5
C .23273.(27)
D -=--=-27
2.下面的式子有意义,求出其中字母的取值范围
(1)4x - (2) 11
m m -++ (3)212x x ++-
3.二次根式具有双重非负性。
1.当15x ≤时,()215_____________x x -+-=。
2.若1a b -+与24a b ++互为相反数,则()2005_____________a b -=。
4.计算:()1.232⨯ ()32.53x x ⨯
()()()33.5
40,0ab a b a b ⋅-≥≥ ()()364.0,0a b ab a b ÷
()2125.
121335÷⨯ ()53236.32b ab a b b a ⎛⎫⋅-÷ ⎪⎝⎭
5.把根号外的因式移到根号内:
()11.5
5- ()()12.11
x x --
最简二次根式满足的条件
(1) 。
(2) 。
6.将下列各式化简
()()351.0,0a b a b ≥≥ ()2.x y x y
-+ ()3213.a a a ---
二次根式的加减:
同类二次根式: 。
7.在8,12,18,20中,与2是同类二次根式的是 。
8.若最简二次根式125a a ++与34b a +是同类二次根式,则____,____a b ==。
9.计算:
⑴. 11221231548333+-- ⑵. ()
1485423313⎛⎫-÷+-+ ⎪⎝⎭
10.综合运用:1已知:1110a a +=+,求221a a
+的值。
2已知:()1
1039322++=+-+-y x x x y x ,求的值。
3已知
1
x y
-++=0,求的值。
4已知a=3+2,b=3-2,求a2b-ab2。