最新中考数学试卷分类汇编13一元一次不等式(组)的应用

合集下载

2023中考数学复习-专题13 一元一次不等式(组)及其应用(练透)(学生版)

2023中考数学复习-专题13 一元一次不等式(组)及其应用(练透)(学生版)

专题13 一元一次不等式(组)及其应用一、单选题1.(2022·珠海市九洲中学九年级三模)若x y >,则( ) A .22x y +<+B .22x y -<-C .22x y <D .22x y -<-2.(2022·浙江杭州·翠苑中学九年级二模)下列说法正确的是( ) A .若a b =,则ac bc = B .若a b =,则a b c c= C .若a b >,则11a b ->+D .若1xy>,则x y >3.(2022·深圳市南山区荔香学校九年级开学考试)关于x 的不等式()122m x m +>+的解集为2x <,则m 的取值范围是( ) A .1m ≠-B .1m =-C .1m >-D .1m <-4.(2022·重庆市天星桥中学九年级开学考试)已知关于x 的不等式组5720x a x -<⎧⎨--<⎩有且只有3个非负整数解,且关于x 的分式方程61a x --+a =2有整数解,则所有满足条件的整数a 的值的个数为( ) A .4B .3C .2D .15.(2022·老河口市教学研究室九年级月考)不等式组2030x x -≤⎧⎨->⎩的整数解有( )A .1个B .2个C .3个D .4个6.(2022·山东日照·)若不等式组643x x x m +<-⎧⎨>⎩的解集是3x >,则m 的取值范围是( )A .3m >B .3m ≥C .3m ≤D .3m <7.(2022·珠海市紫荆中学九年级一模)不等式组20321x x -≥⎧⎨+>-⎩的解集是( )A .﹣1<x ≤2B .﹣2≤x <1C .x <﹣1或x ≥2D .2≤x <﹣18.(2022·四川省宜宾市第二中学校九年级三模)若关于x 的不等式3x +m ≥0有且仅有两个负整数解,则m 的取值范围是( ) A .6≤m ≤9B .6<m <9C .6<m ≤9D .6≤m <99.(2020·重庆梁平·)若数a 使关于x 的不等式组347x a x ≤⎧⎪+⎨>-⎪⎩有且仅有四个整数解,且使关于y的分式方程2233ay y+=--有非负数解,则所有满足条件的整数a的值之和是()A.﹣2 B.﹣3 C.2 D.1 10.(2022·北京市第十二中学九年级月考)某中学举行了科学防疫知识竞赛.经过选拔,甲、乙、丙三位选手进入到最后角逐.他们还将进行四场知识竞赛.规定:每场知识竞赛前三名的得分依次为a,b,c(a>b>c且a,b,c均为正整数);选手总分为各场得分之和.四场比赛后,已知甲最后得分为16分,乙和丙最后得分都为8分,且乙只有一场比赛获得了第一名,则下列说法正确的是()A.每场比赛的第一名得分a为4B.甲至少有一场比赛获得第二名C.乙在四场比赛中没有获得过第二名D.丙至少有一场比赛获得第三名二、填空题11.(2022·湖北黄石八中九年级模拟预测)不等式组3712261xx⎧->⎪⎨⎪-≥-⎩的整数解为______________.12.(2022·全国九年级课时练习)高速公路某收费站出城方向有编号为A,B,C,D,E的五个小客车收费出口,假定各收费出口每30分钟通过小客车的数量分别都是不变的.同时开放其中的某两个收费出口,这两个出口30分钟内一共通过的小客车数量记录如下:在A,B,C号是________.13.(2022·辽宁沈阳·中考真题)不等式组51350xx-<⎧⎨-≥⎩的解集是__________.14.(2022·四川省宜宾市第二中学校九年级一模)不等式组:515264253(5)x xx x-+⎧+>⎪⎨⎪+≤-⎩的解集为______.15.(2022·临沂第九中学九年级月考)不等式222xx->-的解集为_____.三、解答题16.(2022·福建厦门双十中学思明分校九年级二模)解不等式组:31320x xx+>+⎧⎨->⎩17.(2022·山东济南·中考真题)解不等式组:3(1)25,32,2x xxx-≥-⎧⎪⎨+<⎪⎩①②并写出它的所有整数解.18.(2022·福建省福州第十九中学九年级月考)解不等式组()311922x xxx⎧+>-⎪⎨+<⎪⎩19.(2022·全国九年级课时练习)某公司招聘人才,对应聘者分别进行阅读能力、思维能力和表达能力三项测试,其中甲、乙两人的测试成绩(百分制)如表:(单位:分)(1(2)若公司将阅读能力、思维能力和表达能力三项测试得分按3:5:2的比确定每人的总成绩.①计算甲的总成绩;②若乙的总成绩超过甲的总成绩,则乙的表达能力成绩x超过多少分?20.(2022·福建省福州延安中学九年级月考)解不等式组3534(1)2x xx x-<-⎧⎨+≥-⎩,并把解集在数轴上表示.21.(2022·四川绵阳·中考真题)某工艺厂为商城制作甲、乙两种木制工艺品,甲种工艺品不少于400 件,乙种工艺品不少于680件.该厂家现准备购买A、B两类原木共150根用于工艺品制作,其中,1根A类原木可制作甲种工艺品4件和乙种工艺品2件,1根B类原木可制作甲种工艺品2件和乙种工艺品6件.(1)该工艺厂购买A类原木根数可以有哪些?(2)若每件甲种工艺品可获得利润50元,每件乙种工艺品可获得利润80元,那么该工艺厂购买A、B两类原木各多少根时获得利润最大,最大利润是多少?22.(2022·哈尔滨市第十七中学校九年级二模)毕业考试结束后,班主任罗老师预购进甲乙两种奖品奖励学生,若购进甲种奖品3件和乙种奖品2件共需要40元;若购进甲种奖品2件和乙种奖品3件共需要55元.(1)求购进甲、乙两种奖品每件分别需要多少元?(2)班主任罗老师决定购进甲、乙两种奖品共20件,且用于购买这20件奖品的资金不超过160元,则最多能购进乙种奖品多少件?23.(2022·日照港中学九年级一模)山地自行车越来越受到中学生的喜爱,各种品牌相继投放市场.某车行经营的A型车去年销售总额为5万元,今年每辆售价比去年降低400元,若卖出的数量相同,销售总额将比去年减少20%.(1)今年A型车每辆售价多少元?(用列方程的方法解答)(2)该车行计划新进一批A型车和新款B型车共60辆,且B型车的进货数量不超过A型车数量的两倍,应如何进货才能使这批车获利最多?A,B两种型号车的进货和销售价格如下表:。

全国181套中考数学试题分类汇编13一元一次不等式(组)的应用

全国181套中考数学试题分类汇编13一元一次不等式(组)的应用

13:一元一次不等式(组)的应用一、选择题1.(黑龙江龙东五市3分)把一些笔记本分给几个学生,如果每人分3本,那么余8本;如果前面的每个学生分5本,那么最后一人就分不到3本。

则共有学生A、4人B、5人C、6人D、5人或6人【答案】C。

【考点】一元一次不等式组的应用。

【分析】假设共有学生x人,根据题意,得不等式组,()()513383851x>xx>x⎧-++⎪⎨+-⎪⎩,解得:5<x<6.5。

故选C。

2.(山东菏泽3分)某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打A、6折B、7折C、8折D、9折【答案】B。

【考点】一元一次不等式的应用。

【分析】设可打x折,则有1200x·0.1≥800(1+0.05),解之得x≥7。

故选B。

3. (青海省3分)如图,天平右盘中的每个砝码的质量都是1克,则物体A的质量m克的取值范围表示在数轴上为A B C D【答案】C。

【考点】一元一次不等式组的应用,在数轴上表示不等式的解集。

【分析】根据天平知2<m<3。

不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个。

在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示。

故选C。

二、填空题1.(山东东营4分)如图,用锤子以相同的力将铁钉垂直钉入木块,随着铁钉的深入.铁钉所受的阻力也越来越大,当铁钉未进入木块部分长度足够时,每次钉入木块妁铁钉长度是前一次的13,已知这个铁钉被敲击3次后全部进入木块(木块足够厚).且第一次敲击后,铁钉进入木块的长度是a cm,若铁钉总长度为6 cm,则a的取值范围是▲ 。

【答案】549 132a<≤。

中考数学复习 一元一次不等式(组)及应用

中考数学复习 一元一次不等式(组)及应用

“≠”连接而成的式子.
2.解集:一般地,一个含有未知数的不等式的所有
的解,组成这个不等式的解集.
如果a>b,那么a±c>b±c
3.性质如果a>b,c>0,那么ac>bc或ac>bc
如果a>b,c<0,那么ac
①_<_bc或ac
②_<_bc
第1部分 第二单元 方程(组)与不等式(组)
二、一元一次不等式 一元一次不等式
第二单元 方程(组)与不等式(组)
课时 8 一元一次不等式(组)及应用
CONTENTS
目 录
课前自测 知识梳理 知识过关
第1部分 第二单元 方程(组)与不等式(组)
课前自测
1.已知a>b,则下列不等式中不正确的是( C )
A.4a>4b
B.a+4>b+4
C.-4a>-4b
D.a-4>b-4
第1部分 第二单元 方程(组)与不等式(组)
第1部分 第二单元 方程(组)与不等式(组)
广东中考
1.(2013广东)已知实数a,b,若a>b,则下列结论 正确的是( D )
A.a-5<b-5 B.2+a<2+b C.a3<b3 D.3a>3b
第1部分 第二单元 方程(组)与不等式(组)
2.(2018广东)不等式3x-1≥x+3的解集是( D )
(1)求商场销售A,B两种型号计算器的销售价格分别 是多少元?(利润=销售价格-进货价格)
(2)商场准备用不多于2 500元的资金购进A,B两种 型号计算器共70台,问最少需要购进A型号的计算器多 少台?
第1部分 第二单元 方程(组)与不等式(组)
解:(1)设 A 种型号计算器的销售价格是 x 元,B 种

2010年中考试题最新分类汇总-13.一元一次不等式(组)的应用2

2010年中考试题最新分类汇总-13.一元一次不等式(组)的应用2

一、选择题1.2.3.4.5.6.7.8.9.10.11.12.13.14.15.16.17.18.19.20. 二、填空题1.2.3.4.5.6.7.8.9.10.11.12.13.14.15.16.17.18.19.20. 三、解答题 1.(2010天水)天水市某果蔬公司组织20辆汽车运甲、乙、丙三种苹果共120吨去外地销售,按计划20辆都要装运,每辆汽车只能装运同一种苹果,且必须装满,根据下表提供的信息,(1) 设装运甲种苹果的车辆数为x,装乙种苹果的车辆数为y,求y 与x 之间的函数关系. (2) 如果装运每种苹果的车辆数都不少于3辆,那么车辆的安排方案有几种?并写出每种安排方案.(3) 若要使此次销售获得最大利润,应采用哪种安排方案,并求出此次销售的最大利润. 【答案】解:(1)由题意可知,8x+6y+5(20-x-y)=120 ∴y=20-3x ∴y 与x 之间的函数关系为y=20-3x(2) ∵ ∵x ≥3,y-20-3x ≥3, 20-x-y ≥3, ∴3203323x x x ≥⎧⎪-≥⎨⎪≥⎩∴3≤x ≤523∵x 是正整数 ∴x=3,4,5.故方案有三种:(4) 设此次销售获利为w 百元:w=8x ·12+6(20-3x) ·16+5[20-x-(20-3x)]·10 即w=-92x+1920∵w 随x 增大而减小 ∴当x=3时,w 最大=1644百元=16.44万元答:使此次销售获得最大,应采用方案一,即甲种3辆,乙种11辆,丙种6辆,获得最大利润为16.44万元。

2.(2010福建漳州)上海某宾馆客房部有三人普通间和二人普通间,每间收费标准如下表所示。

世博会期间,一个有50名女工组成的旅游团入住该宾馆,她们都选择了三人普通间和二人普通间,且每间正好都住满,设该旅游团入住三人普通间有x 间。

(1)该旅游团入住的二人普通间有 间(用含x 的代数式表示); (2)该旅游团要求一天的住宿费必须少于.. 4500元,且入住的三人普通间不多于...二人普通间,若客房部能满足该旅游团的要求,那么该客房部有哪几种安排方案?【答案】解:(1)5032x-(2)240x+5032x-×200<4500,x ≤5032x-解得1810 3x<≤,所以x=9或x=10.当x=9时,5032x-=11.5(不符合题意,舍去)当x=10时,5032x-=10.所以安排10间三人普通间和10间二人普通间。

沪科版九年级数学中考复习一元一次不等式(组)的应用(含答案)

沪科版九年级数学中考复习一元一次不等式(组)的应用(含答案)

沪科版九年级数学中考复习一元一次不等式(组)的应用(含答案)一、选择题1. (·齐齐哈尔)为有效开展“阳光体育”活动,某校计划购买篮球和足球共50个,购买资金不超过3 000元.若每个篮球80元,每个足球50元,则篮球最多可购买()A. 16个B. 17个C. 33个D. 34个2. (·台湾)已知在卡乐芙超市内购物总金额超过190元时,购物总金额有打8折的优惠,安妮带200元到卡乐芙超市买棒棒糖.若棒棒糖每根9元,则她最多可买棒棒糖()A. 22根B. 23根C. 27根D. 28根二、填空题3. (·台州)商家花费760元购进某种水果80千克,销售中有5%的水果正常损耗,为了避免亏本,售价至少应定为________元/千克.4. (·牡丹江)某种商品的进价为每件100元,商场按进价提高50%后标价,为增加销量,准备打折销售,但要保证利润率不低于20%,则至多可以打________折.三、解答题5. (·沈阳)小明要代表班级参加学校举办的消防知识竞赛,共有25道题,规定答对一道题得6分,答错或不答一道题扣2分,只有得分超过90分才能获得奖品,问小明至少答对多少道题才能获得奖品?6. (·贵港)某次篮球联赛初赛阶段,每队有10场比赛,每场比赛都要分出胜负,每队胜一场得2分,负一场得1分,积分超过15分才能获得参赛资格.(1) 已知甲队在初赛阶段的积分为18分,求甲队初赛阶段胜、负各多少场;(2) 如果乙队要获得参加决赛的资格,那么乙队在初赛阶段至少要胜多少场?7. (·邵阳)某校计划组织师生共300人参加一次大型公益活动,如果租用6辆大客车和5辆小客车恰好全部坐满.已知每辆大客车的乘客座位数比小客车多17.(1) 求每辆大客车和每辆小客车的乘客座位数;(2) 由于最后参加活动的人数增加了30,学校决定调整租车方案,在保持租用车辆总数不变的情况下,为将所有参加活动的师生装载完成,求租用小客车数量的最大值.8. (·泰安)某水果商从批发市场用8 000元购进了大樱桃和小樱桃各200千克,大樱桃的进价比小樱桃的进价每千克多20元,大樱桃售价为每千克40元,小樱桃售价为每千克16元.(1) 大樱桃和小樱桃的进价分别是每千克多少元?销售完后,该水果商共赚了多少元钱?(2) 该水果商第二次仍用8 000元钱从批发市场购进了大樱桃和小樱桃各200千克,进价不变,但在运输过程中小樱桃损耗了20%.若小樱桃的售价不变,要想让第二次赚的钱不少于第一次所赚钱的90%,大樱桃的售价最少应为多少?9. (·聊城)在推进城乡义务教育均衡发展工作中,我市某区政府通过公开招标的方式为辖区内全部乡镇中学采购了某型号的学生用电脑和教师用笔记本电脑,其中,A乡镇中学更新学生用电脑110台和教师用笔记本电脑32台,共花费30.5万元;B乡镇中学更新学生用电脑55台和教师用笔记本电脑24台,共花费17.65万元.(1) 该型号的学生用电脑和教师用笔记本电脑的单价分别是多少万元?(2) 经统计,全部乡镇中学需要购进的教师用笔记本电脑台数比购进的学生用电脑台数的15少90,在两种电脑的总费用不超过预算438万元的情况下,至多能购进的学生用电脑和教师用笔记本电脑各多少台?10. (·桂林)为进一步促进义务教育运恒发展,某市加大了基础教育经费的投入,已知2015年该市投入基础教育经费5 000万元,年投入基础教育经费7 200万元.(1) 求该市这两年投入基础教育经费的年平均增长率.(2) 如果按(1)中基础教育经费投入的年平均增长率计算,该市计划2018年用不超过当年基础教育经费的5%购买电脑和实物投影仪共1 500台,调配给农村学校.若购买一台电脑需3 500元,购买一台实物投影仪需2 000元,则最多可购买电脑多少台?11. (·温州)小黄准备给长8米、宽6米的矩形客厅铺设瓷砖,现将其划分成一个矩形ABCD区域Ⅰ(涂色部分)和一个环形区域Ⅱ(空白部分),其中区域Ⅰ用甲、乙、丙三种瓷砖铺设,且满足PQ∥AD,如图所示.(1) 若区域Ⅰ的三种瓷砖均价为300元/米2,面积为S(米2),区域Ⅱ的瓷砖均价为200元/米2,且两区域的瓷砖总价不超过12 000元,求S的最大值.(2) 若区域Ⅰ满足AB∶BC=2∶3,区域Ⅱ四周宽度相等.①求AB,BC的长;②若甲、丙两瓷砖单价之和为300元/米2,乙、丙瓷砖单价之比为5∶3,且区域Ⅰ的三种瓷砖总价为4 800元,求丙瓷砖单价的取值范围.第11题12. (·鸡西)由于雾霾天气频发,市场上防护口罩出现热销.某药店准备购进一批口罩,已知1个A型口罩和3个B型口罩共需26元;3个A型口罩和2个B型口罩共需29元.(1) 一个A型口罩和一个B型口罩的售价各是多少元?(2) 药店准备购进这两种型号的口罩共50个,其中A 型口罩的数量不少于35个,且不多于B型口罩的3倍,有哪几种购买方案,哪种方案最省钱?13. (·东营)为解决中小学大班额问题,东营市各县区今年将改扩建部分中小学,某县计划对A,B两类学校进行改扩建,根据预算,改扩建2所A类学校和3所B类学校共需资金7 800万元,改扩建3所A类学校和1所B 类学校共需资金5 400万元.(1) 改扩建1所A类学校和1所B类学校所需资金分别是多少万元?(2) 该县计划改扩建A,B两类学校共10所,改扩建资金由国家财政和地方财政共同承担.若国家财政拨付资金不超过11 800万元;地方财政投入资金不少于4 000万元,其中地方财政投入到A,B两类学校的改扩建资金分别为每所300万元和500万元.请问共有哪几种改扩建方案?14. (·天水)天水某公交公司将淘汰某一条线路上“冒黑烟”较严重的公交车,计划购买A型和B型两行环保节能公交车共10辆,若购买A型公交车1辆,B型公交车2辆,共需400万元;若购买A型公交车2辆,B型公交车1辆,共需350万元.(1) 购买A型和B型公交车每辆各需多少万元?(2) 预计在该条线路上A型和B型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买A型和B 型公交车的总费用不超过1 220万元,且确保这10辆公交车在该线路的年均载客量总和不少于650万人次,则该公司有哪几种购车方案?哪种购车方案总费用最少?最少总费用是多少?2. 一元一次不等式(组)的应用一、 1. A 2. C 二、 3. 10 4. 8三、 5. 设小明答对了x 道题.根据题意,得6x +(25-x)×(-2)>90,解得x ≥1712.∵ x 为非负整数,∴ x 至少为18.∴ 小明至少答对18道题才能获得奖品6. (1) 设甲队胜了x 场,则负了(10-x)场.根据题意,得2x +10-x =18,解得x =8,此时10-x =2.∴ 甲队胜了8场,负了2场 (2) 设乙队在初赛阶段胜a 场.根据题意,得2a +(10-a)>15,解得a>5,∴ a 的最小整数值为6.∴ 乙队在初赛阶段至少要胜6场7. (1) 设每辆小客车的乘客座位数是x ,大客车的乘客座位数是y.根据题意,得⎩⎨⎧y -x =17,6y +5x =300,解得⎩⎨⎧x =18,y =35.∴ 每辆小客车的乘客座位数是18,大客车的乘客座位数是35 (2) 设租用a 辆小客车.根据题意,得18a +35(11-a)≥300+30,解得 a ≤3417,∴ 符合条件的a 的最大整数值为3.∴ 租用小客车数量的最大值为38. (1) 设小樱桃的进价为每千克x 元,大樱桃的进价为每千克y 元.根据题意,得⎩⎨⎧200x +200y =8 000,y -x =20,解得⎩⎨⎧x =10,y =30,∴ 200×[(40-30)+(16-10)]=3 200(元).∴ 小樱桃的进价为每千克10元,大樱桃的进价为每千克30元,销售完后,该水果商共赚了3 200元 (2) 设大樱桃的售价为a 元/千克.根据题意,得(1-20%)×200×16+200a -8 000≥3 200×90%,解得a ≥41.6.∴ 大樱桃的售价最少应为41.6元/千克9. (1) 设该型号的学生用电脑的单价为x 万元,教师用笔记本电脑的单价为y 万元.依题意,得⎩⎨⎧110x +32y =30.5,55x +24y =17.65,解得⎩⎨⎧x =0.19,y =0.3.∴ 该型号的学生用电脑的单价为0.19万元,教师用笔记本电脑的单价为0.3万元 (2) 设能购进的学生用电脑为m 台,则能购进的教师用笔记本电脑为⎝⎛⎭⎫15m -90台.依题意,得0.19m +0.3×⎝⎛⎭⎫15m -90≤438,解得m ≤1 860.此时15m -90≤15×1 860-90,即15m -90≤282.∴ 至多能购进学生用电脑1 860台,教师用笔记本电脑282台10. (1) 设该市这两年投入基础教育经费的年平均增长率为x.根据题意,得 5 000(1+x)2=7 200,即(1+x)2=3625,解得x 1=0.2=20%,x 2=-2.2(不合题意,舍去).∴ 该市这两年投入基础教育经费的年平均增长率为20% (2) 2018年投入基础教育经费为7 200×(1+20%)=8 640(万元).设购买电脑m 台,则购买实物投影仪(1 500-m)台.根据题意,得 3 500m +2 000(1 500-m)≤86 400 000×5%,解得m ≤880.∴ 最多可购买电脑880台11. (1) 由题意,得300S +200(6×8-S)≤12 000,解得S ≤24,∴ S 的最大值为24 (2) ① 设区域Ⅱ四周宽度为a 米,则由题意,得(6-2a)∶(8-2a)=2∶3,解得a =1,∴ AB =6-2a =4米,BC =8-2a =6米.∴ AB ,BC 的长分别为 4米,6米 ② 设乙、丙瓷砖的单价分别为5x 元/米2和 3x 元/米2,则甲的单价为(300-3x)元/米2.∵ PQ ∥AD ,∴ 两块甲瓷砖的面积和为2S 甲=12S矩形ABCD=12×4×6=12(米2).设两块乙瓷砖的面积和为W 米2,则丙的面积为(12-W)米2.由题意,得12(300-3x)+5x ·W +3x ·(12-W)=4 800,解得W =600x .∵ 0<W<12,∴ 0<600x <12,解得x>50.又∵ 300-3x>0,即x<100,∴ 50<x<100,此时150<3x<300.∴ 丙瓷砖单价范围为大于150元/米2,且小于300元/米212. (1) 设一个A 型口罩的售价是a 元,一个B 型口罩的售价是b 元.依题意,有⎩⎨⎧a +3b =26,3a +2b =29,解得⎩⎨⎧a =5,b =7.∴ 一个A 型口罩的售价是5元,一个B 型口罩的售价是7元 (2) 设购进A 型口罩x 个,B 型口罩y 个.依题意,有⎩⎨⎧x ≥35,x ≤3(50-x ),解得35≤x ≤37.5.∵ x 为整数,∴ x =35,36,37.三种方案如下表:按方案一购进需要5×35+7×15=280(元),按方案二购进需要5×36+7×14=278(元),按方案三购进需要5×37+7×13=276(元).∵ 280>278>276,∴ 方案三(购进A 型口罩37个,B 型口罩13个)最省钱13. (1) 设改扩建1所A 类学校需资金x 万元,改扩建1所B 类学校需资金y 万元.由题意,得⎩⎨⎧2x +3y =7 800,3x +y =5 400,解得⎩⎨⎧x =1 200,y =1 800,∴ 改扩建1所A 类学校需资金1 200万元,改扩建1所B 类学校需资金1 800万元 (2) 设A 类学校有a 所,则B 类学校有(10-a)所.由题意,得⎩⎨⎧(1 200-300)a +(1 800-500)(10-a )≤1 1800,300a +500(10-a )≥4 000,解得3≤a ≤5,∴ 整数a =3,4,5.从而有下列3种改扩建方案,方案一:A 类学校有3所,B 类学校有7所;方案二:A 类学校有4所,B 类学校有6所;方案三:A 类学校有5所,B 类学校有5所14. (1) 设购买A 型公交车每辆需x 万元,购买B 型公交车每辆需y 万元.由题意,得⎩⎨⎧x +2y =400,2x +y =350,解得⎩⎨⎧x =100,y =150,∴ 购买A 型公交车每辆需100万元,购买B 型公交车每辆需150万元 (2) 设购买A 型公交车a 辆,则购买B型公交车(10-a)辆.由题意,得⎩⎨⎧100a +150(10-a )≤1 220,60a +100(10-a )≥650,解得285≤a ≤354.∵ a 是整数,∴ a =6,7,8,此时10-a =4,3,2.∴ 该公司共有下列三种购车方案:① 购买A 型公交车6辆,B 型公交车4辆,需要费用100×6+150×4=1 200(万元);② 购买A 型公交车7辆,B 型公交车3辆,需要费用100×7+150×3=1 150(万元);③ 购买A 型公交车8辆,B 型公交车2辆,需要费用100×8+150×2=1 100(万元).∵ 1 200>1 150>1 100,∴ 购买A 型公交车8辆,B 型公交车2辆费用最少,最少总费用为1 100万元。

不等式(组)及其应用(解析版)-2023年中考数学真题分项汇编(全国通用)

不等式(组)及其应用(解析版)-2023年中考数学真题分项汇编(全国通用)

不等式(组)及其应用一、单选题1(2023·内蒙古·统考中考真题)关于x的一元一次不等式x-1≤m的解集在数轴上的表示如图所示,则m的值为()A.3B.2C.1D.0【答案】B【分析】先求出不等式的解集,然后对比数轴求解即可.【详解】解:x-1≤m解得x≤m+1,由数轴得:m+1=3,解得:m=2,故选:B.【点睛】题目主要考查求不等式的解集及参数,熟练掌握求不等式解集的方法是解题关键.2(2023·湖南常德·统考中考真题)不等式组x-3<23x+1≥2x的解集是()A.x<5B.1≤x<5C.-1≤x<5D.x≤-1【答案】C【分析】分别求出各不等式的解集,再求出其公共解集即可.【详解】x-3<2①3x+1≥2x②解不等式①,移项,合并同类项得,x<5;解不等式②,移项,合并同类项得,x≥-1故不等式组的解集为:-1≤x<5.故选:C.【点睛】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.3(2023·湖北·统考中考真题)不等式组3x-1≥x+1x+4>4x-2的解集是()A.1≤x<2B.x≤1C.x>2D.1<x≤2【答案】A【分析】先求出每个不等式的解集,再根据“同大取大,同小取小,大小小大中间找,大大小小找不到(无解)”求出不等式组的解集.【详解】解:3x-1≥x+1①x+4>4x-2②解不等式①得:x≥1,解不等式②得:x<2,∴不等式组的解集为1≤x<2,【点睛】本题主要考查了解一元一次不等式组,正确求出每个不等式的解集是解题的关键.4(2023·广东·统考中考真题)一元一次不等式组x-2>1x<4的解集为()A.-1<x<4B.x<4C.x<3D.3<x<4【答案】D【分析】第一个不等式解与第二个不等式的解,取公共部分即可.【详解】解:x-2>1①x<4②解不等式①得:x>3结合②得:不等式组的解集是3<x<4,故选:D.【点睛】本题考查解一元一次不等式组,掌握解一元一次不等式组的一般步骤是解题的关键.5(2023·湖北宜昌·统考中考真题)解不等式1+4x3>x-1,下列在数轴上表示的解集正确的是( ).A. B.C. D.【答案】D【分析】按去分母、去括号、移项、合并同类项,未知数系数化为1的步骤求出解集,再把解集在数轴上表示出来,注意包含端点值用实心圆点,不包含端点值用空心圆点,即可求解.【详解】解:1+4x>3x-34x-3x>-3-1x>-4,解集在数轴上表示为故选:D.【点睛】本题考查了一元一次不等式的解法及解集在数轴上的表示方法,掌握解法及表示方法是解题的关键.6(2023·浙江宁波·统考中考真题)不等式组x+1>0x-1≤0的解在数轴上表示正确的是()A. B.C. D.【分析】根据一元一次不等式组的解法先求出不等式组的解集,再在数轴上表示即可得到答案.【详解】解:x +1>0①x -1≤0② ,由①得x >-1;由②得x ≤1;∴原不等式组的解集为-1<x ≤1,在数轴上表示该不等式组的解集如图所示:,故选:C .【点睛】本题考查一元一次不等式组解集的求法及在数轴上的表示,熟练掌握不等式组解集的求解原则“同大取大、同小取小、大小小大中间找、大大小小无解了”是解决问题的关键.7(2023·四川眉山·统考中考真题)关于x 的不等式组x >m +35x -2<4x +1 的整数解仅有4个,则m 的取值范围是()A.-5≤m <-4B.-5<m ≤-4C.-4≤m <-3D.-4<m ≤-3【答案】A【分析】不等式组整理后,表示出不等式组的解集,根据整数解共有4个,确定出m 的范围即可.【详解】解:x >m +3①5x -2<4x +1② ,由②得:x <3,解集为m +3<x <3,由不等式组的整数解只有4个,得到整数解为2,1,0,-1,∴-2≤m +3<-1,∴-5≤m <-4;故选:A .【点睛】本题主要考查解一元一次不等式组,一元一次不等式组的整数解等知识点的理解和掌握,能根据不等式组的解集得到-2≤m +3<-1是解此题的关键.8(2023·四川遂宁·统考中考真题)若关于x 的不等式组4x -1 >3x -15x >3x +2a的解集为x >3,则a 的取值范围是()A.a >3B.a <3C.a ≥3D.a ≤3【答案】D【分析】分别求出各不等式的解集,再根据不等式组的解集是x >3求出a 的取值范围即可.【详解】解:4x -1 >3x -1①5x >3x +2a ②解不等式①得:x >3,解不等式②得:x >a ,∵关于x的不等式组4x-1>3x-15x>3x+2a的解集为x>3,∴a≤3,故选:D.【点睛】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.二、填空题9(2023·全国·统考中考真题)不等式4x-8>0的解集为.【答案】x>2【分析】根据移项、化系数为1,的步骤解一元一次不等式即可求解.【详解】解:4x-8>04x>8解得:x>2,故答案为:x>2.【点睛】本题考查了求一元一次不等式的解集,熟练掌握不等式的性质是解题的关键.10(2023·辽宁大连·统考中考真题)9>-3x的解集为.【答案】x>-3【分析】根据不等式的性质解不等式即可求解.【详解】解:9>-3x,解得:x>-3,故答案为:x>-3.【点睛】本题考查了求不等式的解集,熟练掌握不等式的性质是解题的关键.11(2023·四川乐山·统考中考真题)不等式x-1>0的解集是.【答案】x>1【分析】直接移项即可得解.【详解】解:∵x-1>0,∴x>1,故答案为:x>1.【点睛】本题主要考查了解一元一次不等式,熟练掌握解一元一次不等式的步骤是解答本题的关键.12(2023·黑龙江·统考中考真题)关于x的不等式组x+5>0x-m≤1有3个整数解,则实数m的取值范围是.【答案】-3≤m<-2/-2>m≥-3【分析】解不等式组,根据不等式组有3个整数解得出关于m的不等式组,进而可求得m的取值范围.【详解】解:解不等式组x+5>0x-m≤1得:-5<x≤m+1,∵关于x的不等式组x+5>0x-m≤1有3个整数解,∴这3个整数解为-4,-3,-2,∴-2≤m +1<-1,解得:-3≤m <-2,故答案为:-3≤m <-2.【点睛】本题考查了解一元一次不等式组,一元一次不等式组的整数解,正确得出关于m 的不等式组是解题的关键.13(2023·广东·统考中考真题)某商品进价4元,标价5元出售,商家准备打折销售,但其利润率不能少于10%,则最多可打折.【答案】8.8【分析】设打x 折,由题意可得5×x10-4≥4×10%,然后求解即可.【详解】解:设打x 折,由题意得5×x10-4≥4×10%,解得:x ≥8.8;故答案为:8.8.【点睛】本题主要考查一元一次不等式的应用,熟练掌握一元一次不等式的应用是解题的关键.14(2023·山东聊城·统考中考真题)若不等式组x -12≥x -232x -m ≥x 的解集为x ≥m ,则m 的取值范围是.【答案】m ≥-1【分析】分别求出两个不等式的解集,根据不等式组的解集即可求解.【详解】解:x -12≥x -23①2x -m ≥x ② ,解不等式①得:x ≥-1,解不等式②得:x ≥m ,∵不等式组的解集为:x ≥m ,∴m ≥-1.故答案为:m ≥-1.【点睛】本题考查了解一元一次不等式组,根据不等式的解求参数的取值范围,熟练掌握解不等式组解集的口诀:同大取大,同小取小大小小大中间找,大大小小找不到(无解)是解题的关键.15(2023·湖南·统考中考真题)关于x 的不等式12x -1>0的解集为.【答案】x >2【分析】根据一元一次不等式的解法即可得出结果.【详解】解:12x -1>0,移项,得12x >1,系数化为1,得x >2.故答案为:x >2.【点睛】本题考查了一元一次不等式的解法,熟练掌握不等式的性质是本题的关键.16(2023·山东滨州·统考中考真题)不等式组2x-4≥2,3x-7<8的解集为.【答案】3≤x<5【分析】分别解两个不等式,再取两个解集的公共部分即可.【详解】解:2x-4≥2①3x-7<8②,由①得:x≥3,由②得:x<5,∴不等式组的解集为:3≤x<5;故答案为:3≤x<5【点睛】本题考查的是一次不等式组的解法,掌握一元一次不等式组的解法步骤与方法是解本题的关键.17(2023·浙江温州·统考中考真题)不等式组x+3≥23x-12<4的解是.【答案】-1≤x<3【分析】根据不等式的性质先求出每一个不等式的解集,再求出它们的公共部分即可.【详解】解不等式组:x+3≥2①3x-12<4②解:由①得,x≥-1;由②得,x<3所以,-1≤x<3.故答案为:-1≤x<3.【点睛】本题主要考查解一元一次不等式组,正确求出每一个不等式解集是基础,熟知求公共解的原则是解题关键.18(2023·重庆·统考中考真题)若关于x的一元一次不等式组x+32≤42x-a≥2,至少有2个整数解,且关于y的分式方程a-1y-2+42-y=2有非负整数解,则所有满足条件的整数a的值之和是.【答案】4【分析】先解不等式组,确定a的取值范围a≤6,再把分式方程去分母转化为整式方程,解得y= a-12,由分式方程有正整数解,确定出a的值,相加即可得到答案.【详解】解:x+32≤4①2x-a≥2②解不等式①得:x≤5,解不等式②得:x≥1+a 2,∴不等式的解集为1+a2≤x≤5,∵不等式组至少有2个整数解,∴1+a2≤4,解得:a≤6;∵关于y的分式方程a-1y-2+42-y=2有非负整数解,∴a-1-4=2y-2解得:y=a-1 2,即a-12≥0且a-12≠2,解得:a≥1且a≠5∴a的取值范围是1≤a≤6,且a≠5∴a可以取:1,3,∴1+3=4,故答案为:4.【点睛】本题考查了分式方程的解,以及解一元一次不等式组,熟练掌握运算法则是解题关键.19(2023·四川泸州·统考中考真题)关于x,y的二元一次方程组2x+3y=3+ax+2y=6的解满足x+y>22,写出a的一个整数值.【答案】7(答案不唯一)【分析】先解关于x、y的二元一次方程组的解集,再将x+y>22代入,然后解关于a的不等式的解集即可得出答案.【详解】将两个方程相减得x+y=a-3,∵x+y>22,∴a-3>22,∴a>3+22,∵4<8<9,∴2<22<3,∴5<22+3<6,∴a的一个整数值可以是7.故答案为:7(答案不唯一).【点睛】本题主要考查了解二元一次方程组和解一元一次不等式,整体代入的思想方法是解答本题的亮点.20(2023·四川凉山·统考中考真题)不等式组5x+2>3x-112x-1≤7-32x的所有整数解的和是.【答案】7【分析】先分别解不等式组中的两个不等式,得到不等式组的解集,再确定整数解,最后求和即可.【详解】解:5x+2>3x-1①12x-1≤7-32x②,由①得:5x-3x>-3-2,∴2x>-5,解得:x>-5 2;由②得:x-2≤14-3x,整理得:4x≤16,解得:x≤4,∴不等式组的解集为:-52<x≤4,∴不等式组的整数解为:-2,-1,0,1,2,3,4;∴-2+-1+0+1+2+3+4=7,故答案为:7【点睛】本题考查的是求解一元一次不等式组的整数解,熟悉解一元一次不等式组的方法与步骤是解本题的关键.21(2023·四川宜宾·统考中考真题)若关于x的不等式组2x+1>x+a①x2+1≥52x-9②所有整数解的和为14,则整数a的值为.【答案】2或-1【分析】根据题意可求不等式组的解集为a-1<x≤5,再分情况判断出a的取值范围,即可求解.【详解】解:由①得:x>a-1,由②得:x≤5,∴不等式组的解集为:a-1<x≤5,∵所有整数解的和为14,①整数解为:2、3、4、5,∴1≤a-1<2,解得:2≤a<3,∵a为整数,∴a=2.②整数解为:-1,0,1,2、3、4、5,∴-2≤a-1<-1,解得:-1≤a<0,∵a为整数,∴a=-1.综上,整数a的值为2或-1故答案为:2或-1.【点睛】本题考查了含参数的一元一次不等式组的整数解问题,掌握一元一次不等式组的解法,理解参数的意义是解题的关键.三、解答题22(2023·湖南·统考中考真题)解不等式组:7x-14≤0①2x+3>x+4②,并把它的解集在数轴上表示出来.【答案】不等式组的解集为:-2<x≤2.画图见解析【分析】先解不等式组中的两个不等式,再在数轴上表示两个不等式的解集,从而可得答案.【详解】解:7x -14≤0①2x +3 >x +4② ,由①得:x ≤2,由②得:2x +6>x +4,∴x >-2,在数轴上表示其解集如下:∴不等式组的解集为:-2<x ≤2.【点睛】本题考查的是一元一次不等式组的解法,在数轴上表示不等式组的解集,掌握不等式组的解法与步骤是解本题的关键.23(2023·山东·统考中考真题)解不等式组:5x -2<3x +1 ,3x -23≥x +x -22.【答案】x ≤23【分析】分别求出各个不等式的解,再取各个解集的公共部分,即可.【详解】解:解5x -2<3x +1 得:x <52,解3x -23≥x +x -22得:x ≤23,∴不等式组的解集为x ≤23.【点睛】本题主要考查解一元一次不等式组,熟练掌握解不等式组的基本步骤,是解题的关键.24(2023·福建·统考中考真题)解不等式组:2x +1<3,①x 2+1-3x4≤1.②【答案】-3≤x <1【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【详解】解:2x +1<3,①x 2+1-3x4≤1.②解不等式①,得x <1.解不等式②,得x ≥-3.所以原不等式组的解集为-3≤x <1.【点睛】本题考查了解一元一次不等式组,正确掌握一元一次不等式解集确定方法是解题的关键.25(2023·湖北武汉·统考中考真题)解不等式组2x -4<2①3x +2≥x ② 请按下列步骤完成解答.(1)解不等式①,得;(2)解不等式②,得;(3)把不等式①和②的解集在数轴上表示出来;(4)原不等式组的解集是.【答案】(1)x <3(2)x ≥-1(3)见解析(4)-1≤x <3【分析】(1)直接解不等式①即可解答;(2)直接解不等式①即可解答;(3)在数轴上表示出①、②的解集即可;(3)数轴上表示的不等式的解集,确定不等式组的解集即可.【详解】(1)解:2x -4<2,2x <6x <3.故答案为:x <3.(2)解:3x +2≥x ,2x ≥-2x ≥-1.故答案为:x ≥-1.(3)解:把不等式①和②的解集在数轴上表示出来:(4)解:由图可知原不等式组的解集是-1≤x <3.故答案为:-1≤x <3.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集和在数轴上表示不等式的解集是解答本题的关键.26(2023·浙江·统考中考真题)解一元一次不等式组:x +2>32x -1<5 .【答案】1<x <3【分析】根据不等式的性质,解一元一次不等式,然后求出两个解集的公共部分即可.【详解】解:x +2>3①2x -1<5②解不等式①,得x >1,解不等式②,得x <3,∴原不等式组的解是1<x <3.【点睛】本题主要考查解一元一次不等式组,掌握不等式的性质,解一元一次不等式的方法是解题的关键.27(2023·湖南永州·统考中考真题)解关于x 的不等式组2x -2>03x -1 -7<-2x【答案】1<x <2【分析】分别解不等式组的两个不等式,再取两个不等式的解集的公共部分,即为不等式组的解集.【详解】解:2x-2>0①3x-1-7<-2x②,解①得,x>1,解②得,x<2,∴原不等式组的解集为1<x<2.【点睛】本题考查了解一元一次不等式组的解集,取两个不等式的解集的公共部分的口诀为:“大大取大,小小取小,大小小大取中间,大大小小则无解”,熟知上述口诀是解题的关键.28(2023·江苏苏州·统考中考真题)解不等式组:2x+1>0, x+13>x-1.【答案】-12<x<2【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【详解】解:2x+1>0①x+13>x-1②解不等式①得:x>-1 2解不等式②得:x<2∴不等式组的解集为:-12<x<2【点睛】本题考查了解一元一次不等式组,正确掌握一元一次不等式解集确定方法是解题的关键.29(2023·湖南·统考中考真题)解不等式组:x-4≤0①2x+1<3x②【答案】2<x≤4【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【详解】解:x-4≤0①2x+1<3x②解不等式①得:x≤4解不等式②得:x>2∴不等式组的解集为:2<x≤4.【点睛】本题考查了解一元一次不等式组,正确掌握一元一次不等式解集确定方法是解题的关键.30(2023·湖南岳阳·统考中考真题)解不等式组:2x+1>x+3,①2x-4<x.②【答案】2<x<4【分析】按照解不等式组的基本步骤求解即可.【详解】∵2x+1>x+3,①2x-4<x.②,解①的解集为x>2;解②的解集为x<4,∴原不等式组的解集为2<x<4.【点睛】本题考查了不等式组的解法,熟练掌握解不等式组的基本步骤是解题的关键.31(2023·江苏扬州·统考中考真题)解不等式组2x-1+1>-3,x-1≤1+x3,并把它的解集在数轴上表示出来.【答案】-1<x≤2,数轴表示见解析【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【详解】解:2x-1+1>-3①x-1≤1+x3②解不等式①得x>-1·,解不等式②,得:x≤2,把不等式①和②的解集在数轴上表示出来:则不等式组的解集为:-1<x≤2.【点睛】本题考查的是解一元一次不等式组,在数轴上表示不等式的解集,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.32(2023·上海·统考中考真题)解不等式组3x>x+6 12x<-x+5【答案】3<x<10 3【分析】先分别求出两个不等式的解集,再找出它们的公共部分即为不等式组的解集.【详解】解:3x>x+6①12x<-x+5②,解不等式①得:x>3,解不等式②得:x<10 3,则不等式组的解集为3<x<10 3.【点睛】本题考查了解一元一次不等式组,熟练掌握不等式组的解法是解题关键.33(2023·甘肃武威·统考中考真题)解不等式组:x>-6-2x x≤3+x4【答案】-2<x≤1【分析】先分别解两个不等式,求出它们的解集,再求两个不等式解集的公共部分即可得到不等式组的解集.【详解】解:解不等式组:x>-6-2x①x≤3+x4②,解不等式①,得x>-2.解不等式②,得x≤1.因此,原不等式组的解集为-2<x≤1.【点睛】本题考查了一元一次不等式组的解法,熟练掌握一元一次不等式组的解法是解答本题的关键.34(2023·内蒙古赤峰·统考中考真题)某集团有限公司生产甲乙两种电子产品共8万件,准备销往东南亚国家和地区.已知2件甲种电子产品与3件乙种电子产品的销售额相同:3件甲种电子产品比2件乙种电子产品的销售多1500元.(1)求甲种电子产品与乙种电子产品销售单价各多少元?(2)若使甲乙两种电子产品的销售总收入不低于5400万元,则至少销售甲种电子产品多少件?【答案】(1)甲种电子产品的销售单价是900元,乙种电子产品的单价为600元;(2)至少销售甲种电子产品2万件【分析】(1)设甲种电子产品的销售单价x元,乙种电子产品的销售单价y元,根据等量关系:①2件甲种电子产品与3件乙种电子产品的销售额相同,②3件甲种电子产品比2件乙种电子产品的销售多1500元,列出方程组求解即可;(2)可设销售甲种电子产品a万件,根据甲、乙两种电子产品的销售总收入不低于5400万元,列出不等式求解即可.【详解】(1)解:设甲种电子产品的销售单价是x元,乙种电子产品的单价为y元.根据题意得:2x=3y3x-2y=1500,解得:x=900 y=600;答:甲种电子产品的销售单价是900元,乙种电子产品的单价为600元.(2)解:设销售甲种电子产品a万件,则销售乙种电子产品8-a万件.根据题意得:900a+6008-a≥5400.解得:a≥2.答:至少销售甲种电子产品2万件.【点睛】本题考查一元一次不等式及二元一次方程组的应用,解决本题的关键是读懂题意,找到符合题意的不等关系及等量关系.35(2023·内蒙古通辽·统考中考真题)某搬运公司计划购买A,B两种型号的机器搬运货物,每台A型机器比每台B型机器每天少搬运10吨货物,且每台A型机器搬运450吨货物与每台B型机器搬运500吨货物所需天数相同.(1)求每台A型机器,B型机器每天分别搬运货物多少吨?(2)每台A型机器售价1.5万元,每台B型机器售价2万元,该公司计划采购两种型号机器共30台,满足每天搬运货物不低于2880吨,购买金额不超过55万元,请帮助公司求出最省钱的采购方案.【答案】(1)每台A型机器,B型机器每天分别搬运货物90吨和100吨;(2)当购买A型机器人12台,B型机器人18台时,购买总金额最低是54万元.【分析】(1)设每台B型机器每天搬运x吨,则每台A型机器每天搬运x-10吨,根据题意列出分式方程,解方程、检验后即可解答;(2设公司计划采购A型机器m台,则采购B型机器30-m台,再题意列出一元一次不等式组,解不等式组求出m的取值范围,再列出公司计划采购A型机器m台与采购支出金额w的函数关系式,最后利用一次函数的增减性求最值即可.【详解】(1)解:设每台B型机器每天搬运x吨,则每台A型机器每天搬运x-10吨,由题意可得:450x-10=500x,解得:x=100经检验,x=100是分式方程450x-10=500x的解每台A型机器每天搬运x-10=100-10=90吨答:每台A型机器,B型机器每天分别搬运货物90吨和100吨(2)解:设公司计划采购A型机器m台,则采购B型机器30-m台由题意可得:90m+10030-m≥2880 1.5m+230-m≤55,解得:4≤m≤12,公司采购金额:w=1.5m+230-m=-0.5m+60∵-0.5<0∴w随m的增大而减小∴当m=12时,公司采购金额w有最小值,即w=-0.5×12+60=54,∴当购买A型机器人12台,B型机器人18台时,购买总金额最低是54万元.【点睛】本题主要考查了分式方程的应用、不等式组的应用、一次函数的应用等知识点,理解题意正确列出分式方程、不等式组和一次函数解析式是解答本题的关键.36(2023·广东深圳·统考中考真题)某商场在世博会上购置A,B两种玩具,其中B玩具的单价比A 玩具的单价贵25元,且购置2个B玩具与1个A玩具共花费200元.(1)求A,B玩具的单价;(2)若该商场要求购置B玩具的数量是A玩具数量的2倍,且购置玩具的总额不高于20000元,则该商场最多可以购置多少个A玩具?【答案】(1)A、B玩具的单价分别为50元、75元;(2)最多购置100个A玩具.【分析】(1)设A玩具的单价为x元每个,则B玩具的单价为x+25元每个;根据“购置2个B玩具与1个A玩具共花费200元”列出方程即可求解;(2)设A玩具购置y个,则B玩具购置2y个,根据“购置玩具的总额不高于20000元”列出不等式即可得出答案.【详解】(1)解:设A玩具的单价为x元,则B玩具的单价为x+25元;由题意得:2x+25+x=200;解得:x=50,则B玩具单价为x+25=75(元);答:A、B玩具的单价分别为50元、75元;(2)设A玩具购置y个,则B玩具购置2y个,由题意可得:50y+75×2y≤20000,解得:y≤100,∴最多购置100个A玩具.【点睛】本题考查一元一次方程和一元一次不等式的应用,属于中考常规考题,解题的关键在于读懂题目,找准题目中的等量关系或不等关系.37(2023·河南·统考中考真题)某健身器材专卖店推出两种优惠活动,并规定购物时只能选择其中一种.活动一:所购商品按原价打八折;活动二:所购商品按原价每满300元减80元.(如:所购商品原价为300元,可减80元,需付款220元;所购商品原价为770元,可减160元,需付款610元)(1)购买一件原价为450元的健身器材时,选择哪种活动更合算?请说明理由.(2)购买一件原价在500元以下的健身器材时,若选择活动一和选择活动二的付款金额相等,求一件这种健身器材的原价.(3)购买一件原价在900元以下的健身器材时,原价在什么范围内,选择活动二比选择活动一更合算?设一件这种健身器材的原价为a元,请直接写出a的取值范围.【答案】(1)活动一更合算;(2)400元;(3)当300≤a<400或600≤a<800时,活动二更合算【分析】(1)分别计算出两个活动需要付款价格,进行比较即可;(2)设这种健身器材的原价是x元,根据“选择活动一和选择活动二的付款金额相等”列方程求解即可;(3)由题意得活动一所需付款为0.8a元,活动二当0<a<300时,所需付款为a元,当300≤a<600时,所需付款为a-80元,然后根据题意列出不等式 元,当600≤a<900时,所需付款为a-160即可求解.【详解】(1)解:购买一件原价为450元的健身器材时,活动一需付款:450×0.8=360元,活动二需付款:450-80=370元,∴活动一更合算;(2)设这种健身器材的原价是x元,则0.8x=x-80,解得x=400,答:这种健身器材的原价是400元,(3)这种健身器材的原价为a元,则活动一所需付款为:0.8a元,活动二当0<a<300时,所需付款为:a元,当300≤a<600时,所需付款为:a-80元,当600≤a<900时,所需付款为:a-160元,①当0<a<300时,a>0.8a,此时无论a为何值,都是活动一更合算,不符合题意,②当300≤a<600时,a-80<0.8a,解得300≤a<400,即:当300≤a<400时,活动二更合算,③当600≤a<900时,a-160<0.8a,解得600≤a<800,即:当600≤a<800时,活动二更合算,综上:当300≤a<400或600≤a<800时,活动二更合算.【点睛】此题考查了一元一次方程及一元一次不等式的应用,解答本题的关键是仔细审题,注意分类讨论的应用.38(2023·湖北荆州·统考中考真题)荆州古城旁“荆街”某商铺打算购进A,B两种文创饰品对游客销售.已知1400元采购A种的件数是630元采购B种件数的2倍,A种的进价比B种的进价每件多1元,两种饰品的售价均为每件15元;计划采购这两种饰品共600件,采购B种的件数不低于390件,不超过A 种件数的4倍.(1)求A,B饰品每件的进价分别为多少元?(2)若采购这两种饰品只有一种情况可优惠,即一次性采购A种超过150件时,A种超过的部分按进价打6折.设购进A种饰品x件,①求x的取值范围;②设计能让这次采购的饰品获利最大的方案,并求出最大利润.【答案】(1)A 种饰品每件进价为10元,B 种饰品每件进价为9元;(2)①120≤x ≤210且x 为整数,②当采购A 种饰品210件,B 种饰品390件时,商铺获利最大,最大利润为3630元【分析】(1)分别设出A ,B 饰品每件的进价,依据数量列出方程求解即可;(2)①依据题意列出不等式即可;②根据不同的范围,列出不同函数关系式,分别求出最大值,比较即可得到李荣最大值.【详解】(1)(1)设A 种饰品每件的进价为a 元,则B 种饰品每件的进价为a -1 元.由题意得:1400a =630a -1×2,解得:a =10,经检验,a =10是所列方程的根,且符合题意.A 种饰品每件进价为10元,B 种饰品每件进价为9元.(2)①根据题意得:600-x ≥390600-x ≤4x ,解得:120≤x ≤210且x 为整数;②设采购A 种饰品x 件时的总利润为w 元.当120≤x ≤150时,w =15×600-10x -9600-x ,即w =-x +3600,∵-1<0,∴w 随x 的增大而减小.∴当x =120时,w 有最大值3480.当150<x ≤210时,w =15×600-10×150+10×60%x -150 -9600-x 整理得:w =3x +3000,∵3>0,∴w 随x 的增大而增大.∴当x =210时,w 有最大值3630.∵3630>3480,∴w 的最大值为3630,此时600-x =390.即当采购A 种饰品210件,B 种饰品390件时,商铺获利最大,最大利润为3630元.【点睛】本题考查了分式方程的应用,一元一次不等式组的应用,一次函数利润最大化方案问题,关键是对分段函数的理解和正确求出最大值.39(2023·山东聊城·统考中考真题)今年五一小长假期间,我市迎来了一个短期旅游高峰.某热门景点的门票价格规定见下表:票的种类A B C 购票人数/人1~5051~100100以上票价/元504540某旅行社接待的甲、乙两个旅游团共102人(甲团人数多于乙团),在打算购买门票时,如果把两团联合作为一个团体购票会比两团分别各自购票节省730元.(1)求两个旅游团各有多少人?(2)一个人数不足50人的旅游团,当游客人数最低为多少人时,购买B 种门票比购买A 种门票节省?【答案】(1)甲团人数有58人,乙团人数有44人;(2)当游客人数最低为46人时,购买B 种门票比购。

中考数学真题-不等式(组)及应用

中考数学真题-不等式(组)及应用

不等式(组)及应用姓名:__________________ 班级:______________ 得分:_________________一、单选题1.(2021·山东临沂市·中考真题)已知a b >,下列结论:①2a ab >;①22a b >;①若0b <,则2a b b +<;①若>0b ,则11<a b,其中正确的个数是( ) A .1 B .2 C .3 D .42.(2021·湖南衡阳市·中考真题)不等式组1026x x +<⎧⎨-≤⎩的解集在数轴上可表示为( )A .B .C .D . 3.(2021·山东临沂市·中考真题)不等式-113x x <+的解集在数轴上表示正确的是( ) A .B .C .D .4.(2021·四川遂宁市·中考真题)不等式组20112x x ->⎧⎪⎨-≥-⎪⎩的解集在数轴上表示正确的是( ) A . B .C .D .5.(2021·重庆中考真题)不等式5x >的解集在数轴上表示正确的是( )A .B .C .D .6.(2021·重庆中考真题)不等式2x ≤在数轴上表示正确的是( )A .B .C .D .7.(2021·浙江金华市·中考真题)一个不等式的解在数轴上表示如图,则这个不等式可以是( )A .20x +>B .20x -<C .24x ≥D .20x -<8.(2021·四川南充市·中考真题)满足3x 的最大整数x 是( )A .1B .2C .3D .4 9.(2021·山东泰安市·中考真题)已知关于x 的一元二次方程标()22120kx k x k --+-=有两个不相等的实数根,则实数k 的取值范围是( )A .14k >- B .14k <C .14k >-且0k ≠D .14k <0k ≠ 10.(2021·重庆中考真题)若关于x 的一元一次不等式组()322225x x a x ⎧-≥+⎨-<-⎩的解集为6x ≥,且关于y 的分式方程238211y a y y y +-+=--的解是正整数,则所有满足条件的整数a 的值之和是( ) A .5 B .8 C .12 D .1511.(2021·浙江中考真题)不等式315x ->的解集是( )A .2x >B .2x <C .43x >D .43x < 12.(2021·浙江丽水市·中考真题)若31a ->,两边都除以3-,得( )A .13a <- B .13a >- C .3a <- D .3a >-13.(2021·湖南邵阳市·中考真题)不等式组51341233x x x x ->-⎧⎪⎨-≤-⎪⎩的整数解的和为( ) A .1 B .0 C .-1 D .-214.(2021·重庆中考真题)关于x 的分式方程331122ax x x x--+=--的解为正数,且使关于y 的一元一次不等式组32122y y y a-⎧≤-⎪⎨⎪+>⎩有解,则所有满足条件的整数a 的值之和是( )A .5-B .4-C .3-D .2-15.(2021·浙江嘉兴市·中考真题)已知点(),P a b 在直线34y x =--上,且250a b -≤( ) A .52a b ≤ B .52a b ≥ C .25b a ≥ D .25b a ≤ 二、填空题16.(2021·上海中考真题)不等式2120x -<的解集是_______.17.(2021·甘肃武威市·中考真题)关于x 的不等式11132x ->的解集是___________. 18.(2021·浙江温州市·中考真题)不等式组343214x x -<⎧⎪⎨+≥⎪⎩的解为______. 19.(2021·江苏扬州市·中考真题)在平面直角坐标系中,若点()1,52P m m --在第二象限,则整数m 的值为_________.20.(2021·浙江丽水市·有意义,则x 可取的一个数是__________. 21.(2021·四川眉山市·中考真题)若关于x 的不等式1x m +<只有3个正整数解,则m 的取值范围是______. 22.(2021·陕西中考真题)若()11,A y ,()23,B y 是反比例函数2112m y m x -⎛⎫=< ⎪⎝⎭图象上的两点,则1y 、2y 的大小关系是1y ______2y (填“>”、“=”或“<”)23.(2021·四川泸州市·中考真题)关于x 的不等式组23023x x a 恰好有2个整数解,则实数a 的取值范围是_________. 24.(2021·四川遂宁市·中考真题)已知关于x ,y 的二元一次方程组235423x y a x y a +=⎧⎨+=+⎩满足0x y ->,则a的取值范围是____.三、解答题25.(2021·陕西中考真题)解不等式组:5431212x x x +<⎧⎪⎨+≥-⎪⎩ 26.(2021·四川成都市·中考真题)(1(1)2cos451π++-︒+ (2)解不等式组:523(1)131722x x x x ->+⎧⎪⎨-≤-⎪⎩ 27.(2021·浙江宁波市·中考真题)(1)计算:()()()2113a a a +-++. (2)解不等式组:21930x x +<⎧⎨-≤⎩①②. 28.(2021·山东泰安市·中考真题)(1)先化简,再求值:23169111a a a a a a --+⎛⎫-+÷ ⎪++⎝⎭,其中3a =+; (2)解不等式:7132184x x ->--. 29.(2021·四川凉山彝族自治州·中考真题)解不等式12334x x x -+-<-. 30.(2021·安徽)解不等式:1103x -->. 31.(2021·四川乐山市·中考真题)当x 取何正整数时,代数式32x +与213x -的值的差大于1 32.(2021·江苏连云港市·中考真题)解不等式组:311442x x x x -≥+⎧⎨+<-⎩. 33.(2021·四川眉山市·中考真题)为进一步落实“德、智、体、美、劳”五育并举工作,某中学以体育为突破口,准备从体育用品商场一次性购买若千个足球和篮球,用于学校球类比赛活动.每个足球的价格都相同,每个篮球的价格也相同.已知篮球的单价比足球单价的2倍少30元,用1200元购买足球的数量是用900元购买篮球数量的2倍.(1)足球和篮球的单价各是多少元?(2)根据学校实际情况,需一次性购买足球和篮球共200个,但要求足球和篮球的总费用不超过15500元,学校最多可以购买多少个篮球?34.(2021·四川乐山市·中考真题)已知关于x 的一元二次方程20x x m +-=.(1)若方程有两个不相等的实数根,求m 的取值范围;(2)二次函数2y x x m =+-的部分图象如图所示,求一元二次方程20x x m +-=的解.35.(2021·四川成都市·中考真题)为改善城市人居环境,《成都市生活垃圾管理条例》(以下简称《条例》)于2021年3月1日起正式施行.某区域原来每天需要处理生活垃圾920吨,刚好被12个A 型和10个B 型预处置点位进行初筛、压缩等处理.已知一个A 型点位比一个B 型点位每天多处理7吨生活垃圾. (1)求每个B 型点位每天处理生活垃圾的吨数;(2)由于《条例》的施行,垃圾分类要求提高,现在每个点位每天将少处理8吨生活垃圾,同时由于市民环保意识增强,该区域每天需要处理的生活垃圾比原来少10吨.若该区域计划增设A 型、B 型点位共5个,试问至少需要增设几个A 型点位才能当日处理完所有生活垃圾?36.(2021·江苏扬州市·中考真题)甲、乙两汽车出租公司均有50辆汽车对外出租,下面是两公司经理的一段对话: 甲公司经理:如果我公司每辆汽车月租费3000元,那么50辆汽车可以全部租出.如果每辆汽车的月租费每增加50元,那么将少租出1辆汽车.另外,公司为每辆租出的汽车支付月维护费200元.乙公司经理:我公司每辆汽车月租费3500元,无论是否租出汽车,公司均需一次性支付月维护费共计1850元.说明:①汽车数量为整数..; ①月利润=月租车费-月维护费;①两公司月利润差=月利润较高公司的利润-月利润较低公司的利润.在两公司租出的汽车数量相等的条件下,根据上述信息,解决下列问题:(1)当每个公司租出的汽车为10辆时,甲公司的月利润是_______元;当每个公司租出的汽车为_______辆时,两公司的月利润相等;(2)求两公司月利润差的最大值;(3)甲公司热心公益事业,每租出1辆汽车捐出a元()0a>给慈善机构,如果捐款后甲公司剩余的月利润仍高于乙公司月利润,且当两公司租出的汽车均为17辆时,甲公司剩余的月利润与乙公司月利润之差最大,求a的取值范围.37.(2021·江苏连云港市·中考真题)为了做好防疫工作,学校准备购进一批消毒液.已知2瓶A型消毒液和3瓶B型消毒液共需41元,5瓶A型消毒液和2瓶B型消毒液共需53元.(1)这两种消毒液的单价各是多少元?(2)学校准备购进这两种消毒液共90瓶,且B型消毒液的数量不少于A型消毒液数量的13,请设计出最省钱的购买方案,并求出最少费用.38.(2021·四川资阳市·中考真题)我市某中学计划举行以“奋斗百年路,启航新征程”为主题的知识竞赛,并对获奖的同学给予奖励.现要购买甲、乙两种奖品,已知1件甲种奖品和2件乙种奖品共需40元,2件甲种奖品和3件乙种奖品共需70元.(1)求甲、乙两种奖品的单价;(2)根据颁奖计划,该中学需甲、乙两种奖品共60件,且甲种奖品的数量不少于乙种奖品数量的12,应如何购买才能使总费用最少?并求出最少费用.。

2023年全国中考数学试题分类解析汇编一元一次不等式(组)

2023年全国中考数学试题分类解析汇编一元一次不等式(组)

专题12:一元一次不等式(组)一、选择题2某<61.(2023上海市4分)不等式组?的解集是【】某?2>0?A.某>﹣3某<2【答案】C。

【考点】解一元一次不等式组。

【分析】解一元一次不等式组,先求出不等式组中每一个不等式的解集,再利用口诀求出这些解集的公共部分:同大取大,同小取小,大小小大中间找,大大小小解不了(无解)。

因此由第一个不等式得:某>﹣3,由第二个不等式得:某>2、∴不等式组的解集是某>2.故选C。

2. (2023广东广州3分)已知a>b,若c是任意实数,则下列不等式中总是成立的是【】 A.a+c<b+c B.a﹣c>b﹣c C.ac<bc D.ac>bc 【答案】B。

【考点】不等式的性质。

【分析】根据不等式的性质,应用排除法分别将个选项分析求解即可求得答案:A、∵a>b,c是任意实数,∴a+c>b+c,故本选项错误;B、∵a>b,c是任意实数,∴a﹣c>b﹣c,故本选项正确;C、当a>b,c<0时,ac<bc,而此题c是任意实数,故本选项错误;D、当a>b,c>0时,ac>bc,而此题c是任意实数,故本选项错误.故选B。

B.某<﹣3C.某>2D.某?23.(2023浙江义乌3分)在某=﹣4,﹣1,0,3中,满足不等式组?的某值是2(某?1)?2?【】A.﹣4和0B.﹣4和﹣1C.0和3D.﹣1和0【答案】D。

【考点】解一元一次不等式组,不等式的解集。

【分析】解出不等式组,再检验所给四个数是否在不等式的解集的解集即可:由2(某+1)>-2得某>﹣2、∴此不等式组的解集为:﹣2<某<2某=﹣4,﹣1,0,3中只有﹣1,0在﹣2<某<2内。

故选D。

ac <,给出下列四个不等式:bdaccadbbd ①;②;③;④。

<<<A.①③B.①④C.②④D.②③【答案】A。

【考点】不等式的性质。

【分析】根据不等式的性质,计算后作出判断:∵a、b、c、d都是正实数,且∴acaca+bc+d。

中考数学模拟试题分类汇编一元一次不等式(组)

中考数学模拟试题分类汇编一元一次不等式(组)

一元一次不等式(组)一、选择题1、(2012江西高安) 把不等式组110x x +⎧⎨-⎩≤>0,的解集表示在数轴上,正确的为图中的( )A .B .C .D . 答案:B2、(2012昆山一模)不等式组12350x x ⎧-≤⎪⎨⎪+>⎩的解集为A .5132x -<≤-B .53x >- C .x ≥0 D .x ≥-2答案:C3. (2012年,瑞安市模考)关于x 的不等式22≤+-a x 的解集如图所示,那么a 的值是( ) A .-4 B .-2C .0D.2答案:C4. (2012年吴中区一模)已知点P (1-m ,2-n ),如果m>1,n<2,那么点P 在第( ▲ )象限.(A)一 (B)二 (C)三 (D)四 答案:B5. (2012年,广东二模)不等式组⎩⎪⎨⎪⎧2x-1<x 15x ≤1的解集在数轴上表示正确的是( C )6、(1x ⎩≤ A )A .B .答案:A7、(2012石家庄市42中二模)把某不等式组中两个不等式的解集表示在数轴上,如图,则这个不等式组可能是( )A . x >4B . x <4C . x>4 D . x ≤4x ≤-1x ≥-1 x >-1x >-1 答案:B8、(2012温州市泰顺九校模拟)不等式组431x x +>⎧⎨⎩≤的解集在数轴上可表示为()答案:A9、(2012双柏县学业水平模拟考试)不等式组201x x ->⎧⎨-≤⎩ 的解集是【 】A .x ≥-1B .-1≤x <2C .x >2D .x ≤-1答案:C10、(杭州市2012年中考数学模拟)不等式组221x x -⎧⎨-<⎩≤的整数解共有( )A .3个B .4个C .5个D .6个 答案:B11.(2012广西贵港)关于x 的不等式12-≤-a x 的解集如图所示 ,则a 的取值是 A .0 B .-3C .-2D .-1 答案:DA .B .C .D .12、(盐城市第一初级中学2011~2012学年期中考试)不等式组⎩⎨⎧><-01x x 的解集在数轴可表示为 ( ▲ )答案D二、填空题1、不等式组()⎪⎩⎪⎨⎧〉+〈+28x 2104x 2的整数解是 。

中考数学点对点-一元一次不等式(组)及其应用(解析版)

中考数学点对点-一元一次不等式(组)及其应用(解析版)

专题13 一元一次不等式(组)及其应用专题知识点概述1.不等式的定义:用不等号“<”“>”“≤”“≥”表示不相等关系的式子叫做不等式。

2.不等式的解:使不等式成立的未知数的值,叫做不等式的解。

一个含有未知数的不等式的所有解,组成这个不等式的解集。

3.一元一次不等式的定义:不等式的左、右两边都是整式,只有一个未知数,并且未知数的最高次数是1,像这样的不等式,叫做一元一次不等式。

4.一元一次不等式组:一般地,关于同一未知数的几个一元一次不等式合在一起,就组成了一个一元一次不等式组。

5.不等式的性质:性质1:不等式的两边都加上(或减去)同一个数,不等号的方向不变。

性质2:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变。

性质3:不等式的两边都乘以(或除以)同一个负数,不等号的方向改变。

6.一元一次不等式的解法的一般步骤:(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)系数化为1.7.一元一次不等式组的解法(1)分别求出不等式组中各个不等式的解集(2)利用数轴求出这些不等式的解集的公共部分,即这个不等式组的解集。

8.求不等式组解集的规律:不等式解集在数轴上的表示方法:含≥或≤,用实心圆点,含>或<用空心圆圈。

不等式组的解集有四种情况:若a>b,(1)当x ax b>⎧⎨>⎩时,•则不等式的公共解集为x>a;(2)x ax b<⎧⎨>⎩时,不等式的公共解集为b<x<a;(3)x ax b<⎧⎨<⎩时,不等式的公共解集为x<b;(4)当x ax b>⎧⎨<⎩时,不等式组无解.9.中考出现一元一次不等式(组)试题类型总结:类型一:一元一次不等式的解集问题。

类型二:一元一次不等式组无解的情况。

类型三:明确一元一次不等式组的解集求范围。

类型四:一元一次不等式组有解求未知数的范围。

类型五:一元一次不等式组有整数解求范围。

专题13:一元一次不等式(组)的应用

专题13:一元一次不等式(组)的应用

2012年全国中考数学试题分类解析汇编(159套63专题)专题13:一元一次不等式(组)的应用一、选择题1. (2012湖北恩施3分)某大型超市从生产基地购进一批水果,运输过程中质量损失10%,假设不计超市其他费用,如果超市要想至少获得20%的利润,那么这种水果的售价在进价的基础上应至少提高【】A.40% B.33.4% C.33.3% D.30%【答案】B。

【考点】一元一次不等式的应用。

【分析】设购进这种水果a千克,进价为b元/千克,这种水果的售价在进价的基础上应提高x,则售价为(1+x)b元/千克,根据题意得:购进这批水果用去ab元,但在售出时,大樱桃只剩下(1﹣10%)a千克,售货款为(1﹣10%)a(1+x)b=0.9a(1+x)b元,根据公式:利润率=(售货款-进货款)÷进货款×100%可列出不等式:÷ab·100%≥20%,解得x≥13。

∵超市要想至少获得20%的利润,∴这种水果的售价在进价的基础上应至少提高33.4%。

故选B。

2. (2012湖北荆州3分)已知点M(1﹣2m,m﹣1)关于x轴的对称点在第一象限,则m 的取值范围在数轴上表示正确的是【】A. B. C.D.【答案】A。

【考点】关于x轴对称的点坐标的特征,平面直角坐标系中各象限点的特征,解一元一次不等式组,在数轴上表示不等式的解集。

【分析】由题意得,点M关于x轴对称的点的坐标为:(1﹣2m,1﹣m),又∵M(1﹣2m,m﹣1)关于x轴的对称点在第一象限,∴12m 01m 0>>-⎧⎨-⎩,解得:1m 2m 1<<⎧⎪⎨⎪⎩,在数轴上表示为:。

故选A 。

3. (2012山东日照4分)某校学生志愿服务小组在“学雷锋”活动中购买了一批牛奶到敬老院慰问老人.如果分给每位老人4盒牛奶,那么剩下28盒牛奶;如果分给每位老人5盒牛奶,那么最后一位老人分得的牛奶不足4盒,但至少1盒.则这个敬老院的老人最少有【 】(A )29人 (B )30人 (C )31人 (D )32人【答案】B 。

全国中考数学模拟汇编一 13一元一次不等式(组)的应用

全国中考数学模拟汇编一 13一元一次不等式(组)的应用

全国中考数学模拟汇编一 13一元一次不等式(组)的应用一、选择题1.(河北省中考模拟试卷)某商场的老板销售一种商品,他要以不低于进价20% 的价格才能出售,但为了获得更多利润,他以高出进价80%的价格标价.若你想买下标价为360元的这种商品,最多可降价( ) A .80元 B .100元 C .120元D .160元答案:C2.(2011广东南塘二模)已知ab >15,且a =-5,则b 的取值范围是 ( ) A 、b >3 B 、b <3 C 、b >-3 D 、b <-3 答案:D二、填空题1、(2011山西阳泉盂县月考)如果点P (x,y )关于原点的对称点为(-2,3)则x+y= . 【答案】x+y=2+(—3)=-1三、解答题1. (2011年浙江省杭州市高桥初中中考数学模拟试卷)杭州国际动漫节开幕前,某动漫公司预测某种动漫玩具能够畅销,就用32000元购进了一批这种玩具,上市后很快脱销,动漫公司又用68000元购进第二批这种玩具,所购数量是第一批购进数量的2倍,但每套进价多了10元.(1)该动漫公司两次共购进这种玩具多少套?(2)如果这两批玩具每套的售价相同,且全部售完后总利润率不低于20%,那么每套售价至少是多少元? 答案:(1)设动漫公司第一次购进x 套玩具,由题意得:6800032000102x x-= 解这个方程,得200x =经检验,200x =是所列方程的根. 22200200600x x +=⨯+=.所以动漫公司两次共购进这种玩具600套 (2)设每套玩具的售价为y 元,由题意得:600320006800020%3200068000y --+≥,解这个不等式,得200y ≥,所以每套玩具的售价至少是200元. 2、(2011年北京四中模拟26)某航运公司年初用120万元购进一艘运输船,在投入运输后,每一年的总收入为72万元,需要支出的各种费用为40万元.问:(1)该船运输几年后开始盈利(盈利即指总收入减去购船费及所有支出费用之差为正值?)(2)若该船运输满15年要报废,报废时旧船卖出可收回20万元,求这15年平均盈利额(精确0.1万元)答案:(1)设该船厂运输X年后开始盈利,72X-(120+40X)﹥0,X﹥154,因而该船运输4年后开始盈利(2)()() 157********25.315⨯---≈(万元)3、(2011年浙江省杭州市模拟)为执行中央“节能减排,美化环境,建设美丽新农村”的国策,我市某村计划建造A、B两种型号的沼气池共20个,以解决该村所有农户的燃料问题.两种型号沼气池的占地面积、使用农户数及造价见下表:型号占地面积(单位:m2/个 )使用农户数(单位:户/个)造价(单位: 万元/个)A 15 18 2B 20 30 3已知可供建造沼气池的占地面积不超过365m2,该村农户共有492户.(1)满足条件的方案共有几种?写出解答过程.(2)通过计算判断,哪种建造方案最省钱.解: (1) 设建造A型沼气池x 个,则建造B型沼气池(20-x )个………1分依题意得:()()⎩⎨⎧≥-+≤-+492203018365202015xxxx…………………………………………3分解得:7≤ x≤ 9 ………………………………………………………………4分∵ x为整数∴ x = 7,8 ,9 ,∴满足条件的方案有三种.. ……………5分(2)设建造A型沼气池x个时,总费用为y万元,则:y = 2x + 3( 20-x) = -x+60 ………………………………………………6分∵-1< 0,∴y随x 增大而减小,当x=9 时,y的值最小,此时y= 51( 万元) …………………………………7分∴此时方案为:建造A型沼气池9个,建造B型沼气池11个.……………8分解法②:由(1)知共有三种方案,其费用分别为:方案一: 建造A型沼气池7个,建造B型沼气池13个,总费用为:7×2 + 13×3 = 53( 万元) ……………………………6分方案二: 建造A 型沼气池8个, 建造B 型沼气池12个,总费用为:8×2 + 12×3 = 52( 万元 ) ……………………………7分 方案三: 建造A 型沼气池9个, 建造B 型沼气池11个, 总费用为:9×2 + 11×3 = 51( 万元 )∴方案三最省钱. …………………………………………… 8分4. (2011武汉调考模拟)已知△ABC 在平面直角坐标系中的位置如图所示.①分别写出图中点A 和点C 坐标;②画出△ABC 绕点C 按顺时针方向旋转90°后的△A′B ′C ,并写出点A ′的坐标;③求点A 旋转到点A ′所经过的路线长.(结果保留π).【答案】.解:(1)A(0,4),C(3,1) (2)图略,A ′ (6,4) (3)lAA ′=223π5(北京四中模拟)解不等式组:⎩⎨⎧-≥->+.410)35(3,425x x x x 并把解集在数轴上表示出来.解: 解不等式x x 425>+,得2->x .解不等式x x 410)35(3-≥-,得1≤x 把不等式的解集在数轴上表示出来.12≤<-∴x6 (2011湖北省天门市一模)我市某镇组织20辆汽车装运完A 、B 、C 三种脐橙共100吨到外地销售。

2019中考数学最新重点汇编13-一元一次不等式(组)的应用

2019中考数学最新重点汇编13-一元一次不等式(组)的应用

2019中考数学最新重点汇编13-一元一次不等式(组)的应用注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。

2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。

3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。

4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

【一】选择题1、(2018年杭州一模)5个学生平均体重为75.2KG ,其中每一个学生的体重都不少于65KG ,而且任意两个学生的体重相差都不少于 2.5KG ,那么这5个学生中体重最重的一个可以达到以下四个量中的〔〕A 、86KGB 、96KGC 、101KGD 、116KG答案:C2、不等式组2133x x ≤的解集在数轴上表示正确的选项是答案:A【二】填空题1、〔2018昆山一模〕宾馆有二人间、三人间、四人间三种客房供游客租住,某旅行团20人准备同时租用这三种客房共7间,如果每个房间都住满,租房方案有▲种、答案:22、〔2018昆山一模〕宾馆有二人间、三人间、四人间三种客房供游客租住,某旅行团20人准备同时租用这三种客房共7间,如果每个房间都住满,租房方案有▲种、答案:23.(2018年浙江新昌县毕业考试)小明新买了一辆自行车,他在上查找了相应型号的自行车轮胎使用的有关小知识,如右图、小明认为只要在适当的时候前后轮胎交换使用,就可使这对轮胎能行驶最长的路程、经过计算,小明算出,要使行驶距离最长,只需在行驶▲千公里时交换前后轮胎、答案:4.8【三】解答题1、〔2018江苏无锡前洲中学模拟〕张先生前年在美美家园住宅小区订购了一套住房,图纸如下图。

:①该住房的价格15000a元/平方米;②楼层的电梯、楼梯及门厅前室面积由两户购房者平均负担;③每户配置车库16平方米,每平方米以6000元计算;第2题图-310 A .-31 0 B .-31 0 C .-31 0 D .根据以上提供的信息和数据计算:〔1〕张先生这次购房总共应付款多少元?〔2〕假设经过两年,该住房价格变为21600元/平方米,那么该小区房价的年平均增长率为多少?〔3〕张先生打算对室内进行装修,甲、乙两公司推出不同的优惠方案:在甲公司累计购买10000元材料后,再购买的材料按原价的90%收费;在乙公司累计购买5000元材料后,再购买的材料按原价的95%收费、张先生怎样选择能获得更大优惠?2.健身运动已成为时尚,某公司计划组装A 、B 两种型号的健身器材共40套,捐赠给社区健身中心.组装一套A 型健身器材需甲种部件7个和乙种部件4个,组装一套B 型健身器材需甲种部件3个和乙种部件6个.公司现有甲种部件240个,乙种部件196个.⑴公司在组装A 、B 两种型号的健身器材时,共有多少种组装方案;⑵组装一套A 型健身器材需费用20元,组装一套B 型健身器材需费用18元.求总组装费用最少的组装方案,最少组装费用是多少?解:⑴设该公司组装A 型器材X 套,那么组装B 型器材(40-X )套,依题意,得73(40)24046(40)196x x x x 解得22≤X ≤30.由于X 为整数,∴X 取22,23,24,25,26,27,28,29,30。

3中考数学真题分类汇编(套)专题十三_一元一次不等式(组)的应用

3中考数学真题分类汇编(套)专题十三_一元一次不等式(组)的应用

一、选择题1 . <2018江苏南京)甲种蔬菜保鲜适合的温度是1℃~ 5℃,乙种蔬菜保鲜适合的温度是3℃~ 8℃,将这两种蔬菜放在一同同时保鲜,适合的温度是A.1 ℃~3℃℃~5℃℃~8℃℃~8℃【答案】 B2. <2018 青海西宁)西宁市天然气公司在一些居民小区安装天然气与管道时,采纳一种鼓励居民使用天然气的收费方法,若整个小区每户都安装,收整体初装费10000 元,再对每户收费500 元 . 某小区住户按这类收费方法所有安装天然气后,每户均匀支付不足1000元,则这个小区的住户数A.起码 20户B.至多20户C.起码21户D.至多21户【答案】 C3.<2018黑龙江绥化)现有球迷150 人欲同时租用 A 、 B、 C 三种型号客车去观看世界杯足球赛,此中 A 、B 、 C 三种型号客车载客量分别为50 人、 30 人、 10 人,要求每辆车一定满载,此中 A 型客车最多租两辆,则球迷们一次性抵达赛场的租车方案有<)A.3 种B.4 种C.5 种D.6 种【答案】 B二、填空题1. <2018 浙江省温州)某班级从文化用品市场购买了署名笔和圆珠笔共l5支,所付金额大于 26 元,但小于27 元.已知署名笔每支 2 元,圆珠笔每支 1.5 元,则此中署名笔购买了支.【答案】82 三、解答题1. (2018 江苏苏州 >解不等式组:【答案】2.<2018安徽蚌埠)青海玉树发生7.1 级强震,为令人民的生命财富损失降到最低,队伍官兵弘扬了连续作战的作风。

刚回阵营的两个抢险分队又接到救灾命令:一分队立刻出发前去距阵营30 千 M 的镇,二分队因疲惫可在阵营歇息小时再往镇参加救灾。

一分队出发后得悉,独一通往镇的道路在离阵营10 千 M 处发生塌方,塌方地形复杂,一定由一分队用 1 小时打通道路。

已知一分队的前进速度为千M/ 时,二分队的前进速度为千M/时。

⑴若二分队在阵营不歇息,问要使二分队在最短时间内赶到 A 镇,一分队的前进速度起码为多少千M/ 时?⑵若=4 千 M/ 时,二分队和一分队同时赶到 A 镇,二分队应在阵营歇息几小时?【答案】⑴一分队的前进速度起码为千 M/时。

中考分类数学专项试题2.一元一次不等式(组)的应用

中考分类数学专项试题2.一元一次不等式(组)的应用

2. 一元一次不等式(组)的应用一、选择题1. (2018·台湾)如图的宣传单为莱克印刷公司设计与印刷卡片的计价方式的说明.妮娜打算请此印刷公司设计一款母亲节卡片并印刷,她再将卡片以每张15元的价格贩售.若利润等于收入扣掉成本,且成本只考虑设计费与第1题印刷费,为了使得卡片全数售出后的利润超过成本的2成,则她至少需印刷()A. 112张B. 121张C. 134张D. 143张2. (2018·永州)甲从商贩A处购买了若干斤西瓜,又从商贩B 处购买了若干斤西瓜.A,B两处所购买的西瓜的质量之比为3∶2,然后将买回的西瓜以从A,B两处购买单价的平均数为单价全部卖给了乙,结果发现他赔钱了,这是因为()A. 商贩A的单价大于商贩B的单价B. 商贩A的单价等于商贩B的单价C. 商贩A的单价小于商贩B的单价D. 赔钱与商贩A,商贩B的单价无关二、填空题3. (2018·山西)2018年国内航空公司规定:旅客乘机时,免费携带行李箱的长、宽、高三者之和不超过115 cm.某厂家生产符合该规定的行李箱.已知行李箱的宽为20 cm,长与高的比为8∶11,则符合此规定的行李箱的高的最大值为________cm.4. (2018·攀枝花)攀枝花市出租车的收费标准:起步价5元(即行驶距离不超过2千米都需付5元车费),超过2千米以后,每增加1千米,加收1.8元(不足1千米按1千米计).若某同学从家乘出租车到学校,付了车费24.8元,则该同学的家到学校的距离x所在的范围为________________.三、解答题5. (2018·广州)友谊商店A型号笔记本电脑的售价是a元/台.最近,该商店对A型号笔记本电脑举行促销活动,有两种优惠方案.方案一:每台按售价的9折销售;方案二:若购买不超过5台,每台按售价销售;若超过5台,超过的部分每台按售价的8折销售.某公司一次性从友谊商店购买A型号笔记本电脑x台.(1) 当x=8时,应选择哪种方案,该公司购买费用最少?最少费用是多少元?(2) 若该公司采用方案二购买更合算,求x的取值范围.6. (2018·聊城)建设中的大外环路是我市的一项重点民生工程.某工程公司承建的一段路基工程的施工土方量为120万立方,原计划由公司的甲、乙两个工程队从公路的两端同时相向施工150天完成.由于特殊情况需要,公司抽调甲队外援施工,由乙队先单独施工40天后甲队返回,两队又共同施工了110天,这时甲、乙两队共完成土方量103.2万立方.(1) 问甲、乙两队原计划平均每天的施工土方量分别为多少万立方?(2) 在抽调甲队外援施工的情况下,为了保证150天完成任务,公司为乙队新购进了一批机械来提高效率,那么乙队平均每天的施工土方量至少要比原来提高多少万立方才能保证按时完成任务?7. (2018·深圳)某超市预测某饮料有发展前途,用1 600元购进一批饮料,面市后果然供不应求,又用6 000元购进这批饮料,第二批饮料的数量是第一批的3倍,但进货单价比第一批贵2元.(1) 第一批饮料进货单价为多少元?(2) 若两批饮料按同一销售单价销售,两批全部售完后,获利不少于1 200元,则销售单价至少为多少元?8. (2018·烟台)为提高市民的环保意识,倡导“节能减排,绿色出行”,某市计划在城区投放一批“共享单车”.这批单车分为A,B两种不同款型,其中A型车单价400元,B型车单价320元.(1) 今年年初,“共享单车”试点投放在该市中心城区正式启动.投放A,B两种款型的单车共100辆,总价值36 800元.试问本次试点投放的A型车与B型车各多少辆?(2) 试点投放活动得到了广大市民的认可,该市决定将此项公益活动在整个城区全面铺开.按照试点投放中A,B两车型的数量比进行投放,且投资总价值不低于184万元.请问城区10万人口平均每100人至少享有A型车与B型车各多少辆?9. (2018·贵阳)某青春党支部在精准扶贫活动中,给结对帮扶的贫困家庭赠送甲、乙两种树苗让其栽种.已知乙种树苗的价格比甲种树苗贵10元,用480元购买乙种树苗的棵数恰好与用360元购买甲种树苗的棵数相同.(1) 甲、乙两种树苗每棵的价格各是多少元?(2) 在实际帮扶中,他们决定再次购买甲、乙两种树苗共50棵,此时,甲种树苗的售价比第一次购买时降低了10%,乙种树苗的售价不变.如果再次购买两种树苗的总费用不超过1 500元,那么他们最多可购买多少棵乙种树苗?10. (2018·宁波)某商场购进甲、乙两种商品,甲种商品共用了2 000元,乙种商品共用了2 400元.已知乙种商品每件进价比甲种商品每件进价多8元,且购进的甲、乙两种商品件数相同.(1) 求甲、乙两种商品的每件进价.(2) 该商场将购进的甲、乙两种商品进行销售,甲种商品的销售单价为60元,乙种商品的销售单价为88元.销售过程中发现甲种商品销量不好,商场决定:甲种商品销售一定数量后,将剩余的甲种商品按原销售单价的7折销售;乙种商品销售单价保持不变.要使两种商品全部售完后共获利不少于2 460元,问甲种商品按原销售单价至少销售多少件?11. (2018·邵阳)某公司计划购买A,B两种型号的机器人搬运材料.已知A型机器人比B型机器人每小时多搬运30千克材料,且A型机器人搬运1 000千克材料所用的时间与B 型机器人搬运800千克材料所用的时间相同.(1) A,B两种型号的机器人每小时分别搬运多少材料?(2) 该公司计划采购A,B两种型号的机器人共20台,要求每小时搬运材料不得少于2 800千克,则至少购进A型机器人多少台?12. (2018·抚顺)为落实“美丽抚顺”的工作部署,市政府计划对城区道路进行改造,现安排甲、乙两个工程队完成.已知甲队的工作效率是乙队工作效率的32倍,甲队改造360米的道路比乙队改造同样长的道路少用3天.(1) 甲、乙两队每天能改造道路的长度分别是多少米?(2) 若甲队工作一天需付费用7万元,乙队工作一天需付费用5万元,如需改造的道路全长1 200米,改造总费用不超过145万元,至少安排甲队工作多少天?13. (2018·安顺)某地2015年为做好“精准扶贫”,投入资金1 280万元用于异地安置,并规划投入资金逐年增加,2017年在2015年的基础上增加投入资金1 600万元.(1) 从2015年到2017年,该地投入异地安置资金的年平均增长率为多少?(2) 在2017年异地安置的具体实施中,该地计划投入资金不低于500万元用于优先搬迁租房奖励,规定前1 000户(含第1 000户)每户每天奖励8元,1 000户以后每户每天奖励5元,按租房400天计算,2017年该地至少有多少户享受到优先搬迁租房奖励?14. (2018·湘潭)湘潭市继2017年成功创建全国文明城市之后,又准备争创全国卫生城市.某小区积极响应,决定在小区内安装垃圾分类的温馨提示牌和垃圾箱.若购买2个温馨提示牌和3个垃圾箱共需550元,且垃圾箱的单价是温馨提示牌单价的3倍.(1) 温馨提示牌和垃圾箱的单价各是多少元?(2) 该小区至少需要安放48个垃圾箱,如果购买温馨提示牌和垃圾箱共100个,且费用不超过10 000元,请你列举出所有购买方案,并指出哪种方案所需资金最少,最少是多少元?2.一元一次不等式(组)的应用一、1.C 2.A二、3.55 4.12千米<x ≤13千米三、5.设购买A 型号笔记本电脑x 台时的费用为w 元.(1) 当x =8时,方案一:w =90%a ·8=7.2a (元);方案二:w =5a +(8-5)a ×80%=7.4a (元),∵a >0,∴7.2a <7.4a .∴当x =8时,应选择方案一,该公司购买费用最少,最少费用是7.2a 元(2) ∵该公司采用方案二购买更合算,∴x >5.方案一:w =90%ax =0.9ax (元),方案二:当x >5时,w =5a +(x -5)a ·80%=5a +0.8ax -4a =(a +0.8ax )元.根据题意,得0.9ax >a +0.8ax .结合a >0,可解得x >10.∴x 的取值范围是x >106. (1) 设甲队原计划平均每天的施工土方量为x 万立方,乙队原计划平均每天的施工土方量为y 万立方.根据题意,得⎩⎨⎧150(x +y )=120,110x +(40+110)y =103.2,解得⎩⎨⎧x =0.42,y =0.38.答:甲队原计划平均每天的施工土方量为0.42万立方,乙队原计划平均每天的施工土方量为0.38万立方 (2) 设乙队平均每天的施工土方量比原来提高a 万立方才能保证按时完成任务.根据题意,得110×0.42+(40+110)·(0.38+a)≥120,解得a ≥0.112.答:乙队平均每天的施工土方量至少要比原来提高0.112万立方才能保证按时完成任务7. (1) 设第一批饮料进货单价为x 元,则第二批饮料进货单价为(x +2)元.根据题意,得3·1600x =6000x +2,解得x =8.经检验,x =8是原分式方程的解,且符合题意.答:第一批饮料进货单价为8元 (2) 由(1),得第一批饮料的数量为16008=200(瓶),第二批饮料的数量为3×200=600(瓶).设销售单价为m 元.根据题意,得200(m -8)+600(m -10)≥1200,解得m ≥11.答:销售单价至少为11元8. (1) 设本次试点投放的A 型车有x 辆,B 型车有y 辆.根据题意,得⎩⎨⎧x +y =100,400x +320y =36800,解得⎩⎨⎧x =60,y =40.答:本次试点投放的A 型车有60辆,B 型车有40辆 (2) 由(1)知A ,B 型车辆的数量比为3∶2.设整个城区全面铺开时投放的A 型车有3a 辆,B 型车有2a 辆.根据题意,得3a ·400+2a ·320≥1840000,解得a ≥1000,即整个城区全面铺开时投放的A 型车至少有3000辆,B 型车至少有2000辆,此时城区10万人口平均每100人至少享有A 型车3000×100100000=3(辆),至少享有B 型车2000×100100000=2(辆) 9. (1) 设甲种树苗每棵的价格是x 元,则乙种树苗每棵的价格是(x +10)元.依题意有480x +10=360x ,解得x =30.经检验,x =30是原方程的解,且符合题意,此时x +10=30+10=40.答:甲种树苗每棵的价格是30元,乙种树苗每棵的价格是40元 (2) 设他们可购买y 棵乙种树苗,则可购买(50-y)棵甲种树苗.依题意有30×(1-10%)·(50-y )+40y ≤1500,解得y ≤11713.∵y 为正整数,∴y 最大为11.答:他们最多可购买11棵乙种树苗10. (1) 设甲种商品的每件进价为x 元,则乙种商品的每件进价为(x +8)元.根据题意,得2000x =2400x +8,解得x =40.经检验,x =40是原方程的解,且符合题意.此时x +8=48.答:甲种商品的每件进价为40元,乙种商品的每件进价为48元 (2) 甲、乙两种商品的销售量均为200040=50(件).设甲种商品按原销售单价销售a 件,则(60-40)a +(60×0.7-40)(50-a)+(88-48)×50≥2460,解得a ≥20.答:甲种商品按原销售单价至少销售20件11. (1) 设B 型机器人每小时搬运x 千克材料,则A 型机器人每小时搬运(x +30)千克材料.根据题意,得1000x +30=800x ,解得x =120.经检验,x=120是所列方程的解,且符合题意.当x =120时,x +30=150.答:A 型机器人每小时搬运150千克材料,B 型机器人每小时搬运120千克材料 (2) 设购进A 型机器人a 台,则购进B 型机器人(20-a )台.根据题意,得150a +120(20-a )≥2800,解得a ≥403.∵a 是正整数,∴a ≥14.答:至少购进A 型机器人14台12. (1) 设乙队每天能改造道路的长度为x 米,则甲队每天能改造道路的长度为32x 米(即1.5x 米).根据题意,得360x -3601.5x =3,解得x =40.经检验,x =40是原分式方程的解,且符合题意.∴32x =32×40=60.答:乙队每天能改造道路的长度为40米,甲队每天能改造道路的长度为60米 (2) 设安排甲队工作m 天,则安排乙队工作1200-60m40天.根据题意,得7m +5·1200-60m40≤145,解得m ≥10.答:至少安排甲队工作10天13. (1) 设该地投入异地安置资金的年平均增长率为x.根据题意,得1280(1+x)2=1280+1600,解得x 1=0.5=50%,x 2=-2.5(舍去).答:从2015年到2017年,该地投入异地安置资金的年平均增长率为50% (2) 设2017年该地有a 户享受到优先搬迁租房奖励,根据题意,得8×1000×400+5×400(a -1000)≥5000000,解得a ≥1900.答:2017年该地至少有1900户享受到优先搬迁租房奖励14. (1) 设温馨提示牌的单价为x 元,则垃圾箱的单价为3x 元.根据题意,得2x +3×3x =550,解得x =50,∴3x =150.答:温馨提示牌和垃圾箱的单价各是50元和150元 (2) 设购买温馨提示牌y 个(y 为正整数),则购买垃圾箱(100-y)个,根据题意,得⎩⎨⎧100-y ≥48,50y +150(100-y )≤10000,解得50≤y ≤52.∵y 为正整数,∴y =50,51,52.因此共有以下3种方案:①购买温馨提示牌50个,垃圾箱100-50=50(个),费用为50×50+150×50=10000(元);②购买温馨提示牌51个,垃圾箱100-51=49(个),费用为50×51+150×49=9900(元);③购买温馨提示牌52个,垃圾箱100-52=48(个),费用为50×52+150×48=9800(元).∵10000>9900>9800,∴方案③所需资金最少,最少是9800元。

中考数学一轮(全国通用)专题13 一元一次不等式(组)及其应用(讲通)(教师版)

中考数学一轮(全国通用)专题13 一元一次不等式(组)及其应用(讲通)(教师版)

专题13一元一次不等式(组)及其应用1.能够根据具体问题中的数量关系,列出不等式(组),体会不等式(组)是刻画现实世界的一个有效的数学模型。

2.会解一元一次不等式(组)。

3.能根据具体问题的实际意义,检验结果是否合理。

一、不等式的基本性质(1)不等式的两边都加上(或减去)同一个数或同一个整式.不等号的方向不变.如果a b ,那么a c b c(2)不等式的两边都乘以(或除以)同一个正数,不等号的方向不变.如果,0a b c ,那么ac bc (或a b c c (3)不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.如果a b ,0c 那么ac bc (或a b c c )例1.下列各式中,(1)22225x x x x ;(2)2x xy y ;(3)340x y ≥;(4)352x x ;(5)0x ;(6)215a .是一元一次不等式的有()A .1个B .2个C .3个D .4个【答案】B【分析】根据一元一次不等式的定义:形如0ax b 或0ax b 或0ax b 或0ax b (其中a 是不等于0的常数,b 为常数),由此进行判断即可.【详解】解:(1)22225x x x x 即225x x 是一元一次不等式;(2)2x xy y 是二元二次整式,不是不等式;(3)340x y ≥是二元一次不等式(4)352x x 不是一元一次不等式;(5)0x 是一元一次不等式;(6)215a 不是一元一次不等式,故选B .二、一元一次不等式1、定义:只含有一个未知数,且未知数的次数是1.系数不等于0的不等式叫做一元一次不等式.2、解一元一次不等式的步骤解一元一次不等式的一般步骤:(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)化系数为1.3、一元一次不等式的解法一元一次不等式的解法与一元一次方程的解法类似, 但要特别注意不等式的两边都乘以(或除以)同一个负数时,不等号要改变方向.4、一元一次不等式的应用列一元一次不等式解实际应用问题,可类比列一元一次方程解应用问题的方法和技巧,不同的是,列不等式解应用题,寻求的是不等关系,因此,根据问题情境,抓住应用问题中“不等”关系的关键词语,或从题意中体会、感悟出不等关系十分重要.例2.不等式x +4<0的一个解是()A .﹣5B .﹣4C .0D .1【答案】A【分析】求一元一次不等式的解集,再根据题意分析即可求得答案.【详解】40x ∵,解得4x ,四个选项中只有5 ,故选A .三、一元一次不等式组1.解不等式组一般先分别求出不等式组中各个不等式的解集并表示在数轴上,再求出它们的公共部分,就得到不等式组的解集.2.由两个一元一次不等式组成的一元一次不等式组的解集的四种情况如下表.不等式组(其中a<b )图示解集口诀x a x bx≥b 同大取大x a x b x≤a 同小取小x a x ba≤x≤b 大小、小大中间找x a x b 空集小小、大大找不到3.列一元一次不等式组解决实际问题是中考要考查的一个重要内容,在列不等式解决实际问题时,应掌握以下三个步骤:(1) 找出实际问题中的所有不等关系或相等关系(有时要通过不等式与方程综合来解决),设出未知数,列出不等式组( 或不等式与方程的混合组);(2)解不等式组;(3)从不等式组(或不等式与方程的混合组)的解集中求出符合题意的答案.例3.如图,不等式组1231x x 的解集在数轴表示为()A .B .C.D.【答案】A【分析】先求出不等式组的解集,然后表示在数轴上即可.【详解】解:1231x x 解不等式组得:14x ,在数轴上表示为:故选:A .1.(2022·靖江市靖城中学九年级一模)若a b ,则下列各式中一定成立的是().A .22a b B .55a b <C .22a b D .44a b 【答案】A【分析】利用在不等式的两边都加上(或减去)同一个数,不等号的方向不变,判定,,A B 利用在不等式的两边都乘以(或除以)同一个正数,不等号的方向不变,判定,D 利用在不等式的两边都乘以(或除以)同一个负数,不等号的方向改变,判定,C 从而可得答案.【详解】解:a b ∵,22,a b >55,a b >故A 符合题意;B 不符合题意;a b ∵,22,44,a b a b <>故,C D 不符合题意;故选:A2.(2022·福建省福州杨桥中学九年级月考)不等式组231112x x的整数解的个数是()A .0个B .2个C .4个D .6个【答案】C【分析】先求得不等式组的解集,然后再判断整数解的个数.【详解】解:231112x x 解不等式231x 得1x 解不等式112x 得3x ∴不等式组的解集为13x ,整数解有1012 ,,,,总共4个,故选C3.(2022·杭州市采荷中学九年级二模)若20a b ,则()A .1a bB .1b aC .11a bD .11a b【答案】C【分析】根据不等式的基本性质逐一判断即可.【详解】解:若a >2b >0,A .不妨设a =0.3,b =0.1,则a -1<b ,故本选项不符合题意;B .不妨设a =3,b =1,则b +1<a ,故本选项不符合题意;C .∵a >2b >0,∴a +1>2b +1,∴a +1>b +1,∴a +1>b -1,故本选项符合题意;D .不妨设a =3,b =1,则a -1=b +1,故本选项不符合题意;故选:C .4.(2022·无锡市天一实验学校九年级月考)如果x y ,那么下列不等式正确的是()A .33x yB .x y <C .11x yD .11x y 【答案】A【分析】不等式的性质1:不等式的两边都加(或减)同一个数或式子,不等号的方向不变;不等式的性质2:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变;不等式的性质3:不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.据此逐一判断即可.【详解】解:A .∵x <y ,∴33x y ,故本选项符合题意;B .∵x <y ,∴-x >-y ,故本选项不符合题意;C .∵x <y ,∴x -1<y -1,故本选项不符合题意;D .∵x <y ,∴x +1<y +1,故本选项不符合题意;故选:A .5.(2022·浙江诸暨市暨阳初级中学九年级月考)在某校举行的冬季篮球赛中,选手王娜在第六、第七、第八、第九场比赛中分别得了23分、14分、11分和20分.她的前九场的平均成绩高于前五场的平均成绩,如果她的前十场的平均成绩高于18分,那么她的第十场的成绩至少为()A .27分B .29分C .31分D .33分【答案】B【分析】首先求得第六场−−第九场的平均成绩23141120=174+++(分).根据她的前九场的平均成绩高于前五场的平均成绩,说明前五场该选手的得的总分最多17×5−1=84(分).因而可知前九场的总分不会超过68+84.再根据她的前十场的平均成绩高于18分,即至少为18×10+1=181.则她的第十场的成绩至少即可求出.【详解】解:设她的第十场的成绩得分x (分).第六场−−第九场的平均成绩为23141120=174+++(分),超过了前五场的平均成绩.因此,前五场该选手得的总分最多17×5−1=84(分),但是她的十场的平均成绩高于18分,由题意得x +(23+14+11+20)+84≥18×10+1,解得x ≥29.故选:B .6.(2022·重庆市育才中学九年级开学考试)若关于x 的一元一次不等式组 232346x x x a有且仅有3个整数解,且关于y 的一元二次方程 23260a y ay a 始终有两个不相等的实数根,则所有的满足条件的整数a 的值之和是()A .5B .9C .12D .14【答案】C【分析】先对关于x 的一元一次不等式组进行求解,然后再根据一元二次方程根的判别式可得关于a 的不等式,进而问题可求解.【详解】解:由关于x 的一元一次不等式组 232346x x x a 可得:644a x ,∵该不等式组有且仅有3个整数解,∴6104a ,解得:26a ,∵关于y 的一元二次方程 23260a y ay a 始终有两个不相等的实数根,∴ 22444360b ac a a a ,解得:2a ,∴综上所述:a 的范围为26a ,∵a 为整数,∴a 的值为3、4、5,∴3+4+5=12;故选C .7.(2022·福建三明一中九年级开学考试)不等式5(x ﹣1)<3x +1正整数解是__________.【答案】1,2,3【分析】先去括号,再移项,合并同类项,化系数为1即可.【详解】解:去括号得,5x -5≤3x +1,移项得,5x -3x ≤1+5,合并同类项得,2x ≤6,系数化为1得,x ≤3.正整数解为1,2,3,故答案为:1,2,3.8.(2022·陕西西安·交大附中分校九年级模拟预测)不等式组23522x x x x的解集为_________.【答案】﹣1≤x <2【分析】分别求出两个一元一次不等式的解集,再求两个解集的公共部分即可.【详解】23522x x x x①②,解不等式①得:x ≥﹣1,解不等式②得:x <2,则不等式组的解集为﹣1≤x <2,故答案为:﹣1≤x <2.9.(2022·湖南师大附中博才实验中学九年级二模)解不等式组 2152232x x x x,并把它的解集在数轴上表示出来.【答案】3<x ≤4,数轴见解析【分析】分别求出每一个不等式的解集,根据解集在数轴上的表示即可确定不等式组的解集.【详解】解: 2152232x x x x①②,解不等式①得:x >3,解不等式②得:x ≤4,则不等式组的解集为3<x ≤4,在数轴表示如下:10.(2022·沙坪坝·重庆八中)为做好开学前后新冠肺炎疫情防控工作,保障广大师生员工生命安全和身体健康,重庆某中学决定向某医药生产厂家购买防疫物资学校原计划订购84消毒液和医用酒精共5000瓶,已知消毒液每瓶单价24元,酒精每瓶单价20元.(1)据悉,学校计划购买防疫物资的总资金不超过112000元,那么原计划最多购买消毒液多少瓶?(2)后来,学校决定就以112000元的总资金按照(1)中消毒液的最大数量进行购买但学校后勤处通过调查统计发现医用酒精的需求量更大,于是学校接受了后勤处的建议,在原计划的基础上消毒液少订购了10a 瓶,医用酒精多订购了原计划的%a ,医药生产厂家决定对医用酒精给予优惠,单价降低5%a 元,消毒液单价不变,最终学校花费和原计划一样多就完成了订购,求 0a a 的值.【答案】(1)3000瓶;(2)60【分析】(1)设原计划购买消毒液x 瓶,则原计划购买医用酒精(5000)x 瓶,根据学校计划购买防疫物资的总资金不超过112000元,即可得出关于x 的一元一次不等式,解之取其中的最大值即可得出结论;(2)根据最终学校花费和原计划一样多就完成了订购,即可得出关于a 的一元二次方程,解之取其正值即可得出结论.【详解】解:(1)设原计划购买消毒液x 瓶,则原计划购买医用酒精 5000x 瓶,依题意,得: 24205000112000x x ,解得:3000x .答:原计划最多购买消毒液3000瓶.(2)依题意,得: 3000102420001%205%112000a a a ,令%a t ,则100a t ,∴ 300010002420001205112000t t t ,整理得:21060t t ,解得:10t 或20.6t ,∴10a 或260a ,∵0a ,∴60a ,答:a 的值为60.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一元一次不等式(组)的应用一、选择题1.(2013浙江东阳吴宇模拟题)图a 和图b 分别表示两架处于平衡状态的简易天平,对a b c,,三种物体的质量判断正确..的是((A) <<a c b (B) <<c b a (C) <<a b c (D) <<b a c答案:C2、(2013北仑区一模)9.某商场的老板销售一种商品,他要以不低于进价20% 的价格才能出售,但为了获得更多利润,他以高出进价80%的价格标价.若你想买下标价为360元的这种商品,最多可降价( ▲ ). A .80元 B .100元 C .120元D .160元【答案】C3、(2013凤阳县县直义教教研中心)若点 P (a ,a -3)在第四象限,则a 的取值范围是( ).A .-3<a <0B .0<a <3C .a >3D .a <0B二、填空题1、(2013山东德州特长展示)如图,抛物线bx ax y +=2与直线kx y =相交于O (0,0)和A (3,2)两点,则不等式kx bx ax <+2的解集为 .03x <<图a图b2、(2013河南沁阳市九年级第一次质量检测)关于x 的一元二次方程0162=+-x kx 有两个不相等的实数根,则k 的取值范围是 . k ∠9且k ≠0三、解答题1、(2013浙江省宁波模拟题)(本题满分12分)某商店决定购进A 、B 两种纪念品.若购进A 种纪念品10件,B 种纪念品5件,需要1000元;若购进A 种纪念品5件,B 种纪念品3件,需要550元.(1)求购进A 、B 两种纪念品每件各需多少元?(2)若该商店决定拿出1万元全部用来购进这两种纪念品,考虑市场需求,要求购进A种纪念品的数量不少于B 种纪念品数量的6倍,且不超过B 种纪念品数量的8倍,那么该商店共有几种进货方案?(3)若销售每件A 种纪念品可获利润20元,每件B 种纪念品可获利润30元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元?答案:解:(1)设该商店购进一件A 种纪念品需要a 元,购进一件B 种纪念品需要b 元分 1分∴购进一件A 种纪念品需要50元,购进一件B 种纪念品需要100元 1分 (2个,购进B 种纪念品y 个…2分解得20≤y ≤25 …………1分∵y 为正整数 ∴共有6种进货方案………1分 (3)设总利润为W 元W =20x +30y =20(200-2 y )+30y=-10 y +4000 (20≤y ≤25) …………2分∵-10<0∴W 随y 的增大而减小∴当y =20时,W 有最大值 ……………………………………1分2、为鼓励学生积极参加体育锻炼,学校计划拿出不超过2 400元的资金再购买一批篮球和气排球.已知篮球和气排球的单价比为5∶1.单价和为90元. (1)篮球和气排球的单价分别是多少元?(2)若要求购买的篮球和气排球共40个,且购买的篮球数量多于27个,有哪几种购买方案?解:(1)设篮球的单价为x 元,则气排球的单价为15x 元,根据题意,得x +15x =90. …………………………………………………………………2分解得x =75. …………………………………………………………………3分 ∴15x =15.答:篮球和气排球的单价分别是75元和15元.………………………………4分 (2)设购买的篮球数量为n 个,则购买的气排球数量为(40-n )个,则有 27,7515(40)2400.n n n ⎧⎨+-⎩>≤解得 27<n ≤30.…………………………………………………………………6分 而n 为整数,所以其取值为28,29,30,对应的40-n 的值为12,11,10. 所以共有三种购买方案:方案一:购买篮球28个,气排球12个; 方案二:购买篮球29个,气排球11个; 方案三:购买篮球30个,气排球10个.3、(2013温州模拟)23.(本题满分12分)由于受到手机更新换代的影响,某手机店经销的Iphone4手机二月售价比一月每台降价500元.如果卖出相同数量的Iphone4手机,那么一月销售额为9万元,二月销售额只有8万元. (1)一月Iphone4手机每台售价为多少元?(2)为了提高利润,该店计划三月购进Iphone4s 手机销售,已知Iphone4每台进价为3500元,Iphone4s 每台进价为4000元,预计用不多于7.6万元且不少于7.4万元的资金购进这两种手机共20台,请问有几种进货方案?3)该店计划4月对Iphone4的尾货进行销售,决定在二月售价基础上每售出一台Iphone4手机再返还顾客现金a 元,而Iphone4s 按销售价4400元销售,如要使(2)中所有方案获利相同,a 应取何值?【答案】解:(1)解:设二月Iphone4手机每台售价为x 元,由题意得=+509000x x8000……………2分 解得x=4000(元) ……………1分经检验:x=4000是此方程的根. X+500=4500 …………1分(不检验扣1分)故一月Iphone4手机每台售价为4500元 (2)设购进手机m 台,由题意得7400<3500m+4000(20-m) <7600 -------------2分 解得8<m <12 ,因为m 只能取整数M 取8,9,10,11,12共有5种进货方案。

---------2分(3)设总获利为w 元则w=(500-a)m+400(20-m)=(100-a)+8000 ------------2分当a=100时(2)中所有方案获利相同。

--------------------2分4、(2013重庆一中一模)21. 先化简,再求值:)3933(99622+---÷-+-x x x x x x ,其中x 是不等式组102(2)1x x x+<⎧⎨++⎩,≥ 的整数解.【答案】21:解:原式=3939)3)(3()3(22++--÷-+-x x x x x x333(3)1x x x x x x-+=⋅+-=∵x 为整数解 ∴x=-3或x=-2但x+3≠0 ∴x=-2将x=-2代入x 1中, 原式=x1=21-5.(2013重庆一中一模)某体育用品专卖店今年3月初用4000元购进了一批“中考体能测试专用绳”,上市后很快售完.该店于3月中旬又购进了和第一批数量相同的专用绳,由于第二批专用绳的进价每根比第一批提高了10元,结果进第二批专用绳共用了5000元.(1)第一批专用绳每根的进货价是多少元?(2)若第一批专用绳的售价是每根60元,为保证第二批专用绳的利润率不低于第一批的利润率,那么第二批专用绳每根售价至少是多少元? (提示:利润=售价-进价,利润率=100%⨯利润成本)【答案】解:(1)设第一批绳进货时的价格为每根x 元,由题意得:4000500010x x =+ .................3分 解得:40x =............4分经检验,40x =是所列方程的根,且符合题意….......5分 答:第一批专用绳的进货价格是每根40元.(2) 设第二批专用绳每根的售价为y 元,由题意得:①② ⎩⎨⎧-≥-<∴⎩⎨⎧+≥+<+311)2(201x x x x x 13-<≤-∴x()40106040401040y -+-+≥ ......8分解得:y ≥75. ......9分答:第二批专用绳每根的售价至少为75元.......10分6.(2013郑州外国语预测卷)新郑绿色无公害蔬菜基地有甲、乙两种植户,他们种植了A 、B 两类蔬菜,两种植户种植的两类蔬菜的种植面积与总收入如下表:说明:不同种植户种植的同类蔬菜每亩平均收入相等. ⑴ 求A 、B两类蔬菜每亩平均收入各是多少元?⑵ 某种植户准备租20亩地用来种植A 、B两类蔬菜,为了使总收入不低于63000元,且种植A类蔬菜的面积多于种植B类蔬菜的面积(两类蔬菜的种植面积均为整数),求该种植户所有租地方案. 答案:解:(1)设A 、B 两类蔬菜每亩平均收入分别是x 元,y 元.由题意得:3125002316500x y x y +=⎧⎨+=⎩解得:30003500x y =⎧⎨=⎩答:A 、B 两类蔬菜每亩平均收入分别是3000元,3500元.(2)设用来种植A 类蔬菜的面积a 亩,则用来种植B 类蔬菜的面积为(20-a )亩. 由题意得:30003500(20)6300020a a a a +-≥⎧⎨-⎩解得:10<a ≤14.∵a 取整数为:11,12,13,14. ∴租种方案如上表7. (2013江西饶鹰中考模拟)根据国家发改委实施“阶梯电价”的有关文件要求,江西省上饶市决定从2012年7月1日起对居民生活用电试行“阶梯电价”收费,具体收费标准见下表:(1)若上饶市一户居民8月份用电300千瓦时,应缴电费186元,9月份用电400千瓦时,应缴电费263.5元。

求a ,b 的值;(2)实行“阶梯电价”收费以后,该户居民用电多少千瓦时,其当月的平均电价每千瓦时不超过0.62元? 答案:解:(1)根据题意得:⎩⎨⎧=+++=+5.263)3.0(50170180173100180a b a b a 解得⎩⎨⎧==65.06.0b a(2)设该户居民用电x千瓦时,月平均电价每千瓦时不超过0.62元。

则xx xx 62.011765.0108062)180(65.06.0180≤-+≤-+⨯300≤x所以该户居民用电量不超过300千瓦时,月平均电价每千瓦时不超过0.62元。

8、( 湖北省武汉市中考全真模拟)(本题满分6分) 在直角坐标系xoy 中,直线y kx b =+(0k ≠)经过(-2,1)和(2,3)两点,且与x 轴、y 轴分别交于A 、B两点,求不等式0kx b +≥的解集. 解:x ≥-4(过程略)9、( 湖北宜昌调研)解不等式组:⎩⎨⎧>+<+xx x )1(2521解: 解不等式①得 x <2 ……………………… (2分) 解不等式②得 x >-2 ……………………… (4分) ∴ 不等式组的解集为 22<<-x …………… (6分)10、( 唐山市二模) 2010年6月5日是第38个世界环境日,世界环境日的主题为“多个物种、一颗星球、一个未来”。

为了响应节能减排的号召,某品牌汽车4S 店准备购进A 型(电动汽车)和B 型(太阳能汽车)两种不同型号的汽车共16辆,以满足广大支持环保的购车者的需求。

市场营销人员经过市场调查得到如下信息:(1)若经营者的购买资金不少于576万元且不多于600万元,则有哪几种进车方案? (2)在(1)的前提下,如果你是经营者,并且所进的汽车能全部售出,你会选择哪种进车方案才能使获得的利润最大?最大利润是多少?(3)假设每台电动汽车每公里的用电费用为0.65元,且两种汽车最大行驶里程均为30万公里,那么从节约资金的角度,你做为一名购车者,将会选购哪一种型号的汽车?并说明理由。

相关文档
最新文档