半导体物理与器件基础知识
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、肖特基势垒二极管
欧姆接触:通过金属-半导体的接触实现的连接。
接触电阻很低。
金属与半导体接触时,在未接触时,半导体的费米能级高于金属的费米能级,接触后,半导体的电子流向金属,使得金属的费米能级上升。
之间形成势垒为肖特基势垒。
在金属与半导体接触处,场强达到最大值,由于金属中场强为零,所以在金属——半导体结的金属区中存在表面负电荷。
影响肖特基势垒高度的非理想因素:肖特基效应的影响,即势垒的镜像力降低效应。
金属中的电子镜像到半导体中的空穴使得半导体的费米能级程下降曲线。
附图:
电流——电压关系:金属半导体结中的电流运输机制不同于pn结的少数载流子的扩散运动决定电流,而是取决于多数载流子通过热电子发射跃迁过内建电势差形成。
附肖特基势垒二极管加反偏电压时的I-V曲线:反向电流随反偏电压增大而增大是由于势垒降低的影响。
肖特基势垒二极管与Pn结二极管的比较:1.反向饱和电流密度(同上),有效开启电压低于Pn结二极管的有效开启电压。
2.开关特性肖特基二极管更好。
应为肖特基二极管是一个多子导电器件,加正向偏压时不会产生扩散电容。
从正偏到反偏时也不存在像Pn结器件的少数载流子存储效应。
二、金属-半导体的欧姆接触
附金属分别与N型p型半导体接触的能带示意图
三、异质结:两种不同的半导体形成一个结
小结:1.当在金属与半导体之间加一个正向电压时,半导体与金属之间的势垒高度降低,电子很容易从半导体流向金属,称为热电子发射。
2.肖特基二极管的反向饱和电流比pn结的大,因此达到相同电流时,肖特基二极管所需的反偏电压要低。
10双极型晶体管
双极型晶体管有三个掺杂不同的扩散区和两个Pn结,两个结很近所以之间可以互相作用。
之所以成为双极型晶体管,是应为这种器件中包含电子和空穴两种极性不同的载流子运动。
一、工作原理
附npn型和pnp型的结构图
发射区掺杂浓度最高,集电区掺杂浓度最低
附常规npn截面图
造成实际结构复杂的原因是:1.各端点引线要做在表面上,为了降低半导体的电阻,必须要有重掺杂的N+型掩埋层。
2.一片半导体材料上要做很多的双极型晶体管,各自必须隔离,应为不是所有的集电极都是同一个电位。
通常情况下,BE结是正偏的,BC结是反偏的。
称为正向有源。
附图:
由于发射结正偏,电子就从发射区越过发射结注入到基区。
BC结反偏,所以在BC结边界,理想情况下少子电子浓度为零。
附基区中电子浓度示意图:
电子浓度梯度表明,从发射区注入的电子会越过基区扩散到BC结的空间电荷区,那里的电场会将电子扫到集电区。
我们希望更多的电子能够进入集电区而不是在基区和多子空穴复合。
因此和少子扩散长度相比,基区宽度必须很小。
工作模式:附共发射极电路中npn型双极型晶体管示意图
1.如果B——E电压为零或者小于零(反偏),那么发射区中的多子电子就不会注
入到基区。
由于B——C也是反偏的,这种情况下,发射机电流和集电极电流是零。
称为截至状态。
2.随着B——E结电压增大,集电极电流会增大,从而集电极上电阻分压Vr增大,意味着在晶体管CB上分压绝对值减小;在某一点出,集电极电流会增大到组后大使得电阻分压后再BC结零偏。
过了这一点后,集电极电流微笑增加会导致Vr 微小增加,从而使B——C结变为正偏(Vcb<0)。
称为饱和。
饱和时,B——E结和B——C结都是正偏的,集电极电流不受B——E结电压。
附双极型晶体管共发射极的电流电压特性,添加了负载线:
Ic=0时晶体管处于截至区。
当基极电流变化时,集电极电流没有变化,处于饱和区。
当Ic=βIb成立时,晶体管处于正向有源区。
小结:
1.基区宽度调制效应(厄尔利效应):中性基区宽度随B——C结电压变化而发生变化,于是集电极电流随B——C结或C——E结电压变化而变化。
2.大注入效应使得集电极电流随C——E结电压增加而低速率增加。
11金属-氧化物-半导体场效应晶体管基础
MOSFET的核心是MOS电容。
在半导体中,由于施加了一个穿过MOS电容的电压,氧化物-半导体界面的能带将发生弯曲。
其费米能级是该电压的函数,因此通过适当的电压可以使得半导体表面的特性从p型转换为N型,或n型转换为p型。
附基本mos电容结构
平带电压:使半导体内部没有能带弯曲所加的栅压。
阈值电压:达到阈值反型点所需要的栅压。
阈值反型点:表面势?s为两倍的?f (费米能级与本征费米能级之差)的状态.当小于阈值电压时,未强反型,沟道未形成,截至;大于等于阈值电压时,强反型,沟道形成,导通。
阈值电压大于零,为增强型,零栅压时未反型。
阈值电压小于零,为耗尽型,零栅压时已反型。
对于p型衬底的Mos,能使反型层电荷密度改变的来源有:1.来自空间电荷区P 型衬底的少子电子的扩散;2.热运动产生的电子空穴对。
界面态:半导体在界面处的周期突然停止,使得电子能级存在于禁带中,这些允许的能太称为界面态。
三、MOSFET的基本工作原理
附N沟增强型MOSFET和耗尽型的剖面图:(注意电路符号)
附I(D)-V(GS)曲线的原理图
附n沟增强型MOSFET的特性曲线
当V(DS)大于阈值电压时,沟道中反型电荷为零的点移向愿端。
此时电子从源端进入沟道,通过沟道流向漏端。
在电荷为零的点处,电子被注入空间电荷区,并被电场扫向漏端。
附n沟耗尽型MOSFET的特性曲线
亚阈值电导是指在MOSFET中当栅源电压小于阈值电压时漏电流不为零。
这种情况下,晶体管被偏置在弱反型模式下,漏电流是由扩散机制而非漂移机制控制。
该电导会在集成电路中产生一个明显的静态偏置电流。
13结型场效应晶体管
PnJEFT的基本工作原理
以N沟为例,多数载流子电子自源极流向漏极,器件的栅极是控制端。
附改变栅源电压的电流电压特性曲线
现在分析栅电压为零,漏电压变化的情况。
随着漏源电压的增大,栅与沟道形成的Pn结反偏,空间电荷区向沟道扩展。
随着空间电荷区的扩展,有效沟道电阻增大,曲线斜率变小。
附改变漏源电压时的特性曲线。