湖北省巴东一中高二数学教案 必修四:平面向量的基本定理及坐标表示

合集下载

高中数学_ 平面向量的基本定理及坐标表示教学设计学情分析教材分析课后反思

高中数学_ 平面向量的基本定理及坐标表示教学设计学情分析教材分析课后反思

2.3.1-----2.3.2平面向量基本定理、正交分解及坐标表示一、教材分析:本节课是在学生学习了向量的概念及表示向量的线性运算后对向量知识的进一步学习。

平面向量基本定理和坐标表示及综合前面的向量知识,同时又是后续向量的坐标运算奠定了基础,起到了承前启后的作用。

过程与方法借助于由特殊到一般的方式得出平面向量基本定理及坐标表示的过程,培养分析问题和解决问题的能力。

二、学习目标1、理解平面向量的基本定理及其意义,会用平面向量基本定理解决简单问题。

2、理解平面向量的坐标的概念,掌握平面向量的正交分解及其坐标表示了。

情感态度价值观1、感受数学的精确性、概括性和同一性。

2、体会数形结合的思想 三、重点、难点教学重点:平面向量的基本定理及坐标表示[来源: 教学难点:平面向量的基本定理。

教学方法:引导探究式 教学手段:多媒体教学 四、教学过程:(一)复习提问:1.向量的加法运算(三角形法则、平行四边形法则)。

2.实数与向量的积3.向量共线定理设计意图:为让学生更好的理解问题做好铺垫。

(二)引入新知设计意图:使学生自然进入探索新知环节 (二)新课讲解1AB ,, 问题:已知非零向量那么对于同一平面内的任意向量是否能用线性表示?a a 2, 问题:如果平面内的向量不能由单个向量线性表示 又该如何具体表示呢?121233 、,问题:已知向量求作向量2e e e e向量的合成 向量的分解问题4、对于平面内任意向量,是不是都可以用 e 1 e 2 来表示呢 教师引导学生思考问题,引出本节课的教学内容并用幻灯片演示分解过程向量的合成与分解是互逆过程,向量的合成适用平行四边形法则,分解当然也适合平行四边形法则,进而引导学生用平行四边形分解向量。

设计意图:通过幻灯片演示分解过程;使学生理解平面内任意向量都可以按向量e1、e2进行分解 经过之前几节课的学习,学生已经基本掌握了向量的线性运算及加减法元算,此处的思考题意在使学生更深入地思考:是否任意的向量都可以用任意的两个向量来表示,进而说明了平面向量基本定理的必要性。

必修四2.3平面向量的基本定理及坐标表示(教案)

必修四2.3平面向量的基本定理及坐标表示(教案)

2.3平面向量的基本定理及坐标表示教案A第1课时教学目标一、知识与技能1.通过探究活动,理解平面向量基本定理.2.掌握平面里的任何一个向量都可以用两个不共线的向量来表示,理解这是应用向量解决实际问题的重要思想方法.能够在具体问题中适当地选取基底,使其他向量都能够用基底来表达.3.了解向量的夹角与垂直的概念,并能应用于平面向量的正交分解中,会把向量的正交分解用于坐标表示,会用坐标表示向量.二、过程与方法1.首先通过“思考”,让学生思考对于平面内给定的任意两个向量进行加减的线性运算时所表示的新向量有什么特点,反过来,对平面内的任意向量是否都可以用形如λ1e1+λ2e2的向量表示.2. 通过教师提出问题,多让学生自己动手作图来发现规律,通过解题来总结方法,引导学生理解“化归”思想对解题的帮助,也要让学生善于用“数形结合”的思想来解决这部分的题.3.如果条件允许,借助多媒体进行教学会有意想不到的效果.整节课的教学主线应以学生练习为主,教师给予引导和提示.充分让学生经历分析、探究并解决实际问题的过程,这也是学习数学,领悟思想方法的最好载体.学生经历的这种实践活动越多,解决实际问题的方法就越恰当而简捷.三、情感、态度与价值观1.在探究过程中,让学生自己动手作图来发现规律,通过解题来总结方法,培养学生对“化归”、“数形结合”等数学思想的应用.2.在让学生经历分析、探究并解决实际问题的过程中,培养学生坚忍不拔的意志,实事求是的科学学习态度和勇于创新的精神.教学重点、难点教学重点:平面向量基本定理、向量的夹角与垂直的定义、平面向量的正交分解、平面向量的坐标表示.教学难点:平面向量基本定理的理解与应用.教学关键:平面向量基本定理的理解.教学突破方法:通过问题设置,让学生充分练习,发现规律方法,体现学生的主体地位.教法与学法导航--教学方法:启发诱导.学习方法:在老师问题的引导下,学生要充分作图,与小组成员合作探究,发现规律. 教学准备.教师准备:多媒体、尺规.学生准备:练习本、尺规.教学过程一、创设情境,导入新课在物理学中我们知道,力是一个向量,力的合成就是向量的加法运算.而且力是可以分解的,任何一个大小不为零的力,都可以分解成两个不同方向的分力之和.将这种力的分解拓展到向量中来,会产生什么样的结论呢?二、主题探究,合作交流提出问题①给定平面内任意两个不共线的非零向量e1、e2,请你作出向量3e1+2e2、e1-2e2.平面内的任一向量是否都可以用形如λ1e1+λ2e2的向量表示呢?②如上左图,设e1、e2是同一平面内两个不共线的向量,a是这一平面内的任一向量,我们通过作图研究a与e1、e2之间的关系.师生互动:如上右图,在平面内任取一点O,作=e1,=e2,=a.过点C作平行于直线OB的直线,与直线OA交于点M;过点C作平行于直线OA的直线,与直线OB交于点N.由向量的线性运算性质可知,存在实数λ1、λ2,使得OM=λ1e1,ON=λ2e2.=,所以a=λ1e1+λ2e2.也就是说,任一向量a都可以表示成λ1e1+λ2e 由于OM+2的形式.由上述过程可以发现,平面内任一向量都可以由这个平面内两个不共线的向量e1、e2表示出来.当e1、e2确定后,任意一个向量都可以由这两个向量量化,这为我们研究问题带来极大的方便.由此可得:平面向量基本定理:如果e1、e2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a,有且只有一对实数λ1、λ2,使a=λ1e1+λ2e2.定理说明:(1)我们把不共线的向量e1、e2叫做表示这一平面内所有向量的一组基底;(2)基底不唯一,关键是不共线;(3)由定理可将任一向量a在给出基底e1、e2的条件下进行分解;----(4)基底给定时,分解形式唯一.提出问题:①平面内的任意两个向量之间存在夹角吗?若存在,向量的夹角与直线的夹角一样吗?②对平面内的任意一个向量能否用两个互相垂直的向量来表示?师生互动:引导学生结合向量的定义和性质,思考平面内的任意两个向量之间的关系是什么样的,结合图形来总结规律.教师通过提问来了解学生总结的情况,对回答正确的学生进行表扬,对回答不全面的学生给予提示和鼓励.然后教师给出总结性的结论:不共线向量存在夹角,关于向量的夹角,我们规定:已知两个非零向量a 和b (如图),作OA=a ,OB =b ,则∠AOB =θ(0°≤θ≤180°)叫做向量a 与b 的夹角.显然,当θ=0°时,a 与b 同向;当θ=180°时,a 与b 反向.因此,两非零向量的夹角在区间[0°,180°]内.如果a 与b的夹角是90°,我们说a 与b 垂直,记作a ⊥b.由平面向量的基本定理,对平面上的任意向量a ,均可以分解为不共线的两个向量λ1a 1和λ2a 2,使a =λ1a 1+λ2a2.在不共线的两个向量中,垂直是一种重要的情形.把一个向量分解为两个互相垂直的向量,叫做把向量正交分解.如上,重力G 沿互相垂直的两个方向分解就是正交分解,正交分解是向量分解中常见的一种情形.在平面上,如果选取互相垂直的向量作为基底时,会为我们研究问题带来方便.提出问题①我们知道,在平面直角坐标系中,每一个点都可用一对有序实数(即它的坐标)表示.对直角坐标平面内的每一个向量,如何表示呢?②在平面直角坐标系中,一个向量和坐标是否是一一对应的?师生互动:如图,在平面直角坐标系中,分别取与x轴、y 轴方向相同的两个单位向量i 、j 作为基底.对于平面内的一个向量a ,由平面向量基本定理可知,有且只有一对实数x 、y ,使得a=xi+yj①这样,平面内的任一向量a都可由x、y唯一确定,我们把有序数对(x,y)叫做向量a 的坐标,记作a=(x,y)②其中x叫做a在x轴上的坐标,y叫做a在y轴上的坐标,②式叫做向量的坐标表示.显然,i=(1,0),j=(0,1),0=(0,0).教师应引导学生特别注意以下几点: (1)向量a与有序实数对(x,y)一一对应.(2)向量a的坐标与表示该向量的有向线段的起点、终点的具体位置没有关系,只与其相对位置有关系.如图所示,11BA 是表示a 的有向线段,A1、B1的坐标分别为(x1,y1)、(x2,y2),则向量a的坐标为x=x2-x1,y=y2-y1,即a的坐标为(x2-x1,y2-y1).(3)为简化处理问题的过程,把坐标原点作为表示向量a的有向线段的起点,这时向量a 的坐标就由表示向量a的有向线段的终点唯一确定了,即点A的坐标就是向量a的坐标,流程表示如下:三、拓展创新,应用提高例1 已知向量e1、e2(如右图),求作向量-2.5e1+3e2.作法:(1)如图,任取一点O,作OA=-2.5e1,OB=3e2.(2)作OACB.故OC就是求作的向量.例2 如下图,分别用基底i、j表示向量a、b、c、d,并求出它们的坐标.活动:本例要求用基底i、j表示a、b、c、d,其关键是把a、b、c、d表示为基底i、j的线性组合.一种方法是把a正交分解,看a在x轴、y轴上的分向量的大小.把向量a用i、j表示出来,进而得到向量a的坐标.另一种方法是把向量a移到坐标原点,则向量a终点的坐标就是向量a的坐标.同样的方法,可以得到向量b、c、d的坐标.另外,本例还可以通过四个向量之间位置的几何关系:a与b关于y轴对称,a与c关于坐标原点中心对称,a与d关于x轴对称等.由一个向量的坐标推导出其他三个向量的坐标.解:由图可知,a=1AA+2AA=2i+3j,----∴a =(2,3).同理,b =-2i +3j =(-2,3);c=-2i -3j =(-2,-3);d =2i -3j=(2,-3).点评:本例还可以得到启示,要充分运用图形之间的几何关系,求向量的坐标.四、小结1.先由学生回顾本节学习的数学知识:平面向量的基本定理,向量的夹角与垂直的定义,平面向量的正交分解,平面向量的坐标表示.2.教师与学生一起总结本节学习的数学方法,如待定系数法、定义法、归纳与类比、数形结合.五、课堂作业1.如图所示,已知AP =34AB ,AQ =31AB ,用OA 、OB 表示OP ,则OP 等于( ) A .31OA +34OB ﻩB .31-OA +34OB C.31-OA -34OB ﻩD.31OA -34OB 2.已知e 1,e 2是两非零向量,且|e 1|=m ,|e 2|=n,若c =λ1e 1+λ2e2(λ1,λ2∈R ),则|c |的最大值为( )A .λ1m +λ2n B.λ1n +λ2m C.|λ1|m+|λ2|n D.|λ1|n+|λ2|m3.已知G 1、G2分别为△A 1B 1C 1与△A 2B 2C 2的重心,且12A A =e 1,12B B =e2,12C C =e 3,则12G G 等于( )A .21(e1+e2+e 3) B.31(e 1+e 2+e3) C.32(e1+e 2+e 3) D .31-(e 1+e 2+e 3) 4.O 是平面上一定点,A 、B 、C 是平面上不共线的三个点,动点P 满足OP =OA +λ)||||(AC AC AB AB +,λ∈[0,+∞),则P的轨迹一定通过△A BC的( ) A .外心 B .内心 C .重心 D.垂心5.已知向量a 、b 且AB =a+2b ,BC =-5a +6b,CD =7a -2b,则一定共线的三点是( )A.A 、B、D B .A 、B 、C C.C 、B 、D D .A 、C、D6.如右图,平面内有三个向量OA、OB、OC,其中与OA与OB 的夹角为120°, OA与OC的夹角为30°,且|OA|=|OB|=1,|OC|=23,若OC=λOA+μOB(λ,μ∈R),则λ+μ的值为________.参考答案:1.B 2.C 3.B 4.B5.A 6.6第2课时教学目标一、知识与技能1.理解平面向量的坐标的概念;2.掌握平面向量的坐标运算;3.会根据向量的坐标,判断向量是否共线.二、过程与方法教师在引导学生探究时,始终抓住向量具有几何与代数的双重属性这一特征和向量具有数与形紧密结合的特点.让学生在了解向量知识网络结构基础上,进一步熟悉向量的坐标表示以及运算法则、运算律,能熟练向量代数化的重要作用和实际生活中的应用,并加强数学应用意识,提高分析问题、解决问题的能力.三、情感、态度与价值观在解决问题过程中使学生形成见数思形、以形助数的思维习惯,以加深理解知识要点,增强应用意识.教学重点、难点教学重点:平面向量的坐标运算.教学难点:对平面向量共线的坐标表示的理解.教学关键:平面向量坐标运算的探究.教学突破方法:结合向量坐标表示的定义及运算律,引导学生探究发现,最终得到结论.教法与学法导航教学方法:问题式教学,启发诱导学习方法:在熟悉向量的坐标表示以及运算法则、运算律的基础上,在老师的引导下,通过与同学合作探究,得到结论.教学准备教师准备:多媒体、尺规.学生准备:练习本、尺规.----教学过程一、创设情境,导入新课前一节课我们学习了向量的坐标表示,引入向量的坐标表示后,可使向量运算完全代数化,将数与形紧密结合起来,这就可以使很多几何问题的解答转化为学生熟知的数量运算.引进向量的坐标表示后,向量的线性运算可以通过坐标运算来实现,那么向量的平行、垂直,是否也能通过坐标来研究呢?二、主题探究,合作交流提出问题:①我们研究了平面向量的坐标表示,现在已知a=(x 1,y1),b =(x 2,y 2),你能得出a +b ,a-b ,λa的坐标表示吗?②如图,已知A (x1,y 1),B (x 2,y 2),怎样表示AB 的坐标?你能在图中标出坐标为(x 2-x 1,y 2-y 1)的P点吗?标出点P 后,你能总结出什么结论?师生互动:教师让学生通过向量的坐标表示来进行两个向量的加、减运算,教师可以让学生到黑板去板书步骤.可得:a+b =(x 1i +y1j )+(x 2i +y 2j )=(x 1+x 2)i +(y 1+y2)j ,即a +b=(x 1+x 2,y 1+y 2).同理a -b =(x 1-x 2,y 1-y 2).又 λa =λ(x 1i +y 1j )=λx1i +λy 1j.∴ λa =(λx 1,λy 1).教师和学生一起总结,把上述结论用文字叙述分别为: 两个向量和(差)的坐标分别等于这两个向量相应坐标的和(差);实数与向量的积的坐标等于用这个实数乘原来向量的相应坐标.教师再引导学生找出点与向量的关系:将向量AB 平移,使得点A 与坐标原点O 重合,则平移后的B 点位置就是P 点.向量AB 的坐标与以原点为始点,点P为终点的向量坐标是相同的,这样就建立了向量的坐标与点的坐标之间的联系.学生通过平移也可以发现:向量的模与向量的模是相等的.由此,我们可以得出平面内两点间的距离公式:|AB |=|OP |=221221)()(y y x x -+-.--教师对总结完全的同学进行表扬,并鼓励学生,只要善于开动脑筋,勇于创新,展开思维的翅膀,就一定能获得意想不到的收获.讨论结果:①能. ②AB =-=(x 2,y2)-(x1,y 1)=(x 2-x1,y 2-y 1).结论:一个向量的坐标等于表示此向量的有向线段的终点的坐标减去始点的坐标. 提出问题①如何用坐标表示两个共线向量?②若a =(x 1,y1),b =(x 2,y 2),那么2211x y x y =是向量a 、b 共线的什么条件? 师生互动:教师引导学生类比直线平行的特点来推导向量共线时的关系.此处教师要对探究困难的学生给以必要的点拨:设a =(x1,y1),b=(x 2,y 2),其中b ≠0.我们知道,a 、b 共线,当且仅当存在实数λ,使a =λb .如果用坐标表示,可写为(x 1,y 1)=λ(x2,y 2),即⎪⎩⎪⎨⎧==.,2121y y x x λλ消去λ后得x 1y 2-x2y 1=0. 这就是说,当且仅当x 1y 2-x 2y 1=0时向量a 、b(b ≠0)共线.我们知道x 1y 2-x 2y 1=0与x 1y 2=x 2y1是等价的,但这与2211x y x y =是不等价的.因为当x 1=x 2=0时,x 1y2-x2y 1=0成立,但2211x y x y =均无意义.因此2211x y x y =是向量a 、b 共线的充分不必要条件.由此也看出向量的应用更具一般性,更简捷、实用,让学生仔细体会这点.讨论结果:①x 1y 2-x 2y 1=0时,向量a、b (b ≠0)共线.②充分不必要条件.提出问题:a 与非零向量b 为共线向量的充要条件是有且只有一个实数λ使得a =λb ,那么这个充要条件如何用坐标来表示呢?师生互动:教师引导推证:设a =(x 1,y1),b =(x 2,y 2),其中b≠a ,由a=λb ,(x 1,y 1)=λ(x2,y 2)⎪⎩⎪⎨⎧==⇒.,2121y y x x λλ消去λ,得x 1y 2-x 2y 1=0. 讨论结果:a∥b (b ≠0)的充要条件是x 1y 2-x 2y 1=0.教师应向学生特别提醒感悟:1. 消去λ时不能两式相除,∵y 1、y 2有可能为0,而b≠0,∴x 2、y 2中至少有一个不为--0.2. 充要条件不能写成2211x y x y =(∵x 1、x 2有可能为0).3. 从而向量共线的充要条件有两种形式:a ∥b(b ≠0){1221.a λb x y x y =⇔= 三、拓展创新,应用提高例1 已知a =(2,1),b =(-3,4),求a +b ,a -b ,3a+4b的坐标.活动:本例是向量代数运算的简单应用,让学生根据向量的线性运算进行向量的和、差及数乘的坐标运算,再根据向量的线性运算律和向量的坐标概念得出结论.若已知表示向量的有向线段的始点和终点坐标,那么终点的坐标减去始点的坐标就是此向量的坐标,从而使得向量的坐标与点的坐标可以相互转化.可由学生自己完成.解:a +b =(2,1)+(-3,4)=(-1,5);a -b =(2,1)-(-3,4)=(5,-3);3a +4b =3(2,1)+4(-3,4)=(6,3)+(-12,16)=(-6,19).点评:本例是平面向量坐标运算的常规题,目的是熟悉平面向量的坐标运算公式. 例2 如图.已知ABC D 的三个顶点A 、B 、C 的坐标分别是(-2,1)、(-1,3)、(3,4),试求顶点D 的坐标.活动:本例的目的仍然是让学生熟悉平面向量的坐标运算.这里给出了两种解法:解法一利用“两个向量相等,则它们的坐标相等”,解题过程中应用了方程思想;解法二利用向量加法的平行四边形法则求得向量的坐标,进而得到点D 的坐标.解题过程中,关键是充分利用图形中各线段的位置关系(主要是平行关系),数形结合地思考,将顶点D 的坐标表示为已知点的坐标.解:方法一:如上图,设顶点D 的坐标为(x ,y ).∵=(-1-(-2),3-1)=(1,2),=(3-x ,4-y ).由=,得(1,2)=(3-x ,4-y).∴⎩⎨⎧-=-=.42,31x x ,⎩⎨⎧==.2,2y x ∴顶点D的坐标为(2,2).-- 方法二:如上图,由向量加法的平行四边形法则,可知 BC BA AD BA BD +=+= =(-2-(-1),1-3)+(3-(-1),4-3)=(3,-1),而OD =OB +BD =(-1,3)+(3,-1)=(2,2),∴顶点D 的坐标为(2,2).点评:本例的目的仍然是让学生熟悉平面向量的坐标运算.例3 已知a=(4,2),b =(6,y ),且a∥b,求y .解:∵a ∥b ,∴4y -2×6=0.∴y =3.例4 已知A (-1,-1),B (1,3),C (2,5),试判断A 、B 、C 三点之间的位置关系. 活动:教师引导学生利用向量的共线来判断.首先要探究三个点组合成两个向量,然后根据两个向量共线的充要条件来判断这两个向量是否共线从而来判断这三点是否共线.教师引导学生进一步理解并熟练地运用向量共线的坐标形式来判断向量之间的关系.让学生通过观察图象领悟先猜后证的思维方式.解:在平面直角坐标系中作出A 、B 、C 三点,观察图形,我们猜想A 、B 、C三点共线.下面给出证明.∵AB =(1-(-1),3-(-1))=(2,4),AC =(2-(-1),5-(-1))=(3,6),又2×6-3×4=0,∴AB ∥AC ,且直线AB 、直线A C有公共点A,∴A 、B、C三点共线.点评:本例的解答给出了判断三点共线的一种常用方法,其实质是从同一点出发的两个向量共线,则这两个向量的三个顶点共线.这是从平面几何中判断三点共线的方法移植过来的.例5 设点P 是线段P1P2上的一点,P 1、P 2的坐标分别是(x1,y 1)、(x 2,y 2).(1)当点P 是线段P1P2的中点时,求点P 的坐标;(2)当点P 是线段P 1P 2的一个三等分点时,求点P的坐标.活动:教师充分让学生思考,并提出这一结论可以推广吗?即当21PP P P =λ时,点P 的坐标是什么?师生共同讨论,一起探究,可按照求中点坐标的解题思路类比推广,有学生可能提出如下推理方法:由P P 1=λ2PP ,知(x -x 1,y -y1)=λ(x2-x,y2-y),-- 即⎪⎪⎩⎪⎪⎨⎧++=++=⇒⎪⎩⎪⎨⎧-=--=-.1,1)()(21212121λλλλλλy y y x x x y y y y x x x x 这就是线段的定比分点公式,教师要给予充分肯定,鼓励学生的这种积极探索,这是学习数学的重要品质.时间允许的话,可以探索λ的取值符号对P 点位置的影响,也可鼓励学生课后探索.解:(1)如图,由向量的线性运算可知OP =21 (OP 1+OP 2)=(.2,22121y y x x ++). 所以点P 的坐标是(.2,22121y y x x ++) (2)如图(1)、(2),当点P 是线段P 1P 2的一个三等分点时,有两种情况,即21PP P P =21或21PP P P =2. 如果21PP P P =21 ,如图(1),那么 OP ﻩ=1OP +P P 1=1OP +3121P P =1OP +31(2OP -1OP )=321OP +312OP =(32,322121y y x x ++). 即点P 的坐标是(32,322121y y x x ++).--同理,如果21PP P P =2图(2),那么点P的坐标是121222(,).33x x y y ++ 点评:本例实际上给出了线段的中点坐标公式和线段的三等分点坐标公式.四、小结1.先由学生回顾本节都学习了哪些数学知识:平面向量的和、差、数乘的坐标运算,两个向量共线的坐标表示.2.教师与学生一起总结本节学习的数学方法,定义法、归纳、整理、概括的思想,强调在今后的学习中,要善于培养自己不断探索、善于发现、勇于创新的科学态度和求实开拓的精神,为将来的发展打下良好基础.五、课堂作业1.已知a =(3,-1),b =(-1,2),则-3a -2b 等于( )A.(7,1) B.(-7,-1) C.(-7,1) D.(7,-1)2.已知A(1,1),B(-1,0),C (0,1),D(x,y ),若AB 和是相反向量,则D 点的坐标是( )A .(-2,0)B .(2,2)C .(2,0) D.(-2,-2)3.若点A (-1,-1),B (1,3),C (x ,5)共线,则使=λ的实数λ的值为( )A.1B.-2C.0 D .24.设a =(23,sin α),b=(cos α,31),且a∥b ,则α的值是( ) A .α=2k π+π4(k∈Z ) B.α=2k π-π4(k∈Z ) C.α=k π+π4(k ∈Z ) D .α=k π-π4(k ∈Z ) 5.向量=(k ,12),=(4,5),=(10,k),当k 为何值时,A 、B、C 三点共线?参考答案:1.B 2.B 3.D 4.C5.∵=(k ,12), =(4,5),=(10,k ), ∴AB =-=(4-k ,-7), =-=(6,k -5). ∵AB ∥BC ,∴(4-k )(k-5)+7×6=0.∴k 2-9k-22=0.解得k =11或k =-2.教案 B第1课时教学目标一、知识与技能1.理解平面向量基本定理,明确任何一个平面向量都可以用两个不共线的向量来表示,在具体问题中能够适当选取基底.2.了解向量的夹角与垂直的概念,以及向量正交分解的含义,理解用坐标表示向量的理论依据,知道向量的坐标的几何意义.二、过程与方法领会数形结合的数学思想,感受探索与创造的学习过程,培养逻辑推理能力,优化理性思维.三、情感、态度与价值观通过类比物理学中的相关问题,培养学生善于思考、勇于探索的科研精神,以及坚忍不拔的意志.教学重点平面向量基本定理和向量的坐标表示.教学难点平面向量的合成与分解.教学设想一、情境设置1.向量加法与减法有哪几种几何运算法则?2.怎样理解向量的数乘运算λa?(1)|λa|=|λ||a|;(2)λ>0时,λa与a方向相同;λ<0时,λa与a方向相反;λ=0时,λa=0.3.平面向量共线定理是什么?非零向量a与向量b 共线存在唯一实数λ,使b=λa.4.如图,光滑斜面上一个木块受到的重力为G,下滑力为F1,木块对斜面的压力为F,这三个力的方向分别如何?三者有何相互关系?2 Array5.在物理中,力是一个向量,力的合成就是向量的加法运算.力也可以分解,任何一个大小不为零的力,都可以分解成两个不同方向的分力之和.将这种力的分解拓展到向量中来,就会形成一个新的数学理论.二、新知探究----探究(一)平面向量基本定理思考1.给定平面内任意两个向量e 1,e2,如何求作向量3e 1+2e 2和e 1-2e 2?2.如图,设O A、OB 、OC 为三条共点射线,P 为OC 上一点,能否在OA 、OB 上分别找一点M、N,使四边形OMP N 为平行四边形?3.在下列两图中,向量OA 、OB 、OC 不共线,能否在直线OA、OB上分别找一点M 、N ,使OM +ON =?4.在上图中,设OA =e 1,OB = e 2,OC = a ,则向量OM 、ON 分别与e 1、e 2的关系如何?从而向量a与e 1、e 2的关系如何?OM =λ1e1,ON =λ2e2,a=λ1e 1+λ2e 2.5. 若上述向量e 1、e2、a 都为定向量,且e 1、e 2不共线,则实数λ1、λ2是否存在?是否唯一?6.若向量a 与e1或e2共线,a 还能用λ1e 1+λ2e2表示吗?7.根据上述分析,平面内任一向量a都可以由这个平面内两个不共线的向量e1、e 2表示出来,从而可形成一个定理.你能完整地描述这个定理的内容吗?如果e 1、e2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1、λ2,使a=λ1e 1+λ2e 2.8.上述定理称为平面向量基本定理,不共线向量e1、e 2叫做表示这一平面内所有向量的一组基底. 那么同一平面内可以作基底的向量有多少组?不同基底对应向量a的e 1 e 2OB CC--表示式是否相同?9. 两个向量和与差的坐标等于两个向量坐标的和与差;数乘向量的坐标等于该数与向量相应坐标的乘积.即:如果 a =(x1,y 1),b=(x 2,y 2),那么a±b =(x 1±x2,y 1±y 2),λa =(λx1,λy 1) a∥b 的充要条件是x 1y2=x 2y 1(需要证明)10. 任意给定平面中两个不平行的向量e 1、e2,那么平面中所有向量a 都可以用这两个向量表示.即a =xe 1+y e2.这里x 、y 是唯一确定的一对有序实数.{e 1,e2}叫做这一平面内所有向量的一组基底;x e 1+ye2叫做a 关于基底{e1,e 2}的分解式.探究(二)平面向量的正交分解及坐标表示思考1.不共线的向量有不同的方向,对于两个非零向量a和b ,作=a ,= b,如图.为了反映这两个向量的位置关系,称∠A OB 为向量a与b 的夹角.你认为向量的夹角的取值范围应如何约定为宜?[0°,180°]2.如果向量a与b 的夹角是90°,则称向量a 与b 垂直,记作a ⊥b . 互相垂直的两个向量能否作为平面内所有向量的一组基底? 3. 把一个向量分解为两个互相垂直的向量,叫做把向量正交分解.如图,向量i、j 是两个互相垂直的单位向量,向量a与i的夹角是30°,且|a |=4,以向量i 、j 为基底,向量a如何表示?a=+2j 4.在平面直角坐标系中,分别取与x 轴、y 轴方向相同的两个单位向量i 、j作为基底,对于平面内的一个向量a ,由平面向量基本定理知,有且只有一对实数x、y ,使得a =x i +y j .我们把有序数对(x ,y )叫做向量a 的坐标,记作a =(x,y).其中x 叫做a 在x 轴上的坐标,y 叫做a 在y 轴上的坐标,上式叫做向量的坐标表示.那么x、y 的几何意义如何? 5.相等向量的坐标必然相等,作向量=a,则= (x ,y ),此时点A 的坐标baAP--是什么?三、例题解析例1 已知直角坐标平面内的两个向量a =(1,3),b =(m,2m -3),使平面内的任意一个向量c 都可以唯一的表示成c =λa +μb ,则m 的取值范围是________.解:∵c可唯一表示成c =λa +μb ,∴a 与b不共线,即2m-3≠3m,∴m ≠-3.例2 如图,M是△ABC 内一点,且满足条件=++CM BM AM 320,延长CM 交AB 于N,令CM =a ,试用a 表示CN . 解:∵,,NM BN BM NM AN AM +=+=∴由CM BM AM 32++=0,得=++++CM NM BN NM AN 3)(2)(0.∴CM BN NM AN 323+++=0.又∵A 、N、B三点共线,C 、M 、N三点共线,由平行向量基本定理,设,,NM CM BN AN μλ==∴=+++NM BN NM BN μλ3230.∴(λ+2)BN +(3+3μ)NM = 0.由于BN 和NM 不共线,∴⎩⎨⎧=+=+,033,02μλ∴{2,1.λμ=-=- ∴.MN NM CM =-=∴CM MN CM CN 2=+==2a .例3 设e 1与e 2是两个不共线向量,a=3e 1+4e 2,b =-2e1+5e2,若实数λ、μ满足λa +μb =5e1-e 2,求λ、μ的值.解:由题设λa +μb =(3λe1+4λe 2)+(-2μe 1+5μe 2)=(3λ-2μ)e1+(4λ+5μ)e2. 又λa +μb =5e1-e 2.由平面向量基本定理,知 325,45 1.u u λλ-=⎧⎨+=-⎩解之,得λ=1,μ=-1.四、小结1.平面向量基本定理是建立在向量加法和数乘运算基础上的向量分解原理,同时又是向量坐标表示的理论依据,是一个承前起后的重要知识点.2.向量的夹角是反映两个向量相对位置关系的一个几何量,平行向量的夹角是0°或180°,垂直向量的夹角是90°.3.向量的坐标表示是一种向量与坐标的对应关系,它使得向量具有代数意义.将向量的起点平移到坐标原点,则平移后向量的终点坐标就是向量的坐标.第2课时教学目标一、知识与技能1.掌握平面向量的和、差和数乘向量的坐标运算,以及向量共线的坐标表示,会根据这些原理求向量的坐标.2.深化对向量概念的理解,提高对向量运算的认识,优化数形结合的思想意识,培养逻辑思维能力和思维素养.二、过程与方法1.通过体验直角坐标系中平面向量的坐标表示的实现过程,激发学生的探索精神,增强学生知识的应用意识;2.通过具体问题的分析解决,渗透数形结合的数学思想,提高学生的化归能力.三、情感与价值在数学中体会知识的形成过程,感受数与形的和谐统一.教学重点平面向量的坐标运算和向量共线的坐标表示.教学难点向量的坐标运算原理的构建.教学设想:一、情境设置1.平面向量的基本定理是什么?如果e1、e2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a,有且只有一对实数λ1、λ2,使a=λ1e1+λ2e2.2.用坐标表示向量的基本原理是什么?设i、j是与x轴、y轴同向的两个单位向量,若a=xi+y j,则a=(x,y).3.用坐标表示向量,使得向量具有代数特征,并且可以将向量的几何运算转化为坐标运算,为向量的运算拓展一条新的途径.我们需要研究的问题是,向量的和、差、数乘运算,如何转化为坐标运算,对于共线向量如何通过坐标来反映等.二、新知探究--。

湖北省恩施巴东县第一高级中学高中数学 2.3.1平面向量基本定理 2.3.2平面向量的正交分解及坐标表示教案 新

湖北省恩施巴东县第一高级中学高中数学 2.3.1平面向量基本定理 2.3.2平面向量的正交分解及坐标表示教案 新

2.3 平面向量的基本定理及其坐标表示2.3.1 平面向量基本定理 2.3.2 平面向量的正交分解及坐标表示一、教学分析平面向量基本定理既是本节的重点又是本节的难点.平面向量基本定理告诉我们同一平面内任一向量都可表示为两个不共线向量的线性组合,这样,如果将平面内向量的始点放在一起,那么由平面向量基本定理可知,平面内的任意一点都可以通过两个不共线的向量得到表示,也就是平面内的点可以由平面内的一个点及两个不共线的向量来表示.这是引进平面向量基本定理的一个原因.在不共线的两个向量中,垂直是一种重要的特殊情形,向量的正交分解是向量分解中常用且重要的一种分解,因为在平面上,如果选取互相垂直的向量作为基底时,会给问题的研究带来方便.联系平面向量基本定理和向量的正交分解,由点在直角坐标系中的表示得到启发,要在平面直角坐标系中表示一个向量,最方便的是分别取与x轴、y轴方向相同的两个单位向量i、j作为基底,这时,对于平面直角坐标系内的一个向量a,由平面向量基本定理可知,有且只有一对实数x、y,使得a=x i+y j.于是,平面内的任一向量a都可由x、y唯一确定,而有序数对(x,y)正好是向量a的终点的坐标,这样的“巧合”使平面直角坐标系内的向量与坐标建立起一一映射,从而实现向量的“量化”表示,使我们在使用向量工具时得以实现“有效能算”的思想.二、教学目标1、知识与技能:了解平面向量的基本定理及其意义;理解平面里的任何一个向量都可以用两个不共线的向量来表示,掌握平面向量正交分解及其坐标表示。

2、过程与方法:初步掌握应用向量解决实际问题的重要思想方法;能够在具体问题中适当地选取基底,使其他向量都能够用基底来表达。

3、情感态度与价值观:通过平面向量的正交分解及坐标表示,揭示图形(向量)与代数(坐标)之间的联系。

三、重点难点教学重点:平面向量基本定理、向量的夹角与垂直的定义、平面向量的正交分解、平面向量的坐标表示.教学难点:平面向量基本定理的运用.四、教学设想(一)导入新课思路 1.在物理学中我们知道,力是一个向量,力的合成就是向量的加法运算.而且力是可以分解的,任何一个大小不为零的力,都可以分解成两个不同方向的分力之和.将这种力的分解拓展到向量中来,会产生什么样的结论呢?又如一个放在斜面上的物体所受的竖直向下的重力G,可分解为使物体沿斜面下滑的力F1和使物体垂直于斜面且压紧斜面的力F2.我们知道飞机在起飞时若沿仰角α的方向起飞的速度为v,可分解为沿水平方向的速度vcosα和沿竖直方向的速度vsinα.从这两个实例可以看出,把一个向量分解到两个不同的方向,特别是作正交分解,即在两个互相垂直的方向上进行分解,是解决问题的一种十分重要的手段.如果e1、e2是同一平面内的两个不共线的向量,a是这一平面内的任一向量,那么a与e1、e2之间有什么关系呢?在不共线的两个向量中,垂直是一种重要的情形.把一个向量分解为两个互相垂直的向量,叫做把向量正交分解.在平面上,如果选取互相垂直的向量作为基底,是否会给我们带来更方便的研究呢?思路2.前面我们学习了向量的代数运算以及对应的几何意义,如果将平面内向量的始点放在一起,那么平面内的任意一个点或者任意一个向量是否都可以用这两个同起点的不共线向量来表示呢?这样就引进了平面向量基本定理.教师可以通过多对几个向量进行分解或者合成,在黑板上给出图象进行演示和讲解.如果条件允许,用多媒体教学,通过相应的课件来演示平面上任意向量的分解,对两个不共线的向量都乘以不同的系数后再进行合成将会有什么样的结论?(二)推进新课、新知探究、提出问题图1①给定平面内任意两个不共线的非零向量e 1、e 2,请你作出向量3e 1+2e 2、e 1-2e 2.平面内的任一向量是否都可以用形如λ1e 1+λ2e 2的向量表示呢?②如图1,设e 1、e 2是同一平面内两个不共线的向量,a 是这一平面内的任一向量,我们通过作图研究a 与e 1、e 2之间的关系.活动:如图1,在平面内任取一点O,作OA =e 1,OB =e 2,OC =a .过点C 作平行于直线OB的直线,与直线OA;过点C 作平行于直线OA 的直线,与直线OB 交于点N.由向量的线性运算性质可知,存在实数λ1、λ2,使得OM =λ1e 1,ON =λ2e 2.由于ON OM OC +=,所以a =λ1e 1+λ2e 2.也就是说,任一向量a 都可以表示成λ1e 1+λ2e 2的形式.由上述过程可以发现,平面内任一向量都可以由这个平面内两个不共线的向量e 1、e 2表示出来.当e 1、e 2确定后,任意一个向量都可以由这两个向量量化,这为我们研究问题带来极大的方便.由此可得:平面向量基本定理:如果e 1、e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1、λ2,使a =λ1e 1+λ2e 2.定理说明:(1)我们把不共线向量e 1、e 2叫做表示这一平面内所有向量的一组基底;(2)基底不唯一,关键是不共线;(3)由定理可将任一向量a 在给出基底e 1、e 2的条件下进行分解;(4)基底给定时,分解形式唯一.讨论结果:①可以.②a =λ1e 1+λ2e 2.提出问题①平面中的任意两个向量之间存在夹角吗?若存在,向量的夹角与直线的夹角一样吗?②对平面中的任意一个向量能否用两个互相垂直的向量来表示?活动:引导学生结合向量的定义和性质,思考平面中的任意两个向量之间的关系是什么样的,结合图形来总结规律.教师通过提问来了解学生总结的情况,对回答正确的学生进行表扬,对回答不全面的学生给予提示和鼓励.然后教师给出总结性的结论:不共线向量存在夹角,关于向量的夹角,我们规定:图2已知两个非零向量a 和b (如图2),作OA =a ,OB =b ,则∠AOB=θ(0°≤θ≤180°)叫做向量a 与b 的夹角.显然,当θ=0°时,a 与b 同向;当θ=180°时,a 与b 反向.因此,两非零向量的夹角在区间[0°,180°]内.如果a 与b 的夹角是90°,我们说a 与b 垂直,记作a ⊥b .由平面向量的基本定理,对平面上的任意向量a ,均可以分解为不共线的两个向量λ1a 1和λ2a 2,使a =λ1a 1+λ2a 2.在不共线的两个向量中,垂直是一种重要的情形.把一个向量分解为两个互相垂直的向量,叫做把向量正交分解.如上,重力G 沿互相垂直的两个方向分解就是正交分解,正交分解是向量分解中常见的一种情形.在平面上,如果选取互相垂直的向量作为基底时,会为我们研究问题带来方便.讨论结果:①存在夹角且两个非零向量的夹角在区间[0°,180°]内;向量与直线的夹角不一样.②可以.提出问题①我们知道,在平面直角坐标系中,每一个点都可用一对有序实数(即它的坐标)表示.对直角坐标平面内的每一个向量,如何表示呢?②在平面直角坐标系中,一个向量和坐标是否是一一对应的?图3活动:如图3,在平面直角坐标系中,分别取与x 轴、y 轴方向相同的两个单位向量i、j作为基底.对于平面内的一个向量a ,由平面向量基本定理可知,有且只有一对实数x 、y,使得a =x i+y j ①这样,平面内的任一向量a 都可由x 、y 唯一确定,我们把有序数对(x,y)叫做向量a 的坐标,记作a =(x,y) ②其中x 叫做a 在x 轴上的坐标,y 叫做a 在y 轴上的坐标,②式叫做向量的坐标表示.显然,i=(1,0),j =(0,1),0=(0,0).教师应引导学生特别注意以下几点:(1)向量a 与有序实数对(x,y)一一对应.(2)向量a 的坐标与表示该向量的有向线段的起点、终点的具体位置没有关系,只与其相对位置有关系.如图所示,11B A 是表示a 的有向线段,A 1、B 1的坐标分别为(x 1,y 1)、(x 2,y 2),则向量a 的坐标为x=x 2-x 1,y=y 2-y 1,即a 的坐标为(x 2-x 1,y 2-y 1).(3)为简化处理问题的过程,把坐标原点作为表示向量a 的有向线段的起点,这时向量a的坐标就由表示向量a 的有向线段的终点唯一确定了,即点A 的坐标就是向量a 的坐标,流程表示如下:讨论结果:①平面内的任一向量a 都可由x 、y 唯一确定,我们把有序数对(x,y)叫做向量a 的坐标,记作a =(x,y).②是一一对应的.(三)应用示例思路1例1 如图4,ABCD,AB =a ,AD =b ,H 、M 是AD 、DC 之中点,F 使BF=31BC,以a ,b 为基底分解向量HF AM 和.图4活动:教师引导学生利用平面向量基本定理进行分解,让学生自己动手、动脑.教师可以让学生到黑板上板书步骤,并对书写认真且正确的同学提出表扬,对不能写出完整解题过程的同学给予提示和鼓励.解:由H 、M 、F 所在位置,有+=+=AD DM AD AM a b AB AD DC 212121+=+=AB 21=b +21a . AD AD AB AD BC AH BF AB AH AF HF 21312131-+=-+-+=-= =a 61-b . 点评:以a 、b 为基底分解向量AM 与HF ,实为用a 与b 表示向量AM 与HF .变式训练图5已知向量e 1、e 2(如图5),求作向量-2.5e 1+3e 2.作法:(1)如图,任取一点O,作 OA =-2.5e 1,OB =3e 2. (2)作OACB.故OC OC 就是求作的向量.图6例2 如图6,分别用基底i、j 表示向量a 、b 、c 、d ,并求出它们的坐标.活动:本例要求用基底i 、j 表示a 、b 、c 、d ,其关键是把a 、b 、c 、d 表示为基底i 、j的线性组合.一种方法是把a 正交分解,看a 在x 轴、y 轴上的分向量的大小.把向量a 用i 、j 表示出来,进而得到向量a 的坐标.另一种方法是把向量a 移到坐标原点,则向量a 终点的坐标就是向量a 的坐标.同样的方法,可以得到向量b 、c 、d 的坐标.另外,本例还可以通过四个向量之间位置的几何关系:a 与b 关于y 轴对称,a 与c 关于坐标原点中心对称,a 与d 关于x 轴对称等.由一个向量的坐标推导出其他三个向量的坐标.解:由图可知,a =1AA +2AA =x i +y j ,∴a =(2,3).同理,b =-2i +3j =(-2,3);c =-2i -3j =(-2,-3);d =2i -3j =(2,-3).点评:本例还可以得到启示,要充分运用图形之间的几何关系,求向量的坐标.变式训练i ,j 是两个不共线的向量,已知AB =3i +2j ,CB =i +λj ,CD =-2i +j ,若A 、B 、D 三点共线,试求实数λ的值.解:∵BD =CD -CB =(-2i +j )-(i +λj )=-3i +(1-λ)j ,又∵A、B 、D 三点共线,∴向量AB 与BD 共线.因此存在实数υ,使得AB =υBD ,即3i +2j =υ[-3i +(1-λ)j ]=-3υi +υ(1-λ)j .∵i 与j 是两个不共线的向量,故⎩⎨⎧=-=-,2)1(,33λv v∴⎩⎨⎧=-=.3,1λv ∴当A 、B 、D 三点共线时,λ=3.例3 下面三种说法:①一个平面内只有一对不共线向量可作为表示该平面的基底;②一个平面内有无数多对不共线向量可作为该平面所有向量的基底;③零向量不可以作为基底中的向量,其中正确的说法是( )A.①②B.②③C.①③D.①②③活动:这是训练学生对平面向量基本定理的正确理解,教师引导学生认真地分析和理解平面向量基本定理的真正内涵.让学生清楚在平面中对于基底的选取是不唯一的,只要是同一平面内的两个不共线的向量都可以作为基底.解:平面内向量的基底是不唯一的.在同一平面内任何一组不共线的向量都可作为平面内所有向量的一组基底;而零向量可看成与任何向量平行,故零向量不可作为基底中的向量.综上所述,②③正确.答案:B点评:本题主要考查的是学生对平面向量定理的理解.思路2图7例1 如图7,M 是△A BC 内一点,且满足条件=++CM BM AM 320,延长CM 交AB 于N,令CM =a ,试用a 表示CN .活动:平面向量基本定理是平面向量的重要定理,它是解决平面向量计算问题的重要工具.由平面向量基本定理,可得到下面两个推论:推论1:e 1与e 2是同一平面内的两个不共线向量,若存在实数λ1、λ2,使得λ1e 1+λ2e 2=0,则λ1=λ2=0.推论2:e 1与e 2是同一平面内的两个不共线向量,若存在实数a 1,a 2,b 1,b 2,使得a =a 1e 1+a 2e 2=b 1e 1+b 2e 2,则⎪⎩⎪⎨⎧==.,2211b a b a 解:∵,NM +=+= ∴由CM BM AM 32++=0,得=++++3)(2)(0. ∴NM 323+++=0.又∵A、N 、B 三点共线,C 、M 、N 三点共线,由平行向量基本定理,设,,μλ==∴=+++NM BN NM BN μλ3230.∴(λ+2)BN +(3+3μ)NM =0.由于BN 和NM 不共线, ∴⎩⎨⎧=+=+,033,02μλ∴⎩⎨⎧-=-=12μλ ∴.MN NM CM =-=∴CM MN CM CN 2=+==2a .点评:这里选取NM BN ,作为基底,运用化归思想,把问题归结为λ1e 1+λ2e 2=0的形式来解决.变式训练 设e 1与e 2是两个不共线向量,a =3e 1+4e 2,b =-2e 1+5e 2,若实数λ、μ满足λa +μb =5e 1-e 2,求λ、μ的值.解:由题设λa +μb =(3λe 1+4λe 2)+(-2μe 1+5μe 2)=(3λ-2μ)e 1+(4λ+5μ)e 2.又λa +μb =5e 1-e 2.由平面向量基本定理,知⎩⎨⎧-=+=-.154,523λλλλ 解之,得λ=1,μ=-1.图8例2 如图8,△A BC 中,AD 为△A BC 边上的中线且AE=2EC,求GEBG GD AG 及的值. 活动:教师让学生先仔细分析题意,以明了本题的真正用意,怎样把平面向量基本定理与三角形中的边相联系?利用化归思想进行转化完后,然后结合向量的相等进行求解比值.解:设μλ==GEBG GD AG , ∵=,即-=-,∴AD =21(AB +). 又∵=λ=λ(-),∴=λλ+1=)1(2λλ++)1(2λλ+.① 又∵BG =μGE ,即AG -=μ(-AG ), ∴(1+μ)=+μAG AE ,=μμμ+++111 又=32,∴=AB μ+11+)1(32μμ+. ② 比较①②,∵、不共线, ∴⎪⎪⎩⎪⎪⎨⎧+=++=+.)1(32)1(2,11)1(2μμλλμλλ解之,得⎪⎩⎪⎨⎧==23,4μλ∴.23,4==GE BG GD AG 点评:本例中,构造向量在同一基底下的两种不同表达形式,利用相同基向量的系数对应相等得到一实数方程组,从而进一步求得结果.变式训练过△O AB 的重心G 的直线与边OA 、OB 分别交于P 、Q,设OP =h OA ,k =,试证:311=+kh 解:设=a ,=b ,OG 交AB 于D,则=21(+)=21(a +b )(图略). ∴OG =32OD =31(a +b ),-==31(a +b )-k b =31a +331k -b , -==h a -k b .∵P、G 、Q 三点共线,∴λ=. ∴31a +331k -b =λh a -λk b .∴⎪⎪⎩⎪⎪⎨⎧-=-=.331,31k k h λλ 两式相除,得.3311hk h k k h k =+⇒-=-, ∴kh 11+=3.(四)知能训练1.已知G 为△A BC 的重心,设=a ,=b ,试用a 、b 表示向量.2.已知向量a =(x+3,x 2-3x-4)与AB 相等,其中A(1,2),B(3,2),求x.图9 解答: 1.如图9,AG =32AD , 而=+=+=BC AB BD AB AD 21a +21(b -a )=21a +21b , ∴3232==AD AG (21a +21b )=31a +31b . 点评:利用向量加法、减法及数乘的几何意义.2.∵A(1,2),B(3,2),∴AB =(2,0).∵a=AB ,∴(x+3,x 2-3x-4)=(2,0). ∴⎩⎨⎧=--=+043,232x x x 解得⎩⎨⎧=-=-=.41,1x x x 或∴x=-1.点评:先将向量AB 用坐标表示出来,然后利用两向量相等的条件就可使问题得到解决.(五)课堂小结1.先由学生回顾本节学习的数学知识:平面向量的基本定理,向量的夹角与垂直的定义,平面向量的正交分解,平面向量的坐标表示.2.教师与学生一起总结本节学习的数学方法,如待定系数法,定义法,归纳与类比,数形结合,几何作图.(六)作业。

平面向量基本定理(教学设计)

平面向量基本定理(教学设计)

《平面向量基本定理(第一课时)》教学设计一、教材分析:本节内容是人教A版普通高中课程标准实验教科书必修4第二章第3节“平面向量基本定理及坐标表示”的第一课时内容,本节共2个课时。

平面向量基本定理是本节的重点也是本节的难点。

平面向量基本定理告诉我们同一平面内任一向量都可以表示为两个不共线向量的线性组合,由于高中数学设计的向量是自由向量,这样,如果将平面内向量的始点放在一起,那么由平面向量基本定理可知,平面内的任何一点都可以通过两个不共线的向量得到表示,也就是平面内的点可以由平面内的一个点和两个不共线的向量得到表示,这是引进平面向量基本定理一个原因(学生可以不讲)。

实际上,本节课在本章中起到一个“承上启下”的作用,一方面要在平面向量线性运算的基础上归纳定理,另一方面,作为平面向量基本定理的特殊情况,研究平面向量的正交分解及坐标表示,是建立向量坐标的一个逻辑基础,它揭示了平面向量的基本关系和基本结构,是学生后续学习向量坐标表示的基础。

二、学情分析:知识方面:学生学习了第一节“平面向量的实际背景及基本概念”和第二节“平面向量的线性运算”,已经有了一定的平面向量基础知识,学力和能力方面:授课对象为省级示范学校高一学生,有比较扎实的数学基本知识,其数学基本素养和学习能力应该在普通高中学生中处于中上水平。

三、教师教学的出发点:根据课程标准的要求备课,备学生,把课程标准的要求溶解在课堂中,让学生在潜移默化中提高数学素养。

本节课的教学设计主要是针对学习情况为中等的学生(占大多数),第一、注重知识的生成,通过创设问题情境,引导学生自主学习,主动探究发现新知(平面向量基本定理);第二、注重数学思维的培养,通过问题的两个方面,即平面向量合成和分解,培养学生的观察能力,启发学生的逆向思考能力,抽象概括能力,引导学生进行适当的合情推理(定理的证明);第三、注重对知识的理解、消化、应用,主要通过典型的问题,掌握对新知的应用,可进行适当的拓展,发散思维;第四:激发学生的学习兴趣,在3个方向:新知识的维度拓展的兴趣激发,解决几何问题的兴趣激发,后续学习的兴趣激发。

人教课标版高中数学必修四《平面向量基本定理及坐标表示》教案(1)-新版

人教课标版高中数学必修四《平面向量基本定理及坐标表示》教案(1)-新版
(1)平面向量基本定理:如果 , 是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a,有且只有一对实数 , ,使a= .不共线的向量 , 叫做表示这一平面内所有向量的一组基底.
(2)向量夹角:已知两个非零向量a和b,作 =a, =b,则∠AOB= 叫作向量a与b的夹角.向量夹角的取值范围是 .当a与b同向时,夹角 = ;当a与b反向时,夹角 = .如果向量a与b的夹角是 ,我们说a与b垂直记作a⊥b.
【知识点】向量夹角、向量加减的几何意义.
【解题过程】如图,
作 , ,且∠AOB=60°,以OA、OB为邻边作平行四边形OACB,则 , , ,因为 ,所以△OAB为正三角形,所以∠OAB=60°=∠ABC,即a-b与a的夹角为60°;因为 ,所以平行四边形OACB为菱形,所以OC⊥AB,∠COA= ,即a+b与a的夹角为30°.
【解题过程】过C作 与 的平行线与它们的延长线相交,得平行四边形.
由∠BOC=90°,∠AOC=30°, , 可得平行四边形的边长为2和4,所以 =2+4=6.
【思路点拨】过C作 与 的平行线与它们的延长线相交,得平行四边形,然后将 用向量 与 表示即可.
【答案】6
●活动⑤强化提升,灵活应用
例3如图,在△ABC中,点M是AB的中点,且 ,BN与CM相较于点E,设 , ,试用基底 , 表示向量 .
二、教学设计
(一)课前设计
1.预习任务:阅读教材第93页至第95页,填空:
(1)平面向量基本定理:如果 , 是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a,有且只有一对实数 , ,使a= .我们把不共线的向量 , 叫做表示这一平面内所有向量的一组基底.
(2)向量夹角:已知两个非零向量a和b,作 =a, =b,则∠AOB= 叫作向量a与b的夹角.向量夹角的取值范围是 .当a与b同向时,夹角 = ;当a与b反向时,夹角 = .如果向量a与b的夹角是 ,我们说a与b垂直记作a⊥b.

平面向量基本定理及其坐标表示教案

平面向量基本定理及其坐标表示教案

平面向量基本定理及其坐标表示教案一、教学目标1. 让学生理解平面向量的基本定理,掌握平面向量的坐标表示方法。

2. 培养学生运用向量知识解决实际问题的能力。

3. 提高学生的逻辑思维能力和团队协作能力。

二、教学内容1. 平面向量的基本定理(1)定理:设有两个向量a 和b,如果存在实数x 和y,使得a = xb + yb,则称向量a 可以由向量b 和向量b 的线性组合表示。

(2)推论:设有两个向量a 和b,如果向量a 可以由向量b 和向量b 的线性组合表示,存在唯一实数对(x, y),使得a = xb + yb。

2. 平面向量的坐标表示(1)定义:在二维空间中,以原点O(0,0) 为起点,设向量a 的终点为点A(x, y),则向量a 的坐标表示为(x, y)。

(2)性质:设向量a 的坐标表示为(x, y),向量b 的坐标表示为(m, n),则向量a + b 的坐标表示为(x+m, y+n),向量a b 的坐标表示为(x-m, y-n)。

(3)运算规律:设向量a 和向量b 的坐标表示分别为(x1, y1) 和(x2, y2),则向量a + b 的坐标表示为(x1+x2, y1+y2),向量a b 的坐标表示为(x1-x2, y1-y2)。

三、教学方法1. 讲授法:讲解平面向量的基本定理及其坐标表示的定义、性质和运算规律。

2. 案例分析法:分析实际问题,引导学生运用向量知识解决问题。

3. 小组讨论法:分组讨论,培养学生的团队协作能力和逻辑思维能力。

四、教学步骤1. 导入新课:回顾平面向量的概念,引导学生思考如何表示平面向量。

2. 讲解基本定理:阐述平面向量的基本定理,并通过图形示例帮助学生理解。

3. 讲解坐标表示:介绍平面向量的坐标表示方法,讲解坐标表示的定义、性质和运算规律。

4. 案例分析:选取实际问题,引导学生运用向量知识解决问题。

5. 小组讨论:分组讨论,让学生运用所学知识分析问题,培养团队协作能力和逻辑思维能力。

平面向量基本定理及其坐标表示教案

平面向量基本定理及其坐标表示教案

平面向量基本定理及其坐标表示教案教学目标:1. 理解平面向量的基本定理;2. 学会将平面向量用坐标表示;3. 掌握平面向量的坐标运算。

教学内容:1. 平面向量的基本定理;2. 向量的坐标表示;3. 向量的坐标运算。

教学步骤:一、导入(5分钟)1. 通过复习预备知识,引导学生回顾向量的定义及基本性质。

2. 提问:我们已经学习了向量的哪些运算?这些运算有什么应用?二、平面向量的基本定理(10分钟)1. 介绍平面向量的基本定理的内容。

2. 通过示例,解释平面向量的基本定理的应用。

3. 引导学生通过图形直观地理解平面向量的基本定理。

三、向量的坐标表示(10分钟)1. 介绍向量的坐标表示方法。

2. 通过示例,解释如何用坐标表示一个向量。

3. 引导学生通过坐标系直观地理解向量的坐标表示。

四、向量的坐标运算(10分钟)1. 介绍向量的坐标运算规则。

2. 通过示例,解释如何进行向量的坐标运算。

3. 引导学生通过坐标系直观地理解向量的坐标运算。

五、巩固练习(10分钟)1. 提供一些有关平面向量的基本定理及其坐标表示的练习题。

2. 引导学生独立完成练习题,巩固所学知识。

3. 对学生的练习结果进行点评和指导。

教学评价:1. 通过课堂讲解和示例,评价学生对平面向量的基本定理及其坐标表示的理解程度;2. 通过练习题,评价学生对平面向量的坐标运算的掌握程度;3. 通过学生的提问和参与程度,评价学生的学习兴趣和积极性。

教学资源:1. 教学PPT或黑板;2. 练习题。

教学建议:1. 在讲解平面向量的基本定理时,可以通过图形和实际例子来说明定理的意义和应用;2. 在讲解向量的坐标表示时,可以借助坐标系,直观地展示向量的坐标表示方法;3. 在讲解向量的坐标运算时,可以通过示例和练习题,让学生熟练掌握运算规则;4. 在巩固练习环节,可以提供不同难度的练习题,以满足不同学生的学习需求;5. 在教学过程中,鼓励学生提问和参与讨论,以提高学生的学习兴趣和积极性。

高中数学 2.3.1 平面向量基本定理教案 必修4

高中数学 2.3.1 平面向量基本定理教案 必修4

2.3.1 平面向量基本定理(教师用书独具)●三维目标1.知识与技能(1)掌握平面向量的基本定理,能用两个不共线向量表示一个向量或一个向量分解为两个向量.(2)能用平面向量的基本定理解决一些简单的几何问题.2.过程与方法由概念的形成过程和在解题中的作用,进一步体验数形结合思想的指导作用.3.情感、态度与价值观(1)通过学习平面向量基本定理和向量的坐标表示,实现几何与代数的完美结合,使学生明白知识与知识、事物之间的相互联系和相互转化.(2)通过例题及练习,体会向量语言及运算在解决数学问题和实际问题中的工具作用.●重点难点重点:平面向量基本定理及其意义.难点:平面向量基本定理的应用.(教师用书独具)●教学建议1.关于平面向量基本定理教学教学时,建议教师从学生熟知的力学知识出发,结合教材实例中有关力及速度的合成与分解,先让学生从感性上认识向量可分解性,在此基础上结合向量的平行四边形法则由学生自主总结出平面向量基本定理的内容,教师就定理的有关注意事项做适当补充,不必要求学生会证明该定理.2.关于应用平面向量基本定理的教学教学时,建议教师结合实例,让学生明确平面向量基本定理在解决实际问题中的作用.通过实例进一步理解平面向量基本定理的实质,为下一节坐标系的建立奠定基础.●教学流程创设问题情境,引入平面向量基本定理,并引导学生初步理解定理及其作用.⇒引导学生结合向量共线等知识,理解基底概念及向量的正交分解的概念.⇒通过例1及其变式训练,使学生进一步正确理解平面向量基本定理.⇒通过例2及其变式训练,使学生掌握用基底表示向量的方法.⇒通过例3及其变式训练,使学生掌握利用平面向量基本定理求参数的值及证明三点共线等问题的方法.⇒归纳整理,进行课堂小结,整体认识本节课所学知识.⇒完成当堂双基达标,巩固所学知识并进行反馈矫正.课标解读1.了解平面向量基本定理及其意义.(难点)2.了解基底的含义.3.会用任意一组基底表示指定的向量.4.能应用平面向量基本定理解决一些实际问题.(重点)平面向量基本定理【问题导思】已知▱ABCD 的对角线交点为O ,AB →=a ,AD →=b ,如何用a ,b 表示AO →? 【提示】 AO →=12AC →=12(AB →+AD →)=12(a +b)=12a +12b.(1)定理:如果e1,e2是同一平面内两个不共线的向量,那么对于这一平面内的任一向量a ,有且只有一对实数λ1,λ2,使a =λ1e1+λ2e2.(2)基底:不共线的向量e1,e2叫做表示这一平面内所有向量的一组基底.平面向量的正交分解【问题导思】一个放在斜面上的物体所受的竖直向下的重力G ,可分解为使物体沿斜面下滑的力F1和使物体垂直作用于斜面的力F2.类比力的分解,平面内任一向量能否用互相垂直的两向量表示? 【提示】 能,互相垂直的两向量可以作为一组基底.一个平面向量用一组基底e1,e2表示成a =λ1e1+λ2e2的形式,我们称它为向量a 的分解.当e1,e2所在直线互相垂直时,这种分解也称为向量a 的正交分解.平面向量基本定理的理解如果e1,e2是平面α内所有向量的一组基底,λ,μ是实数,判断下列说法是否正确,并说明理由.(1)若λ,μ满足λe1+μe2=0,则λ=μ=0;(2)对于平面α内任意一个向量a ,使得a =λe1+λe2成立的实数λ,μ有无数对; (3)线性组合λe1+μe2可以表示平面α内的所有向量;(4)当λ,μ取不同的值时,向量λe1+μe2可能表示同一向量. 【思路探究】 运用基底概念与平面向量基本定理进行判断. 【自主解答】 (1)正确.若λ≠0,则e1=-μλe2,从而向量e1,e2共线,这与e1,e2不共线相矛盾,同理可说明μ=0.(2)不正确.由平面向量基本定理可知λ,μ惟一确定. (3)正确.平面α内的任一向量a 可表示成λe1+μe2的形式,反之也成立.(4)不正确.结合向量加法的平行四边形法则易知,只有当λ和μ确定后,其和向量λe1+μe2才惟一确定.1.对于平面内任何向量都可以用两个不共线的向量来表示;反之,平面内的任一向量也可以分解为两个不共线的向量的和的形式.2.向量的基底是指平面内不共线的向量,事实上若e1,e2是基底,则必有e1≠0,e2≠0,且e1与e2不共线,如0与e1,e1与2e1,e1+e2与2(e1+e2)等均不能构成基底.下列两个命题(1)若a e1+b e2=c e1+d e2(a ,b ,c ,d ∈R),则a =c ,b =d. (2)若e1和e2是表示平面内所有向量的一组基底,那么该平面内的任一向量可以用e1+e2,e1-e2表示出来.其中正确的是________.【解析】 (1)错,当e1与e2共线时,结论不一定成立. (2)正确,假设e1+e2与e1-e2共线,则存在实数λ,使e1+e2=λ(e1-e2),即(1-λ)e1=-(1+λ)e2.因为1-λ与1+λ不同时为0,所以e1与e2共线,这与e1与e2不共线矛盾.所以e1+e2与e1-e2不共线,因而它们可以作为一组基底,该平面内的任一向量可以用e1+e2,e1-e2表示出来. 【答案】 (2)用基底表示向量图2-3-1如图2-3-1所示,以向量OA →=a ,OB →=b 为邻边作▱AOBD ,又BM →=13BC →,CN →=13CD →,用a ,b 表示OM →,ON →,MN →.【思路探究】 OM →=OB →+BM →,ON →=OC →+CN →,MN →=ON →-OM →,再将各量转化为OA →,OB →. 【自主解答】 BA →=OA →-OB →=a -b. ∴OM →=OB →+BM →=OB →+13BC →=OB →+16BA →=16a +56b.又OD →=a +b ,ON →=OC →+CN →=12OD →+16OD →=23OD →=23a +23b , ∴MN →=ON →-OM →=23a +23b -16a -56b =12a -16b. 1.若题目中已给出了基底,求解此类问题时,常利用向量加法三角形法则或平行四边形法则,结合数乘运算,找到所求向量与基底的关系.2.若题目中没有给出基底,常结合已知条件先寻找一组从同一点出发的两不共线向量作为基底,而后用上述方法求解. 图2-3-2(2013·南通高一检测)如图2-3-2,梯形ABCD 中,AB ∥CD ,且AB =2CD ,M ,N 分别是DC 和AB 的中点,若AB →=a ,AD →=b ,试用a ,b 表示DC →,BC →,MN →.【解】 如图所示,连结CN ,则四边形ANCD 是平行四边形,即DC →=AN →=12AB →=12a ,BC →=NC →-NB →=AD →-12AB →=b -12a ,MN →=CN →-CM →=-AD →-12CD →=-AD →-12(-12AB →)=14a -b.平面向量基本定理的应用图2-3-3如图2-3-3,已知在△OAB 中,延长BA 到C ,使AB =AC ,D 是将OB →分成2∶1的一个分点(靠近B 点),DC 和OA 交于点E ,设OA →=a ,OB →=b , (1)用a ,b 表示向量OC →,DC →; (2)若OE →=λOA →,求实数λ的值.【思路探究】 (1)由题意可知A 是BC 的中点,利用平行四边形法则求OC →,利用三角形法则求DC →;(2)利用C ,D ,E 三点共线,结合共线向量定理求解. 【自主解答】 (1)∵A 为BC 中点, ∴OA →=12(OB →+OC →),OC →=2a -b ;DC →=OC →-OD →=OC →-23OB →=2a -b -23b =2a -53b.(2)设OE →=λOA →,则CE →=OE →-OC →=λOA →-OC →=λa-2a +b =(λ-2)a +b. ∵CE →与CD →共线,∴存在实数m ,使得CE →=mCD →,即(λ-2)a +b =m(-2a +53b),即(λ+2m -2)a +(1-53m)b=0.∵a ,b 不共线且为非零向量, ∴⎩⎪⎨⎪⎧λ+2m -2=0,1-53m =0,解得λ=45.1.此类问题要结合图形条件与所求证问题,寻求解题思路.本题充分利用三点共线,即共线向量定理,共面向量定理,建立方程组求解,同时要恰当选择基底简化运算.2.应用平面向量基本定理来证明平面几何问题的一般方法是:先选取一组基底,再根据几何图形的特征应用向量的有关知识解题. 图2-3-4如图2-3-4,已知▱ABCD 中M 为AB 的中点,N 在BD 上,3BN =BD.求证:M ,N ,C 三点共线.【证明】 ∵M 为AB 的中点,N 在BD 上,3BN =BD , ∴MB →=12AB →,BN →=13BD →,∴MN →=MB →+BN →=12AB →+13BD →=12AB →+13(AD →-AB →)=16AB →+13AD →,又MC →=MB →+BC →=12AB →+AD →=3(16AB →+13AD →)=3MN →,∴MN →∥MC →,又M 为公共点, ∴M ,N ,C 三点共线.用待定系数法确定向量的表示 图2-3-5(14分)如图2-3-5,在△ABC 中,点M 是BC 的中点,点N 在AC 上,且AN =2NC ,AM 与BN 相交于点P ,求AP ∶PM 与BP ∶PN 的值. 【思路点拨】 可先从已知图形中选出两个简单向量作为一组基底建立起数学模型,由图形特征可知选择BM →与CN →作为基向量较好. 【规范解答】 设BM →=e1,CN →=e2,则AM →=AC →+CM →=-3e2-e1,BN →=BC →+CN →=2e1+e2. 4分 ∵A ,P ,M 和B ,P ,N 分别共线,∴存在实数λ,μ使得AP →=λAM →=-λe1-3λe2, BP →=μBN →=2μe1+μe2. 故BA →=BP →+PA →=BP →-AP →=(λ+2μ)e1+(3λ+μ)e2. 8分 而BA →=BC →+CA →=2e1+3e2, 由平面向量基本定理,得⎩⎪⎨⎪⎧λ+2μ=2,3λ+μ=3,解得⎩⎪⎨⎪⎧λ=45,μ=35.∴AP →=45AM →,BP →=35BN →.即AP ∶PM =4∶1,BP ∶PN =3∶2. 14分基底建模是向量法解决几何图形有关证明和求解的重要方法,关键在于选取的基底是否合适,要注意与已知条件的联系.可用方程思想,利用待定系数法确定向量. 1.准确理解平面向量基本定理(1)平面向量基本定理的实质是向量的分解,即平面内任一向量都可以沿两个不共线的方向分解成两个向量和的形式,且分解是惟一的.(2)平面向量基本定理中,实数λ1、λ2的惟一性是相对于基底e1,e2而言的,平面内任意两个不共线的向量都可以作为基底,一旦选定一组基底,则给定向量沿着基底的分解是惟一的.2.对基底的理解 (1)基底的特征基底具备两个主要特征:①基底是两个不共线向量;②基底的选择是不惟一的.平面内两向量不共线是这两个向量可以作为这个平面内所有向量的一组基底的条件. (2)关于基底的一个结论设e1,e2是平面内的一组基底,当λ1e1+λ2e2=0时,恒有λ1=λ2=0. (3)零向量与任意向量共线,故不能作为基底.1.下列关于基底的说法正确的是________.(填序号) ①平面内不共线的任意两个向量都可以作为一组基底; ②基底中的向量可以是零向量;③平面内的基底一旦确定,该平面内的向量关于基底的线性分解形式也是惟一确定的. 【解析】 作为基底的两个向量不共线,故基底中的向量不能是零向量,②不正确,①③正确.【答案】 ①③2.已知向量e1,e2不共线,实数x ,y 满足(3x -4y)e1+(2x -3y)e2=6e1+3e2,则x -y 的值为________.【解析】 ∵(3x -4y)e1+(2x -3y)e2=6e1+3e2,且e1,e2不共线,∴⎩⎪⎨⎪⎧3x -4y =6,2x -3y =3,解得⎩⎪⎨⎪⎧x =6,y =3.∴x -y =6-3=3.【答案】 3 图2-3-63.在如图2-3-6所示的平行四边形ABCD 中,AB →=a ,AD →=b ,AN =3NC ,M 为BC 的中点,则MN →=________(用a ,b 表示).【解析】 MN →=MC →+CN →=12AD →-14AC →=12b -14(a +b)=-14a +14b.【答案】 -14a +14b4.在△ABC 中,已知D 是AB 边上一点,若AD →=2DB →,CD →=13CA →+λCB →,求λ的值.【解】 在△ABC 中,已知D 是AB 边上一点, 若AD →=2DB →,CD →=13CA →+λCB →,则CD →=CA →+AD →=CA →+23AB →=CA →+23(CB →-CA →)=13CA →+23CB →,∴λ=23.一、填空题1.若O 是▱ABCD 的两对角线的交点,下列向量组中可作为这个平行四边形所在平面上表示其他所有向量的基底的是________. ①AD →与AB →;②DA →与BC →;③CA →与DC →;④OD →与OB →.【解析】 只要是平面上不共线的两个向量都可作为基底,AD →与AB →是有公共点的不共线向量,CA →与DC →也是有公共点的不共线向量.【答案】 ①③ 2.已知e1,e2是平面所有向量的一组基底,那么下列一组向量不能作为基底的是________. ①e1和e1+e2;②e1-2e2和e2-2e1;③e1-2e2和4e2-2e1;④e1+e2和e1-e2. 【解析】 因为4e1-2e1=-2(e1-2e2), 所以e1-2e2与4e2-2e1共线. 【答案】 ③ 图2-3-73.如图2-3-7,平行四边形ABCD 中,AB →=a ,AD →=b ,M 是DC 的中点,以a ,b 为基底表示向量AM →=________.【解析】 AM →=AD →+DM →=AD →+12DC →=AD →+12AB →=b +12a.【答案】 b +12a4.设e1,e2是不共线向量,e1+2e2与me1+ne2共线,则nm =________.【解析】 由e1+2e2=λ(me1+ne2),得mλ=1且nλ=2, ∴nm =2. 【答案】 25.设一直线上三点A ,B ,P 满足AP →=mPB →(m≠-1),O 是直线所在平面内一点,则OP →用OA →,OB →表示为________.【解析】 由AP →=mPB →得OP →-OA →=m(OB →-OP →), ∴OP →+mOP →=OA →+mOB →,∴OP →=OA →+mOB →1+m .【答案】 OP →=OA →+mOB→1+m6.如图2-3-8,在△ABC 中,D 是BC 的中点,E 是AD 的中点,若CE →=rAB →+sAC →,则r +s =________. 图2-3-8【解析】 由E 是AD 的中点,则CE →=12(CA →+CD →)=-12AC →+14CB →=-12AC →+14(AB →-AC →)=14AB →-34AC →,则r +s =-12.【答案】 -127.已知D ,E ,F 分别是△ABC 的边BC ,CA ,AB 上的点,且BD →=DC →,AE →=2EC →,AF →=2FB →,则2AD →+3BF →+3CE →=________.【解析】 由BD →=DC →,易知AD →=12(AB →+AC →),所以2AD →=AB →+AC →,再由AE →=2EC →,AF →=2FB →,可知3BF →=BA →,3CE →=CA →,所以2AD →+3BF →+3CE →=0. 【答案】 08.在平行四边形ABCD 中,E 和F 分别是边CD 和BC 的中点,若AC →=λAE →+μAF →,其中λ,μ∈R ,则λ+μ=________.【解析】 设BC →=b ,BA →=a ,则AF →=12b -a ,AE →=b -12a ,AC →=b -a ,代入AC →=λAE →+μAF →,得b -a =(λ+μ2)b -(λ2+μ)a,即⎩⎪⎨⎪⎧1=λ2+μ,1=λ+μ2,解得λ=μ=23,∴λ+μ=43.【答案】 43二、解答题9.(2013·保定高一检测)设e1,e2为两个不共线的向量,a =-e1+3e2,b =4e1+2e2,c =-3e1+12e2,试用b ,c 为基底表示向量a. 【解】 设a =λ1b+λ2c,λ1,λ2∈R 则, -e1+3e2=λ1(4e1+2e2)+λ2(-3e1+12e2), 即-e1+3e2=(4λ1-3λ2)e1+(2λ1+12λ2)e2,∴⎩⎪⎨⎪⎧4λ1-3λ2=-1,2λ1+12λ2=3,∴⎩⎪⎨⎪⎧λ1=-118,λ2=727,∴a =-118b +727c.10.平行四边形ABCD 中,M 为DC 的中点,N 为BC 的中点,设AB →=b ,AD →=d ,AM →=m ,AN →=n.(1)以b ,d 为基底,表示MN →; (2)以m ,n 为基底,表示AB →. 【解】 如图所示.(1)MN →=AN →-AM →=(AB →+BN →)-(AD →+DM →)=(b +12d)-(d +12b)=12b -12d.(2)m =AD →+DM →=d +12AB →,①n =AB →+BN →=AB →+12d ,所以2n =2AB →+d ,② 由①②消去d ,得AB →=43n -23m.图2-3-911.如图2-3-9所示,在△ABC 中,点M 是边BC 的中点,点N 在边AC 上,AN =2NC ,AM 与BN 相交于点P ,求证:AP →=4PM →.【证明】 记BM →=e1,CN →=e2,所以AC →=-3e2,CM →=-e1,则AM →=AC →+CM →=-3e2-e1,BN →=BC →+CN →=2e1+e2.因为A ,P ,M 共线,且B ,P ,N 共线,所以存在实数λ,μ,使AP →=λAM →=-3λe2-λe1,BP →=μBN →=2μe1+μe2, 所以BA →=BP →+PA →=2μe1+μe2+3λe2+λe1=(2μ+λ)e1+(μ+3λ)e2,又BA →=BC →+CA →=2e1+3e2,所以⎩⎪⎨⎪⎧λ+2μ=2,3λ+μ=3,解之得⎩⎪⎨⎪⎧λ=45,μ=35.所以AP →=45AM →,所以AP ∶PM =4∶1,即AP →=4PM →.(教师用书独具)用向量法证明三角形的三条中线交于同一点.【思路探究】 令△ABC 的中线AD 与中线BE 交于点G1,中线AD 与CF 交于点G2,利用向量说明G1与G2重合,证得三条中线交于一点.【自主解答】 如图,AD ,BE ,CF 是△ABC 的三条中线.令AC →=a ,BC →=b ,则AB →=CB →-CA →=AC →-BC →=a -b ,AD →=AC →+CD →=a -12b ,BE →=BC →+CE →=-12a+b.令AD 与BE 交于点G1,并假设AG1→=λAD →,BG1→=μBE →,则有AG1→=λa-λ2b ,BG1→=-μ2a +μb.∴AG1→=AB →+BG1→=(1-μ2)a +(μ-1)b ,∴⎩⎪⎨⎪⎧λ=1-μ2,-λ2=μ-1.由此可得λ=μ=23,∴AG1→=23AD →.再令AD 与CF 相交于G2,同样的方法可得AG2→=23AD.∴G1与G2重合,即AD ,BE ,CF 相交于同一点. ∴三角形三条中线交于一点.向量方法证明三线共点的思路为:设三条直线l1,l2,l3中l1与l2的交点为G1,l2与l3的交点为G2,在图形中选择两个简单的不共线的向量作为基底,证明共起点的向量表示惟一,如证AG1→=AG2→,则得G1,G2重合.在△ABC 中,D ,F 分别是BC ,AC 的中点.AE →=23AD →,AB →=a ,AC →=b.求证:B ,E ,F 三点共线.【证明】 因为D 是BC 的中点,所以有AD →=12(a +b).又因为AE →=23AD →=13(a +b),AF →=12AC →=12b , 所以BE →=AE →-AB →=13(a +b)-a =13(b -2a), BF →=AF →-AB →=12b -a =12(b -2a). 所以BE →=23BF →. 又BE →,BF →有公共点B ,所以B ,E ,F 三点共线.。

人教版高中必修42.3平面向量的基本定理及坐标表示教学设计

人教版高中必修42.3平面向量的基本定理及坐标表示教学设计

人教版高中必修42.3平面向量的基本定理及坐标表示教学设计1. 教学目标•了解平面向量的基本概念和坐标表示方法;•掌握平面向量的基本运算法则;•理解平面向量的基本定理:平面向量共线定理和平面向量共面定理;•能够应用平面向量的基本定理进行证明和解题。

2. 教学重点和难点教学重点:平面向量的基本概念、坐标表示和基本定理的理解和掌握。

教学难点:平面向量的基本定理的应用,包括解题和证明。

3. 教学方法本节课采用讲解、示例演示和练习等教学方法,注重理论与实践的结合,鼓励学生积极思考和互动交流。

4. 教学过程设计4.1 引入•介绍平面向量的基本定义和几何意义;•通过具体实例,引导学生了解平面向量的坐标表示方法,并对向量的长度和方向进行分析。

4.2 平面向量的基本运算•讲解平面向量的加法和数乘法,通过几何图形和坐标计算等方式,让学生理解其性质和规律。

4.3 平面向量的基本定理•介绍平面向量的共线性和共面性概念;•解释平面向量共线定理和平面向量共面定理的意义和证明过程;•带领学生进行实例演示,同时注重学生的思考能力和独立思考。

4.4 应用•通过一些具体的例题,让学生应用所学知识,解决实际问题;•引导学生进行证明题目,培养他们的证明能力和创新思维。

4.5 总结•进行回顾和总结,强化学生对平面向量的基本概念、坐标表示和基本定理的理解和记忆;•鼓励学生提高对知识的理解和运用能力。

5. 教学评估•通过平时的课堂表现、作业和考试,对学生的理论掌握、实际应用和证明能力进行评估;•结合和发展学生的特长和兴趣,鼓励他们进行更多的探究和创新。

6. 教学资源•人教版高中数学教材;•平面向量相关视频和实例资料;•计算机辅助绘图软件。

7. 教学后记本节课着重培养学生的数学思维和应用能力,通过具体实例、丰富练习和思考活动,加深学生对平面向量的理解和应用能力,为后续数学学习打下坚实的基础。

同时,也需要注意因材施教,用不同形式的教学方法,使每一位学生都能受益于本节课的学习。

高中数学必修4《平面向量的基本定理及坐标表示》教案

高中数学必修4《平面向量的基本定理及坐标表示》教案

高中数学必修4《平面向量的基本定理及坐标表示》教案【一】教学目标平面向量复习教学重难点平面向量复习教学过程平面向量复习知识点提要一、向量的概念1、既有又有的量叫做向量。

用有向线段表示向量时,有向线段的长度表示向量的,有向线段的箭头所指的方向表示向量的2、叫做单位向量3、的向量叫做平行向量,因为任一组平行向量都可以平移到同一条直线上,所以平行向量也叫做。

零向量与任一向量平行4、且的向量叫做相等向量5、叫做相反向量二、向量的表示方法:几何表示法、字母表示法、坐标表示法三、向量的加减法及其坐标运算四、实数与向量的乘积定义:实数λ 与向量的积是一个向量,记作λ五、平面向量基本定理如果e1、e2是同一个平面内的两个不共线向量,那么对于这一平面内的任一向量a,有且只有一对实数λ1,λ2,使a=λ1e1+λ2e2 ,其中e1,e2叫基底六、向量共线/平行的充要条件七、非零向量垂直的充要条件八、线段的定比分点定比分点坐标公式及向量式九、平面向量的数量积(1)设两个非零向量a和b,作OA=a,OB=b,则∠AOB=θ叫a与b的夹角,其范围是[0,π],|b|cosθ叫b在a上的投影(2)|a||b|cosθ叫a与b的数量积,记作a·b,即a·b=|a||b|cosθ(3)平面向量的数量积的坐标表示十、平移典例解读1、给出下列命题:①若|a|=|b|,则a=b;②若A,B,C,D是不共线的四点,则AB= DC是四边形ABCD为平行四边形的充要条件;③若a=b,b=c,则a=c;④a=b的充要条件是|a|=|b|且a∥b;⑤若a∥b,b∥c,则a∥c其中,正确命题的序号是______2、已知a,b方向相同,且|a|=3,|b|=7,则|2a-b|=____3、若将向量a=(2,1)绕原点按逆时针方向旋转得到向量b,则向量b的坐标为_____4、下列算式中不正确的是( )(A) AB+BC+CA=0 (B) AB-AC=BC(C) 0·AB=0 (D)λ(μa)=(λμ)a5、若向量a=(1,1),b=(1,-1),c=(-1,2),则c=( )、函数y=x2的图象按向量a=(2,1)平移后得到的图象的函数表达式为( )(A)y=(x-2)2-1 (B)y=(x+2)2-1 (C)y=(x-2)2+1 (D)y=(x+2)2+17、平面直角坐标系中,O为坐标原点,已知两点A(3,1),B(-1,3),若点C满足OC=αOA+βOB,其中a、β∈R,且α+β=1,则点C的轨迹方程为( )(A)3x+2y-11=0 (B)(x-1)2+(y-2)2=5(C)2x-y=0 (D)x+2y-5=08、设P、Q是四边形ABCD对角线AC、BD中点,BC=a,DA=b,则PQ=_________9、已知A(5,-1) B(-1,7) C(1,2),求△ABC中∠A平分线长10、若向量a、b的坐标满足a+b=(-2,-1),a-b=(4,-3),则a·b等于( )(A)-5 (B)5 (C)7 (D)-111、若a、b、c是非零的平面向量,其中任意两个向量都不共线,则( )(A)(a)2·(b)2=(a·b)2 (B)|a+b|>|a-b|(C)(a·b)·c-(b·c)·a与b垂直(D)(a·b)·c-(b·c)·a=012、设a=(1,0),b=(1,1),且(a+λb)⊥b,则实数λ的值是( )(A)2 (B)0 (C)1 (D)-1/216、利用向量证明:△ABC中,M为BC的中点,则 AB2+AC2=2(AM2+MB2)17、在三角形ABC中, =(2,3), =(1,k),且三角形ABC的一个内角为直角,求实数k的值18、已知△ABC中,A(2,-1),B(3,2),C(-3,-1),BC边上的高为AD,求点D和向量高中数学必修4《平面向量的基本定理及坐标表示》教案【二】教学准备教学目标1、理解平面向量的坐标的概念;2、掌握平面向量的坐标运算;3、会根据向量的坐标,判断向量是否共线.教学重难点教学重点:平面向量的坐标运算教学难点:向量的坐标表示的理解及运算的准确性. 教学过程复习平面向量基本定理:什么叫平面的一组基底?平面的基底有多少组?引入:1.平面内建立了直角坐标系,点A可以用什么来表示?2.平面向量是否也有类似的表示呢?。

平面向量基本定理教案

平面向量基本定理教案

平面向量基本定理教案(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作总结、教学总结、教学计划、教学心得、教学反思、说课稿、好词好句、教案大全、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!And, this store provides various types of classic sample essays for everyone, such as work summaries, teaching summaries, teaching plans, teaching experiences, teaching reflections, lecture notes, good words and sentences, lesson plans, essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!平面向量基本定理教案平面向量基本定理教案(精选10篇)作为一名为他人授业解惑的教育工作者,时常需要编写教案,教案是教学活动的依据,有着重要的地位。

高中数学人教版必修4平面向量的基本定理及坐标表示教学设计

高中数学人教版必修4平面向量的基本定理及坐标表示教学设计

第四章 平面向量、数系的扩充与复数的引入
[规律方法] 用平面向量基本定理解决问题的一般思路 (1)先选择一组基底,并运用该基底将条件和结论表示成向 量的形式,再通过向量的运算来解决. (2)在基底未给出的情况下,合理地选取基底会给解题带来 方便.另外,要熟练运用平面几何的一些性质定理.
第四章 平面向量、数系的扩充与复数的引入
(3)(2014·高考陕西卷)设
0<θ<π2
,向量
a=(sin 1

,cos
θ ),b=(cos θ ,1),若 a∥b,则 tan θ =___2_____.
第四章 平面向量、数系的扩充与复数的引入
解析:(1)若点 A、B、C 不能构成三角形,则向量A→B,A→C 共线,∵A→B=O→B-O→A=(2,-1)-(1,-3)=(1,2),A→C =O→C-O→A=(k+1,k-2)-(1,-3)=(k,k+1),∴1×(k +1)-2k=0,解得 k=1. (2)∵b=(2,1),且 a 与 b 的方向相反, ∴设 a=(2λ,λ )(λ<0). ∵|a|=2 5, ∴4λ 2+λ2=20,λ 2=4,λ =-2. ∴a=(-4,-2).
A.a=0,b=e1+e2 B.a=3e1+3e2,b=e1+e2 C.a=e1-2e2,b=e1+e2 D.a=e1-2e2,b=2e1-4e2
4.已知向量 a=(1,m),b=(m,2),若 a∥b,则实数 m
等于( C )
A.- 2
B. 2
C.- 2或 2
D.0
第四章 平面向量、数系的扩充与复数的引入
第四章 平面向量、数系的扩充与复数的引入
法二:设点 P(x,y),则O→P=(x,y),因为O→B=(4,4),且 O→P与O→B共线,所以x4=4y,即 x=y. 又A→P=(x-4,y),A→C=(-2,6),且A→P与A→C共线, 所以(x-4)×6-y×(-2)=0,解得 x=y=3, 所以 P 点的坐标为(3,3).

湖北省巴东一中高二数学教案 必修四:平面向量的线性运算

湖北省巴东一中高二数学教案 必修四:平面向量的线性运算

§2.2 平面向量的线性运算教材分析本节首先从数及数的运算谈起,有了数只能进行计数,只能引入了运算,数的威力才得以充分展现。

类比数的运算,向量也能够进行运算,运算引入后,向量的工具作用才能得到充分发挥。

教学中应引导学生体会考察一个量的运算问题,最主要的是认清运算的定义及其运算律,这样才能正确、方便地实施运算。

平面向量的线性运算包括:向量加法、向量减法、向量数乘运算,以及它们之间的混合运算。

其中加法运算是最基本、最重要的运算,减法、数乘运算都以加法运算为基础,都可以归结为加法运算。

向量的加法运算是通过类比数的加法,以位移的合成、力的合成等两个物理模型为背景引入的,使加法运算的学习建立在学生已有认知基础上。

由于向量有方向,在进行运算时,不但要考虑大小,而且要考虑方向,应注意体会向量运算与数的运算的联系与区别,更好地把握向量加法的特点。

类比数的减法(减去一个数等于加上这个数的相反数),向量减法的实质是:减去一个向量,等于加上这个向量的相反向量;向量数乘运算则是相同向量的连加。

因此,与数的运算的类比,是学习向量的线性运算的重要方法。

向量的线性运算具有深刻的物理背景和几何意义,使得向量在解决物理和几何问题时可以发挥很好的作用。

2.2.1 向量加法运算及其几何意义一、教学分析向量的加法是学生在认识向量概念之后首先要掌握的运算,是向量的第二节内容.其主要内容是运用向量的定义和向量相等的定义得出向量加法的三角形法则、平行四边形法则,并对向量加法的交换律、结合律进行证明,同时运用他们进行相关计算,这可让同学们进一步加强对向量几何意义的理解,同时也为接下来学习向量的减法奠定基础,起到承上启下的重要作用.学生已经通过上节的学习,掌握了向量的概念、几何表示,理解了什么是相等向量和共线向量.在学习物理的过程中,已经知道位移、速度和力这些物理量都是向量,可以合成,而且知道这些矢量的合成都遵循平行四边形法则,这为本课题的引入提供了较好的条件.培养数学的应用意识是当今数学教育的主题,本节课的内容与实际问题联系紧密,更应强化数学来源于实际又应用于实际的意识.在向量加法的概念中,由于涉及到两个向量有不平行和平行这两种情况,因此有利于渗透分类讨论的数学思想,而在猜测向量加法的运算律时,通过引导学生利用实数加法的运算律进行类比.则能培养学生类比、迁移等能力.在实际教学中,类比数的运算,向量也能够进行运算.运算引入后,向量的工具作用才能得到充分发挥.实际上,引入一个新的量后,考察它的运算及运算律,是数学研究中的基本问题.教师应引导学生体会考察一个量的运算问题,最主要的是认清运算的定义及其运算律,这样才能正确、方便地实施运算.向量的加法运算是通过类比数的加法,以位移的合成、力的合力等两个物理模型为背景引入的.这样做使加法运算的学习建立在学生已有的认知基础上,同时还可以提醒学生注意,由于向量有方向,因此在进行向量运算时,不但要考虑大小问题,而且要考虑方向问题,从而使学生体会向量运算与数的运算的联系与区别.这样做,有利于学生更好地把握向量加法的特点.二、教学目标:1、知识与技能:掌握向量的加法运算,并理解其几何意义;会用向量加法的三角形法则和平行四边形法则作两个向量的和向量,培养数形结合解决问题的能力。

湖北省恩施巴东县第一高级中学高中数学 2.4.2平面向量数量积的坐标表示、模、夹角教案 新人教A版必修4

湖北省恩施巴东县第一高级中学高中数学 2.4.2平面向量数量积的坐标表示、模、夹角教案 新人教A版必修4

湖北省恩施巴东县第一高级中学高中数学 2.4.2平面向量数量积的坐标表示、模、夹角教案新人教A版必修4一、教学分析平面向量的数量积,教材将其分为两部分.在第一部分向量的数量积中,首先研究平面向量所成的角,其次,介绍了向量数量积的定义,最后研究了向量数量积的基本运算法则和基本结论;在第二部分平面向量数量积的坐标表示中,在平面向量数量积的坐标表示的基础上,利用数量积的坐标表示研讨了平面向量所成角的计算方式,得到了两向量垂直的判定方法,本节是平面向量数量积的第二部分.前面我们学习了平面向量的数量积,以及平面向量的坐标表示.那么在有了平面向量的坐标表示以及坐标运算的经验和引进平面向量的数量积后,就顺其自然地要考虑到平面向量的数量积是否也能用坐标表示的问题.另一方面,由于平面向量数量积涉及了向量的模、夹角,因此在实现向量数量积的坐标表示后,向量的模、夹角也都可以与向量的坐标联系起来.利用平面向量的坐标表示和坐标运算,结合平面向量与平面向量数量积的关系来推导出平面向量数量积以及向量的模、夹角的坐标表示.教师应在坐标基底向量的数量积的基础上,推导向量数量积的坐标表示.通过例题分析、课堂训练,让学生总结归纳出对于向量的坐标、数量积、向量所成角及模等几个因素,知道其中一些因素,求出其他因素基本题型的求解方法.平面向量数量积的坐标表示是在学生学习了平面向量的坐标表示和平面向量数量积的基础上进一步学习的,这都为数量积的坐标表示奠定了知识和方法基础.二、教学目标1、知识与技能:掌握数量积的坐标表达式,会进行平面向量数量积的运算;能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系。

2、过程与方法:通过用坐标表示平面向量数量积的有关运算,揭示几何图形与代数运算之间的内在联系,明确数学是研究数与形有机结合的学科。

3、情感态度与价值观:能用所学知识解决有关综合问题。

三、重点难点教学重点:平面向量数量积的坐标表示.教学难点:向量数量积的坐标表示的应用.四、教学设想(一)导入新课思路1.平面向量的表示方法有几何法和坐标法,向量的表示形式不同,对其运算的表示方式也会改变.向量的坐标表示,为我们解决有关向量的加、减、数乘运算带来了极大的方便.上一节,我们学习了平面向量的数量积,那么向量的坐标表示,对平面向量的数量积的表示方式又会带来哪些变化呢?由此直接进入主题.思路2.在平面直角坐标系中,平面向量可以用有序实数对来表示,两个平面向量共线的条件也可以用坐标运算的形式刻画出来,那么学习了平面向量的数量积之后,它能否用坐标来表示?若能,如何通过坐标来实现呢?平面向量的数量积还会是一个有序实数对吗?同时,平面向量的模、夹角又该如何用坐标来表示呢?通过回顾两个向量的数量积的定义和向量的坐标表示,在此基础上引导学生推导、探索平面向量数量积的坐标表示.(二)推进新课、新知探究、提出问题①平面向量的数量积能否用坐标表示?②已知两个非零向量a=(x1,y1),b=(x2,y2),怎样用a与b的坐标表示a·b呢?③怎样用向量的坐标表示两个平面向量垂直的条件?④你能否根据所学知识推导出向量的长度、距离和夹角公式?活动:教师引导学生利用前面所学知识对问题进行推导和探究.前面学习了向量的坐标可以用平面直角坐标系中的有序实数对来表示,而且我们也知道了向量的加、减以及实数与向量积的线性运算都可以用坐标来表示.两个向量共线时它们对应的坐标也具备某种关系,那么我们就自然而然地想到既然向量具有数量积的运算关系,这种运算关系能否用向量的坐标来表示呢?教师提示学生在向量坐标表示的基础上结合向量的坐标运算进行推导数量积的坐标表示.教师可以组织学生到黑板上板书推导过程,教师给予必要的提示和 补充.推导过程如下:∵a =x 1i+y 1j ,b =x 2i+y 2j ,∴a ·b =(x 1i+y 1j )·(x 2i+y 2j ) =x 1x 2i2+x 1y 2i·j +x 2y 1i·j +y 1y 2j 2.又∵i·i=1,j ·j =1,i·j =j ·i=0,∴a ·b =x 1x 2+y 1y 2.教师给出结论性的总结,由此可归纳如下:1°平面向量数量积的坐标表示两个向量的数量积等于它们对应坐标的乘积的和,即a =(x 1,y 1),b =(x 2,y 2),则a ·b =x 1x 2+y 1y 2.2°向量模的坐标表示若a =(x,y),则|a |2=x 2+y 2,或|a |=22y x +. 如果表示向量a 的有向线段的起点和终点的坐标分别为(x 1,y 1)、(x 2,y 2),那么a =(x 2-x 1,y 2-y 1),|a |=.)()(212212y y x x -+-3°两向量垂直的坐标表示设a =(x 1,y 1),b =(x 2,y 2),则a ⊥b ⇔x 1x 2+y 1y 2=0.4°两向量夹角的坐标表示设a 、b 都是非零向量,a =(x 1,y 1),b =(x 2,y 2),θ是a 与b 的夹角,根据向量数量积的定义及坐标表示,可得cosθ=222221212121||||y x y x y y x x b a b a +•++=•讨论结果:略.(三)应用示例例1 已知A(1,2),B(2,3),C(-2,5),试判断△A BC 的形状,并给出证明.活动:教师引导学生利用向量数量积的坐标运算来解决平面图形的形状问题.判断平面图形的形状,特别是三角形的形状时主要看边长是否相等,角是否为直角.可先作出草图,进行直观判定,再去证明.在证明中若平面图形中有两个边所在的向量共线或者模相等,则此平面图形与平行四边形有关;若三角形的两条边所在的向量模相等或者由两边所在向量的数量积为零,则此三角形为等腰三角形或者为直角三角形.教师可以让学生多总结几种判断平面图形形状的方法.解:在平面直角坐标系中标出A(1,2),B(2,3),C(-2,5)三点,我们发现△A BC 是直角三角形.下面给出证明.∵=(2-1,3-2)=(1,1),AC =(-2-1,5-2)=(-3,3), ∴AB ·AC =1×(-3)+1×3=0. ∴AB ⊥AC . ∴△A BC 是直角三角形. 点评:本题考查的是向量数量积的应用,利用向量垂直的条件和模长公式来判断三角形的形状.当给出要判定的三角形的顶点坐标时,首先要作出草图,得到直观判定,然后对你的结论给出充分的证明. 变式训练 在△A BC 中,AB =(2,3),AC =(1,k),且△A BC 的一个内角为直角,求k 的值.解:由于题设中未指明哪一个角为直角,故需分别讨论.若∠A=90°,则AB ⊥AC ,所以AB ·AC =0. 于是2×1+3k=0.故k=32-. 同理可求,若∠B=90°时,k 的值为311; 若∠C=90°时,k 的值为2133±. 故所求k 的值为32-或311或2133±.例2 (1)已知三点A(2,-2),B(5,1),C(1,4),求∠B AC 的余弦值;(2)a =(3,0),b =(-5,5),求a 与b 的夹角.活动:教师让学生利用向量的坐标运算求出两向量a =(x 1,y 1)与b =(x 2,y 2)的数量积a ·b =x 1x 2+y 1y 2和模|a |=2121y x +,|b |=2222y x +的积,其比值就是这两个向量夹角的余弦值,即cosθ=222221212121||||y x y x y y x x b a b a +•++=•.当求出两向量夹角的余弦值后再求两向量的夹角大小时,需注意两向量夹角的范围是0≤θ≤π.学生在解这方面的题目时需要把向量的坐标表示清楚,以免出现不必要的错误.解:(1)=(5,1)-(2,-2)=(3,3), AC =(1,4)-(2,-2)=(-1,6),∴AB ·AC =3×(-1)+3×6=15.又∵||=2233+=32,||=226)1(+-=37,∴cos∠B AC=.74745372315||||=•=•AC AB AC AB (2)a ·b =3×(-5)+0×5=-15,|a |=3,|b |=52.设a 与b 的夹角为θ,则 cosθ=.2225315||||-=⨯-=•b a b a 又∵0≤θ≤π,∴θ=43π. 点评:本题考查的是利用向量的坐标表示来求两向量的夹角.利用基本公式进行运算与求解主要是对基础知识的巩固与提高.变式训练设a =(5,-7),b =(-6,-4),求a ·b 及a 、b 间的夹角θ.(精确到1°)解:a ·b =5×(-6)+(-7)×(-4)=-30+28=-2. |a |=74)7(522=-+,|b |=52)4()6(22=-+- 由计算器得cosθ=52742⨯-≈-0.03.利用计算器中得θ≈92°.例3 已知|a |=3,b =(2,3),试分别解答下面两个问题:(1)若a ⊥b ,求a ;(2)若a ∥b ,求a.活动:对平面中的两向量a =(x 1,y 1)与b =(x 2,y 2),要让学生在应用中深刻领悟其本质属性,向量垂直的坐标表示x 1x 2+y 1y 2=0与向量共线的坐标表示x 1y 2-x 2y 1=0很容易混淆, 应仔细比较并熟记,当难以区分时,要从意义上鉴别,两向量垂直是a ·b =0,而共线是方向相同或相反.教师可多加强反例练习,多给出这两种类型的同式变形训练.解:(1)设a =(x,y),由|a |=3且a ⊥b ,得⎩⎨⎧=+==+,032,9||222x x a y x 解得⎪⎪⎩⎪⎪⎨⎧-==⎪⎪⎩⎪⎪⎨⎧=-=,13136,1313913136,13139y x y x 或 ∴a =或)13136,13139(-a =.13136,13139- (2)设a =(x,y),由|a |=3且a ∥b ,得⎩⎨⎧=-==+.023,9||222y x a y x 解得⎪⎪⎩⎪⎪⎨⎧==13139,13136y x 或⎪⎪⎩⎪⎪⎨⎧-=-=.13139,13136y x ∴a =或)13139,13136(a =)13139,13136(--. 点评:本题主要考查学生对公式的掌握情况,学生能熟练运用两向量的坐标运算来判断垂直或者共线,也能熟练地进行公式的逆用,利用已知关系来求向量的坐标.变式训练求证:一次函数y=2x-3的图象(直线l 1)与一次函数y=21 x 的图象(直线l 2)互相垂直. 解:在l 1:y=2x-3中,令x=1得y=-1;令x=2得y=1,即在l 1上取两点A(1,-1),B(2,1).同理,在直线l 2上取两点C(-2,1),D(-4,2),于是:AB =(2,1)-(1,-1)=(2-1,1+1)=(1,2),CD =(-4,2)-(-2,1)=(-4+2,2-1)=(-2,1).由向量的数量积的坐标表示,可得AB ·CD =1×(-2)+1×2=0,∴⊥,即l 1⊥l 2.(四)课堂小结1.在知识层面上,先引导学生归纳平面向量数量积的坐标表示,向量的模,两向量的夹角,向量垂直的条件.其次引导学生总结数量积的坐标运算规律,夹角和距离公式、两向量垂直的坐标表示.2.在思想方法上,教师与学生一起回顾探索过程中用到的思维方法和数学思想方法,定义法,待定系数法等.(五)作业。

人教版高中必修42.3平面向量的基本定理及坐标表示课程设计

人教版高中必修42.3平面向量的基本定理及坐标表示课程设计

人教版高中必修42.3平面向量的基本定理及坐标表示课程设计一、教学目的本节课程旨在让学生掌握平面向量的基本概念、基本定理和坐标表示方法,了解平面向量的几何意义和运用,提高学生的数学分析能力。

二、教学重点和难点重点1.平面向量的基本概念和坐标表示方法。

2.平面向量的加、减、数量积和向量积的定义、性质和运算法则。

3.平面向量相互垂直的判定方法和应用。

难点1.平面向量的向量积计算方法和几何意义。

2.平面向量的运用,如空间向量的坐标,面积和体积的计算,向量方程等。

三、教学内容及学时安排第一学时:平面向量的基本概念和坐标表示方法1.平面向量的定义、相等、相反、平移、共线和垂直的概念。

2.平面向量的坐标表示方法和平面直角坐标系的建立。

3.习题讲解和课堂练习。

第二学时:平面向量的加、减、数量积和向量积1.平面向量的加、减和数量积的定义、性质和运算法则。

2.平面向量的向量积的定义、性质和运算法则。

3.向量积的计算方法和几何意义。

4.习题讲解和课堂练习。

第三学时:平面向量相互垂直的判定方法和应用1.平面向量相互垂直的概念、判定方法和应用。

2.利用向量积判断平面上三点是否共线或四点是否共面。

3.习题讲解和课堂练习。

第四学时:平面向量的应用和总复习1.平面向量的运用,如空间向量的坐标,面积和体积的计算,向量方程等。

2.本章练习题解答和总复习。

3.课堂练习和小测验。

四、教学方法本章课程采用讲授、演示和练习相结合的教学方法。

在教学过程中,要尽可能多的举例子应用平面向量,培养学生的数学思维和分析问题的能力。

五、教学资源教师需要准备讲义、习题解答和课堂练习。

六、学习评估本章课程结束后,教师将进行小测验和总练习,以检测学生的学习效果。

同时,教师可以进行学生课堂表现和作业评估,以进一步提高学生的学习兴趣和效果。

七、教学反思针对本节课的教学反思,教师应该重点关注学生的学习情况,了解上课过程中存在的不足,及时进行调整和完善,提高本节课的教学效果。

湖北省恩施州巴东一中高中数学(人教A版)必修四教案:2.5.1 平面几何中的向量方法

湖北省恩施州巴东一中高中数学(人教A版)必修四教案:2.5.1  平面几何中的向量方法

2.5 平面向量应用举例2.5.1 平面几何中的向量方法一、教学分析1.本节的目的是让学生加深对向量的认识,更好地体会向量这个工具的优越性.对于向量方法,就思路而言,几何中的向量方法完全与几何中的代数方法一致,不同的只是用“向量和向量运算”来代替“数和数的运算”.这就是把点、线、面等几何要素直接归结为向量,对这些向量借助于它们之间的运算进行讨论,然后把这些计算结果翻译成关于点、线、面的相应结果.代数方法的流程图可以简单地表述为:则向量方法的流程图可以简单地表述为:这就是本节给出的用向量方法解决几何问题的“三步曲”,也是本节的重点.2.研究几何可以采取不同的方法,这些方法包括:综合方法——不使用其他工具,对几何元素及其关系直接进行讨论;解析方法——以数(代数式)和数(代数式)的运算为工具,对几何元素及其关系进行讨论;向量方法——以向量和向量的运算为工具,对几何元素及其关系进行讨论;分析方法——以微积分为工具,对几何元素及其关系进行讨论,等等.前三种方法都是中学数学中出现的内容.有些平面几何问题,利用向量方法求解比较容易.使用向量方法要点在于用向量表示线段或点,根据点与线之间的关系,建立向量等式,再根据向量的线性相关与无关的性质,得出向量的系数应满足的方程组,求出方程组的解,从而解决问题.使用向量方法时,要注意向量起点的选取,选取得当可使计算过程大大简化.二、教学目标1.知识与技能:通过平行四边形这个几何模型,归纳总结出用向量方法解决平面几何问题的“三步曲”.2.过程与方法:明了平面几何图形中的有关性质,如平移、全等、相似、长度、夹角等可以由向量的线性运算及数量积表示.3.情感态度与价值观:通过本节学习,让学生深刻理解向量在处理有关平面几何问题中的优越性,活跃学生的思维,发展学生的创新意识,激发学生的学习积极性,并体会向量在几何和现实生活中的意义.教学中要求尽量引导学生使用信息技术这个现代化手段.三、重点难点教学重点:用向量方法解决实际问题的基本方法;向量法解决几何问题的“三步曲”.教学难点:如何将几何等实际问题化归为向量问题.四、教学设想(一)导入新课思路1.(直接导入)向量的概念和运算都有着明确的物理背景和几何背景,当向量和平面坐标系结合后,向量的运算就完全可以转化为代数运算.这就为我们解决物理问题和几何研究带来了极大的方便.本节专门研究平面几何中的向量方法.思路2.(情境导入)由于向量的线性运算和数量积运算具有鲜明的几何背景,平面几何图形的许多性质,如平移、全等、相似、长度、夹角等都可以由向量的线性运算及数量积表示出来,因此,可用向量方法解决平面几何中的一些问题.下面通过几个具体实例,说明向量方法在平面几何中的运用.(二)推进新课、新知探究、提出问题图1①平行四边形是表示向量加法和减法的几何模型,如图1,你能观察、发现并猜想出平行四边形对角线的长度与两邻边长度之间有什么关系吗?②你能利用所学知识证明你的猜想吗?能利用所学的向量方法证明吗?试一试可用哪些方法?③你能总结一下利用平面向量解决平面几何问题的基本思路吗?活动:①教师引导学生猜想平行四边形对角线的长度与两邻边长度之间有什么关系.利用类比的思想方法,猜想平行四边形有没有相似关系.指导学生猜想出结论:平行四边形两条对角线的平方和等于四条边的平方和.②教师引导学生探究证明方法,并点拨学生对各种方法分析比较,平行四边形是学生熟悉的重要的几何图形,在平面几何的学习中,学生得到了它的许多性质,有些性质的得出比较麻烦,有些性质的得出比较简单.让学生体会研究几何可以采取不同的方法,这些方法包括综合方法、解析方法、向量方法.图2证明:方法一:如图2.作CE⊥AB于E,DF⊥AB于F,则Rt△ADF≌Rt△BCE.∴AD=BC,AF=BE.由于ACAE2+CE2=(AB+BE)2+CE2=AB2+2AB·BE+BE2+CE2=AB2+2AB·BE+BC2.BD2=BF2+DF2=(AB-AF)2+DF2=AB2-2AB·AF+AF2+DF2=AB2-2AB·AF+AD2=AB2-2AB·B E+BC2.∴AC2+BD2=2(AB2+BC2).图3方法二:如图3.以AB所在直线为x轴,A为坐标原点建立直角坐标系.设B(a,0),D(b,c),则C(a+b,c).∴|AC|2=(a+b)2+c2=a2+2ab+b2+c2,|BD|2=(a-b)2+(-c)2=a2-2ab+b2+c2.∴|AC|2+|BD|2=2a2+2(b2+c2)= 2(|AB|2+|AD|2).用向量方法推导了平行四边形的两条对角线与两条邻边之间的关系.在用向量方法解决涉及长度、夹角的问题时,常常考虑用向量的数量积.通过以下推导学生可以发现,由于向量能够运算,因此它在解决某些几何问题时具有优越性,它把一个思辨过程变成了一个算法过程,学生可按一定的程序进行运算操作,从而降低了思考问题的难度,同时也为计算机技术的运用提供了方便.教学时应引导学生体会向量带来的优越性.因为平行四边形对角线平行且相等,考虑到向量关系DB=AB-AD,AC=AB+AD,教师可点拨学生设AB=a,AD=b,其他线段对应向量用它们表示,涉及长度问题常常考虑向量的数量积,为此,我们计算|AC|2与|DB|2.因此有了方法三.方法三:设AB=a,AD=b,则AC=a+b,DB=a-b,|AB|2=|a|2,|AD|2=|b|2.∴|AC|2=AC·AC=(a+b)·(a+b)=a·a+a·b+b·a+b·b=|a|2+2a·b+|b|2. ①同理|DB|2=|a|2-2a·b+|b|2. ②观察①②两式的特点,我们发现,①+②得|AC|2+|DB|2=2(|a|2+|b|2)=2(|AB|2+|AD|2),即平行四边形两条对角线的平方和等于两条邻边平方和的两倍.③至此,为解决重点问题所作的铺垫已经完成,向前发展可以说水到渠成.教师充分让学生对以上各种方法进行分析比较,讨论认清向量方法的优越性,适时引导学生归纳用向量方法处理平面几何问题的一般步骤.由于平面几何经常涉及距离(线段长度)、夹角问题,而平面向量的运算,特别是数量积主要涉及向量的模以及向量之间的夹角,因此我们可以用向量方法解决部分几何问题.解决几何问题时,先用向量表示相应的点、线段、夹角等几何元素.然后通过向量的运算,特别是数量积来研究点、线段等元素之间的关系.最后再把运算结果“翻译”成几何关系,得到几何问题的结论.这就是用向量方法解决平面几何问题的“三步曲”,即(1)建立平面几何与向量的联系,用向量表示问题中涉及的几何元素,将平面几何问题转化为向量问题;(2)通过向量运算,研究几何元素之间的关系,如距离、夹角等问题;(3)把运算结果“翻译”成几何关系.讨论结果:①能.②能想出至少三种证明方法.③略.(三)应用示例图4例1 如图4, ABCD中,点E、F分别是AD、DC边的中点,BE、BF分别与AC交于R、T 两点,你能发现AR、RT、TC之间的关系吗?活动:为了培养学生的观察、发现、猜想能力,让学生能动态地发现图形中AR、RT、TC 之间的相等关系,教学中可以充分利用多媒体,作出上述图形,测量AR、RT、TC的长度,让学生发现AR=RT=TC,拖动平行四边形的顶点,动态观察发现,AR=RT=TC这个规律不变,因此猜想AR=RT=TC.事实上,由于R、T是对角线AC上的两点,要判断AR、RT、TC之间的关系,只需分别判断AR 、RT 、TC 与AC 的关系即可.又因为AR 、RT 、TC 、AC 共线,所以只需判断、、AT AR 、AD与AC 之间的关系即可.探究过程对照用向量方法解决平面几何问题的“三步曲”很容易地可得到结论.第一步,建立平面几何与向量的联系,用向量表示问题中的几何元素,将平面几何问题转化为向量问题;第二步,通过向量运算,研究几何元素之间的关系;第三步,把运算结果“翻译”成几何关系:AR=RT=TC.解:如图4,设AB =a ,AD =b ,AR =r ,AT =t ,则AC =a +b . 由于AR 与AC 共线,所以我们设r =n(a +b ),n ∈R . 又因为EB =AB -AE =a -21b , ER 与EB 共线,所以我们设ER =m EB =m(a -21b ). 因为ER AE AR +=,所以r =21b +m(a -21b ). 因此n(a +b )=21b +m(a -b ),即(n-m)a +(n+21-m )b =0.由于向量a 、b 不共线,要使上式为0,必须⎪⎩⎪⎨⎧=-+=-.021,0m n m n 解得n=m=31. 所以AR =31AC ,同理TC =31AC .于是RT =31AC .所以AR=RT=TC.点评:教材中本例重在说明是如何利用向量的办法找出这个相等关系的,因此在书写时可简化一些程序.指导学生在今后的训练中,不必列出三个步骤. 变式训练图5如图5,AD 、BE 、CF 是△ABC 的三条高.求证:AD 、BE 、CF 相交于一点. 证明:设BE 、CF 相交于H,并设AB =b ,AC =c ,AH =h , 则BH =h -b ,CH =h -c ,BC =c -b .因为BH ⊥AC ,CH ⊥AB , 所以(h -b )·c =0,(h -c )·b =0, 即(h -b )·c =(h -c )·b . 化简得h ·(c -b )=0. 所以AH ⊥BC .所以AH 与AD 共线,即AD 、BE 、CF 相交于一点H.图6例2 如图6,已知在等腰△ABC 中,BB′、CC′是两腰上的中线,且BB′⊥CC′,求顶角A 的余弦值. 活动:教师可引导学生思考探究,上例利用向量的几何法简捷地解决了平面几何问题.可否利用向量的坐标运算呢?这需要建立平面直角坐标系,找出所需点的坐标.如果能比较方便地建立起平面直角坐标系,如本例中图形,很方便建立平面直角坐标系,且图形中的各个点的坐标也容易写出,是否利用向量的坐标运算能更快捷地解决问题呢?教师引导学生建系、找点的坐标,然后让学生独立完成.解:建立如图6所示的平面直角坐标系,取A(0,a),C(c,0),则B(-c,0),OA =(0,a),BA =(c,a),OC =(c,0),BC =(2c,0).因为BB′、CC′都是中线,所以'BB =21(BC +BA )=21[(2c,0)+(c,a)]=(2,23a c ), 同理'CC =(2,23a c). 因为BB′⊥CC′,所以22449a c +-=0,a 2=9c 2.所以cosA=54299||||2222222=+-=+-=•c c c c ca c a AC AB ACAB . 点评:比较是最好的学习方法.本例利用的方法与例题1有所不同,但其本质是一致的,教学中引导学生仔细体会这一点,比较两例的异同,找出其内在的联系,以达融会贯通,灵活运用之功效. 变式训练图7(2004湖北高考) 如图7,在Rt △ABC 中,已知BC=a.若长为2a 的线段PQ 以点A 为中点,问:BC PQ 与的夹角θ取何值时,CQ BP •的值最大?并求出这个最大值. 解:方法一,如图7.∵AB ⊥AC ,∴AB ·AC =0.∵AC AQ CQ AB AP BP AQ AP -=-=-=,,, ∴)()(AC AQ AB AP CQ BP -•-=• =AC AB AQ AB AC AP AQ AP •+•-•-• =-a 2-AP AC +AB ·AP =-a 2+AP ·(AB -AC ) =-a 2+21PQ ·BC =-a 2+a 2cosθ. 故当cosθ=1,即θ=0,PQ 与BC 的方向相同时,CQ BP •最大,其最大值为0.图8方法二:如图8.以直角顶点A 为坐标原点,两直角边所在的直线为坐标轴,建立如图所示的平面直角坐标系.设|AB|=c,|AC|=b,则A(0,0),B(c,0),C(0,b),且|PQ|=2a,|BC|=a.设点P 的坐标为(x,y), 则Q(-x,-y).∴BP =(x-c,y),CQ =(-x,-y-b),BC =(-c,b),PQ =(-2x,-2y). ∴CQ BP •=(x-c)(-x)+y(-y-b)=-(x 2+y 2)+cx-by. ∵cosθ=2||||abycx BC PQ BC PQ -=• ∴cx-by=a 2cosθ. ∴CQ BP •=-a 2+a 2cosθ.故当cosθ=1,即θ=0,PQ 与BC 的方向相同时, CQ BP •最大,其最大值为0.(四)知能训练图91.如图9,已知AC 为⊙O 的一条直径,∠ABC 是圆周角. 求证:∠ABC=90°.证明:如图9.设AO =a ,OB =b ,则AB =a +b ,OC =a ,BC =a -b ,|a |=|b |.因为AB ·BC =(a +b )·(a -b )=|a |2-|b |2=0,所以AB ⊥BC .由此,得∠ABC=90°.点评:充分利用圆的特性,设出向量.2.D 、E 、F 分别是△ABC 的三条边AB 、BC 、CA 上的动点,且它们在初始时刻分别从A 、B 、C 出发,各以一定速度沿各边向B 、C 、A 移动.当t=1时,分别到达B 、C 、A.求证:在0≤t≤1的任一时刻t 1,△DEF 的重心不变.图10证明:如图10.建立如图所示的平面直角坐标系,设A 、B 、C 坐标分别为(0,0),(a,0),(m,n).在任一时刻t 1∈(0,1),因速度一定,其距离之比等于时间之比,有111||||||||||||t t FA CF EC BE DB AD -====λ,由定比分点的坐标公式可得D 、E 、F 的坐标分别为(at 1,0),(a+(m-a)t 1,nt 1),(m-mt 1,n-nt 1).由重心坐标公式可得△DEF 的重心坐标为(3,3mm a +).当t=0或t=1时,△ABC 的重心也为(3,3mm a +),故对任一t 1∈[0,1],△DEF 的重心不变. 点评:主要考查定比分点公式及建立平面直角坐标系,只要证△ABC 的重心和时刻t 1的△DEF 的重心相同即可.(五)课堂小结1.由学生归纳总结本节学习的数学知识有哪些:平行四边形向量加、减法的几何模型,用向量方法解决平面几何问题的步骤,即“三步曲”.特别是这“三步曲”,要提醒学生理解领悟它的实质,达到熟练掌握的程度.2.本节都学习了哪些数学方法:向量法,向量法与几何法、解析法的比较,将平面几何问题转化为向量问题的化归的思想方法,深切体会向量的工具性这一特点.(六)作业。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.3 平面向量的基本定理及其坐标表示2.3.1 平面向量基本定理2.3.2 平面向量的正交分解及坐标表示一、教学分析平面向量基本定理既是本节的重点又是本节的难点.平面向量基本定理告诉我们同一平面内任一向量都可表示为两个不共线向量的线性组合,这样,如果将平面内向量的始点放在一起,那么由平面向量基本定理可知,平面内的任意一点都可以通过两个不共线的向量得到表示,也就是平面内的点可以由平面内的一个点及两个不共线的向量来表示.这是引进平面向量基本定理的一个原因.在不共线的两个向量中,垂直是一种重要的特殊情形,向量的正交分解是向量分解中常用且重要的一种分解,因为在平面上,如果选取互相垂直的向量作为基底时,会给问题的研究带来方便.联系平面向量基本定理和向量的正交分解,由点在直角坐标系中的表示得到启发,要在平面直角坐标系中表示一个向量,最方便的是分别取与x轴、y轴方向相同的两个单位向量i、j 作为基底,这时,对于平面直角坐标系内的一个向量a,由平面向量基本定理可知,有且只有一对实数x、y,使得a=x i+y j.于是,平面内的任一向量a都可由x、y唯一确定,而有序数对(x,y)正好是向量a的终点的坐标,这样的“巧合”使平面直角坐标系内的向量与坐标建立起一一映射,从而实现向量的“量化”表示,使我们在使用向量工具时得以实现“有效能算”的思想.二、教学目标1、知识与技能:了解平面向量的基本定理及其意义;理解平面里的任何一个向量都可以用两个不共线的向量来表示,掌握平面向量正交分解及其坐标表示。

2、过程与方法:初步掌握应用向量解决实际问题的重要思想方法;能够在具体问题中适当地选取基底,使其他向量都能够用基底来表达。

3、情感态度与价值观:通过平面向量的正交分解及坐标表示,揭示图形(向量)与代数(坐标)之间的联系。

三、重点难点教学重点:平面向量基本定理、向量的夹角与垂直的定义、平面向量的正交分解、平面向量的坐标表示.教学难点:平面向量基本定理的运用.四、教学设想(一)导入新课思路1.在物理学中我们知道,力是一个向量,力的合成就是向量的加法运算.而且力是可以分解的,任何一个大小不为零的力,都可以分解成两个不同方向的分力之和.将这种力的分解拓展到向量中来,会产生什么样的结论呢?又如一个放在斜面上的物体所受的竖直向下的重力G,可分解为使物体沿斜面下滑的力F1和使物体垂直于斜面且压紧斜面的力F2.我们知道飞机在起飞时若沿仰角α的方向起飞的速度为v,可分解为沿水平方向的速度vcosα和沿竖直方向的速度vsinα.从这两个实例可以看出,把一个向量分解到两个不同的方向,特别是作正交分解,即在两个互相垂直的方向上进行分解,是解决问题的一种十分重要的手段.如果e1、e2是同一平面内的两个不共线的向量,a 是这一平面内的任一向量,那么a 与e 1、e 2之间有什么关系呢?在不共线的两个向量中,垂直是一种重要的情形.把一个向量分解为两个互相垂直的向量,叫做把向量正交分解.在平面上,如果选取互相垂直的向量作为基底,是否会给我们带来更方便的研究呢?思路2.前面我们学习了向量的代数运算以及对应的几何意义,如果将平面内向量的始点放在一起,那么平面内的任意一个点或者任意一个向量是否都可以用这两个同起点的不共线向量来表示呢?这样就引进了平面向量基本定理.教师可以通过多对几个向量进行分解或者合成,在黑板上给出图象进行演示和讲解.如果条件允许,用多媒体教学,通过相应的课件来演示平面上任意向量的分解,对两个不共线的向量都乘以不同的系数后再进行合成将会有什么样的结论?(二)推进新课、新知探究、提出问题图1①给定平面内任意两个不共线的非零向量e 1、e 2,请你作出向量3e 1+2e 2、e 1-2e 2.平面内的任一向量是否都可以用形如λ1e 1+λ2e 2的向量表示呢?②如图1,设e 1、e 2是同一平面内两个不共线的向量,a 是这一平面内的任一向量,我们通过作图研究a 与e 1、e 2之间的关系.活动:如图1,在平面内任取一点O,作=e 1,=e 2,=a .过点C 作平行于直线OB 的直线,与直线OA;过点C 作平行于直线OA 的直线,与直线OB 交于点N.由向量的线性运算性质可知,存在实数λ1、λ2,使得OM =λ1e 1,ON =λ2e 2.由于ON OM OC +=,所以a =λ1e 1+λ2e 2.也就是说,任一向量a 都可以表示成λ1e 1+λ2e 2的形式.由上述过程可以发现,平面内任一向量都可以由这个平面内两个不共线的向量e 1、e 2表示出来.当e 1、e 2确定后,任意一个向量都可以由这两个向量量化,这为我们研究问题带来极大的方便.由此可得:平面向量基本定理:如果e 1、e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1、λ2,使a =λ1e 1+λ2e 2.定理说明:(1)我们把不共线向量e 1、e 2叫做表示这一平面内所有向量的一组基底;(2)基底不唯一,关键是不共线;(3)由定理可将任一向量a 在给出基底e 1、e 2的条件下进行分解;(4)基底给定时,分解形式唯一.讨论结果:①可以.②a =λ1e 1+λ2e 2.提出问题①平面中的任意两个向量之间存在夹角吗?若存在,向量的夹角与直线的夹角一样吗? ②对平面中的任意一个向量能否用两个互相垂直的向量来表示?活动:引导学生结合向量的定义和性质,思考平面中的任意两个向量之间的关系是什么样的,结合图形来总结规律.教师通过提问来了解学生总结的情况,对回答正确的学生进行表扬,对回答不全面的学生给予提示和鼓励.然后教师给出总结性的结论:不共线向量存在夹角,关于向量的夹角,我们规定:图2已知两个非零向量a 和b (如图2),作OA =a ,OB =b ,则∠AOB=θ(0°≤θ≤180°)叫做向量a 与b 的夹角.显然,当θ=0°时,a 与b 同向;当θ=180°时,a 与b 反向.因此,两非零向量的夹角在区间[0°,180°]内.如果a 与b 的夹角是90°,我们说a 与b 垂直,记作a ⊥b .由平面向量的基本定理,对平面上的任意向量a ,均可以分解为不共线的两个向量λ1a 1和λ2a 2,使a =λ1a 1+λ2a 2.在不共线的两个向量中,垂直是一种重要的情形.把一个向量分解为两个互相垂直的向量,叫做把向量正交分解.如上,重力G 沿互相垂直的两个方向分解就是正交分解,正交分解是向量分解中常见的一种情形.在平面上,如果选取互相垂直的向量作为基底时,会为我们研究问题带来方便.讨论结果:①存在夹角且两个非零向量的夹角在区间[0°,180°]内;向量与直线的夹角不一样.②可以.提出问题①我们知道,在平面直角坐标系中,每一个点都可用一对有序实数(即它的坐标)表示.对直角坐标平面内的每一个向量,如何表示呢?②在平面直角坐标系中,一个向量和坐标是否是一一对应的?图3活动:如图3,在平面直角坐标系中,分别取与x 轴、y 轴方向相同的两个单位向量i、j 作为基底.对于平面内的一个向量a ,由平面向量基本定理可知,有且只有一对实数x 、y,使得a =x i+y j ①这样,平面内的任一向量a 都可由x 、y 唯一确定,我们把有序数对(x,y)叫做向量a 的坐标,记作a =(x,y) ②其中x 叫做a 在x 轴上的坐标,y 叫做a 在y 轴上的坐标,②式叫做向量的坐标表示.显然,i=(1,0),j =(0,1),0=(0,0).教师应引导学生特别注意以下几点:(1)向量a 与有序实数对(x,y)一一对应.(2)向量a 的坐标与表示该向量的有向线段的起点、终点的具体位置没有关系,只与其相对位置有关系.如图所示,11B A 是表示a 的有向线段,A 1、B 1的坐标分别为(x 1,y 1)、(x 2,y 2),则向量a 的坐标为x=x 2-x 1,y=y 2-y 1,即a 的坐标为(x 2-x 1,y 2-y 1).(3)为简化处理问题的过程,把坐标原点作为表示向量a 的有向线段的起点,这时向量a 的坐标就由表示向量a 的有向线段的终点唯一确定了,即点A 的坐标就是向量a 的坐标,流程表示如下:讨论结果:①平面内的任一向量a 都可由x 、y 唯一确定,我们把有序数对(x,y)叫做向量a 的坐标,记作a =(x,y).②是一一对应的.(三)应用示例思路1例1 如图4,ABCD,AB =a ,AD =b ,H 、M 是AD 、DC 之中点,F 使BF=31BC,以a ,b 为基底分解向量HF AM 和.图4活动:教师引导学生利用平面向量基本定理进行分解,让学生自己动手、动脑.教师可以让学生到黑板上板书步骤,并对书写认真且正确的同学提出表扬,对不能写出完整解题过程的同学给予提示和鼓励.解:由H 、M 、F 所在位置,有+=+=a b AB AD DC 212121+=+=21=b +21a . 21312131-+=-+-+=-= =a 61-b . 点评:以a 、b 为基底分解向量与HF ,实为用a 与b 表示向量与.变式训练图5 已知向量e 1、e 2(如图5),求作向量-2.5e 1+3e 2作法:(1)如图,任取一点O,作OA =-2.5e 1,OB =3e 2.(2)作OACB. 故OC 就是求作的向量.图6例2 如图6,分别用基底i、j 表示向量a 、b 、c 、d ,并求出它们的坐标.活动:本例要求用基底i 、j 表示a 、b 、c 、d ,其关键是把a 、b 、c 、d 表示为基底i 、j 的线性组合.一种方法是把a 正交分解,看a 在x 轴、y 轴上的分向量的大小.把向量a 用i 、j 表示出来,进而得到向量a 的坐标.另一种方法是把向量a 移到坐标原点,则向量a 终点的坐标就是向量a 的坐标.同样的方法,可以得到向量b 、c 、d 的坐标.另外,本例还可以通过四个向量之间位置的几何关系:a 与b 关于y 轴对称,a 与c 关于坐标原点中心对称,a 与d 关于x 轴对称等.由一个向量的坐标推导出其他三个向量的坐标.解:由图可知,a =1AA +2AA =x i +y j ,∴a =(2,3).同理,b =-2i +3j =(-2,3);c =-2i -3j =(-2,-3);d =2i -3j =(2,-3).点评:本例还可以得到启示,要充分运用图形之间的几何关系,求向量的坐标.变式训练i ,j 是两个不共线的向量,已知=3i +2j ,CB =i +λj ,CD =-2i +j ,若A 、B 、D 三点共线,试求实数λ的值.解:∵=-=(-2i +j )-(i +λj )=-3i +(1-λ)j ,又∵A 、B 、D 三点共线, ∴向量与共线.因此存在实数υ,使得=υ,即3i +2j =υ[-3i +(1-λ)j ]=-3υi +υ(1-λ)j .∵i 与j 是两个不共线的向量,故⎩⎨⎧=-=-,2)1(,33λv v∴⎩⎨⎧=-=.3,1λv ∴当A 、B 、D 三点共线时,λ=3.例 3 下面三种说法:①一个平面内只有一对不共线向量可作为表示该平面的基底;②一个平面内有无数多对不共线向量可作为该平面所有向量的基底;③零向量不可以作为基底中的向量,其中正确的说法是( )A.①②B.②③C.①③D.①②③ 活动:这是训练学生对平面向量基本定理的正确理解,教师引导学生认真地分析和理解平面向量基本定理的真正内涵.让学生清楚在平面中对于基底的选取是不唯一的,只要是同一平面内的两个不共线的向量都可以作为基底.解:平面内向量的基底是不唯一的.在同一平面内任何一组不共线的向量都可作为平面内所有向量的一组基底;而零向量可看成与任何向量平行,故零向量不可作为基底中的向量.综上所述,②③正确.答案:B点评:本题主要考查的是学生对平面向量定理的理解.思路2图7例1 如图7,M 是△ABC 内一点,且满足条件=++320,延长CM 交AB 于N,令CM =a ,试用a 表示.活动:平面向量基本定理是平面向量的重要定理,它是解决平面向量计算问题的重要工具.由平面向量基本定理,可得到下面两个推论:推论1:e 1与e 2是同一平面内的两个不共线向量,若存在实数λ1、λ2,使得λ1e 1+λ2e 2=0,则λ1=λ2=0.推论2:e 1与e 2是同一平面内的两个不共线向量,若存在实数a 1,a 2,b 1,b 2,使得a =a 1e 1+a 2e 2=b 1e 1+b 2e 2,则⎪⎩⎪⎨⎧==.,2211b a b a 解:∵,,NM BN BM NM AN AM +=+= ∴由CM BM AM 32++=0,得=++++3)(2)(0. ∴CM BN NM AN 323+++=0.又∵A 、N 、B 三点共线,C 、M 、N 三点共线,由平行向量基本定理,设,,μλ== ∴=+++μλ3230.∴(λ+2)+(3+3μ)=0. 由于和不共线,∴⎩⎨⎧=+=+,033,02μλ∴⎩⎨⎧-=-=12μλ ∴.NM =-=∴2=+==2a .点评:这里选取NM BN ,作为基底,运用化归思想,把问题归结为λ1e 1+λ2e 2=0的形式来解决.变式训练设e 1与e 2是两个不共线向量,a =3e 1+4e 2,b =-2e 1+5e 2,若实数λ、μ满足λa +μb =5e 1-e 2,求λ、μ的值.解:由题设λa +μb =(3λe 1+4λe 2)+(-2μe 1+5μe 2)=(3λ-2μ)e 1+(4λ+5μ)e 2.又λa +μb =5e 1-e 2.由平面向量基本定理,知⎩⎨⎧-=+=-.154,523λλλλ 解之,得λ=1,μ=-1.图8例2 如图8,△ABC 中,AD 为△ABC 边上的中线且AE=2EC,求GEBG GD AG 及的值. 活动:教师让学生先仔细分析题意,以明了本题的真正用意,怎样把平面向量基本定理与三角形中的边相联系?利用化归思想进行转化完后,然后结合向量的相等进行求解比值.解:设μλ==GEBG GD AG , ∵BD =DC ,即AD -AB =AC -AD , ∴AD =21(AB +AC ). 又∵=λ=λ(-), ∴=λλ+1=)1(2λλ++)1(2λλ+. ① 又∵=μ,即-=μ(-),∴(1+μ)=+μ,=AE AB μμμ+++111 又AE =32AC ,∴AG =μ+11+)1(32μμ+AC . ② 比较①②,∵、AC 不共线, ∴⎪⎪⎩⎪⎪⎨⎧+=++=+.)1(32)1(2,11)1(2μμλλμλλ解之,得⎪⎩⎪⎨⎧==23,4μλ∴.23,4==GE BG GD AG 点评:本例中,构造向量在同一基底下的两种不同表达形式,利用相同基向量的系数对应相等得到一实数方程组,从而进一步求得结果.变式训练过△OAB 的重心G 的直线与边OA 、OB 分别交于P 、Q,设=h ,k =,试证:311=+kh 解:设OA =a ,OB =b ,OG 交AB 于D,则OD =21(OB OA +)=21(a +b )(图略). ∴=32=31(a +b ),OQ OG QG -==31(a +b )-k b =31a +331k -b , OQ OP QP -==h a -k b .∵P 、G 、Q 三点共线,∴λ=. ∴31a +331k -b =λh a -λk b .∴⎪⎪⎩⎪⎪⎨⎧-=-=.331,31k k h λλ 两式相除,得.3311hk h k k h k =+⇒-=-, ∴kh 11+=3. (四)知能训练1.已知G 为△ABC 的重心,设=a ,=b ,试用a 、b 表示向量.2.已知向量a =(x+3,x 2-3x-4)与相等,其中A(1,2),B(3,2),求x.图9解答:1.如图9,=32, 而=+=+=21a +21(b -a )=21a +21b , ∴3232==(21a +21b )=31a +31b . 点评:利用向量加法、减法及数乘的几何意义.2.∵A(1,2),B(3,2),∴=(2,0).∵a=,∴(x+3,x 2-3x-4)=(2,0).∴⎩⎨⎧=--=+043,232x x x 解得⎩⎨⎧=-=-=.41,1x x x 或 ∴x=-1.点评:先将向量用坐标表示出来,然后利用两向量相等的条件就可使问题得到解决.(五)课堂小结1.先由学生回顾本节学习的数学知识:平面向量的基本定理,向量的夹角与垂直的定义,平面向量的正交分解,平面向量的坐标表示.2.教师与学生一起总结本节学习的数学方法,如待定系数法,定义法,归纳与类比,数形结合,几何作图.(六)作业2.3.3 平面向量的坐标运算2.3.4 平面向量共线的坐标表示一、教学分析1.前面学习了平面向量的坐标表示,实际是平面向量的代数表示.在引入了平面向量的坐标表示后可使向量完全代数化,将数与形紧密结合起来,这就可以使很多几何问题的解答转化为学生熟知的数量运算.2.本小节主要是运用向量线性运算的交换律、结合律、分配律,推导两个向量的和的坐标、差的坐标以及数乘的坐标运算.推导的关键是灵活运用向量线性运算的交换律、结合律和分配律.3.引进向量的坐标表示后,向量的线性运算可以通过坐标运算来实现,一个自然的想法是向量的某些关系,特别是向量的平行、垂直,是否也能通过坐标来研究呢?前面已经找出两个向量共线的条件(如果存在实数λ,使得a=λb,那么a与b共线),本节则进一步地把向量共线的条件转化为坐标表示.这种转化是比较容易的,只要将向量用坐标表示出来,再运用向量相等的条件就可以得出平面向量共线的坐标表示.要注意的是,向量的共线与向量的平行是一致的.二、教学目标1、知识与技能:掌握平面向量的坐标运算;会根据向量的坐标,判断向量是否共线。

相关文档
最新文档