数学必修2第二章知识点小结及典型习题
新教材北师大版高中数学必修第二册第二章平面向量及其应用 学案(知识点考点汇总及配套习题)
第二章平面向量及其应用1从位移、速度、力到向量........................................................................................ - 1 - 2从位移的合成到向量的加减法................................................................................ - 8 - 3从速度的倍数到向量的数乘.................................................................................. - 23 - 4平面向量基本定理及坐标表示.............................................................................. - 35 - 5从力的做功到向量的数量积.................................................................................. - 52 - 6平面向量的应用...................................................................................................... - 67 -1从位移、速度、力到向量学习任务核心素养1.理解向量的有关概念及向量的几何表示.(重点) 2.掌握共线向量、相等向量的概念.(难点)3.正确区分向量平行与直线平行.(易混点)通过向量的有关概念的学习,培养数学抽象素养.(1)起重机吊装物体时,物体既受到竖直向下的重力作用,同时又受到竖直向上的起重机拉力的作用.(2)民航每天都有从北京飞往上海、广州、重庆、哈尔滨等地的航班.民航客机飞行一次,位移变化一次,由于飞行的距离和方向各不相同,因此,它们是不同的位移.阅读教材,结合上述情境回答下列问题:问题1:上述情境涉及哪些物理量?其特点是什么? 问题2:在物理中,位移与路程是同一个概念吗?为什么? 问题3:平行向量一定是相等向量吗? 知识点1 向量的概念数学中,我们把既有大小又有方向的量统称为向量,而把那些只有大小没有方向的量称为数量(如年龄、身高、体积等).两个数量可以比较大小,那么两个向量能比较大小吗? [提示] 数量之间可以比较大小,而两个向量不能比较大小. 知识点2 向量的表示方法(1)具有方向和长度的线段,叫作有向线段.以A 为起点,B 为终点的有向线段,记作AB →,线段AB 的长度也叫作有向线段AB →的长度,记作⎪⎪⎪⎪AB →.(2)向量可以用有向线段来表示.有向线段的长度表示向量的大小,即长度(也称模),记作|a |.箭头所指的方向表示向量的方向.知识点3 零向量与单位向量(1)长度为0的向量称为零向量,记作0或0→; (2)模等于1个单位长度的向量,叫作单位向量.1.把平行于某一条直线的所有向量归结到共同的起点,则终点构成的图形是________;若这些向量是单位向量,则终点构成的图形是________.[答案] 一条直线 两个点 知识点4 向量的基本关系(1)相等向量:长度相等且方向相同的向量,叫作相等向量,记作a =b . (2)平行向量:方向相同或相反的非零向量,也叫共线向量;a 平行于b ,记作a ∥b ;规定零向量与任一向量共线.(3)相反向量:长度相等且方向相反的向量,叫作相反向量,a 的相反向量记作-a ;规定零向量的相反向量是零向量.2.下列说法错误的是( ) A .若a =0,则||a =0 B .零向量是没有方向的C .零向量与任意向量平行D .零向量与任意向量垂直B [零向量的长度为0,方向是任意的,它与任何向量都平行、垂直,所以B 是错误的.]知识点5 向量的夹角(1)定义:已知两个非零向量a 和b ,在平面内选一点O ,作OA →=a ,OB →=b ,则∠AOB =θ(0°≤θ≤180°)叫作向量a 与b 的夹角;(2)夹角的大小与向量共线、垂直的关系:θ=0°⇔a 与b 同向;θ=180°⇔a 与b 反向;θ=90°⇔a ⊥b ,规定:零向量与任一向量垂直.3.等边△ABC 中,AB→与AC →的夹角是________,AB →与BC →的夹角是________.[答案] 60° 120°类型1 向量的有关概念【例1】 判断下列命题是否正确,并说明理由. (1)a =b 的充要条件是|a |=|b |且a ∥b ;(2)若AB→=DC →,则A 、B 、C 、D 四点是平行四边形的四个顶点; (3)在平行四边形ABCD 中,一定有AB →=DC →;(4)若向量a 与任一向量b 平行,则a =0.[解] (1)当a ∥b 且方向相反时,即使|a |=|b |,也不能得到a =b ,故|a |=|b |且a ∥b 不是a =b 的充要条件,而是必要不充分条件,故(1)不正确.(2)AB→=DC →,A 、B 、C 、D 四点可能在同一条直线上,故(2)不正确. (3)在平行四边形ABCD 中,|AB →|=|DC →|,AB →与DC →平行且方向相同,故AB →=DC →,(3)正确.(4)零向量的方向是任意的,与任一向量平行,(4)正确.1.向量共线即表示共线向量的有向线段在同一条直线上或平行.2.熟知向量的基本概念,弄清基本概念之间的区别与联系是解决向量概念辨析题的基础.[跟进训练]1.已知O 是△ABC 的外心,则AO →,BO →,CO →是( ) A .相等向量 B .平行向量 C .模相等的向量 D .起点相同的向量C [⎪⎪⎪⎪AO →=⎪⎪⎪⎪BO →=⎪⎪⎪⎪CO →=r .] 类型2 向量的表示【例2】 (教材北师版P 75例1改编)一辆消防车从A 地去B 地执行任务,先从A 地向北偏东30°方向行驶2千米到D 地,然后从D 地沿北偏东60°方向行驶6千米到达C 地,从C 地又向南偏西30°方向行驶了2千米才到达B 地.(1)在如图所示的坐标系中画出AD →,DC →,CB →,AB →; (2)求B 地相对于A 地的位置向量.[解] (1)向量AD →,DC →,CB →,AB →,如图所示. (2)由题意知AD →=BC →, ∴AD 与BC 平行且相等, ∴四边形ABCD 为平行四边形, ∴AB →=DC →,∴B 地相对于A 地的位置向量为“北偏东60°,6千米”.准确画出向量的方法是先确定向量的起点,再确定向量的方向,然后根据向量的大小确定向量的终点.用有向线段来表示向量是向量的几何表示,必须确定起点、长度和终点,三者缺一不可.[跟进训练]2.在如图的方格纸中,画出下列向量.(每个小正方形的边长为1).(1)|OA →|=4,点A 在点O 正北方向;(2)|OB →|=22,点B 在点O 东偏南45°方向;(3)画一个以C 为起点的向量c ,使|c |=2,并说出c 的终点的轨迹是什么? [解] (1)(2)(3)的图象如图所示.(3)c 的终点轨迹是以C 为圆心,半径为2的圆. 类型3 共线向量与夹角【例3】 (教材北师版P 76例2改编)如图,设O 是正六边形ABCDEF 的中心,(1)分别写出图中所示与OA →,OB →,OC →相等的向量; (2)分别求出AB →与OB →,AB →与FE →的夹角的大小.[解] (1)OA →=CB →=DO →;OB →=DC →=EO →;OC →=AB →=ED →=FO →. (2)AB →与OB →的夹角的大小为60°,AB →与FE →的夹角的大小为60°.1.例3中与OA →模相等的向量有多少? [解] 由图知与OA →的模相等的向量有23个. 2.例3中向量OA →的相反向量有哪些?[解] 与向量OA →长度相等方向相反的向量有OD →,BC →,FE →,AO →. 3.例3中与向量OA →共线的向量有哪些?[解] 与向量OA →共线的向量有EF →,BC →,OD →,FE →,CB →,DO →,AO →,DA →,AD →. 4.求出例3中AB →与OA →的夹角的大小 [解] AB →与OA →的夹角的大小为120°.判断一组向量是否相等,关键是看这组向量是否方向相同,长度相等,与起点和终点的位置无关.对于共线向量,则只要判断它们是否同向或反向即可.[跟进训练]3.如图所示,以1×2方格纸中的格点(各线段的交点)为起点和终点的向量中. (1)写出与AF →、AE →相等的向量; (2)写出与AD →模相等的向量; (3)求AE →与CD →夹角的度数. [解] (1)AF →=BE →=CD →,AE →=BD →. (2)DA →,CF →,FC →.(3)因为CD →=AF →,所以AE →与CD →夹角为∠EAF =45°.当堂达标1.下列结论正确的个数是( )①温度含零上和零下温度,所以温度是向量; ②向量a 与b 不共线,则a 与b 都是非零向量; ③若|a |>|b |,则a >b .A .0B .1C .2D .3B [①温度没有方向,所以不是向量,故①错;③向量不可以比较大小,故③错;②若a ,b 中有一个为零向量,则a 与b 必共线,故a 与b 不共线,则应均为非零向量,故②对.]2.(多选题)下列说法错误的是( ) A .若|a |=|b |,则a =±bB .零向量的长度是0C .长度相等的向量称为相等向量D .共线向量是在同一条直线上的向量ACD [对A ,当|a |=|b |时,由于a ,b 方向不一定相同,a =±b 未必成立,所以A 错误;对B ,零向量的长度是0,正确;对C ,长度相等的向量方向不一定相同,故C 错误;对D ,共线向量不一定在同一条直线上,故D 错误.故选ACD.]3.在四边形ABCD 中,AB →=DC →,且|AD →|=|AB →|,则这个四边形是( ) A .正方形 B .矩形 C .等腰梯形 D .菱形 D [由AB →=DC →可知AB ∥DC ,且|AB →|=|DC →|, 所以四边形ABCD 为平行四边形. 又|AD →|=|AB →|,所以平行四边形ABCD 为菱形.故选D.]4.设O 是正方形ABCD 的中心,则OA →,BO →,AC →,BD →中,模相等的向量是________.[答案] OA →与BO →,AC →与BD →5.如图所示的菱形ABCD 中,对角线AC ,BD 相交于点O ,∠DAB =60°,则DA →与CA →的夹角为________;DA →与BC →的夹角为________.30° 180° [由图知,DA →与CA →的夹角与∠DAO 是对顶角,又因∠DAB =60°,根据菱形的几何性质,知∠DAO =30°,故DA →与CA →的夹角为30°,DA →与BC →为相反向量,故DA →与BC →的夹角为180°.]回顾本节内容,自我完成以下问题:1.向量与有向线段有怎样的联系与区别?[提示]用有向线段来表示向量,显示了图形的直观性,应该注意的是有向线段还是向量的表示,并不是说向量就是有向线段.有向线段的起点、终点是确定的,而向量仅由大小和方向确定,与起点位置无关.2.向量的“平行”与平面几何中的“平行”含义是否相同?[提示]共线向量也就是平行向量,其要求是几个非零向量的方向相同或相反,当然向量所在的直线可以平行,也可以重合,其中“平行”的含义不同于平面几何中“平行”的含义.2从位移的合成到向量的加减法2.1向量的加法学习任务核心素养1.掌握向量加法的定义,会用向量加法的三角形法则和向量加法的平行四边形法则作两个向量的和向量.(重点) 2.掌握向量加法的交换律和结合律,并会用它们进行向量计算.(难点)1.通过向量加法的概念及向量加法法则的学习,培养数学抽象素养.2.通过向量加法法则的应用,培养数学运算素养.有两条拖轮牵引一艘轮船,它们的牵引力F1,F2的大小分别是|F1|=3 000 N,|F2|=2 000 N,牵引绳之间的夹角为θ=60°(如图),如果只用一条牵引力为F3的拖轮来牵引,也能产生跟原来相同的效果.阅读教材,结合上述情境回答下列问题: 问题1:上述体现了向量的什么运算? 问题2:向量加法运算常用什么法则? 问题3:向量的加法运算结果还是向量吗? 知识点 向量求和法则及运算律 类别 图示几何意义向量求和的法则三角形法则已知不共线向量a ,b ,在平面内任取一点A ,作AB →=a ,BC →=b ,再作向量AC →,则向量AC →叫作a 与b 的和,记作a +b ,即a +b =AB →+BC →=AC →平行四边形法则已知不共线向量a ,b ,作AB →=a ,AD →=b ,再作平行AD →的BC →=b ,连接DC ,则四边形ABCD 为平行四边形,向量AC →叫作向量a 与b 的和,表示为AC →=a +b向量加法的运算律 交换律 a +b =b +a结合律(a +b )+c =a +(b +c )1.根据图中的平行四边形ABCD ,验证向量加法是否满足交换律.(注:AB →=a ,AD →=b )[提示] ∵AC →=AB →+BC →,∴AC →=a +b . ∵AC →=AD →+DC →,∴AC →=b +a .∴a +b =b +a .2.根据图中的四边形ABCD ,验证向量加法是否满足结合律.(注:AB →=a ,BC →=b ,CD →=c )[提示] ∵AD →=AC →+CD →=(AB →+BC →)+CD →,∴AD →=(a +b )+c , 又∵AD →=AB →+BD →=AB →+(BC →+CD →), ∴AD →=a +(b +c ), ∴(a +b )+c =a +(b +c ).思考辨析(正确的画“√”,错误的画“×”) (1)0+a =a +0=a ;( ) (2)AB →+BC →=AC →;( ) (3)AB →+BA →=0;( )(4)在平行四边形ABCD 中,BA →+BC →=BD →;( ) (5)|AB →|+|BC →|=|AC →|.( )[答案] (1)√ (2)√ (3)√ (4)√ (5)×类型1 向量加法法则的应用【例1】 (教材北师版P 81例1改编)(1)如图①,用向量加法的三角形法则作出a +b ;(2)如图②,用向量加法的平行四边形法则作出a +b .[解] (1)在平面内任取一点O ,作OA →=a ,AB →=b ,再作向量OB →,则OB →=a +b .(2)在平面内任取一点O ,作OA →=a ,OB →=b ,再作平行OB →的AC →=b ,连接BC ,则四边形OACB 为平行四边形,OC →=a +b .用三角形法则求和向量,关键是抓住“首尾相连”,和向量是第一个向量的起点指向第二个向量的终点,平行四边形法则注意“共起点”.且两种方法中,第一个向量的起点可任意选取,可在某一个向量上,也可在其它位置.两向量共线时,三角形法则仍适用,平行四边形法则不适用.[跟进训练]1.已知向量a ,b ,c ,如图,求作a +b +c .[解] 在平面内任取一点O ,作OA →=a ,AB →=b ,BC →=c ,如图,则由向量加法的三角形法则,得OB →=a +b ,OC →=a +b +c .类型2 向量加法及其运算律 【例2】 化简下列各式: (1)BC →+AB →; (2)DB →+CD →+BC →;(3)AB →+DF →+CD →+BC →+F A →.所给各式均为向量和的形式,因此可利用三角形法则和向量加法的运算律求解.[解] (1)BC →+AB →=AB →+BC →=AC →.(2)DB →+CD →+BC →=(DB →+BC →)+CD →=DC →+CD →=0或DB →+CD →+BC →=(DB →+CD →)+BC →=(CD →+DB →)+BC →=CB →+BC →=0.(3)AB →+DF →+CD →+BC →+F A →=AB →+BC →+CD →+DF →+F A →=AC →+CD →+DF →+F A →=AD →+DF →+F A →=AF →+F A →=0.向量运算中化简的两种方法(1)代数法:借助向量加法的交换律和结合律,将向量转化为“首尾相接”,向量的和即为第一个向量的起点指向最后一个向量终点的向量.(2)几何法:通过作图,根据“三角形法则”或“平行四边形法则”化简.[跟进训练]2.如图,在平行四边形ABCD 中(1)AB →+AD →=________; (2)AC →+CD →+DO →=________; (3)AB →+AD →+CD →=________; (4)AC →+BA →+DA →=________.(1)AC → (2)AO → (3)AD → (4)0 [(1)由平行四边形法则知,AB →+AD →=AC →.(2)AC →+CD →+DO →=AD →+DO →=AO →. (3)AB →+AD →+CD →=AC →+CD →=AD →.(4)∵BA →=CD →,∴AC →+BA →+DA →=AC →+CD →+DA →=AD →+DA →=0.] 类型3 向量加法的实际应用【例3】 (教材北师版P 81例2改编)在静水中船的速度为20 m/min ,水流的速度为10 m/min ,如果船从岸边出发沿垂直于水流的航线到达对岸,求船行进的方向.速度是向量,因此需要作出船的速度与水流速度的示意图,把实际问题转化为三角形中求角度问题.[解] 作出图形,如图.船速v 船与岸的方向成α角,由图可知v 水+v 船=v 实际,结合已知条件,四边形ABCD 为平行四边形, 在Rt △ACD 中,|CD →|=|AB →|=v 水=10 m/min , |AD →|=|v 船|=20 m/min , ∴cos α=|CD →||AD →|=1020=12,∴α=60°,从而船与水流方向成120°的角. 故船行进的方向是与水流的方向成120°的角的方向.1.若例3条件不变,则经过3小时,该船的实际航程是多少? [解] 由题意可知|AC →|=32|AD →|=32×20=103(m/min)=335(km/h), 则经过3小时,该船的实际航程是3×335=935(km).2.若例3的条件不变,改为若船沿垂直于水流的方向航行,求船实际行进的方向的正切值(相当于河岸的夹角).[解] 如图所示,|AD →|=|BC →|=|v 船|=20 m/min , |AB →|=|v 水|=10 m/min ,则tan ∠BAC =2,即为所求.应用向量解决平面几何问题的基本步骤(1)表示:用向量表示有关量,将所要解答的问题转化为向量问题.(2)运算:应用向量加法的平行四边形法则和三角形法则,将有关向量进行运算,解答向量问题.(3)还原:根据向量的运算结果,结合向量共线、相等等概念回答原问题.[跟进训练]3.作用在同一物体上的两个力F 1=60 N ,F 2=60 N ,当它们的夹角为120°时,这两个力的合力大小为( )A .30 NB .60 NC .90 ND .120 N [答案] B当堂达标1.已知四边形ABCD 是菱形,则下列等式中成立的是( ) A .AB →+BC →=CA →B .AB →+AC →=BC → C .AC →+BA →=AD →D .AC →+AD →=DC →C [由加法的平行四边形法则可知AB →+AD →=AC →,即(-BA →)+AD →=AC →,所以AC →+BA →=AD →.]2.(多选题)如图,D 、E 、F 分别是△ABC 的边AB 、BC 、CA 的中点,则下列等式中正确的是( )A .FD →+DA →+DE →=0B .AD →+BE →+CF →=0C .FD →+DE →+AD →=AB →D .AD →+EC →+FD →=BD →ABC [FD →+DA →+DE →=F A →+DE →=0, AD →+BE →+CF →=AD →+DF →+F A →=0, FD →+DE →+AD →=FE →+AD →=AD →+DB →=AB →, AD →+EC →+FD →=AD →+0=AD →=DB →≠BD →.故选ABC.]3.已知在矩形ABCD 中,AB =2,BC =3,则AB →+BC →+AC →的模等于________. 213 [|AB →+BC →+AC →|=|2AC →|=2|AC →|=213.] 4.根据图填空,其中a =DC →,b =CO →,c =OB →,d =BA →.(1)a +b +c =________; (2)b +d +c =________.(1)DB → (2)CA → [(1)a +b +c =DC →+CO →+OB →=DB →. (2)b +d +c =CO →+BA →+OB →=CA →.]5.若a 表示“向东走8 km ”,b 表示“向北走8 km ”,则: (1)|a +b |=________;(2)向量a +b 的方向是________.(1)82 (2)北偏东45°(或东北方向) [(1)如图所示,作OA →=a ,AB →=b ,则a +b =OA →+AB →=OB →,所以|a +b |=|OB →|=82+82=8 2. (2)因为∠AOB =45°, 所以a +b 的方向是东北方向.]回顾本节内容,自我完成以下问题:1.如何灵活选择三角形法则或平行四边形法则求向量的和?[提示](1)三角形法则和平行四边形法则都是求向量和的基本方法,两个法则是统一的,当两个向量首尾相连时常选用三角形法则,当两个向量共起点时,常选用平行四边形法则.(2)向量的加法满足交换律,因此在进行多个向量的加法运算时,可以按照任意的次序和任意的组合去进行.2.利用三角形法则求向量的加法时应注意什么问题?[提示]在使用向量加法的三角形法则时要特别注意“首尾相接”.和向量的特征是从第一个向量的起点指向第二个向量的终点.向量相加的结果是向量,如果结果是零向量,一定要写成0,而不应写成0.2.2向量的减法学习任务核心素养1.掌握向量减法的定义,理解相反向量的意义.(重点)2.掌握向量减法的运算及几何意义,能作出两个向量的差向量.(难点)1.通过向量减法的概念及减法法则的学习,培养数学抽象素养.2.通过向量减法法则的应用,培养数学运算素养.小明的父亲在台北工作,他经常乘飞机从台北到香港开会,再从香港到上海洽谈业务.若台北到香港的位移用向量a表示,香港到上海的位移用向量b表示,台北到上海的位移用向量c表示.阅读教材,综合上述情境回答下列问题: 问题1:上述问题中,b 能用a ,c 表示吗?问题2:方向相同且模相等的两个向量称为什么向量?方向相反且模相等的两个向量称为什么向量?问题3:零向量的相反向量是什么? 问题4:向量减法是向量加法的逆运算吗? 知识点1 相反向量定义把与向量a 长度相等、方向相反的向量,叫作向量a 的相反向量,记作-a规定:零向量的相反向量仍是零向量. 性质(1)-(-0)=0;(2)a +(-a )=(-a )+a =0;(3)若a +b =0,则a =-b ,b =-a .知识点2 向量减法 (1)定义向量a 减向量b 等于向量a 加上向量b 的相反向量,即a -b =a +(-b ),求两个向量差的运算,叫作向量的减法.(2)几何意义如图,设OA →=a ,OB →=b ,则BA →=a -b ,即a -b 表示为从向量b 的终点指向向量a 的终点的向量.向量的减法可以转化为向量的加法来运算吗?[提示] 因为向量的减法是向量的加法的逆运算,所以向量的减法可以转化为向量的加法来运算.1.思考辨析(正确的画“√”,错误的画“×”) (1)BA →=OA →-OB →; ( ) (2)相反向量是共线向量; ( ) (3)a -b 的相反向量是b -a ; ( ) (4)|a -b |≤|a +b |≤|a |+|b |.( )[答案] (1)√ (2)√ (3)√ (4)√2.OP →-QP →+PS →+SP →=( ) A .QP → B .OQ → C .SP → D .SQ → [答案] B类型1 向量减法的几何作图【例1】 (教材北师版P 84例4改编)如图,已知向量a ,b ,c 不共线,求作向量a +b -c .[解] 如图所示,在平面内任取一点O ,作OA →=a ,AB →=b ,则OB →=a +b ,再作OC →=c ,则CB →=a +b -c .若本例条件不变,则a -b -c 如何作?[解] 如图,在平面内任取一点O ,作OA →=a ,OB →=b ,则BA →=a -b .再作CA →=c ,则BC →=a -b -c .利用向量减法进行几何作图的方法(1)已知向量a ,b ,如图①所示,作OA →=a ,OB →=b ,则BA →=a -b .,(2)利用相反向量作图,通过向量求和的平行四边形法则作出a -b .如图②所示,作OA →=a ,OB →=b ,AC →=-b ,则OC →=a +(-b ),即BA →=a -b .[跟进训练]1.如图所示,O 为△ABC 内一点,OA →=a ,OB →=b ,OC →=c ,求作:(1)向量b +c -a ; (2)向量a -b -c .[解] (1)以OB →,OC →为邻边作▱OBDC ,如图,连接OD ,AD ,则OD →=OB →+OC →=b +c ,AD →=OD →-OA →=b +c -a .(2)由a -b -c =a -(b +c ),如图,作▱OBEC ,连接OE ,则OE →=OB →+OC →=b +c ,连接AE ,则EA →=a -(b +c )=a -b -c .类型2 向量减法的运算 【例2】 化简下列式子: (1)NQ →-PQ →-NM →-MP →; (2)(AB →-CD →)-(AC →-BD →).[解] (1)原式=NP →+MN →-MP →=NP →+PN →=NP →-NP →=0.(2)原式=AB →-CD →-AC →+BD →=(AB →-AC →)+(DC →-DB →)=CB →+BC →=0.化简向量的和差的方法(1)如果式子中含有括号,括号里面能运算的直接运算,不能运算的去掉括号. (2)可以利用相反向量把差统一成和,再利用三角形法则进行化简.(3)化简向量的差时注意共起点,由减数向量的终点指向被减数向量的终点. 提醒:利用图形中的相等向量代入、转化是向量化简的重要技巧.[跟进训练]2.化简:(1)(BA →-BC →)-(ED →-EC →); (2)(AC →+BO →+OA →)-(DC →-DO →-OB →).[解] (1)(BA →-BC →)-(ED →-EC →)=CA →-CD →=DA →. (2)(AC →+BO →+OA →)-(DC →-DO →-OB →)=AC →+BA →-DC →+(DO →+OB →)=AC →+BA →-DC →+DB → =BC →-DC →+DB →=BC →+CD →+DB →=BC →+CB →=0. 类型3 向量加减法的综合应用【例3】 (1)已知|a |=1,|b |=2,|a +b |=5,则|a -b |=________. (2)(教材北师版P 85例6改编)已知O 为平行四边形ABCD 内一点,OA →=a ,OB →=b ,OC →=c ,试用a ,b ,c 表示OD →.(1)5 [(1)设AB →=a ,AD →=b ,AC →=a +b ,则四边形ABCD 是平行四边形. 又∵(5)2=12+22,∴平行四边形ABCD 为矩形, ∴|a -b |=⎪⎪⎪⎪DB →=|AC →|= 5.] (2)[解]如图所示:OD →=OA →+AD →=a +BC →=a +(OC →-OB →)=a +c -b .用已知向量表示未知向量的方法用图形中的已知向量表示所求向量,应结合已知和所求,联想相关的法则和几何图形的有关定理,将所求向量反复分解,直到全部可以用已知向量表示即可.[跟进训练]3.设平面内四边形ABCD 及任一点O ,OA →=a ,OB →=b ,OC →=c ,OD →=d ,若a +c =b +d 且|a -b |=|a -d |.试判断四边形ABCD 的形状.[解] 由a +c =b +d 得a -b =d -c ,即OA →-OB →=OD →-OC →, ∴BA →=CD →,于是AB 与CD 平行且相等, ∴四边形ABCD 为平行四边形.又|a -b |=|a -d |,从而|OA →-OB →|=|OA →-OD →|, ∴|BA →|=|DA →|,∴四边形ABCD 为菱形.当堂达标1.在△ABC 中,AB →=a ,AC →=b ,则BC →=( ) A .a +b B .a -b C .b -aD .-a -bC [BC →=AC →-AB →=b -a .]2.如图,在四边形ABCD 中,设AB →=a ,AD →=b ,BC →=c ,则DC →等于( )A .a -b +cB .b -(a +c )C .a +b +cD .b -a +c [答案] A3.(多选题)下列四个式子中可以化简为AB →的是( ) A .AC →+CD →-BD → B .AC →-CB → C .OA →+OB →D .OB →-OA →.AD [因为AC →+CD →-BD →=AD →-BD →=AD →+DB →=AB →,所以A 正确;因为OB →-OA →=AB →,所以D 正确,故选AD.]4.设正方形ABCD 的边长为2,则|AB →-CB →+AD →-CD →|=________. 42 [如图,原式=|(AB →+AD →)-(CB →+CD →)|=|AC →-CA →|=|AC →+AC →|=2|AC →|, ∵正方形边长为2, ∴2|AC →|=4 2.]5.已知非零向量a ,b 满足|a +b |=|a -b |,则a 与b 的位置关系为________.(填“平行”或“垂直”)垂直 [如图所示,设OA →=a ,OB →=b ,以OA 、OB 为邻边作平行四边形, 则|a +b |=|OC →|, |a -b |=|BA →|, 又|a +b |=|a -b |, 则|OC →|=|BA →|,即平行四边形OACB 的对角线相等, ∴平行四边形OACB 是矩形, ∴a ⊥b .]回顾本节内容,自我完成以下问题: 1.向量减法的实质是什么?[提示]向量减法是向量加法的逆运算.即减去一个向量等于加上这个向量的相反向量.2.在用三角形法则作向量减法时,应注意什么问题?[提示]在用三角形法则作向量减法时,要注意“差向量连接两向量的终点,箭头指向被减向量”.解题时要结合图形,准确判断,区分a-b与b-a.3从速度的倍数到向量的数乘3.1向量的数乘运算学习任务核心素养1.掌握向量数乘的运算及其运算律.(重点)2.理解数乘向量的几何意义.(重点)1.通过向量数乘概念的学习,培养数学抽象素养;2.通过向量数乘的运算及其运算律的应用,培养数学运算素养.夏季的雷雨天,我们往往先看到闪电,后听到雷声,这说明声速与光速的大小不同,光速是声速的88万倍.阅读教材,结合上述情境回答下列问题:问题1:若设光速为v1,声速为v2,将向量类比于数,则v1与v2有何关系?问题2:实数与向量相乘结果是实数还是向量?(1)实数λ与向量a的乘积是一个向量,记作λa.(2)|λa|=|λ||a|.(3)方向:λa 的方向⎩⎨⎧当λ>0时,与a 的方向相同;当λ<0时,与a 的方向相反;当λ=0时,0a =0.(4)几何意义:当λ>0时,表示向量a 的有向线段在原方向伸长或缩短为原来的|λ|倍;当λ<0时,表示向量a 的有向线段在反方向伸长或缩短为原来的|λ|倍.若a ∥b ,b ∥c ,那么一定有a ∥c 吗?[提示] 不一定,若b =0,此时必有a ∥b ,b ∥c 成立,但a 与c 不一定共线.1.已知|a |=2,|b |=3,若两向量方向相同,则向量a 与向量b 的关系为b=________a .32 [由于|a |=2,|b |=3,则|b |=32|a |,又两向量同向,故b =32a .] 知识点2 数乘运算的运算律 设λ,μ为实数,a ,b 为向量,则 (1)(λ+μ)a =λ a +μ a ; (2)λ(μa )=(λμ)a ; (3)λ(a +b )=λa +λb .向量的线性运算:向量的加法、减法和数乘的综合运算,通常称为向量的线性运算(或线性组合).2.思考辨析(正确的画“√”,错误的画“×”) (1)若λa =0则λ=0.( ) (2)对于非零向量a ,向量-2a 与向量a 方向相反. ( ) (3)当a 是非零向量,-1||a a 是与向量a 反向的单位向量.( )[答案] (1)× (2)√ (3)√类型1 向量数乘运算的定义【例1】 已知a 、b 为非零向量,试判断下列各命题的真假,并说明理由. (1)2a 的方向与a 的方向相同; (2)|-2a |=32|3a |;(3)1||a a 是单位向量; (4)a +b 与-a -b 是一对相反向量. [解] (1)真命题.∵2>0, ∴2a 的方向与a 的方向相同. (2)假命题.|-2a |=||-2|a |=2|a |=23|3a |. (3)真命题.⎪⎪⎪⎪⎪⎪1||a a =⎪⎪⎪⎪⎪⎪1||a ||a =1||a ||a =1.(4)真命题.∵a +b 与-a -b 是一对相反向量,且-(a +b )=-a -b , ∴a +b 与-a -b 是一对相反向量.对数乘向量的三点说明(1)向量数乘运算的几何意义是把a 沿着a 的方向或a 的反方向扩大或缩小. (2)当λ=0或a =0时,λa =0.反之,也成立, (3)数乘向量的运算不满足消去律.[跟进训练]1.已知λ∈R ,a ≠0,则在下列各命题中,正确的命题有( ) ①当λ>0时,λa 与a 的方向一定相同; ②当λ<0时,λa 与a 的方向一定相反; ③当λa 与a 的方向相同时,λ>0; ④当λa 与a 的方向相反时,λ<0.A .1个B .2个C .3个D .4个D [由λ与向量a 的乘积λa 的方向规定,易知①②③④正确.] 类型2 向量的线性运算【例2】 (教材北师版P 88例1改编)计算下列各式: (1)2(a +b )-3(a -b ); (2)3(a -2b +c )-(2a +b -3c ); (3)12⎣⎢⎡⎦⎥⎤(3a +2b )-⎝ ⎛⎭⎪⎫a +12b -2⎝ ⎛⎭⎪⎫12a +38b .[解] (1)原式=2a -3a +2b +3b =-a +5b ; (2)原式=3a -6b +3c -2a -b +3c =a -7b +6c ; (3)原式=12⎝ ⎛⎭⎪⎫2a +32b -a -34b =a +34b -a -34b =0.1.向量的数乘运算类似于代数多项式的运算,主要是“合并同类项”,但这里的“同类项”指向量,实数看作是向量的系数.2.对于线性运算,把握运算顺序为:正用分配律去括号→逆用分配律合并.[跟进训练]2.(1)化简23⎣⎢⎡⎦⎥⎤(4a -3b )+13b -14(6a -7b );(2)设向量a =3i +2j ,b =2i -j ,求⎝ ⎛⎭⎪⎫13a -b -⎝ ⎛⎭⎪⎫a -23b +(2b -a ). [解] (1)原式=23⎣⎢⎡⎦⎥⎤4a -3b +13b -32a +74b=23⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫4-32a +⎝ ⎛⎭⎪⎫-3+13+74b =23⎝ ⎛⎭⎪⎫52a -1112b =53a -1118b ;(2)原式=13a -b -a +23b +2b -a =⎝ ⎛⎭⎪⎫13-1-1a +⎝ ⎛⎭⎪⎫-1+23+2b =-53a +53b=-53(3i +2j )+53(2i -j ) =⎝ ⎛⎭⎪⎫-5+103i +⎝ ⎛⎭⎪⎫-103-53j =-53i -5j .类型3 向量线性运算的应用【例3】 已知任意四边形ABCD 中,E 、F 分别是AD 、BC 的中点.求证:EF →=12(AB →+DC →).1.若D 是△ABC 的边BC 的中点,如何用AB →,AC →表示AD →? [提示] 由三角形法则知, AD →=AB →+BD →, AD →=AC →+CD →,两式相加得2AD →=⎝⎛⎭⎫AB →+BD →+⎝⎛⎭⎫AC →+CD →=⎝⎛⎭⎫AB →+AC →+⎝⎛⎭⎫BD →+CD →=AB →+AC →,所以AD →=12⎝⎛⎭⎫AB →+AC →.2.在△ABC 中,若AD →=12⎝⎛⎭⎫AB →+AC →,则D 是否是△ABC 的边BC 的中点? [提示] 设D ′是边BC 的中点,则AD ′→=12⎝⎛⎭⎫AB →+AC →,又AD →=12⎝⎛⎭⎫AB →+AC →, 则AD ′→=AD →, 所以D 与D ′重合, 所以D 是边BC 的中点.[证明] 取以点A 为起点的向量,应用三角形法则求证,如图. ∵E 为AD 的中点, ∴AE →=12AD →.∵F 是BC 的中点,∴AF →=12(AB →+AC →). 又∵AC →=AD →+DC →,∴AF →=12(AB →+AD →+DC →)=12(AB →+DC →)+12AD →. ∴EF →=AF →-AE →=12(AB →+DC →)+12AD →-12AD →=12(AB →+DC →).用已知向量表示其他向量的两种方法(1)直接法(2)方程法当直接表示比较困难时,可以首先利用三角形法则和平行四边形法则建立关于所求向量和已知向量的等量关系,然后解关于所求向量的方程.[跟进训练]3.在△ABC 中,D 、E 分别是AB 、AC 的中点.求证:DE →=12BC →. [证明] ∵D 为AB 的中点, ∴AD →=12AB →.∵E 是AC 的中点,∴AE →=12AC →.∴DE →=AE →-AD →=12AC →-12AB →=12⎝⎛⎭⎫AC →-AB →=12BC →.当堂达标1.(多选题)已知m ,n 是实数,a ,b 是向量,则下列命题中正确的为( ) A .m (a -b )=m a -m b B .(m -n )a =m a -n a C .若m a =m b ,则a =bD .若m a =n a ,则m =n .AB [A 和B 属于数乘运算对向量与实数的分配律,正确;C 中,若m =0,则不能推出a =b ,错误;D 中,若a =0,则m ,n 没有关系,错误.]2. 在△ABC 中,如果AD ,BE 分别为BC ,AC 上的中线,且AD →=a ,BE →=b ,那么BC →等于( )A .23a +43bB .23a -23bC .23a -43bD .-23a +43bA [由题意,得BC →=BE →+EC →=b +12AC →=b +12(AD →+DC →)=b +12a +14BC →,即BC →=b +12a +14BC →,解得BC →=23a +43b .]3.设D ,E ,F 分别为△ABC 的三边BC ,CA ,AB 的中点,则EB →+FC →等于( ) A .BC → B .12AD → C .AD →D .12BC →C [EB →+FC →=EC →+CB →+FB →+BC →=EC →+FB →=12(AC →+AB →)=12·2AD →=AD →.] 4.若2⎝ ⎛⎭⎪⎫x -13a -12(c +b -3x )+b =0,其中a 、b 、c 为已知向量,则未知向量x =________.421a -17b +17c [据向量的加法、减法整理、运算可得x =421a -17b +17c .] 5.如图所示,已知AP →=43AB →,用OA →,OB →表示OP →.则OP →=________.-13OA →+43OB → [OP →=OA →+AP →=OA →+43AB →=OA →+43(OB →-OA →)=-13OA →+43OB →.]回顾本节内容,自我完成以下问题: 1.数乘向量的运算中应注意什么问题?[提示] 实数λ与向量a 可作数乘,但实数λ不能与向量a 进行加、减运算,如λ+a ,λ-a 都是无意义的.还必须明确λa 是一个向量,λ的符号与λa 的方向相关,|λ|的大小与λa 的模有关.2.利用数乘运算的几何意义时应注意什么问题?[提示] 利用数乘运算的几何意义可以得到两个向量共线的判定定理及性质定理,一定要注意,向量的共线(平行)与直线共线(或平行)的区别;常用向量共线解决平面几何中的“平行”或“点共线”问题.。
高中数学必修2知识点加例题加课后习题
高中数学必修二第一章 空间几何体1.1空间几何体的结构 1、棱柱定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。
分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。
表示:用各顶点字母,如五棱柱或用对角线的端点字母,如五棱柱'''''E D C B A ABCDE -几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。
2、棱锥定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等表示:用各顶点字母,如五棱锥'''''E D C B A P -几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。
3、棱台定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等表示:用各顶点字母,如四棱台ABCD—A'B'C'D'几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点4、圆柱定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。
5、圆锥定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。
6、圆台定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。
数学必修二第二章知识点总结
数学必修二第二章知识点总结第二章是数学必修二课程中的重要章节,主要涵盖了函数的概念、函数图像与性质、函数的运算以及反函数等内容。
本文将对这一章节的知识点进行总结,以帮助读者更好地掌握相关知识。
1. 函数的概念函数是数学中的一个重要概念,它描述了两个集合之间的一种特殊关系,即每个自变量对应唯一的因变量。
函数可用符号表示为 y = f(x),其中 x 为自变量,y 为因变量,f 表示函数。
2. 函数的图像与性质函数的图像是函数在坐标系中的几何表示,通常是曲线或直线。
函数的性质包括定义域、值域、单调性、奇偶性等。
定义域是函数能够取值的自变量的范围,值域是函数实际取到的因变量的范围。
函数的单调性描述了函数在定义域上的增减情况,可以是增函数、减函数或常函数。
奇偶性是函数的一种对称性质,一个函数可分为奇函数或偶函数,或者既不是奇函数也不是偶函数。
3. 函数的运算函数的运算主要包括四则运算、复合函数与反函数。
四则运算即加减乘除运算,可以对函数进行加减乘除操作。
复合函数指的是将一个函数的结果作为另一个函数的输入,也就是将两个函数逐步嵌套使用。
反函数是指与原函数具有互逆关系的函数,即输入和输出对换的函数。
4. 一次函数与二次函数一次函数是指次数为一的多项式函数,它的图像是一条直线。
一次函数的一般式为 y = kx + b,其中 k 表示斜率,b 表示与 y 轴交点。
二次函数是指次数为二的多项式函数,它的图像是一个抛物线。
二次函数的一般式为 y = ax^2 + bx + c,其中 a 表示开口方向和抛物线开口的大小,b 表示抛物线位置的水平偏移量,c 表示抛物线位置的垂直偏移量。
5. 绝对值函数与倒数函数绝对值函数是指函数的结果取绝对值的函数,它的图像是一个 V 字形曲线。
绝对值函数的一般式为 y = |x|,其中 x 为自变量,y 为因变量。
倒数函数是指与原函数相乘等于 1 的函数,也就是结果取其倒数的函数。
6. 对数函数与指数函数对数函数是指函数的结果通过指数变换得到的函数,常见的对数函数有自然对数函数和常用对数函数。
2023年数学必修二第二章知识点
2023年数学必修二第二章知识点2023年数学必修二第二章知识点1直线与平面有几种位置关系直线与平面的关系有3种:直线在平面上,直线与平面相交,直线与平面平行。
其中直线与平面相交,又分为直线与平面斜交和直线与平面垂直两个子类。
直线在平面内——有无数个公共点;直线与平面相交——有且只有一个公共点;直线与平面平行——没有公共点。
直线与平面相交和平行统称为直线在平面外。
直线与平面垂直的判定:如果直线L与平面α内的任意一直线都垂直,我们就说直线L与平面α互相垂直,记作L⊥α,直线L叫做平面α的垂线,平面α叫做直线L的垂面。
线面平行:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。
平面外一条直线与此平面的垂线垂直,则这条直线与此平面平行。
直线与平面的夹角范围[0,90°]或者说是[0,π/2]这个范围。
当两条直线非垂直的相交的时候,形成了4个角,这4个角分成两组对顶角。
两个锐角,两个钝角。
按照规定,选择锐角的那一对对顶角作为直线和直线的夹角。
直线的方向向量m=(2,0,1),平面的法向量为n=(-1,1,2),m,n夹角为θ,cosθ=(m_n)/|m||n|,结果等于0.也就是说,l和平面法向量垂直,那么l平行于平面。
l和平面夹角就为0°提高数学成绩的技巧是什么课内重视听讲,课后及时复习接受一种新的知识,主要实在课堂上进行的,所以要重视课堂上的学习效率,找到适合自己的学习方法,上课时要跟住老师的思路,积极思考。
下课之后要及时复习,遇到不懂的地方要及时去问,在做作业的时候,先把老师课堂上讲解的内容回想一遍,还要牢牢的掌握公式及推理过程,尽量不要去翻书。
尽量自己思考,不要急于翻看答案。
还要经常性的总结和复习,把知识点结合起来,变成自己的知识体系。
多做题,养成良好的解题习惯要想学好数学,大量做题是必可避免的,熟练地掌握各种题型,这样才能有效的提高数学成绩。
刚开始做题的时候先以书上习题为主,答好基础,然后逐渐增加难度,开拓思路,练习各种类型的解题思路,对于容易出现错误的题型,应该记录下来,反复加以联系。
高中数学必修2第1、2章知识点+习题
第一章 空间几何体1.1柱、锥、台、球的结构特征1 三视图:正视图:从前往后 侧视图:从左往右 俯视图:从上往下 2 画三视图的原则:长对齐、高对齐、宽相等 3直观图:斜二测画法 4斜二测画法的步骤:(1).平行于坐标轴的线依然平行于坐标轴;(2).平行于y 轴的线长度变半,平行于x ,z 轴的线长度不变; (3).画法要写好。
5 用斜二测画法画出长方体的步骤:(1)画轴(2)画底面(3)画侧棱(4)成图空间几何体的表面积与体积(一 )空间几何体的表面积1棱柱、棱锥的表面积: 各个面面积之和2 圆柱的表面积3 圆锥的表面积2r rl S ππ+=4 圆台的表面积22R Rl r rl S ππππ+++= 5 球的表面积24R S π=(二)空间几何体的体积 1柱体的体积 h S V ⨯=底2锥体的体积 h S V ⨯=底313台体的体积 h S S S S V ⨯++=)31下下上上(4球体的体积 334R V π=第一章 空间几何体一、选择题1.有一个几何体的三视图如下图所示,这个几何体可能是一个( ).222r rl S ππ+=主视图 左视图 俯视图 (第1题)A .棱台B .棱锥C .棱柱D .正八面体2.如果一个水平放置的平面图形的斜二测直观图是一个底角为45°,腰和上底均为1的等腰梯形,那么原平面图形的面积是( ).A .2+2B .221+ C .22+2 D .2+13.棱长都是1的三棱锥的表面积为( ). A .3B .23C .33D .434.长方体的一个顶点上三条棱长分别是3,4,5,且它的8个顶点都在同一球面上,则这个球的表面积是( ).A .25πB .50πC .125πD .都不对5.正方体的棱长和外接球的半径之比为( ). A .3∶1B .3∶2C .2∶3D .3∶36.在△ABC 中,AB =2,BC =1.5,∠ABC =120°,若使△ABC 绕直线BC 旋转一周,则所形成的几何体的体积是( ).A .29π B .27π C .25π D .23π 7.若底面是菱形的棱柱其侧棱垂直于底面,且侧棱长为5,它的对角线的长分别是9和15,则这个棱柱的侧面积是( ).A .130B .140C .150D .1608.如图,在多面体ABCDEF 中,已知平面ABCD 是边长为3的正方形,EF ∥AB ,EF =23,且EF 与平面ABCD 的距离为2,则该多面体的体积为( ).A .29 B .5C .6D .215 9.下列关于用斜二测画法画直观图的说法中,错误..的是( ). A .用斜二测画法画出的直观图是在平行投影下画出的空间图形 B .几何体的直观图的长、宽、高与其几何体的长、宽、高的比例相同C.水平放置的矩形的直观图是平行四边形D.水平放置的圆的直观图是椭圆10.如图是一个物体的三视图,则此物体的直观图是().(第10题)二、填空题11.一个棱柱至少有______个面,面数最少的一个棱锥有________个顶点,顶点最少的一个棱台有________条侧棱.12.若三个球的表面积之比是1∶2∶3,则它们的体积之比是_____________.13.正方体ABCD-A1B1C1D1 中,O是上底面ABCD的中心,若正方体的棱长为a,则三棱锥O-AB1D1的体积为_____________.14.如图,E,F分别为正方体的面ADD1A1、面BCC1B1的中心,则四边形BFD1E在该正方体的面上的射影可能是___________.15.已知一个长方体共一顶点的三个面的面积分别是2、3、6,则这个长方体的对角线长是___________,它的体积为___________.16.一个直径为32厘米的圆柱形水桶中放入一个铁球,球全部没入水中后,水面升高9厘米则此球的半径为_________厘米.三、解答题17.有一个正四棱台形状的油槽,可以装油190 L,假如它的两底面边长分别等于60 cm和40 cm,求它的深度.18 *.已知半球内有一个内接正方体,求这个半球的体积与正方体的体积之比.[提示:过正方体的对角面作截面]19.如图,在四边形ABCD中,∠DAB=90°,∠ADC=135°,AB=5,CD=22,AD=2,求四边形ABCD绕AD旋转一周所成几何体的表面积及体积.(第19题)20.养路处建造圆锥形仓库用于贮藏食盐(供融化高速公路上的积雪之用),已建的仓库的底面直径为12 m,高4 m,养路处拟建一个更大的圆锥形仓库,以存放更多食盐,现有两种方案:一是新建的仓库的底面直径比原来大4 m(高不变);二是高度增加4 m(底面直径不变).(1)分别计算按这两种方案所建的仓库的体积;(2)分别计算按这两种方案所建的仓库的表面积;(3)哪个方案更经济些?第二章 直线与平面的位置关系2.1空间点、直线、平面之间的位置关系1 平面含义:平面是无限延展的2 平面的画法及表示 (1)平面的画法:水平放置的平面通常画成一个平行四边形,锐角画成450,且横边画成邻边的2倍长(如图)(2)平面通常用希腊字母α、β、γ等表示,如平面α、平面β等,也可以用表示平面的平行四边形的四个顶点或者相对的两个顶点的大写字母来表示,如平面AC 、平面ABCD 等。
学生版 高中数学必修2直线与圆的位置关系知识点总结经典例题与习题
高中数学必修2 直线与圆的位置关系【一】、圆的定义及其方程.(1)圆的定义:平面内与定点距离等于定长的点的集合(轨迹)叫做圆,定点叫做圆心,定长就是半径;(圆心是定位条件,半径是定型条件) (2)圆的标准方程: ;圆心),(b a圆的一般方程:)04(02222>-+=++++F E D F Ey Dx y x ;圆心 ,半径为 ;【二】、点与圆的位置关系(仅以标准方程为例,其他形式,则可化为标准式后按同样方法处理)设),(00y x P 与圆222)()(r b y a x =-+-;若P 到圆心之距为d ; ①P 在在圆C 外 ; ②P 在在圆C 内 ; ③P 在在圆C 上 ; 【三】、直线与圆的位置关系:设直线0:=++C By Ax l 和圆222)()(:r b y a x C =-+-,圆心C 到直线l 之距为d ,由直线l 和圆C 联立方程组消去x (或y )后,所得一元二次方程的判别式为∆,则它们的位置关系如下:相离 ;相切 ;相交 ; 注意:这里用d 与r 的关系来判定,称为几何法,只有对圆才实用,也是最简便的方法;利用∆判定称为代数法,对讨论直线和二次曲线的位置关系都适应。
【四】、两圆的位置关系:(1)代数法:解两个圆的方程所组成的二元二次方程组;若方程组有两组不同的实数解,则两圆相交;若方程组有两组相同的实数解,则两圆相切;若无实数解,两圆相离。
(2)几何法:设圆1O 的半径为1r ,圆2O 的半径为2r①两圆外离 ; ②两圆外切 ; ③两圆相交 ; ④两圆内切 ⑤两圆内含 ;(五)已知圆C :(x-a)2+(y-b)2=r 2(r>0),直线L :Ax+By+C=01.位置关系的判定:判定方法1:联立方程组得到关于x(或y)的方程(1)△>0相交;(2)△=0相切;(3)△<0相离。
判定方法2:若圆心(a,b)到直线L的距离为d(1)d<r相交;(2)d=r相切;(3)d>r相离。
高一数学必修二各章知识点总结
【导语】如果把⾼中三年去挑战⾼考看作⼀次越野长跑的话,那么⾼中⼆年级是这个长跑的中段。
与起点相⽐,它少了许多的⿎励、期待,与终点相⽐,它少了许多的掌声、加油声。
它是孤⾝奋⽃的阶段,是⼀个耐⼒、意志、⾃控⼒⽐拚的阶段。
但它同时是⼀个厚实庄重的阶段,这个时期形成的优势有实⼒。
⾼⼆频道为你整理了《⾼⼀数学必修⼆各章知识点总结》,学习路上,为你加油! 【第⼀章空间⼏何体】 1.1空间⼏何体的结构 1.2空间⼏何体的三视图和直观图 阅读与思考画法⼏何与蒙⽇ 1.3空间⼏何体的表⾯积与体积 探究与发现祖暅原理与柱体、椎体、球体的体积 实习作业 ⼩结 复习参考题 【第⼆章点、直线、平⾯之间的位置关系】 2.1空间点、直线、平⾯之间的位置关系 2.2直线、平⾯平⾏的判定及其性质 2.3直线、平⾯垂直的判定及其性质 阅读与思考欧⼏⾥得《原本》与公理化⽅法 ⼩结 复习参考题 【第三章直线与⽅程】 3.1直线的倾斜⾓与斜率 探究与发现魔术师的地毯 3.2直线的⽅程 3.3直线的交点坐标与距离公式 阅读与思考笛卡⼉与解析⼏何 ⼩结 复习参考题 【第四章圆与⽅程】 4.1圆的⽅程 阅读与思考坐标法与机器证明 4.2直线、圆的位置关系 4.3空间直⾓坐标系 信息技术应⽤⽤《⼏何画板》探究点的轨迹:圆 ⼩结 复习参考题 【函数知识点】 ⼀、定义与定义式: ⾃变量x和因变量y有如下关系: y=kx+b 则此时称y是x的⼀次函数。
特别地,当b=0时,y是x的正⽐例函数。
即:y=kx(k为常数,k≠0) ⼆、⼀次函数的性质: 1.y的变化值与对应的x的变化值成正⽐例,⽐值为k 即:y=kx+b(k为任意不为零的实数b取任何实数) 2.当x=0时,b为函数在y轴上的截距。
三、⼀次函数的图像及性质: 1.作法与图形:通过如下3个步骤 (1)列表; (2)描点; (3)连线,可以作出⼀次函数的图像——⼀条直线。
因此,作⼀次函数的图像只需知道2点,并连成直线即可。
数学第二章直线与方程小结与复习教案北师大必修2
第二章直线与方程小结与复习一、教材分析:本节课是对第二章的基本知识和方法的总结与归纳,从整体上来把握本章,使学生基本知识系统化和网络化,基本方法条理化。
本章内容大致分为三个部分:(1)直线的倾斜角和斜率;(2)直线方程;(3)两条直线的位置关系。
可采用分单元小结的方式,让学生自己回顾和小结各单元知识。
再此基础上,教师可对一些关键处予以强调。
比如可重申解析几何的基本思想——坐标法,并用解析几何的基本思想串联全章知识,使全章知识网络更加清晰。
指出本章学习要求和要注意的问题,可让学生阅读教科书中“学习要求和要注意的问题”有关内容。
教师重申坐标法、函数与方程思想、数形结合思想、化归与转化思想及分类与讨论思想等数学思想方法在本章中的特殊地位。
二、教学目标:通过总结和归纳直线与方程的知识,对全章知识内容进行一次梳理,突出知识间的内在联系,进一步提高学生综合运用知识解决问题的能力。
能够使学生综合运用知识解决有关问题,培养学生分析、探究和思考问题的能力,激发学生学习数学的兴趣,培养分析讨论的思想和抽象思维能力。
三、教学重点:1.直线的倾斜角和斜率.2.直线的方程和直线的位置关系的应用.3.激发学生学习数学的兴趣,培养分类讨论的思想和抽象思维能力.教学难点:1、数形结合和分类讨论思想的渗透和理解.2、处理直线综合问题的策略.四、教学过程(一).知识要点:学生阅读教材113P 的小结部分.(二).典例解析1.例1.下列命题正确的有 ⑤ :①每条直线都有唯一一个倾斜角与之对应,也有唯一一个斜率与之对应;②倾斜角的范围是:0°≤α<180°,且当倾斜角增大时,斜率也增大;③过两点A(1,2),B(m,-5)的直线可以用两点式表示;⑤直线Ax+By+C=0(A,B 不同时为零),当A,B,C 中有一个为零时,这个方程不能化为截距式.⑥若两直线平行,则它们的斜率必相等;⑦若两直线垂直,则它们的斜率相乘必等于-1.2.例 2.若直线062:1=++y ax l 与直线01)1(:22=-+-+a y a x l ,则12l l 与相交时,a_________;21//l l 时,a=__________;这时它们之间的距离是________;21l l ⊥时,a=________ .答案:a 2a 1≠≠-且;a 1=-2a 3= 3.例3.求满足下列条件的直线方程:(1)经过点P(2,-1)且与直线2x+3y+12=0平行;(2)经过点Q(-1,3)且与直线x+2y-1=0垂直;(3)经过点R(-2,3)且在两坐标轴上截距相等;(4)经过点M(1,2)且与点A(2,3)、B(4,-5)距离相等;答案: (1)2x+3y-1=0; (2)2x-y+5=0;(3)x+y-1=0或3x+2y=0; (4)4x+y-6=0或3x+2y-7=04.例4.已知直线L 过点(1,2),且与x ,y 轴正半轴分别交于点A 、B (1)求△AOB 面积为4时L 的方程。
必修二数学知识点归纳
必修二数学知识点归纳第一章空间几何1. 直线和平面的方程2. 直线与平面的位置关系3. 直线与平面的交点4. 直线与平面的夹角和距离5. 空间中的平行和垂直关系6. 直线与空间中的曲面的位置关系7. 空间中的投影和距离第二章解析几何1. 平面直角坐标系2. 点、直线和曲线的坐标表示3. 点、直线和曲线的性质4. 直线的斜率和截距5. 直线的倾斜角和斜率的关系6. 直线与圆的位置关系7. 圆的标准方程和一般方程8. 曲线的一般方程和特殊方程第三章函数与导数1. 函数的概念和表示方法2. 函数的性质和分类3. 函数的图像与性质4. 极坐标系和参数方程5. 函数的单调性和极值点6. 幂函数、指数函数与对数函数7. 三角函数及其性质8. 函数的复合与反函数9. 导数的定义和性质10. 导数的计算和应用第四章导数的应用1. 函数的极值与最值2. 函数的单调性与凹凸性3. 高阶导数与函数的泰勒展开式4. 函数的图形与导数5. 函数的极限和连续性6. 驻点和拐点的判断7. 函数的应用问题:最优化问题,曲线的切线与法线,函数的估值与逼近第五章不等式与函数图像1. 代数不等式的基本性质2. 一元二次不等式的解法3. 高次多项式不等式的解法4. 绝对值不等式的解法5. 不等式的证明方法6. 函数图像的性质与变化趋势7. 函数的奇偶性与对称性8. 根据函数的图像作函数不等式的解第六章概率与统计1. 随机事件与样本空间2. 概率的基本概念和性质3. 条件概率与乘法定理4. 全概率公式与贝叶斯公式5. 随机变量的概念和性质6. 随机变量的分布函数与概率密度函数7. 期望值与方差的概念和计算8. 典型离散分布和连续分布9. 抽样分布与统计推断10. 统计图表和统计量的应用。
高一数学必修二第二章知识点归纳
高一数学必修二第二章知识点归纳(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如演讲稿、总结报告、合同协议、方案大全、工作计划、学习计划、条据书信、致辞讲话、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of classic sample essays, such as speech drafts, summary reports, contract agreements, project plans, work plans, study plans, letter letters, speeches, teaching materials, essays, other sample essays, etc. Want to know the format and writing of different sample essays, so stay tuned!高一数学必修二第二章知识点归纳每学完一个单元,要建立本单元的知识框架,将本章的主要思路、推理方法及运用技巧等转变成自己的实际技能,也要善于归纳总结知识间的联系。
数学必修二第二章知识点总结
数学必修二第二章知识点总结一、函数的概念与表示方法1. 函数定义:一个从集合A到集合B的映射,记为$f: A\rightarrow B$。
2. 函数的表示方法:- 公式法:$y = f(x)$- 图像法:通过坐标平面上的点集表示函数- 表格法:列出一系列的$(x, f(x))$值对二、函数的性质1. 单调性:- 单调递增:对于任意$x_1 < x_2$,有$f(x_1) \leq f(x_2)$ - 单调递减:对于任意$x_1 < x_2$,有$f(x_1) \geq f(x_2)$ 2. 奇偶性:- 奇函数:满足$f(-x) = -f(x)$- 偶函数:满足$f(-x) = f(x)$3. 周期性:存在正数T,使得对于任意x,有$f(x + T) = f(x)$三、函数的基本类型1. 一次函数:$y = ax + b$,其中a和b为常数2. 二次函数:$y = ax^2 + bx + c$,其中a、b和c为常数3. 指数函数:$y = a^x$,其中a>0且a≠14. 对数函数:$y = \log_a(x)$,其中a>0且a≠15. 三角函数:- 正弦函数:$y = \sin(x)$- 余弦函数:$y = \cos(x)$- 正切函数:$y = \tan(x)$四、函数的运算1. 函数的加法、减法、乘法和除法:- $(f + g)(x) = f(x) + g(x)$- $(f - g)(x) = f(x) - g(x)$- $(f \cdot g)(x) = f(x) \cdot g(x)$- $(f / g)(x) = \frac{f(x)}{g(x)}$,要求$g(x) \neq 0$ 2. 复合函数:$(f \circ g)(x) = f(g(x))$五、函数的图像1. 一次函数图像:直线2. 二次函数图像:抛物线3. 指数函数图像:指数曲线4. 对数函数图像:对数曲线5. 三角函数图像:- 正弦函数:波形曲线- 余弦函数:波形曲线- 正切函数:周期性波动曲线六、函数的应用1. 实际问题的建模与解决2. 优化问题中的最值求解3. 物理和工程问题中的应用请将以上内容复制到Word文档中,并根据实际需要进行格式设置,如标题加粗、分点符号的使用、段落缩进等,以确保文档的专业性。
高中数学必修知识点总结:第二章_直线与平面的位置关系
第二章直线与平面的位置关系1. 三个公理:<1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内公理1作用:判断直线是否在平面内<2)公理2:过不在一条直线上的三点,有且只有一个平面。
公理2作用:确定一个平面的依据。
<3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。
公理3作用:判定两个平面是否相交的依据2.空间的两条直线有如下三种关系:相交直线:同一平面内,有且只有一个公共点;共面直线平行直线:同一平面内,没有公共点;异面直线:不同在任何一个平面内,没有公共点。
3.公理4:平行于同一条直线的两条直线互相平行。
公理4作用:判断空间两条直线平行的依据。
4.等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补5.注意点:① a'与b'所成的角的大小只由a、b的相互位置来确定,与O的选择无关,为简便,点O一般取在两直线中的一条上;b5E2RGbCAP② 两条异面直线所成的角θ∈(0, >;③ 当两条异面直线所成的角是直角时,我们就说这两条异面直线互相垂直,记作a⊥b;④ 两条直线互相垂直,有共面垂直与异面垂直两种情形;⑤ 计算中,通常把两条异面直线所成的角转化为两条相交直线所成的角。
6.直线与平面有三种位置关系:<1)直线在平面内——有无数个公共点<2)直线与平面相交——有且只有一个公共点<3)直线在平面平行——没有公共点7.直线与平面平行的判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。
简记为:线线平行,则线面平行。
8.两个平面平行的判定定理:一个平面内的两条交直线与另一个平面平行,则这两个平面平行。
9.定理:一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行。
简记为:线面平行则线线平行。
作用:利用该定理可解决直线间的平行问题。
10.定理:如果两个平面同时与第三个平面相交,那么它们的交线平行。
新课程标准数学必修2第二章课后习题解答[唐金制]
A 新课程标准数学必修2第二章课后习题解答第二章 点 、直线、平面之间的位置关系2.1空间点、直线、平面之间的位置关系练习(P43) 1、D ; 2、(1)不共面的四点可确定4个平面;(2)共点的三条直线可确定1个或3个平面 3、(1)× (2)√ (3)√ (4)√4、(1)A ∈α,B ∉α; (2)M ∉α,M ∈a ; (3)a ⊂α a ⊂β练习(P48) 1、(1)3条。
分别是BB ’,CC ’,DD ’. (2)相等或互补2、(1)∵BC ∥B ’C ’,∴∠B ’C ’A’是异面直线A ’C ’与BC 所成的角。
在RT△A ’B ’C ’中,A ’B ’B ’C ’B ’C ’A ’=45°.因此,异面直线A ’C ’与BC 所成的角为45°(2)∵AA ’∥BB’,∴∠B ’BC ’是异面直线AA ’与BC ’所成的角。
在RT △B ’BC ’中,B ’C ’BB ’=AA=2,∴BC ’=4,∠B ’BC ’=60°.因此,异面直线AA ’与BC ’所成的角为60°练习(P49) B练习(P50)三个平面两两相交,它们的交线有一条或三条习题2.1 A 组(P51)1、图略 2、图略3、(1)√ (2)× (3)√ (4)× (5)×4、(1)θ, (2)8, (3)2, (4)平行或在这个平面内, (5)b ∥平面α或b 与α相交, (6)可能相交,也可能是异面直线。
5、两条平行直线确定一个平面,第三条直线有两点在此平面内,所以它也在这个平面内。
于是,这三条直线共面。
6、提示:利用平行关系的传递性证明AA ’∥CC ’,又利用相等关系的传递性证明AA ’=CC ’,因此,我们可得平行四边形ACC ’A ’,然后由平行四边形的性质得AB=A ’B ’,AC=A ’C ’,BC=B ’C ’,因此,△ABC ≌△A ’B ’C ’。
高中数学必修2(人教B版)第二章平面解析几何初步2.2知识点总结含同步练习题及答案
|a| = |b|
⋯⋯②
由 ①② 解得 a = b = 5 或 a = −1 ,b = 1 ,所以直线方程为 x + y − 5 = 0 或 x − y + 1 = 0. (ii)当 a = b = 0 时,直线过原点和 P (2, 3) ,所以直线方程为 3x − 2y = 0 . 综上可知,所求直线方程为 x + y − 5 = 0 或 x − y + 1 = 0 或 3x − 2y = 0 . 已知三角形的顶点是 A(−5, 0) ,B(3, −3) ,C (0, 2) ,求 AC 边所在直线的方程,以及该边上的 中线所在直线的方程. 解:过点 A(−5, 0) ,C (0, 2) 的两点式方程为
直线的基本量与方程 直线与直线的位置关系 直线的相关计算
三、知识讲解
1.直线的基本量与方程 描述: 直线的倾斜角 当直线l 与x 轴相交时,我们取 x 轴作为基准,x 轴正向与直线 l 向上方向之间所成的角α叫做直 线l 的倾斜角(angle of inclination).直线倾斜角α 的取值范围为0 ∘ ≤ α < 180 ∘ .
2 y − (−3) x−3 由两点式得直线 BD 的方程为 ,整理可得 8x + 11y + 9 = 0 ,这就是 = 1 − (−3) −5 − 3 2 AC 边上的中线所在直线的方程.
⎪ ⎩
2.直线与直线的位置关系 描述: 直线 l 1 :y = k1 x + b 1 ,l 2 :y = k2 x + b 2 . 当 l 1 与 l 2 平行时,则 k1 = k2 且 b 1 ≠ b 2 ; 当 l 1 与 l 2 重合时,则 k1 = k2 且 b 1 = b 2 ; 当 l 1 与 l 2 相交时,则 k1 ≠ k2 ,特别地,若两直线垂直,则 k1 ⋅ k2 =#43; B 1 y + C1 = 0, A 2 1 + B 1 ≠ 0 ,l 2 :A 2 x + B 2 y + C2 = 0, A 2 + B 2 ≠ 0 . 当 l 1 与 l 2 平行时,则 A 1 B 2 = A 2 B 1 且 B 1 C2 ≠ B 2 C1 ; 当 l 1 与 l 2 重合时,则 A 1 B 2 = A 2 B 1 且 B 1 C2 = B 2 C1 ; 当 l 1 与 l 2 相交时,则 A 1 B 2 ≠ A 2 B 1 ,特别地,若两直线垂直,则 A 1 A 2 + B 1 B 2 = 0 . 例题: 直线 3x − 2y + m = 0 和 (m 2 + 1)x + 3y − 3m = 0 的位置关系是( A.平行 B.重合 C.相交 D.不确定 解:两直线的斜率分别为 交. )
数学必修二第二章知识点总结
数学必修二第二章知识点总结数学必修二第二章知识点总结总结是事后对某一阶段的学习、工作或其完成情况加以回顾和分析的一种书面材料,它可以促使我们思考,不如立即行动起来写一份总结吧。
那么总结要注意有什么内容呢?下面是小编为大家整理的数学必修二第二章知识点总结,仅供参考,大家一起来看看吧。
直线与平面有几种位置关系直线与平面的关系有3种:直线在平面上,直线与平面相交,直线与平面平行。
其中直线与平面相交,又分为直线与平面斜交和直线与平面垂直两个子类。
直线在平面内——有无数个公共点;直线与平面相交——有且只有一个公共点;直线与平面平行——没有公共点。
直线与平面相交和平行统称为直线在平面外。
直线与平面垂直的判定:如果直线L与平面α内的任意一直线都垂直,我们就说直线L与平面α互相垂直,记作L⊥α,直线L叫做平面α的垂线,平面α叫做直线L的垂面。
线面平行:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。
平面外一条直线与此平面的垂线垂直,则这条直线与此平面平行。
直线与平面的夹角范围[0,90°]或者说是[0,π/2]这个范围。
当两条直线非垂直的相交的时候,形成了4个角,这4个角分成两组对顶角。
两个锐角,两个钝角。
按照规定,选择锐角的那一对对顶角作为直线和直线的夹角。
直线的方向向量m=(2,0,1),平面的法向量为n=(-1,1,2),m,n 夹角为θ,cosθ=(m_n)/|m||n|,结果等于0.也就是说,l和平面法向量垂直,那么l平行于平面。
l和平面夹角就为0°提高数学成绩的技巧是什么课内重视听讲,课后及时复习接受一种新的知识,主要实在课堂上进行的,所以要重视课堂上的学习效率,找到适合自己的学习方法,上课时要跟住老师的思路,积极思考。
下课之后要及时复习,遇到不懂的地方要及时去问,在做作业的时候,先把老师课堂上讲解的内容回想一遍,还要牢牢的掌握公式及推理过程,尽量不要去翻书。
尽量自己思考,不要急于翻看答案。
数学必修二第二章知识点总结
数学必修二第二章知识点总结数学必修二第二章知识点总结总结是事后对某一阶段的学习、工作或其完成情况加以回顾和分析的一种书面材料,它可以促使我们思考,不如立即行动起来写一份总结吧。
那么总结要注意有什么内容呢?下面是小编为大家整理的数学必修二第二章知识点总结,仅供参考,大家一起来看看吧。
直线与平面有几种位置关系直线与平面的关系有3种:直线在平面上,直线与平面相交,直线与平面平行。
其中直线与平面相交,又分为直线与平面斜交和直线与平面垂直两个子类。
直线在平面内——有无数个公共点;直线与平面相交——有且只有一个公共点;直线与平面平行——没有公共点。
直线与平面相交和平行统称为直线在平面外。
直线与平面垂直的判定:如果直线L与平面α内的任意一直线都垂直,我们就说直线L与平面α互相垂直,记作L⊥α,直线L叫做平面α的垂线,平面α叫做直线L的垂面。
线面平行:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。
平面外一条直线与此平面的垂线垂直,则这条直线与此平面平行。
直线与平面的夹角范围[0,90°]或者说是[0,π/2]这个范围。
当两条直线非垂直的相交的时候,形成了4个角,这4个角分成两组对顶角。
两个锐角,两个钝角。
按照规定,选择锐角的那一对对顶角作为直线和直线的夹角。
直线的方向向量m=(2,0,1),平面的法向量为n=(-1,1,2),m,n 夹角为θ,cosθ=(m_n)/|m||n|,结果等于0.也就是说,l和平面法向量垂直,那么l平行于平面。
l和平面夹角就为0°提高数学成绩的技巧是什么课内重视听讲,课后及时复习接受一种新的知识,主要实在课堂上进行的,所以要重视课堂上的学习效率,找到适合自己的学习方法,上课时要跟住老师的思路,积极思考。
下课之后要及时复习,遇到不懂的地方要及时去问,在做作业的时候,先把老师课堂上讲解的内容回想一遍,还要牢牢的掌握公式及推理过程,尽量不要去翻书。
尽量自己思考,不要急于翻看答案。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章 点线面位置关系总复习1、(1)平面含义:平面是无限延展的,没有大小,厚薄之分。
另外,注意平面的表示方法。
(2)点与平面的关系:点A 在平面内,记作;点不在平面α内,记作A α∉点与直线的关系:点A 的直线l 上,记作:A ∈l ;点A 在直线l 外,记作A ∉l ;直线与平面的关系:直线l 在平面α内,记作l ⊂α;直线l 不在平面α内,记作l ⊄α。
2、四个公理与等角定理:(1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内. 符号表示为A ∈LB ∈L ⇒ L α A ∈α B ∈α公理1作用:判断直线是否在平面内.(只要找到直线的两点在平面内,则直线在平面内) (2)公理2:过不在一条直线上的三点,有且只有一个平面。
符号表示为:A 、B 、C 三点不共线 => 有且只有一个平面α, 使A ∈α、B ∈α、C ∈α。
公理2的三个推论:(1):经过一条直线和这条直线外的一点,有且只有一个平面。
(2):经过两条相交直线,有且只有一个平面。
(3):经过两条平行直线,有且只有一个平面。
公理2作用:确定一个平面的依据。
(3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。
符号表示为:P ∈α∩β =>α∩β=L ,且P ∈L公理3说明:两个不重合的平面只要有公共点,那么它们必定交于一条过该公共点的直线,且线唯一。
公理3作用:判定两个平面是否相交的依据,是证明三线共点、三点共线的依据。
即:①判定两个平面相交的方法。
②说明两个平面的交线与两个平面公共点之间的关系:交线必过公共点。
③可以判断点在直线(交线)上,即证若干个点共线的重要依据。
(4)公理4:平行于同一条直线的两条直线互相平行。
a ∥bc ∥b强调:公理4实质上是说平行具有传递性,在平面、空间这个性质都适用。
公理4作用:判断空间两条直线平行的依据。
(表明空间中平行于一条已知直线的所有直线都互相平行)(5)等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补. 3、(1)证明共面问题:方法1是先证明由某些元素确定一个平面,在证明其余元素也在这个平面内。
方法2是先证明分别由不同元素确定若干个平面,再证明这些平面重合。
(2)证明三点共线问题的方法:先确定其中两点在某两个平面的交线上,再证明第三点是这两个平面的公共点,则第三个点在必然在这两个平面的交线上。
(3)证明三线共点问题的方法:先证明其中两条直线交于一点,再证明第三条直线也经过这个点。
4、异面直线:不同在任何一个平面内的两条直线。
(既不平行也不相交的两条直线) ① 异面直线定义:不同在任何一个平面内的两条直线 ② 异面直线性质:既不平行,又不相交。
L A· α C · B·A · α P · αL β ⇒a ∥c//a b//a b③ 异面直线判定:过平面外一点与平面内一点的直线与平面内不过该点的直线是异面直线 ④ 异面直线所成角:直线a 、b 是异面直线,经过空间任意一点O ,分别引直线a ’∥a ,b ’∥b ,则把直线a ’和b ’所成的锐角(或直角)叫做异面直线a 和b 所成的角。
两条异面直线所成角的范围是(0°,90°],若两条异面直线所成的角是直角,我们就说这两条异面直线互相垂直。
(两条直线互相垂直,有共面垂直与异面垂直两种情形) 说明:(1)判定空间直线是异面直线方法:①根据异面直线的定义;②异面直线的判定定理(2)在异面直线所成角定义中,空间一点O 是任取的,而和点O 的位置无关。
(3)求异面直线所成角步骤:(一作、二证、三计算)第一步作角:先固定其中一条直线,在这条直线取一点,过这个点作另一条直线的平行先;或两条同时平移到某个特殊的位置,顶点选在特殊的位置上。
第二步证明作出的角即为所求角。
第三步利用三角形边长关系计算出角。
(思路是把两条异面直线所成的角转化为两5、空间中直线与直线、直线与平面、平面与平面之间的位置关系 (1)空间两条直线的位置关系有且只有三种:相交直线:同一平面内,有且只有一个公共点; 平行直线:同一平面内,没有公共点;异面直线:不同在任何一个平面内,没有公共点。
(2)直线与平面的位置关系有且只有三种: ①直线在平面内——有无数个公共点②直线与平面相交 —— 有且只有一个公共点 ③直线在平面平行 —— 没有公共点指出:直线与平面相交或平行的情况统称为直线在平面外,可用a α来表示 三种位置关系的符号表示:a ⊂α a ∩α=A a ∥α 注意直线与平面的位置关系其他分类:(1)按直线与平面的公共点数分类: (自己补充) (2)按直线是否与平面平行分类:(3)按直线是否在平面内分类:(3)平面与平面之间的位置关系有且只有两种:(按有无公共点分类)①两个平面平行——没有公共点;α∥β。
b 。
6、空间中的平行问题(1)线线平行的判定方法:②公理4:平行于同一条直线的两条直线互相平行③线面平行的性质定理://a a bαβαβ⊂⋂= ④线面垂直的性质定理: a b αα⊥⊥ ⇒○5面面平行的性质定理://a bαβγαγβ⋂=⋂=⇒ (2)直线与平面平行的判定及其性质线面平行的判定定理:平面外一条直线与此平面内一条直线平行,则该直线与此平面平行。
⇒证明线面平行,只要在平面内找一条直线b 与直线a 平行即可。
一般情况下,我们会用线面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交, 线面平行⇒线线平行 性质定理的作用:利用该定理可解决直线间的平行问题共面直线//a b//a α线面平行的判定方法: ①线面平行的定义:直线与平面无公共点 ②判定定理:⇒③面面平行的性质://a αββ⊂ ⇒ 那么这两个平面平行(线面平行⇒面面平行), 两个平面平行的性质定理与结论:①如果两个平行平面都和第三个平面相交,那么它们的交线平行。
(面面平行→线线平行) ②如果两个平面平行,那么某一个平面内的直线与另一个平面平行。
(面面平行→线面平行) 面面平行的判定方法:①面面平行的定义:两个平面无公共点。
②判定定理:////a b a b a b Pββαα⊂⊂⋂= ⇒//αβ③线面垂直的性质定理:a a αβ⊥⊥ ⇒//αβ ④公理四的推广: ////a γβγ⇒//αβ 7 ①两条异面直线的垂直:如果两条异面直线所成的角是直角,就说这两条异面直线互相垂直。
②线面垂直:如果一条直线和一个平面内的任何一条直线垂直,就说这条直线和这个平面垂直。
③平面和平面垂直:如果两个平面相交,所成的二面角(从一条直线出发的两个半平面所组,就说这两个平面垂直。
(共面垂直、异面垂直) ②线面垂直的性质: αα⊂⊥b a , ⇒a b ⊥ ⇒a b ⊥ 判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直这个平面。
判定线面垂直,只要在平面内找到 两条相交直线 与已知直线垂直即可(注意:两条直线必须相交)经常用到的知识点有:①等腰三角形三线合一(中线,角平分线,高),如果取等腰三角形底边的中点,连接顶点与中点的线既是中线也是高,所以,这条线垂直于底边;②正方形的对角线是互相垂直的;③三角形勾股逆定理222c b a =+,可以推出a 边与b 边垂直;④如果是要证异面垂直的两条直线,一般采用线面垂直来证明一条线垂直于另一条线所在的平面,从而得到两条异面直线垂直;○5采用三垂线定理或者其逆定理得到两条直线垂直。
性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行。
//a b a bαα⊄⊂//a α(时,∥或)θαα=︒⊂0b b 线面垂直的判定方法:①线面垂直的定义 ②线面垂直的判定定理: a ba cb c A b c αα⊥⊥⋂=⊂⊂ ⇒a α⊥③平行线垂直平面的传递性推论://a a bα⊥ ⇒b α⊥ ④面面平行的性质结论:αβα⊥a ,//⇒a β⊥○5面面垂直的性质定理: l a αβαβα⊥⋂=⊂ ⇒a β⊥ (3)面面垂直的判定定理和性质定理性质定理:如果两个平面互相垂直,那么在一个平面内垂直于他们的交线的直线垂直于另一个平面。
面面垂直的判定方法①面面垂直的定义:两个平面相交所成的二面角是直二面角②面面垂直的判定定理:a a αβ⊂⊥ αβ⊥③面面平行的性质结论:γαβα⊥,//⇒βγ⊥8、空间角问题 空间角的计算步骤:一作,二证,三计算 (①两平行直线所成的角:规定为 0。
②两条相交直线所成的角:两条直线相交其中不大于直角的角,叫这两条直线所成的角。
③两条异面直线所成的角:过空间任意一点O ,分别作与两条异面直线a ,b 平行的直线b a '',,形成两条相交直线,这两条相交直线所成的不大于直角的角θ叫做两条异面直线所成的角,θ的范围为(0°,90°]。
注意:(1)异面直线所成的角θ:0°<θ≤90°(锐角或者直角)(2)计算中,通常把两条异面直线所成的角转化为两条相交直线所成的角。
(3)角AOB 的度数并不等于直线AO 与直线BO 所成的角。
(2)直线和平面所成的角①平面的平行线与平面所成的角:规定为0。
②平面的垂线与平面所成的角:规定为90。
③平面的斜线与平面所成的角:平面的一条斜线和它在平面内的射影所成的锐角,叫做这条直线和这个平面所成的角,取值范围为(0°,90°)。
由①②③直线与平面所成的角θ的范围为[0°,90°]。
求斜线与平面所成角的思路类似于求异面直线所成角:“一作,二证,三计算”。
关键的步骤是“作角”(斜线和射影所成的角)A OB求线面角的方法(求一条直线与平面所成的角,就是要找这条直线在平面α上的射影,射影与它的直线所成的角即为线面角,即作垂线,找射影)①定义:斜线和它在平面内的射影的夹角叫做斜线和平面所成的角(或斜线和平面的夹角)②方法:作直线上任意一点到面的垂线,与线面交点相连,利用直角三角形有关知识求得三角形其中一角就是该线与平面的夹角。
③在解题时,注意挖掘题设中两个主要信息:1、斜线上一点到面的垂线;2、过斜线上的一点或过斜线的平面与已知面垂直,由面面垂直性质易得垂线。
(3)二面角和二面角的平面角①二面角的定义:从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的棱,这两个半平面叫做二面角的面。
②二面角的平面角:以二面角的棱上任意一点为顶点,在两个面内...棱的两条射..分别作垂直于线,这两条射线所成的角叫二面角的平面角。
③直二面角:平面角是直角的二面角叫直二面角。