2020新八年级数学下册期中试题

合集下载

2020年八年级下册期中数学试卷(含答案解析)

2020年八年级下册期中数学试卷(含答案解析)

八年级(下)期中数学试卷一、选择题(共10小题,每题3分,共30分)1.(3分)的值是()A.2 B.﹣2 C.±2 D.42.(3分)下列二次根式中,x的取值范围是x≥3的是()A.B.C.D.3.(3分)下列各组三条线段组成的三角形是直角三角形的是()A.2,3,4 B.1,1,C.6,8,11 D.2,2,34.(3分)下列式子是最简二次根式的是()A.B.C.D.5.(3分)下列各式计算错误的是()A.B.C.D.6.(3分)下列三个命题:①对顶角相等;②两直线平行,内错角相等;③相等的两个实数的平方也相等.它们的逆命题成立的个数是()A.0个B.1个C.2个D.3个7.(3分)如图所示,一根树在离地面9米处断裂,树的顶部落在离底部12米处.树折断之前()米.A.15 B.20 C.3D.248.(3分)如图,已知圆柱底面的周长为6cm,圆柱高为3cm,在圆柱的侧面上,过点A和点C嵌有一圈金属丝,则这圈金属丝的周长最小为()cm.A.3B.6C.D.69.(3分)如图,动点P从(0,3)出发,沿箭头所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角.当点P第2018次碰到矩形的边时,点P的坐标为()A.(1,4)B.(5,0)C.(7,4)D.(8,3)10.(3分)已知,如图,△ABC中,∠A=90°,D是AC上一点,且∠ADB=2∠C,P是BC 上任一点,PE⊥BD于E,PF⊥AC于F,下列结论:①△DBC是等腰三角形;②∠C=30°;③PE+PF=AB;④PE2+AF2=BP2,其中正确的结论是()A.①②B.①③④C.①④D.①②③④二、填空题(共6小题,每题3分,共18分)11.(3分)=.12.(3分)在四边形ABCD中,AB=CD,AD=BC,∠A=50°,则∠C=.13.(3分)已知是整数,则满足条件的最小正整数n是.14.(3分)直角三角形中有两条边分别为5和12,则第三条边的长是.15.(3分)如图,矩形纸片ABCD中,已知AD=8,折叠纸片使AB边与对角线AC重合,点B落在点F处,折痕为AE,且EF=3,则AB的长为.16.(3分)如图,在矩形纸片ABCD中,AB=2,AD=3,点E是AB的中点,点F是AD边上的一个动点,将△AEF沿EF所在直线翻折,得到△A′EF,则A′C的长的最小值是.三、解答题(共8题,共72分)17.(8分)计算:(1)2(2)18.(8分)在△ABC中,AB=13,BC=10,BC边上的中线AD=12,求AC长.19.(8分)已知x=2﹣,求代数式(7+4)x2+(2+)x+的值.20.(8分)如图,矩形ABCD的对角线AC、BD相交于点O,DE∥AC,CE∥BD.(1)求证:四边形OCED为菱形;(2)连接BE交AC于点F,求证:AC平分BE.21.(8分)如图,直角坐标系中的网格由单位正方形构成,△ABC中,A点坐标为(2,3),B点坐标为(﹣2,0),C点坐标为(0,﹣1).(1)AC的长为;(2)求证:AC⊥BC;(3)若以A、B、C及点D为顶点的四边形为平行四边形ABCD,画出平行四边形ABCD,并写出D点的坐标.22.(10分)如图,在平行四边形ABCD中,E是AD上一点,连接BE,F为BE中点,且AF =BF.(1)求证:四边形ABCD为矩形;=5,CD=4.求CG.(2)过点F作FG⊥BE,垂足为F,交BC于点G,若BE=BC,S△BFG23.(10分)如图,△ACB与△ECD都是等腰直角三角形,△ACB的顶点A在△ECD的斜边所在射线ED上运动.(1)当∠ACE<90°时,求证:AE2+AD2=2AC2;(2)当∠ACE>90°时,问题(1)中的结论,是否还成立?若成立,请画出图形,并证明;若不成立,请说明理由.(3)若EC=3,点A从点E运动到点D时,点B运动的路径长为.24.(12分)如图,在平面直角坐标系中,有一个Rt△ABC,点B和原点重合.其中,∠B =90°,∠C=30°,C(,0).点D从点C出发沿CA方向以每秒2个单位长的速度向点A匀速运动,同时点E从点A出发沿AB方向以每秒1个单位长的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t 秒(t>0).过点D作DF⊥BC于点F,连接DE、EF.(1)求证:AE=DF(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,说明理由.(3)当t为何值时,△DEF为直角三角形?请说明理由.八年级(下)期中数学试卷参考答案与试题解析一、选择题(共10小题,每题3分,共30分)1.(3分)的值是()A.2 B.﹣2 C.±2 D.4【解答】解:∵表示4的算术平方根,∴=2.故选:A.2.(3分)下列二次根式中,x的取值范围是x≥3的是()A.B.C.D.【解答】解:A、根据二次根式有意义的条件可得:3﹣x≥0,解得x≤3,故此选项错误;B、根据二次根式有意义的条件可得:6+2x≥0,解得x≥﹣3,故此选项错误;C、根据二次根式有意义的条件可得:x﹣3≥0,解得x≥3,故此选项正确;D、根据二次根式有意义的条件可得:x+3≥0,解得x≥﹣3,故此选项错误;故选:C.3.(3分)下列各组三条线段组成的三角形是直角三角形的是()A.2,3,4 B.1,1,C.6,8,11 D.2,2,3【解答】解:A、22+32≠42,不能构成直角三角形,故选项错误;B、12+12=()2,能构成直角三角形,故选项正确;C、62+82≠112,不能构成直角三角形,故选项错误;D、22+22≠32,不能构成直角三角形,故选项错误.故选:B.4.(3分)下列式子是最简二次根式的是()A.B.C.D.【解答】解:A、=,此选项不符合题意;B、是最简二次根式,符合题意;C、=|a|,此选项不符合题意;D、=2,此选项不符合题意;故选:B.5.(3分)下列各式计算错误的是()A.B.C.D.【解答】解:A、4﹣=3,此选项计算正确;B、×=,此选项计算正确;C、=()2﹣()2=3﹣2=1,此选项计算错误;D、÷==3,此选项计算正确;故选:C.6.(3分)下列三个命题:①对顶角相等;②两直线平行,内错角相等;③相等的两个实数的平方也相等.它们的逆命题成立的个数是()A.0个B.1个C.2个D.3个【解答】解:①对顶角相等的逆命题是相等的角是对顶角,不成立;②两直线平行,内错角相等的逆命题是内错角相等,两直线平行,成立;③相等的两个实数的平方也相等的逆命题是两个实数的平方相等,这两个数相等,不成立;故选:B.7.(3分)如图所示,一根树在离地面9米处断裂,树的顶部落在离底部12米处.树折断之前()米.A.15 B.20 C.3D.24【解答】解:因为AB=9米,AC=12米,根据勾股定理得BC==15米,于是折断前树的高度是15+9=24米.故选:D.8.(3分)如图,已知圆柱底面的周长为6cm,圆柱高为3cm,在圆柱的侧面上,过点A和点C嵌有一圈金属丝,则这圈金属丝的周长最小为()cm.A.3B.6C.D.6【解答】解:如图,把圆柱的侧面展开,得到矩形,则这圈金属丝的周长最小为2AC的长度.∵圆柱底面的周长为6cm,圆柱高为3cm,∴AB=3cm,BC=BC′=3cm,∴AC2=32+32=18,∴AC=3cm,∴这圈金属丝的周长最小为2AC=6cm.故选:B.9.(3分)如图,动点P从(0,3)出发,沿箭头所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角.当点P第2018次碰到矩形的边时,点P的坐标为()A.(1,4)B.(5,0)C.(7,4)D.(8,3)【解答】解:如图,经过6次反弹后动点回到出发点(0,3),∵2018÷6=336…2,∴当点P第2018次碰到矩形的边时为第336个循环组的第2次反弹,点P的坐标为(7,4).故选:C.10.(3分)已知,如图,△ABC中,∠A=90°,D是AC上一点,且∠ADB=2∠C,P是BC上任一点,PE⊥BD于E,PF⊥AC于F,下列结论:①△DBC是等腰三角形;②∠C=30°;③PE+PF=AB;④PE2+AF2=BP2,其中正确的结论是()A.①②B.①③④C.①④D.①②③④【解答】解:在△BCD中,∠ADB=∠C+∠DBC,∵∠ADB=2∠C,∴∠C=∠DBC,∴DC=DB,∴△DBC是等腰三角形,故①正确;无法说明∠C=30°,故②错误;连接PD,则S=BD•PE+DC•PF=DC•AB,△BCD∴PE+PF=AB,故③正确;过点B作BG∥AC交FP的延长线于G,则∠C=∠PBG,∠G=∠CFP=90°,∴∠PBG=∠DBC,四边形ABGF是矩形,∴AF=BG,在△BPE和△BPG中,,∴△BPE≌△BPG(AAS),∴BG=BE,∴AF=BE,在Rt△PBE中,PE2+BE2=BP2,即PE2+AF2=BP2,故④正确.综上所述,正确的结论有①③④.故选:B.二、填空题(共6小题,每题3分,共18分)11.(3分)=2.【解答】解:==×=2.12.(3分)在四边形ABCD中,AB=CD,AD=BC,∠A=50°,则∠C=50°.【解答】解:∵AB=CD,AD=BC,∴四边形ABCD是平行四边形,∴∠C=∠A,∴∠A=50°,∴∠C=50°,故答案为50°13.(3分)已知是整数,则满足条件的最小正整数n是 2 .【解答】解:∵8=22×2,∴n的最小值是2.故答案为:2.14.(3分)直角三角形中有两条边分别为5和12,则第三条边的长是13或.【解答】解:①当12为斜边时,则第三边==;②当12是直角边时,第三边==13.故答案为:13或.15.(3分)如图,矩形纸片ABCD中,已知AD=8,折叠纸片使AB边与对角线AC重合,点B落在点F处,折痕为AE,且EF=3,则AB的长为 6 .【解答】解:∵四边形ABCD是矩形,AD=8,∴BC=8,∵△AEF是△AEB翻折而成,∴BE=EF=3,AB=AF,△CEF是直角三角形,∴CE=8﹣3=5,在Rt△CEF中,CF===4,设AB=x,在Rt△ABC中,AC2=AB2+BC2,即(x+4)2=x2+82,解得x=6,则AB=6.故答案为:6.16.(3分)如图,在矩形纸片ABCD中,AB=2,AD=3,点E是AB的中点,点F是AD边上的一个动点,将△AEF沿EF所在直线翻折,得到△A′EF,则A′C的长的最小值是﹣1 .【解答】解:以点E为圆心,AE长度为半径作圆,连接CE,当点A′在线段CE上时,A′C 的长取最小值,如图所示.根据折叠可知:A′E=AE=AB=1.在Rt△BCE中,BE=AB=1,BC=3,∠B=90°,∴CE==,∴A′C的最小值=CE﹣A′E=﹣1.故答案为:﹣1.三、解答题(共8题,共72分)17.(8分)计算:(1)2(2)【解答】解:(1)原式=4﹣2+12=14;(2)原式==15.18.(8分)在△ABC中,AB=13,BC=10,BC边上的中线AD=12,求AC长.【解答】解:∵AD是中线,AB=13,BC=10,∴BD=BC=5.∵52+122=132,即BD2+AD2=AB2,∴△ABD是直角三角形,则AD⊥BC,又∵BD=CD,∴AC=AB=13.19.(8分)已知x=2﹣,求代数式(7+4)x2+(2+)x+的值.【解答】解:x2=(2﹣)2=7﹣4,则原式=(7+4)(7﹣4)+(2+)(2﹣)+=49﹣48+1+=2+.20.(8分)如图,矩形ABCD的对角线AC、BD相交于点O,DE∥AC,CE∥BD.(1)求证:四边形OCED为菱形;(2)连接BE交AC于点F,求证:AC平分BE.【解答】证明:(1)∵DE∥AC,CE∥BD,∴四边形DOCE是平行四边形,∵矩形ABCD的对角线AC、BD相交于点O,∴OC=AC=BD=OD,∴四边形OCED为菱形;(2)连接BE交AC于点F,∵四边形OCED为菱形,∴OD=CE,OD∥CE,∴∠OBF=∠CEF,∵矩形ABCD,∴BO=OD,∴OB=CE,在△BOF与△ECF中,∴△BOF≌△ECF,∴BF=EF,即AC平分BE.21.(8分)如图,直角坐标系中的网格由单位正方形构成,△ABC中,A点坐标为(2,3),B点坐标为(﹣2,0),C点坐标为(0,﹣1).(1)AC的长为2;(2)求证:AC⊥BC;(3)若以A、B、C及点D为顶点的四边形为平行四边形ABCD,画出平行四边形ABCD,并写出D点的坐标(0,4),(4,2),(﹣4,﹣4)..【解答】(1)解:AC=,故答案为:2;(2)∵BC2=12+22=5,AB2=32+42=25,AC2=20,∵BC2+AC2=AB2,∴△ABC是直角三角形,∴AC⊥BC;(3)如图所示:D点的坐标(0,4),(4,2),(﹣4,﹣4),故答案为:(0,4),(4,2),(﹣4,﹣4).22.(10分)如图,在平行四边形ABCD中,E是AD上一点,连接BE,F为BE中点,且AF =BF.(1)求证:四边形ABCD为矩形;(2)过点F作FG⊥BE,垂足为F,交BC于点G,若BE=BC,S=5,CD=4.求CG.△BFG【解答】(1)证明:∵F为BE中点,AF=BF,∴AF=BF=EF,∴∠BAF=∠ABF,∠FAE=∠AEF,在△ABE中,∠BAF+∠ABF+∠FAE+∠AEF=180°,∴∠BAF+∠FAE=90°,又四边形ABCD为平行四边形,∴四边形ABCD为矩形;(2)解:连接EG,过点E作EH⊥BC,垂足为H,∵F为BE的中点,FG⊥BE,∴BG=GE,=5,CD=4,∵S△BFG∴S=10=BG•EH,△BGE∴BG=GE=5,在Rt△EGH中,GH==3,在Rt△BEH中,BE==BC,∴CG=BC﹣BG=4﹣5.23.(10分)如图,△ACB与△ECD都是等腰直角三角形,△ACB的顶点A在△ECD的斜边所在射线ED上运动.(1)当∠ACE<90°时,求证:AE2+AD2=2AC2;(2)当∠ACE>90°时,问题(1)中的结论,是否还成立?若成立,请画出图形,并证明;若不成立,请说明理由.(3)若EC=3,点A从点E运动到点D时,点B运动的路径长为3.【解答】(1)证明:连接BD,∵△ACB和△ECD都是等腰直角三角形∴∠ACB=∠ECD=90°,AC=BC,EC=DC,∴∠ACE=∠BCD,在△ACE和△BCD中,,∴△ACE≌△BCD(SAS)∴BD=AE,∠BDC=∠E,∵∠E+∠CDE=90°,∴∠BDC+∠CDE=90°,即∠ADB=90°,在Rt△ADB中,BD2+AD2=AB2,∵AB2=2AC2,∴AE2+AD2=2AC2.(2)结论仍然成立.如图所示:理由:∵△ACB和△ECD都是等腰直角三角形∴∠ACB=∠ECD=90°,AC=BC,EC=DC,∴∠ACE=∠BCD,在△ACE和△BCD中,,∴△ACE≌△BCD(SAS)∴BD=AE,∠BDC=∠E,∵∠E+∠CDE=90°,∴∠BDC+∠CDE=90°,即∠ADB=90°,在Rt△ADB中,BD2+AD2=AB2,∵AB2=2AC2,∴AE2+AD2=2AC2.(3)∵△ACE≌△BCD,∴EA=BD,∵DE=3,∴点B运动的路径长为3,故答案为3.24.(12分)如图,在平面直角坐标系中,有一个Rt△ABC,点B和原点重合.其中,∠B =90°,∠C=30°,C(,0).点D从点C出发沿CA方向以每秒2个单位长的速度向点A匀速运动,同时点E从点A出发沿AB方向以每秒1个单位长的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t 秒(t>0).过点D作DF⊥BC于点F,连接DE、EF.(1)求证:AE=DF(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,说明理由.(3)当t为何值时,△DEF为直角三角形?请说明理由.【解答】(1)证明:在△DFC中,∠DFC=90°,∠C=30°,DC=2t,∴DF=CD=t.又∵AE=t,∴AE=DF.(2)解:四边形AEFD能够成为菱形.理由如下:设AB=x,∵∠B=90°,∠C=30°,∴AC=2AB=2x.由勾股定理得,(2x)2﹣x2=(5)2,解得:x=5,∴AB=5,AC=10.∴AD=AC﹣DC=10﹣2t.∵AB⊥BC,DF⊥BC,∴AE∥DF.又∵AE=DF,∴四边形AEFD为平行四边形.若使四边形AEFD为菱形,则需AE=AD,即t=10﹣2t,解得:t=.即当t=时,四边形AEFD为菱形.(3)解:当t=秒或4秒时,△DEF为直角三角形,理由如下:分情况讨论:①当∠EDF=90°时,AD=2AE,即10﹣2t=2t,∴t=.②∠DEF=90°时,AD=AE,即10﹣2t=t,∴t=4.③∠EFD=90°时,此种情况不存在.故当t=秒或4秒时,△DEF为直角三角形.。

2020最新八年级下册期中数学试卷(含答案)

2020最新八年级下册期中数学试卷(含答案)

第二学期期中测试卷八 年 级 数 学(满分:100分 考试时间:100分钟)一、选择题(每题2分,共20分)1.下列电视台的台标,是中心对称图形的是A .B .C .D .2.对于反比例函数xy 2=,下列说法不正确的是 A .点(21)--,在它的图像上B .它的图像在第一、三象限C .当0x >时,y 随x 的增大而增大D .当0x <时,y 随x 的增大而减小3.为了解我市老年人的健康状况,下列抽样调查最合理的是A.在公园调查部分老年人的健康状况B.在医院调查部分老年人的健康状况C.利用户籍网调查部分老年人的健康状况D.在周围邻居中调查部分老年人的健康状况 4.下列性质中,菱形具有而矩形不一定具有的是A.对角线互相平分B.对角线互相垂直C.对边平行且相等D.对角线相等 5.在反比例函数2ky x-=的图像上有两点11(,)A x y 、22(,)B x y 。

若120x x <<,12y y >,则k 取值范围是A. k>0B.2k >C.k<0D.2k <6.有三个事件,事件A :若a 、b 是实数,则+a b b a +=;事件B :打开电视正在播广告;事件C :同时掷两枚质地均匀地标有数字1-6的骰子,向上一面的点数之和是为13.这三个事件的概率分别记为()()()P A P B P C 、、,则()()()P A P B P C 、、的大小关系正确的是A .()()()P C P A PB << B .()()()P B PC P A << C .()()()P C P B P A <<D .()()()P B P A P C << 7.一次函数y ax b =+与反比例函数a by x-=,其中0,,ab a b <为常数,它们在同一坐标系中的图像可以是8.如图,在ABC ∆中,BF 平分ABC ∠,AF BF ⊥于点F ,D 为AB 的中点,连接DF 延长交AC 于点E .若AB=6,BC=10,则线段EF 的长为A. 1B.2C.2.5D. 39.如图,菱形ABCD 中,AB=4,120A ∠=︒,点P 、Q 、K 分别为线段BC 、CD 、BD 上的任意一点,则PK QK +的最小值为A.4B.D.10.如图,在平面直角坐标系中,点(1,4)P 、(,)Q m n 在函数 的图象上,当1m >时,过点P 分别作x 轴、y 轴的垂线,垂足为点A 、B ,过点Q 分别作x 轴、y 轴的垂线,垂足为点C 、D . QD 交PA 于点E ,随着m 的增大,四边形ACQE 的面积 A.减小 B.增大 C.先减小后增大 D.先增大后减小 二、填空题(每题3分,共24分) 11.反比例函数ky x=的图像经过点(1,6)和(,3)m -,则m = . 12.为了估计暗箱里白球的数量(箱内只有白球),将5个红球放进去,随机摸出一个球,记下颜色后放回,搅匀后再摸出一个球记下颜色,多次重复后发现红球出现的频率约为0.2,那么可以估计暗箱里白球的数量大约为 个.13.如图,E 是矩形ABCD 的对角线的交点,点F 在边AE 上,且DF DC =, 若∠ADF=240,则∠EDC= °.14.已知直线y =kx(k>0)与双曲线y =3x交于A(x 1,y 1)、B(x 2,y 2)两点,则x 1y 2+x 2y 1的值k y x=为_______.15.已知菱形的周长为16cm ,两邻角的比是1:3,则菱形的面积是_______16.有五张卡片(形状、大小、质地都相同),正面分别画有下列图形:①线段;②正三角形;③平行四边形;④圆;⑤菱形.将卡片背面朝上洗匀,从中抽取一张,其正面图形既是轴对称图形,又是中心对称图形的概率是________.17.如图,一次函数y kx b =+图象与反比例函数my x=的图象都经过点(2,6)A -和点(4,)B n .则不等式mkx b x+≤的解集为 . 18.如图,在正方形ABCD 中,E 、F 分别为BC 、CD 的中点,连接AE 、BF ,将BCF ∆ 沿BF 对折,得到BPF ∆,延长FP 交BA 的延长线于点Q .给出下列结论:①AE BF =;②AE BF ⊥;③BQF ∆是等边三角形;④若正方形ABCD 的边长为3,则线段AQ 的长为34其中,正确的结论有 .(把你认为正确的结论的序号都填上) 三、解答题19.(本题7分)某校为了解“阳光体育”活动的开展情况,从全校2000名学生中,随机抽取部分学生进行问卷调查(每名学生只能填写一项自己喜欢的活动项目),并将调查结果绘制成如下两幅不完整的统计图. 根据以上信息,解答下列问题:(1)被调查的学生共有_______人,并补全条形统计图;(2)在扇形统计图中___,___m n ==,表示区域C 的圆心角为____度;(3)全校学生中喜欢篮球的人数大约有多少?20.(本题7分)已知如图,在菱形ABCD 中,对角线AC 、BD 相交于点O ,DE ∥AC ,AE ∥BD .(1)求证:四边形AODE 是矩形;(2)若AB=12,∠BCD=120°,求四边形AODE 的面积.21.(本题6分)如图,在平面直角坐标系中,菱形ABCD 的顶点C 与原点O 重合,点B 在y 轴的正半轴上,点A 在反比例函数y =(k >0,x >0)的图象上,点D 的坐标为(4,3). (1)求k 的值;(2)若将菱形ABCD 沿x 轴正方向平移,当菱形的顶点D 落在函数y = (k >0,x >0)的图象上时,求菱形ABCD 沿x 轴正方向平移的距离.22.(本题7分)环保局对某企业排污情况进行检测,结果显示:所排污水中硫化物的浓度超标,即硫化物的浓度超过最高允许的1.0mg/L.环保局要求该企业立即整改,在15天以内(含15天)排污达标.整改过程中,所排污水中硫化物的浓度y(mg/L)与时间x(天)的变化规律如图所示,其中线段AB表示前3天的变化规律,从第3天起,所排污水中硫化物的浓度y与时间x成反比例关系.(1)求整改过程中硫化物的浓度y与时间x的函数表达式;(2)该企业所排污水中硫化物的浓度能否在15天以内不超过最高允许的1. 0 mg/L?为什么?23.(本题7分)如图,已知一次函数y kxb=+的图像与反比例函数my x=的图像交于点 (4,)A n 和点1(,3)3B n +,与y 轴交于点C .(1)求反比例函数和一次函数的表达式.(2)若在x 轴上有一点D ,其横坐标是1,连接AD 、CD , 求ACD ∆的面积.24.(本题满分7分)己知:如图,在四边形ABCD 中,3AB CD =,//AB CD ,//CE DA ,//DF CB .(1)求证:四边形CDEF 是平行四边形; (2)填空:①当四边形ABCD 必须满足条件 时,四边形CDEF 是矩形; ②当四边形ABCD 必须满足条件 时,四边形CDEF 是菱形.25.(本题7分)如图,在平面直角坐标系中,矩形OABC 的顶点A 、C 分别在x 、y 轴的正半轴上,顶点B 的坐标为(4,2).点M 是边BC 上的一个动点(不与B 、C 重合),反比例函数ky x=(0,0)k x >>的图象经过点M 且与边AB 交于点N ,连接MN .(1)当点M 是边BC 的中点时. ①求反比例函数的表达式; ②求OMN ∆的面积;(2)在点M 的运动过程中,试证明:MBNB是一个定值.26.(本题8分)如图1,正方形ABCD 顶点A 、B 在函数y=kx(k ﹥0)的图像上,点C 、D 分别在x 轴、y 轴的正半轴上,当k 的值改变时,正方形ABCD 的大小也随之改变. (1)若点A 的横坐标为5,求点D 的纵坐标;(2)如图2,当k =2时,分别求出正方形A ′B ′C ′D ′的顶点A ′、B ′ 两点的坐标;(3)当变化的正方形ABCD 与(2)中的正方形A ′B ′C ′D ′有重叠部分时,求k 的取值范围.初二数学答案1-10. ACCBB CCBDB11. -2 12. 20 13. 57 14. -6 15. 42 16. 53 17. -2≦x<0或x>4 18.④19. (1)100 (2)30 10 144 (3)800 20. (1)略 (2)363 21. (1)32 (2)320 22. (1)y=-2x+10 y=x12(2)能 23. (1)y=x4 y=-43x+4 (2) 621 24. (1)略 (2) AD=BC AD ⊥BC 25. (1)y=x4 3 (2 ) 2 26. (1)5 (2) 621y=k xBAC O x yDy=8x C'D'B'A'O xy。

2020年八年级数学下期中试卷及答案

2020年八年级数学下期中试卷及答案
A.1B.2C. D.3
7.如图1,∠DEF=25°,将长方形纸片ABCD沿直线EF折叠成图2,再沿折痕GF折叠成图3,则∠CFE的度数为( )
A.105°B.115°C.130°D.155°
8.如图,在菱形ABCD中,AB=5,对角线AC=6.若过点A作AE⊥BC,垂足为E,则AE的长为( )
A.4B.2.4C.4.8D.5
【详解】
解:∵四边形ABCD为长方形,
∴AD∥BC,
∴∠BFE=∠DEF=25°.
由翻折的性质可知:
图2中,∠EFC=180°-∠BFE=155°,∠BFC=∠EFC-∠BFE=130°,
图3中,∠CFE=∠BFC-∠BFE=105°.
故选:A.
【点睛】
本题考查翻折变换以及矩形的性质,解题的关键是找出∠CFE=180°-3∠BFE.解决该题型题目时,根据翻折变换找出相等的边角关系是关键.
15.cm【解析】∵平行四边形ABCD∴AD=BCAB=CDOA=OC∵EO⊥AC∴AE=EC∵AB+BC+CD+AD=16∴AD+DC=8cm∴△DCE的周长是:CD+DE+CE=AE+DE+CD=AD
解析:cm
【解析】
∵平行四边形ABCD,∴AD=BC,AB=CD,OA=OC,
∵EO⊥AC,∴AE=EC,
∵AB+BC+CD+AD=16,∴AD+DC=8cm,
∴△DCE的周长是:CD+DE+CE=AE+DE+CD=AD+CD=8cm,
故答案为8cm.
点睛:此题考查了平行四边形的性质以及线段的垂直平分线的性质,解答本题的关键是判断出EO示线段BD的中垂线.

2020年最新八年级下册期中数学试卷(含答案)

2020年最新八年级下册期中数学试卷(含答案)

第二学期期中测试卷八 年 级 数 学(满分:100分 考试时间:100分钟)一、选择题(每题2分,共20分)1.下列电视台的台标,是中心对称图形的是A .B .C .D .2.对于反比例函数xy 2=,下列说法不正确的是 A .点(21)--,在它的图像上B .它的图像在第一、三象限C .当0x >时,y 随x 的增大而增大D .当0x <时,y 随x 的增大而减小3.为了解我市老年人的健康状况,下列抽样调查最合理的是A.在公园调查部分老年人的健康状况B.在医院调查部分老年人的健康状况C.利用户籍网调查部分老年人的健康状况D.在周围邻居中调查部分老年人的健康状况 4.下列性质中,菱形具有而矩形不一定具有的是A.对角线互相平分B.对角线互相垂直C.对边平行且相等D.对角线相等 5.在反比例函数2ky x-=的图像上有两点11(,)A x y 、22(,)B x y 。

若120x x <<,12y y >,则k 取值范围是A. k>0B.2k >C.k<0D.2k <6.有三个事件,事件A :若a 、b 是实数,则+a b b a +=;事件B :打开电视正在播广告;事件C :同时掷两枚质地均匀地标有数字1-6的骰子,向上一面的点数之和是为13.这三个事件的概率分别记为()()()P A P B P C 、、,则()()()P A P B P C 、、的大小关系正确的是A .()()()P C P A PB << B .()()()P B PC P A << C .()()()P C P B P A <<D .()()()P B P A P C << 7.一次函数y ax b =+与反比例函数a by x-=,其中0,,ab a b <为常数,它们在同一坐标系中的图像可以是8.如图,在ABC ∆中,BF 平分ABC ∠,AF BF ⊥于点F ,D 为AB 的中点,连接DF 延长交AC 于点E .若AB=6,BC=10,则线段EF 的长为A. 1B.2C.2.5D. 39.如图,菱形ABCD 中,AB=4,120A ∠=︒,点P 、Q 、K 分别为线段BC 、CD 、BD 上的任意一点,则PK QK +的最小值为A.4B.D.10.如图,在平面直角坐标系中,点(1,4)P 、(,)Q m n 在函数 的图象上,当1m >时,过点P 分别作x 轴、y 轴的垂线,垂足为点A 、B ,过点Q 分别作x 轴、y 轴的垂线,垂足为点C 、D . QD 交PA 于点E ,随着m 的增大,四边形ACQE 的面积 A.减小 B.增大 C.先减小后增大 D.先增大后减小 二、填空题(每题3分,共24分) 11.反比例函数ky x=的图像经过点(1,6)和(,3)m -,则m = . 12.为了估计暗箱里白球的数量(箱内只有白球),将5个红球放进去,随机摸出一个球,记下颜色后放回,搅匀后再摸出一个球记下颜色,多次重复后发现红球出现的频率约为0.2,那么可以估计暗箱里白球的数量大约为 个.13.如图,E 是矩形ABCD 的对角线的交点,点F 在边AE 上,且DF DC =, 若∠ADF=240,则∠EDC= °.14.已知直线y =kx(k>0)与双曲线y =3x交于A(x 1,y 1)、B(x 2,y 2)两点,则x 1y 2+x 2y 1的值k y x=为_______.15.已知菱形的周长为16cm ,两邻角的比是1:3,则菱形的面积是_______16.有五张卡片(形状、大小、质地都相同),正面分别画有下列图形:①线段;②正三角形;③平行四边形;④圆;⑤菱形.将卡片背面朝上洗匀,从中抽取一张,其正面图形既是轴对称图形,又是中心对称图形的概率是________.17.如图,一次函数y kx b =+图象与反比例函数my x=的图象都经过点(2,6)A -和点(4,)B n .则不等式mkx b x+≤的解集为 . 18.如图,在正方形ABCD 中,E 、F 分别为BC 、CD 的中点,连接AE 、BF ,将BCF ∆ 沿BF 对折,得到BPF ∆,延长FP 交BA 的延长线于点Q .给出下列结论:①AE BF =;②AE BF ⊥;③BQF ∆是等边三角形;④若正方形ABCD 的边长为3,则线段AQ 的长为34其中,正确的结论有 .(把你认为正确的结论的序号都填上) 三、解答题19.(本题7分)某校为了解“阳光体育”活动的开展情况,从全校2000名学生中,随机抽取部分学生进行问卷调查(每名学生只能填写一项自己喜欢的活动项目),并将调查结果绘制成如下两幅不完整的统计图. 根据以上信息,解答下列问题:(1)被调查的学生共有_______人,并补全条形统计图;(2)在扇形统计图中___,___m n ==,表示区域C 的圆心角为____度;(3)全校学生中喜欢篮球的人数大约有多少?20.(本题7分)已知如图,在菱形ABCD 中,对角线AC 、BD 相交于点O ,DE ∥AC ,AE ∥BD .(1)求证:四边形AODE 是矩形;(2)若AB=12,∠BCD=120°,求四边形AODE 的面积.21.(本题6分)如图,在平面直角坐标系中,菱形ABCD 的顶点C 与原点O 重合,点B 在y 轴的正半轴上,点A 在反比例函数y =(k >0,x >0)的图象上,点D 的坐标为(4,3). (1)求k 的值;(2)若将菱形ABCD 沿x 轴正方向平移,当菱形的顶点D 落在函数y = (k >0,x >0)的图象上时,求菱形ABCD 沿x 轴正方向平移的距离.22.(本题7分)环保局对某企业排污情况进行检测,结果显示:所排污水中硫化物的浓度超标,即硫化物的浓度超过最高允许的1.0mg/L.环保局要求该企业立即整改,在15天以内(含15天)排污达标.整改过程中,所排污水中硫化物的浓度y(mg/L)与时间x(天)的变化规律如图所示,其中线段AB表示前3天的变化规律,从第3天起,所排污水中硫化物的浓度y与时间x成反比例关系.(1)求整改过程中硫化物的浓度y与时间x的函数表达式;(2)该企业所排污水中硫化物的浓度能否在15天以内不超过最高允许的1. 0 mg/L?为什么?23.(本题7分)如图,已知一次函数y kxb=+的图像与反比例函数my x=的图像交于点 (4,)A n 和点1(,3)3B n +,与y 轴交于点C .(1)求反比例函数和一次函数的表达式.(2)若在x 轴上有一点D ,其横坐标是1,连接AD 、CD , 求ACD ∆的面积.24.(本题满分7分)己知:如图,在四边形ABCD 中,3AB CD =,//AB CD ,//CE DA ,//DF CB .(1)求证:四边形CDEF 是平行四边形; (2)填空:①当四边形ABCD 必须满足条件 时,四边形CDEF 是矩形; ②当四边形ABCD 必须满足条件 时,四边形CDEF 是菱形.25.(本题7分)如图,在平面直角坐标系中,矩形OABC 的顶点A 、C 分别在x 、y 轴的正半轴上,顶点B 的坐标为(4,2).点M 是边BC 上的一个动点(不与B 、C 重合),反比例函数ky x=(0,0)k x >>的图象经过点M 且与边AB 交于点N ,连接MN .(1)当点M 是边BC 的中点时. ①求反比例函数的表达式; ②求OMN ∆的面积;(2)在点M 的运动过程中,试证明:MBNB是一个定值.26.(本题8分)如图1,正方形ABCD 顶点A 、B 在函数y=kx(k ﹥0)的图像上,点C 、D 分别在x 轴、y 轴的正半轴上,当k 的值改变时,正方形ABCD 的大小也随之改变. (1)若点A 的横坐标为5,求点D 的纵坐标;(2)如图2,当k =2时,分别求出正方形A ′B ′C ′D ′的顶点A ′、B ′ 两点的坐标;(3)当变化的正方形ABCD 与(2)中的正方形A ′B ′C ′D ′有重叠部分时,求k 的取值范围.初二数学答案1-10. ACCBB CCBDB11. -2 12. 20 13. 57 14. -6 15. 42 16. 53 17. -2≦x<0或x>4 18.④19. (1)100 (2)30 10 144 (3)800 20. (1)略 (2)363 21. (1)32 (2)320 22. (1)y=-2x+10 y=x12(2)能 23. (1)y=x4 y=-43x+4 (2) 621 24. (1)略 (2) AD=BC AD ⊥BC 25. (1)y=x4 3 (2 ) 2 26. (1)5 (2) 621y=k xBAC O x yDy=8x C'D'B'A'O xy。

2020年八年级下册数学期中试题带答案

2020年八年级下册数学期中试题带答案

2020年八年级下册期中考试数 学 试 题一、选择题(每小题3分,共30分)1.已知在Rt△ABC 中,∠C =90°,AC =1,BC =2,则AB 的长为( ) A .4 B. 5 C. 3 D .1 2.下列计算正确的是( )A .32+23=5 5 B.8=4 2C.27÷3=3D.(-2)2=-23.使代数式1x +3+4-3x 有意义的整数x 有( )A .5个B .4个C .3个D .2个4.在平行四边形ABCD 中,∠A ∶∠B ∶∠C =2∶3∶2,则∠D 的度数为( ) A .36° B.108° C.72° D.60° 5.下列选项中的等式成立的是( )A.22=2 B.33=3C.44=4D.55=56.在下列命题中,正确的是( )A .有一组对边平行的四边形是平行四边形B .有一组邻边相等的平行四边形是菱形C .有一个角是直角的四边形是矩形D .对角线互相垂直平分的四边形是正方形7.如图,Rt△ABC 中,∠ACB =90°,斜边AB =9,D 为AB 的中点,F 为CD 上一点,且CF =13CD ,过点B 作BE ∥DC 交AF 的延长线于点E ,则BE 的长为( )A .6B .4C .7D .12第7题图 第8题图8.如图,有一个由传感器A 控制的灯,要装在门上方离地高4.5m 的墙上,任何东西只要移至该灯5m 及5m 以内时,灯就会自动发光.请问一个身高1.5m 的学生要走到离墙多远的地方灯刚好发光( )A .4mB .3mC .5mD .7m9.如图,将边长为4的菱形纸片ABCD 折叠,使点A 恰好落在对角线的交点O 处,若折痕EF =23,则∠A 等于( )姓名:学号:A.120° B.100° C.60° D.30°第9题图第10题图10.如图,四边形ABCD中,AD∥BC,∠ABC+∠DCB=90°,且BC=2AD,以AB、BC、DC为边向外作正方形,其面积分别为S1、S2、S3.若S1=3,S3=9,则S2的值为( ) A.12 B.18 C.24 D.48二、填空题(每小题3分,共24分)11.计算:27+3=________.12.如图,在Rt△ABC中,E是斜边AB的中点,若AB=10,则CE=________.13.若a<2,化简(a-2)2+a-1=________.14.已知△ABC的三边长a、b、c满足a-1+|b-3|+(c-2)2=0,则△ABC一定是________三角形.第12题图第15题图第16题图15.如图,菱形ABCD的对角线AC,BD相交于点O,E为AD的中点,若OE=3,则菱形ABCD的周长为________.16.如图,将正方形OABC放在平面直角坐标系中,O是原点,A的坐标为(1,3),则点C的坐标为________.17.如图①,这个图案是我国汉代的赵爽在注解《周髀算经》时给出的,人们称它为“赵爽弦图”.此图案的示意图如图②,其中四边形ABCD和四边形EFGH都是正方形,△ABF、△BCG、△CDH、△DAE是四个全等的直角三角形.若EF=2,DE=8,则AB的长为________.第17题图第18题图18.如图,将▱ABCD沿EF对折,使点A落在点C处.若∠A=60°,AD=4,AB=8,则AE的长为________.三、解答题(共66分)19.(10分)计算:(1)48+1575-313; (2)(2-2)2+18-⎝ ⎛⎭⎪⎫13-1.20.(6分)已知a =3+1,求代数式(4-23)a 2+(1-3)a 的值.21.(8分)如图,在Rt△ABC 中,∠ACB =90°,CD ⊥AB 于D ,AC =20,BC =15, (1)求AB 的长; (2)求CD 的长.22.(8分)如图,一架梯子AC 长2.5米,斜靠在一面墙上,梯子底端离墙0.7米. (1)这个梯子的顶端距地面有多高?(2)如果梯子的顶端下滑了0.4米到A ′,那么梯子的底端在水平方向滑动了几米?23.(10分)如图,在▱ABCD 中,点O 是边BC 的中点,连接DO 并延长,交AB 延长线于点E ,连接BD ,EC .(1)求证:四边形BECD 是平行四边形;(2)若∠A =50°,则当∠BOD =________°时,四边形BECD 是矩形.24.(10分)如图,在矩形ABCD中,AB=6,BC=4,过对角线BD的中点O的直线分别交AB,CD于点E,F,连接DE,BF.(1)求证:四边形BEDF是平行四边形;(2)当四边形BEDF是菱形时,求EF的长.25.(14分)阅读下面材料:小明遇到这样一个问题:如图①,在△ABC中,DE∥BC,分别交AB,AC于D,E.已知CD⊥BE,CD=3,BE=5,求BC+DE的值.小明发现,过点E作EF∥DC,交BC的延长线于点F,构造△BEF,经过推理和计算能够使问题得到解决(如图②).请回答:BC+DE的值为________.参考小明思考问题的方法,解决问题:如图③,已知▱ABCD和矩形ABEF,AC与DF交于点G,AC=BF=DF,求∠AGF的度数.参考答案与解析1.B 2.C 3.B 4.B 5.A 6.B 7.A 8.A 9.A10.D 解析:∵S 1=3,S 3=9,∴AB =3,CD =3.如图,过A 作AE ∥CD 交BC 于E ,则∠AEB =∠DCB .∵AD ∥BC ,∴四边形AECD 是平行四边形,∴CE =AD ,AE =CD =3.∵∠ABC +∠DCB =90°,∴∠AEB +∠ABC =90°,∴∠BAE =90°,∴BE =AB 2+AE 2=23.∵BC =2AD ,∴BC =2BE =43,∴S 2=(43)2=48,故选D.11.4 3 12.5 13.1 14.直角 15.24 16.(-3,1) 17.1018.285解析:如图,过点C 作CG ⊥AB 交AB 的延长线于点G .在▱ABCD 中,∠D =∠EBC ,AD =BC ,∠A =∠DCB .由折叠性质得∠D ′=∠D =∠EBC ,∠D ′CE =∠A =∠DCB ,D ′C =AD =BC ,CE =AE ,∴∠D ′CF +∠FCE =∠FCE +∠ECB ,∴∠D ′CF =∠ECB .在△D ′CF 与△BCE中,⎩⎪⎨⎪⎧∠D ′=∠EBC ,D ′C =BC ,∠D ′CF =∠BCE ,∴△D ′CF ≌△BCE (ASA),∴D ′F =EB ,CF =CE .∵DF =D ′F ,CE =AE ,∴DF =EB ,AE =CF .设AE =x ,则EB =8-x ,CF =x .在Rt△CBG 中,∵BC =4,∠CBG =∠A =60°,∴BG =12BC =2,由勾股定理可知CG =23,∴EG =EB +BG =8-x +2=10-x .在Rt△CEG 中,由勾股定理可知EG 2+CG 2=CE 2,即(10-x )2+(23)2=x 2,解得x =285,即AE =285.19.解:(1)原式=43+15×53-3=4 3.(5分)(2)原式=6-42+32-3=3- 2.(10分)20.解:原式=(4-23)(3+1)2+(1-3)(3+1)=(4-23)(4+23)-2=16-12-2=2.(6分)21.解:(1)在Rt△ABC 中,∠ACB =90°,BC =15,AC =20,∴AB =AC 2+BC 2=202+152=25.(4分)(2)∵S △ABC =12AC ·BC =12AB ·CD ,∴AC ·BC =AB ·CD ,(6分)∴20×15=25CD ,∴CD =12.(8分)22.解:(1)由题意得AC =2.5米,BC =0.7米.在Rt△ABC 中,由勾股定理得AB =AC 2-BC2= 2.52-0.72=2.4(米).答:这个梯子的顶端距地面有2.4米.(3分)(2)由题意得A ′C ′=AC =2.5米,AA ′=0.4米,∴BA ′=AB -AA ′=2米.在Rt△A ′BC ′中,由勾股定理得BC ′=A ′C ′2-A ′B 2= 2.52-22=1.5(米),∴CC ′=BC ′-BC =1.5-0.7=0.8(米).(7分)答:梯子的底端在水平方向滑动了0.8米.(8分)23.(1)证明:∵四边形ABCD 为平行四边形,∴AB ∥DC ,AB =CD ,∴∠OEB =∠ODC .又∵O 为BC 的中点,∴BO =CO .(2分)在△BOE 和△COD 中,⎩⎪⎨⎪⎧∠OEB =∠ODC ,∠BOE =∠COD ,BO =CO ,∴△BOE ≌△COD (AAS),∴OE =OD ,(4分)∴四边形BECD 是平行四边形.(5分)(2)100(10分) 解析:∵四边形ABCD 是平行四边形,∴∠BCD =∠A =50°.∵∠BOD =∠BCD +∠ODC ,∴∠ODC =100°-50°=50°=∠BCD ,∴OC =OD .∵BO =CO ,OD =OE ,∴DE =BC .∵四边形BECD 是平行四边形,∴四边形BECD 是矩形.故答案为100.24.(1)证明:∵四边形ABCD 是矩形,O 是BD 的中点,∴∠A =90°,AD =BC =4,AB ∥DC ,OB =OD ,∴∠OBE =∠ODF .(2分)在△BOE 和△DOF 中,⎩⎪⎨⎪⎧∠OBE =∠ODF ,OB =OD ,∠BOE =∠DOF ,∴△BOE ≌△DOF (ASA),∴EO =FO ,∴四边形BEDF 是平行四边形.(4分)(2)解:当四边形BEDF 是菱形时,BD ⊥EF ,设BE =x ,则DE =x ,AE =6-x .在Rt△ADE 中,DE 2=AD 2+AE 2,∴x 2=42+(6-x )2,解得x =133,即BE =133.(6分)∵BD =AD 2+AB 2=213,∴OB =12BD =13.(8分)∵BD ⊥EF ,∴EO =BE 2-OB 2=2133,∴EF =2EO =4133.(10分)25.解:34(5分) 解析:∵DE ∥BC ,EF ∥DC ,∴四边形DCFE 是平行四边形,∴EF=CD =3,CF =DE .∵CD ⊥BE ,∴EF ⊥BE ,∴BC +DE =BC +CF =BF =BE 2+EF 2=52+32=34,故答案为34.解决问题:连接AE ,CE ,如图所示.∵四边形ABCD 是平行四边形,∴AB ∥DC 且AB =DC .∵四边形ABEF 是矩形,∴AB ∥FE ,AB =EF ,BF =AE ,∴DC ∥FE ,DC =EF ,∴四边形DCEF 是平行四边形,(9分)∴CE ∥DF ,CE =DF .∵AC =BF =DF ,∴AC =AE =CE ,∴△ACE 是等边三角形,∴∠ACE =60°.(12分)∵CE ∥DF ,∴∠AGF =∠ACE =60°.(14分)。

2020年八年级下册期中数学试题含答案

2020年八年级下册期中数学试题含答案

八年级数学第二学期期中考试试卷一、选择题(本大题共8小题,每小题3分,共24分.每小题都有四个选项,将正确的答 案的代号填在答题卷相应位置上)1、在26个大写正体的英文字母中,既是轴对称图形,又是中心对称图形的有( )A.3个B.4个C.5个D.6个 2、下列事件中,是随机事件的为 ( )A .水涨船高B .守株待兔C .水中捞月D .冬去春来3.在4y,y x +6,x x x -2,πy +5,y x 1+中分式的个数有( )A.1个B.2个C.3个D.4个4. 下列约分正确的是 ( )A.632a a a = B.a x a b x b+=+ C.22a b a b a b +=++ D.1x y x y --=-+ 5.已知□ABCD 中,∠B =4∠A ,则∠D =( )A .18°B .36°C .72°D .144°6.如图,P 是矩形ABCD 的边AD 上一个动点,矩形的两条边AB 、BC 的长分别为3和4, 那么点P 到矩形的两条对角线AC 和BD 的距离之和是 ( ) A .125 B .65 C .245D .不确定7.如图,菱形ABCD 的边长为4,过点A 、C 作对角线AC 的垂线,分别交CB 和AD 的延长线于点E 、F ,AE =3,则四边形AECF 的周长为( )A . 22B . 18C . 14D . 11 8.已知:如图,在正方形ABCD 外取一点E ,连接AE 、BE 、DE .过点A 作AE 的垂线交DE 于点P .若AE =AP =1,PB =.下列结论:①△APD ≌△AEB ;②点B 到直线AE 的距离为;③EB ⊥ED ;④S △APD +S △APB =1+;⑤S 正方形ABCD =4+.其中正确结论的序号是( )A.①③④ B .①②⑤ C .③④⑤ D .①③⑤ 二.填空题(本大题共10小题,每小题2分,共20分)9.当x = 时,分式112--x x 的值是0。

2020年初二数学下期中试卷(含答案)

2020年初二数学下期中试卷(含答案)

分析:直接利用合并同类项法则以及幂的乘方运算法则、同底数幂的乘除运算法则分别计 算得出答案. 详解: A 、 a2 与 a3不是同类项,无法计算,故此选项错误;
B、 3 2 - 2 =2 2 ,故此选项错误;
C、( x 2) 3=x 6,故此选项错误; D、 m5÷m3=m 2,正确. 故选: D. 点睛:此题主要考查了合并同类项以及幂的乘方运算、同底数幂的乘除运算,正确掌握相
BE ,进而利用勾股
在 Rt△CBE 中, BE
BC 2 CE 2
52 42 3 ,
在 Rt△AEB 中, AE
BE2 AB2
32 52
故选 C.
【点睛】
此题考查菱形的性质,关键是根据菱形的性质得出
34 ,
CD=AD .
8.D
解析: D 【解析】 【分析】 【详解】
解:因为
2
2
5 5, 0.5
0.52 0.5 ,所以 A , B, C 选项均错,
角形恰好是直角三角形的个数为(

A.1
B. 2
C. 3
D. 4
3. 为了让市民享受到更多的优惠,相关部门拟确定一个折扣线,计划使
50%左右的人获
得折扣优惠.某市针对乘坐地铁的人群进行了调查.调查小组在各地铁站随机调查了该市
1000 人上一年乘坐地铁的月均花费(单位:元),绘制了频数分布直方图,如图所示.下 列说法正确的是( )
费达到 80 元以上的人可以享受折扣,故④正确. 故选: C
【点睛】 本题主要考查了频数分布直方图,平均数以及中位数的应用,将一组数据按照从小到大
(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据

2020年八年级下册期中数学试卷(有答案)

2020年八年级下册期中数学试卷(有答案)

八年级(下)期中数学试卷一、选择题(共10小题,每题3分,共30分)1.下列二次根式中,是最简二次根式的是()A.B.C.D.2.若在实数范围内有意义,则x的取值范围是()A.x≥B.x≥﹣C.x>D.x≠3.下列各组数中,能构成直角三角形的是()A.4,5,6B.1,1,C.6,8,11D.5,12,234.在▱ABCD中,∠B﹣∠A=30°,则∠A,∠B,∠C,∠D的度数是()A.95°,85°,95°,85°B.85°,95°,85°,95°C.105°,75°,105°,75°D.75°,105°,75°,105°5.下列各式计算正确的是()A.8•2=16B.5•5=5C.4•2=8D.4•2=86.如图,在▱ABCD中,已知AD=5cm,AB=3cm,AE平分∠BAD交BC边于点E,则EC等于()A.1cm B.2cm C.3cm D.4cm7.下列命题中,正确的是()A.对角线相等的四边形是矩形B.对角线互相平分的四边形是平行四边形C.对角线互相垂直的四边形是菱形D.对角线互相垂直且相等的四边形是正方形8.化简等于()A.B.C.D.9.两条对角线互相垂直平分且相等的四边形是()A.矩形B.菱形C.正方形D.都有可能10.如图,在矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在点D′处,则重叠部分△AFC的面积为()A.6B.8C.10D.12二、填空题(共10小题,每题3分,共30分)11.若二次根式有意义,则自变量x的取值范围是.12.已知菱形两条对角线的长分别为5cm和12cm,则这个菱形的面积是cm2.13.若矩形的对角线长为8cm,两条对角线的一个交角为60°,则该矩形的面积为cm2.14.如图,每个小正方形的边长为1,在△ABC中,点D为AB的中点,则线段CD的长为.15.如图,一只蚂蚁从长为2cm,宽为2cm,高为3cm的长方体纸箱的A点沿纸箱爬到B点,那么它所行的最短路线长是cm.16.已知实数a、b满足+(b+12)2=0,则=.17.如图,菱形ABCD的边长是2cm,E是AB的中点,且DE丄AB,则菱形ABCD的面积为cm2.18.实数a在数轴上的位置如图所示,则|a﹣1|+=.19.若最简二次根式和是同类二次根式,则=.20.如图,有两棵树,一棵高10m,另一棵高4m,两树相距8m.一只小鸟从一棵树的树尖飞到另一棵树的树尖,那么这只小鸟至少要飞行m.三、解答题(共9小题,共60分)21.(10分)计算(1)(2)22.(9分)在△ABC中,∠C=90°,AC=2.1cm,BC=2.8cm.(1)求△ABC的面积;(2)求斜边AB的长;(3)求高CD的长.23.(9分)如图,折叠矩形的一边AD,使点D落在BC边的点F处,已知AB=8cm,BC=10cm,求EC的长.24.(9分)如图,∠C=90°,AC=3,BC=4,AD=12,BD=13,试判断△ABD的形状,并说明理由.25.(9分)如图,四边形ABCD是平行四边形,AB=10,AD=8,AC⊥BC,求AC、OA以及平行四边形ABCD的面积.26.(10分)如图,在四边形ABCD中,AB=CD,BF=DE,AE⊥BD,CF⊥BD,垂足分别为E、F.(1)求证:△ABE≌△CDF;(2)若AC与BD交于点O,求证:AO=CO.27.(10分)已知:如图,在正方形ABCD中,AE⊥BF,垂足为P,AE与CD交于点E,BF与AD交于点F,求证:AE=BF.28.(12分)求证:对角线互相垂直的平行四边形是菱形.小红同学根据题意画出了图形,并写出了已知和求证的一部分,请你补全已知和求证,并写出证明过程.已知:如图,在▱ABCD中,对角线AC,BD交于点O,.求证:.29.(12分)如图,Rt△OA1A2中,过A2作A2A3⊥OA2,以此类推.且OA1=A1A2=A2A3=A3A4…=1,记△OA1A2的面积为S1,△OA2A3面积为S2,△OA3A4面积为S3,…,细心观察图,认真分析各题,然后解答问题:①()2+1=2,S1=;②()2+1=3,S2=;③()2+1=4,S3=…(1)请写出第n个等式:;(2)根据式子规律,线段OA10=;(3)求出S12+S22+S32+…+S102的值.八年级(下)期中数学试卷参考答案与试题解析一、选择题(共10小题,每题3分,共30分)1.下列二次根式中,是最简二次根式的是()A.B.C.D.【分析】直接利用最简二次根式的定义分析得出答案.【解答】解:A、=,故不是最简二次根式,不合题意;B、,是最简二次根式,符合题意;C、=2,故不是最简二次根式,不合题意;D、=5,故不是最简二次根式,不合题意;故选:B.【点评】此题主要考查了最简二次根式,正确把握定义是解题关键.2.若在实数范围内有意义,则x的取值范围是()A.x≥B.x≥﹣C.x>D.x≠【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【解答】解:由题意得,2x﹣1>0,解得x>.故选:C.【点评】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.3.下列各组数中,能构成直角三角形的是()A.4,5,6B.1,1,C.6,8,11D.5,12,23【分析】根据勾股定理逆定理:a2+b2=c2,将各个选项逐一代数计算即可得出答案.【解答】解:A、∵42+52≠62,∴不能构成直角三角形,故A错误;B、∵12+12=,∴能构成直角三角形,故B正确;C、∵62+82≠112,∴不能构成直角三角形,故C错误;D、∵52+122≠232,∴不能构成直角三角形,故D错误.故选:B.【点评】此题主要考查学生对勾股定理的逆定理的理解和掌握,要求学生熟练掌握这个逆定理.4.在▱ABCD中,∠B﹣∠A=30°,则∠A,∠B,∠C,∠D的度数是()A.95°,85°,95°,85°B.85°,95°,85°,95°C.105°,75°,105°,75°D.75°,105°,75°,105°【分析】根据平行四边形中,对角相等,邻角互补的性质,可以设出未知数,列出方程,进而可求解四个角的度数.【解答】解:设∠A度数为x,则有:(180﹣x)﹣x=30,解得:x=75,所以∠A,∠B,∠C,∠D分别是75°,105°,75°,105°.故选:D.【点评】本题考查了平行四边形的性质,熟练掌握平行四边形对角相等,邻角互补的性质是解题的关键.5.下列各式计算正确的是()A.8•2=16B.5•5=5C.4•2=8D.4•2=8【分析】根据二次根式的乘法法则,进行判断即可.【解答】解:A、8•2=48,原式计算错误,故本选项错误;B、5•5=25,原式计算错误,故本选项错误;C、4•2=8,原式计算正确,故本选项正确;D、4•2=8,原式计算错误,故本选项错误;故选:C.【点评】本题考查了二次根式的乘法运算,解答本题的关键是掌握二次根式的乘法法则.6.如图,在▱ABCD中,已知AD=5cm,AB=3cm,AE平分∠BAD交BC边于点E,则EC等于()A.1cm B.2cm C.3cm D.4cm【分析】由平行四边形的性质和角平分线定义得出∠AEB=∠BAE,证出BE=AB=3cm,得出EC =BC﹣BE=2cm即可.【解答】解:∵四边形ABCD是平行四边形,∴BC=AD=5cm,AD∥BC,∴∠DAE=∠AEB,∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠AEB=∠BAE,∴BE=AB=3cm,∴EC=BC﹣BE=5﹣3=2cm;【点评】本题看成了平行四边形的性质、等腰三角形的判定与性质、角平分线定义;熟练掌握平行四边形的性质,证出BE=AB是解决问题的关键.7.下列命题中,正确的是()A.对角线相等的四边形是矩形B.对角线互相平分的四边形是平行四边形C.对角线互相垂直的四边形是菱形D.对角线互相垂直且相等的四边形是正方形【分析】根据矩形、菱形、平行四边形、正方形的判定方法逐一进行判定.【解答】解:A、对角线相等的平行四边形是矩形,故本选项错误;B、对角线互相平分的四边形是平行四边形,正确;C、对角线互相垂直的平行四边形是菱形,故本选项错误;D、对角线互相垂直平分且相等的四边形是正方形,故本选项错误.故选:B.【点评】本题考查了矩形、菱形、平行四边形、正方形的判定方法.熟练掌握特殊四边形的判定方法是解决此类问题的关键.8.化简等于()A.B.C.D.【分析】先将被开方数化为假分数,再转化为二次根式的商,然后分母有理化.【解答】解:原式====.故选:D.【点评】解答此题不仅要熟悉最简二次根式和算术平方根的定义,还要熟悉二次根式的除法运算.9.两条对角线互相垂直平分且相等的四边形是()A.矩形B.菱形C.正方形D.都有可能【分析】如果一个四边形的两条对角线互相垂直平分且相等,那么这个四边形是正方形,理由为:利用对角线互相平分的四边形为平行四边形得到ABCD为平行四边形,再利用对角线互相垂直的平行四边形为菱形,再利用对角线相等的菱形为正方形即可得证.【解答】解:如果一个四边形的两条对角线互相垂直平分且相等,那么这个四边形是正方形,已知:四边形ABCD,AC⊥BD,OA=OC,OB=OD,AC=BD,求证:四边形ABCD为正方形,证明:∵OA=OC,OB=OD,∴四边形ABCD为平行四边形,∴平行四边形ABCD为菱形,∵AC=BD,∴四边形ABCD为正方形.故选:C.【点评】此题考查了正方形的判定,以及角平分线定理,熟练掌握正方形的判定方法是解本题的关键.10.如图,在矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在点D′处,则重叠部分△AFC的面积为()A.6B.8C.10D.12【分析】因为BC为AF边上的高,要求△AFC的面积,求得AF即可,求证△AFD′≌△CFB,得BF=D′F,设D′F=x,则在Rt△AFD′中,根据勾股定理求x,于是得到AF=AB﹣BF,即可得到结果.【解答】解:易证△AFD′≌△CFB,∴D′F=BF,设D′F=x,则AF=8﹣x,在Rt△AFD′中,(8﹣x)2=x2+42,解之得:x=3,∴AF=AB﹣FB=8﹣3=5,=•AF•BC=10.∴S△AFC故选:C.【点评】本题考查了翻折变换﹣折叠问题,勾股定理的正确运用,本题中设D′F=x,根据直角三角形AFD′中运用勾股定理求x是解题的关键.二、填空题(共10小题,每题3分,共30分)11.若二次根式有意义,则自变量x的取值范围是x≥﹣3且x≠0.【分析】根据二次根式中的被开方数是非负数、分式分母不为0列出不等式,解不等式即可.【解答】解:由题意得,x+3≥0,x≠0,解得x≥﹣3且x≠0,故答案为:x≥﹣3且x≠0.【点评】本题考查的是二次根式有意义和分式有意义的条件,掌握二次根式中的被开方数是非负数、分式分母不为0是解题的关键.12.已知菱形两条对角线的长分别为5cm和12cm,则这个菱形的面积是30cm2.【分析】根据菱形的面积公式即可解决问题.【解答】解:菱形的面积=×12×5=30(cm2).故答案为:30.【点评】本题考查菱形的性质、解题的关键是记住菱形的面积公式,记住菱形的对角线互相垂直,属于中考常考题型.13.若矩形的对角线长为8cm,两条对角线的一个交角为60°,则该矩形的面积为cm2.【分析】根据矩形的性质,画出图形求解.【解答】解:∵ABCD为矩形∴OA=OC=OB=OD∵一个角是60°∴BC=OB=cm∴根据勾股定理==∴面积=BC•CD=4×=cm2.故答案为.【点评】本题考查的知识点有:矩形的性质、勾股定理.14.如图,每个小正方形的边长为1,在△ABC中,点D为AB的中点,则线段CD的长为.【分析】本题考查勾股定理的逆定理和直角三角形的性质,利用了勾股定理的逆定理和直角三角形的性质求解.【解答】解:观察图形AB==,AC==3,BC==2∴AC2+BC2=AB2,∴三角形为直角三角形,∵直角三角形中斜边上的中线等于斜边的一半∴CD=.【点评】解决此类题目要熟记斜边上的中线等于斜边的一半.注意勾股定理的应用.15.如图,一只蚂蚁从长为2cm,宽为2cm,高为3cm的长方体纸箱的A点沿纸箱爬到B点,那么它所行的最短路线长是5cm.【分析】先将图形展开,再根据两点之间线段最短,再由勾股定理求解即可.【解答】解:如图(1),AB=;如图(2),AB=.故答案为:5.【点评】此题考查了立体图形的侧面展开图,利用勾股定理求出斜边的长是解题的关键,而两点之间线段最短是解题的依据.16.已知实数a、b满足+(b+12)2=0,则=13.【分析】直接利用偶次方的性质以及二次根式的性质得出a,b的值,再利用算术平方根的定义化简得出答案.【解答】解:∵+(b+12)2=0,∴a=5,b=﹣12,∴==13.故答案为:13.【点评】此题主要考查了非负数的性质,正确得出a,b的值是解题关键.17.如图,菱形ABCD的边长是2cm,E是AB的中点,且DE丄AB,则菱形ABCD的面积为2 cm2.【分析】因为DE丄AB,E是AB的中点,所以AE=1cm,根据勾股定理可求出DE的长,菱形的面积=底边×高,从而可求出解.【解答】解:∵E是AB的中点,∴AE=1cm,∵DE丄AB,∴DE==cm.∴菱形的面积为:2×=2cm2.故答案为:2.【点评】本题考查菱形的性质,四边都相等,菱形面积的计算公式以及勾股定理的运用等.18.实数a在数轴上的位置如图所示,则|a﹣1|+=1.【分析】根据数轴上表示的两个数,右边的数总比左边的大,分别得出a﹣1与0,a﹣2与0的关系,然后根据绝对值的意义和二次根式的意义化简.【解答】解:根据数轴上显示的数据可知:1<a<2,∴a﹣1>0,a﹣2<0,∴|a﹣1|+=a﹣1+2﹣a=1.故答案为:1.【点评】本题主要考查了数轴,绝对值的意义和根据二次根式的意义化简.二次根式的化简规律总结:当a≥0时,=a;当a≤0时,=﹣a.19.若最简二次根式和是同类二次根式,则=5.【分析】直接利用最简二次根式以及同类二次根式的定义分析得出答案.【解答】解:∵最简二次根式和是同类二次根式,∴,解得:,∴=5.故答案为:5.【点评】此题主要考查了最简二次根式以及同类二次根式的定义,正确得出x,y的值是解题关键.20.如图,有两棵树,一棵高10m,另一棵高4m,两树相距8m.一只小鸟从一棵树的树尖飞到另一棵树的树尖,那么这只小鸟至少要飞行10m.【分析】根据“两点之间线段最短”可知:小鸟沿着两棵树的树尖进行直线飞行,所行的路程最短,运用勾股定理可将两点之间的距离求出.【解答】解:两棵树的高度差为6m,间距为8m,根据勾股定理可得:小鸟至少飞行的距离==10m.【点评】本题主要是将现实问题建立数学模型,运用数学知识进行求解.三、解答题(共9小题,共60分)21.(10分)计算(1)(2)【分析】(1)二次根式的加减运算先化为最简二次根式,再将被开方数相同的二次根式进行合并.(2)注意分母有理化的方法、平方差公式的运用.【解答】解:(1)原式=4+2﹣﹣=;(2)原式=4﹣+3+﹣﹣1=4﹣+2.【点评】本题考查的是二次根式的混合运算,在进行此类运算时一般先把二次根式化为最简二次根式的形式后再运算.22.(9分)在△ABC中,∠C=90°,AC=2.1cm,BC=2.8cm.(1)求△ABC的面积;(2)求斜边AB的长;(3)求高CD的长.【分析】(1)根据三角形的面积公式进行计算即可;(2)利用勾股定理可得出斜边AB的长;(3)利用面积的两种表达式可得出CD.【解答】解:如图所示:=AC×BC=2.94;(1)S△ABC(2)AB==3.5;(3)BC×AC=AB×CD,解得:CD=1.68.【点评】本题考查了勾股定理及直角三角形的面积,注意掌握三角形面积的不同表示方法.23.(9分)如图,折叠矩形的一边AD,使点D落在BC边的点F处,已知AB=8cm,BC=10cm,求EC的长.【分析】根据矩形的性质得DC=AB=8,AD=BC=10,∠B=∠D=∠C=90°,再根据折叠的性质得AF=AD=10,DE=EF,在Rt△ABF中,利用勾股定理计算出BF=6,则FC=4,设EC =x,则DE=EF=8﹣x,在Rt△EFC中,根据勾股定理得x2+42=(8﹣x)2,然后解方程即可.【解答】解:∵四边形ABCD为矩形,∴DC=AB=8,AD=BC=10,∠B=∠D=∠C=90°,∵折叠矩形的一边AD,使点D落在BC边的点F处∴AF=AD=10,DE=EF,在Rt△ABF中,BF===6,∴FC=BC﹣BF=4,设EC=x,则DE=8﹣x,EF=8﹣x,在Rt△EFC中,∵EC2+FC2=EF2,∴x2+42=(8﹣x)2,解得x=3,∴EC的长为3cm.【点评】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了勾股定理.24.(9分)如图,∠C=90°,AC=3,BC=4,AD=12,BD=13,试判断△ABD的形状,并说明理由.【分析】先在△ABC中,根据勾股定理求出AB2的值,再在△ABD中根据勾股定理的逆定理,判断出AD⊥AB,即可得到△ABD为直角三角形.【解答】解:△ABD为直角三角形.理由如下:∵在△ABC中,∠C=90°,∴AB2=CB2+AC2=42+32=52,∴在△ABD中,AB2+AD2=52+122=132,∴AB2+AD2=BD2,∴△ABD为直角三角形.【点评】本题考查勾股定理与其逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.25.(9分)如图,四边形ABCD是平行四边形,AB=10,AD=8,AC⊥BC,求AC、OA以及平行四边形ABCD的面积.【分析】由四边形ABCD是平行四边形,可求得BC=AD=8,又由AC⊥BC,利用勾股定理即可求得AC的长,然后由平行四边形的对角线互相平分,求得OA的长,继而求得平行四边形ABCD 的面积.【解答】解:∵四边形ABCD是平行四边形,∴BC=AD=8,∵AB=10,AC⊥BC,∴AC==6,∴OA=AC=3,=BC•AC=8×6=48.∴S平行四边形ABCD【点评】此题考查了平行四边形的性质以及勾股定理.注意平行四边形的对边相等,对角线互相平分.26.(10分)如图,在四边形ABCD中,AB=CD,BF=DE,AE⊥BD,CF⊥BD,垂足分别为E、F.(1)求证:△ABE≌△CDF;(2)若AC与BD交于点O,求证:AO=CO.【分析】(1)根据AB=CD,BE=DF,利用HL即可证明.(2)只要证明四边形ABCD是平行四边形即可解决问题.【解答】证明:(1)∵BF=DE,∴BF﹣EF=DE﹣EF,即BE=DF.∵AE⊥BD,CF⊥BD,∴∠AEB=∠CFD=90°,∵AB=CD,BE=DF,∴Rt△ABE≌Rt△CDF(HL).(2)∵△ABE≌△CDF,∴∠ABE=∠CDF,∴AB∥CD,∵AB=CD,∴四边形ABCD是平行四边形,∴AO=CO.【点评】本题考查全等三角形的判定和性质、平行四边形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,学会添加常用辅助线,利用特殊四边形的性质解决问题.27.(10分)已知:如图,在正方形ABCD中,AE⊥BF,垂足为P,AE与CD交于点E,BF与AD交于点F,求证:AE=BF.【分析】根据正方形的性质得出∠AED=∠AFB,所以得到△AED≌△ABF,利用全等的性质得到AE=BF.【解答】证明:∵四边形ABCD是正方形,AE⊥BF,∴∠DAE+∠AED=90°,∠DAE+∠AFB=90°,∴∠AED=∠AFB,又∵AD=AB,∠BAD=∠D,∴△AED≌△ABF,∴AE=BF.【点评】主要考查了正方形的性质和全等三角形的判定.充分利用正方形的特殊性质来找到全等的条件从而判定全等后利用全等三角形的性质解题.28.(12分)求证:对角线互相垂直的平行四边形是菱形.小红同学根据题意画出了图形,并写出了已知和求证的一部分,请你补全已知和求证,并写出证明过程.已知:如图,在▱ABCD中,对角线AC,BD交于点O,AC⊥BD.求证:四边形ABCD是菱形.【分析】由命题的题设和结论可填出答案,由平行四边形的性质可证得AC为线段BD的垂直平分线,可求得AB=AD,可得四边形ABCD是菱形.【解答】已知:如图,在▱ABCD中,对角线AC,BD交于点O,AC⊥BD,求证:四边形ABCD是菱形.证明:∵四边形ABCD为平行四边形,∴BO=DO,∵AC⊥BD,∴AC垂直平分BD,∴AB=AD,∴四边形ABCD为菱形.故答案为:AC⊥BD;四边形ABCD是菱形.【点评】本题主要考查菱形的判定及平行四边形的性质,利用平行四边形的性质证得AB=AD是解题的关键.29.(12分)如图,Rt△OA1A2中,过A2作A2A3⊥OA2,以此类推.且OA1=A1A2=A2A3=A3A4…=1,记△OA1A2的面积为S1,△OA2A3面积为S2,△OA3A4面积为S3,…,细心观察图,认真分析各题,然后解答问题:①()2+1=2,S1=;②()2+1=3,S2=;③()2+1=4,S3=…(1)请写出第n个等式:()2+1=n+1,S n=;(2)根据式子规律,线段OA10=;(3)求出S12+S22+S32+…+S102的值.【分析】(1)根据前三个等式得到规律,根据规律解答;(2)根据勾股定理计算即可;(3)根据(1)中得到的规律、有理数的运算法则计算.【解答】解:(1)①()2+1=2,S1=;②()2+1=3,S2=;③()2+1=4,S3=…则第n个等式为:③()2+1=n+1,S n=,故答案为:()2+1=n+1,S n=;(2)OA1=1OA2=,OA3=,…则OA10=,故答案为:;(3)S12+S22+S32+…+S102=()2+()2+()2+…+()2==.【点评】本题考查的是勾股定理的应用,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.。

2020年八年级数学下期中试卷附答案

2020年八年级数学下期中试卷附答案
14.【解析】【分析】根据三角形中位线定理得到DE=BCDF=ACEF=AB根据三角形的周长公式计算得到答案【详解】解:根据题意画出图形如图所示点DEF分别是ABACBC的中点∴DE=BCDF=ACEF=
解析:
【解析】
【分析】
根据三角形中位线定理得到DE= BC,DF= AC,EF= AB,根据三角形的周长公式计算,得到答案.
由有一个角是直角的平行四边形是矩形,可得当∠ABC=∠BCD时,能判定口ABCD是矩形.
故选答案为C.
【点睛】
本题考查了平行四边形是矩形的判定方法,其方法有①有一个角是直角的平行四边形是矩形;②有三个角是直角的四边形是矩形;③对角线互相平分且相等的四边形是矩形.
二、填空题
13.5【解析】【分析】直接利用中位数定义求解【详解】第50个数和第55个数都是5所以这100名学生所植树棵数的中位数为5(棵)故答案为5【点睛】考查了中位数:将一组数据按照从小到大(或从大到小)的顺序排
6.D
解析:D
【解析】
分析:以函数的交点为分界线,然后看谁的图像在上面就是谁大.
详解:根据函数图像可得:当x>2时,kx+b<ax,故选C.
点睛:本题主要考查的是不等式与函数之间的关系,属于中等难度题型.解决这个问题的关键就是看懂函数图像.
7.B
解析:B
【解析】
【分析】根据被开方数大于源自于0,分母不等于0列式计算即可得解.
A.AC=BDB.AB⊥BC
C.1=2D.ABC=BCD
二、填空题
13.某校在“爱护地球,绿化祖国“的创建活动中,组织了100名学生开展植数造林活动,其植树情况整理如下表:
植树棵数(单位:棵)
4
5
6

2020年八年级数学下期中试卷(及答案)

2020年八年级数学下期中试卷(及答案)

2020年八年级数学下期中试卷(及答案)一、选择题1.如图,由四个全等的直角三角形拼成的图形,设CE=a,HG=b,则斜边BD的长是()A.a+b B.a﹣b C.222a b+D.222a b-2.下列二次根式中,最简二次根式是( )A.10B.12C.12D.83.已知,如图,长方形ABCD中,AB=5cm,AD=25cm,将此长方形折叠,使点D与点B 重合,折痕为EF,则△ABE的面积为()A.35cm2B.30cm2C.60cm2D.75cm24.某学校组织学生进行社会主义核心价值观的知识竞赛,进入决赛的共有20名学生,他们的决赛成绩如下表所示:决赛成绩/分95908580人数4682那么20名学生决赛成绩的众数和中位数分别是( )A.85,90B.85,87.5C.90,85D.95,905.如图,一场暴雨过后,垂直于地面的一棵树在距地面1米处折断,树尖B恰好碰到地面,经测量AB=2m,则树高为()米A .5B .3C .5+1D .36.正方形具有而菱形不具有的性质是( ) A .四边相等 B .四角相等C .对角线互相平分D .对角线互相垂直7.如图,ABC V 中,CD AB ⊥于,D E 是AC 的中点.若6,5,AD DE ==则CD 的长等于( )A .5B .6C .8D .108.下列说法正确的有几个( )①对角线互相平分的四边形是平行四边形;②对角线互相垂直的四边形是菱形;③对角线互相垂直且相等的平行四边形是正方形;④对角线相等的平行四边形是矩形. A .1个B .2个C .3个D .4个9.如图,在菱形ABCD 中,BE ⊥CD 于E ,AD =5,DE =1,则AE =( )A .4B .5C .34D .4110.如图,矩形纸片ABCD ,3AB =,点E 在BC 上,且AE EC =.若将纸片沿AE 折叠,点B 恰好落在AC 上,则矩形ABCD 的面积是( )A .12B .63C .93D .1511.如图1,∠DEF =25°,将长方形纸片ABCD 沿直线EF 折叠成图2,再沿折痕GF 折叠成图3,则∠CFE 的度数为( )A .105°B .115°C .130°D .155°12.如图是自动测温仪记录的图象,它反映了齐齐哈尔市的春季某天气温T 如何随时间t的变化而变化,下列从图象中得到的信息正确的是( )A .0点时气温达到最低B .最低气温是零下4℃C .0点到14点之间气温持续上升D .最高气温是8℃二、填空题13.(1)计算填空:24= ,20.8 = ,2(3)-= , 223⎛⎫- ⎪⎝⎭= (2)根据计算结果,回答:2a 一定等于a 吗?你发现其中的规律了吗?并请你把得到的规律描述出来?(3)利用你总结的规律,计算:2( 3.15)π-14.如图,△ABC 中,∠ACB =90°,CD 是斜边上的高,AC =4,BC =3,则CD =______.15.将函数31y x =+的图象平移,使它经过点()1,1,则平移后的函数表达式是____. 16.菱形ABCD 中,对角线AC =8,BD =6,则菱形的边长为_____.17.已知:如图,∠ABC =∠ADC =90°,M 、N 分别是AC 、BD 的中点,AC =10,BD =8,则MN =_____.18.如图,连接四边形ABCD 各边中点,得到四边形EFGH ,对角线AC ,BD 满足________,才能使四边形EFGH 是矩形.19.一根旗杆在离地面4.5 m 的地方折断,旗杆顶端落在离旗杆底部6 m 外,则旗杆折断前的高度是________.20.如图,已知函数y ax b =+和y kx =的图象交于点P, 则根据图象可得,关于y ax by kx =+⎧⎨=⎩的二元一次方程组的解是_____________。

2020年新人教版八年级数学下册期中试题及答案

2020年新人教版八年级数学下册期中试题及答案

八年级(下)期中数学试卷一、选择题(共12小题,每小题3分,满分36分)1.的算术平方根是()A.4 B.﹣4 C.2 D.±22.菱形具有而矩形不具有的性质是()A.对角线互相平分B.四条边都相等C.对角相等D.邻角互补3.三角形的三边长分别为6,8,10,它的最短边上的高为()A.6 B.4.5 C.2.4 D.84.若四边形的两条对角线相等,则顺次连接该四边形各边中点所得的四边形是()A.梯形B.矩形C.菱形D.正方形5.若x<2,化简+|3﹣x|的正确结果是()A.﹣1 B.1 C.2x﹣5 D.5﹣2x6.下面条件中,能判定四边形是平行四边形的条件是()A.一组对角相等B.对角线互相平分C.一组对边相等D.对角线互相垂直7.当x=﹣3时,的值是()A.±3 B.3 C.﹣3 D.98.如图字母B所代表的正方形的面积是()A.12 B.13 C.144 D.1949.下列等式不成立的是()A.()2=a B.=|a| C.=﹣D.a=10.若|x﹣5|+2=0,则x﹣y的值是()A.﹣7 B.﹣5 C.3 D.711.下列计算:①;②;③;④;⑤.其中正确的是()A.①和③B.②和③C.③和④D.③和⑤12.适合下列条件的△ABC中,直角三角形的个数为()①a=,b=,c=②a=6,∠A=45°;③∠A=32°,∠B=58°;④a=7,b=24,c=25 ⑤a=2,b=2,c=4A.2个B.3个C.4个D.5个二、填空题(共6小题,每小题3分,满分18分)13.计算:+=.14.平行四边形ABCD中,∠A=50°,AB=30cm,则∠B=,DC=cm.15.若,则ab=.16.已知平行四边形ABCD的对角线AC,BD相交于点O,AB=5,AO=4,BO=3,则平行四边形的周长是,面积是.17.如图,某人欲横渡一条河,由于水流的影响,实际上岸地点C偏离欲到达点B200m,结果他在水中实际游了520m,求该河流的宽度为m.18.观察分析下列数据,寻找规律:0,,,3,2,,3,…那么第10个数据应是.三、解答题(共8小题,满分66分)19.(1)计算:+﹣×+;(2)已知三角形一边长为cm,这条边上的高为cm,求该三角形的面积.20.现有一张正方形纸片,将它折两次(第一次折后也可打开铺平再折第二次),使得折痕将纸片分为面积相等且不重叠的四部分(称为一个操作),如图甲(虚线表示折痕).除图甲外,请你再给出三个不同的操作,分别将折痕画在图①至图③中.(规定:一个操作得到的四个图形和另一个操作得到的四个图形,如果能够“配对”得到四组全等的图形,那么就认为是相同的操作,如图乙和图甲是相同的操作)21.(6分)(2015春港南区期中)如图,在△ABC中,AD是∠BAC的平分线,DE∥AC 交AB于E,DF∥AB交AC于F,求证:四边形AEDF是菱形.22.如图所示,有一条等宽的小路穿过长方形的草地ABCD,若AB=60m,BC=84m,AE=100m,则这条小路的面积是多少?23.如图,有一只小鸟从小树顶飞到大树顶上,请问它飞行的最短路程是多少米(先画出示意图,然后再求解).24.如图,4个小动物分别站在正方形场地的4个顶点,它们同时出发并以相同的速度沿场地边缘逆时针方向跑动,当它们同时停止时,顺次连接4个动物所在地点围成的图形是什么形状?为什么?25.在△ABC中,AB=AC,∠BAC=120°,过点C作CD∥AB,且CD=2AB,连接BD,BD=2.求△ABC的面积.26.已知:如图,在矩形ABCD中,M,N分别是边AD,BC的中点,E,F分别是线段BM,CM的中点.(1)求证:△ABM≌△DCM;(2)判断四边形MENF是什么特殊四边形,并证明你的结论;(3)当AD:AB=时,四边形MENF是正方形(只写结论,不需证明).参考答案与试题解析一、选择题(共12小题,每小题3分,满分36分)1.的算术平方根是()A.4 B.﹣4 C.2 D.±2【考点】算术平方根.【分析】首先根据算术平方根的定义求出的值,然后再利用算术平方根的定义即可求出结果.【解答】解:∵=4,∴的算术平方根是=2.故选C.【点评】此题主要考查了算术平方根的定义,注意要首先计算=4.2.菱形具有而矩形不具有的性质是()A.对角线互相平分B.四条边都相等C.对角相等D.邻角互补【考点】矩形的性质;菱形的性质.【专题】证明题.【分析】与平行四边形相比,菱形的四条边相等、对角线互相垂直;矩形四个角是直角,对角线相等.【解答】解:A、对角线互相平分是平行四边形的基本性质,两者都具有,故A不选;B、菱形四条边相等而矩形四条边不一定相等,只有矩形为正方形时才相等,故B符合题意;C、平行四边形对角都相等,故C不选;D、平行四边形邻角互补,故D不选.故选:B.【点评】考查菱形和矩形的基本性质.3.三角形的三边长分别为6,8,10,它的最短边上的高为()A.6 B.4.5 C.2.4 D.8【考点】勾股定理的逆定理.【分析】由勾股定理的逆定理判定该三角形为直角三角形,然后由直角三角形的定义解答出最短边上的高.【解答】解:由题意知,62+82=102,所以根据勾股定理的逆定理,三角形为直角三角形.长为6的边是最短边,它上的高为另一直角边的长为8.故选D.【点评】本题考查了直角三角形的判定即勾股定理的逆定理和直角三角形的性质.4.若四边形的两条对角线相等,则顺次连接该四边形各边中点所得的四边形是()A.梯形B.矩形C.菱形D.正方形【考点】菱形的判定;三角形中位线定理.【专题】压轴题.【分析】因为四边形的两条对角线相等,根据三角形的中位线定理,可得所得的四边形的四边相等,则所得的四边形是菱形.【解答】解:如图,AC=BD,E、F、G、H分别是线段AB、BC、CD、AD的中点,∴EH、FG分别是△ABD、△BCD的中位线,EF、HG分别是△ACD、△ABC的中位线,∴EH=FG=BD,EF=HG=AC,∵AC=BD∴EH=FG=FG=EF,则四边形EFGH是菱形.故选C.【点评】本题利用了中位线的性质和菱形的判定:四边相等的四边形是菱形.5.若x<2,化简+|3﹣x|的正确结果是()A.﹣1 B.1 C.2x﹣5 D.5﹣2x【考点】二次根式的性质与化简.【分析】根据二次根式的性质,绝对值的性质,先化简代数式,再合并.【解答】解:∵x<2∴|x﹣2|=2﹣x,|3﹣x|=3﹣x原式=|x﹣2|+3﹣x=2﹣x+3﹣x=5﹣2x.故选D.【点评】本题考查实数的综合运算能力及绝对值的性质,是各地中考题中常见的计算题型.6.下面条件中,能判定四边形是平行四边形的条件是()A.一组对角相等B.对角线互相平分C.一组对边相等D.对角线互相垂直【考点】平行四边形的判定.【专题】推理填空题.【分析】根据平行四边形的判定定理(①两组对角分别相等的四边形是平行四边形,②两组对边分别相等的四边形是平行四边形,③对角线互相平分的四边形是平行四边形,④有一组对边相等且平行的四边形是平行四边形)进行判断即可.【解答】解:A、两组对角分别相等的四边形是平行四边形,故本选项错误;B、∵OA=OC、OB=OD,∴四边形ABCD是平行四边形,故本选项正确;C、两组对边分别相等的四边形是平行四边形,故本选项错误;D、对角线互相平分的四边形才是平行四边形,而对角线互相垂直的四边形不一定是平行四边形,故本选项错误.故选B.【点评】本题考查了对平行四边形的判定定理得应用,题目具有一定的代表性,但是一道比较容易出错的题目.7.当x=﹣3时,的值是()A.±3 B.3 C.﹣3 D.9【考点】二次根式的性质与化简.【分析】直接利用二次根式的性质得出化简求出即可.【解答】解:∵x=﹣3,∴==3.故选:B.【点评】此题主要考查了二次根式的性质与化简,正确掌握二次根式的性质是解题关键.8.如图字母B所代表的正方形的面积是()A.12 B.13 C.144 D.194【考点】勾股定理.【专题】换元法.【分析】由图可知在直角三角形中,已知斜边和一直角边,求另一直角边的平方,用勾股定理即可解答.【解答】解:由题可知,在直角三角形中,斜边的平方=169,一直角边的平方=25,根据勾股定理知,另一直角边平方=169﹣25=144,即字母B所代表的正方形的面积是144.故选C.【点评】此题比较简单,关键是熟知勾股定理:在直角三角形中两条直角边的平方和等于斜边的平方.9.下列等式不成立的是()A.()2=a B.=|a| C.=﹣D.a=【考点】立方根;算术平方根.【分析】根据二次方根的性质、开平方的被开方数都是非负数,可得答案.【解答】解:A、()2=a,故A正确;B、算术平方根是非负数,故B正确;C、负数的立方根是负数,故C正确;D、开平方的被开方数都是非负数故D错误;故选:D.【点评】本题考查了立方根,利用了二次根式的性质.10.若|x﹣5|+2=0,则x﹣y的值是()A.﹣7 B.﹣5 C.3 D.7【考点】非负数的性质:算术平方根;非负数的性质:绝对值.【分析】根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.【解答】解:由题意得,x﹣5=0,y+2=0,解得x=5,y=﹣2,所以,x﹣y=5﹣(﹣2)=5+2=7.故选D.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.11.下列计算:①;②;③;④;⑤.其中正确的是()A.①和③B.②和③C.③和④D.③和⑤【考点】二次根式的加减法.【分析】根据二次根式的加减法则进行计算即可.【解答】解:①与不是同类项,不能合并,故本小题错误;②与2不是同类项,不能合并,故本小题错误;③6﹣2=4,故本小题正确;④5﹣2=3,故本小题正确;⑤==,故本小题错误.故③、④正确.故选C.【点评】本题考查的是二次根式的加减法,熟知二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变是解答此题的关键.12.适合下列条件的△ABC中,直角三角形的个数为()①a=,b=,c=②a=6,∠A=45°;③∠A=32°,∠B=58°;④a=7,b=24,c=25 ⑤a=2,b=2,c=4A.2个B.3个C.4个D.5个【考点】勾股定理的逆定理;三角形内角和定理.【分析】计算出三角形的角利用定义判定或在知道边的情况下利用勾股定理的逆定理判定则可.【解答】解:①,根据勾股定理的逆定理不是直角三角形,故不是;②a=6,∠A=45不是成为直角三角形的必要条件,故不是;③∠A=32°,∠B=58°则第三个角度数是90°,故是;④72+242=252,根据勾股定理的逆定理是直角三角形,故是;⑤22+22≠42,根据勾股定理的逆定理不是直角三角形,故不是.故选A.【点评】本题考查了直角三角形的定义和勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.二、填空题(共6小题,每小题3分,满分18分)13.计算:+=5.【考点】二次根式的加减法.【分析】先将二次根式化为最简,然后合并同类二次根式即可.【解答】解:原式=2+3=;故答案为:5.【点评】本题考查了二次根式的加减,属于基础题,解答本题的关键是掌握二次根式的化简及同类二次根式的合并.14.平行四边形ABCD中,∠A=50°,AB=30cm,则∠B=130°,DC=30cm.【考点】平行四边形的性质.【分析】根据平行四边形的性质:平行四边形的对边相等且平行,即可求得.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,DC=AB=30cm,∴∠A+∠B=180°,∵∠A=50°,∴∠B=130°.故答案为130°,30.【点评】此题考查了平行四边形的性质:平行四边形的对边相等且平行.解题时注意数形结合思想的应用.15.若,则ab=﹣12.【考点】非负数的性质:算术平方根.【专题】计算题.【分析】根据非负数的性质列出方程求出a、b的值,代入所求代数式计算即可.【解答】解:∵若,∴可得:,解得:,∴ab=﹣12.故填﹣12.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.16.已知平行四边形ABCD的对角线AC,BD相交于点O,AB=5,AO=4,BO=3,则平行四边形的周长是20,面积是24.【考点】平行四边形的性质;勾股定理的逆定理.【分析】由平行四边形ABCD的对角线AC,BD相交于点O,AB=5,AO=4,BO=3,可证得AC⊥BD,即可得平行四边形ABCD是菱形,继而求得答案.【解答】解:∵平行四边形ABCD的对角线AC,BD相交于点O,∴AB=CD=5,AD=BC,AC=2AO=8,BD=2BO=6,∵AB=5,AO=4,BO=3,∴AB2=AO2+BO2,∴∠AOB=90°,即AC⊥BD,∴平行四边形ABCD是菱形,∴平行四边形的周长是:4×5=20,面积是:ACBD=×8×6=24.故答案为:20,24.【点评】此题考查了平行四边形的性质、菱形的判定与性质以及勾股定理的逆定理.此题难度适中,注意掌握定理的应用是关键.17.如图,某人欲横渡一条河,由于水流的影响,实际上岸地点C偏离欲到达点B200m,结果他在水中实际游了520m,求该河流的宽度为480m.【考点】勾股定理的应用.【专题】应用题.【分析】从实际问题中找出直角三角形,利用勾股定理解答.【解答】解:根据图中数据,运用勾股定理求得AB===480米.【点评】考查了勾股定理的应用,是实际问题但比较简单.18.观察分析下列数据,寻找规律:0,,,3,2,,3,…那么第10个数据应是3.【考点】规律型:数字的变化类.【专题】压轴题;规律型.【分析】通过观察可知,规律是根号下的被开方数依次是:0,0+3×1,0+3×2,0+3×3,0+3×4,…,3×9,…,3×(n﹣1),所以第10个数据应是=3.【解答】解:通过数据找规律可知,第n个数为,那么第10个数据为:=3.【点评】主要考查了学生的分析、总结、归纳能力,规律型的习题一般是从所给的数据和运算方法进行分析,从特殊值的规律上总结出一般性的规律.三、解答题(共8小题,满分66分)19.(1)计算:+﹣×+;(2)已知三角形一边长为cm,这条边上的高为cm,求该三角形的面积.【考点】二次根式的应用;二次根式的混合运算.【分析】(1)先化二次根式为最简二次根式,然后计算二次根式的加减法;(2)根据三角形的面积公式进行计算即可.【解答】解:原式=4+﹣×2+2=5﹣2+2;(2)S=××=(cm2).即该三角形的面积是cm2.【点评】本题考查了二次根式的应用,二次根式的混合运算.与有理数的混合运算一致,运算顺序先乘方再乘除,最后加减,有括号的先算括号里面的.20.现有一张正方形纸片,将它折两次(第一次折后也可打开铺平再折第二次),使得折痕将纸片分为面积相等且不重叠的四部分(称为一个操作),如图甲(虚线表示折痕).除图甲外,请你再给出三个不同的操作,分别将折痕画在图①至图③中.(规定:一个操作得到的四个图形和另一个操作得到的四个图形,如果能够“配对”得到四组全等的图形,那么就认为是相同的操作,如图乙和图甲是相同的操作)【考点】作图—应用与设计作图.【专题】作图题;压轴题.【分析】分别根据正方形的性质及三角形的面积公式将正方形化为四块面积相等的图形.【解答】解:如图所示:【点评】本题考查的是作图﹣应用与设计作图,熟知正方形的性质及三角形的面积公式是解答此题的关键.21.(6分)(2015春港南区期中)如图,在△ABC中,AD是∠BAC的平分线,DE∥AC 交AB于E,DF∥AB交AC于F,求证:四边形AEDF是菱形.【考点】菱形的判定.【专题】证明题.【分析】根据DE∥AC,DF∥AB得出四边形AEDF为平行四边形,根据平行四边形的性质可得∠FAD=∠EDA,然后根据AD是∠BAC的平分线,可得∠EAD=∠FAD,继而得出∠EAD=∠FAD,AE=ED,最后可判定四边形AEDF是菱形.【解答】证明:∵DE∥AC,DF∥AB,∴四边形AEDF为平行四边形,∴∠FAD=∠EDA,∵AD是∠BAC的平分线,∴∠EAD=∠FAD,∴∠EAD=∠FAD,∴AE=ED,∴四边形AEDF是菱形.【点评】本题考查了菱形和判定和平行四边形的性质,解答本题的关键是根据平行四边形的性质和角平分线的性质得出角相等,继而得出边相等,判定菱形.22.如图所示,有一条等宽的小路穿过长方形的草地ABCD,若AB=60m,BC=84m,AE=100m,则这条小路的面积是多少?【考点】生活中的平移现象;勾股定理.【专题】几何图形问题.【分析】根据勾股定理,可得BE的长,再根据路等宽,可得FD,根据矩形的面积减去两个三角形的面积,可得路的面积.【解答】解;路等宽,得BE=DF,△ABE≌△CDF,由勾股定理,得BE==80(m)S△ABE=60×80÷2=2400(m2)路的面积=矩形的面积﹣两个三角形的面积=84×60﹣2400×2=240(m2).答:这条小路的面积是240m2.【点评】本题考查了生活中的平移现象,先求出直角三角形的直角边的边长,再求出直角三角形的面积,用矩形的面积减去三角形的面积.23.如图,有一只小鸟从小树顶飞到大树顶上,请问它飞行的最短路程是多少米(先画出示意图,然后再求解).【考点】勾股定理的应用.【专题】应用题.【分析】根据题意画出图形,构造出直角三角形,利用勾股定理求解.【解答】解:如图所示,过D点作DE⊥AB,垂足为E∵AB=13,CD=8又∵BE=CD,DE=BC∴AE=AB﹣BE=AB﹣CD=13﹣8=5∴在Rt△ADE中,DE=BC=12∴AD2=AE2+DE2=122+52=144+25=169∴AD=13(负值舍去)答:小鸟飞行的最短路程为13m.【点评】本题考查正确运用勾股定理.善于观察题目的信息是解题以及学好数学的关键.24.如图,4个小动物分别站在正方形场地的4个顶点,它们同时出发并以相同的速度沿场地边缘逆时针方向跑动,当它们同时停止时,顺次连接4个动物所在地点围成的图形是什么形状?为什么?【考点】全等三角形的应用;正方形的判定.【分析】由于速度和时间都相同,所以它们走的路程相等,可以推测:当它们同时停止时,顺次连接4个动物所在地点围成的图形是正方形,根据正方形的特征:四条边都相等,四个角都是直角,只要证明出EFGH是正方形即可.【解答】解:如图:由于速度和时间都相同,所以它们走的路程相等,AE=BF=CG=DH,因为四边形ABCD是正方形,所以AB=BC=CD=DA,∠A=∠B=∠C=∠D,因为AE=BF=CG=DH,所以EB=FC=GD=HA,所以△AEH≌△BFE≌△CGF≌DHG,所以EH=EF=FG=GH,所以四边形EFGH是菱形,又因为△AEH≌△BFE,所以∠AEH=BFE,因为∠BEF+∠BFE=90°,所以∠AEH+∠BFE=90°,所以∠HEF=90°,所以菱形EFGH是正方形.【点评】此题考查了正方形的特征及性质,先证明出四边形EFGH是菱形,然后根据一个角是90度的菱形是正方形即可判定.25.在△ABC中,AB=AC,∠BAC=120°,过点C作CD∥AB,且CD=2AB,连接BD,BD=2.求△ABC的面积.【考点】菱形的判定与性质;等边三角形的判定与性质.【专题】综合题.【分析】过点B作BE∥AC,交CD于点E,过B作BF⊥CD于F,证明四边形ABEC是菱形,然后根据菱形的性质和∠BAC=120°证明出△BDE是等边三角形,从而得出菱形的边长,然后求出菱形的高,△ABC的面积等于菱形面积的一半.【解答】解:过点B作BE∥AC交CD于E,过B作BF⊥CD于F,∵CD∥AB,AB=AC,∴四边形ABEC是菱形,∴BE=CE=AB,∵∠BAC=120°,∴∠ABE=60°,∴∠BED=∠ABE=60°,∵CD=2AB,BD=2,∴CE=DE=BD=2,∴△BDE是等边三角形,∴△BDE的高BF==,∴S△ABC=S=×2×=,菱形ABEC故△ABC的面积为.【点评】本题主要考查了菱形的判定与等边三角形的判定、等边三角形三边相等的性质,作辅助线构造出菱形与等边三角形是解题的关键,也是难点.26.已知:如图,在矩形ABCD中,M,N分别是边AD,BC的中点,E,F分别是线段BM,CM的中点.(1)求证:△ABM≌△DCM;(2)判断四边形MENF是什么特殊四边形,并证明你的结论;(3)当AD:AB=2:1时,四边形MENF是正方形(只写结论,不需证明).【考点】矩形的性质;全等三角形的判定与性质;菱形的判定;正方形的判定.【分析】(1)根据矩形的性质可得AB=CD,∠A=∠D=90°,再根据M是AD的中点,可得AM=DM,然后再利用SAS证明△ABM≌△DCM;(2)四边形MENF是菱形.首先根据中位线的性质可证明NE∥MF,NE=MF,可得四边形MENF是平行四边形,再根据△ABM≌△DCM可得BM=CM进而得ME=MF,从而得到四边形MENF是菱形;(3)当AD:AB=2:1时,四边形MENF是正方形,证明∠EMF=90°根据有一个角为直角的菱形是正方形得到结论.【解答】(1)证明:∵四边形ABCD是矩形,∴AB=CD,∠A=∠D=90°,又∵M是AD的中点,∴AM=DM.在△ABM和△DCM中,,∴△ABM≌△DCM(SAS).(2)解:四边形MENF是菱形.证明如下:∵E,F,N分别是BM,CM,CB的中点,∴NE∥MF,NE=MF.∴四边形MENF是平行四边形.由(1),得BM=CM,∴ME=MF.∴四边形MENF是菱形.(3)解:当AD:AB=2:1时,四边形MENF是正方形.理由:∵M为AD中点,∴AD=2AM.∵AD:AB=2:1,∴AM=AB.∵∠A=90,∴∠ABM=∠AMB=45°.同理∠DMC=45°,∴∠EMF=180°﹣45°﹣45°=90°.∵四边形MENF是菱形,∴菱形MENF是正方形.故答案为:2:1.【点评】此题主要考查了矩形的性质,以及菱形的判定和正方形的判定,关键是掌握菱形和正方形的判定方法.438011;ZJX;CJX;。

2020年八年级下册期中数学试卷及答案

2020年八年级下册期中数学试卷及答案

八年级(下)期中数学试卷一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号涂在答题卡相应位置上)1.下列图形中,是中心对称但不是轴对称的图形是()A.等边三角形 B.正方形C.圆 D.平等四边形2.下面有四种说法:①了解某一天出入南京市的人口流量适合用普查方式;②抛掷一个正方体骰子,点数为奇数的概率是③“打开电视机,正在播放关于篮球巨星科比退役的相关新闻”是随机事件.④如果一件事发生的概率只有十万分之一,那么它仍是可能发生的事件.其中正确说法是()A.①②③B.①②④C.②③④D.②④3.下列各式从左到右的变形正确的是()A. =1 B. =C. =x+y D. =4.下列命题中,假命题是()A.对角线互相垂直且相等的四边形是正方形B.对角线相等且互相平分的四边形是矩形C.对角线互相垂直平分的四边形是菱形D.对角线互相平分的四边形是平行四边形5.在大量重复试验中,关于随机事件发生的频率与概率,下列说法正确的是()A.频率就是概率B.频率与试验次数无关C.概率是随机的,与频率无关D.随着试验次数的增加,频率一般会越来越接近概率6.四边形ABCD中,对角线AC、BD相交于点O,给出下列四个条件:①AD∥BC;②AD=BC;③OA=OC;④OB=OD,从中任选两个条件,能使四边形ABCD为平行四边形的选法有()A.6种B.5种C.4种D.3种二、填空题(共10小题,每小题2分,共20分.请把答案直接填写在答题纸相应位置上)7.若分式有意义,则x的取值范围是.8.平行四边形ABCD中,∠A比∠B小20°,那么∠C= .9.在一个不透明的口袋里装了2个红球和1个白球,每个球除了颜色外都相同,将球摇匀,据此,请你写出一个发生的可能性小于的随机事件:.10.一个样本的50个数据分别落在5个组内,第1、2、3、4组数据的个数分别是2、8、15、5,则第5组数据的频数为,频率为.11.如图,在矩形ABCD中,对角线AC、BD交于点O,已知∠AOB=60°,AC=8,则BC的长为.12.如图,将▱ABCD折叠,使点D、C分别落在点F、E处(点F、E都在AB所在的直线上),折痕为MN,若∠AMF=50°,则∠A= °.13.如图,在菱形ABCD中,AC与BD相交于点O,点P是AB的中点,PO=3,则菱形ABCD的周长是.14.用平行四边形的定义和课本上的三个定理可以判断一个四边形是平行四边形,请探索并写出一个与它们不同的平行四边形的判定方法:.15.若顺次连接四边形各边中点所得到的四边形是矩形,则原四边形必须满足的条件是.16.已知在平面直角坐标系中,点A、B、C、D的坐标依次为(﹣1,0),(m,n),(﹣1,10),(﹣7,p),且p≤n.若以A、B、C、D四个点为顶点的四边形是菱形,则n的值是.三、解答题(本大题共10小题,共68分.请在答题卷指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.计算:(1)•(2)﹣﹣3.18.先化简,再求值:÷(﹣1),然后从2,1,﹣1,﹣2中选一个你认为合适的数作为a 的值代入求值.19.证明矩形的判定定理:对角线相等的平行四边形是矩形.20.如图,线段AB绕点O顺时针旋转一定的角度得到线段A1B1(点A的对应点为A1).(1)请用直尺和圆规作出旋转中心O(不写作法,保留作图痕迹);(2)连接OA、OA1、OB、OB1,并根据旋转的性质用符号语言写出2条不同类型的正确结论.21.在平行四边形ABCD中,E、F分别是AB、CD的中点,AF与DE相交于点G,GE与BF相交于点H.(1)求证:四边形EHFG是平行四边形;(2)若四边形EHFG是矩形,则平等四边行ABCD应满足的条件是.(直接写出答案,不需要证明)22.某校有2 000名学生.为了解全校学生的上学方式,该校数学兴趣小组在全校随机抽取了100名学生进行抽样调查.整理样本数据,得到如图表(频数分布表中部分划记被墨水盖住):某校100名学生上学方式频数分布表方式划记频数步行正正正15骑车正正正正正29乘公共交通工具正正正正正正30乘私家车其它合计100(1)本次调查的个体是;(2)求频数分布表中,“乘私家车”部分对应的频数;(3)请估计该校2 000名学生中,先把骑车和步行上学的一共有多少人?23.如图,在正方形ABCD,M、N是对角线AC上的两点,且AM=CN,连接DM并延长,交AB 于点F,连接BN并延长,交DC于点E.连接BM、DN.(1)求证:四边形MBND为菱形;(2)求证:△MFB≌△NED.24.浴缸有两个水龙头,一个放热水,一个放冷水,两水龙头放水速度:放热水的是a升/分,放冷水的速度是b升/分,下面有两种放水方式:方式一:先开热水,使热水注满浴缸的一半,后一半容积的水接着开冷水龙头注放.方式二:前一半时间让热水龙头注放,后一半时间让冷水龙头注放.(1)在方式一中:设浴缸容积为V升,则先开热水,热水注满浴缸一半所需的时间为分;(2)两种方式中,哪种方式更节省时间?请说明理由.25.阅读下面的解题过程,然后解题:题目:已知(a、b、c互相不相等),求x+y+z的值.解:设,则x=k(a﹣b),y=k(b﹣c),z=k(c﹣a)于是,x+y+z=k(a﹣b+b﹣c+c﹣a)=k•0=0,依照上述方法解答下列问题:已知: ==(x+y+z≠0),求的值.26.如图①,已知△ABC是等腰三角形,∠BAC=90°,点D是BC的中点,作正方形DEFG,使点A、C分别在DG和DE上,连接AE、BG.(1)试猜想线段BG和AE的关系为;(2)如图②,将正方形DEFG绕点D按逆时针方向旋转α(0°<α≤90°),判断(1)中的结论是否仍然成立,证明你的结论.八年级(下)期中数学试卷参考答案与试题解析一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号涂在答题卡相应位置上)1.下列图形中,是中心对称但不是轴对称的图形是()A.等边三角形 B.正方形C.圆 D.平等四边形【考点】R5:中心对称图形;P3:轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、是轴对称图形,是中心对称图形,故此选项错误;C、既是轴对称图形,是中心对称图形,故此选项错误;D、不是轴对称图形,不是中心对称图形,故此选项正确;故选:D.【点评】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.下面有四种说法:①了解某一天出入南京市的人口流量适合用普查方式;②抛掷一个正方体骰子,点数为奇数的概率是③“打开电视机,正在播放关于篮球巨星科比退役的相关新闻”是随机事件.④如果一件事发生的概率只有十万分之一,那么它仍是可能发生的事件.其中正确说法是()A.①②③B.①②④C.②③④D.②④【考点】X3:概率的意义;V2:全面调查与抽样调查;X1:随机事件.【分析】根据调查方式的选择、必然事件、不可能事件、随机事件的概念分别进行解答即可.【解答】解:①了解某一天出入南京市的人口流量适合用抽样调查的方式,故本选项错误;②抛掷一个正方体骰子,点数为奇数的概率是,正确;③“打开电视机,正在播放关于篮球巨星科比退役的相关新闻”是随机事件,正确;④如果一件事发生的概率只有十万分之一,那么它仍是可能发生的事件,正确;故选C.【点评】此题考查了概率的意义、抽样调查和全面调查和随机事件,不易采集到数据的调查要采用抽样调查的方式;必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.3.下列各式从左到右的变形正确的是()A. =1 B. =C. =x+y D. =【考点】65:分式的基本性质.【专题】11 :计算题;513:分式.【分析】原式变形变形得到结果,即可作出判断.【解答】解:A、原式==1,正确;B、原式=,错误;C、原式为最简结果,错误;D、原式=,错误,故选A【点评】此题考查了分式的基本性质,熟练掌握分式的基本性质是解本题的关键.4.下列命题中,假命题是()A.对角线互相垂直且相等的四边形是正方形B.对角线相等且互相平分的四边形是矩形C.对角线互相垂直平分的四边形是菱形D.对角线互相平分的四边形是平行四边形【考点】O1:命题与定理;L6:平行四边形的判定;L9:菱形的判定;LC:矩形的判定;LF:正方形的判定.【分析】根据平行四边形,矩形,菱形和正方形的对角线矩形判断即可.【解答】解:对角线互相垂直平分且相等的四边形是正方形,所以A为假命题;对角线相等且互相平分的四边形是矩形,所以B为真命题;对角线互相垂直平分的四边形是菱形,所以C为真命题;对角线互相平分的四边形为平行四边形,所以D为真命题.故选A.【点评】本题考查了从对角线来判断特殊四边形的方法:对角线互相平分的四边形为平行四边形;对角线互相垂直平分的四边形为菱形;对角线互相平分且相等的四边形为矩形;对角线互相垂直平分且相等的四边形为正方形.也考查了真命题与假命题的概念.5.在大量重复试验中,关于随机事件发生的频率与概率,下列说法正确的是()A.频率就是概率B.频率与试验次数无关C.概率是随机的,与频率无关D.随着试验次数的增加,频率一般会越来越接近概率【考点】X8:利用频率估计概率.【专题】1 :常规题型.【分析】根据大量重复试验事件发生的频率逐渐稳定到某个常数附近,可以用这个常数估计这个事件发生的概率解答.【解答】解:∵大量重复试验事件发生的频率逐渐稳定到某个常数附近,可以用这个常数估计这个事件发生的概率,∴D选项说法正确.故选:D.【点评】本题考查了利用频率估计概率的知识,大量重复试验事件发生的频率逐渐稳定到某个常数附近,可以用这个常数估计这个事件发生的概率.6.四边形ABCD中,对角线AC、BD相交于点O,给出下列四个条件:①AD∥BC;②AD=BC;③OA=OC;④OB=OD,从中任选两个条件,能使四边形ABCD为平行四边形的选法有()A.6种B.5种C.4种D.3种【考点】L6:平行四边形的判定.【分析】根据题目所给条件,利用平行四边形的判定方法分别进行分析即可.【解答】解:①②组合可根据一组对边平行且相等的四边形是平行四边形判定出四边形ABCD 为平行四边形;③④组合可根据对角线互相平分的四边形是平行四边形判定出四边形ABCD为平行四边形;①③可证明△ADO≌△CBO,进而得到AD=CB,可利用一组对边平行且相等的四边形是平行四边形判定出四边形ABCD为平行四边形;①④可证明△ADO≌△CBO,进而得到AD=CB,可利用一组对边平行且相等的四边形是平行四边形判定出四边形ABCD为平行四边形;∴有4种可能使四边形ABCD为平行四边形.故选:C.【点评】此题主要考查了平行四边形的判定,关键是熟练掌握平行四边形的判定定理.二、填空题(共10小题,每小题2分,共20分.请把答案直接填写在答题纸相应位置上)7.若分式有意义,则x的取值范围是x≠﹣1 .【考点】62:分式有意义的条件.【分析】根据分式有意义的条件可得1+x≠0,再解即可.【解答】解:由题意得:1+x≠0,解得:x≠﹣1,故答案为:x≠﹣1.【点评】此题主要考查了分式有意义的条件,关键是掌握分式有意义的条件是分母不等于零.8.平行四边形ABCD中,∠A比∠B小20°,那么∠C= 80°.【考点】L5:平行四边形的性质.【专题】11 :计算题.【分析】根据平行四边形的性质分别求出∠A和∠B的度数,然后根据平行四边形对角相等的性质可得∠C=∠A,即可求解.【解答】解:∵四边形ABCD为平行四边形,∴,解得:,∴∠C=∠A=80°.故答案为:80°.【点评】本题考查了平行四边形对边平行的性质,得到邻角互补的结论,这是运用定义求四边形内角度数的常用方法.9.在一个不透明的口袋里装了2个红球和1个白球,每个球除了颜色外都相同,将球摇匀,据此,请你写出一个发生的可能性小于的随机事件:求摸到白球的概率.【考点】X2:可能性的大小;X1:随机事件.【分析】发生的可能性小于的随机事件就是摸出的球的个数占总数的一半以下,据此求解.【解答】解:一个不透明的口袋里装了2个红球和1个白球,摸到白球的概率为: =<,故答案为:求摸到白球的概率.【点评】本题考查了可能性的大小的知识,解题的关键是能够根据题意确定摸到红球和摸到白球的概率,难度不大.10.一个样本的50个数据分别落在5个组内,第1、2、3、4组数据的个数分别是2、8、15、5,则第5组数据的频数为20 ,频率为0.4 .【考点】V6:频数与频率.【分析】总数减去其它四组的数据就是第5组的频数,用频数除以数据总数就是频率.【解答】解:根据题意可得:第1、2、3、4组数据的个数分别是2、8、15、5,共(2+8+15+5)=30,样本总数为50,故第5小组的频数是50﹣30=20,频率是=0.4.故答案为20,0.4.【点评】本题考查频率、频数的关系:频率=,同时考查频数的定义即样本数据出现的次数.11.如图,在矩形ABCD中,对角线AC、BD交于点O,已知∠AOB=60°,AC=8,则BC的长为4 .【考点】LB:矩形的性质.【分析】由矩形的性质可得到OA=OB,于是可证明△ABO为等边三角形,于是可求得AB=4,然后依据勾股定理可求得BC的长.【解答】解:∵四边形ABCD为矩形,∴OA=OB=AC=4.∵OA=OB,∠AOB=60°,∴△OAB为等边三角形.∴AB=4.在Rt△ABC中,BC==4.故答案为:4.【点评】本题主要考查的是矩形的性质、等边三角形的性质和判定、勾股定理的应用,求得AB的长是解题的关键.12.如图,将▱ABCD折叠,使点D、C分别落在点F、E处(点F、E都在AB所在的直线上),折痕为MN,若∠AMF=50°,则∠A= 65 °.【考点】L5:平行四边形的性质.【分析】由平行四边形与折叠的性质,易得CD∥MN∥AB,然后根据平行线的性质,即可求得∠DMN=∠FMN=∠A,又由平角的定义,根据∠AMF=50°,求得∠DMF的度数,然后可求得∠A 的度数.【解答】解:∵四边形ABCD是平行四边形,∴AB∥CD,根据折叠的性质可得:MN∥AE,∠FMN=∠DMN,∴AB∥CD∥MN,∴∠DMN=∠FMN=∠A,∵∠AMF=50°,∴∠DMF=180°﹣∠AMF=130°,∴∠FMN=∠DMN=∠A=65°,故答案为:65.【点评】此题考查了平行四边形的性质、平行线的性质与折叠的性质,注意数形结合思想的应用以及折叠中的对应关系,难度适中.13.如图,在菱形ABCD中,AC与BD相交于点O,点P是AB的中点,PO=3,则菱形ABCD的周长是24 .【考点】L8:菱形的性质.【分析】根据菱形的性质可得AC⊥BD,AB=BC=CD=AD,再根据直角三角形的性质可得AB=2OP,进而得到AB长,然后可算出菱形ABCD的周长.【解答】解:∵四边形ABCD是菱形,∴AC⊥BD,AB=BC=CD=AD,∵点P是AB的中点,∴AB=2OP,∵PO=3,∴AB=6,∴菱形ABCD的周长是:4×6=24,故答案为:24【点评】此题主要考查了菱形的性质,关键是掌握菱形的两条对角线互相垂直,四边相等.14.用平行四边形的定义和课本上的三个定理可以判断一个四边形是平行四边形,请探索并写出一个与它们不同的平行四边形的判定方法:答案不唯一,如两组对角分别相等的四边形是平行四边形等.【考点】L6:平行四边形的判定.【专题】26 :开放型.【分析】根据平行四边形的定义以及判定方法得出即可.【解答】解:答案不唯一,如两组对角分别相等的四边形是平行四边形等;理由:∵∠B=∠D,∠A=∠C,∠B+∠C+∠D+∠A=360°,∴∠B+∠C=180°,∠A+∠D=180°,∴AB∥CD,AD∥BC,∴四边行ABCD是平行四边形.故答案为:答案不唯一,如两组对角分别相等的四边形是平行四边形等.【点评】此题主要考查了平行四边形的判定,熟练掌握相关判定定理是解题关键.15.若顺次连接四边形各边中点所得到的四边形是矩形,则原四边形必须满足的条件是对角线互相垂直.【考点】LN:中点四边形;LC:矩形的判定.【分析】根据矩形的性质和三角形中位线定理求解;首先根据三角形中位线定理知:所得四边形的对边都平行且相等,那么其必为平行四边形,若所得四边形是矩形,那么邻边互相垂直,故原四边形的对角线必互相垂直.【解答】解:由于E、F、G、H分别是AB、BC、CD、AD的中点,根据三角形中位线定理得:EH∥FG∥BD,EF∥AC∥HG,∴四边形EFGH是平行四边形,∵四边形EFGH是矩形,即EF⊥FG,∴AC⊥BD,故答案为:对角线互相垂直.【点评】本题主要考查了矩形的性质和三角形中位线定理,解题的关键是构造三角形利用三角形的中位线定理解答.16.已知在平面直角坐标系中,点A、B、C、D的坐标依次为(﹣1,0),(m,n),(﹣1,10),(﹣7,p),且p≤n.若以A、B、C、D四个点为顶点的四边形是菱形,则n的值是2,5,18 .【考点】L9:菱形的判定;D5:坐标与图形性质.【分析】利用菱形的性质结合A,C点坐标进而得出符合题意的n的值.【解答】解:如图所示:当C(﹣7,2),C′(﹣7,5)时,都可以得到以A、B、C、D四个点为顶点的四边形是菱形,同理可得:当D(﹣7,8)则对应点C的坐标为;(﹣7,18)可以得到以A、B、C、D四个点为顶点的四边形是菱形,故n的值为:2,5,18.故答案为:2,5,18.【点评】此题主要考查了菱形的判定以及坐标与图形的性质,利用菱形的性质得出C点坐标是解题关键.三、解答题(本大题共10小题,共68分.请在答题卷指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.计算:(1)•(2)﹣﹣3.【考点】6C:分式的混合运算.【分析】(1)先约分,再计算即可;(2)化为同分母的分式,再进行相加即可.【解答】解:(1)原式=﹣;(2)原式=﹣﹣===﹣2.【点评】本题考查了分式的混合运算,掌握分式的约分和通分是解此题的关键.18.先化简,再求值:÷(﹣1),然后从2,1,﹣1,﹣2中选一个你认为合适的数作为a 的值代入求值.【考点】6D:分式的化简求值.【分析】先算括号里面的,再算除法,最后选出合适的a的值代入进行计算即可.【解答】解:原式=÷=•=﹣,当a=﹣2时,原式=﹣=1.【点评】本题考查的是分式的化简求值,分式中的一些特殊求值题并非是一味的化简,代入,求值.许多问题还需运用到常见的数学思想,如化归思想(即转化)、整体思想等,了解这些数学解题思想对于解题技巧的丰富与提高有一定帮助.19.证明矩形的判定定理:对角线相等的平行四边形是矩形.【考点】LC:矩形的判定.【分析】由全等三角形的判定定理SSS证得△ABC≌△DCB,则∠ABC=∠DCB=90°,所以“有一内角为直角的平行四边形是矩形”.【解答】已知:四边形ABCD是平行四边形,AC、BD是两条对角线,且AC=BD.求证:平行四边形ABCD是矩形.证明:如图,∵四边形ABCD是平行四边形,∴AB=DC,AB∥DC.在△ABC与△DCB中,,∴△ABC≌△DCB(SSS).∴∠ABC=∠DCB.又∵∠ABC+∠DCB=180°,∴∠ABC=∠DCB=90°,∴平行四边形ABCD是矩形.【点评】本题考查了矩形的判定.此题通过全等三角形的性质得到同旁内角互补,结合平行线的性质证得平行四边形的两个内角为直角.20.如图,线段AB绕点O顺时针旋转一定的角度得到线段A1B1(点A的对应点为A1).(1)请用直尺和圆规作出旋转中心O(不写作法,保留作图痕迹);(2)连接OA、OA1、OB、OB1,并根据旋转的性质用符号语言写出2条不同类型的正确结论.【考点】R8:作图﹣旋转变换.【分析】(1)连接AA1、BB1,再分别作AA1、BB1中垂线,两中垂线交点即为点O;(2)根据旋转的性质可知,对应角都相等都等于旋转角,对应点到旋转中心距离相等,据此可知.【解答】解:(1)如图,点O即为所求;(2)OA=OA1、∠AOA1=∠BOB1.【点评】本题主要考查旋转变换的作图,熟练掌握旋转变换的性质:①对应点到旋转中心的距离相等(意味着:旋转中心在对应点所连线段的垂直平分线上),②对应点与旋转中心所连线段的夹角等于旋转角,③旋转前、后的图形全等.21.在平行四边形ABCD中,E、F分别是AB、CD的中点,AF与DE相交于点G,GE与BF相交于点H.(1)求证:四边形EHFG是平行四边形;(2)若四边形EHFG是矩形,则平等四边行ABCD应满足的条件是平行四边形ABCD是矩形,并且AB=2AD .(直接写出答案,不需要证明)【考点】LC:矩形的判定;L7:平行四边形的判定与性质.【分析】(1)通过证明两组对边分别平行,可得四边形EHFG是平行四边形;(2)当平行四边形ABCD是矩形,并且AB=2AD时,先证明四边形ADFE是正方形,得出有一个内角等于90°,从而证明菱形EHFG为一个矩形.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AE∥CF,AB=CD,∵E是AB中点,F是CD中点,∴AE=CF,∴四边形AECF是平行四边形,∴AF∥CE.同理可得DE∥BF,∴四边形FGEH是平行四边形;(2)解:当平行四边形ABCD是矩形,并且AB=2AD时,平行四边形EHFG是矩形.理由如下:连接EF,如图所示:∵E,F分别为AB,CD的中点,且AB=CD,∴AE=DF,且AE∥DF,∴四边形AEFD为平行四边形,∴AD=EF,又∵AB=2AD,E为AB中点,则AB=2AE,于是有AE=AD=AB,这时,EF=AE=AD=DF=AB,∠EAD=∠FDA=90°,∴四边形ADFE是正方形,∴EG=FG=AF,AF⊥DE,∠EGF=90°,∴此时,平行四边形EHFG是矩形;故答案为:平行四边形ABCD是矩形,并且AB=2AD.【点评】本题考查了平行四边形的判定与性质,矩形的判定,注意找准条件,有一定的难度.22.某校有2 000名学生.为了解全校学生的上学方式,该校数学兴趣小组在全校随机抽取了100名学生进行抽样调查.整理样本数据,得到如图表(频数分布表中部分划记被墨水盖住):某校100名学生上学方式频数分布表方式划记频数步行正正正15骑车正正正正正29乘公共交通工具正正正正正正30乘私家车其它合计100(1)本次调查的个体是每名学生的上学方式;(2)求频数分布表中,“乘私家车”部分对应的频数;(3)请估计该校2 000名学生中,先把骑车和步行上学的一共有多少人?【考点】V7:频数(率)分布表;V3:总体、个体、样本、样本容量;V5:用样本估计总体.【分析】(1)每一个调查对象称为个体,据此求解;(2)首先求得私家车部分所占的百分比,然后乘以总人数即可求得对应频数;(3)用学生总数乘以骑车和步行上学所占的百分比的和即可求得人数.【解答】解:(1)本次调查的个体是每名学生的上学方式,故答案为:每名学生的上学方式;(2)由扇形统计图知,“乘私家车”部分对应的百分比为1﹣15%﹣29%﹣30%﹣6%=20%,则“乘私家车”部分对应的频数为100×20%=20;(3)2000×(15%+29%)=880人.答:估计该校2000名学生中,选择骑车和步行上学的一共有880人.【点评】本题考查了频率分布表、用样本估计总体及扇形统计图的知识,解题的关键是能够读懂统计图,并从统计图中整理出进一步解题的有关信息.23.如图,在正方形ABCD,M、N是对角线AC上的两点,且AM=CN,连接DM并延长,交AB 于点F,连接BN并延长,交DC于点E.连接BM、DN.(1)求证:四边形MBND为菱形;(2)求证:△MFB≌△NED.【考点】LE:正方形的性质;KB:全等三角形的判定;LA:菱形的判定与性质.【分析】(1)连接BD交AC于O,先证明四边形BMDN是平行四边形,再根据NM⊥BD即可证明.(2)先证明四边形BFDE是平行四边形,得到∠BFM=∠DEN,再证明BM=DN,∠BMF=∠DNE即可解决问题.【解答】(1)证明:连接BD交AC于O.∵四边形ABCD是正方形,∴OA=OC,OB=OD,AC⊥BD,∵AM=CN,∴OM=ON,∵OB=OD,∴四边形MBND是平行四边形,∵MN⊥DB,∴四边形MBND是菱形.(2)证明:∵四边形MBND是菱形,∴DM∥NB,BM=DN,∠DMB=∠DNB,∴∠BMF=∠DNE,∵BF∥DE,∴四边形BFDE是平行四边形,∴∠BFM=∠DEN,在△MFB和△NED中,,∴△MFB≌△NED.【点评】本题考查正方形的性质、全等三角形的判定和性质、平行四边形的判定和性质、菱形的判定和性质等知识,解题的关键是灵活应用这些知识解决问题,属于中考常考题.24.浴缸有两个水龙头,一个放热水,一个放冷水,两水龙头放水速度:放热水的是a升/分,放冷水的速度是b升/分,下面有两种放水方式:方式一:先开热水,使热水注满浴缸的一半,后一半容积的水接着开冷水龙头注放.方式二:前一半时间让热水龙头注放,后一半时间让冷水龙头注放.(1)在方式一中:设浴缸容积为V升,则先开热水,热水注满浴缸一半所需的时间为分;(2)两种方式中,哪种方式更节省时间?请说明理由.【考点】6C:分式的混合运算.【分析】(1)根据题意即可得到结论;(2)首先浴缸容积为V,然后求出方式一和方式二注满时间为t、t′,最后作差比较.【解答】解:(1)先开热水注满浴缸一半所需的时间为分;故答案为:;(2)方式一:设浴缸容积为V,注满时间为t,依题意,得t=+,方式二:同样设浴缸容积为V,注满总时间为t′,依题意得t′a+t′b=V所以t′=,故t﹣t′=+﹣==,分类讨论:(Ⅰ)当a=b时,t﹣t′=0,即t=t′(Ⅱ)当a≠b时,>0,即t>t′综上所述:(1)当放热水速度与放冷水速度不相等时,选择方式二节约时间.(2)当两水龙头放水速度相等时,选其中任一方式都可以,因为此时注满水的时间相等.。

2020年初二数学下期中试卷(附答案)

2020年初二数学下期中试卷(附答案)
18.已知:如图,∠ABC=∠ADC=90°,M、N分别是AC、BD的中点,AC=10,BD=8,则MN=_____.
19.如图,已知函数 和 的图象交于点P,则根据图象可得,关于 的二元一次方程组的解是_____________。
20.如图,若▱ABCD的周长为22cm,AC,BD相交于点O,△AOD的周长比△AOB的周长小3cm,则AB=________。
故选B.
2.B
解析:B
【解析】
试题解析:85分的有8人,人数最多,故众数为85分;
处于中间位置的数为第10、11两个数,
为85分,90分,中位数为87.5分.
故选B.
考点:1.众数;2.中位数
3.D
解析:D
【解析】
【分析】
【详解】
试题分析:A、根据勾股定理的逆定理,可知 ,故能判定是直角三角形;
B、设a=3x,b=4x,c=5x,可知 ,故能判定是直角三角形;
【详解】
A. ,故A错误;
B. ,故B正确;
C. ,故C错误;
D. ,故D错误.
故选:B.
【点睛】
本题主要考查了二次根式的性质和二次根式的化简,熟练掌握运算和性质是解题的关键.
二、填空题
13.128°【解析】【分析】如图延长DC到F根据折叠的性质可得∠ACB=∠BCF继而根据平行线的性质可得∠BCF=∠ABC=26°从而可得∠ACF=52°再根据平角的定义即可求得答案【详解】如图延长DC
A.1B.2C.3D.4
11.菱形周长为 ,它的条对角线长 ,则该菱形的面积为()
A. B. C. D.
12.下列运算正确的是()
A. B.
C. D.
二、填空题
13.将一个矩形 纸片折叠成如图所示的图形,若∠ABC=26°,则∠ACD=____.

2020年八年级数学下期中试卷(带答案)

2020年八年级数学下期中试卷(带答案)
故选:C
【点睛】
本题主要考查了频数分布直方图,平均数以及中位数的应用,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.
9.D
解析:D
【解析】
【分析】
根据一次函数的性质对D进行判断;根据一次函数图象上点的坐标特征对A、B进行判断;根据一次函数的几何变换对C进行判断.
15.已知 则 ____________________.
16.函数 的自变量x的取值范围是_________.
17.在矩形ABCD中,点E为AD的中点,点F是BC上的一点,连接EF和DF,若AB=4,BC=8,EF=2 ,则DF的长为___________.
18.甲、乙两人分别从A,B两地相向而行,匀速行进甲先出发且先到达B地,他们之间的距离s(km)与甲出发的时间t(h)的关系如图所示,则乙由B地到A地用了______h.
解析:D
【解析】
分析:以函数的交点为分界线,然后看谁的图像在上面就是谁大.
详解:根据函数图像可得:当x>2时,kx+b<ax,故选C.
点睛:本题主要考查的是不等式与函数之间的关系,属于中等难度题型.解决这个问题的关键就是看懂函数图像.
11.C
解析:C
【解析】
【分析】
根据菱形的性质,四条边相等且对角线互相平分且互相垂直,由勾股定理得出BO的长,进而得其对角线BD的长,再根据菱形的面积等于对角线乘积的一半计算即可.
12.B
解析:B
【解析】
【分析】
根据被开方数大于等于0,分母不等于0列式计算即可得解.
【详解】
由题意得,x-3>0,

2020年初二数学下期中试题带答案

2020年初二数学下期中试题带答案

2020 年初二数学下期中试题带答案一、选择题1.按图 (1)﹣(3)的方式摆放餐桌和椅子,照这样的方式维续摆放,如果摆放的餐桌为x张,摆放的椅子为 y 把,则 y 与x 之间的关系式为 ( )A . y = 6xB .y =4x ﹣2C .y =5x ﹣1D .y =4x+22.如图,是一个三级台阶,它的每一级的长、宽、高分别为20dm 、3dm 、2dm ,A 和 B 是这个台阶两个相对的端点, A 点有一只蚂蚁,想到 B 点去吃可口的食物,则蚂蚁沿着台阶面 3.△ABC 的三边分别是 a ,b ,c ,其对角分别是∠ A ,∠B ,∠ C ,下列条件不能判定 △ABC 是直角三角形的是( )A .B AC B .a : b : c 5 :12 :13 C .b 2 a 2 c 2D . A : B : C 3 : 4 : 54. 下列说法正确的有几个( )①对角线互相平分的四边形是平行四边形;②对角线互相垂直的四边形是菱形;③对角线互相垂直且相等的平行四边形是正方形;④对角线相等 的平行四边形是矩形.A .1 个B .2 个C .3 个D .4 个5. 下列各组数据中能作为直角三角形的三边长的是( )A .1,2,2B .1,1, 3C .4,5,6D .1, 3 ,2①AC ⊥BD ;②AD ∥BC ;③四边形 ABCD 是菱形;④ △ABD ≌△ CDB .其中结论正确的序7. 对于次函数 y 2x 1,下列结论错误的是 ( ) A .图象过点 0, 1C .20D .256. 如图,四边形 ABCD 是轴对称图形,且直线AC 是否对称轴, AB ∥CD ,则下列结论:B .①②③④C .②③④D .①③④爬到 B 点的最短路程是( )号是(A .①②③1 B .图象与 x 轴的交点坐标为 ( ,0) 2C .图象沿 y 轴向上平移 1个单位长度,得到直线 y 2xD .图象经过第一、二、三象限 8.已知直角三角形中 30°角所对的直角边长是 2 3 cm ,则另一条直角边的长是( )B . 4 3 cmC .6cmD . 6 3 cm9.如图所示,一次函数 y=kx+b (k 、b 为常数,且 k ≠0)与正比例函数 y=ax ( a 为常数,且 a ≠0)相交于点 P ,则不等式 kx+b > ax 的解集是二、填空题13.如图,在 5×5 的正方形网格中,以 两条边长均为无理数,满足这样条件的点”,△ABH 、△BCG 、△CDF 和△DAE 是四个全等的直角三角形,四边形ABCD 和 EFGH 都是正方形,如果 AB = 10, EF = 2,那么 AH 等于A .x >1B .x <1C .x >2D .x <210.要使代数式2有意义,则 x 的取值范围是( ) x3A. x3B . x 3C . x 3D . x 311. 已知点(﹣ 2, y 1),(﹣ 1,y 2), ( 1,y 3)都在直线 y = ﹣ x+b 上,则 y 1, y 2,值的大小关系是( )A.y 1> y 2> y 3B .y 1< y 2< y 3C .y 3>y 1>y 2D .y 3>y 1>y 212. 菱形周长为40cm ,它的条对角线长 12cm , 则该菱形的面积为( )A.24B . 48C . 96D . 36y 3的A . 4cmC .6cmAB 为边画直角 △ABC ,使点 C 在格点上,且另外 C共 __个.15.在Rt ABC 中, a ,b ,c 分别为 A ,DB , C 的对边, C 90 ,若a :b 2:3 ,c 52 ,则 a 的长为 ______________18. 矩形两条对角线的夹角为 60°,矩形的较短的一边为 5,则矩形的对角线的长是(3)利用你总结的规律,计算:( 3.15) 2三、解答题 21. 已知 a ,b , c 在数轴上如图:化简: a 2a b c a 2b c .22.甲、乙两座仓库分别有农用车 12辆和 6辆.现在需要调往 A 县 10辆,需要调往 B 县 8辆,已知从甲仓库调运一辆农用车到A 县和B 县的运费分别为 40元和 80元;从乙仓库调运一辆农用车到 A 县和 B 县的运费分别为 30元和 50元.(1)设乙仓库调往 A 县农用车 x 辆,求总运费 y 关于 x 的函数关系式; (2)若要求总运费不超过 900 元,问共有几种调运方案?试列举出来.(3)求出总运费最低的调运方案,最低运费是多少元? 23.如图,在平面直角坐标系中,一次函数 y=kx+b 的图象经过点 A (﹣ 2,6),且与 x 轴相交于点 B ,与正比例函数 y=3x 的图象相交于点 C ,点 C 的横坐标为 1. (1)求 k 、b 的值;时间 t (秒) 0.5 0.60.7 0.8 0.9 1 落下的高度 h (米) 5 0.25 5 0.36 5 0.49 5 0.64 5 0.815119. 果字成熟后从树上落到地面,它落下的高度与经过的时间有如下的关系: 如果果子经过 2 秒落到地上,那么此果子开始落下时离地面的高度大约是 (2)根据计算结果,回答: a 2一定等于 a 吗?你发现其中的规律了吗?并请你把得到,0.82 20. (1)计算填空: 42 , ( 3)2的规律描述出来?16. 函数 yx12x 6的自变量 x 的取值范围是17.如图,在矩形 ABCD 中,对角线 AC ,BD 相交于点 O ,ACB 30 o,则 AOB 的大米.12)若点D在y轴负半轴上,且满足S△COD=13S△BOC,求点D的坐标.24.已知:如图,在四边形ABCD 中,∠ B=90°,AB=BC=2,CD=3,AD=1,求25.如图在8×8的正方形网格中,△ ABC 的顶点在边长为1的小正方形的顶点上.(1)填空:∠ ABC= ,BC= ;(2)若点A 在网格所在的坐标平面里的坐标为(1,﹣2),请你在图中找出一点D,并作出以A、B、C、D 四个点为顶点的平行四边形,求出满足条件的 D 点的坐标.参考答案】*** 试卷处理标记,请不要删除、选择题1.D 解析:D 【解析】【分析】观察可得,第一张餐桌上可以摆放6 把椅子,进一步观察发现:多一张餐桌,多放子.第x 张餐桌共有6+4(x-1)=4x+2 ,由此即可解答.4 把椅【详解】有1 张桌子时有6 把椅子,有2 张桌子时有10 把椅子,10=6+4× 1,有3 张桌子时有14 把椅子,14=6+4× 2,∵多一张餐桌,多放4 把椅子,∴第x 张餐桌共有6+4(x-1 )=4x+2 .∴y 与x 之间的关系式为:y=4x+2.故选D .【点睛】本题考查了图形的变化类问题,注意结合图形进行观察,发现数字之间的运算规律,利用规律即可求得y 与x 之间的关系式.2.D解析:D【解析】分析:本题考查的是利用勾股定理求线段的长度. 解析:根据题意,得出如下图形,最短路径为AB的长,AC=20,BC=15, ∴ AB=25故选D. 点睛:本题的关键是变曲为直,画出矩形,利用勾股定理得出对角线的长度. 3.D 解析:D【解析】【分析】根据三角形内角和定理判断A、D 即可;根据勾股定理的逆定理判断B、C即可.【详解】A、∵∠ B=∠A- ∠ C,∴∠ B+∠C=∠A,∵∠ A+∠B+ ∠C=180°,∴2∠A=180°,∴∠ A=90°,即△ABC 是直角三角形,故本选项错误;B、∵ 52+122=132,∴△ ABC 是直角三角形,故本选项错误;C、∵b2-a2=c2,∴b2=a2+c2,∴△ ABC 是直角三角形,故本选项错误;D、∵∠ A:∠B:∠ C=3:4:5,∠ A+ ∠B+∠C=180°,∴∠ A=45°,∠ B=60°,∠ C=75°,∴△ ABC 不是直角三角形,故本选项正确;故选D .【点睛】本题考查了三角形内角和定理,勾股定理的逆定理的应用,主要考查学生的计算能力和辨析能力.4.C解析:C【解析】【分析】根据对角线互相平分的四边形是平行四边形;对角线互相平分且垂直的四边形是菱形;对角线互相垂直且相等的平行四边形是正方形;对角线互相平分且相等的四边形是矩形进行分析即可.【详解】(1)对角线互相平分的四边形是平行四边形,说法正确;(2)对角线互相垂直的四边形是菱形,说法错误;(3)对角线互相垂直且相等的平行四边形是正方形,说法正确;(4)对角线相等的平行四边形是矩形,说法正确.正确的个数有3 个,故选C.【点睛】此题主要考查了命题与定理,关键是掌握平行四边形、菱形、矩形和正方形的判定方法.5.D解析:D【解析】【分析】根据勾股定理的逆定理对各选项进行逐一分析即可.【详解】解:A 、∵ 12+22=5≠22,∴此组数据不能作为直角三角形的三边长,故本选项错误;B、∵ 12+12=2≠(3 )2,∴此组数据不能作为直角三角形的三边长,故本选项错误;C、∵ 42+52=41≠62,∴此组数据不能作为直角三角形的三边长,故本选项错误;D、∵12+(3 )2=4=22,∴此组数据能作为直角三角形的三边长,故本选项正确.故选D .【点睛】本题考查的是勾股定理的逆定理,熟知如果三角形的三边长 这个三角形就是直角三角形是解答此题的关键.6.B 解析: B 【解析】 【分析】 根据轴对称图形的性质,结合菱形的判定方法以及全等三角形的判定方法分析得出答案. 【详解】解:如图,因为 l 是四边形 ABCD 的对称轴, AB ∥CD , 则 AD =AB ,∠ 1=∠ 2,∠ 1=∠ 4, 则∠ 2=∠ 4, ∴AD =DC ,同理可得: AB = AD = BC = DC , 所以四边形 ABCD 是菱形. 根据菱形的性质,可以得出以下结论: 所以 ①AC ⊥BD ,正确; ② AD ∥ BC ,正确;③ 四边形 ABCD 是菱形,正确; ④在△ ABD 和△ CDB 中AB BC ∵ AD DC ,BD BD∴△ ABD ≌△ CDB (SSS ),正确. 故正确的结论是: ①②③④ . 故选 B .此题考查了轴对称以及菱形的判断与菱形的性质,注意:对称轴垂直平分对应点的连线, 对应角相等,对应边相等.7.D解析: D 解析】 分析】根据一次函数的性质对 D 进行判断;根据一次函数图象上点的坐标特征对 A 、B 进行判断;根据一次函数的几何变换对 C 进行判断. 【详解】A 、图象过点 0, 1 ,不符合题意;1B 、函数的图象与 x 轴的交点坐标是 ( ,0) ,不符合题意;2C 、图象沿 y 轴向上平移 1个单位长度,得到直线 y 2x ,不符合题意;a ,b ,c 满足 a 2+b 2=c 2,那么点睛】D、图象经过第一、三、四象限,符合题意;故选:D .【点睛】本题考查了一次函数的性质、一次函数图象上点的坐标特征和一次函数图象的几何变换,属于基础题.8.C解析:C【解析】如图,∵∠ C=90°,∠ B=30°,AC=2 3 cm,∴ AB=2AC=4 3cm,由勾股定理得:BC= AB2AC2=6cm,故选C.9.D解析:D【解析】分析:以函数的交点为分界线,然后看谁的图像在上面就是谁大.详解:根据函数图像可得:当x>2 时,kx+b < ax,故选C.点睛:本题主要考查的是不等式与函数之间的关系,属于中等难度题型.解决这个问题的关键就是看懂函数图像.10.B解析:B【解析】【分析】根据被开方数大于等于0,分母不等于0 列式计算即可得解.【详解】由题意得,x-3 > 0,解得x> 3.故选:B.【点睛】本题考查了二次根式有意义的条件,二次根式中的被开方数必须是非负数,否则二次根式无意义.11.A解析:A【解析】【分析】先根据直线y=﹣x+b判断出函数图象,y 随x的增加而减少,再根据各点横坐标的大小进行判断即可.【详解】解:∵直线y=﹣x+b,k=﹣1<0,∴ y 随x 的增大而减小,又∵﹣2<﹣1< 1,∴y1> y2> y3.故选:A .【点睛】本题考查一次函数的图象性质:当k>0,y随x增大而增大;当k<0时,y将随x的增大而减小.12.C解析:C【解析】【分析】根据菱形的性质,四条边相等且对角线互相平分且互相垂直,由勾股定理得出进而得其对角线BD 的长,再根据菱形的面积等于对角线乘积的一半计算即可【详解】∵一条对角线的长为12,当AC=12 ,∴AO=CO=6 ,在Rt△AOB 中,根据勾股定理,得BO=8 ,∴BD=2BO=161∴菱形的面积= A C?BD=96 ,2故选:C.BO 的长,对角线AC 与BD 相交于点O ,【点睛】此题主要考查了菱形的性质、菱形的面积公式以及勾股定理等知识,根据题意得出BO 的长是解题关键.二、填空题13.4【解析】【分析】本题需根据直角三角形的定义和图形即可找出所有满足条件的点【详解】解:根据题意可得以AB为边画直角△ ABC使点C在格点上满足这样条件的点C共8 个故答案为8解析:4【解析】【分析】本题需根据直角三角形的定义和图形即可找出所有满足条件的点.【详解】解:根据题意可得以AB 为边画直角△ABC ,使点C在格点上,满足这样条件的点C共8 个.故答案为8.14.6【解析】试题分析:由全等可知:AH=DEAE=AH+HE由直角三角形可得:代入可得考点:全等三角形的对应边相等直角三角形的勾股定理正方形的边长相等解析:6【解析】试题分析:由全等可知:AH=DE,AE=AH+HE,由直角三角形可得:AE2DE 2AB2,代入可得. 考点:全等三角形的对应边相等,直角三角形的勾股定理,正方形的边长相等15.4【解析】【分析】设每份为x 则根据勾股定理即可求出x 的值然后求出 a 的长【详解】解:根据题意设每份为x∵∴在中由勾股定理得解得:(负值已舍去)∴;故答案为:4【点睛】本题考查了勾股定理解直角三角形解题解析:4【解析】【分析】设每份为x,则a 2x,b 3x,根据勾股定理,即可求出x的值,然后求出a的长.【详解】解:根据题意,设每份为x ,∵ a : b 2:3 ,∴ a 2x,b 3x ,在Rt ABC 中,由勾股定理,得(2x)2(3x)2( 52)2,解得:x 2 (负值已舍去),∴ a 4;故答案为:4.【点睛】本题考查了勾股定理解直角三角形,解题的关键是熟练掌握勾股定理求出三角形的边长.16.x>-3【解析】【分析】根据被开方数大于等于0 分母不等于0 列式计算即可得解【详解】解:由题意得2x+6>0 解得x>-3 故答案为x>-3 【点睛】本题考查了函数自变量的范围一般从三个方面考虑:(1)当函解析:x> -3.【解析】【分析】根据被开方数大于等于0,分母不等于0 列式计算即可得解.【详解】解:由题意得,2x+6 >0,解得x> -3.故答案为x> -3.【点睛】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.17.【解析】【分析】根据矩形的性质可得∠ ABC的度数OA与OB的关系根据等边三角形的判定和性质可得答案【详解】∵ ABCD是矩形∴∠ABC=9°0 ∵∠ACB=3°0 ∴∠BAO=9°0 ﹣∠ACB=6°0 ∵O解析:60o【解析】【分析】根据矩形的性质,可得∠ ABC的度数,OA与OB的关系,根据等边三角形的判定和性质,可得答案.【详解】∵ABCD 是矩形,∴∠ ABC=90°.∵∠ ACB=30°,∴∠ BAO =90°﹣∠ ACB=60°.∵OA=OB,∴△ ABO 是等边三角形,∴∠ AOB =60°.故答案为:60°.【点睛】本题考查了矩形的性质,利用矩形的性质得出∠ABC 的度数是解答本题的关键.18.10【解析】【分析】首先根据题意画出图形然后再根据矩形两条对角线的夹角为60°证得△AOB 是等边三角形即可解答本题【详解】解:如图:∵四边形ABCD 是矩形∴OA=ACOB=BDAC=BD ∴ OA=OB解析:10【解析】【分析】首先根据题意画出图形,然后再根据矩形两条对角线的夹角为60°,证得△ AOB 是等边三角形,即可解答本题.【详解】解:如图:∵四边形ABCD 是矩形,11∴OA= AC ,OB= BD ,AC=BD22∴OA=OB ,∵∠ A0B=60 °,∴△ AOB 是等边三角形,∴ OA=OB=AB=5 ,∴AC=2OA=10 ,即矩形对角线的长为10. 故答案为:10.本题考查了矩形的性质以及等边三角形的判定与性质,弄清题意、画出图形是解答本题的关键.19.20【解析】【分析】分析表格中数据得到物体自由下落的高度随着时间的增大而增大与的关系为:把代入再进行计算即可【详解】解:由表格得用时间表示高度的关系式为:当时所以果子开始落下时离地面的高度大约是20 解析:20【解析】【分析】分析表格中数据,得到物体自由下落的高度h随着时间t 的增大而增大,h与t的关系为:h 5t2,把t 2代入h 5t 2,再进行计算即可.【详解】解:由表格得,用时间t(s)表示高度h(m)的关系式为:h 5t2,当t 2时,h 5 22 5 4 20 .所以果子开始落下时离地面的高度大约是20 米.故答案为:20.【点睛】本题考查了根据图表找规律,并应用规律解决问题,要求有较强的分析数据和描述数据的能力.能够正确找到h和t 的关系是解题的关键.20.(1)4083;(2)不一定=;(3)315﹣π【解析】【分析】(1)依据被开方数即可计算得到结果;(2)根据计算结果不一定等于a;(3)原式利用得出规律计算即可得到结果【详解】解:(1);故答案为2解析:(1)4, 0.8,3,2;(2)不一定,a2= a ;(3)3.15﹣π.3【解析】【分析】(1)依据被开方数即可计算得到结果;(2)根据计算结果,a2不一定等于a;(3)原式利用得出规律计算即可得到结果.【详解】解:( 1) 424, 0.820.8, ( 3)2故答案为:4,0.8,3,;3(2)a2不一定等于a,规律:a2=|a|;(3)( 3.15)2=| π﹣3.15|=3.15﹣π.【点睛】此题考查了二次根式的性质与化简,熟练掌握二次根式的性质是解本题的关键.三、解答题21.a解析】【分析】直接利用数轴得出a<0,a+b<0,c-a>0,b+c<0,进而化简得出答案.【详解】 解:如图所示: ∴a <0,a+b <0,c-a >0,b+c < 0,∴ a 2 a b c a b c= a a b c a b c= a ;【点睛】此题主要考查了二次根式的性质和数轴,正确得出各部分符号是解题关键.22. ( 1) y 20x 860 (0 x 6);(2)3 种;方案一:甲调往 A :10辆;乙往 A :0 辆;甲调往 B : 2辆;乙调往 B :6 辆; 方案二:甲调往 A : 9辆;乙往 A :1辆;甲调往 B : 3辆;乙调往 B : 5辆;方案三:甲调往 A :8辆;乙往 A : 2辆;甲调往 B :4辆; 乙调往 B :4 辆;( 3)方案一的总运费最少为 860 元.【解析】【分析】(1)若乙仓库调往 A 县农用车 x 辆,那么乙仓库调往 B 县农用车、甲给 A 县调农用车、 以及甲县给 B 县调车数量都可表示出来,然后依据各自运费,把总运费表示即可;(2)若要求总运费不超过 900 元,则可根据( 1)列不等式确定 x 的取值,从而求解;(3)在( 2)的基础上,结合一次函数的性质求出最低运费即可.【详解】解:( 1)乙仓库调往 A 县农用车 x 辆,则调往 B 县农用车 6 x 辆. (x 6)A 县需 10辆车,故甲给 A 县调10 x 辆,给B 县调车 (x 2) 辆 ∴ y 40(10 x ) 80( x 2) 30x 50(6 x )化简得 y 20x 860 (0 x 6)(2)总运费不超过 900,即 y 900代入( 1)结果得20 x 860 900解得 x 2又因为 x 为非负整数∴ x 0,1,2 即如下三种方案A :9 辆;乙往 A : 1辆;甲调往B :3 辆;乙调往 B :5辆. A :8 辆;乙往 A : 2辆;甲调往 B :4 辆;乙调往 B :4辆.3)总运费 y 20x 860 ,其中 0 x 6∵ k 20 0∴ y 随 x 的增大而增大∴当 x 取最小时,运费 y 最小方案一:甲调往A : 10辆;乙往 A :0 辆;甲调往 B2 辆;乙调往 B :6 辆. 方案二:甲调往 方案三:甲调往代入 x 0 得 y 20 0 860 860∴方案为( 2)中方案 1:甲往 A : 10辆;乙往 A :0 辆; 甲往 B : 2辆;乙往 B :6辆. 总运费最少为 860 元.【点睛】本题是贴近社会生活的应用题,赋予了生活气息,使学生真切地感受到 “数学来源于生 活”,体验到数学的 “有用性 ”.这样设计体现了《新课程标准》的“问题情景 -建立模型 -解释、应用和拓展 ”的数学学习模式. 23. ( 1) k=-1 , b=4;( 2)点 D 的坐标为( 0, -4).【解析】【分析】【详解】 分析: ( 1)利用一次函数图象上点的坐标特征可求出点 C 的坐标,根据点 A 、 C 的坐标,利用待定系数法即可求出 k 、b 的值;(2)利用一次函数图象上点的坐标特征可求出点B 的坐标,设点 D 的坐标为( 0, m )1 (m < 0),根据三角形的面积公式结合 S △COD = S △BOC ,即可得出关于 m 的一元一次方3程,解之即可得出 m 的值,进而可得出点 D 的坐标. 详解: ( 1)当 x=1 时, y=3x=3 , ∴点将AC 的坐标为( 1, 3). (﹣ 2, 6)、 C (1, 3)代入 y=kx+b , 2k b 6得:k b 3 ,k1解得:b 4 .(2)解当 y=0 时,有﹣ x+4=0 , x=4, ∴点 设点 B 的坐标为( 4, 0).D 的坐标为( 0,m )( m < 0),111 1 ∵S △COD = S △BOC ,即﹣ m= × ×4×3,32 3 2 解得: m=-4 ,∴点 D 的坐标为( 0, -4).点睛:本题考查了两条直线相交或平行问题、一次函数图象上点的坐标特征、待定系数法 求一次函数解析式以及三角形的面积,解题的关键是:(1)根据点的坐标,利用待定系数 24. 135o .法求出 k 、b 的值;( 2)利用三角形的面积公式结合结合 一元一次方程. S △COD = 1 S △BOC ,找出关于 3 m 的【解析】【分析】在直角△ ABC中,由勾股定理求得AC的长,在△ ACD 中,因为已知三角形的三边的长,可用勾股定理的逆定理判定△ ACD 是不是直角三角形.【详解】解:∵∠ B=90°,AB=BC=2 ,∴AC= AB2BC2=2 2 ,∠ BAC=45°,又∵ CD=3,DA=1,∴AC2+DA2=8+1=9 ,CD2=9,∴AC2+DA2=CD2,∴△ACD 是直角三角形,∴∠ CAD =90°,∴∠ DAB =45°+90°=135°.25.(1)135°,2 2 ;(2)D1(3,-4)或D 2(7,-4)或D3(-1,0).【解析】【分析】(1)根据图形知道CB 是一个等腰三角形的斜边,所以容易得出ABC 的度数,利用勾股定理可以求出BC 的长度;(2)根据A 点的坐标(1,-2),并且ABCD 为平行四边形,如图D 的位置有三种情况.【详解】解:(1)由图形可得:∠ ABC=45° +90°=135°,BC= 22+22=2 2;故答案为:135°,2 2 ;(2)满足条件的D 点共有3个,以A、B、C、D 四个点为顶点的四边形为平行四边形分别是Y ABCD 1,Y ABD 2C,Y AD3BC .其中第四个顶点的坐标为:【点睛】本题考查等腰三角形的性质;勾股定理;平行四边形的判定和性质.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级数学下学期期中试题
(满分:100分 考试时间:100分钟)
一、选择题(每题2分,共20分)
1.下列电视台的台标,是中心对称图形的是
A .
B .
C .
D .
2.对于反比例函数x
y 2
=,下列说法不正确的是
A .点(21)--,在它的图像上
B .它的图像在第一、三象限
C .当0x >时,y 随x 的增大而增大
D .当0x <时,y 随x 的增大而减小 3.为了解我市老年人的健康状况,下列抽样调查最合理的是
A.在公园调查部分老年人的健康状况
B.在医院调查部分老年人的健康状况
C.利用户籍网调查部分老年人的健康状况
D.在周围邻居中调查部分老年人的健康状况 4.下列性质中,菱形具有而矩形不一定具有的是
A.对角线互相平分
B.对角线互相垂直
C.对边平行且相等
D.对角线相等 5.在反比例函数2k
y x
-=
的图像上有两点11(,)A x y 、22(,)B x y 。

若120x x <<,12y y >,则k 取值范围是
A. k>0
B.2k >
C.k<0
D.2k <
6.有三个事件,事件A :若a 、b 是实数,则+a b b a +=;事件B :打开电视正在播广告;事件C :同时掷两枚质地均匀地标有数字1-6的骰子,向上一面的点数之和是为13.这三个事件的概率分别记为
()()()P A P B P C 、、,则()()()P A P B P C 、、的大小关系正确的是 A .()()()P C P A P B << B .()()()P B P C P A << C .()()()P C P B P A << D .()()()P B P A P C << 7.一次函数y ax b =+与反比例函数a b
y x
-=,其中0,,ab a b <为常数,它们在同一坐标系中的图像可以是
ABC ∆中,BF 平
8.如图,在ABC
∠,分
AF BF ⊥于点
F ,D 为AB 的中点,连接DF 延长交AC 于点E .若AB=6,BC=10,则线段EF 的长为
A. 1
B.2
C.2.5
D. 3
9.如图,菱形ABCD 中,AB=4,120A ∠=︒,点P 、Q 、K 分别为线段BC 、CD 、BD 上的任意一点,则PK QK +的最小值为
A.4
B.2543
D.23
10.如图,在平面直角
坐标系中,点(1,4)P 、(,)Q m n 在函数 的图象上,当1m >时,过点P 分别作x 轴、y 轴的垂线,垂足为点A 、B ,过点Q 分别作x 轴、y 轴的垂线,垂足为点C 、D . QD 交PA 于点E ,随着m 的增大,四边形ACQE 的面积
A.减小
B.增大
C.先减小后增大
D.先增大后减小 二、填空题(每题3分,共24分) 11.反比例函数k
y x
=
的图像经过点(1,6)和(,3)m -,则m = . 12.为了估计暗箱里白球的数量(箱内只有白球),将5个红球放进去,随机摸出一个球,记下颜色后放回,搅匀后再摸出一个球记下颜色,多次重复后发现红球出现的频率约为0.2,那么可以估计暗箱里白球的数量大约为 个.
13.如图,E 是矩形ABCD 的对角线的交点,点F 在边AE 上,且DF DC =, 若∠ADF=240
,则∠EDC= °.
14.已知直线y =kx(k>0)与双曲线y =3
x
交于A(x 1,y 1)、B(x 2,y 2)两点,则x 1y 2+x 2y 1的值为_______.
15.已知菱形的周长为16cm ,两邻角的比是1:3,则菱形的面积是_______
16.有五张卡片(形状、大小、质地都相同),正面分别画有下列图形:①线段;②正三角形;③平行四边形;④圆;⑤菱形.将卡片背面朝上洗匀,从中抽取一张,其正面图形既是轴对称图形,又是中心对称图形的概率是________.
一次函数y kx b =+图象与17.如图,函数m
y x
=
的图象都经过反比例
点(2,6)A -和点(4,)B n .则不等式m
kx b x
+≤
的解集为 . 18.如图,在正方形ABCD 中,E 、F 分别为BC 、CD 的中点,连接AE 、BF ,将BCF ∆ 沿BF 对折,得到BPF ∆,延长FP 交BA 的延长线于点Q .给出下列结论:①AE BF =;②AE BF ⊥;③
BQF ∆是等边三角形;④若正方形ABCD 的边长为3,则线段AQ 的长为3
4
其中,正确的结论
有 .(把你认为正确的结论的序号都填上) 三、解答题
19.(本题7分)某校为了解“阳光体育”活动的开展情况,从全校2000名学生中,随机抽取部分学生进行问卷调查(每名学生只能填写一项自己喜欢的活动项目),并将调查结果绘制成如下两幅不完整的统计图.
根据以上信息,解答下列问题: (1)被调查的学生共有_______人,并补全条形统计图; (2)在扇形统计图中
___,___m n ==,
表示区域C 的圆心角为____度; (3)全校学生中喜欢篮球的人数大约有多少?
20.(本题7分)已知如图,在菱形ABCD 中,对角线AC 、BD 相交于点O ,DE∥AC,AE∥BD. (1)求证:四边形AODE 是矩形; (2)若AB=12,∠BCD=120°,求四边形AODE 的面积. 21.(本题6分)如图,在平面直角坐标系中,菱形ABCD 的顶点C 与原点O 重合,点B 在y 轴的正半轴上,点A 在反比例函数y =(k >0,x >0)的图象
上,点D 的坐标为(4,3).
(1)求k 的值;
y =
(2)若将菱形ABCD 沿x 轴正方向平移,当菱形的顶点D 落在函数(k >0,x >0)的图象上时,求菱形ABCD 沿x 轴正方向平移的距离.
22.(本题7分)环保局对某企业排污情况进行检测,结果显示:所排污水中硫化物的浓度超标,即硫化物的 浓度超过最高允许的1.0mg/L.环保局要求该企业立即整改,在15天以内(含15天)排污达 标.整改过程中,所排污水中硫化物的浓度y (mg/L)与时间x (天)的变化规律如图所示,其中线段AB 表示前3天的变化规律,从第3天起,所排污
水中硫化物的浓度y 与时间x 成反比例关系.
(1)求整改过程中硫化物的浓度y 与时间x 的函数表达式; (2)该企业所排污水中硫化物的浓度能否在15天以内不超过
最高
允许的1. 0 mg/L?为什么?
23.(本题7分)如图,已知一次函数y kx b =+的图像与反比例函数m
y x
=
的图像交于点
(4,
)A n 和点1
(,3)3
B n +,与y 轴交于点
C .
(1)求反比例函数和一次函数的表达式.
(2)若在x 轴上有一点D ,其横坐标是1,连接AD 、CD , 求ACD ∆的面积.
24.(本题满分7分)己知:如图,在四边形ABCD 中,3AB CD =,//AB CD ,//CE DA ,//DF CB . (1)求证:四边形CDEF 是平行四边形; (2)填空:
①当四边形ABCD 必须满足条件 时,四边形CDEF 是矩
形; ②当四边形ABCD 必须满足条件 时,四边形CDEF 是菱
形.
25.(本题7分)如图,在平面直角坐标系中,矩形OABC 的顶点A 、C 分别在x 、y 轴的正半轴上,顶点B 的坐标为(4,2).点M 是边
BC 上的一个动点(不与B 、C 重合),反比例函数k
y x
=
(0,0)k x >>的图象经过点M 且与边AB 交于点N ,连接MN .
(1)当点M 是边BC 的中点时. ①求反比例函数的表达式; ②求OMN ∆的面积;
(2)在点M 的运动过程中,试证明:MB
NB
是一个定值.
26.(本题8分)如图1,正方形ABCD 顶点A 、B 在函数y=
k
x
(k ﹥0)的图像上,点C 、D 分别在x 轴、y 轴的正半轴上,当k 的值改变时,正方形ABCD 的大小也随之改变. (1)若点A 的横坐标为5,求点D 的纵坐标;
(2)如图2,当k =2时,分别求出正方形A′B′C′D′的顶点A′、B′ 两点的坐标; (3)当变化的正方形ABCD 与(2)中的正方形A′B′C′D′有重叠部分时,求k 的取值范围.
y=
k x
B
A
C
O
x
y
D
y=
8x C'
D'
B'
A'
O
x
y
初二数学答案
1-10. ACCBB CCBDB
11. -2 12. 20 13. 57 14. -6 15. 42 16.
5
3 17. -2≦x<0或x>
4 18. ④ 19. (1)100 (2)30 10 144 (3)800 20. (1)略 (2)363
21. (1)32 (2)
320 22. (1)y=-2x+10 y=x
12
(2)能
23. (1)y=x 4 y=-43x+4 (2) 62
1
24. (1)略 (2) AD=BC AD ⊥BC
25. (1)y=
x
4
3 (2 ) 2 26. (1) 5 (2) 62
1。

相关文档
最新文档