八年级下册数学期中考试题(含答案)

合集下载

2024年人教版八年级数学下册期中考试卷(附答案)

2024年人教版八年级数学下册期中考试卷(附答案)

2024年人教版八年级数学下册期中考试卷(附答案)一、选择题:5道(每题1分,共5分)1. 下列哪个选项是勾股定理的正确表达?A. a^2 + b^2 = c^2B. a^2 b^2 = c^2C. a^2 + c^2 = b^2D. a^2 c^2 = b^22. 在直角三角形中,如果一个角是30度,那么它的对边长度是斜边长度的多少?A. 1/2B. 1/3C. 1/4D. 1/63. 下列哪个选项是平行四边形的性质?A. 对边相等B. 对角相等C. 对角线互相平分D. 所有选项都正确4. 下列哪个选项是正方形的性质?A. 对边平行B. 四个角都是直角C. 对角线相等D. 所有选项都正确5. 下列哪个选项是圆的性质?A. 半径相等B. 直径相等C. 圆心到圆上任意一点的距离相等D. 所有选项都正确二、判断题5道(每题1分,共5分)1. 勾股定理只适用于直角三角形。

()2. 平行四边形的对角线互相平分。

()3. 正方形的对角线相等且互相垂直。

()4. 圆的半径是圆心到圆上任意一点的距离。

()5. 圆的直径是圆上任意两点之间的距离。

()三、填空题5道(每题1分,共5分)1. 勾股定理的表达式是:a^2 + b^2 = ______。

2. 平行四边形的对角线互相平分,所以它的对角线长度是______。

3. 正方形的四个角都是______度。

4. 圆的半径是圆心到圆上______的距离。

5. 圆的直径是圆上______点之间的距离。

四、简答题5道(每题2分,共10分)1. 简述勾股定理的内容。

2. 简述平行四边形的性质。

3. 简述正方形的性质。

4. 简述圆的性质。

5. 简述圆的直径和半径之间的关系。

五、应用题:5道(每题2分,共10分)1. 在直角三角形ABC中,已知AC = 6cm,BC = 8cm,求AB的长度。

2. 在平行四边形ABCD中,已知AB = 10cm,BC = 8cm,求CD的长度。

八年级下学期期中考试数学试卷(含有答案)

八年级下学期期中考试数学试卷(含有答案)

八年级下学期期中考试数学试卷(含有答案)一.单选题。

(每小题4分,共40分)1.已知x >y ,则下列不等式中,不成立的是( )A.3x >3yB.x -9>y -9C.﹣x >﹣yD.﹣x2<﹣y2 2.下列各式从左到右的变形是因式分解的是( )A.(x -3)(x+1)=x 2-2x -3B.x 2-xy=x (x -y )C.ab+bc+d=b (a+c )+dD.6x 2y=3xy•2x 3.若分式x -1x的值为0,则x 的值是( )A.1B.﹣1C.0D.24.把多项式2a 2-4a 分解因式,应提取的公因式是( ) A.a B.2 C.a 2 D.2a5.已知两个不等式的解集在数轴上如图所示,那么组成的不等式组的解集是( ) A.x >1 B.x ≥﹣1 C.﹣3<x ≤﹣1 D.x >﹣3(第5题图) (第6题图) (第10题图) 6.如图,将△COD 绕点O 按顺时针方向旋转一定角度后得到△AOB ,旋转角为( ) A.∠AOB B.∠BOC C.∠AOC D.∠COD 7.在下列分式的变形中,从左到右一定正确的是( ) A.a b =a+1b+1 B.2a 2b =ab C.a b =a 2b 2 D.a b =acbc 8.下列各式中能用平方差公式因式分解是( )A.﹣4a 2+b 2B.x 2+4C.a 2+c 2-2acD.﹣a 2-b 2 9.如果把xyx+y 中x ,y 的值都扩大2倍,那么这个分式的值( ) A.不变 B.缩小到原来的12 C.扩大4倍 D.扩大2倍10.如图,一次函数y=kx+b 的图象经过点A (﹣1,﹣2)和B (﹣2,0),一次函数y=2x 的图象经过点A ,则不等式2x ≤kx+b 的解集为( )A.x ≤﹣1B.x ≤﹣2C.x ≥1D.﹣2≤x <﹣1 二.填空题。

(每小题4分,共24分) 11.因式分解:a 3-4a 2= 。

12.要使分式2x -5有意义,则x 的取值范围应满足的条件是 .13.已知x+y=5,xy=2,则x 2y+xy 2的值是 .14.如图,将周长为8的△DEF 沿EF 方向平移3个单位长度得到△ABC ,则四边形ABFD 的周长为 .(第14题图)15.若a+1a =4,则a 2+1a 2= . 16.若1a +1b =5,则分式2a -5ab+2b﹣a+3ab -b的值为 .(填序号)①第3分时,汽车的速度是40千米/时;②从第3分到第6分,汽车行驶了120千米;③第12分时,汽车的速度是0千米/时;④从第9分到12分,汽车的速度从60千米/时减少到0千米/时. 三、解答题。

八年级数学下册期中考试卷含答案

八年级数学下册期中考试卷含答案

八年级数学下册期中考试卷含答案班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)11的值在( )A .2和3之间B .3和4之间C .4和5之间D .5和6之间2.若点1(),6A x -,2(),2B x -,32(),C x 在反比例函数12y x=的图像上,则1x ,2x ,3x 的大小关系是( ) A .123x x x << B .213x x x << C .231x x x << D .321x x x <<3.若229x kxy y -+是一个完全平方式,则常数k 的值为( )A .6B .6-C .6±D .无法确定4.已知关于x 的分式方程21m x -+=1的解是负数,则m 的取值范围是( ) A .m ≤3B .m ≤3且m ≠2C .m <3D .m <3且m ≠25A(a,b)在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限6.《九章算术》是我国古代数学名著,卷七“盈不足”中有题译文如下:今有人合伙买羊,每人出5钱,会差45钱;每人出7钱,会差3钱.问合伙人数、羊价各是多少?设合伙人数为x 人,所列方程正确的是( )A .54573x x -=-B .54573x x +=+C .45357x x ++=D .45357x x --= 7.已知一个布袋里装有2个红球,3个白球和a 个黄球,这些球除颜色外其余都相同.若从该布袋里任意摸出1个球,是红球的概率为13,则a 等于( ) A .1 B .2 C .3D .48.如图,E 、F 分别是正方形ABCD 的边CD 、AD 上的点,且CE=DF ,AE 、BF 相交于点O ,下列结论:(1)AE=BF ;(2)AE ⊥BF ;(3)AO=OE ;(4)AOB DEOF S S 四边形∆=中正确的有( )A .4个B .3个C .2个D .1个9.如图,在下列条件中,不能证明△ABD ≌△ACD 的是( ).A .BD =DC ,AB =AC B .∠ADB =∠ADC ,BD =DCC .∠B =∠C ,∠BAD =∠CAD D .∠B =∠C ,BD =DC10.如图,AD ,CE 分别是△ABC 的中线和角平分线.若AB=AC ,∠CAD=20°,则∠ACE 的度数是( )A .20°B .35°C .40°D .70°二、填空题(本大题共6小题,每小题3分,共18分)1.已知1<x <52(1)x -+|x-5|=________.282=_______.364________.4.如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是________。

八年级数学下册期中测试卷(含答案)

八年级数学下册期中测试卷(含答案)

八年级数学下册期中测试卷(含答案) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分) 1.下列分解因式正确的是( )A .24(4)x x x x -+=-+B .2()x xy x x x y ++=+C .2()()()x x y y y x x y -+-=-D .244(2)(2)x x x x -+=+-2.若关于x 的不等式组0721x m x -<⎧⎨-≤⎩的整数解共有4个,则m 的取值范围是( )A .6<m <7B .6≤m <7C .6≤m ≤7D .6<m ≤73.估计6+1的值在( )A .2到3之间B .3到4之间C .4到5之间D .5到6之间4.式子:①2>0;②4x +y ≤1;③x +3=0;④y -7;⑤m -2.5>3.其中不等式有( )A .1个B .2个C .3个D .4个5.若 45+a =5b (b 为整数),则a 的值可以是( )A .15B .27C .24D .20 6.已知1112a b -=,则ab a b-的值是( ) A .12 B .-12 C .2 D .-27.实数a 、b 在数轴上的位置如图所示,且|a|>|b|,则化简2a a b -+的结果为( )A .2a+bB .-2a+bC .bD .2a-b8.如图所示,点A 、B 分别是∠NOP 、∠MOP 平分线上的点,AB ⊥OP 于点E ,BC⊥MN于点C,AD⊥MN于点D,下列结论错误的是()A.AD+BC=AB B.与∠CBO互余的角有两个C.∠AOB=90°D.点O是CD的中点9.如图, BD 是△ABC 的角平分线, AE⊥ BD ,垂足为 F ,若∠ABC=35°,∠ C=50°,则∠CDE 的度数为()A.35°B.40°C.45°D.50°10.如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,则∠A与∠1+∠2之间有一种数量关系始终保持不变.请试着找一找这个规律,你发现的规律是()A.∠A=∠1+∠2 B.2∠A=∠1+∠2C.3∠A=2∠1+∠2 D.3∠A=2(∠1+∠2)二、填空题(本大题共6小题,每小题3分,共18分)1.对于实数a,b,定义运算“※”如下:a※b=a2﹣ab,例如,5※3=52﹣5×3=10.若(x+1)※(x﹣2)=6,则x的值为________.2.已知AB//y轴,A点的坐标为(3,2),并且AB=5,则B的坐标为________.3.等腰三角形一腰上的高与另一腰的夹角为30°,则顶角的度数为_______.4.如图,▱ABCD中,AC、BD相交于点O,若AD=6,AC+BD=16,则△BOC的周长为________.5.如图,M、N是正方形ABCD的边CD上的两个动点,满足AM BN=,连接AC 交BN于点E,连接DE交AM于点F,连接CF,若正方形的边长为6,则线段CF的最小值是________.6.如图,DE为△ABC的中位线,点F在DE上,且∠AFB=90°,若AB=6,BC =8,则EF的长为______.三、解答题(本大题共6小题,共72分)1.解方程组(1)327413x yx y+=⎧⎨-=⎩(2)143()2()4xyx y x y⎧-=-⎪⎨⎪+--=⎩2.先化简,再求值:22169211x x xx x⎛⎫-++-÷⎪+-⎝⎭,其中2x=.3.已知222111x x xAx x++=---.(1)化简A;(2)当x满足不等式组1030xx-≥⎧⎨-<⎩,且x为整数时,求A的值.4.如图①,△ABC中,AB=AC,∠B、∠C的平分线交于O点,过O点作EF∥BC 交AB、AC于E、F.(1)图①中有几个等腰三角形?猜想:EF与BE、CF之间有怎样的关系.(2)如图②,若AB≠AC,其他条件不变,图中还有等腰三角形吗?如果有,分别指出它们.在第(1)问中EF与BE、CF间的关系还存在吗?(3)如图③,若△ABC中∠B的平分线BO与三角形外角平分线CO交于O,过O 点作OE∥BC交AB于E,交AC于F.这时图中还有等腰三角形吗?EF与BE、CF 关系又如何?说明你的理由.5.我们给出如下定义:顺次连接任意一个四边形各边中点所得的四边形叫中点四边形.(1)如图1,四边形ABCD中,点E,F,G,H分别为边AB,BC,CD,DA的中点.求证:中点四边形EFGH是平行四边形;(2)如图2,点P是四边形ABCD内一点,且满足PA=PB,PC=PD,∠APB=∠CPD,点E,F,G,H分别为边AB,BC,CD,DA的中点,猜想中点四边形EFGH 的形状,并证明你的猜想;(3)若改变(2)中的条件,使∠APB=∠CPD=90°,其他条件不变,直接写出中点四边形EFGH的形状.(不必证明)6.某游泳馆每年夏季推出两种游泳付费方式,方式一:先购买会员证,每张会员证100元,只限本人当年使用,凭证游泳每次再付费5元;方式二:不购买会员证,每次游泳付费9元.设小明计划今年夏季游泳次数为x(x为正整数).(1)根据题意,填写下表:(2)若小明计划今年夏季游泳的总费用为270元,选择哪种付费方式,他游泳的次数比较多?(3)当x>20时,小明选择哪种付费方式更合算?并说明理由.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、D3、B4、C5、D6、D7、C8、B9、C10、B二、填空题(本大题共6小题,每小题3分,共18分)1、12、(3,7)或(3,-3)3、60°或120°4、145、36、1三、解答题(本大题共6小题,共72分)1、(1)31xy=⎧⎨=-⎩;(2)4989xy⎧=-⎪⎪⎨⎪=⎪⎩.2、13xx-+;15.3、(1)11x-;(2)14、(1)△AEF、△OEB、△OFC、△OBC、△ABC共5个,EF=BE+FC;(2)有,△EOB、△FOC,存在;(3)有,EF=BE-FC.5、(1)略;(2)四边形EFGH是菱形,略;(3)四边形EFGH是正方形.6、(I)200,100+5x,180,9x;(II)选择方式一付费方式,他游泳的次数比较多(III)当20<x<25时,小明选择方式二的付费方式,当x=25时,小明选择两种付费方式一样,当x>25时,小明选择方式一的付费方式。

八年级数学下册期中考试卷(附答案)

八年级数学下册期中考试卷(附答案)

八年级数学下册期中考试卷(附答案)一、选择题(本大题共10小题,每小题4分,总计40分) 139x +x 的取值范围是( ) A .3x ≥-B .3x ≥-且2x ≠C .3x >-且2x ≠D .3x ≤-且2x ≠2.如图,从一个大正方形中裁去面积为6cm 2和15cm 2的两个小正方形,则留下阴影部分的面积为( )A .2610B .221cmC .2215D .263.对于任意实数x ,多项式257x x -+的值是( ) A .负数B .非正数C .正数D .无法确定正负的数4.关于x 的一元二次方程224(41)0x m x m +++=有实数根,则m 的最小整数值为( ) A .1B .0C .-1D .-25.已知ABC 的三边长分别为a ,b ,c ,且关于x 的一元二次方程2()20c b x ax c b +-+-=有两个相等的实数根,若2|5|(5)0a b -+-=,则ABC 的形状为( ) A .等腰三角形B .等边三角形C .直角三角形D .等腰直角三角形6.我国南宋数学家杨辉所著的《田亩比类乘除算法》中有这样一道题:“直田积八百六十四步,只云阔不及长一十二步,问阔及长各几步?”意思是:一块矩形田地的面积为864平方步,只知道它的宽比长少12步,问它的长和宽各多少步?设这块田地的宽为x 步,则所列的方程正确的是( )A .()12864x x +-=B .()12864x x ++=C .()12864x x -=D .()12864x x +=7.如图,长方形纸片ABCD 中, 点E 是CD 的中点,连接AE ; 按以下步骤作图:①分别 以点A 和E 为圆心, 以大于12AE 的等长为半径作弧,两弧相交于点M 和N ;②作直线MN ,且直线MN 刚好经过点B .若2DE =,BC 则的长度是( )A .2B 3C .23D .48.满足下列条件时,ABC 不是直角三角形的是( ) A .::3:4:5A B C ∠∠∠= B .22A B C ∠=∠=∠ C .34AB =3BC =,5AC =D .20A ∠=︒,70B ∠=︒9.将三个大小不同的正方形如图放置,顶点处两两相接,若正方形A 的边长为4,正方形C 的边长为3,则正方形B 的面积为( )A .25B .5C .16D .1210.我国汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”,它是由四个全等的直角三角形与中间的小正方形EFGH 拼成的一个大正方形ABCD ,连接AC ,交BE 于点P ,如图所示,若正方形ABCD 的面积为28,7AE EB +=,则CFP AEP S S -的值是( )A .3B .3.5C .4D .7二、填空题(本大题共4小题,每小题5分,总计20分)1122x x -4x +x =_______.12.若m ,n 分别是一元二次方程2410x x -+=的两个根,则23m m n -+的值为______. 13.如图,透明的圆柱形玻璃容器(容器厚度忽略不计)的高为20cm ,在容器内壁离容器底部4cm 的点B 处有一滴蜂蜜,此时一只蚂蚁正好在容器外壁,位于离容器上沿4cm 的点A 处,若蚂蚁吃到蜂蜜需爬行的最短路径为25cm ,则该圆柱底面周长为 _____.14.对于一元二次方程20ax bx c ++=(a ≠0),下列说法: ①若0a b c ++=,则240b ac -≥;②若方程20ax c +=有两个不相等的实根,则方程20ax bx c ++=必有两个不相等的实根; ③若c 是方程20ax bx c ++=的一个根,则一定有10ac b ++=成立; ④若0x 是一元二次方程20ax bx c ++=的根,则()2204b ac a x b -=+. 其中正确的是_________.三、(本大题共2小题,每小题8分,总计16分) 15.计算: 804595-(2)221(31)(2)123-⎛⎫+--- ⎪⎝⎭16.已知:53x +=53y -=,求代数式22x y -的值. 四、(本大题共2小题,每小题8分,总计16分)17.已知关于x 的方程2(2)20x k x k -++=. (1)求证:无论k 取任意实数值,方程总有实数根.(2)若等腰三角形ABC 的一边1a =,另两边长b 、c 恰是这个方程的两个根,求ABC 的周长. 18.密云水库是首都的“生命之水”,作为北京重要的水源地,保持水质成为重中之重.如图所示,点A 和点B 分别表示两个水质监测站,点C 表示某一时刻监测人员乘坐的监测船的位置.其中,B 点在A 点的西南方向,船只C 在A 点南偏东25°方向和B 点北偏东75°方向的交汇处,求此时从船只C 看A 、B 两个水质监测站的视角ACB ∠的度数.五、(本大题共2小题,每小题10分,总计20分) 19.a b a b ,因为22a ba b aba b =-=-,所以构造“对偶式”再将其相乘可以有效地将a b和a b ()()22222322222222++==+--+像这样,通过分子、分母同乘一个式子把分母中的根号化去,叫做分母有理化.根据以上材料,理解并运用材料提供的方法,解答下列问题: (1)对偶式23+23之间的关系是___________;A .互为相反数B .互为倒数C .绝对值相等 (2)已知5252x y ==-+22x y xy +的值; (3)2482x x --=.248x x t --=) 20.某大型批发商场平均每天可售出某款商品3000件,售出1件该款商品的利润是10元. 经调查发现,若该款商品的批发价每降低1元,则每天可多售出1000件.为了使每天获得的利润更多,该批发商场决定降价x 元销售该款商品.(1)当x 为多少元时,该批发商场每天卖出该款商品的利润为40000元?(2)若按照这种降价促销的策略,该批发商场每天卖出该款商品的利润能达50000元吗?若能,请求出x 的值,若不能,请说明理由.六、(本大题共1小题,每小题12分,总计12分)21.定义:如果一元二次方程()200ax bx c a ++=≠满足0a b c ++=,那么我们称这个方程为“凤凰”方程.(1)若()200ax bx a a ++=≠有两个相等的正实数根,请你判断这个方程是否为“凤凰”方程? (2)已知关于x 的方程()22130m x x nx +-+=是“凤凰”方程,且两个实数根都是整数,求整数m的值.七、(本大题共1小题,每小题12分,总计12分)22.如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形.(1)在图1中,画一个三角形,使它的三边长都是有理数;(2)在图2中,画一个直角三角形,使它们的三边长都是无理数;(3)在图3中,画一个正方形,使它的面积是10.八、(本大题共1小题,每小题14分,总计14分)23.如图1,长方形ABCD中,6AB=,8AD=,E为AD边上一点,3DE=,动点P从点B出发,沿B C D→→以1个单位/s作匀速运动,设运动时间为t.(1)当t为_________s时,ABP与CDE全等;(2)如图2,EF为AEP△的高,当点Р在BC边上运动时,EF的最小值是_________;(3)当点P在EC的垂直平分线上时,求出t的值.参考答案:题号 1 2 3 4 5 6 7 8 9 10答案 B A C B D D C A A B 1-12.313.30cm14.①②15.(1804595 -453535-=25=(2)221(31)(2)123-⎛⎫+--- ⎪⎝⎭19221=+9=.16.解:∵53x +=53y -=, ∴5x y +=3x y -=∴()()225315x y x y x y -=+-=17.(1)解:∵()()2222424420k k k k k ∆=+-⨯=-+=-≥, ∴无论k 取任意实数值,方程总有实数根.(2)解:①当1a =的边为等腰三角形的底边时,b c =, 此时方程有两个相等的实数根, ∴()220k ∆=-=,解得2k =,此时方程为2440x x -+=,解得122x x ==, ∴ABC 的周长为5;②当1a =的边为等腰三角形的腰时,1b a ==或1c a ==, 此时方程有一个根为1,代入方程,可得()1220k k -++=,解得1k =, 此时方程为2320x x -+=,解得11x =,22x =, ∵1、1、2不能满足两边之和大于第三边, ∴此情况舍去.综上所述:ABC 的周长为5.18.解:解:∵B 点在A 点的西南方向,船只C 在A 点南偏东25°方向和B 点北偏东75°方向,∴452570BAC ∠=︒+︒=︒,754530ABC ∠=︒-︒=︒, ∴180180703080ACB BAC ABC ∠=︒-∠-∠=︒-︒-︒=︒.答:从船只C 看A 、B 两个水质监测站的视角ACB ∠的度数是80°. 19.(1)解:∵((2323431⨯=-=, ∴对偶数23+23之间的关系是互为倒数,故选:B ; (2)由题意得()()5252525252x +=--+,()()5252525252y -==+-+,∴251x y xy +==,, ∴22x y xy +()xy x y =+ 5=(3248x x t --=2482x x --=,得()2482x x t ---=,解得8t =,2488x x --2482x x --②, ∴①+②,得22410x -, 两边同时平方得()424100x -=, 解得=1x -,经检验,=1x -是原方程的解.20.(1)解:该批发商场决定降价x 元销售该款商品,依题意得,()()300010001040000x x +-=,即27100x x -+= 解得:122,5x x ==,答:当x 为2或5时,该饮料批发商店每天卖出该款饮料的利润为40000元 (2)解:()()300010001050000x x +-=, 即27200x x -+=∵24494200b ac ∆=-=-⨯<,原方程无解,∴按照这种降价促销的策略,该饮料批发商店每天卖出该款饮料的利润不能达到50000元. 21.解: (1)解:∵()200ax bx a a ++=≠有两个相等的实数根, ∴()()224220b a b a b a ∆=-=+-=,∵这两个相等的实数根为正数,∴02bx a-=>, ∴a ,b 异号, ∴20b a -≠,∴20b a +=,即0a b a ++=, ∴这个方程是“凤凰”方程; (2)解:方程整理得:()230m x nx m -++=,∵此方程是“凤凰”方程, ∴3230m n m m n -++=+-=, ∴32n m =-,∵()()2222243412324129n m m n m m m m m ∆=--=-+=--+=, ∴()()32393233262626m n n m x m m m --±-±-±-±===---,∴1=1x ,23mx m =-, ∵两个实数根都是整数, ∴整数m 的值为0或2或4或6. 22.解:(1)如图1,三角形为所求;(2)如图2,三角形为所求;(3)如图3,正方形为所求.23.(1)解:如图,∵四边形ABCD是长方形,∴90AB CD B D=∠=∠=︒,,当点P在BC边上,且3BP DE==时,ABP CDE△≌△,∵BP t=,∴3t=;当点P在CD边上,若点P与点C重合,满足90AB CD B D=∠=∠=︒,,此时BP DE>,∴ABP与CDE不全等,若点P与点D重合,满足90AB CD BAD D=∠=∠=︒,,此时AP DE>,∴ABP与CDE不全等,综上所述,当3t=时,ABP CDE△≌△;故答案为:3;(2)解:∵6AB=,8AD=,3DE=,∴835AE AD DE=-=-=,当点P在BC边上运动,165152AEPS=⨯⨯=△,∵EF为AEP△的高,∴1152AEPAP EF S⋅==△,∴AP•EF=40,∴EF随AP的增大而减小,∴22222525AP BP AB BP BP +=+=+ ∴AP 随BP 的增大而增大,当点P 与点C 重合时BP 最大,此时AP 也最大,而EF 则最小, 如图,点P 与点C 重合,∵9068B AB BC AD ∠=︒===,,, ∴226810AC =+=, ∵1122PAE AC EF AE AB S ⋅=⋅=△, ∴1065EF =⨯, 解得3EF =, ∴EF 的最小值为3, 故答案为:3;(3)解:设EC 的垂直平分线为直线MN ,如图,点P 在BC 边上,且在直线MN 上,连接PE ,则8PE PC t ==-,作PG AD ⊥于点G ,则90∠=︒PGE , ∵AD BC ∥,PG AD CD AD ⊥⊥,, ∴6PG CD ==, 同理AG BP t ==,5GE t =-,∵222GE PG PE +=, ∴222(5)6(8)t t -+=-,第 11 页 共 11 页 解得12t =; 如图,点P 在CD 边上,且在直线MN 上,连接PE ,则8PE PC t ==-,14PD t =-,∵222DE PD PE +=, ∴2223(14)(8)t t +-=-, 解得474t =,综上所述,t 的值为12或474.。

八年级数学下册期中考试卷(有答案)

八年级数学下册期中考试卷(有答案)

1八年级数学下册期中考试卷(有答案)(满分120分,考试时间120分钟)一、选择题:本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的,将正确项编号填在题后括号内. 1. 下列格式中是二次根式的是( )A.38 B. 1- C. 2 D. )0(<x x2. 下列各组数中,不能满足勾股定理的是( )A. 3,4,5B. 6,8,10C. 5,12,13D. 7,5,10 3. 已知一个平行四边形两邻边的长分别为4和7,那么它的周长为( ) A. 11 B. 18 C. 22 D. 28 4. 如图,矩形ABCD 的两条对角线相交于点O ,∠AOB = 60°, AO = 4,则AB 的长是( ) A. 4B. 5C. 6D. 85. 若代数式1-a 在实数范围内有意义,则a 的取值范围是( ) A. 0>a B. a ≥1 C. 0<a D. a ≤06. 下列二次根式中,属于最简二次根式的是( ) A.48 B.baC.44+aD.14 7. 在平行四边形、矩形、菱形、正方形中是轴对称图形的有( ) A. 4个 B. 3 个 C. 2个 D. 1个 8. 如图,在△ABC 中,AB = 8,BC = 10,AC = 6, 则BC 边上的高AD 为( ) A. 8 B. 9 C.524D. 109. 计算2343122÷⨯的结果是( ) A.22B. 33C. 32D. 2310. 顺次连接矩形四边中点得到的四边形一定是( )A. 正方形B. 矩形C. 平行四边形D. 菱形第4题图第11题图第8题图AB CD211. 如图△ABC 中,AB = AC ,点D ,E 分别是边AB ,AC 的中点,点G ,F 在BC 边上,四边形DEFG 是正方形. 若DE = 2cm ,则 AC 的长为 ( ) A. 2cmB. 52cmC. 4cmD. 8cm12. 如图在矩形ABCD 中,BC = 8,CD = 6,将△BCD 沿对角线BD 翻折,点C 落在点C ′处,BC ′交AD 于点E , 则△BD E 的面积为( )A. 475 B. 421C. 21D. 24二、填空题:本大题共6小题,每小题3分,共18分. 13. 化简:(3 )2 = .14. 已知菱形的两条对角线长分别是4和8,则菱形的面积为 . 15.“内错角相等,两直线平行.”的逆命题是.16. 计算2)252(-的结果是_______.17. 若直角三角形的两直角边长为a 、b ,且满足067=-+-b a ,则该直角三角形的斜边长为_______.(结果保留根号)18. 如图,正方形ABCD 的边长为5,E 是AB 上一点,且BE ∶AE = 1∶4,若P 是对角线AC 上一动点,则PB + PE 的最小值是_______.(结果保留根号)三、解答题:本大题共8小题,共66分. 解答应写出文字说明,证明过程或演算步骤. 19.(本小题满分6分)计算:23218+-第12题图第18题图320.(本小题满分6分)计算:3)8512(+21.(本小题满分8分)先化简再求值.yx y x +•⎪⎪⎭⎫ ⎝⎛+611,其中13,13-=+=y x .22.(本小题满分8分)如图,E 、F 是平行四边形ABCD 的对角线AC 上的两点,AE = CF .求证:四边形DEBF 是平行四边形.第22题图423.(本小题满分8分)如图,在△ABC 中,AD 是BC 边上的高,∠B = 45°,∠C = 60°,AD = 2,求BC 的长.(结果保留根号)24.(本小题满分10分)如图,在△ABC 中,AB = 5,BC = 6,BC 边上的中线AD = 4. 求AC 的长.D CBA第24题图D第23题图525.(本小题满分10分)如图,在平行四边形ABCD 中,M 、N 分别是边AD 、BC 边上的中点,且△ABM ≌△DCM ;E 、F 分别是线段BM 、CM 的中点. (1)求证:平行四边形ABCD 是矩形。

八年级数学下册期中测试卷及答案【完整版】

八年级数学下册期中测试卷及答案【完整版】

八年级数学下册期中测试卷及答案【完整版】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若一次函数(2)1y k x =-+的函数值y 随x 的增大而增大,则( )A .2k <B .2k >C .0k >D .0k <2.已知:将直线y=x ﹣1向上平移2个单位长度后得到直线y=kx+b ,则下列关于直线y=kx+b 的说法正确的是( )A .经过第一、二、四象限B .与x 轴交于(1,0)C .与y 轴交于(0,1)D .y 随x 的增大而减小3.若正多边形的一个外角是60︒,则该正多边形的内角和为( )A .360︒B .540︒C .720︒D .900︒4.若x ,y 均为正整数,且2x +1·4y =128,则x +y 的值为( )A .3B .5C .4或5D .3或4或55.对于任意的x 值都有227221x M N x x x x +=++-+-,则M ,N 值为( ) A .M =1,N =3B .M =﹣1,N =3C .M =2,N =4D .M =1,N =46.如图,有一块直角三角形纸片,两直角边6cm AC =,8cm BC =.现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,则CD 等于( )A .2cmB .3cmC .4cmD .5cm7.关于x 的一元二次方程2(1)210k x x +-+=有两个实数根,则k 的取值范围是( )A .0k ≥B .0k ≤C .0k <且1k ≠-D .0k ≤且1k ≠-8.甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,不是轴对称的是( )A .B .C .D .9.如图,将△ABC 绕点C 顺时针旋转90°得到△EDC .若点A ,D ,E 在同一条直线上,∠ACB=20°,则∠ADC 的度数是( )A .55°B .60°C .65°D .70°10.如图,AB ∥EF ,CD ⊥EF ,∠BAC=50°,则∠ACD=( )A .120°B .130°C .140°D .150°二、填空题(本大题共6小题,每小题3分,共18分)1.若△ABC 三条边长为a ,b ,c ,化简:|a -b -c |-|a +c -b |=__________.2.已知222246140x y z x y z ++-+-+=, 则()2002x y z --=_______.3.因式分解:a 2-9=_____________.4.如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3=_________5.如图是一张长方形纸片ABCD ,已知AB=8,AD=7,E 为AB 上一点,AE=5,现要剪下一张等腰三角形纸片(△AEP ),使点P 落在长方形ABCD 的某一条边上,则等腰三角形AEP 的底边长是_____________.6.如图,在Rt △ABC 中,∠ACB=90°,AC=5cm ,BC=12cm ,将△ABC 绕点B 顺时针旋转60°,得到△BDE ,连接DC 交AB 于点F ,则△ACF 与△BDF 的周长之和为_______cm .三、解答题(本大题共6小题,共72分)1.解下列分式方程:(1)32111x x =+-- (2)2531242x x x-=---2.先化简,再求值:2222222a ab b a ab a b a a b-+-÷--+,其中a ,b 满足2(2)10a b -+=.3.已知28x px ++与23x x q -+的乘积中不含3x 和2x 项,求,p q 的值.4.如图,Rt △ABC 中,∠C=90°,AD 平分∠CAB ,DE ⊥AB 于E ,若AC=6,BC=8,CD=3.(1)求DE 的长;(2)求△ADB 的面积.5.如图,某市有一块长为()3a b +米,宽为()2a b +米的长方形地块,规划部门计划将阴影部分进行绿化,中间修建一座雕像,求绿化的面积是多少平方米?并求出当3,2a b ==时的绿化面积?6.在水果销售旺季,某水果店购进一优质水果,进价为20元/千克,售价不低于20元/千克,且不超过32元/千克,根据销售情况,发现该水果一天的销售量y (千克)与该天的售价x (元/千克)满足如下表所示的一次函数关系. 销售量y (千克) …34.8 32 29.6 28 … 售价x (元/千克) … 22.6 24 25.2 26 …(1)某天这种水果的售价为23.5元/千克,求当天该水果的销售量.(2)如果某天销售这种水果获利150元,那么该天水果的售价为多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、C4、C5、B6、B7、D8、D9、C10、C二、填空题(本大题共6小题,每小题3分,共18分)1、2b-2a2、03、(a+3)(a ﹣3)4、135°5、56、42.三、解答题(本大题共6小题,共72分)1、(1)x=2;(2)32x =- 2、1a b-+,-1 3、3p =,1q =.4、(1)DE=3;(2)ADB S 15∆=.5、(5a 2+3ab )平方米,63平方米6、(1)当天该水果的销售量为33千克;(2)如果某天销售这种水果获利150元,该天水果的售价为25元.。

八年级数学(下)期中试卷(含答案)

八年级数学(下)期中试卷(含答案)

八年级数学(下)期中试卷(含答案)一、选择题:将你认为正确的答案选出填入答题表中,每小题3分,共27分1.在代数式,, +,,中,分式有()A.1个B.2个C.3个D.4个2.若分式的值为零,则x的值为()A.0 B.﹣2 C.2 D.﹣2或23.有一种细菌的直径为0.000 000 012米,将这个数用科学记数法表示为()A.12×108B.12×10﹣8C.1.2×10﹣8D.1.2×10﹣94.下列命题是假命题的是()A.平行四边形的对角线互相平分B.平行四边形的对角相等C.平行四边形是轴对称图形D.平行四边形是中心对称图形5.在平面直角坐标系中,在第四象限内有一点P,且点P到x轴的距离是4,到y轴的距离是5,则点P的坐标为()A.(4,﹣5)B.(4,5)C.(﹣5,﹣4)D.(5,﹣4)6.将分式方程=去分母后得到的整式方程,正确的是()A.x﹣2=2x B.x2﹣2x=2x C.x﹣2=x D.x=2x﹣47.对于函数y=(k>0),下列说法正确的是()A.y随x的增大而减小B.y随x的增大而增大C.当x<0时,y随x的增大而减小D.图象在第二、四象限内8.已知正比例函数y=kx(k≠0),函数值随x的增大而增大,则一次函数y=﹣kx+k的图象大致是()A. B.C.D.9.若直线y=2x+1经过点(m,n),则代数式4m﹣2n+1的值是()A.﹣1 B.1 C.2 D.﹣2二、填空题:将下列所需填的答案填入下表,每小题3分,共18分10.根据分式的基本性质填空:=.11.若分式方程=有增根,则这个增根是x=.12.写出同时具备下列两个条件的一次函数表达式(写出一个即可)(1)y随x的增大而减小;(2)图象经过点(0,2)13.直线y=﹣2x+6与两坐标轴围成的三角形面积是.14.点P(﹣5,﹣4)到x轴的距离是单位长度.15.已知如图,点P是反比例函数上的任意一点,过点P作x轴的垂线,垂足为A,连接OP.若△PAO的面积是3,那么该反比例函数在第二象限的表达式为.三、解答题:75分16.计算:(1)﹣(2)()3÷(﹣)2.17.先化简,再求值:(﹣)×,其中x=2.18.解方程(1)(2)+=.19.已知一个一次函数的图象与一个反比例函数的图象交于点P(﹣2,1)、Q(1,m).(1)分别求出这两个函数的表达式.(2)在同一平面直角坐标系中画出这两个函数的图象,根据图象回答,当x取何值时,一次函数的值大于反比例函数的值?20.计算×+1,并从0,1,2三个数中选一个合适的数代入求值.21.已知点P(2m+4,m﹣1).试分别根据下列条件,求出点P的坐标.(1)点P的纵坐标比横坐标大3;(2)点P在过A(2,﹣3)点,且与x轴平行的直线上.22.甲、乙两辆汽车同时分别从A、B两城沿同一条高速公路匀速驶向C城.已知A、C两城的距离为360km,B、C两城的距离为320km,甲车比乙车的速度快10km/h,结果两辆车同时到达C城.设乙车的速度为xkm/h.(1)根据题意填写下表:行驶的路程(km)速度(km/h)所需时间(h)甲车360乙车320 x(2)求甲、乙两车的速度.23.小聪和小明沿同一条路同时从学校出发到宁波天一阁查阅资料,学校与天一阁的路程是4千米,小聪骑自行车,小明步行,当小聪从原路回到学校时,小明刚好到达天一阁,图中折线O﹣A﹣B﹣C和线段OD分别表示两人离学校的路程s(千米)与所经过的时间t(分钟)之间的函数关系,请根据图象回答下列问题:(1)小聪在天一阁查阅资料的时间为分钟,小聪返回学校的速度为千米/分钟;(2)请你求出小明离开学校的路程s(千米)与所经过的时间t(分钟)之间的函数关系;(3)当小聪与小明迎面相遇时,他们离学校的路程是多少千米?参考答案与试题解析一、选择题:将你认为正确的答案选出填入答题表中,每小题3分,共27分1.在代数式,, +,,中,分式有()A.1个B.2个C.3个D.4个【分析】依据分式的定义进行判断即可.【解答】解:分母中不含字母,故不是分式;分母中含有字母是分式;+分母不含字母,故不是分式;分母中含有字母是分式;中π是数字,不是字母,故不是分式.故选;B.【点评】本题主要考查的是分式的定义,掌握分式的定义是解题的关键.2.若分式的值为零,则x的值为()A.0 B.﹣2 C.2 D.﹣2或2【分析】要使分式的值为0,必须分式分子的值为0并且分母的值不为0.【解答】解:由分子x2﹣4=0解得:x=±2.当x=2时分母x2﹣2x=4﹣4=0,分式没有意义;当x=﹣2时分母x2﹣2x=4+4=8≠0.所以x=﹣2.故选B.【点评】要注意分母的值一定不能为0,分母的值是0时分式没有意义.3.有一种细菌的直径为0.000 000 012米,将这个数用科学记数法表示为()A.12×108B.12×10﹣8C.1.2×10﹣8D.1.2×10﹣9【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000 000 012=1.2×10﹣8.故选:C.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.4.下列命题是假命题的是()A.平行四边形的对角线互相平分B.平行四边形的对角相等C.平行四边形是轴对称图形D.平行四边形是中心对称图形【分析】根据平行四边形的对角相等,对角线互相平分可判断出A、B正确;再由平行四边形是中心对称图形可对C、D进行判断.【解答】解:A、∵平行四边形的对角线互相平分,∴此命题是真命题;B、∵平行四边形的对角相等,∴此命题是真命题;C、∵平行四边形是中心对称图形,不是轴对称图形,∴此命题是假命题;D、∵平行四边形是中心对称图形,∴此命题是真命题.故选C.【点评】本题考查的是命题与定理,熟知平行四边形的性质是解答此题的关键.5.在平面直角坐标系中,在第四象限内有一点P,且点P到x轴的距离是4,到y轴的距离是5,则点P的坐标为()A.(4,﹣5)B.(4,5)C.(﹣5,﹣4)D.(5,﹣4)【分析】根据第四象限内点的横坐标是正数,纵坐标是负数以及点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度解答.【解答】解:∵第四象限的点P到x轴的距离是4,到y轴的距离是5,∴点P的横坐标是5,纵坐标是﹣4,∴点P的坐标为(5,﹣4).故选D.【点评】本题考查了点的坐标,熟记点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度是解题的关键.6.将分式方程=去分母后得到的整式方程,正确的是()A.x﹣2=2x B.x2﹣2x=2x C.x﹣2=x D.x=2x﹣4【分析】分式方程两边乘以最简公分母x(x﹣2)即可得到结果.【解答】解:去分母得:x﹣2=2x,故选:A.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.7.对于函数y=(k>0),下列说法正确的是()A.y随x的增大而减小B.y随x的增大而增大C.当x<0时,y随x的增大而减小D.图象在第二、四象限内【分析】根据反比例函数的性质:(1)反比例函数y=(k≠0)的图象是双曲线;(2)当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小;(3)当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大进行解答.【解答】解:函数y=(k>0),图象是双曲线,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小.故选:C.【点评】此题主要考查了反比例函数的性质,关键是熟练掌握性质.8.已知正比例函数y=kx(k≠0),函数值随x的增大而增大,则一次函数y=﹣kx+k的图象大致是()A. B.C.D.【分析】由于正比例函数y=kx(k≠0)函数值随x的增大而增大,可得k>0,﹣k<0,然后,判断一次函数y=﹣kx+k的图象经过象限即可.【解答】解:∵正比例函数y=kx(k≠0)函数值随x的增大而增大,∴k>0,∴﹣k<0,∴一次函数y=﹣kx+k的图象经过一、二、四象限;故选A【点评】本题主要考查了一次函数的图象,掌握一次函数y=kx+b,当k>0,b>0时,图象过一、二、三象限;当k>0,b<0时,图象过一、三、四象限;k<0,b>0时,图象过一、二、四象限;k<0,b<0时,图象过二、三、四象限.9.若直线y=2x+1经过点(m,n),则代数式4m﹣2n+1的值是()A.﹣1 B.1 C.2 D.﹣2【分析】先把点(m,n)代入函数y=2x+1求出2m﹣n的值,再代入所求代数式进行计算即可.【解答】解:∵点(m,n)在函数y=2x+1的图象上,∴2m+1=n,即2m﹣n=﹣1,∴4m﹣2n+1=2(2m﹣n)+1=2×(﹣1)+1=﹣1.故选A.【点评】本题考查的是一次函数图象上点的坐标特点,即一次函数图象上各点的坐标一定适合此函数的解析式.二、填空题:将下列所需填的答案填入下表,每小题3分,共18分10.根据分式的基本性质填空:=.【分析】根据分式的分子分母都乘以(或除以)同一个不为零的整式,分式的值不变,可得答案.【解答】解:分子除以(a﹣2),分母也除以(a﹣2),得=,故答案为:a﹣2.【点评】本题考查了分式的性质,分式的分子分母都乘以(或除以)同一个不为零的整式,分式的值不变.11.若分式方程=有增根,则这个增根是x=2.【分析】增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.【解答】解:∵分式方程=有增根,∴x﹣2=0∴原方程增根为x=2,故答案为2.【点评】本题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值12.写出同时具备下列两个条件的一次函数表达式(写出一个即可)y=﹣x+2(1)y随x的增大而减小;(2)图象经过点(0,2)【分析】设一次函数的解析式为y=kx+b,由一次函数的单调性即可得出k的取值范围,随便选取一个k值,再将点(0,2)代入一次函数解析式求出b值即可.【解答】解:设一次函数的解析式为y=kx+b,∵y随x的增大而减小,∴k<0.令k=﹣1,则函数解析式为y=﹣x+b,又∵点(0,2)在一次函数y=﹣x+b的图象上,∴2=b,∴一次函数的解析式为y=﹣x+2.故答案为:y=﹣x+2.【点评】本题考查了待定系数法求函数解析式以及一次函数的性质,解题的关键是由点的坐标利用待定系数法求出函数解析式.本题属于基础题,难度不大,解决该题型题目时,根据一次函数的单调性求出一次项系数k的取值范围是关键.13.直线y=﹣2x+6与两坐标轴围成的三角形面积是9.【分析】首先求出直线y=﹣2x+6与x轴、y轴的交点的坐标,然后根据三角形的面积公式,得出结果.【解答】解:∵直线y=﹣2x+6中,﹣=﹣=3,b=6,∴直线与x轴、y轴的交点的坐标分别为A(3,0),B(0,6),∴故S△AOB=×3×6=9.故答案为:9.【点评】本题考查的是一次函数图象上点的坐标特点,即一次函数y=kx+b与x轴的交点为(﹣,0),与y轴的交点为(0,b).14.点P(﹣5,﹣4)到x轴的距离是4单位长度.【分析】求得P的纵坐标绝对值即可求得P点到x轴的距离.【解答】解:∵|﹣4|=4,∴P点到x轴的距离是4,故答案为4.【点评】此题主要考查点的坐标;用到的知识点为:点到x轴的距离为点的纵坐标的绝对值.15.已知如图,点P是反比例函数上的任意一点,过点P作x轴的垂线,垂足为A,连接OP.若△PAO的面积是3,那么该反比例函数在第二象限的表达式为y=﹣(x<0).【分析】设比例函数的解析式为y=(k≠0),再根据反比例函数的图象在第二象限判断出k的符号,由反比例函数系数k的几何意义求出k的值即可.【解答】解:设比例函数的解析式为y=(k≠0),∵反比例函数的图象在第二象限,∴k<0,∵PA⊥x轴,S△PAO=3,∴=3,即k=﹣6,∴该反比例函数在第二象限的表达式为:y=﹣(x<0).故答案为:y=﹣(x<0).【点评】本题考查的是反比例函数系数k的几何意义,即反比例函数的图象上任意一点象坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是,且保持不变.三、解答题:75分16.计算:(1)﹣(2)()3÷(﹣)2.【分析】(1)先通分,然后进行通分母的减法运算;(2)先进行乘方运算,然后把除法运算化为乘法运算,再约分即可.【解答】解:(1)原式=﹣=;(2)原式=÷==.【点评】本题考查了分式的混合运算:分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序;先乘方,再乘除,然后加减,有括号的先算括号里面的.(2)最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.17.先化简,再求值:(﹣)×,其中x=2.【分析】先把括号内根据分式的通分法则进行计算,根据约分法则把原式化简,代入已知数据计算即可.【解答】解:原式=×=×=,当x=2时,原式=1.【点评】本题考查的是分式的化简求值,掌握分式的通分法则和约分法则是解题的关键.18.解方程(1)(2)+=.【分析】两分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)去分母得:x2﹣3x=x2﹣8x+12,解得:x=,经检验x=是分式方程的解;(2)去分母得:6+3(x+1)=x+1,去括号得:6+3x+3=x+1,移项合并得:2x=﹣8,解得:x=﹣4,经检验x=﹣4是分式方程的解.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程时注意要检验.19.已知一个一次函数的图象与一个反比例函数的图象交于点P(﹣2,1)、Q(1,m).(1)分别求出这两个函数的表达式.(2)在同一平面直角坐标系中画出这两个函数的图象,根据图象回答,当x取何值时,一次函数的值大于反比例函数的值?【分析】(1)设出反比例函数关系式,利用代定系数法把P(﹣2,1)代入函数解析式即可.由于Q点也在反比例函数图象上,所以把Q点坐标代入反比例函数解析式中即可得到Q点坐标,求出m的值,利用待定系数法求一次函数解析式;(2)根据图象可得到答案,注意反比例函数图象与y轴无交点,所以分开看.【解答】解:(1)设反比例函数的解析式为y=∵反比例函数经过点P(﹣2,1),∴a=﹣2×1,∴a=﹣2,∴反比例函数的解析式为y=﹣,∵Q(1,m)在反比例函数图象上,∴m=﹣2,设一次函数的解析式为y=kx+b∵P(﹣2,1),Q(1,﹣2)在一次函数图象上∴,∴,∴一次函数的解析式为y=﹣x﹣1;(2)如图所示:由图可知:当0<x<1或x<﹣2时一次函数的值大于反比例函数的值.【点评】此题主要考查了利用待定系数法求反比例函数解析式与一次函数解析式,画函数图象,正确的识别图形是解题的关键.20.计算×+1,并从0,1,2三个数中选一个合适的数代入求值.【分析】把分式的分子分母因式分解,再约分,根据分式有意义的条件,选择x的值,再计算即可.【解答】解:原式=+1=+1=x,∵2x≠0且x(x﹣2)≠0,∴x≠0,2,∴x=1,∴原式=×1=.【点评】本题考查了分式的化简求值,以及分式有意义的条件:分母不为0,掌握分式的通分和约分是解题的关键.21.已知点P(2m+4,m﹣1).试分别根据下列条件,求出点P的坐标.(1)点P的纵坐标比横坐标大3;(2)点P在过A(2,﹣3)点,且与x轴平行的直线上.【分析】(1)根据横纵坐标的大小关系得出m﹣1﹣(2m+4)=3,即可得出m的值,进而得出P点坐标;(2)根据平行于x轴点的坐标性质得出m﹣1=﹣3,进而得出m的值,进而得出P点坐标.【解答】解:(1)∵点P(2m+4,m﹣1),点P的纵坐标比横坐标大3,∴m﹣1﹣(2m+4)=3,解得:m=﹣8,∴2m+4=﹣12,m﹣1=﹣9,∴点P的坐标为:(﹣12,﹣9);(2)∵点P在过A(2,﹣3)点,且与x轴平行的直线上,∴m﹣1=﹣3,解得:m=﹣2,∴2m+4=0,∴P点坐标为:(0,﹣3).【点评】此题主要考查了坐标与图形的性质,根据已知得出关于m的等式是解题关键.22.甲、乙两辆汽车同时分别从A、B两城沿同一条高速公路匀速驶向C城.已知A、C两城的距离为360km,B、C两城的距离为320km,甲车比乙车的速度快10km/h,结果两辆车同时到达C城.设乙车的速度为xkm/h.(1)根据题意填写下表:行驶的路程(km)速度(km/h)所需时间(h)甲车360 x+10乙车320 x(2)求甲、乙两车的速度.【分析】(1)设乙的速度是x千米/时,那么甲的速度是(x+10)千米/时,根据时间=可求甲、乙两辆汽车所需时间;(2)路程知道,且同时到达,可以时间做为等量关系列方程求解.【解答】解:(1)甲的速度是(x+10)千米/时,甲车所需时间是,乙车所需时间是;行驶的路程(km)速度(km/h)所需时间(h)甲车360 x+10乙车320 x(2)乙的速度是x千米/时,甲的速度是(x+10)千米/时,依题意得:=,解得x=80,经检验:x=80是原方程的解,x+10=90,答:甲的速度是90千米/时,乙的速度是80千米/时.【点评】本题考查理解题意能力,关键是以时间做为等量关系,根据时间=,列方程求解.23.小聪和小明沿同一条路同时从学校出发到宁波天一阁查阅资料,学校与天一阁的路程是4千米,小聪骑自行车,小明步行,当小聪从原路回到学校时,小明刚好到达天一阁,图中折线O﹣A﹣B﹣C和线段OD分别表示两人离学校的路程s(千米)与所经过的时间t(分钟)之间的函数关系,请根据图象回答下列问题:(1)小聪在天一阁查阅资料的时间为15分钟,小聪返回学校的速度为千米/分钟;(2)请你求出小明离开学校的路程s(千米)与所经过的时间t(分钟)之间的函数关系;(3)当小聪与小明迎面相遇时,他们离学校的路程是多少千米?【分析】(1)直接根据图象上所给的数据的实际意义可求解;(2)由图象可知,s是t的正比例函数,设所求函数的解析式为s=kt(k≠0),把(45,4)代入解析式利用待定系数法即可求解;(3)由图象可知,小聪在30≤t≤45的时段内s是t的一次函数,设函数解析式为s=mt+n (m≠0)把(30,4),(45,0)代入利用待定系数法先求得函数关系式,再根据求函数图象的交点方法求得交点坐标即可.【解答】解:(1)∵30﹣15=15,4÷15=∴小聪在天一阁查阅资料的时间和小聪返回学校的速度分别是15分钟,千米/分钟.(2)由图象可知,s是t的正比例函数设所求函数的解析式为s=kt(k≠0)代入(45,4),得4=45k解得k=∴s与t的函数关系式s=t(0≤t≤45).(3)由图象可知,小聪在30≤t≤45的时段内s是t的一次函数,设函数解析式为s=mt+n (m≠0)代入(30,4),(45,0),得解得∴s=﹣t+12(30≤t≤45)令﹣t+12=t,解得t=当t=时,S=×=3.答:当小聪与小明迎面相遇时,他们离学校的路程是3千米.【点评】主要考查了一次函数的实际运用和读图能力.从图象中获得所需的信息是需要掌握的基本能力,还要会熟练地运用待定系数法求函数解析式和使用方程组求交点坐标的方法.。

人教版数学八年级下册《期中考试题》含答案解析

人教版数学八年级下册《期中考试题》含答案解析

人 教 版 数 学 八 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________第Ⅰ卷一、选择题1.下列运算正确的是( )A.2=- B. =C.x =D.=2.下列式子是最简二次根式的是( )A.B.C.D.3.,则x 的取值范围是( ) A. 2x ≤B. 2x ≥-C. 2x <-D. 2x >-4.下列二次根式中,是同类二次根式的是( )A.B.C.D.5.下列计算正确的是( ) A.=±2B. 23=6C.D.6.下列计算正确的是( )x B. 2510x x x =C. 236()x x ==7.下列各组数据不是勾股数的是( ) A. 2,3,4B. 3,4,5C. 5,12,13D. 6,8,108.如图,正方形ABCD 的面积是( )A. 5B. 25C. 7D. 19.如图,数轴上的点A 表示的数是-2,点B 表示的数是1,CB AB ⊥于点B ,且2BC =,以点A 为圆心,AC 为半径画弧交数轴于点D ,则点D 表示的数为( )A. 13B. 132+C. 132-D. 210.由下列条件不能判断△ABC 是直角三角形是( ) A. ∠A :∠B :∠C =3:4:5 B. AB :BC :AC =3:4:5 C. ∠A +∠B =∠CD. AB 2=BC 2+AC 211.如图,ABC ∆中,90ACB ∠=︒,2AC =,3BC =.设AB 的长是,下列关于的四种说法,其中,所有正确说法的序号是( )①是无理数 ②是13的算术平方根③23m << ④可以用数轴上的一个点来表示 A ①②B. ①③C. ①②④D. ②③④12.如图,高速公路上有,两点相距10km ,,为两村庄,已知4km DA =,6km CB =.DA AB ⊥于,CB AB ⊥于,现要在AB 上建一个服务站,使得,两村庄到站的距离相等,则EB 的长是( ).A 4km B. 5km C. 6km D. 20km第Ⅱ卷二、填空题13.将二次根式50化为最简二次根式____________.14.化简:1=_______.3a-是同类二次根式,那么a=________.15.如果最简二次根式1+a与4216.已知a11=-1,则a2+2a+2的值是_____.17.如图,两树高分别为10米和4米,相距8米,一只鸟从一树树梢飞到另一树的树梢,问小鸟至少飞行_______米.18.如图,在矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在点D’处,则重叠部分△AFC的面积为___________.三、解答题19.计算:23)(1)(775)(2)220.计算:(1) 24812+⨯(2)12322768÷+-⨯21.计算:(3-7)(3+7)+2(2-2).22.已知a=32-,分别求下列代数式的值:+,b=32(1)a2﹣b2(2)a2﹣2ab+b2.∆的顶点都在格点上.23.如图,在平面直角坐标系中,正方形网格的每个小方格都是边长为1的正方形,ABCA B C的坐标;(1)直接写出点,,∆是不是直角三角形,并说明理由.(2)试判断ABC24.如图,梯子长25米,斜靠在一面墙上,梯子底端离墙7米.(1)这个梯子顶端距地面有多高?(2)如果梯子的顶端下滑了4米,那么梯子的底端在水平方向滑动了几米?25.如图,小明将升旗的绳子拉到旗杆底端,并在绳子上打了一个结,然后将绳子拉到离旗杆底端9米处,发现此时绳子底端距离打结处约3米,请算出旗杆的高度.26.任选一题作答,只计一题的成绩:一、如图,某工厂和一条笔直的公路AB ,原有两条路AC ,BC 可以到达AB ,经测量600m AC =,800m BC =,1000m AB =,现需要修建一条新公路,使到AB 的距离最短.请你帮设计一种方案,并求新建公路的长.二、如图,90ADC ∠=︒,4=AD ,3CD =, 13AB =,12BC =. (1)试判断以点,,为顶点的三角形的形状,并说明理由; (2)求该图的面积.答案与解析一、选择题(共12道小题,每小题3分,共36分)1. ,则x 的取值范围是( )A. x >1B. x ≥1C. x <1D. x ≤1[答案]B [解析] [分析]根据被开方数大于等于0列式计算即可得解. [详解]解:由题意得,x ﹣1≥0, 解得x ≥1. 故选:B .[点睛]本题主要考查了二次根式有意义的条件,掌握被开方数大于等于0是解题的关键. 2.[ ]B.2C. D. [答案]C [解析]相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,0的相反数还是0.故选C . 考点:相反数.3. 3b =-,则( ) A. 3b > B. 3b <C. 3b ≥D. 3b ≤[答案]D [解析]等式左边为非负数,说明右边3b 0-≥,由此可得b 的取值范围. [详解]解:2(3b)3b -=-,3b 0∴-≥,解得b 3.≤故选D .[点睛]()0a 0≥≥()a a 0=≥. 4. 下列式子中,为最简二次根式的是( )[答案]B [解析] [分析]判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.[详解]解:2被开方数含有分母,不是最简二次根式,不合题意;B. ,符合题意;C. =2被开方数含能开得尽方的因数,不是最简二次根式,不符合题意;D.被开方数含能开得尽方的因数,不是最简二次根式,不符合题意.故选:B[点睛]本题考查最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式. 5. 下列计算正确的是( ) A. ()222a b a b -=- B. ()322x x 8x ÷=+C. 1a a a a÷⋅= 4=-[答案]B[分析]根据完全平方公式,整式的除法,分式的乘除法,二次根式的性质和化简运算法则逐一计算作出判断.[详解]解: A .()222a b a 2ab b -=-+,选项错误;B .()3322x x 8x x 8x ÷=÷=,选项正确; C .111a a 1a a a÷⋅=⋅=,选项错误; D .()2444-=-=,选项错误.故选:B .6. 下列二次根式中,不能与3合并的是( ) A. 23 B. 12C. 18D. 27[答案]C [解析]A 选项中,因为23与3是同类二次根式,所以两者可以合并;B 选项中,因为1223=,与3是同类二次根式,所以两者可以合并;C 选项中,因为1832=,与3不是同类二次根式,所以两者不能合并;D 选项中,因为2733=,与3是同类二次根式,所以两者可以合并. 故选C.7. 如图,Rt △ABC 中,∠ACB =90°,若AB =15cm ,则正方形ADEC 和正方形BCFG 的面积之和为( )A. 150cm 2B. 200cm 2C. 225cm 2D. 无法计算[答案]C [解析]小正方形的面积为AC 的平方,大正方形的面积为BC 的平方.两正方形面积的和为AC 2+BC 2,对于Rt △ABC ,由勾股定理得AB 2=AC 2+BC 2.AB 长度已知,故可以求出两正方形面积的和. [详解]解:正方形ADEC 的面积为AC 2, 正方形BCFG 的面积为BC 2;在Rt △ABC 中,AB 2=AC 2+BC 2,AB =15, 则AC 2+BC 2=225cm 2. 故选:C .[点睛]本题考查了勾股定理.勾股定理应用的前提条件是在直角三角形中.8. 在△ABC 中,AB =1,AC =2,BC 则该三角形为( ) A. 锐角三角形 B. 直角三角形C. 钝角三角形D. 等腰直角三角形[答案]B [解析]解:在△ABC 中,AB =1,AC =2,BC 22212+=,∴△ABC 是直角三角形. 故选B .点睛:本题考查了勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.9. 已知一个直角三角形的两边长分别为3和5,则第三边长是( )A. 5B. 4D. 4[答案]D [解析][详解]解:∵一个直角三角形的两边长分别为3和5,∴①当5是此直角三角形的斜边时,设另一直角边为x ,则由勾股定理得到:x ;②当5是此直角三角形的直角边时,设另一直角边为x ,则由勾股定理得到:x 故选:D10. 如图,已知点E 在正方形ABCD 内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是( )A. 48B. 60C. 76D. 80 [答案]C[解析]试题解析:∵∠AEB=90°,AE=6,BE=8,∴AB=22226810AE BE+=+=∴S阴影部分=S正方形ABCD-S Rt△ABE=102-168 2⨯⨯=100-24=76.故选C.考点:勾股定理.11. 如图5,一棵大树在一次强台风中于离地面5米处折断倒下,倒下部分与地面成30°夹角,这棵大树在折断前的高度为()A. 10米B. 15米C. 25米D. 30米[答案]B[解析][分析]如图,在Rt△ABC中,∠ABC=30°,由此即可得到AB=2AC,而根据题意找到CA=5米,由此即可求出AB,也就求出了大树在折断前的高度.[详解]解:如图,在Rt△ABC中,∵∠ABC=30°,∴AB=2AC,而CA=5米,∴AB=10米,∴AB+AC=15米.所以这棵大树在折断前的高度为15米.故选B.[点睛]本题主要利用定理--在直角三角形中30°角所对的直角边等于斜边的一半,解题关键是善于观察题目的信息,利用信息解决问题.12. 如图,有一块直角三角形纸片,两直角边AB=6,BC=8,将△ABC折叠,使AB落在斜边AC上,折痕为AD,则BD的长为( )A. 6B. 5C. 4D. 3[答案]D[解析][分析]设点B落在AC上的E点处,连接DE,如图所示,由三角形ABC为直角三角形,由AB与BC的长,利用勾股定理求出AC的长,设BD=x,由折叠的性质得到ED=BD=x,AE=AB=6,进而表示出CE与CD,在直角三角形DEC中,利用勾股定理列出关于x的方程,求出方程的解得到x的值,即可确定出BD的长.[详解]解:∵△ABC为直角三角形,AB=6,BC=8,∴根据勾股定理得:2210=+=,AC AB BC设BD=x,由折叠可知:ED=BD=x,AE=AB=6,可得:CE=AC-AE=10-6=4,CD=BC-BD=8-x,在Rt△CDB'中,根据勾股定理得:(8-x )2=42+x 2,解得:x=3,则BD=3.故答案为3.[点睛]此题考查了勾股定理,利用了方程的思想,熟练掌握勾股定理的解本题的关键.二、填空题(共6道小题,每小题3分,共18分.把正确的答案写在答题卡相应的横线上) 13. 已知2a =则代数式21a -的值是________. [答案]1[解析][分析] 直接把2a =[详解]∵2a =∴222)1211a --=-=.故答案为:1.[点睛]此题主要考查了二次根式的性质,注意:2(0)a a a =≥.14. 23(1)0m n -+=,则m -n 的值为_____.[答案]4[解析][分析]根据二次根式与平方的非负性即可求解.[详解]依题意得m-3=0,n+1=0,解得m=3,n=-1,∴m-n=4[点睛]此题主要考查二次根式与平方的非负性,解题的关键是熟知二次根式与平方的非负性.15. 计算:528-=______.[答案]32[解析][分析]先化简二次根式,再合并即可.[详解]528522232-=-=;故答案是:32.16. 直角三角形两直角边长分别为和,则它斜边上的高为____________________.[答案]12 5[解析][分析]设斜边为c,斜边上的高为h,利用勾股定理可求出斜边的长,根据面积法即可得答案, [详解]设斜边为c,斜边上的高为h,∵直角三角形两直角边长分别为和,∴2234+,∴此直角三角形的面积=12×5h=12×3×4,解得:h=125.故答案为:12 5[点睛]本题考查了利用勾股定理求直角三角形的边长及利用面积法求直角三角形的高,熟练掌握面积法是解题关键.17. 如图所示,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,正方形A,B,C的面积分别是8cm2,10cm2,14cm2,则正方形D的面积是__________cm2.[答案]17[解析]试题解析:根据勾股定理可知,∵S 正方形1+S 正方形2=S 大正方形=49,S 正方形C +S 正方形D =S 正方形2,S 正方形A +S 正方形B =S 正方形1,∴S 大正方形=S 正方形C +S 正方形D +S 正方形A +S 正方形B =49.∴正方形D 的面积=49-8-10-14=17(cm 2).18. 如图,Rt △ABC 的面积为20cm 2,在AB 的同侧,分别以AB ,BC ,AC 为直径作三个半圆,则阴影部分的面积为_____.[答案]20cm 2[解析][详解]解:由图可知,阴影部分的面积=12π(12AC )2+12π(12BC )2+S △ABC ﹣12π(12AB )2, =8(AC 2+BC 2﹣AB 2)+S △ABC , 在Rt △ABC 中,AC 2+BC 2=AB 2,∴阴影部分的面积=S △ABC =20cm 2.故答案为20cm 2.三、解答题(共8小题,共66分.解答应写出必要的文字说明或演算步骤.)19. 计算下列各题:(1)545842+-+(2)|1|+()02020π-(3)( -[答案](1)(24;(3). [解析][分析](1)先化为最简二次根式,后合并同类项;(2)先求绝对值,零次幂,立方根,再合并同类项;(3)括号内的部分先化为最简二次根式,合并同类项,再计算除法,最后进行分母有理化.详解](1)==(2)|1|+()02020π-114=+-4=(3)( -)(23=⨯⨯==[点睛]本题考查了二次根式,绝对值,零次幂的混合运算,熟知以上运算法则是解题的关键.20. 已知11x y ==,,求下列各式的值: (1)222x xy y ++;(2)22x y -.[答案][解析][分析]观察可知:(1)式是和的完全平方公式,(2)是平方差公式.先转化,再代入计算即可.[详解](1)当x =3+1,y =3-1时, 原式=(x +y )2=(3+1+3-1)2=12;(2)当x =3+1,y =3-1时,原式=(x +y )(x -y )=(3+1+3-1)(3+1-3+1)=43.21. 先化简,再求值,已知=2+1 求+1-21x x -的值. [答案]化简得1212x -=-- [解析][分析]首先把原式化成21111x x x ---- ,然后进行通分,相减即可对分式进行化简,然后代入数值化简求值即可. [详解]+1-21x x -=21111x x x ----=2211111x x x x x --=---- 当x=2+1时,原式=112=-=-22+1-12. [点睛]此题考查分式的化简求值,解题关键在于掌握运算法则.22. 如图所示,∠B =∠OAF =90°,BO =3 cm ,AB =4 cm ,AF =12 cm ,求图中半圆的面积.[答案]图中半圆的面积是169π8cm 2. [解析][分析] 先根据勾股定理求出AO,FO 的长,再根据半圆面积计算公式计算半圆面积即可.[详解]解:如图,∵在直角△ABO 中,∠B =90°,BO =3 cm ,AB =4 cm , ∴AO =22BO AB +=5 cm. 则在直角△AFO 中,由勾股定理,得到FO =22AO AF +=13 cm ,∴图中半圆的面积=12π×2FO ⎛⎫ ⎪⎝⎭2=12π×169π169π88=(cm 2). 答:图中半圆的面积是169π8cm 2. [点睛]此题重点考察学生对勾股定理的实际应用能力,熟练掌握勾股定理是解题的关键.23. 如图,△ABC 中,∠C =90º,AD 是角平分线,CD =15,BD =25.求AC 的长.[答案]30[解析][分析]作DE AB ⊥于E ,利用角平分线的性质得DE=CD=15,AE=AC ,在Rt BED 中,求出BE ,在Rt ABC 中,求出AC .[详解]作DE AB ⊥于E ,如图所示∵AD 为CAB ∠的角平分线,且90︒∠=C ,∴DE=CD=15,AE=AC ,在Rt BED 中,2220BE BD DE =-=,在Rt ABC 中,222AC BC AB +=,即222()()AC CD BD AE BE ++=+,∴22240(20)AC AC +=+,解得30AC =.[点睛]本题考查了角平分线的性质,勾股定理的计算,熟知以上知识,是解题的关键.24. 如图,在△ABC 中,∠B=30°,∠C=45°,AC=22.求BC 边上的高及△ABC 的面积.[答案]2,3[解析][分析]先根据AD⊥BC,∠C=45°得出△ACD是等腰直角三角形,再由2得出AD及CD的长,由∠B=30°求出BD的长,根据三角形的面积公式即可得出结论.[详解]∵AD⊥BC,∠C=45°,∴△ACD是等腰直角三角形,∵AD=CD.∵2,∴2AD=AC,即2AD=8,解得AD=CD=2.∵∠B=30°,∴AB=2AD=4,∴2222=4-2=23AB AD,∴3+2,∴S ABC=12BC⋅AD=123+2)×3.[点睛]此题考查勾股定理,解题关键在于求出BD的长.25. 如图所示,在四边形ABCD中,5BC=2,CD=1,AD=5,且∠C=90°,求四边形ABCD的面积.[答案]四边形ABCD的面积是6.[解析][分析]连接BD,根据勾股定理可计算出BD的长度,再由勾股定理逆定理可判断出△ABD为直角三角形,分别计算出△ABD和△BCD的面积,求和即可.[详解]连接BD,∵∠C=90°,∴△BCD为直角三角形,∴BD2=BC2+CD2=22+1252,BD>0,∴BD5在△ABD中,∵AB2+BD2=20+5=25,AD2=52=25,∴AB2+BD2=AD2,∴△ABD直角三角形,且∠ABD=90°,∴S四边形ABCD=S△ABD+S△BCD=12×5×512×2×1=6.∴四边形ABCD的面积是6.[点睛]本题关键在于利用勾股定理逆定理判定出直角三角形,从而求出三角形的面积.26. 观察下列各式及其验算过程:2 2+323,22+323+2332323(1)按照上述两个等式及其验证过程的基本思路,的变形结果并进行验证.(2)针对上述各式反映的规律,写出用n(n为大于1的整数)表示的等式并给予验证.[答案](1)见解析;(2)见解析.[解析]试题分析:(1)利用已知,的值,再验证;(2)由(1)根据二次根式的性质可以总结出一般规律.解:(1),,正确;(2)由(1)中的规律可知3=22﹣1,8=32﹣1,15=42﹣1,=,正确.。

八年级下册数学期中考试题(答案)

八年级下册数学期中考试题(答案)

八年级下册数学期中考试题(答案)一、选择题(本大题共6小题,每小题3分,共18分)1.如果a>b,那么下列各式中正确的是()A.a﹣2<b﹣2B.<C.﹣2a<﹣2b D.﹣a>﹣b2.已知不等式组的解集为﹣1<x<1,则(a+1)(b﹣1)值为()A.6B.﹣6C.3D.﹣33.如图,正方形OABC的两边OA、OC分别在x轴、y轴上,点D(5,3)在边AB上,以C为中心,把△CDB旋转90°,则旋转后点D的对应点D′的坐标是()A.(2,10)B.(﹣2,0)C.(2,10)或(﹣2,0)D.(10,2)或(﹣2,0)4.小明要从甲地到乙地,两地相距1.8千米.已知他步行的平均速度为90米/分,跑步的平均速度为210米/分,若他要在不超过15分钟的时间内从甲地到达乙地,至少需要跑步多少分钟?设他需要跑步x分钟,则列出的不等式为()A.210x+90(15﹣x)≥1800B.90x+210(15﹣x)≤1800C.210x+90(15﹣x)≥1.8D.90x+210(15﹣x)≤1.85.△ABC中,AB=AC=5,BC=8,点P是BC边上的动点,过点P作PD⊥AB于点D,PE⊥AC于点E,则PD+PE的长是()A.4.8B.4.8或3.8C.3.8D.56.如图,在直角坐标系中,已知点A(﹣3,0)、B(0,4),对△OAB连续作旋转变换,依次得到△1、△2、△3、△4、…,△16的直角顶点的坐标为()A.(60,0)B.(72,0)C.(67,)D.(79,)二、填空题(本大题共6小题,每小题3分,共18分)7.如图是一块长方形ABCD的场地,长AB=a米,宽AD=b米,从A、B两处入口的小路宽都为1米,两小路汇合处路宽为2米,其余部分种植草坪,则草坪面积为米2.8.如图,在平面直角坐标系xOy中,点A,点B的坐标分别为(0,2),(﹣1,0),将线段AB沿x轴的正方向平移,若点B的对应点的坐标为B'(2,0),则点A的对应点A'的坐标为.9.如图,函数y1=﹣2x与y2=ax+3的图象相交于点A(m,2),则关于x的不等式﹣2x ≤ax+3的解集是.10.若关于x的不等式的整数解共有4个,则m的取值范围是.11.在RtABC中,∠C=90°,AC=BC=(如图),若将△ABC绕点A顺时针方向旋转60°到△AB′C′的位置,联结C′B,则C′B的长为.12.已知△ABC中,BC=6,AB、AC的垂直平分线分别交边BC于点M、N,若MN=2,则△AMN的周长是.三、(本大题共5小题,每小题6分,共30分)13.(6分)解下列不等式(组):(1)(2),并把它的解集表示在数轴上.14.(6分)如图,在△ABC中,AB=AC,D为BC上一点,∠B=30°,连接AD.(1)若∠BAD=45°,求证:△ACD为等腰三角形;(2)若△ACD为直角三角形,求∠BAD的度数.15.(6分)如图,在平面直角坐标系中,△ABC三个顶点的坐标分别为:A(1,﹣4),B(5,﹣4),C(4,﹣1).(1)将△ABC经过平移得到△A1B1C1,若点C的应点C1的坐标为(2,5),则点A,B的对应点A1,B1的坐标分别为;(2)在如图的坐标系中画出△A1B1C1,并画出与△A1B1C1关于原点O成中心对称的△A2B2C2.16.(6分)某市为鼓励居民节约用水,对每户用水按如下标准收费:若每户每月用水不超过8m3,则每m3按1元收费;若每户每月用水超过8m3,则超过部分每m3按2元收费.某用户7月份用水比8m3要多xm3,交纳水费y元.(1)求y关于x的函数解析式,并写出x的取值范围.(2)此用户要想每月水费控制在20元以内,那么每月的用水量最多不超过多少m3?17.(6分)已知:如图,在Rt△ABC中,∠ACB=90°,AC=BC,点D是BC的中点,CE⊥AD,垂足为点E,BF∥AC交CE的延长线于点F.求证:AC=2BF.四、(本大题共3小题,每小题8分,共24分)18.(8分)某年级380名师生秋游,计划租用7辆客车,现有甲、乙两种型号客车,它们的载客量和租金如表.甲种客车乙种客车载客量(座/辆)6045租金(元/辆)550450(1)设租用甲种客车x辆,租车总费用为y元.求出y(元)与x(辆)之间的函数表达式;(2)当甲种客车有多少辆时,能保障所有的师生能参加秋游且租车费用最少,最少费用是多少元?19.(8分)在△ABC中,∠B+∠ACB=30°,AB=4,△ABC逆时针旋转一定角度后与△ADE重合,且点C恰好成为AD中点,如图(1)指出旋转中心,并求出旋转角的度数.(2)求出∠BAE的度数和AE的长.20.(8分)如图,在Rt△ABC中,∠ACB=90°,点D、E分别在AB、AC上,且CE=BC,连接CD,将线段CD绕点C按顺时针方向旋转90°后得到CF,连接EF.(1)求证:△BDC≌△EFC;(2)若EF∥CD,求证:∠BDC=90°.五、(本大题共2小题,每小题9分,共18分)21.(9分)如图1,已知△ABC中,AB=AC,点D是△ABC外一点(与点A分别在直线BC两侧),且DB=DC,过点D作DE∥AC,交射线AB于E,连接AE交BC于F.(1)求证:AD垂直BC;(2)如图1,点E在线段AB上且不与B重合时,求证:DE=AE;(3)如图2,当点E在线段AB的延长线上时,写出线段DE,AC,BE的数量关系.22.(9分)为加快“秀美荆河水系生态治理工程”进度,污水处理厂决定购买10台污水处理设备.现有A,B两种型号的设备,每台的价格分别为a万元,b万元,每月处理污水量分别为240吨,200吨.已知购买一台A型设备比购买一台B型设备多2万元,购买2台A型设备比购买3台B型设备少6万元.(1)求a,b的值;(2)厂里预算购买污水处理设备的资金不超过105万元,你认为有哪几种购买方案;(3)在(2)的条件下,若每月要求处理污水量不低于2040吨,为了节约资金,请你为污水处理厂设计一种最省钱的购买方案.六、(本大题共12分)23.(12分)几何探究题(1)发现:在平面内,若BC=a,AC=b,其中a>b.当点A在线段BC上时(如图1),线段AB的长取得最小值,最小值为;当点A在线段BC延长线上时(如图2),线段AB的长取得最大值,最大值为.(2)应用:点A为线段BC外一动点,如图3,分别以AB、AC为边,作等边△ABD和等边△ACE,连接CD、BE.①证明:CD=BE;②若BC=3,AC=1,则线段CD长度的最大值为.(3)拓展:如图4,在平面直角坐标系中,点A的坐标为(2,0),点B的坐标为(5,0),点P为线AB外一动点,且PA=2,PM=PB,∠BPM=90°.请直接写出线段AM 长的最大值及此时点P的坐标.2018-2019学年江西省吉安市青原区八年级(下)期中数学试卷参考答案与试题解析一、选择题(本大题共6小题,每小题3分,共18分)1.【分析】A、根据不等式的性质1,可得答案;B、根据不等式的性质2,可得答案;C、根据不等式的性质3,可得答案;D、根据不等式的性质3,可得答案.【解答】解:A、不等式的两边都减2,不等号的方向不变,故A错误;B、不等式的两边都除以2,不等号的方向不变,故B错误;C、不等式的两边都乘以﹣2,不等号的方向改变,故C正确;D、不等式的两边都乘以﹣1,不等号的方向改变,故D错误;故选:C.【点评】主要考查了不等式的基本性质.“0”是很特殊的一个数,因此,解答不等式的问题时,应密切关注“0”存在与否,以防掉进“0”的陷阱.不等式的基本性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变.2.【分析】先解不等式,求出解集,然后根据题中已告知的解集,进行比对,从而得出两个方程,解答即可求出a、b.【解答】解:不等式组,解得,,即,2b+3<x<,∵﹣1<x<1,∴2b+3=﹣1,,得,a=1,b=﹣2;∴(a+1)(b﹣1)=2×(﹣3)=﹣6.故选:B.【点评】本题考查了一元一次不等式组的解法,求不等式的公共解,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.3.【分析】分顺时针旋转和逆时针旋转两种情况讨论解答即可.【解答】解:∵点D(5,3)在边AB上,∴BC=5,BD=5﹣3=2,①若顺时针旋转,则点D′在x轴上,OD′=2,所以,D′(﹣2,0),②若逆时针旋转,则点D′到x轴的距离为10,到y轴的距离为2,所以,D′(2,10),综上所述,点D′的坐标为(2,10)或(﹣2,0).故选:C.【点评】本题考查了坐标与图形变化﹣旋转,正方形的性质,难点在于分情况讨论.4.【分析】根据题意可以列出相应的不等式,从而可以解答本题.【解答】解:由题意可得210x+90(15﹣x)≥1800,故选:A.【点评】本题考查由实际问题抽象出一元一次不等式,解答本题的关键是明确题意,列出相应的不等式.5.【分析】过A点作AF⊥BC于F,连结AP,根据等腰三角形三线合一的性质和勾股定理可得AF的长,由图形得S ABC=S ABP+S ACP,代入数值,解答出即可.【解答】解:过A点作AF⊥BC于F,连结AP,∵△ABC中,AB=AC=5,BC=8,∴BF=4,∴△ABF中,AF==3,∴×8×3=×5×PD+×5×PE,12=×5×(PD+PE)PD+PE=4.8.故选:A.【点评】本题主要考查了勾股定理、等腰三角形的性质,解答时注意,将一个三角形的面积转化成两个三角形的面积和;体现了转化思想.6.【分析】根据题目提供的信息,可知旋转三次为一个循环,图中第三次和第四次的直角顶点的坐标相同,由①→③时直角顶点的坐标可以求出来,从而可以解答本题.【解答】解:由题意可得,△OAB旋转三次和原来的相对位置一样,点A(﹣3,0)、B(0,4),∴OA=3,OB=4,∠BOA=90°,∴AB=∴旋转到第三次时的直角顶点的坐标为:(12,0),16÷3=5 (1)∴旋转第15次的直角顶点的坐标为:(60,0),又∵旋转第16次直角顶点的坐标与第15次一样,∴旋转第16次的直角顶点的坐标是(60,0).故选:A.【点评】本题考查规律性:点的坐标,解题的关键是可以发现其中的规律,利用发现的规律找出所求问题需要的条件.二、填空题(本大题共6小题,每小题3分,共18分)7.【分析】根据已知将道路平移,再利用矩形的性质求出长和宽,再进行解答.【解答】解:由图可知:矩形ABCD中去掉小路后,草坪正好可以拼成一个新的矩形,且它的长为:(a﹣2)米,宽为(b﹣1)米.所以草坪的面积应该是长×宽=(a﹣2)(b﹣1)=ab﹣a﹣2b+2(米2).故答案为(ab﹣a﹣2b+2).【点评】此题考查了生活中的平移,根据图形得出草坪正好可以拼成一个长方形是解题关键.8.【分析】根据平移的性质即可得到结论.【解答】解:∵将线段AB沿x轴的正方向平移,若点B的对应点B′的坐标为(2,0),∵﹣1+3=2,∴0+3=3∴A′(3,2),故答案为:(3,2)【点评】本题考查了坐标与图形变化﹣平移.解决本题的关键是正确理解题目,按题目的叙述一定要把各点的大致位置确定,正确地作出图形.9.【分析】首先利用待定系数法求出A点坐标,再以交点为分界,结合图象写出不等式﹣2x≤ax+3的解集即可.【解答】解:∵函数y1=﹣2x过点A(m,2),∴﹣2m=2,解得:m=﹣1,∴A(﹣1,2),∴不等式﹣2x<ax+3的解集为x≥﹣1.故答案为:x≥﹣1.【点评】此题主要考查了一次函数与一元一次不等式,关键是求出A点坐标.10.【分析】关键不等式的性质求出不等式的解集,根据找不等式组解集的规律找出不等式组的解集,根据已知得到6≤m<7即可.【解答】解:,由①得:x<m,由②得:x≥3,∴不等式组的解集是3≤x<m,∵关于x的不等式的整数解共有4个,∴6<m≤7,故答案为:6<m≤7.【点评】本题主要考查对解一元一次不等式,不等式的性质,解一元一次不等式组,一元一次不等式组的整数解等知识点的理解和掌握,能根据不等式组的解集得到6<m≤7是解此题的关键.11.【分析】连接BB′,根据旋转的性质可得AB=AB′,判断出△ABB′是等边三角形,根据等边三角形的三条边都相等可得AB=BB′,然后利用“边边边”证明△ABC′和△B′BC′全等,根据全等三角形对应角相等可得∠ABC′=∠B′BC′,延长BC′交AB′于D,根据等边三角形的性质可得BD⊥AB′,利用勾股定理列式求出AB,然后根据等边三角形的性质和等腰直角三角形的性质求出BD、C′D,然后根据BC′=BD﹣C′D计算即可得解.【解答】解:如图,连接BB′,∵△ABC绕点A顺时针方向旋转60°得到△AB′C′,∴AB=AB′,∠BAB′=60°,∴△ABB′是等边三角形,∴AB=BB′,在△ABC′和△B′BC′中,,∴△ABC′≌△B′BC′(SSS),∴∠ABC′=∠B′BC′,延长BC′交AB′于D,则BD⊥AB′,∵∠C=90°,AC=BC=,∴AB=2,∴BD=2×=,C′D=×2=1,∴BC′=BD﹣C′D=﹣1.故答案为﹣1.【点评】本题考查了旋转的性质,全等三角形的判定与性质,等边三角形的判定与性质,等腰直角三角形的性质,作辅助线构造出全等三角形并求出BC′在等边三角形的高上是解题的关键,也是本题的难点.12.【分析】由直线PM为线段AB的垂直平分线,根据线段垂直平分线定理:线段垂直平分线上的点到线段两端点的距离相等可得AM=BM,同理可得AN=NC,然后表示出三角形AMN的三边之和,等量代换可得其周长等于BC的长,由BC的长即可得到三角形AMN的周长.【解答】解:图1,∵直线MP为线段AB的垂直平分线,∴MA=MB,又直线NQ为线段AC的垂直平分线,∴NA=NC,∴△AMN的周长l=AM+MN+AN=BM+MN+NC=BC,又BC=6,则△AMN的周长为6,如图2,△AMN的周长l=AM+MN+AN=BM+MN+NC=BC+2MN,又BC=6,则△AMN的周长为10,故答案为:6或10【点评】此题考查了线段垂直平分线定理的运用,利用了转化的思想,熟练掌握线段垂直平分线定理是解本题的关键.三、(本大题共5小题,每小题6分,共30分)13.【分析】(1)根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:(1)去分母,得:3(x﹣2)≥2(7﹣x),去括号,得:3x﹣6≥14﹣2x,移项,得:3x+2x≥14+6,合并同类项,得:5x≥20,系数化为1,得:x≥4;(2)解不等式﹣x+3<2x,得:x>1,解不等式﹣≥0,得:x≤4,则不等式组的解集为1<x≤4,将不等式组的解集表示在数轴上如下:【点评】本题考查的是解一元一次不等式(组),正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小无解了”的原则是解答此题的关键.14.【分析】(1)根据等腰三角形的性质求出∠B=∠C=30°,根据三角形内角和定理求出∠BAC=120°,求出∠CAD=∠ADC,根据等腰三角形的判定得出即可;(2)有两种情况:①当∠ADC=90°时,当∠CAD=90°时,求出即可.【解答】(1)证明:∵AB=AC,∠B=30°,∴∠B=∠C=30°,∴∠BAC=180°﹣30°﹣30°=120°,∵∠BAD=45°,∴∠CAD=∠BAC﹣∠BAD=120°﹣45°=75°,∠ADC=∠B+∠BAD=75°,∴∠ADC=∠CAD,∴AC=CD,即△ACD为等腰三角形;(2)解:有两种情况:①当∠ADC=90°时,∵∠B=30°,∴∠BAD=∠ADC﹣∠B=90°﹣30°=60°;②当∠CAD=90°时,∠BAD=∠BAC﹣∠CAD=120°﹣90°=30°;即∠BAD的度数是60°或30°.【点评】本题考查了三角形内角和定理,等腰三角形的判定的应用,能根据定理求出各个角的度数是解此题的关键,用了分类讨论思想.15.【分析】(1)根据平移的性质画出图形,进而得出坐标即可;(2)根据关于原点O成中心对称的性质画出图形即可.【解答】解:(1)如图所示:△A1B1C1即为所求:A1,B1的坐标分别为(﹣1,2),(3,2),故答案为:(﹣1,2),(3,2),(2)如图所示:△A2B2C2即为所求.【点评】本题主要考查作图﹣轴对称变换和平移变换,熟练掌握轴对称变换、平移变换的定义是解题的关键.16.【分析】(1)根据总价=单价×数量就可以表示出y与x之间的函数关系式;(2)根据(1)的解析式建立不等式求出其解即可.【解答】解:(1)由题意,得y=2x+8(x>0)(2)由题意,得2x+8≤20,解得:x≤6,∴x最多=6∴每月的用水量最多为14m3.【点评】本题考查了总价=单价×数量的运用,一次函数的解析式的运用及列不等式解实际问题的运用,解答时求出一次函数的解析式是关键.17.【分析】由直角三角形ACD中,CF垂直于AD,利用同角的余角相等得到一对角相等,再由一对直角相等,AC=BC,利用AAS得到三角形ACD与三角形CBF全等,利用全等三角形的对应边相等得到CD=BF,由D为BC中点,得到CD=BD,等量代换即可得证.【解答】证明:∵Rt△ACD中,CE⊥AD,∴∠BCF+∠F=90°,∠BCF+∠ADC=90°,∴∠F=∠ADC,在△ACD和△CBF中,,∴△ACD≌△CBF(AAS),∴CD=BF,∵D为BC中点,∴CD=BD,∴BF=CD=BD=BC=AC,则AC=2BF.【点评】此题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解本题的关键.四、(本大题共3小题,每小题8分,共24分)18.【分析】(1)根据表格可以求出y(元)与x(辆)之间的函数表达式;(2)由表格中的数据可以得到甲乙两辆车的载客量应至少为380人,从而可以列出相应的不等式得到x的值,因为x为整数,从而可以解答本题.【解答】解:(1)由题意,得y=550x+450(7﹣x),化简,得y=100x+3150,即y(元)与x(辆)之间的函数表达式是y=100x+3150;(2)由题意,得60x+45(7﹣x)≥380,解得,x≥.∵y=100x+3150,∴k=100>0,∴x=5时,租车费用最少,最少为:y=100×5+3150=3650(元),即当甲种客车有5辆时,能保障所有的师生能参加秋游且租车费用最少,最少费用是3650元.【点评】本题考查一次函数的应用,解题的关键是明确题意,找出所求问题需要的条件.19.【分析】(1)先根据三角形内角和计算出∠BAC=150°,然后利用旋转的定义可判断旋转中心为点A,旋转角为150°;(2)根据旋转的性质得到∠DAE=∠BAC=150°,AB=AD=4,AC=AE,利用周角定义可得到∠BAE=60°,然后利用点C为AD中点得到AC=AD=2,于是得到AE=2.【解答】解:(1)在△ABC中,∵∠B+∠ACB=30°,∴∠BAC=150°,当△ABC逆时针旋转一定角度后与△ADE重合,∴旋转中心为点A,∠BAD等于旋转角,即旋转角为150°;(2)∵△ABC绕点A逆时针旋转150°后与△ADE重合,∴∠DAE=∠BAC=150°,AB=AD=4,AC=AE,∴∠BAE=360°﹣150°﹣150°=60°,∵点C为AD中点,∴AC=AD=2,∴AE=2.【点评】本题考查了转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.20.【分析】(1)根据旋转的性质可得CD=CF,∠DCF=90°,然后根据同角的余角相等求出∠BCD=∠ECF,再利用“边角边”证明即可;(2)根据两直线平行,同旁内角互补求出∠F=90°,再根据全等三角形对应角相等可得∠BDC=∠F.【解答】证明:(1)由旋转的性质得,CD=CF,∠DCF=90°,∴∠DCE+∠ECF=90°,∵∠ACB=90°,∴∠BCD+∠DCE=90°,∴∠BCD=∠ECF,在△BDC和△EFC中,,∴△BDC≌△EFC(SAS);(2)∵EF∥CD,∴∠F+∠DCF=180°,∵∠DCF=90°,∴∠F=90°,∵△BDC≌△EFC,∴∠BDC=∠F=90°.【点评】本题考查了旋转的性质,全等三角形的判定与性质,平行线的性质,旋转前后对应边相等,此类题目难点在于利用同角的余角相等求出相等的角.五、(本大题共2小题,每小题9分,共18分)21.【分析】(1)根据线段垂直平分线的判定定理得到直线AD是BC的垂直平分线,证明结论;(2)证明△ABD≌△ACD,得到∠BAD=∠CAD,根据平行线的性质得到∠BAD=∠CAD,等量代换得到∠BAD=∠EDA,根据等腰三角形的判定定理证明;(3)仿照(2)的证明方法解答.【解答】(1)证明:∵AB=AC,DB=DC,∴直线AD是BC的垂直平分线,∴AD垂直BC;(2)证明:在△ABD和△ACD中,,∴△ABD≌△ACD,∴∠BAD=∠CAD,∵DE∥AC,∴∠EDA=∠CAD,∴∠BAD=∠EDA,∴DE=AE;(3)DE=AC+BE.由(2)得,∠BAD=∠CAD,∵DE∥AC,∴∠EDA=∠CAD,∴∠BAD=∠EDA,∴DE=AE,∵AB=AC,∴DE=AB+BE=AC+BE.【点评】本题考查的是全等三角形的判定和性质、平行线的性质,掌握全等三角形的判定定理和性质定理是解题的关键.22.【分析】(1)由“已知购买一台A型设备比购买一台B型设备多2万元,购买2台A 型设备比购买3台B型设备少6万元”,即可得出关于a、b的二元一次方程组,解之即可得出结论;(2)设购买A型设备m台,则购买B型设备(10﹣m)台,根据总价=单价×数量结合厂里预算购买污水处理设备的资金不超过105万元,即可得出关于m的一元一次不等式,解之取其中的整数即可得出各购买方案;(3)由每月要求处理污水量不低于2040吨,来验证m的值,再利用总价=单价×数量找出最省钱的购买方案.【解答】解:(1)根据题意得:,解得:.答:a的值为12,b的值为10.(2)设购买A型设备m台,则购买B型设备(10﹣m)台,根据题意得:12m+10(10﹣m)≤105,解得:m≤,∴m可取的值为0,1,2.故有3种购买方案,方案1:购买B型设备10台;方案2:购买A型设备1台,B型设备9台;方案3:购买A型设备2台,B型设备8台.(3)当m=0时,每月的污水处理量为:200×10=2000(吨),∵2000<2040,∴m=0不合题意,舍去;当m=1时,每月的污水处理量为:240+200×9=2040(吨),∵2040=2040,∴m=1符合题意,此时购买设备所需资金为:12+10×9=102(万元);当m=2时,每月的污水处理量为:240×2+200×8=2080(吨),∵2080>2040,∴m=2符合题意,此时购买设备所需资金为:12×2+10×8=104(万元).∵102<104,∴为了节约资金,该公司最省钱的一种购买方案为:购买A型设备1台,B型设备9台.【点评】本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式;(3)由每月要求处理污水量来确定m可取的值.六、(本大题共12分)23.【分析】(1)根据点A位于线段BC上时,线段AB的长取得最小值,根据点A位于BC的延长线上时,线段AB的长取得最大值,即可得到结论;(2)①根据等边三角形的性质得到AD=AB,AC=AE,∠BAD=∠CAE=60°,推出△CAD≌△EAB,根据全等三角形的性质得到CD=BE;②由于线段CD长的最大值=线段BE的最大值,根据(1)中的结论即可得到结果;(3)将△APM绕着点P顺时针旋转90°得到△PBN,连接AN,得到△APN是等腰直角三角形,根据全等三角形的性质得到PN=PA=2,BN=AM,根据当N在线段BA的延长线时,线段BN取得最大值,即可得到最大值为2+3;如图2,过P作PE⊥x轴于E,根据等腰直角三角形的性质即可得到结论.【解答】解:(1)∵当点A在线段BC上时,线段AB的长取得最小值,最小值为BC ﹣AC,∵BC=a,AC=b,∴BC﹣AC=a﹣b,当点A在线段BC延长线上时,线段AB的长取得最大值,最大值为BC+AC,∵BC=a,AC=b,∴BC+AC=a+b,故答案为:a﹣b,a+b;(2)①∵△ABD和△ACE是等边三角形,∴AD=AB,AC=AE,∠BAD=∠CAE=60°,∴∠DAC=∠BAE,在△ACD和△AEB中,,∴△ACD≌△AEB(SAS),∴CD=BE;②∵线段CD的最大值=线段BE长的最大值,由(1)知,当线段BE的长取得最大值时,点E在BC的延长线上,∴最大值为BC+CE=BC+AC=4;故答案为:4;(3)∵将△APM绕着点P顺时针旋转90°得到△PBN,连接AN,则△APN是等腰直角三角形,∴PN=PA=2,BN=AM,∵A的坐标为(2,0),点B的坐标为(5,0),∴OA=2,OB=5,∴AB=3,∴线段AM长的最大值=线段BN长的最大值,∴当N在线段BA的延长线时,线段BN取得最大值,最大值=AB+AN,∵AN=AP=2,∴最大值为2 +3;如图2,过P作PE⊥x轴于E,连接BE,∵△APN是等腰直角三角形,∴PE=AE=,∴OE=BO﹣AB﹣AE=5﹣3﹣=2﹣,∴P(2﹣,).如图3中,根据对称性可知,当点P在第四象限时,P(2﹣,﹣)时,也满足条件.综上述,满足条件的点P坐标(2﹣,)或(2﹣,﹣),AM的最大值为2+3.【点评】此题是三角形综合题,主要考查了全等三角形的判定和性质,等腰直角三角形的性质,最大值问题,旋转的性质.正确的作出辅助线构造全等三角形是解题的关键.人教版八年级(下)期中模拟数学试卷(答案)一、选择题:(每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合题意的,请把符合题意的序号号填在该题中的括号内)1.(3分)使二次根式的有意义的x的取值范围是()A.x>0B.x>1C.x≥1D.x≠12.(3分)方程x2+2x﹣3=0的二次项系数、一次项系数、常数项分别是()A.1,2,3B.1,2,﹣3C.1,﹣2,3D.﹣1,﹣2,3 3.(3分)用配方法解一元二次方程x2﹣6x﹣10=0时,下列变形正确的为()A.(x+3)2=1B.(x﹣3)2=1C.(x+3)2=19D.(x﹣3)2=19 4.(3分)下列是勾股数的一组是()A.1,3,4B.3,4,5C.4,5,6D.5,7,12 5.(3分)一元二次方程x2﹣2x=0的根是()A.x1=0,x2=﹣2B.x1=1,x2=2C.x1=1,x2=﹣2D.x1=0,x2=2 6.(3分)下列根式中,不能与合并的是()A.B.C.D.7.(3分)已知,x=,y=,则(x+y)2的值为()A.2B.4C.5D.78.(3分)如果将长为6cm,宽为5cm的长方形纸片折叠一次,那么这条折痕的长不可能是()A.8cm B.5cm C.5.5cm D.1cm9.(3分)若关于x的方程x2+4x+a=0有两个相等的实数根,则a的值为()A.﹣4B.2C.4D.810.(3分)某小区在规划设计时,准备在两幢楼房之间,设置一块面积为900平方米的矩形绿地,并且长比宽多10米.设绿地的宽为x米,根据题意,可列方程为()A.x(x+10)=900B.(x﹣10)=900C.10(x+10)=900D.2[x+(x+10)]=90011.(3分)若方程x2﹣3x+2=0较小的根为p,方程3x2﹣2x﹣1=0较大的根为q,则p+q 等于()A.B.3C.2D.112.(3分)若,,以此类推,则的值为()A.2018B.2019C.2020D.2021二、填空题:(每小題3分.共18分,请将答案直接写在题中的横线上)13.(3分)计算=.14.(3分)已知关于x的方程x k﹣1﹣2x+3=0是一元二次方程,则k=.15.(3分)当k时,关于x的方程x2﹣3x+k=0没有实数根.16.(3分)一个圆锥形的漏斗,小李用三角板测得其高度的尺寸如图所示,那么漏斗的斜壁AB的长度为cm.17.(3分)已知一元二次方程x2﹣4x﹣3=0的两根为m,n,则m2﹣mn+n2=.18.(3分)如图,将两个大小、形状完全相同的△ABC和△A′B′C′拼在一起,其中点A′与点A重合,点C′落在AB上,连接B′C,若∠ACB=∠AC′B′=90°,AC=BC =3,则B′C的长为.三、解答题:(本大题共8小题,共计66分;解答题要写出文字说明、演算步骤或证明过程.)19.(10分)计算(1)(2)20.(6分)先化简再求值:,其中x=﹣2.21.(6分)如图,已知在Rt△ABC中,∠C=90°,AC=9,BC=12,求点C到AB的距离.22.(8分)已知:关于x的方程x2+2mx+m2﹣1=0(1)不解方程,判断方程根的情况;(2)若方程有一个根为3,求m的值.23.(8分)已知关于x的方程x2+(2k﹣1)x+k2﹣1=0有两个实数根x1,x2.(1)求k的取值范围;(2)若x1,x2满足x1x2+x1+x2=3,求k的值.24.(8分)如图所示,在△ABC中,AC=8cm,BC=6cm;在△ABE中,DE为AB边上的高,DE=12cm,△ABE的面积S=60cm2.(1)求出AB边的长;(2)你能求出∠C的度数吗?请试一试.25.(10分)如图,为美化环境,某校计划在一块长为60米,宽为40米的长方形空地上修建一个长方形花圃,并将花圃四周余下的空地修建成同样宽的通道,设通道宽为a米.(1)用含a的式子表示花圃的面积;(2)如果通道所占面积是整个长方形空地面积的,求出此时通道的宽.26.(10分)2016年,市区某楼盘以每平方米6000元的均价对外销售.因为楼盘滞销,房地产开发商为了加快资金周转,决定进行降价促销,经过连续两年下调后,2018年的均价为每平方米4860元.(1)求平均每年下调的百分率;(2)假设2019年的均价仍然下调相同的百分率,张强准备购买一套100平方米的住房,他持有现金15万元,可以在银行贷款30万元,张强的愿望能否实现?请说明理由.(房价每平方米按照均价计算)2018-2019学年广西贺州市昭平县八年级(下)期中数学试卷参考答案与试题解析一、选择题:(每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合题意的,请把符合题意的序号号填在该题中的括号内)1.(3分)使二次根式的有意义的x的取值范围是()A.x>0B.x>1C.x≥1D.x≠1【分析】根据中a≥0得出不等式,求出不等式的解即可.【解答】解:要使有意义,必须x﹣1≥0,解得:x≥1.故选:C.【点评】本题考查了二次根式有意义的条件,解一元一次不等式的应用,解此题的关键是得出关于x的不等式,难度适中.2.(3分)方程x2+2x﹣3=0的二次项系数、一次项系数、常数项分别是()A.1,2,3B.1,2,﹣3C.1,﹣2,3D.﹣1,﹣2,3【分析】找出方程的二次项系数,一次项系数,以及常数项即可.【解答】解:方程x2+2x﹣3=0的二次项系数、一次项系数、常数项分别是1,2,﹣3,故选:B.【点评】此题考查了一元二次方程的一般形式,其一般形式为ax2+bx+c=0(其中a,b,c为常数,且a≠0).3.(3分)用配方法解一元二次方程x2﹣6x﹣10=0时,下列变形正确的为()A.(x+3)2=1B.(x﹣3)2=1C.(x+3)2=19D.(x﹣3)2=19【分析】方程移项变形后,利用完全平方公式化简得到结果,即可做出判断.【解答】解:方程移项得:x2﹣6x=10,配方得:x2﹣6x+9=19,即(x﹣3)2=19,故选:D.【点评】此题考查了解一元二次方程﹣配方法,熟练掌握完全平方公式是解本题的关键.4.(3分)下列是勾股数的一组是()。

八年级数学下册期中考试题(及答案)

八年级数学下册期中考试题(及答案)

八年级数学下册期中考试题(及答案) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.若分式211x x -+的值为0,则x 的值为( ) A .0 B .1 C .﹣1 D .±12.一次函数24y x =+的图像与y 轴交点的坐标是( )A .(0,-4)B .(0,4)C .(2,0)D .(-2,0)3.若229x kxy y -+是一个完全平方式,则常数k 的值为( )A .6B .6-C .6±D .无法确定 4.若关于x 的方程333x m m x x ++--=3的解为正数,则m 的取值范围是( ) A .m <92B .m <92且m ≠32C .m >﹣94D .m >﹣94且m ≠﹣34 5.若关于x 的一元二次方程(k -1)x 2+4x +1=0有两个不相等的实数根,则k 的取值范围是( )A .k<5B .k<5,且k ≠1C .k ≤5,且k ≠1D .k>56.已知2,1=⎧⎨=⎩x y 是二元一次方程组7,{1ax by ax by +=-=的解,则a b -的值为( ) A .-1 B .1 C .2 D .37.如图,在△ABC 中,AB=3,AC=4,BC=5,P 为边 BC 上一动点,PE ⊥AB 于 E ,PF ⊥AC 于 F ,M 为 EF 中点,则 AM 的最小值为( )A .1B .1.3C .1.2D .1.58.如图,每个小正方形的边长为1,A 、B 、C 是小正方形的顶点,则∠ABC 的度数为( )A .90°B .60°C .45°D .30°9.如图,AB ∥CD ,点E 在线段BC 上,CD=CE,若∠ABC=30°,则∠D 为( )A .85°B .75°C .60°D .30°10.如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S 1,S 2,则S 1+S 2的值为( )A .16B .17C .18D .19二、填空题(本大题共6小题,每小题3分,共18分)1.因式分解:x 3﹣4x=________.2.若关于x 的方程2134416x m m x x ++=-+-无解,则m 的值为__________. 3.9的算术平方根是________.4.如图,▱ABCD 中,AC 、BD 相交于点O ,若AD=6,AC+BD=16,则△BOC 的周长为________.5.如图,O 为数轴原点,A ,B 两点分别对应-3,3,作腰长为4的等腰△ABC ,连接OC ,以O 为圆心,CO 长为半径画弧交数轴于点M ,则点M 对应的实数为__________ .6.如图,已知正方形ABCD 的边长为5,点E 、F 分别在AD 、DC 上,AE=DF=2,BE 与AF 相交于点G ,点H 为BF 的中点,连接GH ,则GH 的长为_______.三、解答题(本大题共6小题,共72分)1.解方程23111x x x -=--.2.先化简:221-21-11a a a a a a ⎛⎫++÷ ⎪++⎝⎭,再从-1,0,1中选取一个数并代入求值.3.已知5a+2的立方根是3,3a +b -1的算术平方根是4,c 是13的整数部分,求3a-b+c 的平方根.4.如图,在▱ABCD 中,对角线 AC ,BD 相交于点 O ,过点 O 的一条直线分别交 AD ,BC 于点 E ,F .求证:AE=CF .5.如图,已知在四边形ABCD中,点E在AD上,∠BCE=∠ACD=90°,∠BAC=∠D,BC=CE.(1)求证:AC=CD;(2)若AC=AE,求∠DEC的度数.6.为落实“美丽抚顺”的工作部署,市政府计划对城区道路进行了改造,现安排甲、乙两个工程队完成.已知甲队的工作效率是乙队工作效率的32倍,甲队改造360米的道路比乙队改造同样长的道路少用3天.(1)甲、乙两工程队每天能改造道路的长度分别是多少米?(2)若甲队工作一天需付费用7万元,乙队工作一天需付费用5万元,如需改造的道路全长1200米,改造总费用不超过145万元,至少安排甲队工作多少天?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、B3、C4、B5、B6、A7、C8、C9、B10、B二、填空题(本大题共6小题,每小题3分,共18分)1、x(x+2)(x﹣2)2、-1或5或1 3 -3、3.4、1456、三、解答题(本大题共6小题,共72分)1、2x=2、13、3a-b+c的平方根是±4.4、略.5、(1)略;(2)112.5°.6、(1)乙工程队每天能改造道路的长度为40米,甲工程队每天能改造道路的长度为60米.(2)10天.。

八年级下册数学期中考试试题【含答案】

八年级下册数学期中考试试题【含答案】

八年级下册数学期中考试试题【含答案】一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选择项中,只有一项是符合题目要求的)1.(3分)若代数式有意义,则x的取值范围()A.x≥5B.x≤5C.x>5D.x<52.(3分)在△ABC中,∠A,∠B,∠C的对边分别记为a,b,c,下列结论中不正确的是()A.如果∠A﹣∠B=∠C,那么△ABC是直角三角形B.如果a2=b2﹣c2,那么△ABC是直角三角形且∠C=90°C.如果∠A:∠B:∠C=1:3:2,那么△ABC是直角三角形D.如果a2:b2:c2=9:16:25,那么△ABC是直角三角形3.(3分)在、、、、中,最简二次根式的个数是()A.1B.2C.3D.44.(3分)下列命题的逆命题正确的是()①对顶角相等;②同位角相等,两直线平行;③若a=b,则=.A.0个B.1个C.2个D.3个5.(3分)下列算式正确的是()A.B.C.D.6.(3分)如图,在周长为20cm的▱ABCD中,AB≠AD,对角线AC、BD相交于点O,OE⊥BD交AD于E,则△ABE的周长为()A.4cm B.6cm C.8cm D.10cm7.(3分)如图,在四边形ABCD中,点P是对角线BD的中点,点E、F分别是AB、CD 的中点,AD=BC,∠PEF=30°,则∠PFE的度数是()A.15°B.20°C.25°D.30°8.(3分)如图,在平面直角坐标系中,以O(0,0),A(1,1),B(3,0)为顶点,构造平行四边形,下列各点中不能作为平行四边形顶点坐标的是()A.(﹣3,1)B.(4,1)C.(﹣2,1)D.(2,﹣1)9.(3分)如图,下列四组条件中,能判定▱ABCD是正方形的有()①AB=BC,∠A=90°;②AC⊥BD,AC=BD;③OA=OD,BC=CD;④∠BOC=90°,∠ABD=∠DCA.A.1个B.2个C.3个D.4个10.(3分)一位工人师傅测量一个等腰三角形工件的腰,底及底边上的高,并按顺序记录下数据,量完后,不小心与其他记录的数据记混了,请你帮助这位师傅从下列数据中找出等腰三角形工件的数据()A.13,10,10B.13,10,12C.13,12,12D.13,10,11二、填空题(本大题共6小题,每小题3分,共18分)11.(3分)若实数a、b满足|a+2|,则=.12.(3分)如图,在直角三角形ABC中,斜边上的中线CD=AC,则∠B等于.13.(3分)若5+的整数部分是a,则a=.14.(3分)已知矩形的面积是,其中一边长为,则对角线长为.15.(3分)如图,将平行四边形ABCD的边DC延长到E,使CE=CD,连接AE交BC 于F,∠AFC=n∠D,当n=时,四边形ABEC是矩形.16.(3分)如图是根据某公园的平面示意图建立的平面直角坐标系,公园的入口位于坐标原点O,古塔位于点A(400,300),从古塔出发沿射线OA方向前行300m是盆景园B,从盆景园B向左转90°后直行400m到达梅花阁C,则点C的坐标是.三、解答题(本大题共9题,共72分,解答应写出文字说明、证明过程或演算步骤.)17.(6分)计算:(1)+(2)(2)()18.(6分)实数a,b在数轴上的位置如图所示,化简.19.(6分)如图,在▱ABCD中,点O是对角线AC、BD的交点,点E是边CD的中点,点F在BC的延长线上,且CF=BC,求证:四边形OCFE是平行四边形.20.(10分)如图,在由边长为1的小正方形组成的网格中,三角形ABC的三个顶点均在格点上,请按要求完成下列各题:(1)画出AD∥BC且AD=BC(要求D在网格图中),连接CD;(2)判断三角形ABC的形状,并说明理由;(3)若E为BC中点,F为AD中点,四边形AECF是什么特殊的四边形?请说明理由.21.(8分)如图,四边形ABCD是矩形,E为AD上一点,且∠CBD=∠EBD,P为对角线BD上一点,PN⊥BE于点N,PM⊥AD于点M.(1)求证:BE=DE;(2)试判断AB和PM,PN的数量关系并说明理由.22.(8分)如图,在平行四边形ABCD中,点P为边AB上一点,将△CBP沿CP翻折,点B的对应点B'恰好落在DA的延长线上,且PB'⊥AD,若CD=3,BC=4.(1)求证:∠DCB′=90°;(2)求BP的长度.23.(8分)先阅读下列材料,再解决问题:阅读材料:数学上有一种根号内又带根号的数,它们能通过完全平方公式及二次根式的性质化去一层根号.例如:====|1+|=1+解决问题:①模仿上例的过程填空:=====②根据上述思路,试将下列各式化简.(1)(2).24.(8分)定义:有一个内角为90°,且对角线相等的四边形称为准矩形.(1)如图1,正方形ABCD中,点E、F分别是边AD、AB上的点,且CF⊥BE,求证:四边形BCEF是准矩形;(2)如图2,准矩形ABCD中,M、N分别AD、BC边上的中点,若AC=MN,求AB2、BC2、CD2、AD2之间的关系.25.(12分)如图,在菱形ABCD中,对角线AC与BD交于点O,且AC=8,BD=6,现有两动点M、N分别从A、C同时出发,点M沿线段AB向终点B运动,点N沿折线C ﹣D﹣A向终点A运动,当其中一点到达终点时,另一点也随之停止运动,设运动时间为t(秒).(1)填空:AB=;菱形ABCD的面积S=;菱形的高h=.(2)若点M的速度为每秒1个单位,点N的速度为每秒2个单位,连接AN、MN.当0<t<2.5时,是否存在t的值,使△AMN为等腰直角三角形?若存在,请求出t的值;若不存在,请说明理由.(3)若点M的速度为每秒1个单位,点N的速度为每秒a个单位(其中a<),当t =4时在平面内存在点E使得以A、M、N、E为顶点的四边形为菱形,请求出所有满足条件的a的值.2017-2018学年广东省实验中学八年级(下)期中数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选择项中,只有一项是符合题目要求的)1.(3分)若代数式有意义,则x的取值范围()A.x≥5B.x≤5C.x>5D.x<5【分析】直接利用二次根式有意义的条件分析得出答案.【解答】解:代数式有意义,则x﹣5>0,解得:x>5.故选:C.【点评】此题主要考查了二次根式有意义的条件,正确把握二次根式的定义是解题关键.2.(3分)在△ABC中,∠A,∠B,∠C的对边分别记为a,b,c,下列结论中不正确的是()A.如果∠A﹣∠B=∠C,那么△ABC是直角三角形B.如果a2=b2﹣c2,那么△ABC是直角三角形且∠C=90°C.如果∠A:∠B:∠C=1:3:2,那么△ABC是直角三角形D.如果a2:b2:c2=9:16:25,那么△ABC是直角三角形【分析】根据勾股定理的逆定理、三角形内角和定理、直角三角形的判定定理解得即可.【解答】解:如果∠A﹣∠B=∠C,那么△ABC是直角三角形,A正确;如果a2=b2﹣c2,那么△ABC是直角三角形且∠B=90°,B错误;如果∠A:∠B:∠C=1:3:2,设∠A=x,则∠B=2x,∠C=3x,则x+3x+2x=180°,解得,x=30°,则3x=90°,那么△ABC是直角三角形,C正确;如果a2:b2:c2=9:16:25,则如果a2+b2=c2,那么△ABC是直角三角形,D正确;故选:B.【点评】本题考查的是勾股定理的逆定理的应用,如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.3.(3分)在、、、、中,最简二次根式的个数是()A.1B.2C.3D.4【分析】根据最简二次根式的定义对二次根式分析判断即可得.【解答】解:在所列二次根式中,最简二次根式有,这2个,故选:B.【点评】本题考查最简二次根式的定义.根据最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.4.(3分)下列命题的逆命题正确的是()①对顶角相等;②同位角相等,两直线平行;③若a=b,则=.A.0个B.1个C.2个D.3个【分析】分别写出各个命题的逆命题后再判断其正确或错误,即确定它是真命题还是假命题.【解答】解:①“对顶角相等”的逆命题是“相等的角是对顶角”,相等的角不一定是对顶角,所以逆命题错误,故是假命题;②“同位角相等,两直线平行”的逆命题是“两直线平行,同位角相等”正确,故是真命题;③“若a=b,则=”的逆命题是“若=,则a=b”正确,故是真命题.故选:C.【点评】主要考查了逆命题和真假命题的定义.对事物做出判断的语句叫做命题,正确的命题叫做真命题,错误的命题叫做假命题.举出反例能有效的说明该命题是假命题.5.(3分)下列算式正确的是()A.B.C.D.【分析】根据二次根式的加减运算顺序和运算法则计算可得.【解答】解:A.、不是同类二次根式,不能合并;B.3﹣2=,此选项错误;C.3+3=6,此选项正确;D.==,此选项错误;故选:C.【点评】本题主要考查二次根式的加减法,解题的关键是掌握二次根式的加减运算顺序和运算法则.6.(3分)如图,在周长为20cm的▱ABCD中,AB≠AD,对角线AC、BD相交于点O,OE⊥BD交AD于E,则△ABE的周长为()A.4cm B.6cm C.8cm D.10cm【分析】根据线段垂直平分线的性质可知BE=DE,再结合平行四边形的性质即可计算△ABE的周长.【解答】解:根据平行四边形的性质得:OB=OD,∵EO⊥BD,∴EO为BD的垂直平分线,根据线段的垂直平分线上的点到两个端点的距离相等得:BE=DE,∴△ABE的周长=AB+AE+DE=AB+AD=×20=10cm.故选:D.【点评】此题主要考查了平行四边形的性质及全等三角形的判定及性质,还利用了中垂线的判定及性质等,考查面积较广,有一定的综合性.7.(3分)如图,在四边形ABCD中,点P是对角线BD的中点,点E、F分别是AB、CD 的中点,AD=BC,∠PEF=30°,则∠PFE的度数是()A.15°B.20°C.25°D.30°【分析】根据中位线定理和已知,易证明△EPF是等腰三角形.【解答】解:∵在四边形ABCD中,P是对角线BD的中点,E,F分别是AB,CD的中点,∴FP,PE分别是△CDB与△DAB的中位线,∴PF=BC,PE=AD,∵AD=BC,∴PF=PE,故△EPF是等腰三角形.∵∠PEF=30°,∴∠PEF=∠PFE=30°.故选:D.【点评】本题考查了三角形中位线定理及等腰三角形的性质,解题时要善于根据已知信息,确定应用的知识.8.(3分)如图,在平面直角坐标系中,以O(0,0),A(1,1),B(3,0)为顶点,构造平行四边形,下列各点中不能作为平行四边形顶点坐标的是()A.(﹣3,1)B.(4,1)C.(﹣2,1)D.(2,﹣1)【分析】所给点的纵坐标与A的纵坐标相等,说明这两点所在的直线平行于x轴,这两点的距离为:1﹣(﹣3)=4;点O和点B的纵坐标相等,这两点所在的直线平行于x 轴,这两点的距离为:3﹣0,相对的边平行,但不相等,所以A选项的点不可能是行四边形顶点坐标.【解答】解:因为经过三点可构造三个平行四边形,即▱AOBC1、▱ABOC2、▱AOC3B.根据平行四边形的性质,可知B、C、D正好是C1、C2、C3的坐标,故选:A.【点评】理解平行四边形的对边平行且相等,是判断本题的关键.9.(3分)如图,下列四组条件中,能判定▱ABCD是正方形的有()①AB=BC,∠A=90°;②AC⊥BD,AC=BD;③OA=OD,BC=CD;④∠BOC=90°,∠ABD=∠DCA.A.1个B.2个C.3个D.4个【分析】根据平行四边形的性质,矩形、菱形以及正方形的判定方法对各组条件进行判断即可得出答案.【解答】解:①AB=BC,∠A=90°;根据有一个角是直角且有一组邻边相等的平行四边形是正方形,能判定▱ABCD是正方形,故此选项正确;②AC⊥BD,AC=BD;由对角线互相垂直的平行四边形是菱形,对角线相等的平行四边形是矩形,既是菱形又是矩形的四边形是正方形,能判定▱ABCD是正方形,故此选项正确;③OA=OD,BC=CD;由ABCD是平行四边形,可得AC与BD互相平分,而OA=OD,所以AC=BD,对角线相等的平行四边形是矩形,有一组邻边相等的平行四边形是菱形,既是矩形又是菱形的四边形是正方形,能判定▱ABCD是正方形,故此选项正确;④∠BOC=90°,∠ABD=∠DCA;由∠BOC=90°,根据对角线互相垂直的平行四边形是菱形,可得▱ABCD是菱形;由ABCD是平行四边形,可得AC与BD互相平分,AB∥CD,则∠ABD=∠CDB=∠DCA,所以OC=OD,又对角线相等的平行四边形是矩形,既是菱形又是矩形的四边形是正方形,能判定▱ABCD是正方形,故此选项正确.故选:D.【点评】本题主要考查了正方形的判别方法,正方形的判定方法有:①先判定四边形是矩形,再判定这个矩形有一组邻边相等;②先判定四边形是菱形,再判定这个菱形有一个角为直角;③还可以先判定四边形是平行四边形,再用1或2进行判定.10.(3分)一位工人师傅测量一个等腰三角形工件的腰,底及底边上的高,并按顺序记录下数据,量完后,不小心与其他记录的数据记混了,请你帮助这位师傅从下列数据中找出等腰三角形工件的数据()A.13,10,10B.13,10,12C.13,12,12D.13,10,11【分析】根据等腰三角形的三线合一,得底边上的高也是底边上的中线.根据勾股定理知:底边的一半的平方加上高的平方应等于腰的平方,即可得出正确结论.【解答】解:由题可知,在等腰三角形中,底边的一半、底边上的高以及腰正好构成一个直角三角形,且()2+122=132,符合勾股定理,故选B.【点评】考查了等腰三角形的三线合一以及勾股定理的逆定理.二、填空题(本大题共6小题,每小题3分,共18分)11.(3分)若实数a、b满足|a+2|,则=1.【分析】根据非负数的性质列出方程求出a、b的值,代入所求代数式计算即可.【解答】解:根据题意得:,解得:,则原式==1.故答案是:1.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.12.(3分)如图,在直角三角形ABC中,斜边上的中线CD=AC,则∠B等于30°.【分析】根据直角三角形斜边上的中线等于斜边的一半求出CD=AD,得到△ADC是等边三角形,求出∠A的度数,根据直角三角形两锐角互余求出∠B的度数.【解答】解:∵CD是斜边AB上的中线,∴CD=AD,又CD=AC,∴△ADC是等边三角形,∴∠A=60°,∴∠B=90°﹣∠A=30°.故答案为:30°.【点评】本题考查的是直角三角形的性质和等边三角形的性质,掌握直角三角形斜边上的中线等于斜边的一半是解题的关键.13.(3分)若5+的整数部分是a,则a=7.【分析】根据的取值范围进行估计解答即可.【解答】解:∵2<<3,∴7<5+<8,∴5+的整数部分是a=7,故答案为:7【点评】此题主要考查了估算无理数的大小,正确得出的取值范围是解题关键.14.(3分)已知矩形的面积是,其中一边长为,则对角线长为.【分析】先运用矩形面积公式求出它的另一边,再运用勾股定理求出对角线即可.【解答】解:∵矩形的面积是,其中一边长为,∴另一边=,∴对角线长=,故答案为:【点评】考查了二次根式的应用,关键是根据矩形的性质和勾股定理求出对角线.15.(3分)如图,将平行四边形ABCD的边DC延长到E,使CE=CD,连接AE交BC 于F,∠AFC=n∠D,当n=2时,四边形ABEC是矩形.【分析】首先根据四边形ABCD是平行四边形,得到四边形ABEC是平行四边形,然后证得FC=FE,利用对角线互相相等的四边形是矩形判定四边形ABEC是矩形.【解答】解:当∠AFC=2∠D时,四边形ABEC是矩形.∵四边形ABCD是平行四边形,∴BC∥AD,∠BCE=∠D,由题意易得AB∥EC,AB=EC,∴四边形ABEC是平行四边形.∵∠AFC=∠FEC+∠BCE,∴当∠AFC=2∠D时,则有∠FEC=∠FCE,∴FC=FE,∴四边形ABEC是矩形,故答案为:2.【点评】此题考查了平行四边形的性质以及矩形的判定.此题难度适中,注意掌握数形结合思想的应用,解题的关键是了解矩形的判定定理.16.(3分)如图是根据某公园的平面示意图建立的平面直角坐标系,公园的入口位于坐标原点O,古塔位于点A(400,300),从古塔出发沿射线OA方向前行300m是盆景园B,从盆景园B向左转90°后直行400m到达梅花阁C,则点C的坐标是(400,800).【分析】根据题意结合全等三角形的判定与性质得出△AOD≌△ACB(SAS),进而得出C,A,D也在一条直线上,求出CD的长即可得出C点坐标.【解答】解:连接AC,由题意可得:AB=300m,BC=400m,在△AOD和△ACB中∵,∴△AOD≌△ACB(SAS),∴∠CAB=∠OAD,∵B、O在一条直线上,∴C,A,D也在一条直线上,∴AC=AO=500m,则CD=AC+AD=800m,∴C点坐标为:(400,800).故答案为:(400,800).【点评】此题主要考查了全等三角形的判定与性质以及勾股定理,得出C,A,D也在一条直线上是解题关键.三、解答题(本大题共9题,共72分,解答应写出文字说明、证明过程或演算步骤.)17.(6分)计算:(1)+(2)(2)()【分析】(1)先化简二次根式,再计算乘法,最后合并同类二次根式即可得;(2)先化简二次根式,再利用平方差公式计算可得.【解答】解:(1)原式=4×+=3+;(2)原式=(2﹣2)(2+2)=(2)2﹣(2)2=20﹣12=8.【点评】本题主要考查二次根式的混合运算,解题的关键是熟练掌握二次根式的混合运算顺序和运算法则.18.(6分)实数a,b在数轴上的位置如图所示,化简.【分析】先根据数轴得出b﹣1>0,a﹣b<0,再根据=|a|和绝对值的性质化简可得.【解答】解:由数轴知a<1<b,∴b﹣1>0,a﹣b<0,则原式=|a|﹣|b﹣1|﹣|a﹣b|=﹣a﹣(b﹣1)﹣(b﹣a)=﹣a﹣b+1﹣b+a=1.【点评】本题主要考查二次根式的性质与化简,解题的关键是掌握=|a|和绝对值的性质.19.(6分)如图,在▱ABCD中,点O是对角线AC、BD的交点,点E是边CD的中点,点F在BC的延长线上,且CF=BC,求证:四边形OCFE是平行四边形.【分析】利用三角形中位线定理判定OE∥BC,且OE=BC.结合已知条件CF=BC,则OE CF,由“有一组对边平行且相等的四边形为平行四边形”证得结论.【解答】证明:如图,∵四边形ABCD是平行四边形,∴点O是BD的中点.又∵点E是边CD的中点,∴OE是△BCD的中位线,∴OE∥BC,且OE=BC.又∵CF=BC,∴OE=CF.又∵点F在BC的延长线上,∴OE∥CF,∴四边形OCFE是平行四边形.【点评】本题考查了平行四边形的性质和三角形中位线定理.此题利用了“平行四边形的对角线互相平分”的性质和“有一组对边平行且相等的四边形为平行四边形”的判定定理.20.(10分)如图,在由边长为1的小正方形组成的网格中,三角形ABC的三个顶点均在格点上,请按要求完成下列各题:(1)画出AD∥BC且AD=BC(要求D在网格图中),连接CD;(2)判断三角形ABC的形状,并说明理由;(3)若E为BC中点,F为AD中点,四边形AECF是什么特殊的四边形?请说明理由.【分析】(1)利用平移的性质画出图象即可;(2)利用勾股定理等逆定理证明;(3)根据平行四边形的判定定理证明即可.【解答】解:(1)如图所示.(2)△ABC是直角三角形,理由:∵AB=,AC=2,BC=5,∴AB2+AC2=BC2,∴△ABC是直角三角形,(3)四边形AECF是平行四边形,理由:∵E为BC中点,∴AE=BC,∵F为AD中点,∴AF=AD,∵AD=BC,AD∥BC,∴AF=BE,AF∥BE,∴四边形AECF是平行四边形.【点评】本题考查了勾股定理的逆定理,平行线的性质、平行四边形的判定和性质、勾股定理、直角三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.21.(8分)如图,四边形ABCD是矩形,E为AD上一点,且∠CBD=∠EBD,P为对角线BD上一点,PN⊥BE于点N,PM⊥AD于点M.(1)求证:BE=DE;(2)试判断AB和PM,PN的数量关系并说明理由.【分析】(1)由矩形的性质得出∠ADB=∠CBD,由已知条件∠CBD=∠EBD,证出∠ADB=∠EBD,即可得出结论;(2)延长MP交BC于Q,先由角的平分线性质得出PQ =PN,再由AB=MQ,即可得出结论.【解答】(1)证明:∵四边形ABCD是矩形,∴AD∥BC,∴∠ADB=∠CBD,∵∠CBD=∠EBD,∴∠ADB=∠EBD,∴BE=DE;(2)解:PM+PN=AB;理由如下:延长MP交BC于Q,如图所示:∵AD∥BC,PM⊥AD,∴PQ⊥BC,∵∠CBD=∠EBD,PN⊥BE,∴PQ=PN,∴AB=MQ=PM+PQ=PM+PN.【点评】本题考查了矩形的性质、平行线的性质以及角平分线的性质;熟练掌握矩形的性质,并能进行推理计算是解决问题的关键.22.(8分)如图,在平行四边形ABCD中,点P为边AB上一点,将△CBP沿CP翻折,点B的对应点B'恰好落在DA的延长线上,且PB'⊥AD,若CD=3,BC=4.(1)求证:∠DCB′=90°;(2)求BP的长度.【分析】(1)由折叠的性质可得:PB′=PB,∠PB′C=∠B,又由在平行四边形ABCD 中,PB′⊥AD,求得△B′CD是直角三角形;(2)根据勾股定理求得DB′的长,然后设BP=x,在Rt△AB′P中,利用勾股定理即可求得答案.【解答】解:(1)由折叠的性质可得:PB′=PB,∠PB′C=∠B,∵四边形ABCD是平行四边形,PB′⊥AD,∴∠B=∠D,∠PB′A=90°,∴∠D+∠CB′D=90°,∴∠DCB′=90°,(2)∵CD=3,BC=4,∴AD=B′C=BC=4,∴DB′==5,∴AB′=DB′﹣AD=1,设BP=x,则PB′=x,PA=3﹣x,在Rt△AB′P中,PA2=AB′2+PB′2,∴x2+12=(3﹣x)2,解得:x=,∴BP=.【点评】本题考查了轴对称﹣最短问题,勾股定理,菱形的性质等知识点的应用,关键是理解题意确定出P的位置和求出DE=PE+PB,题目比较典型,综合性比较强,主要培养学生的计算能力.23.(8分)先阅读下列材料,再解决问题:阅读材料:数学上有一种根号内又带根号的数,它们能通过完全平方公式及二次根式的性质化去一层根号.例如:====|1+|=1+解决问题:①模仿上例的过程填空:====|3+|=3+②根据上述思路,试将下列各式化简.(1)(2).【分析】①模仿阅读材料的方法将原式变形,计算即可得到结果;②仿照以上方法将各式化简即可.【解答】解:①原式====|3+|=3+;故答案为:;;|3+|;3+;②(1)原式===|5﹣|=5﹣;(2)原式===|+|=+.【点评】此题考查了二次根式的性质与化简,熟练掌握运算法则是解本题的关键.24.(8分)定义:有一个内角为90°,且对角线相等的四边形称为准矩形.(1)如图1,正方形ABCD中,点E、F分别是边AD、AB上的点,且CF⊥BE,求证:四边形BCEF是准矩形;(2)如图2,准矩形ABCD中,M、N分别AD、BC边上的中点,若AC=MN,求AB2、BC2、CD2、AD2之间的关系.【分析】(1)先利用正方形的性质判断出△ABE≌△BCF即可;(2)连接AN、DN,过点C作CE∥BD,过点B作BE∥DC则四边形BECD为平行四边形,连接DE,则D、N、E三点共线,过点B作BF⊥CE于F,过点D作DG⊥EC交EC延长线于点G,证明△BEF≌△DCG,得出BF=DG,EF=CG,由勾股定理得出BC2=BF2+FC2=BF2+(EC﹣EF)2,DE2=DG2+EG2=DG2+(EC+CG)2=BF2+(EC+EF)2,得出BC2+DE2=2BD2+2CD2,得出BC2+4DN2=2BD2+2CD2,DN2=(2BD2+2CD2﹣BC2),同理:AN2=(2AB2+2AC2﹣BC2),MN2=(2AN2+2DN2﹣AD2)=AC2+(AB2+CD2﹣BC2﹣AD2),由已知得出MN2=AC2,MN2=MN2+(AB2+CD2﹣BC2﹣AD2),即可得出结论.【解答】(1)证明:∵四边形ABCD是正方形,∴AB=BC∠A=∠ABC=90°,∴∠EAF+∠EBC=90°,∵BE⊥CF,∴∠EBC+∠BCF=90°,∴∠EBF=∠BCF,∴△ABE≌△BCF,∴BE=CF,∴四边形BCEF是准矩形;(2)解:连接AN、DN,过点C作CE∥BD,过点B作BE∥DC,则四边形BECD为平行四边形,连接DE,则D、N、E三点共线,过点B作BF⊥CE于F,过点D作DG⊥EC交EC延长线于点G,如图2所示:∵四边形BECD为平行四边形,∴BE=DC,BE∥DC,ED=2DN,∴∠BEF=∠DCG,在△BEF和△DCG中,,∴△BEF≌△DCG(AAS),∴BF=DG,EF=CG,在Rt△BFC中,BC2=BF2+FC2=BF2+(EC﹣EF)2,在Rt△DEG中,DE2=DG2+EG2=DG2+(EC+CG)2=BF2+(EC+EF)2,∴BC2+DE2=2BF2+2EC2+2EF2=2(BF2+EF2)+2EC2=2BE2+2EC2=2BD2+2CD2,∴BC2+4DN2=2BD2+2CD2,∴DN2=(2BD2+2CD2﹣BC2),同理:AN2=(2AB2+2AC2﹣BC2),MN2=(2AN2+2DN2﹣AD2)=(BD2+CD2﹣BC2+AB2+AC2﹣BC2﹣AD2)=(AC2+CD2﹣BC2+AB2+AC2﹣BC2﹣AD2)=AC2+(AB2+CD2﹣BC2﹣AD2),∵AC=MN,∴MN2=AC2,∴MN2=MN2+(AB2+CD2﹣BC2﹣AD2),即:(AB2+CD2﹣BC2﹣AD2)=0,∴AB2+CD2=BC2+AD2.【点评】此题考查了新定义,平行四边形的判定与性质、正方形的性质、勾股定理、全等三角形的判定与性质等知识;本题综合性强,难度较大.25.(12分)如图,在菱形ABCD中,对角线AC与BD交于点O,且AC=8,BD=6,现有两动点M、N分别从A、C同时出发,点M沿线段AB向终点B运动,点N沿折线C ﹣D﹣A向终点A运动,当其中一点到达终点时,另一点也随之停止运动,设运动时间为t(秒).(1)填空:AB=5;菱形ABCD的面积S=24;菱形的高h=.(2)若点M的速度为每秒1个单位,点N的速度为每秒2个单位,连接AN、MN.当0<t<2.5时,是否存在t的值,使△AMN为等腰直角三角形?若存在,请求出t的值;若不存在,请说明理由.(3)若点M的速度为每秒1个单位,点N的速度为每秒a个单位(其中a<),当t =4时在平面内存在点E使得以A、M、N、E为顶点的四边形为菱形,请求出所有满足条件的a的值.【分析】(1)AB由勾股定理直接求出,菱形面积为对角线之积的一半,还可以表示为边长×高,由此可得高h的长;(2)当0<t<2.5时,M在边AB上,N在边CD上,当∠AMN=90°时,如图1所示,因为t<,此种情况不成立,可得结论;(3)t=4,时间固定,AM的长度也就固定,A、M、N、E四点要形成菱形,分两大类情况,第一类以AM为边,这种情况可以画两种菱形;第二类以AM为对角线,只有一种.因此共三种情况,分别计算.【解答】解:(1)∵四边形ABCD是菱形,AC与BD交于点O,AC=8,BD=6,∴AO=CO=4,BO=DO=3,AC⊥BD,∴AB=5,设菱形的高为h,则菱形ABCD的面积为×8×6=AB×h=24,∴h=,故答案为:5,24,;(2)当0<t<2.5时,M在边AB上,N在边CD上,当∠AMN=90°时,如图1所示,由(1)知:MN=,当AM=t=时,AM=MN,所以此种情况不成立,∴当0<t<2.5时,不存在t的值,使△AMN为等腰直角三角形;(3)当t=4时,AM=4,①如图2,四边形AMEN为菱形,∴AN=AM=4,∴ND+CD=10﹣4=6,∴4a=6,a=.②如图3,AENM为菱形,EM交AN于点R,作DP垂直BC于P,∵菱形面积为24,∴DP=4.8,∴CP=,∵∠MAR=∠BCD∴∠AMR=∠PDC∴sin∠AMR=sin∠PDC∴,∴AR=1.12,∴AN=2.24,∴a=(ND+CD)÷4=(10﹣2.24)÷4=1.94,③如图4,AEMN为菱形,EN交AM于点T,作BS垂直CD于S,则AT=MT=2,∴BT=NS=5﹣2=3,∵BS =4.8, ∴CS =1.4,∴CN =NS +CS =1.4+3=4.4, ∴a =CN ÷4=4.4÷4=1.1;综上所述,a 的取值有 1.5或1.94或1.4.【点评】本题考查了菱形的性质、相似三角形的判定与性质、勾股定理、面积计算,分类讨论等重要知识点和技能,综合性和技巧性很强,计算量也较大,对学生的能力要求较高,是一道经典压轴题.人教版八年级第二学期下册期中模拟数学试卷【答案】一、选择题:(本大题 12 个小题,每小题 4 分,共 48 分)在每个小题的下面,都给出了代号为 A 、 B 、 C 、 D 的四个答案,其中只有一个是正确的,请将正确答案的代号填入答题卷中对应的表格内 .1.下列“表情图”中,属于轴对称图形的是( )A. B. C. D.2. 已知一个三角形的两边长为3cm 和5cm,则此三角形的第三边长可能是 ( ) A .1cm B .2cm C .3cm D .8cm 3.下列式子中,一定成立的是( )A .2a a a =⋅ B .23325a a a += C .321a a ÷= D .()22ab ab =4.若一个多边形内角和等于540°,则该多边形边数是( ) A .4 B .5 C .6 D .75.一个等腰三角形两边的长分别为4和9,那么这个三角形的周长是( ) A .13 B .17 C .22 D .17或226.如图,已知点A D C F 、、、在同一条直线上,AB DE =,BC EF =,要使ABC DEF △≌△,还需要添加一个条件是( )A .BCA F ∠=∠B .B E ∠=∠C .BC EF ∥D .A EDF ∠=∠ 7.如图,在平面直角坐标系xOy 中,点P(-3,5)关于y 轴的对称点的坐标为( ) A.(3-,5-) B.(3,5) C.(3,5-) D.(5,3-)8. 如图,△ABC 中,AB =AC ,点D 在AC 边上,且BD=BC=AD,则∠A 的度数是( ) A .18° B .24° C .30° D .36°9.如图,直线DE 是ABC △的边AB 的垂直平分线,已知5cm AC =,ADC △的周长为17cm ,则BC 的长为( ).A .7cmB .10cmC .12cmD .22cmA10.已知: 3x=2,9y=3,则3x+2y的值为( )A .1B .4C .5D .611.在下列去括号或添括号的变形中,错误的是( ).A .a-(b-c)=a-b+cB .a-b+c=a-(b+c)C .(a+1)-(b-c)=a+1-b+cD .a-b+c-d=a-(b-c+d)12.等腰△ABC 中,AB =AC ,一边上的中线BD 将这个三角形的周长分为15和12两个部分,则这个等腰三角形的底边长为( )A .7B .11C .7或11D .7或10二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡(卷)中对应的横线上。

八年级数学下册期中考试卷及答案

八年级数学下册期中考试卷及答案

八年级数学下册期中考试卷及答案 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.12-的相反数是( ) A .2- B .2 C .12- D .122.已知点A(1,0),B(0,2),点P 在x 轴上,且△PAB 的面积为5,则点P 的坐标是( )A .(﹣4,0)B .(6,0)C .(﹣4,0)或(6,0)D .(0,12)或(0,﹣8)3.下列长度的三条线段,能组成三角形的是( )A .4cm ,5cm ,9cmB .8cm ,8cm ,15cmC .5cm ,5cm ,10cmD .6cm ,7cm ,14cm4.已知-10m 是正整数,则满足条件的最大负整数m 为( )A .-10B .-40C .-90D .-1605.若一个直角三角形的两直角边的长为12和5,则第三边的长为( )A .13或119B .13或15C .13D .156.如图,矩形ABCD 的对角线AC ,BD 交于点O ,6AB =,8BC =,过点O 作OE AC ⊥,交AD 于点E ,过点E 作EF BD ⊥,垂足为F ,则OE EF +的值为( )A .485B .325C .245D .1257.如图,直线y=kx+b (k ≠0)经过点A (﹣2,4),则不等式kx+b >4的解集为( )A .x >﹣2B .x <﹣2C .x >4D .x <48.如图,E 、F 分别是正方形ABCD 的边CD 、AD 上的点,且CE=DF ,AE 、BF 相交于点O ,下列结论:(1)AE=BF ;(2)AE ⊥BF ;(3)AO=OE ;(4)AOB DEOF S S 四边形∆=中正确的有( )A .4个B .3个C .2个D .1个9.如图,在方格纸中,以AB 为一边作△ABP ,使之与△ABC 全等,从P 1,P 2,P 3,P 4四个点中找出符合条件的点P ,则点P 有( )A .1个B .2个C .3个D .4个10.已知:如图,∠1=∠2,则不一定能使△ABD ≌△ACD 的条件是 ( )A .AB =AC B .BD =CD C .∠B =∠C D .∠BDA =∠CDA二、填空题(本大题共6小题,每小题3分,共18分)1.若2x =5,2y =3,则22x+y =________.2.若x2+kx+25是一个完全平方式,则k的值是____________.3.因式分解:2a2﹣8=________.4.如图,在平行四边形ABCD中,P是CD边上一点,且AP和BP分别平分∠DAB和∠CBA,若AD=5,AP=8,则△APB的周长是________.5.如图,∠1+∠2+∠3+∠4=______度.6.如图,在平面直角坐标系中,矩形ABCO的边CO、OA分别在x轴、y轴上,点E在边BC上,将该矩形沿AE折叠,点B恰好落在边OC上的F处.若OA=8,CF=4,则点E的坐标是________.三、解答题(本大题共6小题,共72分)1.解方程组:25 342 x yx y-=⎧⎨+=⎩2.先化简,再求值:a3a2++÷22a6a9a-4++-a1a3++,其中50+-113⎛⎫⎪⎝⎭2(-1).3.已知:关于x的方程2x(k2)x2k0-++=,(1)求证:无论k取任何实数值,方程总有实数根;(2)若等腰三角形ABC的一边长a=1,两个边长b,c恰好是这个方程的两个根,求△ABC的周长.4.(1)如图(1),已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m, CE⊥直线m,垂足分别为点D、E.证明:DE=BD+CE.(2)如图(2),将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.(3)拓展与应用:如图(3),D、E是D、A、E三点所在直线m上的两动点(D、A、E三点互不重合),点F为∠BAC平分线上的一点,且△ABF和△ACF均为等边三角形,连接BD、CE,若∠BDA=∠AEC=∠BAC,试判断△DEF的形状.5.如图1,在正方形ABCD中,P是对角线BD上的一点,点E在AD的延长线上,且PA=PE,PE交CD于F(1)证明:PC=PE;(2)求∠CPE的度数;(3)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当∠ABC=120°时,连接CE,试探究线段AP与线段CE的数量关系,并说明理由.6.某公司购买了一批A、B型芯片,其中A型芯片的单价比B型芯片的单价少9元,已知该公司用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相等.(1)求该公司购买的A、B型芯片的单价各是多少元?(2)若两种芯片共购买了200条,且购买的总费用为6280元,求购买了多少条A型芯片?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、C3、B4、A5、C6、C7、A8、B9、C10、B二、填空题(本大题共6小题,每小题3分,共18分)1、752、±10.3、2(a+2)(a-2).4、24.5、2806、(-10,3)三、解答题(本大题共6小题,共72分)1、21 xy=⎧⎨=-⎩2、-33a+,;12-.3、(1)略;(2)△ABC的周长为5.4、(1)见解析(2)成立(3)△DEF为等边三角形5、(1)略(2)90°(3)AP=CE6、(1)A型芯片的单价为26元/条,B型芯片的单价为35元/条;(2)80.。

八年级下册期中数学试题附答案

八年级下册期中数学试题附答案

八年级(下)期中数学试卷一、选择题(共8小题,每小题2分,满分16分)1.函数中自变量x的取值范围是()A.x≥﹣2 B.x≥﹣2且x≠1C.x≠1D.x≥﹣2或x≠12.下列二次根式是最简二次根式的是()A.B.C.D.3.以下各式中计算正确的是()A.﹣=﹣6 B.(﹣)2=﹣3 C.=±16D.=a4.如图,直角三角形ABC的周长为24,且AB:BC=5:3,则AC=()A. 6 B. 8 C. 10 D. 125.下列命题中正确的是()A.对角线相等的四边形是矩形B.对角线互相平分且相等的四边形是正方形C.对角线互相垂直的四边形是菱形D.对角线互相垂直平分的四边形是菱形6.如图,△ABC中,D为AB中点,E在AC上,且BE⊥AC.若DE=10,AE=16,则BE的长度为何?()A. 10 B. 11 C. 12 D. 137.如图,在▱ABCD中,AB=10,AD=8,AC⊥BC,下列计算错误的是()A. BC=8 B. BD=15C. AC=6 D.▱ABCD的面积是488.平行四边形ABCD的对角线交于点O,有五个条件:①AC=BD,②∠ABC=90°,③AB=AC,④AB=BC,⑤AC⊥BD,则下列哪个组合可判别这个四边形是正方形()A.①②B.①③C.①④D.④⑤二、填空题(共8小题,每小题2分,满分16分)9.= .10.计算:= .11.若是整数,则正整数n的最小值是.12.如图,以△ABC的三边为边向外作正方形,其面积分别为S1,S2,S3,且S1=9,S3=25,当S2= 时∠ACB=90°.13.矩形的两条对角线的夹角是60°,一条对角线与短边的和为15,其对角线长为.14.三角形的三边长为6cm、8cm、10cm,则它的中位线构成的三角形面积是.15.已知,如图,四边形ABCD是正方形,BE=AC,则∠BED=度.16.如图,一张纸片的形状为直角三角形,其中∠C=90°,AC=12cm,BC=16cm,沿直线AD折叠该纸片,使直角边AC与斜边上的AE重合,则CD的长为cm.三、解答题(共2小题,每小题6分,满分12分)17.计算:2﹣+|1﹣|18.计算:﹣÷+(3﹣)(3).四、解答题(共2小题,每小题8分,满分16分)19.已知,a=+1,b=﹣1,求分式的值.20.某天早晨,王老师从家出发,骑摩托车前往学校,途中在路旁一家饭店吃早餐,如图所示的是王老师从家到学校这一过程中行驶路程s(千米)与时间t(分)之间的关系.(1)学校离他家多远?从出发到学校,用了多少时间?(2)王老师吃早餐用了多少时间?(3)王老师吃早餐以前的速度快还是吃完早餐以后的速度快?最快时速达到多少?五、解答题(共4小题,满分40分)21.如图,在△ABC中,点D,E,F分别是AB,BC,CA的中点,AH是边BC上的高.(1)求证:四边形ADEF是平行四边形;(2)求证:∠DHF=∠DEF.22.小红同学要测量A、C两地的距离,但A、C之间有一水池,不能直接测量,于是她在A、C同一水平面上选取了一点B,点B可直接到达A、C两地.她测量得到AB=80米,BC=20米,∠ABC=120°.请你帮助小红同学求出A、C两点之间的距离.(参考数据≈4.6)23.如图,在四边形ABCD中,AB=AD,CB=CD,AC与BD相交于O点,OC=OA,若E是CD上任意一点,连接BE交AC于点F,连接DF.(1)证明:△CBF≌△CDF;(2)若AC=2,BD=2,求四边形ABCD的周长;(3)请你添加一个条件,使得∠EFD=∠BAD,并予以证明.24.如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥A B,D为AB边上一点,过点D作DE⊥BC,交直线MN于E,垂足为F,连接CD、BE.(1)求证:CE=AD;(2)当D在AB中点时,四边形BECD是什么特殊四边形?说明你的理由;(3)若D为AB中点,则当∠A的大小满足什么条件时,四边形BECD是正方形?请说明你的理由.八年级(下)期中数学试卷参考答案与试题解析一、选择题(共8小题,每小题2分,满分16分)1.函数中自变量x的取值范围是()A.x≥﹣2 B.x≥﹣2且x≠1C.x≠1D.x≥﹣2或x≠1考点:函数自变量的取值范围.专题:函数思想.分析:根据二次根式的性质和分式的意义,被开方数≥0,分母不等于0,就可以求解.解答:解:根据题意得:被开方数x+2≥0,解得x≥﹣2,根据分式有意义的条件,x﹣1≠0,解得x≠1,故x≥﹣2且x≠1.故选:B.点评:考查了函数自变量的取值范围,注意函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.2.下列二次根式是最简二次根式的是()A.B.C.D.考点:最简二次根式.分析:检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.解答:解:A、,被开方数含分母,不是最简二次根式;B、,被开方数含分母,不是最简二次根式;C是最简二次根式;D、=2,被开方数含能开得尽方的因数,不是最简二次根式;故选:C.点评:本题考查最简二次根式的定义.根据最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.3.以下各式中计算正确的是()A.﹣=﹣6 B.(﹣)2=﹣3 C.=±16D.=a考点:二次根式的性质与化简.分析:分别利用二次根式的性质化简求出即可.解答:解:A、﹣=﹣=﹣6,故此选项正确;B、(﹣)2=3,故此选项错误;C、=16,故此选项错误;D、=|a|,故此选项错误;故选:A.点评:此题主要考查了二次根式的化简,正确利用二次根式的性质得出是解题关键.4.如图,直角三角形ABC的周长为24,且AB:BC=5:3,则AC=()A. 6 B. 8 C. 10 D. 12考点:勾股定理.分析:可先设AB=5x,BC=3x,在该三角形中,由勾股定理可求出AC关于x的代数式,由于直角三角形ABC的周长=AC+AB+BC=24,据此列出方程求出x的值,代入AC的关于x的代数式中,即可求出AC的值.解答:解:设AB=5x,BC=3x,在Rt△ACB中,由勾股定理得:AC2=AB2﹣BC2,AC===4x,直角三角形ABC的周长为:5x+4x+3x=24,x=2,所以,AC=2×4=8,故选B.点评:本题主要考查了勾股定理的运用,关键在于用含有x的式子分别表示出三边的值,代入周长公式求解,属于常考的考点.5.下列命题中正确的是()A.对角线相等的四边形是矩形B.对角线互相平分且相等的四边形是正方形C.对角线互相垂直的四边形是菱形D.对角线互相垂直平分的四边形是菱形考点:命题与定理.分析:根据矩形的判定方法对A进行判断;根据正方形的判定方法对B进行判断;根据菱形的判定方法对C、D进行判断.解答:解:A、对角线相等的平行四边形是矩形,所以A选项错误;B、对角线互相垂直平分且相等的四边形是正方形,所以B选项错误;C、对角线互相垂直平分的四边形是菱形,所以C选项错误;D、对角线互相垂直平分的四边形是菱形,所以D选项正确.故选D.点评:本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.6.如图,△ABC中,D为AB中点,E在AC上,且BE⊥AC.若DE=10,AE=16,则BE的长度为何?()A. 10 B. 11 C. 12 D. 13考点:勾股定理;直角三角形斜边上的中线.分析:根据在直角三角形中,斜边上的中线等于斜边的一半这一性质可求出AB的长,再根据勾股定理即可求出BE的长.解答:解:∵BE⊥AC,∴△AEB是直角三角形,∵D为AB中点,DE=10,∴AB=20,∵AE=16,∴BE==12,故选C.点评:本题考查了勾股定理的运用、直角三角形的性质:直角三角形中,斜边上的中线等于斜边的一半,题目的综合性很好,难度不大.7.如图,在▱ABCD中,AB=10,AD=8,AC⊥BC,下列计算错误的是()A. BC=8 B. BD=15C. AC=6 D.▱ABCD的面积是48考点:平行四边形的性质.分析:利用平行四边形的性质结合勾股定理和平行四边形的面积求法分别分析得出即可.解答:解:∵四边形ABCD是平行四边形,∴AD=BC=8,∴选项A正确,不合题意;∵AB=10,BC=8,AC⊥BC,∴AC=6,故选项C正确,不合题意,故▱ABCD的面积是:6×8=48,AC与BD相交于点O,∴AO=CO=3,∴BO==,∴BD=2,故选项B错误,符合题意;故选:B.点评:此题主要考查了平行四边形的性质以及勾股定理等知识,利用勾股定理得出AC的长是解题关键.8.平行四边形ABCD的对角线交于点O,有五个条件:①AC=BD,②∠ABC=90°,③AB=AC,④AB=BC,⑤AC⊥BD,则下列哪个组合可判别这个四边形是正方形()A.①②B.①③C.①④D.④⑤考点:正方形的判定;平行四边形的性质.分析:要判定是正方形,则需能判定它既是菱形又是矩形.解答:解:由①得对角线相等的平行四边形是矩形,加上④得,有一组邻边相等的矩形是正方形,故选C.点评:本题考查了正方形的判定方法,是基础知识较简单.二、填空题(共8小题,每小题2分,满分16分)9.= 2.考点:二次根式的乘除法.专题:计算题.分析:根据二次根式的除法法则进行运算,然后将二次根式化为最简即可.解答:解:原式===2.故答案为:2.点评:本题考查了二次根式的除法运算,属于基础题,掌握二次根式的除法法则及二次根式的化简是关键.10.计算:= .考点:分母有理化.专题:计算题.分析:根据﹣1的有理化因式为+1,进行计算即可.解答:解:原式=,=+1,故答案为+1.点评:主要考查二次根式的有理化.根据二次根式的乘除法法则进行二次根式有理化.二次根式有理化主要利用了平方差公式,所以一般二次根式的有理化因式是符合平方差公式的特点的式子.即一项符号和绝对值相同,另一项符号相反绝对值相同.11.若是整数,则正整数n的最小值是 3 .考点:二次根式的定义.分析:首先化简二次根式,进而得出n的最小值.解答:解:原式=5,则正整数n的最小值是3时,原式是整数.故答案为:3.点评:此题主要考查了二次根式的定义,正确化简二次根式得出是解题关键.12.如图,以△ABC的三边为边向外作正方形,其面积分别为S1,S2,S3,且S1=9,S3=25,当S2= 16 时∠ACB=90°.考点:勾股定理的逆定理.分析:先设Rt△ABC的三边分别为a、b、c,再分别用a、b、c表示S1、S2、S3的值,由勾股定理即可得出S2的值.解答:解:设Rt△ABC的三边分别为a、b、c,∴S1=a2=9,S2=b2,S3=c2=25,∵△ABC是直角三角形,∴a2+b2=c2,即S1+S2=S3,∴S2=S3﹣S1=16.故答案为:16.点评:本题考查的是勾股定理的应用及正方形的面积公式,熟知勾股定理是解答此题的关键.13.矩形的两条对角线的夹角是60°,一条对角线与短边的和为15,其对角线长为10 .考点:矩形的性质.分析:根据四边形ABCD是矩形,得到OA=OC,OB=OD,AC=BD,推出OA=OB,再由两条对角线的夹角是60°,得出△OAB是等边三角形,即可求对角线长.解答:解:∵四边形ABCD是矩形,∴OA=OC,OB=OD,AC=BD,∴OA=OB,∵∠AOB=60°,∴△OAB是等边三角形,∴AB=OB=OA=×15=5,∴AC=BD=2×5=10.故答案为:10.点评:本题主要考查对矩形的性质,等边三角形的性质和判定等知识点的理解和掌握,能根据性质得到等边三角形OAB是解此题的关键,题型较好,难度适中.14.三角形的三边长为6cm、8cm、10cm,则它的中位线构成的三角形面积是6cm2.考点:三角形中位线定理;勾股定理的逆定理.分析:可先依据题意作出简单的图形,进而结合图形,由题中数据可得三角形是一直角三角形,进而再由中位线的性质即可求解.解答:解:由题中数据可得三角形是一直角三角形,如图,设BC=6cm,AB=8cm,AC=10cm,∵DE、EF、DF分别是三角形的中位线,∴DE=3cm,EF=4cm,DF=5cm,∵DE2+EF2=DF2,故△DEF是直角三角形,S△DEF=DE×EF=6c m2.故答案为:6cm2.点评:本题主要考查了中位线的性质以及勾股定理的运用,要求同学们熟练掌握中位线的性质及勾股定理的逆定理.15.已知,如图,四边形ABCD是正方形,BE=AC,则∠BED=22.5 度.考点:正方形的性质;等腰三角形的性质.分析:连接BD,根据正方形的对角线平分一组对角可得∠ABD=45°,再根据正方形的对角线相等可得AC=BD,然后求出BD=BE,再根据等边对等角可得∠BDE=∠BED,然后利用三角形的一个外角等于与它不相邻的两个内角的和列式进行计算即可得解.解答:解:如图,连接BD,∵四边形ABCD是正方形,∴∠ABD=45°,AC=BD,∵BE=AC,∴BD=BE,∴∠BDE=∠BED,根据三角形的外角性质,∠ABD=∠BDE+∠BED,∴∠BED=∠ABD=×45°=22.5°.故答案为:22.5.点评:本题考查了正方形的性质,主要利用了正方形的对角线平分一组对角,正方形的对角线相等的性质,等边对等角的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质并作辅助线构造出等腰三角形是解题的关键.16.如图,一张纸片的形状为直角三角形,其中∠C=90°,AC=12cm,BC=16cm,沿直线AD折叠该纸片,使直角边AC与斜边上的AE重合,则CD的长为 6 cm.考点:翻折变换(折叠问题).专题:计算题.分析:在Rt△ABC中根据勾股定理得AB=20,再根据折叠的性质得AE=AC=12,DE=DC,∠AED=∠C=90°,所以BE=AB﹣AE=8,设CD=x,则BD=16﹣x,然后在Rt△BDE中利用勾股定理得到82+x2=(16﹣x)2,再解方程求出x即可.解答:解:在Rt△ABC中,∵AC=12,BC=16,∴AB==20,∵△ACB沿直线AD折叠该纸片,使直角边AC与斜边上的AE重合,∴AE=AC=12,DE=DC,∠AED=∠C=90°,∴BE=AB﹣AE=20﹣12=8,设CD=x,则BD=16﹣x,在Rt△BDE中,∵BE2+DE2=BD2,∴82+x2=(16﹣x)2,解得x=6,即CD的长为6cm.故答案为6.点评:本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了勾股定理.三、解答题(共2小题,每小题6分,满分12分)17.计算:2﹣+|1﹣|考点:二次根式的加减法.分析:先把各根式化为最减二次根式,再合并同类项即可.解答:解:原式=﹣2+﹣1=﹣1.点评:本题考查的是二次根式的加减,熟知二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变是解答此题的关键.18.计算:﹣÷+(3﹣)(3).考点:二次根式的混合运算.专题:计算题.分析:先进行二次根式的除法运算,再利用平方差公式进行乘法运算,然后把各二次根式化为最简二次根式后合并即可.解答:解:原式=4﹣+9﹣3=4﹣3+6=+6.点评:本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.四、解答题(共2小题,每小题8分,满分16分)19.已知,a=+1,b=﹣1,求分式的值.考点:分式的化简求值.专题:计算题.分析:由a与b的值,求出a+b与ab的值,原式变形后代入计算即可求出值.解答:解:∵a=+1,b=﹣1,∴a+b=2,ab=1,则原式==.点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.20.某天早晨,王老师从家出发,骑摩托车前往学校,途中在路旁一家饭店吃早餐,如图所示的是王老师从家到学校这一过程中行驶路程s(千米)与时间t(分)之间的关系.(1)学校离他家多远?从出发到学校,用了多少时间?(2)王老师吃早餐用了多少时间?(3)王老师吃早餐以前的速度快还是吃完早餐以后的速度快?最快时速达到多少?考点:函数的图象.分析:(1)由于骑摩托车前往学校,途中在路旁一家饭店吃早餐,那么行驶路程s(千米)与时间t(分)之间的关系图象中有一段平行x轴的线段,然后学校,根据图象可以直接得到结论;(2)根据图象中平行x轴的线段即可确定王老师吃早餐用了多少时间;(3)根据图象可以分别求出吃早餐以前的速度和吃完早餐以后的速度,然后比较即可得到结果.解答:解:(1)依题意得:学校离王老师家有10千米,从出发到学校王老师用了25分钟;(2)依题意得:王老师吃早餐用了10分钟;(3)吃早餐以前的速度为:5÷10=0.5km/分钟,吃完早餐以后的速度为:(10﹣5)÷(25﹣20)=1km/分钟=60km/小时,∴王老师吃完早餐以后速度快,最快时速达到60km/小时.点评:此题是一个信息题目,根据函数图象中的信息找出所需要的数量关系,然后利用数量关系即可解决问题.五、解答题(共4小题,满分40分)21.如图,在△ABC中,点D,E,F分别是AB,BC,CA的中点,AH是边BC上的高.(1)求证:四边形ADEF是平行四边形;(2)求证:∠DHF=∠DEF.考点:三角形中位线定理;直角三角形斜边上的中线;平行四边形的判定.专题:证明题;几何综合题.分析:(1)根据三角形的中位线平行于第三边并且等于第三边的一半可得EF∥AB,DE∥AC,再根据平行四边形的定义证明即可;(2)根据平行四边形的对角相等可得∠DEF=∠BAC,根据直角三角形斜边上的中线等于斜边的一半可得DH=AD,FH=AF,再根据等边对等角可得∠DAH=∠DHA,∠FAH=∠FHA,然后求出∠DHF=∠BAC,等量代换即可得到∠DHF=∠DEF.解答:证明:(1)∵点D,E,F分别是AB,BC,CA的中点,∴DE、EF都是△ABC的中位线,∴EF∥AB,DE∥AC,∴四边形ADEF是平行四边形;(2)∵四边形ADEF是平行四边形,∴∠DEF=∠BAC,∵D,F分别是AB,CA的中点,AH是边BC上的高,∴DH=AD,FH=AF,∴∠DAH=∠DHA,∠FAH=∠FHA,∵∠DAH+∠FAH=∠BAC,∠DHA+∠FHA=∠DHF,∴∠DHF=∠BAC,∴∠DHF=∠DEF.点评:本题考查了三角形的中位线平行于第三边并且等于第三边的一半,等腰三角形的性质,直角三角形斜边上的中线等于斜边的一半的性质,平行四边形的判定与性质,熟记各性质并准确识图是解题的关键.22.小红同学要测量A、C两地的距离,但A、C之间有一水池,不能直接测量,于是她在A、C同一水平面上选取了一点B,点B可直接到达A、C两地.她测量得到AB=80米,BC=20米,∠ABC=120°.请你帮助小红同学求出A、C两点之间的距离.(参考数据≈4.6)考点:勾股定理的应用.分析:首先过C作CD⊥AB交AB延长线于点D,然后可得∠BCD=30°,再根据直角三角形的性质可得BD=10米,然后利用勾股定理计算出CD长,再次利用勾股定理计算出AC长即可.解答:解:过C作CD⊥AB交AB延长线于点D,∵∠ABC=120°,∴∠CBD=60°,在Rt△BCD中,∠BCD=90°﹣∠CBD=30°,∴BD=BC=×20=10(米),∴CD==10(米),∴AD=AB+BD=80+10=90米,在Rt△ACD中,AC==≈92(米),答:A、C两点之间的距离约为92米.点评:此题主要考查了勾股定理的应用,关键是正确掌握直角三角形中,两直角边的平方和等于斜边的平方.23.如图,在四边形ABCD中,AB=AD,CB=CD,AC与BD相交于O点,OC=OA,若E是CD上任意一点,连接BE交AC于点F,连接DF.(1)证明:△CBF≌△CDF;(2)若AC=2,BD=2,求四边形ABCD的周长;(3)请你添加一个条件,使得∠EFD=∠BAD,并予以证明.考点:全等三角形的判定与性质;勾股定理;菱形的判定与性质.专题:几何综合题;开放型.分析:(1)首先利用SSS定理证明△ABC≌△ADC可得∠BCA=∠DCA即可证明△CBF≌△CDF.(2)由△ABC≌△ADC可知,△ABC与△ADC是轴对称图形,得出OB=OD,∠COB=∠COD=90°,因为OC=OA,所以AC与BD互相垂直平分,即可证得四边形ABCD是菱形,然后根据勾股定理全等AB长,进而求得四边形的面积.(3)首先证明△BCF≌△DCF可得∠CBF=∠CDF,再根据BE⊥CD可得∠BEC=∠DEF=90°,进而得到∠EFD=∠BCD=∠BAD.解答:(1)证明:在△ABC和△ADC中,,∴△ABC≌△ADC(SSS),∴∠BCA=∠DCA,在△CBF和△CDF中,,∴△CBF≌△CDF(SAS),(2)解:∵△ABC≌△ADC,∴△ABC和△ADC是轴对称图形,∴OB=OD,BD⊥AC,∵OA=OC,∴四边形ABCD是菱形,∴AB=BC=CD=DA,∵AC=2,BD=2,∴OA=,OB=1,∴AB===2,∴四边形ABCD的周长=4AB=4×2=8.(3)当EB⊥CD时,即E为过B且和CD垂直时垂线的垂足,∠EFD=∠BCD,理由:∵四边形ABCD为菱形,∴BC=CD,∠BCF=∠DCF,∠BCD=∠BAD,∵△BCF≌△DCF,∴∠CBF=∠CDF,∵BE⊥CD,∴∠BEC=∠DEF=90°,∴∠BCD+∠CBF=90°,∠EFD+∠CDF=90°,∴∠EFD=∠BAD.点评:此题主要考查了全等三角形的判定与性质,以及菱形的判定与性质,全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.24.如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB边上一点,过点D作DE⊥BC,交直线MN于E,垂足为F,连接CD、BE.(1)求证:CE=AD;(2)当D在AB中点时,四边形BECD是什么特殊四边形?说明你的理由;(3)若D为AB中点,则当∠A的大小满足什么条件时,四边形BECD是正方形?请说明你的理由.考点:正方形的判定;平行四边形的判定与性质;菱形的判定.专题:几何综合题.分析:(1)先求出四边形ADEC是平行四边形,根据平行四边形的性质推出即可;(2)求出四边形BECD是平行四边形,求出CD=BD,根据菱形的判定推出即可;(3)求出∠CDB=90°,再根据正方形的判定推出即可.解答:(1)证明:∵DE⊥BC,∴∠DFB=90°,∵∠ACB=90°,∴∠ACB=∠DFB,∴AC∥DE,∵MN∥A B,即CE∥AD,∴四边形ADEC是平行四边形,∴CE=AD;(2)解:四边形BECD是菱形,理由是:∵D为AB中点,∴AD=BD,∵CE=AD,∴BD=CE,∵BD∥CE,∴四边形BECD是平行四边形,∵∠ACB=90°,D为AB中点,∴CD=BD,∴▱四边形BECD是菱形;(3)当∠A=45°时,四边形BECD是正方形,理由是:解:∵∠ACB=90°,∠A=45°,∴∠ABC=∠A=45°,∴AC=BC,∵D为BA中点,∴CD⊥AB,∴∠CDB=90°,∵四边形BECD是菱形,∴菱形BECD是正方形,即当∠A=45°时,四边形BECD是正方形.点评:本题考查了正方形的判定、平行四边形的性质和判定,菱形的判定,直角三角形的性质的应用,主要考查学生运用定理进行推理的能力.。

八年级下册数学期中考试题及答案解析

八年级下册数学期中考试题及答案解析

八年级下册数学期中考试题及答案解析一、选择题1.要使二次根式有意义,则x应满足()A.x≥3B.x>3C.x≥﹣3D.x≠3【考点】二次根式有意义的条件.【分析】根据二次根式有意义的条件:被开方数是非负数即可求解.【解答】解:根据题意得: x﹣3≥0,解得:x≥3.故选A.【点评】本题考查了二次根式有意义的条件,是一个基础题,需要熟练掌握.2.下列方程是一元二次方程的是()A.x﹣3=2xB.x2﹣2=0C.x2﹣2y=1D.【考点】一元二次方程的定义.【分析】根据一元二次方程的定义求解.一元二次方程必须满足两个条件:(1)未知数的最高次数是2;(2)二次项系数不为0.由这两个条件得到相应的关系式,再求解即可.【解答】A、 x﹣3=2x是一元一次方程,故此选项错误;B、 x2﹣2=0是一元二次方程,故此选项正确;C、 x2﹣2y=1是二元二次方程,故此选项错误;D、 +1=2x,是分式方程,故此选项错误.故选: B.【点评】本题考查了一元二次方程的概念.只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是ax2+bx+c=0(且a≠0).特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.3.下列运算中,结果正确的是()A.=±6B.3﹣=3C.D.【考点】二次根式的混合运算.【分析】根据二次根式的性质、加法、乘法、除法法则逐一计算后即可判断.【解答】解: A、 =6,此选项错误;B、 3﹣=2,此选项错误;C、×=,此选项错误;D、 ==,此选项正确;故选: D.【点评】本题主要考查二次根式的混合运算,在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.4.在一次献爱心的捐赠活动中,某班45名同学捐款金额统计如下:金额(元)20303550100学生数(人)51051510在这次活动中,该班同学捐款金额的众数和中位数分别是()A.30,35B.50,35C.50,50D.15,50【考点】众数;中位数.【分析】根据众数、中位数的定义,结合表格数据进行判断即可.【解答】解:捐款金额学生数最多的是50元,故众数为50;共45名学生,中位数在第23名学生处,第23名学生捐款50元,故中位数为50;故选C.【点评】本题考查了众数及中位数的知识,解答本题的关键是熟练掌握众数及中位数的定义.5.下列二次根式中的最简二次根式是()A.B.C.D.【考点】最简二次根式.【分析】根据最简二次根式的概念:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式,结合选项求解即可.【解答】解: A、 =2,故不是最简二次根式,本选项错误;B、 =2,故不是最简二次根式,本选项错误;C、 =,故不是最简二次根式,本选项错误;D、是最简二次根式,本选项正确.故选D.【点评】本题考查了最简二次根式的知识,解答本题的关键在于掌握最简二次根式的概念,对各选项进行判断.6.将方程x2+4x+3=0配方后,原方程变形为()A.(x+2)2=1B.(x+4)2=1C.(x+2)2=﹣3D.(x+2)2=﹣1【考点】解一元二次方程﹣配方法.【分析】把常数项3移项后,应该在左右两边同时加上一次项系数4的一半的平方.【解答】解:移项得,x2+4x=﹣3,配方得,x2+4x+4=﹣3+4,即(x+2)2=1,故选A.【点评】本题考查了解一元二次方程,配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.7.某超市一月份的营业额为200万元,三月份的营业额为288万元,如果每月比上一个月增长的百分数相同,则每月的平均增长率为()A.10%B.15%C.20%D.25%【考点】一元二次方程的应用.【专题】增长率问题.【分析】利用关系式:一月份的营业额×(1+增长率)2=三月份的营业额,设出未知数列出方程解答即可.【解答】解:设这两个月的营业额增长的百分率是x.200×(1+x)2=288,解得: x1=﹣2.2(不合题意舍去),x2=0.2,答:每月的平均增长率为20%.故选: C.【点评】此题考查一元二次方程的应用;得到三月份营业额的关系式是解决本题的关键.8.已知关于x的方程kx2+(1﹣k)x﹣1=0,下列说法正确的是()A.当k=0时,方程无解B.当k=1时,方程有一个实数解C.当k=﹣1时,方程有两个相等的实数解D.当k≠0时,方程总有两个不相等的实数解【考点】根的判别式;一元一次方程的解.【分析】利用k的值,分别代入求出方程的根的情况即可.【解答】解:关于x的方程kx2+(1﹣k)x﹣1=0,A、当k=0时,x﹣1=0,则x=1,故此选项错误;B、当k=1时,x2﹣1=0方程有两个实数解,故此选项错误;C、当k=﹣1时,﹣x2+2x﹣1=0,则(x﹣1)2=0,此时方程有两个相等的实数解,故此选项正确;D、由C得此选项错误.故选: C.【点评】此题主要考查了一元二次方程的解,代入k的值判断方程根的情况是解题关键.9.关于x的一元二次方程(k﹣1)x2﹣2x+3=0有两相异实根,则k的取值范围是()A.k<B.k<且k≠1C.0<k<D.k≠1【考点】根的判别式;一元二次方程的定义.【专题】计算题.【分析】根据一元二次方程的定义和根的判别式的意义得到k﹣1≠0且△=(﹣2)2﹣4(k﹣1)×3>0,然后解两个不等式即可得到满足条件的k的范围.【解答】解:根据题意得k﹣1≠0且△=(﹣2)2﹣4(k﹣1)×3>0,所以k<且k≠1.故选B.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一元二次方程的定义.10.若α,β是方程x2﹣2x﹣2=0的两个实数根,则α2+β2的值为()A.10B.9C.8D.7【考点】根与系数的关系.【分析】根据根与系数的关系得到α+β=2,αβ=﹣2,再利用完全平方公式变形得α2+β2=(α+β)2﹣2αβ,然后利用整体代入的方法计算.【解答】解:根据题意得α+β=2,αβ=﹣2,所以α2+β2=(α+β)2﹣2αβ=22﹣2×(﹣2)=8.故选C.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c= 0(a≠0)的两根时,x1+x2=﹣,x1x2=.将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.二、填空题:(本题有10小题,每小题3分,共30分)11.当x=2时,二次根式的值是1.【考点】二次根式的性质与化简.【专题】计算题.【分析】把x=2代入二次根式后利用二次根式的性质化简即可.【解答】解:当x=2时,==1.故答案为1.【点评】本题考查了二次根式的性质与化简,注意结果为最简二次根式或整式.12.方程x2﹣1=0的根为x1=1,x2=﹣1.【考点】解一元二次方程﹣直接开平方法.【分析】直接利用开平方法解方程得出答案.【解答】解: x2﹣1=0则x2=1,解得;x1=1,x2=﹣1.故答案为: x1=1,x2=﹣1.【点评】此题主要考查了直接开平方法解方程,正确开平方是解题关键.13.已知关于x的方程x2+kx+3=0的一个根为x=3,则k为﹣4.【考点】一元二次方程的解.【分析】把x=3代入已知方程列出关于k的一元一次方程,通过解该方程求得k 的值.【解答】解:依题意得: 32+3k+3=0,解得k=﹣4.故答案是:﹣4.【点评】本题考查了一元二次方程的解的定义.能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.14.甲、乙两人进行射击测试,每人10次射击的平均成绩恰好都是9.5环,方差分别是S甲2=0.90平方环,S乙2=1.22平方环,在本次射击测试中,甲、乙两人中成绩较稳定的是甲.【考点】方差.【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定,比较出甲和乙的方差大小即可.【解答】解:∵s甲2=0.90,S乙2=1.22,∴s甲2<s乙2,∴成绩较稳定的是甲.故答案为:甲.【点评】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.15.已知数据2,3,4,4,a,1的平均数是3,则这组数据的众数是4.【考点】众数;算术平均数.【分析】根据平均数和众数的概念求解.【解答】解:∵这组数据的平均数为,∴=3,解得: x=4,则众数为: 4.故答案为4.【点评】本题考查了平均数和众数的知识,一组数据中出现次数最多的数据叫做众数;平均数是指在一组数据中所有数据之和再除以数据的个数.16.下列二次根式,不能与合并的是②(填写序号即可).①;②;③.【考点】同类二次根式.【专题】计算题.【分析】先把各二醋很式化为最简二次根式,然后根据同类二次根式的定义判断哪些二次根式与为同类二次根式即可.【解答】解: ==2,==4,==3,所以、与为同类二次根式,它们可以合并.故答案为②.【点评】本题考查了同类二次根式:一般地,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式.合并同类二次根式的方法:只合并根式外的因式,即系数相加减,被开方数和根指数不变.17.同学们对公园的滑梯很熟悉吧!如图是某公园“六•一”前新增设的一台滑梯,该滑梯高度AC=2m,滑梯AB的坡比是1: 2,则滑梯AB的长是米.【考点】解直角三角形的应用﹣坡度坡角问题.【分析】根据坡比求出BC,在Rt△ABC中,根据勾股定理可求出斜边AB的长度.【解答】解:由题意知,AC: BC=1;2,且AC=2,故BC=4.在Rt△ABC中,,即滑梯AB的长度为米.【点评】此题主要考查学生对坡度的掌握及勾股定理的运用能力.18.如图,是一个长为30m,宽为20m的矩形花园,现要在花园中修建等宽的小道,剩余的地方种植花草.如图所示,要使种植花草的面积为532m2,那么小道进出口的宽度应为1米.【考点】一元二次方程的应用.【专题】几何图形问题.【分析】设小道进出口的宽度为x米,然后利用其种植花草的面积为532平方米列出方程求解即可.【解答】解:设小道进出口的宽度为x米,依题意得(30﹣2x)(20﹣x)= 532,整理,得x2﹣35x+34=0.解得,x1=1,x2=34.∵34>30(不合题意,舍去),∴x=1.答:小道进出口的宽度应为1米.故答案为: 1.【点评】本题考查了一元二次方程的应用,解题的关键是根据种植花草的面积为532m2找到正确的等量关系并列出方程.19.关于x的一元二次方程(a﹣1)x2+x+(a2﹣1)=0的一个根是0,则a的值是﹣1.【考点】一元二次方程的解.【分析】根据一元二次方程的解的定义,将x=0代入已知方程就可以求得a的值.注意,二次项系数a﹣1≠0.【解答】解:∵关于x的一元二次方程(a﹣1)x2+x+(a2﹣1)=0的一个根是0,∴x=0满足该方程,且a﹣1≠0.∴a2﹣1=0,且a≠1.解得a=﹣1.故答案是:﹣1.【点评】本题考查的是一元二次方程的根即方程的解的定义.一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.即用这个数代替未知数所得式子仍然成立.20.三角形两边长分别为3和6,第三边是方程x2﹣6x+8=0的解,则此三角形周长是13.【考点】解一元二次方程﹣因式分解法;三角形三边关系.【专题】计算题;分类讨论.【分析】求出方程的解,有两种情况: x=2时,看看是否符合三角形三边关系定理;x=4时,看看是否符合三角形三边关系定理;求出即可.【解答】解: x2﹣6x+8=0,(x﹣2)(x﹣4)=0,x﹣2=0,x﹣4=0,x1=2,x2=4,当x=2时,2+3<6,不符合三角形的三边关系定理,所以x=2舍去,当x=4时,符合三角形的三边关系定理,三角形的周长是3+6+4=13,故答案为: 13.【点评】本题考查了三角形的三边关系定理和解一元二次方程等知识点,关键是确定第三边的大小,三角形的两边之和大于第三边,分类讨论思想的运用,题型较好,难度适中.三、解答题(共5题,共40分)21.计算(1)(2).【考点】二次根式的混合运算.【专题】计算题.【分析】(1)先把各二次根式化为最简二次根式,然后合并即可;(2)利用平方差公式和二次根式的性质计算.【解答】解:(1)原式=4﹣3﹣2=﹣;(2)原式=3﹣1﹣3=﹣1.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.22.解下列方程(1)x2﹣4x=0(2)x2﹣6x+8=0.【考点】解一元二次方程﹣因式分解法.【分析】(1)先分解因式,即可得出两个一元一次方程,求出方程的解即可;(2)先分解因式,即可得出两个一元一次方程,求出方程的解即可.【解答】解:(1)x2﹣4x=0,x(x﹣4)=0,x=0,x﹣4=0,x1=0,x2=4;(2)x2﹣6x+8=0,(x﹣2)(x﹣4)=0,x﹣2=0,x﹣4=0,x1=2,x2=4.【点评】本题考查了解一元二次方程的应用,能把一元二次方程转化成一元一次方程是解此题的关键.23.A,B,C三名大学生竞选系学生会主席,他们的笔试成绩和口试成绩(单位:分)分别用了两种方式进行了统计,如表和图一:ABC笔试859590口试8085(1)请将表一和图一中的空缺部分补充完整.(2)竞选的最后一个程序是由本系的300名学生进行投票,三位候选人的得票情况如图二(没有弃权票,每名学生只能推荐一个),请计算每人的得票数.(3)若每票计1分,系里将笔试、口试、得票三项测试得分按4: 3: 3的比例确定个人成绩,请计算三位候选人的最后成绩,并根据成绩判断谁能当选.【考点】加权平均数;扇形统计图;条形统计图.【专题】图表型.【分析】(1)结合表一和图一可以看出: A大学生的口试成绩为90分;(2)A的得票为300×35%=105(张),B的得票为300×40%=120(张),C的得票为:300×25%=75(张);(3)分别通过加权平均数的计算方法计算A的成绩,B的成绩,C的成绩,综合三人的得分,则B应当选.【解答】解:(1)A大学生的口试成绩为90;补充后的图如图所示:ABC笔试859590口试908085(2)A的票数为300×35%=105(张),B的票数为300×40%=120(张),C的票数为300×25%=75(张);(3)A的成绩为=92.5(分)B的成绩为=98(分)C的成绩为=84(分)故B学生成绩最高,能当选学生会主席.【点评】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.24.如图,在5×5的正方形网格中,每个小正方形的边长都是1,在所给网格中按下列要求画出图形:(1)已知点A在格点(即小正方形的顶点)上,画一条线段AB,长度为,且点B 在格点上;(2)以上题中所画线段AB为一边,另外两条边长分别是3,2,画一个三角形AB C,使点C在格点上(只需画出符合条件的一个三角形);(3)所画的三角形ABC的AB边上高线长为(直接写出答案)【考点】勾股定理.【专题】作图题.【分析】(1)根据勾股定理可知使线段AB为直角边为2和1的直角三角形的斜边即可;(2)作出另外两条边长分别是3,2的三角形ABC即可;(3)根据三角形的面积公式即可得到所画的三角形ABC的AB边上高线长.【解答】解:(1)如图所示:(2)如图所示:(3)三角形ABC的AB边上高线长为:×3×2×2÷=3×2÷=.故答案为:.【点评】本题考查了勾股定理、此题要读懂题目要求,设计画图方案也比较灵活,目的培养学生运算能力,动手能力.25.诸暨某童装专卖店在销售中发现,一款童装每件进价为80元,销售价为12 0元时,每天可售出20件,为了迎接“五一”国际劳动节,商店决定采取适当的降价措施,以扩大销售量,增加利润,经市场调查发现,如果每件童装降价1元,那么平均可多售出2件.(1)设每件童装降价x元时,每天可销售20+2x件,每件盈利40﹣x元;(用x 的代数式表示)(2)每件童装降价多少元时,平均每天赢利1200元.(3)要想平均每天赢利2000元,可能吗?请说明理由.【考点】一元二次方程的应用.【专题】销售问题.【分析】(1)根据:销售量=原销售量+因价格下降而增加的数量,每件利润=实际售价﹣进价,列式即可;(2)根据:总利润=每件利润×销售数量,列方程求解可得;(3)根据(2)中相等关系列方程,判断方程有无实数根即可得.【解答】解:(1)设每件童装降价x元时,每天可销售20+2x件,每件盈利4 0﹣x元,故答案为:(20+2x),(40﹣x);(2)根据题意,得:(20+2x)(40﹣x)=1200解得: x1=20,x2=10答:每件童装降价20元或10元,平均每天赢利1200元;(3)不能,∵(20+2x)(40﹣x)=2000此方程无解,故不可能做到平均每天盈利2000元.【点评】本题主要考查一元二次方程的实际应用,理解题意找到题目蕴含的等量关系是列方程求解的关键.26.已知实数a满足|2012﹣a|+=a,则a﹣20122=2013.【考点】二次根式有意义的条件.【分析】根据二次根式有意义的条件可得a﹣2013≥0,进而可得a≥2013,然后再根据绝对值的性质可得a﹣2012+=a,整理可得=2012,然后再两边进行平方即可.【解答】解:∵a﹣2013≥0,∴a≥2013,∴|2012﹣a|+=a,a﹣2012+=a,=2012,a﹣2013=20122,∴a﹣20122=2013,故答案为: 2013.【点评】此题主要考查了二次根式有意义,关键是掌握二次根式中的被开方数是非负数.27.(2016秋•昌江区校级期末)若方程(x﹣1)(x2﹣2x+m)=0的三个根可以作为一个三角形的三边之长,则m的取值范围:<m≤1.【考点】根与系数的关系;解一元二次方程﹣因式分解法;三角形三边关系.【专题】计算题.【分析】先根据因式分解法得到x﹣1=0或x2﹣2x+m=0,设x2﹣2x+m=0的两根为a、 b,根据判别式和根与系数的关系得到△=4﹣4m≥0,a+b=2,ab=m>0,解得0<m≤1.【解答】解:∵(x﹣1)(x2﹣2x+m)=0,∴x﹣1=0或x2﹣2x+m=0,∴原方程的一个根为1,设x2﹣2x+m=0的两根为a、 b,则△=4﹣4m≥0,a+b=2,ab=m,又∴|a﹣b|==<1,∴4﹣4m<1,解得m>,∴<m≤1.故答案为:<m≤1.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=,x1x2=.28.已知,,且(7m2﹣14m+a)(3n2﹣6n﹣7)=8,则a的值等于﹣9.【考点】二次根式的混合运算.【分析】观察已知等式可知,含有m2﹣2m,n2﹣2n的结构,可以将已知条件移项,平方即可.【解答】解:由m=1+,得(m﹣1)2=2,即m2﹣2m=1,故7m2﹣14m=7,同理,得3n2﹣6n=3,代入已知等式,得(7+a)(3﹣7)=8,解得a=﹣9.【点评】本题考查了二次根式的灵活运用,直接将m、 n的值代入,可能使运算复杂,可以先求部分代数式的值.29.一次选拔考试的及格率为25%,及格者的平均分数比规定的及格分数多15分,不及格者的平均分数比规定的及格分数少25分,又知全体考生的平均分数是60分,求这次考试规定的及格分数是多少?【考点】一元一次方程的应用.【专题】应用题.【分析】本题中的相等关系是:及格的总得分+不及格的总得分=全体考生的总分,根据此关系列方程求解.【解答】解:设考生人数为a人,及格分数为x分.则: 25%a(x+15)+75%a(x﹣25)=60a解得: x=75.答:这次考试规定的及格分数是75分.【点评】解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.30.(2015•蓬安县校级自主招生)已知△ABC的两边AB、 AC的长是关于x的一元二次方程x2﹣(2k+3)x+k2+3k+2=0的两个实数根,第三边BC=5.(1)k为何值时,△ABC是以BC为斜边的直角三角形?(2)k为何值时,△ABC是等腰三角形?并求此时△ABC的周长.【考点】勾股定理;根与系数的关系;等腰三角形的性质.【专题】计算题.【分析】(1)先解方程可得x1=k+1,x2=k+2,若△ABC是直角三角形,且BC是斜边,那么有(k+1)2+(k+2)2=52,易求k,结合实际意义可求k的值;(2)由(1)得x1=k+1,x2=k+2,若△ABC是等腰三角形,则x1=BC或x2=BC,易求k=4或3,再分两种情况求周长.【解答】解:(1)根据题意得[x﹣(k+1)][x﹣(k+2)]=0,解得,x1=k+1,x2=k+2,若△ABC是直角三角形,且BC是斜边,那么有(k+1)2+(k+2)2=52,解得k1=2,k2=﹣5(不合题意舍去),∴k=2;(2)①如果AB=AC,△=(2k+3)2﹣4(k2+3k+2)=04k2+12k+9﹣4k2﹣12k﹣8=1≠0,不可能是等腰三角形.②如果AB=5,或者AC=5x1=5,52﹣(2k+3)×5+k2+3k+2=0k2﹣7k+12=0(k﹣4)(k﹣3)=0k=4或者k=3(都符合题意)k=4时:x2﹣11x+30=0(x﹣5)(x﹣6)=0,∴AB=5,AC=6,周长L=5+5+6=16,k=3时:x2﹣9x+20=0(x﹣4)(x﹣5)=0,∴AB=4,AC=5,周长L=4+5+5=14.【点评】本题考查了勾股定理、等腰三角形的判定、解方程.解题的关键是注意分情况讨论.31.设直线nx+(n+1)y=(n为自然数)与两坐标轴围成的三角形面积为Sn (n=1,2,…2014),则S1+S2+…+S2014的值为.【考点】一次函数图象上点的坐标特征.【专题】规律型.【分析】依次求出S1、 S2、 Sn,就发现规律: Sn=,然后求其和即可求得答案.注意=﹣.【解答】解:∵直线nx+(n+1)y=,∴y=﹣x+,当n=1时,直线为y=﹣x+,∴直线与两坐标轴的交点为(0,),(,0),∴S1=××==1﹣;当n=2时,直线为y=﹣x+,∴直线与两坐标轴的交点为(0,),(,0),∴S2=××=×=﹣;当n=3时,直线为y=﹣x+,∴直线与两坐标轴的交点为(0,),(,0),∴S3=××=﹣;…,Sn=﹣,∴S1+S2+S3+…+S2014=1﹣+﹣+﹣+…+﹣=1﹣=.故答案为:.【点评】本题考查的是一次函数图象上点的坐标特点,根据题意找出规律是解答此题的关键.32.甲、乙、丙三位同学进行立定跳远比赛,每人轮流跳一次称为一轮,每轮按名次从高到低分别得3分、 2分、 1分(没有并列名次).他们一共进行了五轮比赛,结果甲共得14分;乙第一轮得3分,第二轮得1分,且总分最低.那么丙得到的分数是9分.【考点】整数问题的综合运用.【专题】推理填空题;方案型.【分析】甲共得14分.那么甲应是4次都得最高分3分,一次得2分,乙第一轮得3分,第二轮得1分,那么剩下的分数只有4个2分,4个1分.丙的5场比赛最好成绩是得4个2分,一个1分,共9分,那么乙得分是3+4=7分,符合总分最低.【解答】解:由于共进行了5轮比赛,且甲共得14分.那么甲的5次得分应该是4次3分,一次2分;已知乙第一轮得3分,第二轮得1分,那么可确定的甲、乙、丙的得分为:甲:①2分,②3分,③3分,④3分,⑤3分;乙:①3分,②1分;丙:①1分,②2分;因此乙、丙的后三轮比赛得分待定,由于乙的得分最低,因此丙的得分情况必为:丙:①1分,②2分,③2分,④2分,⑤2分;即丙的总得分为1+2+2+2+2=9分.故答案为9.【点评】本题主要考查整数问题的综合应用,解决本题的关键是判断出剩余场数及相应的分数.。

2022-2023年部编版八年级数学下册期中考试题及答案【完美版】

2022-2023年部编版八年级数学下册期中考试题及答案【完美版】

2022-2023年部编版八年级数学下册期中考试题及答案【完美版】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.3-的倒数是( )A .3B .13C .13-D .3-2.已知关于x 的分式方程+=1的解是非负数,则m 的取值范围是( )A .m >2B .m ≥2C .m ≥2且m ≠3D .m >2且m ≠33.如果线段AB =3cm ,BC =1cm ,那么A 、C 两点的距离d 的长度为( )A .4cmB .2cmC .4cm 或2cmD .小于或等于4cm ,且大于或等于2cm4.若m n >,下列不等式不一定成立的是( )A .33m n ++>B .33m n ﹣<﹣C .33m n >D .22m n >5.下列图形中,不能通过其中一个四边形平移得到的是( )A .B .C .D .6.已知2,1=⎧⎨=⎩x y 是二元一次方程组7,{1ax by ax by +=-=的解,则a b -的值为( ) A .-1 B .1 C .2 D .37.如图,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y 与n 之间的关系是( )A .y=2n+1B .y=2n +nC .y=2n+1+nD .y=2n +n+18.如图,在▱ABCD 中,已知AD=5cm ,AB=3cm ,AE 平分∠BAD 交BC 边于点E ,则EC等于()A.1cm B.2cm C.3cm D.4cm9.如图,AB∥CD,点E在线段BC上,CD=CE,若∠ABC=30°,则∠D为()A.85°B.75°C.60°D.30°10.如图,直线a∥b,将一个直角三角尺按如图所示的位置摆放,若∠1=58°,则∠2的度数为()A.30°B.32°C.42°D.58°二、填空题(本大题共6小题,每小题3分,共18分)1.16的平方根是.2.若最简二次根式1a 与8能合并成一项,则a=__________.3.4的平方根是.4.把两个同样大小的含45°角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个的直角顶点重合于点A,且另三个锐角顶点B,C,D在同一直线上.若AB=2,则CD=________.5.如图,在平面直角坐标系中,△AOB≌△COD,则点D的坐标是__________.6.如图,ABCD 的对角线相交于点O ,且AD ≠CD ,过点O 作OM ⊥AC ,交AD 于点M .如果CDM 的周长为8,那么ABCD 的周长是_____.三、解答题(本大题共6小题,共72分)1.解分式方程:241244x x x x -=--+.2.先化简,再求值:222221412()x x x x x x x x -+-+÷-+,且x 为满足﹣3<x <2的整数.3.已知2a ﹣1的平方根为±3,3a +b ﹣1的算术平方根为4,求a +2b 的平方根.4.如图,△ABC 与△DCB 中,AC 与BD 交于点E ,且∠A=∠D ,AB=DC(1)求证:△ABE ≌DCE ;(2)当∠AEB=50°,求∠EBC 的度数.5.如图,有一个直角三角形纸片,两直角边6AC =cm ,8BC = cm ,现将直角边沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,你能求出CD 的长吗?6.在东营市中小学标准化建设工程中,某学校计划购进一批电脑和电子白板,经过市场考察得知,购买1台电脑和2台电子白板需要3.5万元,购买2台电脑和1台电子白板需要2.5万元.(1)求每台电脑、每台电子白板各多少万元?(2)根据学校实际,需购进电脑和电子白板共30台,总费用不超过30万元,但不低于28万元,请你通过计算求出有几种购买方案,哪种方案费用最低.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、C3、D4、D5、D6、A7、B8、B9、B10、B二、填空题(本大题共6小题,每小题3分,共18分)1、±4.2、13、±2.415、(-2,0)6、16三、解答题(本大题共6小题,共72分)x=1、42、-53、±34、略(2)∠EBC=25°5、CD的长为3cm.6、(1)每台电脑0.5万元,每台电子白板1.5万元(2)见解析。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2006-2007(下)初二年级期中考数 学 试 卷(Ⅰ)(A 卷:100分)一、选择题(每题3分,共21分)1 .在平面直角坐标系中点M (3,-2)在第_____象限。

( ) A 、一 B 、二 C 、三 D 、 四2.小明的父亲饭后散步,从家中走20分钟到一个离家900米的报亭看10分钟的报纸后,用15分钟返回家中,下列图形中表示小明父亲离家的时间与距离之间的关系是( )A B C D3.点P (3,4-)关于x 轴对称的点的坐标是( )A.(3,4-)B.(3-,4-)C.(3,4)D.(3-,4) 4 .下列各式,用科学记数法表示正确的是( ). A.0.006=2106-⨯ B.0.0065=21065-⨯C.-0.006=-3106-⨯ D.65000=3105.6⨯5. 下面哪个点不在函数32+-=x y 的图像上( )A.(—5,13) B .(0.5,2) C.(3,0) D.(1,1) 6.若分式33x x -+的值为零,则x 的值必是( )A. 3或3-B. 3C. 3-D. 0)分) ) )7.如图,函数 和k x y --=( k ≠0)在同一坐标系中的大致图象是( )二、填空题(每空3分,共36分) 8.函数y =31-x 的自变量取值范围是_______ _。

9.直线y=2x 向上平移4个单位后所得的直线关系式为_____ ____。

10.222131acb a 与的最简公分母为________ __。

11.011103-⎛⎫⨯= ⎪⎝⎭。

12.已知等腰三角形的周长是12厘米,底边长y cm 与腰长x cm 的函数关系式为 ;自变量x 的取值范围是 。

13.如果双曲线经过点(-2,3),则双曲线的解析式为___ _______。

14.约分 (1)y x xy 2264= (2)22ba b a -+ 15.当m_____ _时,反比例函数y= 2m -1x(0x <),y 随x 的增大而减小 。

16.轮船顺流航行66千米所需时间和逆流航行48千米所需时间相同,已知水流速度是每小时3千米,求轮船在静水中的速度?若设轮船在静水中的速度为x 千米∕小时,由题意可列方程为 。

17.请写出一个一次函数,使它的图象经过第一、二、四象限:_____ _______.xk y =考室____ 班级 座号________ 姓名____________________密封线内不得答题2006-2007(下)初二年级期中考数 学 试 卷(Ⅱ)(本卷共 150 分,120 分钟完成)(A 卷:100分)一、选择题(每题3分,共21分) 二、填空题(每空2分,共24分) 8、 ; 9、 ; 10、 ; 11、 ;12、 , ; 13、 ; 14、 , ; 15、 ; 16、 ; 17、 。

三、解答题:(6个大题,共55分) 18、计算(本题共12分):(1) 232b a ⎛⎫- ⎪⎝⎭(2)1412162222-+÷+--x xy x x x y x(3)()()22a b a b abab-+-(4)422x x +-+19、(本题6分)利用一次函数的图象,求方程组364y x x y =-⎧⎨+=⎩的解20、解分式方程:(本题10分) (1)3513x x =++ (2)214111x x x +-=--21、(本题7分)已知:1y -与x 成正比例,且2x =时,3y =-。

(1)试求y 与x 之间的函数关系式; (2)当2x =-时,求y 的值; (3)当x 取何值时,0y = ?;22、(本题10分)如图,在边长为4的正方形ABCD中,P是BC边上一动点,它从B向C运动,设BP=x,四边形APCD的面积为y1)写出y与x之间的函数关系式,并确定自变量的取值范围;2)画出该函数图象;并根据图象回答:当x为何值时,四边形APCD的面积为10?23、(本题10分)某市一中学生根据报纸上提供的消息,绘制了该市市区企业职工养老保险个人月缴费y(元)随个人月工资x(元)变化的图象,请根据图象解答下列问题:⑴王总工程师六月份的工资是5200元,这个月他个人应缴养老保险费多少?⑵小李六月份工资为500元,这个月他个人应缴养老保险费多少?⑶张师傅六月份缴养老保险费56元,求他六月份的工资是多少元?(要写出求解过程。

)(B 卷:50分)一、填空题:(每题3分,共12分)1. 已知P 是第二象限内一点,且P 到x 轴的距离是2,到y 轴的距离是3,则P 点坐标是 。

2. 无论m 为何实数,直线y =x +m 与y =-x +4的交点不可能在第______象限.3. 如图,点P (,)a b 在函数6y x=上,过P 作PQ ⊥x 轴于Q , 则三角形POQ 的面积POQ S ∆=_______________.4. 若0152=+-x x ,那么x x+1=二、解答题:(第5、6题各8分,第7题10分,第8题12分,共38分)5. (本题8分) 试求当m 为何值时,方程233x mx x =---会产生增根.密封线内不得答题考室____ 班级 座号________ 姓名____________________密封线内不得答题6. (本题8分)已知一次函数y kx k =+的图象与反比例函数8y x=图象交于 点 P (4,n )。

(1)求P 点坐标;(2)求一次函数的解析式;(3)若点A (,)a b ,B (,)c d 在上述一次函数的图象上,且a c >,试比较b 、d 的大小,并说明理由。

7.(本题10分)列方程解应用题:甲、乙两人各自骑自行车同时从同一地点出发,前往距出发地40km 的目的地,甲比乙每小时快2km,甲在距目的地4km 处因故改为步行,速度比原来减小8km,结果甲、乙两人同时到达目的地,求甲、乙两人骑自行车的速度。

8. (本题12分)已知某服装厂现有А种布料70米,В种布料52米,现计划用这两种布料生产М、Ν两种型号的时装共80套。

已知生产一套М型号的时装需用А种布料0.6米,В种布料0.9米,可获利45元;已知生产一套Ν型号的时装需用А种布料1.1米,В种布料0.4米,可获利50元.问该服装厂在生产这批时装中,当Ν型号的时装生产多少套时,所获利润最大?2006-2007(下)初二年级期中考数 学 试 卷 评 分 标 准(A 卷:100分)一、选择题(每题3分,共21分)二、填空题(每空2分,共24分)8、3x ≠; 9、24y x =+;10、226a bc ; 11、110; 12、122y x =- , 36x <<; 13、6y x-=; 14、x y 32,1a b -; 15、12m >; 16、664833x x =+-; 17、21(y x =-+不唯一)。

三、解答题:(6个大题,共55分) 18、计算(本题共12分):(1) 232b a ⎛⎫- ⎪⎝⎭(2)1412162222-+÷+--x xy x x x y x 解:原式=()()2232b a ……1分 解:原式=()()()()244141x y x y x x x y x +--⋅+-……2分=2294b a……2分 =()2441x y x y x x x x --=-- ……1分(3)()()22a b a b abab-+-(4)422x x +-+ 解:原式=()2222(2)2a ab b a ab b ab-+-++……1分 解:原式=24422x x x -+++……2分 =4abab- ……1分 =22x x + ……1分=4- ……1分 19、(本题6分)利用一次函数的图象,求方程组364y x x y =-⎧⎨+=⎩ 的解解:由图象可知:两直线相交于点(2.5,1.5)所以,原方程组的解为 2.51.5x y =⎧⎨=⎩(画出每条直线各得2分,给出结论得2分。

)20、解分式方程:(本题10分) (1)3513x x =++ (2)214111x x x +-=--解:(1)方程两边同时乘以()()13x x ++,得()()3351x x +=+ ……2分解这个整式方程,得2x = ……1分检验:把2x =代入()()13x x ++=(2+1)(2+3)≠0……1分所以,2x =是原方程的解。

……1分(2)方程两边同时乘以21x -,得 ()()22114x x +--= ……2分解这个整式方程,得1x = ……1分检验:把1x =代入21x -=0 ……1分所以,1x =是原方程的增根,原方程无解。

……1分21、(本题7分)已知:1y -与x 成正比例,且2x =时,3y =-。

(1)试求y 与x 之间的函数关系式;(2)当2x =-时,求y 的值;(3)当x 取何值时,0y = ?解:(1)设11y kx y kx -==+即 ……1分依题意得:321k -=+ ……1分解得,2k =- ……1分所以,所求的函数关系式为21y x =-+ ……1分(2)当2x =-时,2(2)15y =-⨯-+= ……1分(3)由0y =得,210x -+= ……1分 解得,12x = 所以,当12x =时,0y =……1分22.(本题10分)如图,在边长为4的正方形ABCD 中,P 是BC 边上一动点,它从B 向C 运动,设BP=x ,四边形APCD 的面积为y1)写出y 与x 之间的函数关系式,并确定自变量的取值范围;2)画出该函数图象;并根据图象回答 :当x 为何值时,四边形APCD 的面积为10? 解:(1)162y x =-,其中04x ≤≤ ……4分(2)……4分 (画出图象4分)由图象可知,当3,10x y ==时 ……2分23.(本题10分)某市一中学生根据报纸上提供的消息,绘制了该市市区企业职工养老保险个人月缴费y(元)随个人月工资x(元)变化的图象,请根据图象解答下列问题:⑴王总工程师六月份的工资是5200元,这个月他个人应缴养老保险费多少?⑵小李六月份工资为500元,这个月他个人应缴养老保险费多少?⑶张师傅六月份缴养老保险费56元,求他六月份的工资是多少元?(要写出求解过程。

)解:(1)由图象可知当2786>x 时,应缴养老保险费均为195。

02元,而王总工程师六月份的工资是5200元2786>元,所以,他这个月应缴养老保险费为195。

02元。

……2分(2)由图象可知当557340<<x 时,应缴养老保险费均为38。

99元,而小李六月份的工资是500元,557500340<<,所以,他这个月应缴养老保险费为38。

相关文档
最新文档