刚体的定轴转动带答案
第3章 刚体的定轴转动 习题答案
1
1 v r 78 . 5 1 78 . 5 m s (3) 解:
an r 78.5 1 6162 .2 m s
2 2
2
a r 3.14 m s
2
3-13. 如图所示,细棒长度为l,设转轴通过棒上距中心d的一 点并与棒垂直。求棒对此轴的转动惯量 J O ',并说明这一转 动惯量与棒对质心的转动惯量 J O之间的关系。(平行轴定理)
n0
J 2 2 n 收回双臂后的角动能 E k J n 0 2 J 0 n
1 2 2 1 2
Ek 0 J
1 2
2 0
3-17. 一人张开双臂手握哑铃坐在转椅上,让转椅转动起来, 此后无外力矩作用。则当此人收回双臂时,人和转椅这一系 统的转速、转动动能、角动量如何变化?
解:首先,该系统的角动量守恒。
设初始转动惯量为 J ,初始角速度为 0 收回双臂后转动惯量变为 J n , 由转动惯量的定义容易知,n 1 由角动量守恒定理容易求出,收回双臂后的角速度 初始角动能
M t J
代入数据解得:M 12.5 N m
3-4. 如图所示,质量为 m、长为 l 的均匀细杆,可绕过其一 端 O 的水平轴转动,杆的另一端与一质量为m的小球固定在 一起。当该系统从水平位置由静止转过 角时,系统的角
速度、动能为?此过程中力矩所做的功?
解: 由角动能定理得:
解:设该棒的质量为m,则其
线密度为 m l
1 l d 2 1 l d 2
O
d O'
J O'
0
r dr
2
3
0
r dr
刚体的定轴转动(带答案)【范本模板】
刚体的定轴转动一、选择题1、(本题3分)0289关于刚体对轴的转动惯量,下列说法中正确的是[C ](A)只取决于刚体的质量,与质量的空间分布和轴的位置无关。
(B)取决于刚体的质量和质量的空间分布,与轴的位置无关。
(C)取决于刚体的质量、质量的空间分布和轴的位置。
(D)只取决于转轴的位置,与刚体的质量和质量的空间分布无关.2、(本题3分)0165均匀细棒OA可绕通过某一端O而与棒垂直的水平固定光滑轴转动,如图所示,今使棒从水平位置由静止开始自由下降,在棒摆到竖直位置的过程中,下述说法哪一种是正确的?(A)角速度从小到大,角加速度从大到小.(B)角速度从小到大,角加速度从小到大。
(C)角速度从大到小,角加速度从大到小。
(D)角速度从大到小,角加速度从小到大。
3。
(本题3分)5640一个物体正在绕固定的光滑轴自由转动,则[D ](A)它受热或遇冷伸缩时,角速度不变。
(B)它受热时角速度变大,遇冷时角速度变小。
(C)它受热或遇冷伸缩时,角速度均变大.(D)它受热时角速度变小,遇冷时角速度变大。
4、(本题3分)0292一轻绳绕在有水平轴的定滑轮上,滑轮质量为m ,绳下端挂一物体,物体所受重力为P,滑轮的角加速度为β,若将物体去掉而以与P 相等的力直接向下拉绳子,滑轮的角加速度β将 [ C ] (A)不变 (B )变小 (C )变大 (D )无法判断 5、(本题3分)5028如图所示,A 、B 为两个相同的绕着 轻绳的定滑轮,A 滑轮挂一质量为M 的物体,B 滑轮受拉力F ,而且F=Mg ,设A 、B 两滑轮的角加速度分别为βA 和βB ,不计滑轮轴的摩擦, 则有 [ C ] (A)βA =βB (B )βA >βB(C )βA <βB (D )开始时βA =βB ,以后βA <βB 6、(本题3分)0294刚体角动量守恒的充分而必要的条件是[ B ](A )刚体不受外力矩的作用。
(B)刚体所受合外力矩为零。
刚体定轴转动练习题及答案
刚体定轴转动练习题一、选择题1、一刚体以每分钟60转绕Z 轴做匀速转动(ωϖ沿Z 轴正方向)。
设某时刻刚体上一点P 的位置矢量为k j i r ϖϖϖϖ543++=,其单位为m 210-,若以s m /102-为速度单位,则该时刻P 点的速度为:( ) A υϖ=94.2i ϖ+125.6j ϖ+157.0k ϖ; B υϖ=34.4k ϖ; C υϖ=-25.1i ϖ+18.8j ϖ; D υϖ=-25.1i ϖ-18.8j ϖ;2、一均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴转动,如图所示。
今使棒从水平位置由静止开始自由下落,在棒摆动到竖直位置的过程中,下述说法哪一种是正确的?( )A 角速度从小到大,角加速度从大到小。
B 角速度从小到大,角加速度从小到大。
C 角速度从大到小,角加速度从大到小。
D 角速度从大到小,角加速度从小到大。
3、刚体角动量守恒的充分而必要的条件是:( )A 刚体不受外力矩的作用B 刚体所受合外力矩为零C 刚体所受的合外力和合外力矩均为零D 刚体的转动惯量和角速度均保持不变4、某刚体绕定轴做匀变速转动时,对于刚体上距转轴为r 出的任一质元m ∆来说,它的法向加速度和切向加速度分别用n a 和t a 来表示,则下列表述中正确的是 ( )(A )n a 、t a 的大小均随时间变化。
(B )n a 、t a 的大小均保持不变。
(C )n a 的大小变化, t a 的大小恒定不变。
(D )n a 的大小恒定不变, t a 的大小变化。
5、有两个力作用在一个有固定转轴的刚体:(1)这两个力都平行于轴作用时,它们对轴的合力矩一定是零;(2)这两个力都垂直于轴作用时,它们对轴的合力矩可能是零;(3)当这两个力的合力为零时,它们对轴的合力矩也一定是零;(1) 当这两个力对轴的合力矩为零时,它们的合力也一定是零。
A 只有(1)是正确的。
B (1),(2)正确,(3),(4)错误。
05刚体的定轴转动习题解答.
第五章刚体的定轴转动一选择题1. 一绕定轴转动的刚体,某时刻的角速度为ω,角加速度为α,则其转动加快的依据是:()A. α > 0B. ω > 0,α > 0C. ω < 0,α > 0D. ω > 0,α < 0解:答案是B。
2. 用铅和铁两种金属制成两个均质圆盘,质量相等且具有相同的厚度,则它们对过盘心且垂直盘面的轴的转动惯量。
()A. 相等;B. 铅盘的大;C. 铁盘的大;D. 无法确定谁大谁小解:答案是C。
简要提示:铅的密度大,所以其半径小,圆盘的转动惯量为:2/2Mr J =。
3. 一圆盘绕过盘心且与盘面垂直的光滑固定轴O 以角速度ω 按图示方向转动。
若将两个大小相等、方向相反但不在同一条直线的力F 1和F 2沿盘面同时作用到圆盘上,则圆盘的角速度ω的大小在刚作用后不久 ( )A. 必然增大B. 必然减少C. 不会改变D. 如何变化,不能确定解:答案是B 。
简要提示:力F 1和F 2的对转轴力矩之和垂直于纸面向里,根据刚体定轴转动定律,角加速度的方向也是垂直于纸面向里,与角速度的方向(垂直于纸面向外)相反,故开始时一选择题3图定减速。
4. 一轻绳绕在半径为r 的重滑轮上,轮对轴的转动惯量为J ,一是以力F 向下拉绳使轮转动;二是以重量等于F 的重物挂在绳上使之转动,若两种情况使轮边缘获得的切向加速度分别为a 1和a 2,则有: ( )A. a 1 = a 2B. a 1 > a 2C. a 1< a 2D. 无法确定解:答案是B 。
简要提示:(1) 由刚体定轴转动定律,1αJ Fr =和11αr a =,得:J Fr a /21= (2) 受力分析得:⎪⎩⎪⎨⎧===-2222ααr a J Tr ma T mg ,其中m 为重物的质量,T 为绳子的张力。
得:)/(222mr J Fr a +=,所以a 1 > a 2。
5. 一半径为R ,质量为m 的圆柱体,在切向力F 作用下由静止开始绕轴线作定轴转动,则在2秒内F 对柱体所作功为: ( )A. 4 F 2/ mB. 2 F 2 / mC. F 2 / mD. F 2 / 2 m解:答案是A 。
第5章 刚体的定轴转动 习题解答
由此可算出自施加制动闸开始到飞轮停止转动的时间为
0 900 2 3 7.06 s 60 40
这段时间内飞轮的角位移为
1 900 2 1 40 0t t 2 7.06 7.062 53.1 2 rad 2 60 2 3 可知在这段时间里,飞轮转了 53.1 转。 2 (2) 0 900 rad s 1 ,要求飞轮转速在 t 2 s 内减少一半,可知 60
M M f J 1
t1
。移去力矩 M 后,根据转动定律,有
M f J 2
2
联立解得此转轮的转动惯量
0 t2
J
M 20 17.36 kg m 2 1 1 1 100 2 1 60 10 100 t1 t2
由以上诸式求得角加速度
(2)
Rm1 rm2 g I m1 R 2 m2 r 2 0.2 2 0.1 2
1 1 10 0.202 4 0.102 2 0.202 2 0.102 2 2
9.8 6.13 rad s 2
T2 m2 r m2 g 2 0.10 6.13 2 9.8 20.8N T1 m1 g m1 R 2 9.8 2 0.2. 6.13 17.1N v 2a1h 2 Rh 2 6.13 0.2 2 2.21 m s 1
A
B
题 5-2 图 解: (1)先作闸杆和飞轮的受力分析图(如图).图中 N 、 N 是正压力,Fr 、Fr 是摩擦力,Fx 和 Fy 是杆在 A 点转轴处所受支承力, P 是轮的重力, R 是轮在 O 轴处所受支承力。 杆处于静止状态,所以对 A 点的合力矩应为零,设闸瓦厚度不计,则有
大学物理AⅠ刚体定轴转动习题答案及解法
《大学物理A Ⅰ》2010 刚体定轴转动习题、答案及解法一.选择题1.两个匀质圆盘A 和B 相对于过盘心且垂直于盘面的轴的转动惯量分别为A J 和B J ,若A B J J >,但两圆盘的的质量和厚度相同,如两盘的密度各为A ρ和B ρ,则( A )(A )B A ρρ> (B )B A ρρ<(C )B A ρρ= (D )不能确定B A ρρ的大小参考答案: B B A Ah R h R M ρπρπ22== A A A h M MR J ρπ222121== BB B h M MR J ρπ222121== 2.有两个半径相同、质量相等的细圆环。
1环的质量分布均匀。
2环的质量分布不均匀,它们对通过圆心并与环面垂直的轴的转动惯量分别为A J 和B J ,则( C )(A )21J J > (B )21J J <(C )21J J = (D )不能确定21J J 的大小 参考答案:∵ ⎰=Mdm r J 2 ∴ 21J J =3.一圆盘绕过圆心且于盘面垂直的光华固定轴O 以角速度1ω按图所示方向转动,将两个大小相等,方向相反的力F 沿盘面同时作用到圆盘上,则圆盘的角速度变为2ω,那么( C )(A )21ωω> (B )21ωω=(C )21ωω< (D )不能确定如何变化 参考答案:()12ωωJ J t r R F -=∆⋅- ()12ωω+∆⋅-=t r R JF4.均匀细棒OA 的质量为m 。
长为L ,可以绕通过其一端O 而与棒垂直的水平固定光滑轴转动,如图2所示,今使棒从水平位置由静止开始自由下落,在棒摆到竖直位置的过程中,下述说法那一种是正确的[ A ](A )合外力矩从大到小,角速度从小到大,角加速度从大到小。
(B )合外力矩从大到小,角速度从小到大,角加速度从小到大。
(C )合外力矩从大到小,角速度从大到小,角加速度从大到小。
(D )合外力矩从大到小,角速度从大到小,角加速度从小到大。
第3章_刚体的定轴转动xtjd
3 g 3 9.8 18.4 (rad/s 2 ) 4l 4 0.40
l 1 1 2 2 (2) mg ml 2 2 3
3 9.8 8.57 (rad/s) 0.40 l 0.4 0.98 (J) (3) AG Ep mg 0.5 9.8 2 2 3g l
r
1 Ek J 2 196 (J) 2
r
(a)
(b)
Ek Fs 98 2 196 (J)
mg
2mg (3) mg T ma 43.6 (rad/s 2 ) 1 ( M 2 m )r Tr J Mr 2 解得: 2 2s 29.5 (rag/s) a r r 重力的功提供滑轮和物体两者的 1 1 2 2 2 E J Mr 21.8 (J) k 动能,不相同。 2 4
3L s 32
完全弹性碰撞:
解得:
J mvL J 1 J 2 1 J 2 1 mv 2 2 2 2
1 J mL2 3
1 v 3 gL 2
1 mgs mv 2 2
3L s 8
第三章习题解答
A JB JA 1 1 A 2 (2) E k J A A ( J A J B ) 2 2 2 1 1 1 2 2 J A A J A ( A ) J A 2 2 2 1 J A A ( A ) 2
C B
第三章习题解答
3-22. 均匀细棒质量为0.5kg、长为0.40m,或绕垂直于棒的一端 的水平 轴在竖直平面内转动。先将棒放在水平位置,然后任其下 落。求:(1)当棒转过60° 时的角加速度;(2)下落到竖直位 置时的角速度;(3)此过程中力矩的功。 1 2 l (1) M G mg sin ml 解: 2 6 3
第5章 刚体的定轴转动 习题解答
对飞轮,由转动定律,有 式中负号表示摩擦力的力矩方向与角速度 方向相反。
联立解得
以 F 100 N 等代入上式,得
Fr R 2 (l1 l2 ) F J mRl1
5-1
第 5 章 刚体的定轴转动
2 0.40 (0.50 0.75) 40 100 rad s 2 60 0.25 0.50 3 t
由以上诸式求得角加速度
(2)
Rm1 rm2 g I m1 R 2 m2 r 2 0.2 2 0.1 2
1 1 10 0.202 4 0.102 2 0.202 2 0.102 2 2
9.8 6.13 rad s 2
T2 m2 r m2 g 2 0.10 6.13 2 9.8 20.8N T1 m1 g m1 R 2 9.8 2 0.2. 6.13 17.1N v 2a1h 2 Rh 2 6.13 0.2 2 2.21 m s 1
M M f J 1
t1
。移去力矩 M 后,根据转动定律,有
M f J 2
2
联立解得此转轮的转动惯量
0 t2
J
M 20 17.36 kg m 2 1 1 1 100 2 1 60 10 100 t1 t2
v0
6(2 3 3m M l J l 1M (1 2 ) (1 ) 2 ml 2 3m 12 m
(2) 由①式求得相碰时小球受到的冲量为:
I Fdt mv mv mv0
负号说明所受冲量的方向与初速度方向相反。
大学物理习题册及解答 第二版 刚体的定轴转动
Z
R
由平行轴定理,关于刀口的转动惯量为 J zo J zc MR 2 2MR 2
(2)由垂直轴定理有: J J 1 J MR2
由平行轴定理有:
J
xC
J
yC
2
MR2
zC
3
2 MR 2
PP
xC
(3)复摆的摆动周期为 T 2π J
2
mgl
T 2 2R T 2 3R
T1 4 1.1547
2.力矩的定义式为_M_____r__F_.
在力矩作用下,一个绕轴转动的物体作_变__角__动_量_运动. 若系统所受的合外力矩为零,则系统的____角__动_量_____守恒.
3 质量为20 kg、边长为1.0 m的均匀立方物体,放在水平地面 上.有一拉力F作用在该物体一顶边的中点,且与包含该顶边的 物体侧面垂直,如图所示.地面极粗糙,物体不可能滑动.若 要使该立方体翻转90°,则拉力F不能小于___
(A) 动量守恒.
(B) 机械能守恒.
(C) 对转轴的角动量守恒.
(D) 动量、机械能和角动量都守恒.
(E) 动量、机械能和角动量都不守恒.
7.花样滑冰运动员绕通过自身的竖直轴转动,开始时两臂伸开,
转动惯量为J0,角速度为0,然后她将两臂收回,使转动惯量减少
为J0
/3,这时她转动的角速度变为
(A) 1 (B) 1
分析:
2as
2 0
2 02
a r
0 r0
s
r
N
2
13.3圈
02 0.024rad / s2 2
4.一轻绳跨过一具有水平光滑轴、质量为M的定滑轮,绳的两端 分别悬有质量为m1和m2的物体(m1 >m2).绳与轮之间无相对滑 动.若某时刻滑轮沿逆时针方向转动,则绳中的张力
大学物理上练习册 第2章《刚体定轴转动》答案-2013
第2章 刚体定轴转动一、选择题1(B),2(B),3(C),4(C),5(C) 二、填空题(1). 62.5 1.67s (2). 4.0 rad/ (3). 0.25 kg ·m 2(4). mgl μ21参考解:M =⎰M d =()mgl r r l gm l μμ21d /0=⎰(5). 2E 0三、计算题1. 如图所示,半径为r 1=0.3 m 的A 轮通过皮带被半径为r 2=0.75 m 的B 轮带动,B 轮以匀角加速度π rad /s 2由静止起动,轮与皮带间无滑动发生.试求A 轮达到转速3000 rev/min 所需要的时间.解:设A 、B 轮的角加速度分别为βA 和βB ,由于两轮边缘的切向加速度相同, a t = βA r 1 = βB r 2则 βA = βB r 2 / r 1 A 轮角速度达到ω所需时间为()75.03.060/2300021⨯π⨯π⨯===r r t B Aβωβωs =40 s2.一砂轮直径为1 m 质量为50 kg ,以 900 rev / min 的转速转动.撤去动力后,一工件以 200 N 的正压力作用在轮边缘上,使砂轮在11.8 s 内停止.求砂轮和工件间的摩擦系数.(砂轮轴的摩擦可忽略不计,砂轮绕轴的转动惯量为21mR 2,其中m 和R 分别为砂轮的质量和半径).解:R = 0.5 m ,ω0 = 900 rev/min = 30π rad/s ,根据转动定律 M = -J β ① 这里 M = -μNR ②μ为摩擦系数,N 为正压力,221mR J =. ③ 设在时刻t 砂轮开始停转,则有: 00=+=t t βωω从而得 β=-ω0 / t ④将②、③、④式代入①式,得 )/(2102t mR NR ωμ-=- ∴ m =μR ω0 / (2Nt )≈0.5r1. 有一半径为R 的圆形平板平放在水平桌面上,平板与水平桌面的摩擦系数为μ,若平板绕通过其中心且垂直板面的固定轴以角速度ω0开始旋转,它将在旋转几圈后停止?(已知圆形平板的转动惯量221mR J =,其中m 为圆形平板的质量)解:在r 处的宽度为d r 的环带面积上摩擦力矩为r r r R mgM d 2d 2⋅π⋅π=μ总摩擦力矩 mgR M M R μ32d 0==⎰故平板角加速度 β =M /J设停止前转数为n ,则转角 θ = 2πn由 J /Mn π==4220θβω可得 g R MJ n μωωπ16/342020=π=2. 一转动惯量为J 的圆盘绕一固定轴转动,起初角速度为ω0.设它所受阻力矩与转动角速度成正比,即M =-k ω (k 为正的常数),求圆盘的角速度从ω0变为021ω时所需的时间.解:根据转动定律: J d ω / d t = -k ω ∴ t J kd d -=ωω两边积分:⎰⎰-=t t J k02/d d 100ωωωω得 ln2 = kt / J∴ t =(J ln2) / k5.一质量为m 的物体悬于一条轻绳的一端,绳另一端绕在一轮轴的轴上,如图所示.轴水平且垂直于轮轴面,其半径为r ,整个装置架在光滑的固定轴承之上.当物体从静止释放后,在时间t 内下降了一段距离S .试求整个轮轴的转动惯量(用m 、r 、t 和S 表示).解:设绳子对物体(或绳子对轮轴)的拉力为T ,则根据牛顿运动定律和转动定律得:mg T =ma ① T r =J β ② 由运动学关系有: a = r β ③ 由①、②、③式解得: J =m ( g -a ) r 2 / a ④ 又根据已知条件 v 0=0 ∴ S =221at , a =2S / t 2 ⑤将⑤式代入④式得:J =mr 2(Sgt22-1)3.如图所示,设两重物的质量分别为m 1和m 2,且m 1>m 2,定滑轮的半径为r ,对转轴的转动惯量为J ,轻绳与滑轮间无滑动,滑轮轴上摩擦不计.设开始时系统静止,试求t 时刻滑轮的角速度. 解:作示力图.两重物加速度大小a 相同,方向如图.m 1g -T 1=m 1a T 2-m 2g =m 2a 设滑轮的角加速度为β,则 (T 1-T 2)r =J β 且有 a =r β 由以上四式消去T 1,T 2得: ()()J r m m gr m m ++-=22121β 开始时系统静止,故t 时刻滑轮的角速度.()()Jrm m grt m m t ++-==22121 βω7.一根放在水平光滑桌面上的匀质棒,可绕通过其一端的竖直固定光滑轴O 转动.棒的质量为m = 1.5 kg ,长度为l = 1.0 m ,对轴的转动惯量为J = 231ml .初始时棒静止.今有一水平运动的子弹垂直地射入棒的另一端,并留在棒中,如图所示.子弹的质量为m '= 0.020 kg ,速率为v = 400 m ·s -1.试问:(1) 棒开始和子弹一起转动时角速度ω有多大?(2) 若棒转动时受到大小为M r = 4.0 N ·m 的恒定阻力矩作用,棒能转过多大的角度θ?解:(1) 角动量守恒:ω⎪⎭⎫ ⎝⎛'+='2231l m ml l m v ∴ l m m m ⎪⎭⎫ ⎝⎛'+'=31vω=15.4 rad ·s -1(2) 由转动定律,得: -M r =(231ml +2l m ')β0-ω 2=2βθ∴ rM l m m 23122ωθ⎪⎭⎫ ⎝⎛'+==15.4 rad8.如图所示,A 和B 两飞轮的轴杆在同一中心线上,设两轮的转动惯量分别为 J =10 kg ·m 2 和 J =20 kg ·m 2.开始时,A 轮转速为600 rev/min ,B 轮静止.C 为摩擦啮合器,其转动惯量可忽略不计.A 、B 分别与C 的左、右两个组件相连,当C 的左右组件啮合时,B 轮得到加速而A 轮减速,直到两轮的转速相等为止.设轴光滑,求: mm , lOm '(1) 两轮啮合后的转速n ; (2) 两轮各自所受的冲量矩.解:(1) 选择A 、B 两轮为系统,啮合过程中只有内力矩作用,故系统角动量守恒J A ωA +J B ωB = (J A +J B )ω,又ωB =0得: ω ≈ J A ωA / (J A +J B ) = 20.9 rad / s 转速 ≈n 200 rev/min (2) A 轮受的冲量矩⎰t MAd = J A (J A +J B ) = -4.19×10 2 N ·m ·s负号表示与A ωϖ方向相反. B 轮受的冲量矩⎰t MBd = J B (ω - 0) = 4.19×102 N ·m ·s方向与A ωϖ相同.4.一匀质细棒长为2L ,质量为m ,以与棒长方向相垂直的速度v 0在光滑水平面内平动时,与前方一固定的光滑支点O 发生完全非弹性碰撞.碰撞点位于棒中心的一侧L 21处,如图所示.求棒在碰撞后的瞬时绕O 点转动的角速度ω.(细棒绕通过其端点且与其垂直的轴转动时的转动惯量为231ml ,式中的m 和l 分别为棒的质量和长度.)解:碰撞前瞬时,杆对O 点的角动量为L m L x x x x L L 0202/002/30021d d v v v v ==-⎰⎰ρρρ式中ρ为杆的线密度.碰撞后瞬时,杆对O 点的角动量为ωωω2221272141234331mL L m L m J =⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛=因碰撞前后角动量守恒,所以 L m mL 022112/7v =ω ∴ ω = 6v 0 / (7L)10. 空心圆环可绕光滑的竖直固定轴AC 自由转动,转动惯量为J 0,环的半径为R ,初始时环的角速度为ω0.质量为m 的小球静止在环内最高处A 点,由于某种微小干扰,小球沿环向下滑动,问小球滑到与环心O 在同一高度的B 点和环的最低处的C 点时,环的角速度及小球相对于环的速度各为多大?(设环的内壁和小球都是光滑的,小球可视为质点,环截面半径r <<R .)解:选小球和环为系统.运动过程中所受合外力矩为零,角动量守恒.对地球、小球和环系统机械能守恒.取过环心的水平面为势能零点.小球到B 点时: J 0ω0=(J 0+mR 2)ω ①2121()22220200212121BR m J mgR J v ++=+ωωω ② 式中v B 表示小球在B 点时相对于地面的竖直分速度,也等于它相对于环的速度.由式①得:ω=J 0ω 0 / (J 0 + mR 2) 1分代入式②得222002J mR RJ gR B ++=ωv 当小球滑到C 点时,由角动量守恒定律,系统的角速度又回复至ω0,又由机械能守恒定律知,小球在C 的动能完全由重力势能转换而来.即: ()R mg m C 2212=v , gR C 4=v 四 研讨题1. 计算一个刚体对某转轴的转动惯量时,一般能不能认为它的质量集中于其质心,成为一质点,然后计算这个质点对该轴的转动惯量?为什么?举例说明你的结论。
[分享]第四章刚体的转动问题与习题解答
第四章 刚体的转动 问题与习题解答问题:4-2、4-5、4-94-2如果一个刚体所受合外力为零,其合力矩是否也一定为零?如果刚体所受合外力矩为零,其合外力是否也一定为零?答:一个刚体所受合外力为零,其合力矩不一定为零,如图a 所示。
刚体所受合外力矩为零,其合外力不一定为零,例如图b 所示情形。
4-5为什么质点系动能的改变不仅与外力有关,而且也与内力有关,而刚体绕定轴转动动能的改变只与外力矩有关,而与内力矩无关?答:因为合外力对质点所作的功,等于质点动能的增量;而质点系中内力一般也做功,故内力对质点系的动能的增量有贡献。
而在刚体作定轴转动时,任何一对内力对转轴的力矩皆为一对大小相等、方向相反的力矩,且因定轴转动时刚体转过的角度d θ都一样,故其一对内力矩所作的功()0inij ij ji ij ji W M d M d M M d θθθ=+=+=,其内力功总和也为零,因而根据刚体定轴转动的动能定理可知:内力矩对其转动动能的增量无贡献。
4-9一人坐在角速度为0ω的转台上,手持一个旋转的飞轮,其转轴垂直地面,角速度为ω'。
如果突然使飞轮的转轴倒转,将会发生什么情况?设转台和人的转动惯量为J ,飞轮的转动惯量为J '。
答:(假设人坐在转台中央,且飞轮的转轴与转台的转轴重合)视转台、人和飞轮为同一系统。
(1)如开始时飞轮的转向与转台相同,则系统相对于中心轴的角动量为:10L J J ωω''=+飞轮转轴快速倒转后,飞轮的角速度大小还是ω',但方向与原来相反;如设转台此时的角速度为1ω,则系统的角动量为:21L J J ωω''=-在以上过程中,外力矩为零,系统的角动量守恒,所以有:10J J J J ωωωω''''-=+即 102J Jωωω''=+,转台的转速变大了。
(2)如开始时飞轮的转向与转台相反,则系统相对于中心轴的角动量为:10L J J ωω''=-飞轮转轴快速倒转后,飞轮的角速度大小还是ω',但方向与原来相反;如设转台此时的角速度为1ω,则系统的F 1F 3ab角动量为:21L J J ωω''=+在以上过程中,外力矩为零,系统的角动量守恒,所以有:10J J J J ωωωω''''+=-即 102J Jωωω''=-,转台的转速变慢了。
《刚体定轴转动》答案
第2章 刚体定轴转动一、选择题1(B),2(B),3(A),4(D),5(C),6(C),7(C),8(C),9(D),10(C) 二、填空题(1). v ≈15.2 m /s ,n 2=500 rev /min (2). 62.5 1.67s (3). g / l g / (2l ) (4). 5.0 N ·m (5). 4.0 rad/s (6). 0.25 kg ·m 2 (7).Ma 21(8). mgl μ21参考解:M =⎰M d =()mgl r r l gm l μμ21d /0=⎰(9).()212mRJ mr J ++ω(10).l g /sin 3θω=三、计算题1. 有一半径为R 的圆形平板平放在水平桌面上,平板与水平桌面的摩擦系数为μ,若平板绕通过其中心且垂直板面的固定轴以角速度ω0开始旋转,它将在旋转几圈后停止?(已知圆形平板的转动惯量221mR J =,其中m 为圆形平板的质量) 解:在r 处的宽度为d r 的环带面积上摩擦力矩为r r r R mgM d 2d 2⋅π⋅π=μ总摩擦力矩 mgR M M R μ32d 0==⎰故平板角加速度 β =M /J设停止前转数为n ,则转角 θ = 2πn由 J /Mn π==4220θβω可得 g R MJ n μωωπ16/342020=π=2. 如图所示,一个质量为m 的物体与绕在定滑轮上的绳子相联,绳子质量可以忽略,它与定滑轮之间无滑动.假设定滑轮质量为M 、半径为R ,其转动惯量为221MR ,滑轮轴光滑.试求该物体由静止开始下落的过程中,下落速度与时间的关系.解:根据牛顿运动定律和转动定律列方程对物体: mg -T =ma ① 对滑轮: TR = J β ② 运动学关系: a =R β ③ 将①、②、③式联立得 a =mg / (m +21M ) ∵ v 0=0,∴ v =at =mgt / (m +21M )3. 为求一半径R =50 cm 的飞轮对于通过其中心且与盘面垂直的固定转轴的转动惯量,在飞轮上绕以细绳,绳末端悬一质量m 1=8 kg 的重锤.让重锤从高2 m 处由静止落下,测得下落时间t 1=16 s .再用另一质量m 2=4 kg 的重锤做同样测量,测得下落时间t 2=25 s .假定摩擦力矩是一个常量,求飞轮的转动惯量.解:根据牛顿运动定律和转动定律,对飞轮和重物列方程,得 TR -M f =Ja / R ① mg -T =ma ② h =221at ③ 则将m 1、t 1代入上述方程组,得a 1=2h /21t =0.0156 m / s 2 T 1=m 1 (g -a 1)=78.3 N J =(T 1R -M f )R / a 1 ④ 将m 2、t 2代入①、②、③方程组,得a 2=2h /22t =6.4×10-3 m / s 2 T 2=m 2(g -a 2)=39.2 NJ = (T 2R -M f )R / a 2 ⑤由④、⑤两式,得 J =R 2(T 1-T 2) / (a 1-a 2)=1.06×103 kg ·m 24. 一转动惯量为J 的圆盘绕一固定轴转动,起初角速度为ω0.设它所受阻力矩与转动角速度成正比,即M =-k ω (k 为正的常数),求圆盘的角速度从ω0变为021ω时所需的时间.解:根据转动定律: J d ω / d t = -k ω ∴ t J kd d -=ωω两边积分:⎰⎰-=t t J k 02/d d 100ωωωω得 ln2 = kt / J ∴ t =(J ln2) / k5. 某人站在水平转台的中央,与转台一起以恒定的转速n 1转动,他的两手各拿一个质量为am 的砝码,砝码彼此相距l 1 (每一砝码离转轴21l 1),当此人将砝码拉近到距离为l 2时(每一砝码离转轴为21l 2),整个系统转速变为n 2.求在此过程中人所作的功.(假定人在收臂过程中自身对轴的转动惯量的变化可以忽略)解:(1) 将转台、砝码、人看作一个系统,过程中人作的功W 等于系统动能之增量:W =∆E k =212210222204)21(214)21(21n ml J n ml J π+-π+2 这里的J 0是没有砝码时系统的转动惯量.(2) 过程中无外力矩作用,系统的动量矩守恒:2π(J 0+2121ml ) n 1 = 2π (J 0+2221ml ) n 2 ∴ ()()1222212102n n n l n l m J --=(3) 将J 0代入W 式,得 ()2221212l l n mn W -π=6. 一质量均匀分布的圆盘,质量为M ,半径为R ,放在一粗糙水平面上(圆盘与水平面之间的摩擦系数为μ),圆盘可绕通过其中心O 的竖直固定光滑轴转动.开始时,圆盘静止,一质量为m 的子弹以水平速度v 0垂直于圆盘半径打入圆盘边缘并嵌在盘边上,求(1) 子弹击中圆盘后,盘所获得的角速度. (2) 经过多少时间后,圆盘停止转动. (圆盘绕通过O 的竖直轴的转动惯量为221MR ,忽略子弹重力造成的摩擦阻力矩)解:(1) 以子弹和圆盘为系统,在子弹击中圆盘过程中,对轴O 的角动量守恒.m v 0R =(21MR 2+mR 2)ω R m M m ⎪⎭⎫ ⎝⎛+=210v ω(2) 设σ表示圆盘单位面积的质量,可求出圆盘所受水平面的摩擦力矩的大小 为 ⎰π⋅=Rf r rg r M 0d 2σμ=(2 / 3)πμσgR 3=(2 / 3)μMgR设经过∆t 时间圆盘停止转动,则按角动量定理有 -M f ∆t =0-J ω=-(21MR 2+mR 2)ω=- m v 0R ∴ ()Mg m MgR R m M R m t fμμ2v 33/2v v 000===∆mRO0v7.一匀质细棒长为2L ,质量为m ,以与棒长方向相垂直的速度v 0在光滑水平面内平动时,与前方一固定的光滑支点O 发生完全非弹性碰撞.碰撞点位于棒中心的一侧L 21处,如图所示.求棒在碰撞后的瞬时绕O 点转动的角速度ω.(细棒绕通过其端点且与其垂直的轴转动时的转动惯量为231ml ,式中的m 和l 分别为棒的质量和长度.)解:碰撞前瞬时,杆对O 点的角动量为L m L x x x x L L 0202/002/30021d d v v v v ==-⎰⎰ρρρ式中ρ为杆的线密度.碰撞后瞬时,杆对O 点的角动量为ωωω2221272141234331mL L m L m J =⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛=因碰撞前后角动量守恒,所以 L m mL 022112/7v =ω ∴ ω = 6v 0 / (7L)8. 长为l 的匀质细杆,可绕过杆的一端O 点的水平光滑固定轴转动,开始时静止于竖直位置.紧挨O 点悬一单摆,轻质摆线的长度也是l ,摆球质量为m .若单摆从水平位置由静止开始自由摆下,且摆球与细杆作完全弹性碰撞,碰撞后摆球正好静止.求: (1) 细杆的质量.(2) 细杆摆起的最大角度θ.解:(1) 设摆球与细杆碰撞时速度为v 0,碰后细杆角速度为ω,系统角动量守恒 得: J ω = m v 0l由于是弹性碰撞,所以单摆的动能变为细杆的转动动能2202121ωJ m =v 代入J =231Ml ,由上述两式可得 M =3m (2) 由机械能守恒式mgl m =2021v 及 ()θωcos 121212-=Mgl J 并利用(1) 中所求得的关系可得 31arccos =θ四 研讨题1. 计算一个刚体对某转轴的转动惯量时,一般能不能认为它的质量集中于其质心,成为一质点,然后计算这个质点对该轴的转动惯量?为什么?举例说明你的结论。
大学物理-刚体的定轴转动-习题和答案
第4章 刚体的定轴转动 习题及答案1.刚体绕一定轴作匀变速转动,刚体上任一点是否有切向加速度?是否有法向加速度?切向和法向加速度的大小是否随时间变化?答:当刚体作匀变速转动时,角加速度β不变。
刚体上任一点都作匀变速圆周运动,因此该点速率在均匀变化,v l ω=,所以一定有切向加速度t a l β=,其大小不变。
又因该点速度的方向变化,所以一定有法向加速度2n a l ω=,由于角速度变化,所以法向加速度的大小也在变化。
2. 刚体绕定轴转动的转动定律和质点系的动量矩定理是什么关系?答:刚体是一个特殊的质点系,它应遵守质点系的动量矩定理,当刚体绕定轴Z 转动时,动量矩定理的形式为zz dL M dt=,z M 表示刚体对Z 轴的合外力矩,z L 表示刚体对Z 轴的动量矩。
()2z i i L m l I ωω==∑,其中()2i i I m l =∑,代表刚体对定轴的转动惯量,所以()z z dL d d M I I I dt dt dtωωβ====。
既 z M I β=。
所以刚体定轴转动的转动定律是质点系的动量矩定理在刚体绕定轴转动时的具体表现形式,及质点系的动量矩定理用于刚体时在刚体转轴方向的分量表达式。
3.两个半径相同的轮子,质量相同,但一个轮子的质量聚集在边缘附近,另一个轮子的质量分布比较均匀,试问:(1)如果它们的角动量相同,哪个轮子转得快?(2)如果它们的角速度相同,哪个轮子的角动量大?答:(1)由于L I ω=,而转动惯量与质量分布有关,半径、质量均相同的轮子,质量聚集在边缘附近的轮子的转动惯量大,故角速度小,转得慢,质量分布比较均匀的轮子转得快;(2)如果它们的角速度相同,则质量聚集在边缘附近的轮子角动量大。
4.一圆形台面可绕中心轴无摩擦地转动,有一玩具车相对台面由静止启动,绕轴作圆周运动,问平台如何运动?如小汽车突然刹车,此过程角动量是否守恒?动量是否守恒?能量是否守恒?答:玩具车相对台面由静止启动,绕轴作圆周运动时,平台将沿相反方向转动;小汽车突然刹车过程满足角动量守恒,而能量和动量均不守恒。
大学物理03章试题库刚体的定轴转动
《大学物理》试题库管理系统内容第三章 刚体的定轴转动1 题号:03001 第03章 题型:选择题 难易程度:较难试题: 某刚体绕定轴作匀变速转动,对刚体上距转轴为r 处的任一质元的法向加速度n a 和切向加速度τa 来说正确的是( ).A.n a 的大小变化,τa 的大小保持恒定B.n a 的大小保持恒定,τa 的大小变化C.n a 、τa 的大小均随时间变化D.n a 、τa 的大小均保持不变 答案: A2 题号:03002 第03章 题型:选择题 难易程度:适中试题: 有A 、B 两个半径相同、质量也相同的细环,其中A 环的质量分布均匀,而B 环的质量分布不均匀.若两环对过环心且与环面垂直轴的转动惯量分别为B A J J 和,则( ).A. B A J J =B. B A J J >C. B A J J <D. 无法确定B A J J 和的相对大小 答案: A3 题号:03003 第03章 题型:选择题 难易程度:适中试题: 一轻绳绕在具有水平转轴的定滑轮上,绳下端挂一物体,物体的质量为m ,此时滑轮的角加速度为β,若将物体取下,而用大小等于mg 、方向向下的力拉绳子,则滑轮的角加速度将( ).A.变大B.不变C.变小D.无法确定 答案: A4 题号:03004 第03章 题型:选择题 难易程度:适中试题: 一人张开双臂手握哑铃坐在转椅上,让转椅转动起来,若此后无外力矩作用,则当此人收回双臂时,人和转椅这一系统的( ).A.系统的角动量保持不变B.角动量加大C.转速和转动动能变化不清楚D.转速加大,转动动能不变 答案: A5 题号:03005 第03章 题型:选择题 难易程度:较难试题: 某力学系统由两个质点组成,它们之间仅有引力作用.若两质点所受外力的矢量和为零,则此力学系统( ).A.动量守恒,但机械能和角动量是否守恒不能确定B.动量和角动量守恒,但机械能是否守恒不能确定C.动量、机械能守恒,但角动量是否守恒不能确定D.动量、机械能以及对某一转轴的角动量一定守恒 答案: A6 题号:03006 第03章 题型:选择题 难易程度:较难试题: 如图所示,两个质量均为m 、半径均为R 的匀质圆盘形滑轮的两端,用轻绳分别系着质量为m 和2m 的小物块.若系统从静止释放,则释放后两滑轮之间绳内的张力为( ). A.mg 811 B.mg 23C.mg 21D.mg答案: A7 题号:03007 第03章 题型:选择题 难易程度:较难试题: 某质点受的力为kx e F F -=0,若质点从静止开始运动(即,0=x 时0=v ),则该质点所能达到的最大动能为( ).A.k F 0 B. k eF0 C. k e kF 0 D. 0kF 答案: A8 题号:03008 第03章 题型:选择题 难易程度:适中试题: 如图所示,在水平光滑的圆盘上,有一质量为m 的质点,拴在一根穿过圆盘中心光滑小孔的轻绳上.开始时质点离中心的距离为r ,并以角速度? 转动.今以均匀速率向下拉绳,将质点拉至离中心2r 处时,拉力做的功为( ).A.2223ωmr B. 2225ωmr C. 2227ωmr D. 2221ωmr答案: A9 题号:03009 第03章 题型:选择题 难易程度:适中试题: 已知地球的质量为m ,太阳的质量为M ,地心与日心的距离为R ,引力常数为G ,则地球绕太阳作圆周运动的角动量为( ).A.GMR mB.R G MmC.R GMmD.RGMm 2 答案: A10 题号:03010 第03章 题型:选择题 难易程度:适中试题: 卫星绕地球做椭圆运动,地心为椭圆的一个焦点,在运动过程中,下列叙述中正确的是( ).A.角动量守恒B.动量守恒C.机械能不守恒D.动量和角动量都不守恒 答案: A11 题号:03011 第03章 题型:选择题 难易程度:适中试题: 三个完全相同的轮子可绕一公共轴转动,角速度的大小都相同,但其中一轮的转动方向与另外两轮的转动方向相反.若使三个轮子靠近啮合在一起,则系统的动能与原来三个轮子的总动能相比为( ).A.减小到1/9B.减小到1/3C.增大9倍D.增大3倍 答案: A12 题号:03012 第03章 题型:选择题 难易程度:较难 试题: 下列说法中,错误的是( ).A.对于给定的刚体而言,他的质量和形状是一定的,则其转动惯量也是唯一确定的B.刚体定轴转动的转动定律为βJ M =,其中M 、J 和β均是对同一转轴而言的C.刚体的转动动能等于刚体上各质元的动能之和D.刚体作定轴转动时,其上各点的角速度相同而线速度不同 答案: A13 题号:03013 第03章 题型:选择题 难易程度:适中 试题: 下列说法中,正确的是( ).A.作用在定轴转动刚体上的合力矩越大,刚体转动的角加速度越大B.作用在定轴转动刚体上的合力矩越大,刚体转动的角速度就越大C.作用在定轴转动刚体上的合力矩为零,刚体转动的角速度就为零D.作用在定轴转动刚体上的合力越大,刚体转动的角加速度就越大答案: A14 题号:03014 第03章 题型:选择题 难易程度:难试题: 轮圈半径为R 、其质量M 均匀分布在轮缘上,长为R 、质量为m 的匀质辐条固定在轮心和轮缘间,辐条共有2N 根.今若将辐条数减少N 根,但保持轮对通过轮心、垂直于轮平面轴的转动惯量不变,则轮圈的质量应为( ).A.M m N +3 B.M m N +6 C.M m N +12 D. M m N +32 答案: A15 题号:03015 第03章 题型:选择题 难易程度:适中试题: 如图一质量为m 的匀质杆长为l ,绕铅直轴O O '成θ角转动,其转动惯量为( ).A.θ22sin 31mlB.231mlC.θ22sin 41mlD.2121ml 答案: A16 题号:03016 第03章 题型:选择题 难易程度:适中试题: 如图一质量为m 的匀质杆长为l ,绕铅直轴O O '成θ角转动,则匀质杆所受的合外力矩为( ).A.θsin 21mgl B.θcos 21mgl C.θsin mgl D.θcos mgl 答案: A17 题号:03017 第03章 题型:选择题 难易程度:适中 试题: 如图一质量为m 的匀质杆长为l ,绕铅直轴O O '成θ角转动,则匀质杆的角动量为( ).A.θω22sin 31mlB.ω231mlC.ω2121mlD.θω22sin 41ml 答案: A18 题号:03018 第03章 题型:选择题 难易程度:难试题: 如图一质量为m 的匀质杆长为l ,绕铅直轴O O '成θ角转动,则匀质杆的角加速度为( ).A.θsin 23l g B.l g θsin 23C.l g θsin 32D.θsin 32l g答案: A19 题号:03019 第03章 题型:选择题 难易程度:难试题: 如图所示,两根长度和质量分别相等的细杆分别绕着光滑的水平轴1O 和2O 转动,设他们自水平位置从静止释放时,角加速度分别为1β和2β,则二者角加速度之间的关系为( ).A. 21ββ=B.21ββ>C. 21ββ<D.不能确定 答案: A20 题号:03020 第03章 题型:选择题 难易程度:难试题: 如图所示,光滑的水平桌面上有一长为2l 、质量为m 的匀质细杆,可绕通过中点O 、且与杆垂直的竖直轴自由转动,开始时细杆静止.现有一质量为m 的小球,沿桌面正对着杆的一端,以速度v ρ运动,并与杆的A 端碰撞后与杆粘在一起转动,则这一系统碰撞后的转动角速度为( ).A. l v43 B. l v 2C. l v 32D. lv54 答案: A21 题号:03021 第03章 题型:填空题 难易程度:容易试题: 刚体是一理想模型,他虽然有一定的形状和大小,但形状和大小永远保持 . 答案: 不变22 题号:03022 第03章 题型:填空题 难易程度:容易 试题: 刚体定轴转动的运动方程的表示式是 . 答案: )(t θθ=23 题号:03023 第03章 题型:填空题 难易程度:较难试题: 把不涉及转动的原因,只研究如何描述刚体的定轴转动的问题称为 .1Ol O32lOl 2 mv ρm A答案: 刚体定轴转动运动学24 题号:03024 第03章 题型:填空题 难易程度:较难 试题: 把研究刚体定轴转动原因的问题称为 . 答案: 刚体定轴转动的动力学25 题号:03025 第03章 题型:填空题 难易程度:适中试题: 刚体的转动惯量取决于刚体的总质量、质量分布和 等三个因素. 答案: 转轴的位置26 题号:03026 第03章 题型:填空题 难易程度:较难试题: 一飞轮以1min rad 300-⋅的转速转动,转动惯量为2m kg 5⋅,现施加一恒定的制动力矩,使飞轮在2s 内停止转动,则该恒定制动力矩的大小为 . 答案: m N ⋅=5.78M27 题号:03027 第03章 题型:填空题 难易程度:适中 试题: 如图所示,质量为1m 和2m 的均匀细棒长度均为2l ,在两棒对接处嵌有一质量为m 的小球,对过A 的轴而言,若2222141127121ml l m l m J A ++=,则B J 为 . 答案:2222141127121ml l m l m ++ 28 题号:03028 第03章 题型:填空题 难易程度:较难试题: 质量为m 的匀质细杆,长为l ,以角速度ω绕过杆的端点且垂直于杆的水平轴转动,则杆的动量大小为 . 答案:ωml 2129 题号:03029 第03章 题型:填空题 难易程度:适中试题: 质量为m 的匀质细杆,长为l ,以角速度ω绕过杆的端点且垂直于杆的水平轴转动,则杆绕转动轴的动能为 . 答案:2261ωml 30 题号:03030 第03章 题型:填空题 难易程度:适中试题: 质量为m 的匀质细杆,长为l ,以角速度ω绕过杆的端点且垂直于杆的水平轴转动,则杆绕转动轴的角动量大小为 .A B答案: ω231ml31 题号:03031 第03章 题型:填空题 难易程度:适中试题: 若飞轮从静止开始作匀加速转动,在最初2min 转了3600转,则飞轮的角加速度为 . 答案: 2s rad -⋅=14.3β32 题号:03032 第03章 题型:填空题 难易程度:较难试题: 若飞轮从静止开始作匀加速转动,在最初1min 转了3600转,则飞轮在第50秒末的角速度为 . 答案: 1s rad -⋅=314ω33 题号:03033 第03章 题型:填空题 难易程度:适中试题: 若某飞轮绕其中心轴转动的运动方程为t t t 4223+-=θ,其中θ的单位为rad ,t 的单位为s ,则飞轮在第2秒末的角加速度为 . 答案: 2s rad -⋅=12β34 题号:03034 第03章 题型:填空题 难易程度:较难试题: 若某飞轮绕其中心轴转动的运动方程为t t t 4223+-=θ,其中θ的单位为rad ,t 的单位为s ,则飞轮从s 2=t 到s 4=t 这段时间内的平均角加速度为 . 答案: 2s rad -⋅=12β35 题号:03035 第03章 题型:填空题 难易程度:较难试题: 若质量为m 、半径为R 的匀质薄圆盘绕过中心且与盘面垂直轴的转动惯量为221mR ,则质量为m 、半径为R 、高度为h 的匀质圆柱体绕过中心且与端面垂直轴的转动惯量为 . 答案:221mR 36 题号:03036 第03章 题型:填空题 难易程度:适中试题: 一转动惯量为J 的刚体绕某固定轴转动,当他在外力矩M ρ的作用下,角速度从1ω变为2ω,则该刚体在此过程)(21t t →中所受的冲量矩⎰21t t dt M ρ等于 .答案: 12ωωJ J -37 题号:03037 第03章 题型:填空题 难易程度:适中试题: 一转动惯量为J 的刚体绕某固定轴转动,当他在外力矩M ρ的作用下,角速度从1ω变为2ω,则该刚体在此过程)(21θθ→中力矩所做的功⎰21θθθMd 等于 .答案:21222121ωωJ J - 38 题号:03038 第03章 题型:填空题 难易程度:容易 试题: 刚体角动量守恒的条件为 .答案: 0=外M ρ39 题号:03039 第03章 题型:填空题 难易程度:较难试题: 一质量为m 的粒子,相对于坐标原点处于j y i x r ρρρ+=点,速度为j v i v v y x ρρρ+=,则该质点相对于坐标原点的角动量为 .答案: k yv xv m L x y ρρ)(-=40 题号:03040 第03章 题型:填空题 难易程度:适中试题: 一飞轮的转动惯量为J ,0=t 时角速度为0ω,此后飞轮经历一制动过程,受到的阻力矩的大小与角速度成正比,即ωk M -=,式中k 为正的常量.当3ωω=时,飞轮的角加速度为 . 答案: Jk 30ωβ-= 41 题号:03041 第03章 题型:计算题 难易程度:适中 试题: 一条缆索绕过一个定滑轮拉动升降机,如图所示.滑轮的半径为m 5.0=r ,如果升降机从静止开始以加速度2s m 4.0-⋅=a 匀加速上升,求:(1)滑轮的角加速度;(2)开始上升后t = 5s 末滑轮的角速度; (3)在这5秒内滑轮转过的圈数;(4)开始上升后s 1='t 末滑轮边缘上一点的加速度(假定缆索和滑轮之间不打滑).答案: 为了图示清晰,将滑轮放大为如图所示.(1)由于升降机的加速度和滑轮边缘上的一点的切向加速度相等,所以滑轮的角加速度为2s rad 8.0-⋅===rar a τβa ρv ρ(2)由于00=ω,所以5秒末滑轮的角速度为1s rad 0.4-⋅==t βω(3)在这5秒内滑轮转过的角度为rad 10212==t βθ 所以在这5秒内滑轮转过的圈数为圈6.1210==πN (4)结合题意,由图可以看出2s m 4.0-⋅==a a τ2222s m 32.0-⋅===t r r a n βω由此可得滑轮边缘上一点在升降机开始上升后s 1='t 时的加速度为222s m 51.0-⋅=+='τa a a n这个加速度的方向与滑轮边缘的切线方向的夹角为117.384.032.0tan tan =⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫⎝⎛=--ταa a n 42 题号:03042 第03章 题型:计算题 难易程度:难试题: 一绳跨过定滑轮,两端分别系有质量分别为m 和M 的物体,且m M >.滑轮可看作是质量均匀分布的圆盘,其质量为m ',半径为R了摩擦阻力矩阻M 的作用.设绳不可伸长且与滑轮间无相对滑动.求物体的加速度及绳中的张力.答案: 力矩的作用,因此滑轮两侧绳子中的拉力一定不相等.设两侧绳子中的拉力分别为1T 和2T ,则滑轮及两侧物体的受力如图所示,其中11T T '=,22T T '=(作用力与反作用力大小相等). 因为m M >,所以左侧物体上升,右侧物体下降.设其加速度分别为1a 和2a ,据题意可知,绳子不可伸长,则21a a =,令它们为a .滑轮以顺时针转动,设其角加速度为β,则摩擦阻力矩阻M 的指向为逆时针方向,如图所示.对于上下作平动的两物体,可以视为质点,由牛顿第二运动定律得⎩⎨⎧=-=-Ma T Mg M mamg T m 21:对:对 (1) a ρ1a滑轮作定轴转动,受到的外力矩分别为R T 2'和R T 1'及阻M (轴对滑轮的支持力N 通过了转轴,其力矩为零).若以顺时针方向转的力矩为正,逆时针转的方向为负,则由刚体定轴转动的转动定律得ββ⎪⎭⎫⎝⎛'==--21221R m J M R T R T 阻 (2)据题意可知,绳与滑轮间无相对滑动,所以滑轮边缘上一点的切向加速度和物体的加速度相等,即βτR a a == (3)联立(1)、(2)、(3)三个方程,得2)(m m M R M g m M a '++--=阻2)22()(1m m M R mM mg m M a g m T '++-'+=+=阻2)22()(2m m M R MM Mg m m a g M T '+++'+=-=阻43 题号:03043 第03章 题型:计算题 难易程度:适中试题: 求长为L ,质量为m 的均匀细棒AB 的转动惯量.(1)对于通过棒的一端与棒垂直的轴;(2)对于通过棒的中点与棒垂直的轴.答案: (1)如图所示,以过A 端垂直于棒的o o '为轴,沿棒长方向为x 轴,原点在轴上,在棒上取一长度元dx ,则这一长度元的质量为dx L m dm =,所以 202231mL dx L m x dm x J L m =⎪⎭⎫ ⎝⎛==⎰⎰端点 (2)同理,如图所示,以过中点垂直于棒的o o '为轴,沿棒长方向为x 轴,原点在轴上,在棒上取一长度元dx ,因此22222121mL dx L m x dm x J L L m=⎪⎭⎫ ⎝⎛==⎰⎰-中点 由此可见,对于同一均匀细棒,转轴的位置不同,棒的转动惯量不同.o AA44 题号:03044 第03章 题型:计算题 难易程度:容易试题: 试求质量为m 、半径为R 的匀质圆盘对垂直于平面且过中心轴的转动惯量. 答案: 已知条件如图所示.由于质量连续分布,所以220222mR dl R m R dm R J Rm=⎪⎭⎫ ⎝⎛==⎰⎰ππ 45 题号:03045 第03章 题型:计算题 难易程度:适中试题: 试求质量为m 、半径为R 的匀质圆环对垂直于平面且过中心轴的转动惯量. 答案: 已知条件如图所示.由于质量连续分布,设圆盘的厚度为l ,则圆盘的质量密度为lR m2πρ=.因圆盘可以看成是许多有厚度的圆环组成,所以()ρππρl R ldr r r dm r J R m 4022212=⋅⋅==⎰⎰代入圆盘的质量密度,得221mR J =46 题号:03046 第03章 题型:计算题 难易程度:较难试题: 如图所示,一质量为M 、半径为R 的匀质圆盘形滑轮,可绕一无摩擦的水平轴转动.圆盘上绕有质量可不计的绳子,绳子一端固定在滑轮上,另一端悬挂一质量为m 的物体,问物体由静止落下h 高度时,物体的速率为多少? 答案: 法一 用牛顿第二运动定律及转动定律求解.受力分析如图所示,对物体m 用牛顿第二运动定律得ma T mg =- (1)对匀质圆盘形滑轮用转动定律有βJ R T =' (2)物体下降的加速度的大小就是转动时滑轮边缘上切向加速度,所以βR a = (3)又由牛顿第三运动定律得T T '=(4)物体m 落下h 高度时的速率为ah v 2= (5)dml因为221MR J =,所以联立以上(1)、(2)、(3)、(4)和(5)式,可得物体m 落下h 高度时的速率为mM mghv 22+=(小于物体自由下落的速率gh 2).解法二 利用动能定理求解.如图所示,对于物体m 利用质点的动能定理有222121mv mv Th mgh -=- (6) 其中0v 和v 是物体的初速度和末速度.对于滑轮利用刚体定轴转动的转动定理有222121ωωθJ J TR -=∆ (7) 其中θ∆是在拉力矩TR 的作用下滑轮转过的角度,0ω和ω是滑轮的初角速度和末角速度.由于滑轮和绳子间无相对滑动,所以物体落下的距离应等于滑轮边缘上任意一点所经过的弧长,即θ∆=R h .又因为00=v ,00=ω,R v ω=,221MR J =,所以联立(6)和(7)式,可得物体m 落下h 高度时的速率为mM mghv 22+=.解法三 利用机械能守恒定律求解.若把滑轮、物体和地球看成一个系统,则在物体落下、滑轮转动的过程中,绳子的拉力T 对物体做负功(Th -),T '对滑轮做正功(Th )即内力做功的代数和为零,所以系统的机械能守恒.若把系统开始运动而还没有运动时的状态作为初始状态,系统在物体落下高度h 时的状态作为末状态,则0212121222=-+⎪⎭⎫ ⎝⎛⋅⎪⎭⎫ ⎝⎛mgh mv R v MR 所以物体m 落下h 高度时的速率为mM mghv 22+=.47 题号:03047 第03章 题型:计算题 难易程度:容易试题: 哈雷慧星绕太阳运行的轨道是一个椭圆,如图所示,它离太阳最近的距离是m 1075.810⨯=近日r ,此时速率为-14s m 1046.5⋅⨯=近日v ;它离太阳最远时的速率为-12s m 1008.9⋅⨯=远日v ,这时它离太阳的距离?远日=r答案: 彗星受太阳引力的作用,而引力通过了太阳,所以对太阳的力矩为零,故彗星在运行的过程中角动量守恒.于是有远日远日近日近日v r v r ρρρρ⨯=⨯因为远日远日近日近日,v r v r ρρρρ⊥⊥,所以有远日近日近日远日v v r r =代入数据,得m 1026.512⨯=远日r48 题号:03048 第03章 题型:计算题 难易程度:较难试题: 如图所示,一个长为l 、质量为M 的匀质杆可绕支点o 自由转动.一质量为m 、速率为v 的子弹以与水平方向成060角的方向射入杆内距支点为a 处,使杆的偏转角为030.问子弹的初速率为多少?答案: 把子弹和匀质杆作为一个系统,由于该系统所受的外力有重力及轴对杆的约束力,在子弹射入杆的极短过程中,重力和约束力都通过了转轴o ,因此它们对转轴的力矩均为零,故该系统的角动量守恒.设子弹射入杆后与杆一同前进的角速度为ω,则碰撞前的角动量等于碰撞后的角动量,即 ()ω⎪⎭⎫ ⎝⎛+=2203160cos ma Ml a v m子弹在射入杆后与杆一起摆动的过程中只有重力做功,所以由子弹、杆和地球组成的系统机械能守恒,因此有()()0022230cos 1230cos 13121-⋅+-=⎪⎭⎫ ⎝⎛+l Mg mga ma Ml ω 联立上述这两个方程得子弹的初速率为()()22326322ma Ml ma Ml g mav ++-=49 题号:03049 第03章 题型:计算题 难易程度:较难试题: 如图所示,一根质量为M 、长为2 l 的均匀细棒,可以在竖直平面内绕通过其中心的光滑水平轴转动,开始时细棒静止于水平位置.今有一质量为m 的小球,以速度u ρ垂直向下落到了棒的端点,设小球与棒的碰撞为完全弹性碰撞.试求碰撞后小球的回跳速度v ρ及棒绕轴转动的角速度ω.答案: 以棒和小球组成的系统为研究对象,则该系统所受的外力有小球的重力、棒的重力和轴给予棒的支持力, 后两者的作用线都通过了转轴,对轴的力矩为零.由于碰撞时间极短,碰撞的冲力矩远大于小球所受的重力矩,所以小球对轴的力矩可忽略不计.分析v ρomu可知所取系统的角动量守恒.由于碰撞前棒处于静止状态,所以碰撞前系统的角动量就是小球的角动量lmu . 由于碰撞后小球以速度v 回跳,其角动量为lmv ;棒获得的角速度为ω,棒的角动量为()ωω22312121Ml l M =⎥⎦⎤⎢⎣⎡.所以碰撞后系统的角动量为ω231Ml lmv +.由角动量守恒定律得ω231Ml lmv lmu += (1) 注意:上式中u ,v 这两个速度是以其代数量来表示.以碰撞前小球运动的方向为正,即0>u ;碰撞后小球回跳,u 与v 的方向必然相反,应该有0<v .由题意知,碰撞是完全弹性碰撞,所以碰撞前后系统的动能守恒,即222231212121ω⎪⎭⎫⎝⎛+=Ml mv mu (2) 联立(1)和(2)式,可得小球的速度为u Mm M m v +-=33棒的角速度为luM m m ⋅+=36ω讨论:由于碰撞后小球回跳,所以v 与u 的方向不同,而0>u ,则0<v .从结果可以看出,要保证0<v ,则必须保证m M 3>.否则,若M m 31≥,无论如何,碰撞后小球也不能回跳,杂耍运动员特别注意这一点.50 题号:03050 第03章 题型:计算题 难易程度:较难试题: 如图所示,一长为l 、质量为m 的匀质细棒竖直放置,其下端与一固定铰链o 相连结,并可绕其转动.由于此竖直放置的细棒处于非稳定平衡状态,当其受到微小扰动时,细棒将在重力的作用下由静止开始绕铰链o 转动.试计算细棒转到与竖直位置成θ角时的角加速度和角速度.答案: 法一 利用定轴转动的转动定律求解.分析受力如图所示,其中G ρ为细棒所受的重力、N ρ为铰链给细棒的约束力.由于约束力N ρ始终通过转轴,所以其作用力矩为零;铰链与细棒之间的摩擦力矩题中没有给定可认为不存在.又由于细棒为匀质细棒,所以重力G ρ的作用点在细棒中心.故由定轴转动的转动定律可得βθ⎪⎭⎫ ⎝⎛=231sin 21ml mgl 因此细棒转过θ角时的角加速度为θβsin 23lg=由角加速度的定义可得θθθωsin 23lgdt d d d =⋅ 整理可得θθωωd l g d ⎪⎭⎫⎝⎛=sin 23 由于0=t 时,0=θ,0=ω;而t t =时,θθ=,ωω=.所以上式两边取积分有θθωωθω⎰⎰⎪⎭⎫⎝⎛=0sin 23d l g d 因此细棒转过θ角时的角速度为()θωcos 13-=lg解法二 利用机械能守恒定律求解.以细棒和地球组成的系统为研究对象,由于细棒所受的重力为保守内力,铰链给细棒的约束力不做功,铰链与细棒之间的摩擦力题中没有给定可认为不存在,因此系统的机械能守恒.于是有()223121cos 12ωθ⎪⎭⎫ ⎝⎛=-⋅ml l mg 因此细棒转过θ角时的角速度为()θωcos 13-=lg此时的角加速度为θωβsin 23lgdt d ==解法三 利用定轴转动的动能定理求解.铰链的约束力对细棒不做功,摩擦力矩没有给定可以认为不存在,只有重力矩做功,所以对于细棒而言,合外力所做的功就是重力矩所做的功,即()θθθθθθcos 121sin 200-=⎪⎭⎫⎝⎛==⎰⎰mgl d l mg Md W由定轴转动的动能定理得()223121cos 121ωθ⎪⎭⎫ ⎝⎛=-ml mgl 因此细棒转过θ角时的角速度为()θωcos 13-=lg此时的角加速度为θωβsin 23lgdt d ==51 题号:03051 第03章 题型:计算题 难易程度:适中试题: 如图所示,在光滑的水平面上有一长为l 、质量为m 的匀质细棒以与棒长方向相互垂直的速度v ρ向前平动,平动中与一固定在桌面上的钉子o 相碰撞,碰撞后,细棒将绕点o 转动,试求其转动的角速度.答案: 由于细棒在光滑的水平面上运动,所以细棒与钉子o 碰撞的过程中遵守角动量守恒定律,则碰撞后碰撞前L L =对于转轴o 而言:⎪⎭⎫⎝⎛=4l mv L 碰撞前方向垂直于纸面向外;ωω⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-+==242l l m J J L o 中心轴碰撞后ωω2224874121ml l m ml =⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+=方向垂直于纸面向外.所以有ω24874ml l mv =⎪⎭⎫⎝⎛ 故细棒碰撞后绕轴o 转动的角速度为lv712=ω 52 题号:03052 第03章 题型:计算题 难易程度:适中试题: 如图所示,在光滑的水平面上有一劲度系数为k 的轻质弹簧,它的一端固定,另一端系一质量为M 的滑块.最初滑块静止时,弹簧处于自然长度0l .现有一质量为m 的子弹以速度0v 沿水平方向并垂直于弹簧轴线射向滑块且留在其中,滑块在水平面内滑动.当滑块被拉伸到长度为l 时,求滑块速度的大小和方向.答案: 此题的物理过程有两个,第一个过程为子弹与滑块的碰撞过程.在该过程中子弹与滑块组成的系统所受的合外力为零,所以系统的动量守恒.于是有()V m M mv +=0第二个过程为滑块与子弹一起,以共同的速度V 在弹簧的约束下运动的过程.在该过程中弹簧的弹力不断增大,但始终通过转轴o ,它的力矩为零,所以角动量守恒;与此同时若以子弹、滑块、弹簧和地球组成的系统为研究对象,则该过程也满足机械能守恒定律.因此有()()θsin 0v m M l V m M +=+()()()2022212121l l k v m M V m M -++=+ 其中θ为滑块运动方向与弹簧轴线方向之间的夹角.联立以上三个方程可得滑块速度的大小和方向分别为()m M l l k m M mv v +--⎪⎪⎭⎫⎝⎛+=2020 ()()⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎥⎦⎤⎢⎢⎣⎡+--⎪⎪⎭⎫ ⎝⎛++=--212020001sin m M l l k m M mv m M l l mv θ 53 题号:03053 第03章 题型:计算题 难易程度:适中试题: 一飞轮半径r = 1m ,以转速1min r 1500-⋅=n 转动,受制动均匀减速,经s 50=t 后静止.试求:(1)角加速度β和从制动开始到静止这段时间飞轮转过的转数N ;(2)制动开始后s 25=t 时飞轮的角速度ω;(3)在s 25=t 时飞轮边缘上一点的速度和加速度.答案: (1)角加速度20s rad 14.35060150014.325020-⋅-=⨯⨯-=-=-=ntπωωβ从制动开始到静止这段时间飞轮转过的转数62514.325014.3215060150014.322212220=⨯⨯⨯-⨯⨯⨯=+=∆=πβωπθtt N 圈(2)制动开始后s 25=t 时飞轮的角速度10s rad 5.782514.360150014.322-⋅=⨯-⨯⨯=+=+=t n t βπβωω (3)在s 25=t 时飞轮边缘上一点的速度和加速度分别为11s m 5.78s m )15.78()(--⋅=⋅⨯==τττωρρρρr v()()τβωττρρρρρr n r a n a a n +=+=2()[]()232s m )14.31016.6(14.315.78-⋅-⨯=⨯-+⨯=ττρρρρn r n54 题号:03054 第03章 题型:计算题 难易程度:适中试题: 如图所示.细棒的长为l ,设转轴通过棒上离中心距离为d 的一点并与棒垂直.求棒对此轴的转动惯量o J '.试说明这一转动惯量o J '与棒对过棒中心并与此轴平行的转轴的转动惯量o J 之间的关系(此为平行轴定理). 答案: 如图所示,以过o '点垂直于棒的直线为轴,沿棒长方向为x '轴,原点在o '点处,在棒上取一长度元x d ',则 ()⎰'='m o dm x J 2()⎰⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛''=d l d l x d l m x 222 22121md ml +=所以o J '与o J 之间的关系为2md J J o o +='55 题号:03055 第03章 题型:计算题 难易程度:适中试题: 如图所示.两物体的质量分别为1m 和2m ,滑轮的转动惯量为J ,半径为r .若2m 与桌面的摩擦系数为μ,设绳子与滑轮间无相对滑动,试求系统的加速度a 的大小及绳子中张力1T 和2T 的大小.答案: 分析受力如题图所示.21m m 和设其加速度分别为1a 和2a ,则由牛顿运动定律得22221111⎩⎨⎧=-=-a m g m T a m T g m μ 滑轮作定轴转动,则由转动定律有βJ r T r T =-21由于绳子与滑轮间无相对滑动,所以r a a a β===21联立以上四个方程可得,系统的加速度a 的大小及绳子中张力1T 和2T 的大小分别为d ox 'x 1。
大学物理 刚体的定轴转动 习题及答案
第4章 刚体的定轴转动 习题及答案1.刚体绕一定轴作匀变速转动,刚体上任一点是否有切向加速度?是否有法向加速度?切向和法向加速度的大小是否随时间变化?答:当刚体作匀变速转动时,角加速度β不变。
刚体上任一点都作匀变速圆周运动,因此该点速率在均匀变化,v l ω=,所以一定有切向加速度t a l β=,其大小不变。
又因该点速度的方向变化,所以一定有法向加速度2n a l ω=,由于角速度变化,所以法向加速度的大小也在变化。
2. 刚体绕定轴转动的转动定律和质点系的动量矩定理是什么关系?答:刚体是一个特殊的质点系,它应遵守质点系的动量矩定理,当刚体绕定轴Z 转动时,动量矩定理的形式为zz dL M dt=,z M 表示刚体对Z 轴的合外力矩,z L 表示刚体对Z 轴的动量矩。
()2z i i L m l I ωω==∑,其中()2i i I m l =∑,代表刚体对定轴的转动惯量,所以 ()z z dL d d M I I I dt dt dtωωβ====。
既 z M I β=。
所以刚体定轴转动的转动定律是质点系的动量矩定理在刚体绕定轴转动时的具体表现形式,及质点系的动量矩定理用于刚体时在刚体转轴方向的分量表达式。
3.两个半径相同的轮子,质量相同,但一个轮子的质量聚集在边缘附近,另一个轮子的质量分布比较均匀,试问:(1)如果它们的角动量相同,哪个轮子转得快?(2)如果它们的角速度相同,哪个轮子的角动量大?答:(1)由于L I ω=,而转动惯量与质量分布有关,半径、质量均相同的轮子,质量聚集在边缘附近的轮子的转动惯量大,故角速度小,转得慢,质量分布比较均匀的轮子转得快;(2)如果它们的角速度相同,则质量聚集在边缘附近的轮子角动量大。
4.一圆形台面可绕中心轴无摩擦地转动,有一玩具车相对台面由静止启动,绕轴作圆周运动,问平台如何运动?如小汽车突然刹车,此过程角动量是否守恒?动量是否守恒?能量是否守恒?答:玩具车相对台面由静止启动,绕轴作圆周运动时,平台将沿相反方向转动;小汽车突然刹车过程满足角动量守恒,而能量和动量均不守恒。
《刚体定轴转动》选择题解答与分析
2 刚体定轴转动转动惯量1. 关于刚体对轴的转动惯量,下列说法中正确的是 (A )只取决于刚体的质量,与质量的空间分布和轴的位置无关. (B )取决于刚体的质量和质量的空间分布,与轴的位置无关. (C )取决于刚体的质量、质量的空间分布和轴的位置. (D )只取决于转轴的位置,与刚体的质量和质量的空间分布无关.答案:(C ) 参考解答:首先明确转动惯量的物理意义,从转动定律与牛顿第二定律的对称关系可以看出,与质量m 是平动惯性大小的量度相对应,转动惯量I 则是刚体转动惯性大小的量度。
从转动惯量的的公式∑=∆=ni ii r m I12可以看出,其大小除了与刚体的形状、大小和质量分布有关外,还与转轴的位置有关。
凡选择回答错误的,均给出下面的进一步讨论:1. 计算一个刚体对某转轴的转动惯量时,一般能不能认为它的质量集中于其质心,成为一质点,然后计算这个质点对该轴的转动惯量?为什么?举例说明你的结论。
参考解答:不能.因为刚体的转动惯量∑∆i i m r 2与各质量元和它们对转轴的距离有关.如一匀质圆盘对过其中心且垂直盘面轴的转动惯量为221mR ,若按质量全部集中于质心计算,则对同一轴的转动惯量为零.2. 一刚体由匀质细杆和匀质球体两部分构成,杆在球体直径的延长线上,如图所示.球体的半径为R ,杆长为2R ,杆和球体的质量均为m .若杆对通过其中点O 1,与杆垂直的轴的转动惯量为J 1,球体对通过球心O 2的转动惯量为J 2,则整个刚体对通过杆与球体的固结点O 且与杆垂直的轴的转动惯量为 (A) J =J 1+J 2. (B) J =mR 2+mR 2.(C) J =(J 1+mR 2)+(J 2+mR 2).(D) J =[J 1+m (2R )2]+[J 2+m (2R )2]. 答案:(C) 参考解答:根据转动惯量具有叠加性,则整个刚体对通过杆与球体的固结点0且与杆垂直的轴的转动惯量为细杆和球体分别对该轴转动惯量之合。
2019级大学物理1作业一刚体的定轴转动
第二次作业:刚体的定轴转动一、选择题(答案填入下表)1. 一质点作匀速率圆周运动时,[答案填入上表](A) 它的动量不变,对圆心的角动量也不变;(B) 它的动量不变,对圆心的角动量不断改变;(C) 它的动量不断改变,对圆心的角动量不变;(D) 它的动量不断改变,对圆心的角动量也不断改变。
2. 人造地球卫星绕地球作椭圆轨道运动,卫星轨道近地点和远地点分别为A和B。
用L 和E k分别表示卫星对地心的角动量及其动能的瞬时值,则应有[答案填入上表] (A) L A> L B,E kA> E kB;(B) L A =L B , E kA < E kB ; (C) L A =L B , E kA > E kB ; (D) L A < L B , E kA < E k B 。
3. 一质量为m ,半径为R 的匀质圆盘对其中心垂直轴的转动惯量为J ,若在保持其质量不变的情况下,使之变成半径为2R 的匀质圆盘,则其对中心垂直轴的转动惯量的大小为 [答案填入上表] (A) 因圆盘的质量不变,所以转动惯量仍为J ; (B) 因半径变为2R ,所以转动惯量为2J ; (C) 转动惯量为3J ; (D) 转动惯量为4J 。
4. 如图所示,一静止的均匀细棒,长为L ,质量为M 。
可绕通过棒的端点且垂直于棒长的光滑固定轴O 在水平面内转动,转动惯量为231ML 。
一质量为m 、速率为 的子弹在水平面内沿与棒垂直的方向射入并穿入棒的自由端,设穿过棒后子弹的速率为υ21,则此时棒的角速度应为 [答案填入上表] (A) ML m υ ; (B) ML m 23υ; (C) ML m 35υ ; (D) MLm 47υ。
5. 三个完全相同的轮子绕一公共轴转动,角速度的大小都相同,但其中一个轮子的转动方向与另外两轮的转动方向相反。
如果使三个轮子靠近并啮合在一起,系统的角速度大小是原来角速度大小的[答案填入上表](A) 1/9; (B) 1/3; (C) 3 ; (D) 9。
大学物理05刚体的定轴转动习题解答
第五章 刚体的定轴转动一 选择题1. 一绕定轴转动的刚体,某时刻的角速度为ω,角加速度为α,则其转动加快的依据是:( )A. α > 0B. ω > 0,α > 0C. ω < 0,α > 0D. ω > 0,α < 0解:答案是B 。
2. 用铅和铁两种金属制成两个均质圆盘,质量相等且具有相同的厚度,则它们对过盘心且垂直盘面的轴的转动惯量。
( )A. 相等;B. 铅盘的大;C. 铁盘的大;D. 无法确定谁大谁小解:答案是C 。
简要提示:铅的密度大,所以其半径小,圆盘的转动惯量为:2/2Mr J =。
3. 一轻绳绕在半径为r 的重滑轮上,轮对轴的转动惯量为J ,一是以力F 向下拉绳使轮转动;二是以重量等于F 的重物挂在绳上使之转动,若两种情况使轮边缘获得的切向加速度分别为a 1和a 2,则有: ( )A. a 1 = a 2B. a 1 > a 2C. a 1< a 2D. 无法确定解:答案是B 。
简要提示:(1) 由定轴转动定律,1αJ Fr =和11αr a =,得:J Fr a /21=(2) 受力分析得:⎪⎩⎪⎨⎧===-2222ααr a J Tr ma T mg ,其中m 为重物的质量,T 为绳子的张力。
得:)/(222mr J Fr a +=,所以a 1 > a 2。
4. 一半径为R ,质量为m 的圆柱体,在切向力F 作用下由静止开始绕轴线作定轴转动,则在2秒内F 对柱体所作功为: ( )A. 4 F 2/ mB. 2 F 2 / mC. F 2 / mD. F 2 / 2 m解:答案是A 。
简要提示:由定轴转动定律: α221MR FR =,得:mRF t 4212==∆αθ 所以:m F M W /42=∆=θ5. 一电唱机的转盘正以ω 0的角速度转动,其转动惯量为J 1,现将一转动惯量为J 2的唱片置于转盘上,则共同转动的角速度应为: ( )A .0211ωJ J J +B .0121ωJ J J +C .021ωJ JD .012ωJ J 解:答案是A 。
大学物理习题册及解答(第二版)第四章-刚体的定轴转动
上环可以自由在纸面内外摆动。求此时圆环摆的转动惯量。 O
(*)(3)求两种小摆动的周期。哪种摆动的周期较长?
R C
解:(1)圆环放在刀口上O,以环中 心的平衡位置C点的为坐标原点。Z轴
J zc MR2
O
P
ŷ
P΄
x
指向读者。圆环绕Z轴的转动惯量为
Z
R
由平行轴定理,关于刀口的转动惯量为 J zo J zc MR 2 2MR 2
m(l a) J
杆摆动过程机械能守恒
J 1 Ml2 3
1 J 2 Mg l (1 cos )
2
2
解得小球碰前速率为 Ml
2gl sin
m(l a) 3 2
5.一轻绳绕过一半径R,质量为M/4的滑轮。质量为M的人抓住绳 子的一端,而绳子另一端系一质量为M/2的重物,如图。求当人相 对于绳匀速上爬时,重物上升的加速度是多少?
解:选人、滑轮、与重物为系统,系统所受对滑轮轴的
外力矩为
1 MgR
人
物2
设u为人相对绳的匀速度,为重物上升的
速度。则该系统对滑轮轴的角动量为
L M R M (u )R (1 M R2 ) 13 MR MRu
2
24
8
据转动定律
du 0 dt
dL dt
a
即 1 MgR d (13 MR MRu)
6. 一飞轮以角速度0绕光滑固定轴旋转,飞轮对轴的转动惯 量为J1;另一静止飞轮突然和上述转动的飞轮啮合,绕同一转 轴转动,该飞轮对轴的转动惯量为前者的二倍.啮合后整个系
统的角速度 / 3 0
7.一长为l,质量可以忽略的直杆,可绕通过其一端的 水平光滑轴在竖直平面内作定轴转动,在杆的另一端固 定着一质量为m的小球,如图所示.现将杆由水平位置 无初转速地释放.则杆刚被释放时的角加速度a0 _ , 杆与水平方向夹角为60°时的角加速度a_
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
刚体的定轴转动带答案 This model paper was revised by LINDA on December 15, 2012.刚体的定轴转动一、选择题1、(本题3分)0289关于刚体对轴的转动惯量,下列说法中正确的是 [ C ](A)只取决于刚体的质量,与质量的空间分布和轴的位置无关。
(B)取决于刚体的质量和质量的空间分布,与轴的位置无关。
(C)取决于刚体的质量、质量的空间分布和轴的位置。
(D)只取决于转轴的位置,与刚体的质量和质量的空间分布无关。
2、(本题3分)0165均匀细棒OA可绕通过某一端O而与棒垂直的水平固定光滑轴转动,如图所示,今使棒从水平位置由静止开始自由下降,在棒摆到竖直位置的过程中,下述说法哪一种是正确的(A)角速度从小到大,角加速度从大到小。
(B)角速度从小到大,角加速度从小到大。
(C)角速度从大到小,角加速度从大到小。
(D)角速度从大到小,角加速度从小到大。
3. (本题3分)5640一个物体正在绕固定的光滑轴自由转动,则 [ D ](A ) 它受热或遇冷伸缩时,角速度不变. (B ) 它受热时角速度变大,遇冷时角速度变小. (C ) 它受热或遇冷伸缩时,角速度均变大. (D ) 它受热时角速度变小,遇冷时角速度变大. 4、(本题3分)0292一轻绳绕在有水平轴的定滑轮上,滑轮质量为m ,绳下端挂一物体,物体所受重力为P ,滑轮的角加速度为β,若将物体去掉而以与P 相等的力直接向下拉绳子,滑轮的角加速度β将 [ C ](A )不变 (B )变小 (C )变大 (D )无法判断 5、(本题3分)5028如图所示,A 、B 为两个相同的绕着 轻绳的定滑轮,A 滑轮挂一质量为M 的物体,B 滑轮受拉力F ,而且F=Mg ,设A 、B 两滑轮的角加速度分别为βA 和βB ,不计滑轮轴的摩擦, 则有 [ C ] (A )βA =βB (B )βA >βB(C )βA <βB (D )开始时βA =βB ,以后βA <βB 6、(本题3分)0294刚体角动量守恒的充分而必要的条件是 [ B ] (A )刚体不受外力矩的作用。
(B )刚体所受合外力矩为零。
(C )刚体所受的合外力和合外力矩均为零。
(D )刚体的转动惯量和角速度均保持不变。
7、(本题3分)0247如图示,一匀质细杆可绕通过上端与杆垂直的水平光滑固定轴O 旋转,初始状态为静止悬挂。
现有一个小球自左方水平打击细杆,设小球与细杆之间为非弹性碰撞,则在碰撞过程中对细杆与小球这一系统 [ C ](A )只有机械能守恒。
(B )只有动量守恒。
(C )只有对转轴O 的角动量守恒。
(D )机械能、动量和角动量均守量。
8、(本题3分)0677一块方板,可以绕通过其一个水平边的光滑固定转轴自由转动,最初板自由下垂,今有一小团粘土,垂直板面撞击方板,并粘在方板上,对粘土和方板系统,如果忽略空气阻力,在碰撞中守恒的量是 [ B ](A )动能 (B )绕木板转轴的角动量 (C )机械能 (D )动量 9、(本题3分)0228质量为m 的小孩站在半径为R 的水平平台边缘上,平台可以绕通过其中心的竖直光滑固定轴自由转动,转动惯量为J ,平台和小孩开始时均静止,当小孩突然以相对于地面为v 的速率在平台边缘沿逆时针转向走动时,则此平台相对地面旋转的角速度和旋转方向分别为 [ A ](A )J mR 2=ω(R V ),顺时针。
(B )J mR 2=ω(RV),逆时针。
(C )22mR J mR +=ω(R V ),顺时针。
(D )22mR J mR +=ω(RV),逆时针。
10、(本题3分)0230一圆盘正绕垂直于盘面的水平光滑固定轴O 转动,如图射来两个质量相同,速度大小相同,方向相反并在一条直线上的子弹,子弹射入圆盘并且留在盘内,则子弹射入后的瞬间,圆盘的角速度ω [ C ](A )增大 (B )不变 (C )减少 (D )不能确定 11、(本题3分)0133如图所示,一静止的均匀细棒,长为 ,质量为M ,可绕通过棒的端点且垂直于棒长的光滑固定轴O 在水平面内转动,转动惯量为1/2 ML 2,一质量为m ,速率为v 的子弹在水平面内沿与棒垂直的方向射入并穿入棒的自由端,设穿过棒后子弹的速率为 V ,则此时棒的角速度应为 [B ] (A )ML mv (2)ML mv 23(3))(35L M mv (4)MLmv4712、(本题3分)0772如图示,一水平刚性轻杆,质量不计,杆长ι=20cm ,其上穿有两个小球,初始时,两个小球相对杆中心O 对称放置,与O 的距离d=5cm ,二者之间用细线拉紧,现在让细杆绕通过中心O 的竖直固定轴作匀角速的转动,转速为ω0,再烧断细线让两球向杆的两端滑动,不考虑转轴和空气的摩擦,当两球都滑至杆端时,杆的角速度为 [ D ](A )ω0 (B )2ω0(C )21ω0 (D )ω0/413、(本题3分)0197一小平圆盘可绕通过其中心的固定铅直轴转动,盘上站着一个人,把人和 圆盘取作系统,当此人在盘上随意走动时,若忽略轴的摩擦,则此系统 [ C ] (A )动量守恒 。
(D )动量、机械能和角动量都守恒。
(B )机械能守恒。
(E )动量、机械能和角动量都不守恒。
(C )对转轴的角动量守恒。
14、(本题3分)5643有一半径为R 的水平圆转台,可绕通过其中心的竖直固定光滑轴转动,转动惯量为J ,开始时转台以匀角速度ω0转动,此时有一质量为m 的人站在转台中心。
随后人沿半径向外跑去,当人到达转台边缘时,转台的角速度为 [ A ] (A ) 02ωmRJ J+ (B )()02ωR m J J + (C )02ωmRJ(D )0ω 二、填空题:(共18分) 1、(本题3分)0290半径为r=的飞轮,初角速度ω0=10rad ·S -1,角加速度β=-5rad ·S -2,则t= 4s 时角位移为零,而此时边缘上点的线速度υ= -15mS -1 . 2、(本题3分)0977一个匀质圆盘由静止开始以恒定角加速度绕过中心且垂直于盘面的轴转动,在某一时刻转速为10rev/s ,再转60圈后转速变为15rev/s ,则由静止达到10rev/s 所需时间t= ;由静止到10rev/s 时圆盘所转的圈数N= 48rev 。
3、(本题3分)0302可绕水平轴转动的飞轮,直径为,一条绳子绕在飞轮的外周边缘上,如果从静止开始做匀角加速运动且在4s 内绳被展开10m ,则飞轮的角加速度为 5rad/S 2 。
4、(本题3分)0543如图所示,P 、Q 、R 和S 是附于刚性轻质细杆上的质 量分别为4m 、3m 、2m 和m 的四个质点,则系统对oo’轴的转动惯量为 50ml 2。
5、(本题3分)0553一个作定轴转动的物体,对转轴的转动惯量为J ,正以角速度ω0=10rad ·s -1匀速转动,现对物体加一恒定的力矩M=·m ,经过时间t=后,物体停止了转动,物体的转动惯量J= . 。
6.(本题3分) 0164如图所示的匀质大圆盘,质量为M ,半径为R ,对于过圆心O 点且垂直于盘面的转轴的转动惯量为21MR 2,如果在大圆盘中挖去图示的一个小圆盘,其质量为m ,半径为r ,且2r=R ,已知挖去的小圆盘相对于过O 点且垂直于盘面的转轴的转动惯量为23mr 2,则挖去小圆盘后剩余部分对于过O 点且垂直于盘面的转 轴的转动惯量为 。
7、(本题3分)0676一定滑轮质量为M 、半径为R ,对水平轴的转动惯量J=21MR 2,在滑轮的边缘绕一细绳,绳的下端挂一物体,绳的质量可以忽略且不能伸长,滑轮与轴承间无摩擦,物体下落的加速度为a ,则绳中的张力T= 21ma 。
8、(本题3分)0685如图所示,滑块A ,重物B 和滑轮C 的质量分别为m A 、m B 、和m C ,滑轮的半径为R ,滑轮对轴的转动惯量J=221R m c ,滑块A 与桌面间,滑轮与轴承之间均无摩擦,绳的质量可不计,绳与滑轮之间无相对滑 动,滑块A 的加速度的a= 。
9、(本题3分)0240一飞轮以600re υ/min 的转速旋转,转动惯量为·m 2,现加一恒定的制动力矩使飞轮在1s 内停止转动,则该恒定制动力矩的大小M= 157N ·m 。
10、(本题3分)0552一个作定轴转动的轮子,对轴的转动惯量J=·m 2,正以角速度ω0匀速转动,现对轮子加一恒定的力矩M=·m ,经过时间t=时轮子的角速度ω=-ω0,则ω0= 。
11、(本题3分)0559一长为L 的轻质细杆,两端分别固定质量为m 和2m 的小球,此系统在竖直平面内可绕过中点O 且与杆垂直的水平光滑固定轴(O 轴)转动,开始时杆与水平成600,处于静止状态,无初转速地释放以后,杆球这一刚体系统绕O 轴转动,系统绕O 轴的转动惯量J= ,释放后,当杆转到水平位置时,刚体受到的合外力矩M= ;角加速度β= 。
12、(本题3分)0236质量为m 长为 (转动惯量122 m J =)。
开始时棒静止,现有一子弹,质量也是m ,以速率0v垂直射入棒端并嵌在其中. 则子弹和棒碰后的角速度ω= 23v 。
13、(本题3分)0683如图所示,一轻绳绕于半径为r 的飞轮边缘,并以质量为m 的物体挂在绳端,飞轮对过轮心且与轮面垂直的水平固定轴的转 动惯量为J ,若不计摩擦,飞轮的角加速度β= 。
14、(本题3分)0684半径为R 具有光滑轴的定滑轮边缘绕一细绳,绳的下端挂一质量为m 的物体,绳的质量可以忽略,绳与定滑轮之间无相对滑动,若物体下落的加速度为a ,则定滑轮对轴的转动惯量J= 。
15、(本题3分)0542质量分别为m 和2m 的两物体(都可视为质点),用一长为ι的轻质刚性细杆相连,系统绕通过杆且与杆垂直的竖直固定轴O 转动,已知O 轴离质量为2m 的质点的距离为,质量为m 的质点的线速度为υ且与杆垂直,则该系统对转轴的角动量(动量矩)大小为 mvl 。
16、(本题3分)0774判断图示的各种情况下,哪种情况角动量是守恒的,请把序号填在横线上的空白处。
(1),(2),(3)。
(1) 圆锥摆中作水平匀速圆周运动的小球 m ,对竖直轴OO ’的角动量。
(2)绕光滑水平固定轴O 自由摆动的米尺,对轴的O 的角动量。
(3)光滑水平桌面上,匀质杆被运动的小球撞击其一端,杆与小球系统,对于通过杆另一端的竖直固定光滑轴的角动量。
(4)一细绳绕过有光滑的定滑轮,滑轮的一侧为一重物m ,另一侧为一质量等于m 的人,在人向上爬的过程中,人与重物系统对轴的O 的角动量。